
1 The Bernoulli Problem

Let D be a smooth bounded open set. Define

E(u;E) =

ˆ
E

|∇u|2 + Λ1u>0

for any u ∈ H1(E). We study the Alt-Caffarelli variational problem (see [1]):

min{E(u;D) : u ∈ H1(D), u = 1 on ∂D}. (1.1)

This may be motivated by the following optimal insulation problem: assume that Rn \ D is held at a
constant temperature 1, whereas D is at the ambient temperature 0. We place some insulator ({u > 0}∩D)
inside of D to reduce the heat transfer from the complement to the interior. Then the equilibrium heat
distribution will be given by a function u which is 1 on Rn \D, is harmonic within the insulator region, and
is 0 on the remainder of D. The amount of heat being lost to D per unit time is given by the heat flux
through ∂D: ˆ

∂D

uνdHn−1,

where ν is the outward unit normal. We may then set up an optimization problem: choosing a larger
insulator will lower the cost of heating the complement of D, but if we have to pay Λ per unit of insulator,
we should minimize ˆ

∂D

uνdHn−1 + Λ|{u > 0} ∩D|

over all u harmonic on {u > 0}∩D and satisfying the boundary conditions above. As u = 1 on ∂D, we may
integrate by parts: ˆ

∂D

uνdHn−1 =

ˆ
∂D

uuνdHn−1 =

ˆ
D

|∇u|2.

If we then minimize ˆ
D

|∇u|2 + Λ|{u > 0} ∩D|

over all of H1(Rn) with u = 1 on Rn \ D, this will recover a u satisfying our boundary value problem,
making it equivalent to the insulation functional above (see the next section for details).

2 Basic Properties

Theorem 2.1. The problem (1.1) admits a minimizer. Any minimizer to (1.1) is a nonnegative function.

Proof. First, observe that E(u+;D) ≤ E(u;D) for any admissible function u; this establishes the second
claim and also lets us find a sequence uk with uk ∈ H1(D), uk = 1 on ∂D, uk ≥ 0, with

E(uk;D)→ inf{E(u;D) : u ∈ H1(D), u|∂D = 1}.

We may extract a subsequence uk → u weakly in H1(D), and hence strongly in L2(D) and L2(∂D) (the
latter from the continuity of the trace map, the former from the compact embedding). Up to passing to a
further subsequence, we may also assume that uk → u almost everywhere.

Note that 1u>0 ≤ lim inf 1uk>0 a.e.: this follows from the fact that t 7→ 1t>0 is lower semicontinuous.
Then from Fatou’s lemma, ˆ

D

1u>0 ≤ lim inf

ˆ
D

1uk>0.
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From the weak convergence in H1, ˆ
D

|∇u|2 ≤ lim inf

ˆ
D

|∇uk|2.

These imply that

E(u;D) ≤ lim inf E(uk;D) = inf{E(u;D) : u ∈ H1(D), u|∂D = 1},

and so we have found a minimizer.

As an exercise, try removing the assumption that D is bounded (you will need to use the lower bound
we prove later).

Below it will be convenient to consider the notion of local minimizer of 1.1:

Definition 2.1. We say that a nonnegative function u ∈ H1(U) is a local minimizer on U if for any v with
u− v ∈ H1

0 (V ) for some bounded open V ⊂⊂ U , we have

E(u;V ) ≤ E(v;V ).

If U = Rn, we say that u is an entire local minimizer.

Note that at least if U is bounded and regular and E(u, U) <∞, one may equivalently take V = U , but
the form above will be more convenient for us.

Lemma 2.2. Let u be a local minimizer on U , and Br(x) ⊂⊂ U . Let h be the harmonic replacement of u,
i.e. the solution of {

4h = 0 on Br(x)

h = u on ∂Br(x).
(2.2)

Then ˆ
Br(x)

|∇(u− h)|2 ≤ Λ|{u = 0} ∩Br(x)|.

Proof. Let h be as defined, and extend it to coincide with u outside of Br(x). Then E(u;Br(x)) ≤
E(h;Br(x)), givingˆ

Br(x)

|∇u|2 + Λ|{u > 0} ∩Br(x)| ≤ E(u;Br(x)) ≤ E(h;Br(x)) =

ˆ
Br(x)

|∇h|2 + Λ|Br(x)|.

Hence ˆ
Br(x)

∇(u− h) · ∇(u+ h) =

ˆ
Br(x)

|∇u|2 − |∇h|2 ≤ Λ|{u = 0} ∩Br|.

Now observe that as h is harmonic and u− h ∈ H1
0 (Br(x)), we haveˆ

Br(x)

2∇h · ∇(u− h) = 0,

giving ˆ
Br(x)

|∇(u− h)|2 ≤ Λ|{u = 0} ∩Br|.

We now go through a standard argument due to Morrey, which shows that the property in the preceding
lemma gives an almost Lipschitz modulus of continuity. This will be improved in the next section, but that
improvement will use some subtle aspects of the free boundary problem we are considering. By contrast, the
argument here is completely generic.

Let A(x, r) =
√ffl

Br(x)
|∇u|2 below.
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Lemma 2.3. Let u be a local minimizer on U and Br(x) ⊂⊂ U . Then A(x, 1
2r) ≤ A(x, r) +

√
2nΛ.

Proof. we have from Lemma 2.2 that  
Br(x)

|∇(u− h)|2 ≤ Λ.

From the subharmonicity of |∇h|2, we have that

 
Br/2(x)

|∇h|2 ≤
 
Br(x)

|∇h|2.

Hence √ 
Br/2(x)

|∇u|2 ≤ sqrt2n
 
Br(x)

|∇(u− h)|2 + sqrt

 
Br/2(x)

|∇h|2

≤
√

2nΛ +

√ 
Br(x)

|∇h|2

≤
√

2nΛ +

√ 
Br(x)

|∇u|2.

The last step used that h minimizes the Dirichlet energy, and u is a competitor.

Lemma 2.4. Let u be a minimizer of (1.1) and d(x) = d(x, ∂D). Then A(x, r)2 ≤ C
dn(x)E(u;D) +

CΛ| log r/d(x)|2.

Proof. We have that for r ≥ d(x),

A2(x, r) ≤ 1

|Bd(x)|
E(u;D) ≤ C

dn(x)
E(u;D).

Now for rk = 2−kd(x), we have

A(x, rk) ≤ A(x, rk−1) +
√

2nΛ ≤ A(x, d(x)) + k
√

2nΛ

from Lemma 2.3. This gives

A(x, rk) ≤

√
C

dn(x)
E(u;D) +

√
2nΛ| log rk/d(x)

log 2
|

Using that A(x, r) ≤ 2nA(x, rk) for r ∈ (rk+1, rk) and squaring gives the conclusion.

Theorem 2.5. With u as above,

|u(x)− u(y)| ≤ C(d(x))
√
E(x;D) + Λ|x− y|(1 + | log |x− y||)

for any x, y ∈ D with |x− y| ≤ d(x)/2.

Proof. Set m(x, r) =
ffl
Br(x)

u. Applying Lemma 2.4, we have that

 
Br(x)

|u−m(x, r)|2 ≤ C(d(x))r2(1 + | log r|2)[E(u;D) + Λ].
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for r < d(x). This gives

|m(x, r)−m(x, r/2)|2 =

 
Br/2(x)

|m(x, r)−m(x, r/2)|2

≤ 2n+1

 
Br(x)

|m(x, r)− u(x)|2 + 2

 
Br/2(x)

|u(x)−m(x, r/2)|2

≤ C(d(x))r2(1 + | log r|2)[E(u;D) + Λ].

In particular, this means that

|m(x, 2−kd(x))−m(x, 2−k−1d(x))| ≤ [E(u;D) + Λ]C(d(x))2−k(1 + k),

meaning it is a Cauchy sequence. Summing gives

|m(x, 0+)−m(x, 2−kd(x))| ≤ [E(u;D) + Λ]C(d(x))2−k(1 + k),

noting carefully that no further powers of k are gained when computing the sum. Taking u(x) = m(x, 0+)
gives a Lebesgue representative for u for which every point is a Lebesgue point.

We may then check that for any y ∈ Br/2(x), with r < d(x),

|u(y)−u(x)| ≤ |u(y)−m(y, r/2)|+|m(y, r/2)−m(x, r)|+|m(x, r)−u(x)| ≤ [E(u;D)+Λ]C(d(x))r(1+| log r|).

Indeed, the first and third terms follow from the above summation property, while the second similarly to
our estimate on m(x, r)−m(x, r/2). This establishes the conclusion.

In particular, u is continuous on D. The d(x) dependence may be removed by combining with boundary
regularity results for harmonic functions, in light of the following observation:

Theorem 2.6. Let u be a continuous local minimizer on D. Then u is subharmonic on D, and harmonic
on {u > 0} ∩D.

Proof. That u is harmonic on {u > 0} is immediate from its continuity and Lemma 2.2: it coincides with
its harmonic replacement on a small ball where u > 0. Any continuous function u ≥ 0 which is harmonic
where positive is subharmonic; this may be checked for each of our notions of subharmonic directly.

This means that 4u is representable as a positive Borel measure. Unlike for the obstacle problem, we
will see that this measure is not absolutely continuous with respect to Lebesgue measure, and instead is
concentrated on the free boundary ∂{u > 0}.

3 Optimal Regularity

The following sequence of lemmas aims to show that u is Lipschitz continuous. This is an improvement over
the results of the previous section, which are basically optimal without the additional special structure of
our variational problem. The argument here is inspired by work of Alt, Caffarelli, and Friedman [2] for the
two-phase problem; there is a simpler but more specialized argument available in the one-phase case (and
can be found in Alt-Caffarelli [1]), but this is more robust and gives some useful extra information.

Recall that for any subharmonic function

∂s

 
∂Bs

u =
c(n)

sn−1
4u(Bs).

Integrating gives  
B2r

u− u(0) = c(n)

ˆ 2r

0

4u(Bs)

sn−1
ds. (3.3)
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Lemma 3.1. Let u be a local minimizer on D, and Br ⊆ D. Then

4u(Br/2) ·
 
Br

u ≤ CΛrn.

Proof. From Lemma 2.2, we have that
ˆ
Br

|∇(u− h)|2 ≤ CΛrn,

where h is the harmonic replacement of u on Br. As h is harmonic, this gives

CΛrn ≥
ˆ
Br

|∇(u− h)|2 =

ˆ
Br

∇u · ∇(u− h) =

ˆ
Br

(h− u)d4u.

From the maximum principle, h ≥ u (recall that u is subharmonic). We may therefore split the integral as
ˆ
Br

(h− u)d4u =

ˆ
Br/2∩{u=0}

(h− u)d4u+

ˆ
(Br/2∩{u>0})∪Br\Br/2

(h− u)d4u

and observe that the second term is nonnegative; this gives
ˆ
Br/2∩{u=0}

hd4u ≤ CΛrn.

Now, from the mean value property, we have that

h(0) =

 
∂Br

u.

From the Harnack inequality, then,

inf
Br/2

h ≥ c(n)h(0) = c

 
∂Br

u.

This gives that

C

 
∂Br

u4u(Br/2 ∩ {u = 0}) ≤ CΛrn.

To conclude, note that u is harmonic on the open set {u > 0} ∩Br/2, so

4u(Br/2 ∩ {u > 0}) = 0.

Lemma 3.2. There is a constant CL (depending only on n) such that if B2r ⊆ D and u(0) = 0, then

sup
Br/2

u ≤ C
√

Λr.

Proof. First, as u is subharmonic the supremum in question will always be attained on ∂Br/2, say at a point
x. We will show the following stronger statement, then:

u(x) ≤ C
√

Λd(x, ∂{u > 0}).

Set d = d(x, ∂{u > 0}) < r/2.

By definition, u > 0 and harmonic on Bd(x), so we may apply the Harnack inequality there to learn
that

inf
Bd/2(x)

u ≥ c(n)u(x).
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Let y ∈ ∂Bd(x) with u(y) = 0 below. Define q to be the following radial harmonic function:

q(z) =

{
|z|2−n−1
2n−2−1 n ≥ 3
− log |z|

log 2 n = 2.

This is the unique harmonic function which equals 1 on ∂B1/2 and 0 on ∂B1. Then set qu(z) = c(n)u(x)q(x+
dz); we have that qu = 0 on ∂Bd(x), and that q ≤ u on ∂Bd/2(x), so u ≥ qu on Bd\Bd/2. It is straightforward
to check that for |z| ∈ [1/2, 1], q(z) ≥ c(n)(1 − |z|) (one may in fact take c(n) = |∇q|∂B1

, as q is convex in
the radial direction). This translates to

u(z) ≥ qu(z) ≥ c(n)u(x)(1− |z − x|/d)

for z ∈ Bd(x) \Bd/2(x).

As a consequence, we have that  
∂Bs(y)

u ≥ c(n)u(x)s/d

for every s ≤ d. Indeed, ∂Bs(y)∩Bd− s2 (x) has surface measure at least c(n)s, and in this region u ≥ cu(x)s/d.

Let us apply Lemma 3.1 to balls centered around y: this gives that

4u(Bs(y)) · cu(x)s/d ≤ CΛsn.

Integrating via (3.3) gives that
cu(x)

d
[

 
∂Bd(y)

u− u(y)] ≤ CΛd;

as u(y) = 0 and the mean value there is bounded from below by c(n)u(x), this means

cu(x)

d
u(x) ≤ CΛd,

or u(x) ≤ C
√

Λd. This completes the argument.

Corollary 3.3. Let u be a local minimizer on B1, and u(0) = 0. Then

sup
B1/2

|∇u| ≤ C
√

Λ.

Proof. It suffices to show this for those x at which u 6= 0, for ∇u = 0 a.e. on {u = 0} (this is true of all
Sobolev functions).

Fix x ∈ B1/2, and let d = d(x) = d(x, {u = 0}) < 1
2 . Let y ∈ ∂{u > o} be a point with |x − y| = d.

Then from Lemma 3.2, |u| ≤ C
√

Λd on Bd/8(y).

Now, u is harmonic on Bd(x). Noting that Bd/8(y) ∩ B9d/10(x) 6= ∅, apply the Harnack inequality to u
to give

sup
B9d/10

u ≤ C inf
B9d/10

u ≤ C
√

Λd.

Then apply elliptic estimates for u on this ball to give that

|∇u(x)| ≤ C
supB9d/10

|u|
d

≤ C
√

Λ.

There is also a global version of this:
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Corollary 3.4. Let u be a local minimizer on D, with u ≤ 1. Then |∇u(x)| ≤ C
√

Λ(1+1/d(x, ∂D)) (almost
everywhere).

If this is combined with boundary regularity for harmonic functions, it easily implies global estimates
which do not worsen as one approaches ∂D, but again we do not pursue this here.

Proof. Fix x, and let d = d(x) = d(x, {u = 0}) > 0 as before. If 8d > d(x, ∂D) := r, we note that u is
harmonic on Br/8(x). Applying standard estimates for harmonic functions gives that

|∇u(x)| ≤ C(n)

8r
osc

Br/8(x)
u ≤ C(n)

r
,

which is consistent with the conclusion. On the other hand, if this is not the case, there is a point y with
u(y) = 0, |x − y| = d, and 4d < d(y, ∂D). Apply Lemma 3.2 to u and B4d(y) to give that u(x) ≤ C

√
Λd

on B2d(y), which contains Bd(x). Again we apply standard estimates for harmonic functions on Bd(x), this
time with the improved oscillation bound:

|∇u(x)| ≤ C(n)

d
osc
Bd(x)

u ≤ C(n)
√

Λ,

4 The Lower Bound

There is a second basic estimate available for this problem, which complements the first one. It says that
the regularity above is optimal, and that the solution grows linearly away from the zero set. The argument
here is taken from [9].

Theorem 4.1. Let u be a local minimizer on D, and let Br ⊂⊂ D. Then either

max
Br

u ≥ cL
√

Λr,

where cL = cL(n), or u = 0 on Br/2.

Proof. Assume that
max
Br

u ≤ ε
√

Λr

for ε < ε0, a constant to be chosen shortly. We will first show that this implies that

max
Br/2

u ≤ 1

2
ε
√

Λ
r

2
.

Indeed, first let η1 be a smooth cutoff function supported on Br, identically 1 on B9r/10, and having
|∇η1| ≤ C/r. Using η2u as a test function for 4u ≥ 0, we have that

ˆ
η2|∇u|2 ≤ C

r2

ˆ
Br

u2 ≤ CΛε2rn.

(This is just the usual Cacciopolli inequality combined with our assumption.)

Now let η be another similar cutoff, this one supported on the complement of B3r/4 and identically 1 on
Rn \B9r/10. Let v = ηu and use v as a competitor for the minimization of 1.1: this gives

Λ|{u > 0} ∩B3r/4| ≤
ˆ
B9r/10

|∇v|2 − |∇u|2 ≤ C
ˆ
B9r/10

|∇u|2 +
u2

r2
.
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Combining with the estimate on u and |∇u, this gives

|{u > 0} ∩B3r/4| ≤ Cε2rn.

Then for any x ∈ Br/2, applying the mean value property gives

u(x) ≤
 
Br/4(x)

u ≤ C
√

Λε3.

So long as Cε2 ≤ 1
4 , this establishes our claim.

Now we show the conclusion of the theorem. If cL is sufficiently small, we have that for every x ∈ B1/2,

max
Br/2(x)

u ≤ ε
√

Λ
r

2
.

Now apply the claim inductively on B2−kr(x), each time getting

max
B

2−kr(x)
u ≤ ε21−k

√
Λ

r

2−k
.

In particular, this gives that u(x) = 0, concluding the proof.

5 Density Estimates

The theorem below captures some rough geometric information about the size of the free boundary. It is
very similar to a similar theorem about minimal surfaces, where it is often referred to as the uniform density
estimates. In other contexts, it is known as Ahlfors regularity or Ahlfors-David regularity.

Theorem 5.1. Let u be a local minimizer on D, Br ⊂⊂ D, and 0 ∈ ∂{u > 0}. Then

0 < cD <
|Br ∩ {u > 0}|

|Br|
< 1− cD < 1

and

cD <
Hn−1(∂{u > 0} ∩Br/16)

rn−1
< c−1

D .

Moreover, {u > 0} has locally finite perimeter.

In fact, we will prove a stronger estimate here, which controls the Minkowski content of the free boundary.

Proof. First, we have that u(x) ≥ cL
√

Λr for some point x ∈ ∂Br/4, from Theorem 4.1. On the other

hand, from Lemma 3.2 and its corollary, we have that |∇u| ≤ C
√

Λ on Br/2. In particular, this gives that

u > cL
2

√
Λr > 0 on Bκr(x), where κ = min{ 1

4 ,
cL
2C }. Hence

|Br ∩ {u > 0}|
|Br|

≥ |Bκr(x)|
|Br|

≥ κn > 0.

For the opposite inequality, recall from Lemma 2.2 that if h is the harmonic replacement of u on Br/4,
we have that

c

r2

ˆ
Br/4

|u− h|2 ≤
ˆ
Br/4

|∇(u− h)|2 ≤ CΛ|{u = 0} ∩Br/4|. (5.4)

Now, we have that

h(0) =

 
∂Br/4

h =

 
∂Br/4

u ≥ 1

|∂Br/4|

ˆ
∂Br/4∩Bκr(x)

u ≥ Cκn−1
√

Λr ≥ C
√

Λr.
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Applying the Harnack inequality to h (which, note, is harmonic and nonnegative on Br/4) gives that in fact

h ≥ C∗
√

Λr

on Br/8.

On the other hand, u(0) = 0, so from Lemma 3.2 we have that supBτr u ≤ CG
√

Λτr. Select τ to be
C∗

2CG
; then on Bτr we have |h− u| ≥ 1

2C∗
√

Λr. Substituting into (5.4) gives

Λ|{u = 0} ∩Br/4| ≥
c

r2

ˆ
Bτr

|u− h|2 ≥ cτnΛrn.

In particular,
|Br ∩ {u > 0}|

|Br|
< 1− Cτn < 1.

Now for the estimates on the boundary. The lower estimate follows directly from the relative isoperimetric
inequality and the estimates we have already shown (or can be shown analogously to the upper one below,
but we do not pursue this further), so we focus on the upper one. Recall that 4u is a nonnegative Borel
measure with the estimate

4u(Br/8) ≤ C
√

Λrn−1;

this follows from Lemma 3.1 and our estimates above. We first aim to prove a matching lower bound on this
measure.

Indeed, we have that  
∂Br/8

u− u(0) = c(n)

ˆ r/8

0

4u(Bs)

sn−1
ds.

The left-hand side is at least C1

√
Λr, while the right-hand side’s integrand is at most C2

√
Λ for every s. If

for s > s1 we have that 4u(Bs) ≤ C1

√
Λsn−1, we would have that the right-hand side is at most

C1

√
Λ(
r

8
− s1) + C2

√
Λs1,

which, if s1 <
r
8

C1

C2−C1
, gives a contradiction:

C1

√
Λ
r

8
+ [C2 − C1]

√
Λs1 <

r

4

√
ΛC1,

smaller than the left-hand side. Hence there is an s ≥ cr such that

4u(Br/8) ≥ 4u(Bs) ≥ C
√

Λsn−1 ≥ C
√

Λrn−1.

We may now conclude via a standard geometric measure theory argument. Let Nδ = {x ∈ Br/16 :
d(x, ∂{u > 0}) ≤ d}. We will show that

|Nδ| ≤ Crn−1δ.

The reader may then check that this implies the Hausdorff measure estimate as stated.

Let U be the set of balls of radius 2δ centered at points in E := Br/16 ∩ ∂{u > 0}. This is an open cover
of Nδ, and we may find a finite subcover U ′ of balls with centers xi with the property that |xi − xj | ≥ δ: to
do so, continue selecting points in E which are at least δ away from any already selected points; this process
will always yield a finite set of points {xi}, and terminate when every point x in E has |x− xi| < δ for one
of the xi. Then as every point x in Nδ is within δ of E, it has |x−xi| < 2δ for some xi, and so is within one
of the balls in U ′.

Now the argument hinges on counting the number of balls in U ′, which we do with the aid of our estimate
on the Laplacian measure. Indeed, we know that∑

i

4u(Bδ(xi)) = 4u(∪iBδ(xi)) ≤ 4u(Br/8) ≤ C
√

Λrn−1.
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On the other hand, our estimates on the Laplacian can be applied at every point xi and radius 8δ, to give
that

4u(Bδ(xi)) ≥ C
√

Λδn−1.

Combining the two gives

#(U ′) ≤ C(
r

δ
)n−1.

This lets us estimate
|Nδ| ≤ | ∪i B2δ(xi)| ≤ #(U ′)|B2δ| ≤ Cδrn−1,

as promised.

Finally, to see that {u > 0} is a set of locally finite perimeter, we recall a theorem of Federer: if a set E
has Hn−1(∂E) <∞, then it has finite perimeter.

Worth noting about the last point is that we have actually shown more: while it is true that any set E
with Hn−1(∂E) < ∞ has finite perimeter, it need not generally have the property that ∂E is the support
of the Gauss-Green measure of E, nor that ∂Hn−1(∂E \ ∂∗E) = 0. In our case, the set will, in fact, enjoy
both of these properties, due to the density estimates on the interior and exterior which we have shown. We
will let the more geometric measure theory-inclined readers verify this for themselves, but further discussion
may be found in [14].

The approach here is not the only one which can be used to show the Hausdorff measure estimates, but
it is fairly robust and generic, and the conclusion it offers is the strongest possible. It is very similar to the
original argument of Alt and Caffarelli [1].

6 Blow-Ups and Convergence

To understand finer properties of minimizers, we will need to go beyond the basic estimates above. The
idea will be, roughly, to zoom in at points of the free boundary, then to classify the possible tangent objects
obtained in this way, and then to show that the minimizer looks, locally, like that tangent object. The
starting point is this:

Remark 6.1. Let u be a local minimizer on U . Then the rescaling v(x) = u(rx)
r is a local minimizer on

U/r.

Theorem 6.2. Let {uk} be a sequence of local minimizers on U , with E(uk;U) uniformly bounded. Then:

1. There is a subsequence uk which converges to a function u∞ on U strongly in H1
loc(U) and locally

uniformly.

2. Assume that uk → u∞ as above. Then ∂{uk > 0} converges to ∂{u∞ > 0} in the sense that:

(a) For every sequence xk ∈ ∂{uk > 0}, if x = limxk, then x ∈ {u∞ > 0}.
(b) For every x ∈ ∂{u∞ > 0} there exists a sequence xk ∈ ∂{uk > 0} such that x = limxk.

3. Assume that uk → u∞ as above. Then u∞ is a local minimizer.

Some remarks: the compactness is not surprising in light of our Lipschitz estimate from earlier, except
possibly the strong convergence in H1; this should be thought of as a corollary of (3). On the other hand,
(3) is a generic property of well-behaved functionals: sequences of minimizers will converge to minimizers,
for similar reasons to why minimizers can be found in the first place. Finally, (2) is a consequence of the
density estimates in 5.1; this kind of convergence is close to what is known as Hausdorff convergence (of
closed sets). There are various technical points surrounding localizing Hausdorff convergence which we do
not pursue here, simply sticking with the notion above.
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Proof. Let {uk} be a sequence of local minimizers on U . As all of the statements are local, we may as well
assume that U is bounded. We may clearly extract a subsequence uk → u weakly in H1(U), strongly in
L2(U), and locally uniformly (the latter due to the Lipschitz bound of 3.2 CHECK BETTER LEMMA) for
some U ∈ H1(U). We will now show (3) as well as the final part of (1).

Let v ∈ H1(U) with v = u outside of V ⊂⊂ U . Let η be a smooth cutoff function which is supported on
U and is 1 on V . Let vk = ηv + (1− η)uk. This is a valid competitor for uk, and using it as such gives

E(uk;U) ≤ E(vk;U),

which implies ˆ
U

|∇uk|2 + Λ|{uk > 0}| ≤
ˆ
U

|∇vk|2 + Λ|{vk > 0}|.

Expanding out |∇vk|2 gives the following terms:

|∇vk|2 = |∇uk|2(1− η)2 + |∇v|2η2 + 2∇uk · ∇vη(1− η) + |∇η|2(uk − v)2 +∇η(uk − v) · [∇vη+∇uk(1− η)].

To understand what happens to them, we will leave the first three alone for the time being, and integrate
the others over U and take the limit as k →∞:

lim sup

ˆ
U

|∇η|2(uk − v)2 + |∇η||uk − v|(|∇v|η + |∇uk|(1− η|)) = 0.

Indeed, ∇eta is bounded and (uk − v)2 → (u− v)2 in L1, which is supported on V (away from supp |∇η|),
eliminating the first term. The second works the same way, noting that |∇η| and |u−v| have disjoint support,
while the remaining factors are bounded in L2. Applying this,

lim sup

ˆ
U

|∇uk|2η(2−η)+Λ|{uk > 0}∩supp η| ≤ lim inf

ˆ
U

|∇v|2η2+2∇uk ·∇vη(1−η)+|{vk > 0}∩supp η|.

Now, the second term on the right converges to
´
U

2∇u·∇vη(1−η), from weak convergence of∇uk → ∇u.
For the last term on the right, observe that the contribution from V is just |{v > 0}|, which is independent
of k. All of this gives

E(u;V ) ≤ lim supE(uk;V )

≤ lim sup

ˆ
U

|∇uk|2η(2− η) + Λ|{uk > 0} ∩ supp η|

≤
ˆ
U

|∇v|2η2 + 2∇u · ∇vη(1− η) + |{v > 0} ∩ V |+ | supp η \ V |.

The first inequality used the lower semicontinuity of E. Notice that there are no derivatives of η to be found
anywhere in this expression; we may therefore take η → 1V , recovering

E(u;V ) ≤ E(v;V ).

In particular, this implies (3). We also have (using a middle piece of the above inequality) that

lim supE(uk;V ) ≤ E(v;V );

taking u = v in this gives that limE(uk;V ) = E(u;V ). As each term in E(·, V ) is lower semicontinuous,
this means that

lim

ˆ
V

|∇uk|2 =

ˆ
V

|∇u|2,

implying that uk → u strongly in H1(V ). This proves the remainder of (1).

To see (2), we must check several statements. First, let x ∈ ∂{u > 0}, and Bδ(x) a small ball around x.
For every k large, we must have that Bδ(x) has at least one point zk with uk(zk) > 0, for otherwise uk ≡ 0
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on Bδ and so u ≡ 0 on Bδ. We must also have a point yk with uk(yk) = 0, for otherwise uk is harmonic on
Bδ, and a uniform limit of harmonic functions is harmonic. Hence there must be points xk ∈ ∂{uk > 0}∩Bδ
for every δ.

On the other hand, take a sequence of points xk → x inU , with xk ∈ ∂{uk > 0}. We have that for
every δ, there is a point xδk in ∂Bδ(xk) with uk(xδk) > cδk, from Theorem 4.1. Hence, letting xδ = limxδk,
we have u(xδ) > 0 from the uniform convergence. As we also have u(x) = limuk(xk) = 0, this gives that
x ∈ ∂{u > 0}.

7 The Free Boundary Condition

We have come rather far without actually attempting to derive any equation which the free boundary
∂{u > 0} satisfies in this Bernoulli problem. This is intentional, as the condition is difficult to state in a way
which can both be justified rigorously and is useful for any analysis of the free boundary. We aim to correct
this here, though. We will go through several ways of understanding the free boundary condition, as well as
give a few simple applications. In the subsequent sections, we will (with some effort) show that most of the
free boundary is actually given by smooth graphs, where the condition is easy to state and plays a useful
role in any further development.

To understand where the free boundary condition comes from, observe that whenever one minimizes a
functional F : X → R (with u being a minimizer), it is possible to obtain a large number of differential
relations satisfied by u. Indeed, consider any curve φ : (−1, 1) → X with φ(0) = u; then if the map
F ◦ φ : (−1, 1)→ R is differentiable at 0, its derivative must be 0. There is, of course, no reason for it to be
differentiable in this manner, so it is important to construct the curves intelligently to maximize the chances
of this. We have already done this for some families of curves: the fact that u is harmonic where u > 0,
and subharmonic everywhere, is based on this kind of argument, where ut = u + tφ with φ an appropriate
test function. However, this is not the full extent of information available: any such curve leaves the free
boundary fixed, modifying only u itself away from ∂{u > 0}. In this section we construct curves which
deform ∂{u > 0} instead, and obtain information there.

Let u be a local minimizer on U below, and T ∈ C∞c (U ;Rn) be a vector field. We may construct a
one-parameter family of maps φt(x) = x + tT (x), noting that at least when t is small, ∇φt = I + t∇T is
invertible, and so φt is a diffeomorphism which is equal to the identity outside of a compact subset of U .
The goal is to use ut = u ◦ φ−1

t as competitors for u.

To that end, let us compute

∇ut = ∇φ−1
t ∇u ◦ φ−1

t = (I − t∇T ◦ φ−1
t +O(t2))∇u ◦ φ−1

t ,

so
|∇ut|2 = (|∇u|2 − 2t∇u · ∇T∇u) ◦ φ−1

t +O(t2).

The O(t2) terms here involve |∇u|2 multiplied by a function of the entries in ∇T ; they do not involve higher
derivatives of either T or u.

We will also encounter the Jacobian factor

|det∇φt| = 1 + tTr(∇T ) +O(t2) = 1 + tdiv T +O(t2).

This expansion is purely a linear algebra fact, and can be checked either from the definition of the determinant
or from identities for exponentials of matrices.
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Then

E(ut;U) =

ˆ
U

|∇ut|2 + Λ1{ut>0}

=

ˆ
U

(|∇u|2 − 2t∇u · ∇T∇u) ◦ φ−1
t + Λ1{ut>0} +O(t2)

=

ˆ
U

(|∇u|2 − 2t∇u · ∇T∇u+ Λ1{u>0})(1 + tdiv T ) +O(t2)

=

ˆ
U

|∇u|2 + Λ1{u>0} + t

ˆ
U

|∇u|2 div T − 2∇u · ∇T∇u+ Λ div T1{u>0} +O(t2).

We know that this should exceed E(u;U), and that is valid for every sufficiently small t. Hence

0 ≤ tc+O(t2);

taking t either positive or negative and sending it to 0 gives

ˆ
U

|∇u|2 div T − 2∇u · ∇T∇u+ Λ div T1{u>0} = 0. (7.5)

This is the stationarity condition promised. Unfortunately it is expressed in a rather incomprehensible form
like this, and is difficult to understand.

We do wish, however, to actually understand it. While all of the previous theory could be interpreted in
terms of scaling considerations for the energy and so forth, the same cannot be said of any of the subsequent
results; they hinge on understanding the free boundary condition that (7.5) supposedly represents. To that
end, we begin with an identity which is attributed to Rellich (though sometimes also to Pohozaev, depending
on the context). For a harmonic function u and a vector field T ,

div(|∇u|2T − 2∇u · T∇u) = |∇u|2 div T + 2∇u ·D2uT − 2T ·D2u∇u− 2∇u · T4u− 2∇u · ∇T∇u
= |∇u|2 div T − 2∇u · ∇T∇u.

Thus we may rewrite (7.5) as

ˆ
{u>0}

div(|∇u|2T − 2∇u · T∇u+ ΛT ) = 0.

One would at this point hope to apply the divergence theorem. This is possible in general, using that {u > 0}
is a set of finite perimeter and that |∇u| is bounded, but it is not particularly trivial and we do not pursue
the point here (see [8] the relevant result). Let us instead just assume for the moment that ∂{u > 0} is
smooth, and that ν represents the outer unit normal to {u > 0}. Then

ˆ
∂{u>0}

|∇u|2T · ν − 2∇u · T∇u · ν + ΛT · ν = 0.

Now, u = 0 along ∂{u > 0}, so ∇u = −ν|∇u| there. This gives

ˆ
∂{u>0}

−|∇u|2T · ν + ΛT · ν = 0;

by letting T converge to a delta function (relative to surface measure) times ν, this implies that

|∇u|2 = Λ on ∂{u > 0}. (7.6)

This is the correct way of thinking about the free boundary condition.

To summarize the above discussion,
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Theorem 7.1. Let u be a local minimizer on U . Then for every T ∈ C∞c (U), (7.5) holds. Assume in
addition that ∂{u > 0} is C1,α. Then (7.6) holds.

Let us obtain some corollaries, with an aim of finding some intermediate forms of the free boundary
condition between the hard to justify (7.6) and the confusing (7.5).

Corollary 7.2. Let u be a local minimizer on B1, and 0 ∈ ∂∗{u > 0}, where ν is the measure-theoretic
outward unit normal to {u > 0} at 0. Let

ur(x) =
u(rx)

r
.

Then ur converge in the sense of Theorem 6.2 to u0 =
√

Λ(x · ν)−.

Recall that ∂∗{u > 0} stands for the reduced boundary, i.e. those points x in ∂{u > 0} for which the
rescalings ({u > 0} − x)/r converge to the half-space x · ν < 0 locally in L1. Theorems of De Giorgi and
Federer guarantee that for a set of finite perimeter with density bounds like in Theorem 5.1, Hn−1(∂{u >
0} \ ∂∗{u > 0}) = 0.

The convergence in this theorem is along the entire sequence, as the limit is uniquely determined.

Proof. We know that ur → u0, along subsequences, for some entire local minimizer u0, by applying Theorem
6.2 and the Lipschitz estimate: ∇ur| ≤ C on B 1

2r
, so E(ur;BS) ≤ CSn for r small enough. Note that this

also gives that |∇u0| ≤ C
√

Λ.

By assumption, we have that {ur > 0} → {x · ν < 0} locally in L1. From Theorem 5.1, this implies that
if xk → x and xk ∈ ∂{uk > 0}, then x ∈ H := {x · ν = 0}. Indeed, if this was not the case we would have
that

cD <
|Bd(xk,H)/2(xk) ∩ {ur > 0}|

|Bd(xk,H)/2
< 1− cD;

if the radius of the ball remains bounded from below in r, this contradicts the convergence in L1. Together
with Theorem 6.2, (2), we have shown that ∂{u0 > 0} = H.

In particular, ∂{u0 > 0} is smooth, so Theorem 7.1 applies to give that (u0)ν = −
√

Λ along H. Let ū
be the odd reflection of u0 across H; we then have that ū is harmonic (the odd reflection of any harmonic
function on a half-space which vanishes on the boundary is harmonic). From the estimate on ∇u0, we
have from Liouville’s theorem that ū is a linear function. From the free boundary condition, we have that
u0 =

√
Λ(x · ν)−, as promised.

Corollary 7.3. Let u be a local minimizer on U . Then

4u =
√

ΛHn−1 ∂{u > 0}.

This may be interpreted as a weak form of (7.6): any nonnegative function satisfying (7.6) and which
is harmonic where positive will satisfy the conclusion of this corollary, and conversely if ∂{u > 0} is smooth
enough.

Proof. From Lemma 3.1 and Theorem 4.1, we have that for any x ∈ ∂{u > 0},

4u(Br(x)) ≤ C
√

Λrn−1.

Along with the fact that supp4u ⊆ ∂{u > 0}, this implies that 4u is absolutely continuous with respect to
Hn−1∂{u > 0}. Applying the Radon-Nikodym theorem lets us write

4u = gdHn−1 ∂{u > 0},

where

g(x) = lim
r↘0

4u(Br(x))

Hn−1(Br(x) ∩ ∂{u > 0})
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at the Hn−1-a.e. set of points at which the limit exists. Our task is to compute this limit.

Note that it suffices to compute g(x) on ∂∗{u > 0}, the remaining points being Hn−1 negligible. At
these points, we have from standard measure theory (see [14]) that

lim
r

Hn−1(Br(x) ∩ ∂{u > 0}
rn−1Hn−1(B1(x) ∩ {xn = 0}

= 1.

On the other hand,
4u(Br(x))

rn−1
= 4ur(B1)→4u0(B1),

where u0 is as in Corollary 7.2. This can be computed explicitly to be
√

ΛHn−1(B1(x) ∩ {xn = 0}, so

g(x) =
√

Λ.

The following is a different weak way of understanding (7.6), usually referred to as the viscosity sense.
The idea is that at points where {u > 0} is regular from one side, the free boundary condition gives one-sided
control on the derivative of u. This is somewhat awkward to state, but the form below will be convenient
to work with. Notice that the existence of the φ below implies one-sided regularity of ∂{u > 0}, at least if
∇φ(0) 6= 0.

Theorem 7.4. Let u be a local minimizer on B1, and 0 ∈ ∂{u > 0}. Let φ be a smooth function with
φ(0) = 0.

1. If u ≥ φ+ on B1, then |∇φ(0)| ≤
√

Λ.

2. If u ≤ φ+ on B1, then |∇φ(0)| ≥
√

Λ.

Proof. Let ur(x) = u(rx)
r and φr(x) = φ(rx)

r , and consider the blow-up limits ur → u0 (along subsequences,
in the sense of Theorem 6.2) and φr → φ0. As φ is smooth, we easily see that φ0(x) = ∇φ(0) · x. Choose
coordinates so that ∇φ(0) = |∇φ(0)|en.

Applying Lemma 7.5 below, we have that u0(x) = αxn+o(|x|) for some α on {xn > 0}; clearly in case (1)
α ≥ |∇φ(0)| while in case (2) α ≤ |∇φ(0)|. Now take another blow-up of u0, obtaining v = limr↘0 u0(·r)/r,
along a subsequence. From Theorem 6.2, this is an entire local minimizer, while from the asymptotics for
u0, we have that

v(x) = αxn

on {xn > 0}, and in particular vanishes on the hyperplane P = {xn = 0}.

If C is the Lipschitz constant for v, then v ≤ −Cxn on {xn < 0}. We may then apply Lemma 7.5
to v1{xn<0} on B1 to obtain that v = −βxn + o(|x|) on {xn < 0}. Note that if β 6= 0, we have that
|{v = 0} ∩ Br| = 0, which is a contradiction. We then perform a blow-up at the origin once again, for v,
obtaining an entire local minimizer w with

w(x) = α(xn)+.

It follows from Theorem 7.1 that α =
√

Λ, which implies the claimed estimates.

The repeated blow-ups were just to simplify the proof, and may be easily avoided. The key point here
was the following lemma, which essentially states that a (Lipschitz) harmonic function on a domain has
linear asymptotic behavior at points on the boundary which have either interior or exterior tangents.

Lemma 7.5. Let u be a nonnegative continuous function with |∇u| ≤ C on B1, and the property that u is
harmonic where positive. Assume that u(0) = 0. If u ≤ (xn)+ or u ≥ (xn)+, then

u(x) = αxn + o(|x|)

on {xn > 0}, for some α ∈ [0,∞).
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We sketch the proof below, as it is not so easy to find in the literature. It follows Section 11.6 of [3], but
the statements there are not quite precise.

Proof. First assume u ≥ (xn)+. Let

α(R) = sup{α > 0 : u ≥ α(xn)+ on BR}.

This quantity is decreasing in R, and is always in [1, C] from our assumptions. Set α = supα(R) =
limR→0 α(R), noting that

u ≥ α(|x|)(xn)+ ≥ α(xn)+ − [α(|x|)− α]|x| = α(xn)+ + o(|x|).

Fix β > 0. Assume that there is a δ > 0 and a sequence of points xk → 0 such that (xk)n ≥ β|x′k| and

u(xk) > (α+ δ)((xk)n)+.

We have that for each τ ,
u(z) ≥ (α− τδ)z+

for every sufficiently small z (depending on τ). Set

v(z) = u(z)− (α− τδ)z+ > 0

on {xn > 0}, and notice that this is a superharmonic (indeed, harmonic) function. We have that

v ≥ v(xk)− Cκ|xk| ≥ cδ(xk)n

on Bκ(xk)n(xk) if κ = κ(δ) is small, using that |∇v| ≤ C [as a remark, we could have used the Harnack
inequality instead]. In particular, u ≥ cδ|xk| on a positive-measure subset of ∂B|xk|. Letting h be the
harmonic function on B|xk| with boundary data on ∂B|xk| given by

h(x) =

{
u(x) xn > 0

u(−x) xn < 0

and applying the Poisson kernel representation to h easily shows that

∂nh(y) = |∇h(0)| − |D2h|O(|x|2) ≥ c(δ)

for |x| ≤ C(δ, k), as |D2h| ≤ C/|xk| on this set by standard estimates.

From comparison
v ≥ c(δ)(xn)+

there, so
u ≥ (α+ δ(c(δ)− τ))(xn)+.

Choose τ � c(δ), and then k so the above holds, and then |x| so that

u ≥ (α+ δ
c(δ)

2
)(xn)+

on |x| < C(δ, k). This, however, implies that α(R) ≥ α+ cδ/2 for small R, which is a contradiction.

To summarize, we have shown that for every β and δ, there is an r(β, δ) such that on Br(β,δ)∩{xn ≥ β|x′|}
we have

u(x) ≤ (α+ δ)(xn)+.

So for every integer k, there is an r(k) such that on Br(k) ∩ {kxn ≥ |x′|},

u(x) ≤ (α+
1

k
)(xn)+.
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Along the conical boundary T = BR ∩ {kxn = |x′|}, we have that xn ≤ 1/k, so

u(x) ≤ (α+ 1)
R

k
.

On the tangential region BR ∩ {0 < kxn < |x′|}, then, the gradient bound on u tells us that

u(x) ≤ u(y) +
CR

k
≤ CR

k
,

where y is the closest point on T to x, which is a distance of at most 1
k . Hence

u(x) ≤ α(xn)+ + C
|x|
k

= α(xn)+ + o(|x|),

as promised.

Now consider the opposite case, where u ≤ (xn)+. The proof is essentially the same; we just wish to
highlight one important point. In this case set

α(R) = inf{α > 0 : u ≤ α(xn)+ on BR},

which are similarly increasing, and α = α(0+). Then

u ≤ α(xn)+ + o(|x|)

like before. For the other direction, we similarly take a sequence of points xk in the same region for which

u(xk) ≤ (α− δ)((xk)n)+,

and then set
v = (α+ τ)(xn)+ − u.

The main difference is that here, we only know that u is subharmonic on {xn > 0}, so v is superharmonic.
However, the argument above only used that v is superhamonic, and this is the only place the equation was
used at all, so the proof goes through as before (with appropriate modifications to the signs).

A couple of remarks: the first part, where u ≥ (xn)+, did not require the Lipschitz continuity of u if
the Harnack inequality was used where noted, but the last part concerning tangential regions would then
not follow. The second part does require the Lipschitz continuity, and one may construct counterexamples
otherwise, at least if the o(|x|) is intended in the usual L∞ sense as here. Readers familiar with the Alt-
Caffarelli-Friedman monotonicity formula (or even the related simpler formula for harmonic functions on a
half-space with homogeneous Dirichlet boundary conditions) should be able to give a simpler proof of the
second part, though that argument is harder to generalize.

8 Flat Implies Smooth: The Setup

Over the next several sections, we will prove that ∂∗{u > 9} is composed of a union of C1,α graphs. More
precisely, we deal with the following objects:

Definition 8.1. Let u ∈ C0,1
loc (B1) be a nonnegative function. We say that u is a viscosity solution if it

satisfies the following, where φ is any smooth function with φ(x) = u(x):

1. 4u = 0 on {u > 0}.

2. If u ≥ φ+ on B1, then |∇φ(x)| ≤ 1.

3. If u ≤ φ+ on B1, then |∇φ(x)| ≥ 1.
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From Theorem 7.4, we know that if u is a local minimizer on B1, then u/
√

Λ is a viscosity solution. In
fact, this is an extremely weak notion compared to minimality. The reader is welcome to assume u is a local
minimizer instead below, but the proof will only use the viscosity solution properties of u.

It is worth describing which properties of local minimizers are still valid for viscosity solutions. one may
check, without much difficulty, that in fact the assumption that |∇u| is bounded is superfluous, and that
this follows from the other properties (if u is continuous, say). On the other hand, almost none of the other
properties we have established are true, including the lower bound of Theorem 4.1 or the density estimates
in Theorem 5.1. For some specific subtypes of viscosity solutions these may be recovered, but this is not
trivial and generally not possible. Hence our result should be thought of as consisting of two parts. The first
is the following theorem about viscosity solutions:

Theorem 8.1. Let u be a viscosity solution on B1. Assume that |u − xn| ≤ εF on B1 ∩ {u > 0} for some
εF = εF (n) small. Then ∂{u > 0} ∩ B1/2 coincides with a graph {(x′, g(x′))} for a function g : Rn−1 → R
with ‖g‖C1,α(B1/2) ≤ C(n).

The proof of this theorem will occupy us for the next three sections. If u is a minimizer, it was first
proved in [1]. For viscosity solutions, an alternative proof may be found in the sequence of papers [4, 6, 5].
The proof we present here, however, is more recent and due to Daniela De Silva [10].

At this point, one may also prove higher regularity for the free boundary:

Theorem 8.2. Let u and g be as in Theorem 8.1. Then g is analytic.

This theorem is due to Kinderlehrer, Nirenberg, and Spruck [13], and uses a change of variables known
as the partial hodograph transform.

At least for minimizers, we may combine these results with Corollary 7.2 to see that it applies to every
point of ∂∗{u > 0}, so in particular at Hn−1-a.e. point, at sufficiently small scales after a rotation. We will
discuss the remainder Σ = ∂{u > 0} \ ∂∗{u > 0} more at the end of these notes.

The proof of Theorem 8.1 consists of first proving a corresponding improvement of flatness lemma:

Lemma 8.3. Fix τ > 0. Let u be a viscosity solution on B1 with 0 ∈ ∂{u > 0} and assume that

|u− xn| ≤ ε ≤ εI on {u > 0},

for some εI = εI(n, τ). Then there exists a unit vector e ∈ Sn−1 with |e− en| ≤ Cε, for which

sup
Bτ∩{u>0}

|u− xė| ≤ C(n)τ2ε.

Note that without allowing e 6= en this lemma would be incompatible with the conclusion of the theorem,
for when u is smooth the quantity on the right is comparable in size to g, which behaves like τ on Bτ unless
∇g(0) = 0 (and this is not to be expected under the assumptions here).

Remark 8.4. The statements
(x− ε)+ ≤ u ≤ (x+ ε)+

and
|u− xn| ≤ ε on {u > 0}

are equivalent, and will be used interchangeably below.

The proof of this lemma is a simple argument by contradiction: assume it fails. Then there is a sequence
of εk → 0 and uk viscosity solutions such that

sup
B1∩{uk>0}

|uk − xn| = εk
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but
sup

Bτ∩{uk>0}
|uk − x · e| ≥ C(n)τ2εk (8.7)

for any e in the class permitted. Set

vk(x) =
uk(x)− xn

εk
,

which we know is bounded by 1 on {uk > 0}. Moreover, we have that ∂{uk > 0} ⊆ {|xn| ≤ εk}, outside
of which both uk and xn are harmonic (or constant 0). From this and estimates on harmonic functions, we
may deduce that

vk → v

locally uniformly on B1 ∩ {xn > 0}, for a function v which is harmonic on this domain. What we intend
to show is that (from the {xn > 0} side) v extends to a continuous function satisfying a valid boundary
condition. This will then imply a contradiction to (8.7), which is essentially asserting that vk is not close to
any C2 function with C2 norm bounded by C(n) (details will be given below).

The main parts of the argument, then, are to upgrade the convergence of vk to v, and to obtain the
boundary condition on v. The former we do with an estimate of De Silva in the next section, after which we
show the latter using the viscosity free boundary condition on uk.

To understand the origins of the boundary condition on v, let us derive a simple version of the linearized
Bernoulli problem. Indeed, if uk = xn + εkvk, assume that ∂{uk > 0} is a smooth graph over xn = 0. Then
on ∂{uk > 0}, we have

1 = |∇uk(x)|2 = |en + εk∇vk(x)|2 = 1 + 2εk∂nvk(x) +O(ε2
k),

which gives
∂nvk(x) = O(εk).

Taking the limit as k →∞, the free boundary converges to {xn = 0}, on which ∂nv = 0. This is, of course,
impossible to justify rigorously a priori, but we will recover this Neumann condition in the viscosity sense.

The final step is to show that Lemma 8.3 implies Theorem 8.1. This is completely standard, but we
show the details.

9 Flat Implies Smooth: The Estimate

The main estimate is a kind of improvement of oscillation lemma which may be iterated a finite number
of times. It should bring to mind Reifenberg’s topological disk theorem, but the conclusion will be much
weaker.

Lemma 9.1. There is a constant ε1(n) > 0 such that if u is a viscosity solution on B1 with 0 ∈ ∂{u > 0}
and

(xn + a)+ ≤ u ≤ (xn + b)+

for some a, b with b− a = ε < ε1, then there are a′, b′ with a ≤ a′ ≤ b′ ≤ b and |a′ − b′| < (1− θ)ε for some
θ = θ(n) > 0, such that

(xn + a′)+ ≤ u ≤ (xn + b′)+

on B1/10.

Proof. Note that it suffices to prove the lemma under the slightly stronger assumption that in addition,

∂{u > 0} ∩ ({xn = −a} ∪ {xn = −b}) = ∅,

by applying it with a, b replaced by a − κ, a + κ, and then sending κ to 0. For the same reason, we may
assume the strict inequalities

(xn + a)+ < u(x) < (xn + b)+ if u(x) > 0.
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We assume this from here on.

Let z = (0, 1
4 ); we have that

1

4
+ a ≤ u(z) ≤ 1

4
+ b.

The proof will have two largely similar cases: either u(z) ≥ 1
4 + a+ ε

2 , or not. Let us focus on the case when
this does hold.

In this case, set
w(x) = u(x)− xn − a,

which has w(z) ≥ ε
2 and w > 0 on B1∩{xn > 1

20} (if ε is small; note that |a|, |b| ≤ ε under our assumptions).
Noting also that w is harmonic on this set, we learn that

inf
B9/10∩{xn≥ 1

10}
w > c(n)ε,

so
u > xn + a+ c(n)ε

there.

Let h(x) be the harmonic function which is equal to 1 on ∂B1/8(z) and equal to 0 on ∂B1/2(z); extend
it by 0 outside this ball. Define

φt(x) = (xn + a+ th(x))+.

Let us collect some information about this family of functions. First, from the definition of h, we have that
φt = (xn+a)+ outside of B1/2(z), so certainly on the set where |x′| = 1

2 . On the disk {xn = 1
10}∩{|x

′| ≤ 1
2}

we have that h ≤ 1, so φt ≤ xn + a+ t. We will always assume that 0 ≤ t ≤ c(n)ε, so that φt < u there.

We claim that φt is subharmonic on G := {|x′| ≤ 1
2} × {|xn| ≤

1
10}. Indeed, this is obvious, as th is

subharmonic, so xn+a+ th is subharmonic, and the positive part of a subharmonic function is subharmonic.
Furthermore, we have that at a point x of ∂{φt > 0} where h > 0, we have that

|∇φt(x)|2 = |en + t∇h|2 ≥ 1 + 2ten · ∇h.

on this set, ∇h · e > 0, as h is radial and centered at z, while xn < zn here.

Let
t∗ = max{t ∈ [0, c(n)ε] : φt ≤ u on G}.

We claim that t∗ = c(n)ε. If this is not the case, then there must be a point x ∈ Ḡ ∩ ¯{u > 0} at which
u(x) = φt∗(x); we also still have that φt∗ ≤ u on G. This immediately implies that t∗ > 0, for there are no
such points for φ0 by our starting assumptions.

Now, x cannot be in the boundary of G. Indeed, on the part of the boundary where xn = 1
10 , we have

already checked that φt < u. On the rest of it, φt = φ0, so if x is located there t∗ = 0, a contradiction.

We also cannot have φt(x) > 0: if this is the case, then as φt is subharmonic, from the strong maximum
principle we have that on {φt > 0} ∩ G, u = φt; this contradicts the fact that u < φt on a part of the
boundary of G where this is the case.

This leaves only the case that u(x) = φt(x) = 0. Note that at such a point, we must have that h > 0
(otherwise t∗ = 0, which is a contradiction), and so φt is locally the positive part of a smooth function.
Applying the definition of viscosity solution, this tells us that

|∇φt(x)| ≤ 1,

directly contradicting our earlier computation of |∇φt|.

We have shown that φc(n)ε ≤ u. On B1/10 ⊂⊂ B1/2(z) we have that h ≥ c′(n) > 0, so

u ≥ (xn + a+ εc(n)c′(n))+.
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Set b′ = b, a′ = a+ ε(n)c′(n), and θ = 1− c(n)c′(n) to conclude.

The remaining case proceeds similarly, using

φt = (xn + b− th)+

instead; the only thing to note is that in this case when computing |∇φt|2 one must reabsorb the t2 term
into the t term, possibly choosing c(n) smaller there to make that work.

When iterated, this gives the following estimate:

Lemma 9.2. Let u be viscosity solution on B1 with 0 ∈ ∂{u > 0}. Then there is an ε2 > 0 and constants
C and α < 1, such that if

|u− (xn)+| ≤ ε < ε2,

and

v(x) =
u(x)− xn

ε
,

then
|v(x)− v(y)| ≤ C|x− y|α

for all x, y ∈ B1/2 ∩ ¯{u > 0} with |x− y| ≥ C ε
ε1

.

Proof. We first show this for a point x ∈ ∂{u > 0} and a point y ∈ B1/2 with u(y) > 0.

Notice that we may apply Lemma 9.1 repeatedly on B1/2·10−k(x), so long as 4 · 10k · ε ≤ ε1. At each

stage, we obtain a pair ak, bk with bk − ak ≤ 2ε(1− θ)k, such that

(zn − xn + ak)+ ≤ u(z) ≤ (zn − xn + bk)+

on B1/2·10−k−1(x). As x is in the free boundary ∂{u > 0}, |ak|, |bk| ≤ 2ε(1− θ)k. and so this implies that

|u(z)− (zn − xn)+| ≤ 2ε(1− θ)k.
Using this with z = y ∈ B10−k−1/2(x) \B10−k−2/2(x), we have that |(z − y)n − ((z − y)n)+| ≤ 2ε(1− θ)k, so

|u(y)− yn + xn − u(x)| ≤ 4ε(1− θ)k ≤ 4Cε|x− y|α

for some small α. This gives
|v(x)− v(y)| ≤ C|x− y|α.

We succeeded in doing this for as long as

ε1 ≥ ε4 · 10k ≥ ε

50
|x− y|−1,

or |x− y| ≥ C ε
ε1

.

Now take any x and y in B1/2 with |x− y| ≥ 10C ε
ε1

, and let d(x) = d(x, ∂{u > 0}). Let x∗ be the point
in ∂{u > 0} where d(x) is attained. If |x− y| ≤ d(x)/8, we have from above that

|v(z)− v(x′)| ≤ Cd(x)α

for all z ∈ Bd(x)/4(x). The function v is harmonic on Bd(x)/4, so

sup
Bd(x)/8(x)

|∇v| ≤ C
oscBd(x)/4(x) v

d(x)
≤ Cdα−1(x).

Thus
|v(x)− v(y)| ≤ Cd(x)α−1|x− y| ≤ C|x− y|α.

In the alternative case where d(x) ≤ 8|x− y|, we may simply do

|v(x)− v(y)| ≤ |v(x)− v(x∗)|+ |v(x∗)− v(y)|
≤ Cdα(x) + C(|x− y|+ d(x))α

≤ C|x− y|α,
applying the main estimate twice.
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10 Flat Implies Smooth: The Linearization

The purpose of this section is to give a proof of Lemma 8.3, armed with the estimate in Lemma 9.2. We
first review some facts about viscosity harmonic functions and the Neumann problem.

Definition 10.1. We say that u ∈ C0(U) is viscosity harmonic on U if:

1. for every φ ≥ u on V ⊂⊂ U with φ ∈ C∞ and φ(x) = u(x), we have 4φ(x) ≥ 0.

2. for every φ ≤ u on V ⊂⊂ U with φ ∈ C∞ and φ(x) = u(x), we have 4φ(x) ≤ 0.

Proposition 10.1. u is viscosity harmonic on U if and only if:

1. for every φ > u on V \ {x} ⊂⊂ U with φ a quadratic polynomial and φ(x) = u(x), we have 4φ(x) ≥ 0.

2. for every φ < u on V \ {x} ⊂⊂ U with φ a quadratic polynomial and φ(x) = u(x), we have 4φ(x) ≤ 0.

Proof. The only if part is immediate. Otherwise, given any φ ≥ u on V , write

φ(y) = φ2(y) +O(|y − x|3),

where φ2 is a quadratic polynomial. Then for every ε > 0, there exists a τ > 0 such that

vε = φ2(y) + ε|y − x|2

is strictly larger than u on Bτ (x) \ {x}. Applying the assumption gives that 4vε(x) ≥ 0, so

4φ(x) = 4φ2(x) ≥ −ε.

Send ε→ 0 to conclude, and argue similarly for functions touching from below.

Proposition 10.2. A function u ∈ C0(U) is viscosity harmonic if and only if it is harmonic (meaning, C2

and has 4u = 0 pointwise).

Proof. That a harmonic function is viscosity harmonic is clear: if φ touches u from above, then D2φ ≥ D2u,
and we can take traces.

For the opposite direction, take any x ∈ U and let h be the harmonic replacement of u on Br(x) ⊆ U . If
min(h−u) < 0, then also m = min(h−u+ ε(r2− |x− ·|2)) < 0 for small ε. Then h(z)−m+ ε(r2− |x− z|2)
touches u from above at a point y ∈ Br(x). As u is viscosity harmonic, this gives 4h(y) > 2nε > 0, which
is a contradiction. Thus h ≥ u. Likewise h ≤ u, using the other inequality, which implies that u is harmonic
on Br(x).

Definition 10.2. We say that u ∈ C0(B1∩{xn ≥ 0}) satisfies the Neumann condition in the viscosity sense
if:

1. for every φ ≥ u with φ ∈ C∞ and φ(x) = u(x) at x with xn = 0, we have ∂nφ(x) ≥ 0.

2. for every φ ≤ u with φ ∈ C∞ and φ(x) = u(x) at x with xn = 0, we have ∂nφ(x) ≤ 0.

Lemma 10.3. Let u be harmonic on B1 ∩ {xn > 0} and satisfy the Neumann condition in the viscosity
sense. Let ū be the even extension of u to B1:

ū(x) =

{
u(x) xn ≥ 0

u(x′,−xn) xn < 0.

Then ū is harmonic on B1.
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Proof. Let φ be such that φ > ū on B1 \{x} and φ(x) = u(x), and assume for contradiction that 4u(x) < 0.

This implies that xn = 0, as ū is harmonic away from {xn = 0}. Let ψ(x) = φ(x′,xn)+φ(x′,−xn)
2 ; then ψ has

the same properties as φ and
4ψ(x) = 4φ(x) < 0.

We may assume that 4ψ < 0 on Bτ (x), and ψ > u+ ω on ∂Bτ (x), for some small τ . Let

ψε(z) = ψ(z)− εzn − min
Bτ (x)

(ψ − εzn − u).

Then ψε ≥ u, and ψε(y) = u(y) for some y ∈ B̄τ (x). If ε < ω, then x ∈ Bτ (x), for otherwise minBτ (x)(ψ −
εzn − u) ≤ 0, meaning ψε > ψ − ετ > ψ − ω > u on ∂Bτ . We cannot have yn 6= 0, as 4ψe(y) = 4ψ(y) < 0
there.

Now apply the viscosity Neumann property to ψε and u, to obtain that

∂nψ(y)− ε = ∂nψε(y) ≥ 0.

But ∂nψ(y) = 0 by symmetry, which contradicts the above.

A similar argument works when touching from below.

Proof of Lemma 8.3. We argue by contradiction, using the notation introduced after the statement of Lemma
8.3, with

vk =
uk − xn
εk

.

We have that Uk := {uk > 0} contains {xn > εk}, and vk is harmonic on this set. Extract a subsequence
of uk such that vk → v locally uniformly on U := B1 ∩ {xn < 0}; this is possible as |vk| ≤ 1 by assumption
and standard estimates on harmonic functions. The function v retains the estimate |v| ≤ 1 and is harmonic
on U .

Applying Lemma 9.2 to uk, we deduce that on B1/2 ∩ Ūk,

|vk(x)− vk(y)| ≤ C(|x− y|+ εk)α

(the reader is invited to check that this is equivalent to the conclusion of that lemma). Hence for any pair
of points x, y ∈ U ∩B1/2, passing to the limit gives

|v(x)− v(y)| ≤ C|x− y|α,

and so in particular v extends to a continuous function on Ū ∩B1/2. We may also upgrade the convergence
to the following more uniform sense: for every δ > 0 there exists a K such that if k > K, x ∈ Ūk ∩B1/2, and
y ∈ Ū ∩ B1/2, if |x − y| ≤ K−1, then |vk(x) − v(y)| ≤ δ. Recalling that vk(0) = 0 and 0 ∈ Ūk, this implies
that v(0) = 0.

We also know that

sup
Bτ∩{u>0}

|uk(x)− x · e|
εk

≥ C(n)τ2

for all unit vectors e with |e−en| ≤ Cεk. Assume for a moment that v ∈ C2(B1/4∩ Ū), and that ∂nv(0) = 0.
Then

|v(x)−∇v(0) · x| ≤ [v]C2τ2

on Bτ , and so
sup

Bτ∩Ūk
|vk(x)−∇v(0) · x| ≤ ok(1) + [v]C2τ2 ≤ 2[v]C2τ2

for large k. On the left, we may rewrite

|vk(x)−∇v(0) · x| = |uk(x)− (en + εk∇v(0)) · x
εk

|.
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Set ek = en+εk∇v(0)
|en+εk∇v(0)| . We have that

|en + εk∇v(0)|2 = 1 + 2εken · ∇v(0) + ε2
k|∇v(0)|2,

noting that, importantly, the middle term vanishes from our assumption. This gives

|en + εk∇v(0)− ek| ≤ C|∇v(0)|2ε2
k

and
|en − ek| ≤ C|∇v(0)|εk,

so

|uk(x)− ek · x
εk

| ≤ 3[v]C2τ2

for large k. This is a contradiction if [v]C2 , |∇v(0)| ≤ C(n), which is what we will now attempt to show.

We claim that v has the following property: let φ be a smooth function with φ ≤ v on Ū ∩ B1/2 with
equality only at x ∈ B1/2 with xn = 0. Then ∂nφ(x) ≤ 0.

Assume this is not the case. Then we may as well assume that

φ(y) = a+ cyn + ν′ · (y′ − x′) + (y − x)A(y − x),

where c > 0 and A is a matrix with a strictly positive trace, on Bτ ∩ Ū , while φ < u − ω on ∂Bτ (x) ∩ Ū .
This may be arranged by finding a function of this type below the original φ. Up to taking τ smaller, we
may also assume that ∂nφ ≥ c/2 on Bτ .

We have that
vk ≥ φ− ok(1)

on Ū ∩Bτ (x); writing this out,
uk ≥ xn + εkφ− εkok(1).

Now, on ∂Bτ (x) ∩ Ūk, we have that

uk ≥ xn + εkφ+ εkω − εkok(1),

while at some point xk ∈ Ūk ∩Bτ (x) we have

uk ≤ xn + εkφ+ εkok(1).

Consider, then, wt = (xn + εkφ+ εkt)+. For t < −ω/2, we have wt ≤ u on Bτ (x), and for t ≤ ω wt ≤ u
on ∂Bτ (x). Yet on the other hand. for some t < w/2, wt > u at a point in Bτ (x); let t∗ be the smallest such
t, and let z be a point in Bτ (x) ∩ Ūk where wt∗(z) = uk(z).

Note that as φ has 4φ > 0, 4wt > 0 where wt is positive. This gives a contradiction if uk(z) > 0. On
the other hand,

|∇wt(z)|2 = 1 + 2tεk∂nφ(z) + t2ε2
k|∇φ(z)|2 > 1,

which gives a contradiction to the viscosity solution property of uk if uk(z) = 0. This establishes the claim.

A similar argument shows that if φ > v on B1/2 except at x, where φ(x) = v(x), then ∂nφ ≥ 0.

We extend v by even reflection to B1/2:

v(x′, xn) = v(x′,−xn),

giving a continuous function harmonic away from {xn = 0}. We have shown that v satisfies the Neumann
condition in the viscosity sense on Ū ∩B1/2, so v is harmonic on B1 by Lemma 10.3.

To conclude: we have shown that v is harmonic on B1/2 and |v| ≤ 1, so

|∇v(0)|+ [v]C2(B1/4) ≤ C(n).

Moreover, v is symmetric across {xn = 0}, so ∂nv(0) = 0. This gives the contradiction, as previously
checked.
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11 Flat Implies Smooth: The Conclusion

Finally, we use Lemma 8.3 to prove Theorem 8.1. The bulk of the work has already been done, and we just
sketch one way to conclude here.

Proof of Theorem 8.1; sketch. By selecting εF sufficiently small, we may guarantee that for every x ∈ ∂{u >
0} ∩ B1/2, we may apply Lemma 8.3 to B1/2(x), iteratively, with τ so small that C(n)τ ≤ 1

2 . This gives a

sequence of unit vectors ek such that e0 = en, |ek − ek+1| ≤ CεF 2−k, with

sup
B
τk

(x)

|u(z)− (z − x) · ek| ≤ 2−kτkεI ≤ τk(1+α)εI .

The ek form a Cauchy sequence, so let e∞ = lim ek. Summing, this has |ek − e∞| ≤ C2−kεF , so

sup
B
τk

(x)

|u(z)− (z − x) · e∞| ≤ Cτk(1+α)εI .

A similar argument gives that if e∞x is the asymptotic normal at x, then

|e∞x − e∞y | ≤ C|ekx − eky |+ C2−kεF ≤ C|x− y|αεF ,

where 2−k−1 ≤ |x − y| ≤ 2−k; the second inequality can be verified directly from the fact that if u is close
to both x · a and x · b, then |a− b| is also small.

This implies that u extends to a C1,α function on ¯{u > 0}∩B1/2, with ∇u(x) = ε∞ at the free boundary
point x. If εF is small enough, e ·e∞ � 0 at every such x, and so ∂{u > 0} is a graph over {xn = 0}. That it
is a C1,α graph follows from the implicit function theorem (or directly estimating its normal vectors e∞)

12 The Weiss Formula, Cones, and Singular Points

At this point, we return to the topic of local minimizers and attempt to understand the singular set σ =
∂{u > 0} \ ∂∗{u > 0} better. We do not give detailed proofs here, but show the general structure of the
arguments. For this, it will help to have the following formula (due to Georg Weiss, [15]):

Proposition 12.1. Let u be a local minimizer on B1 and u(0) = 0. Then for r < 1, the quantity

W (u, r) =
1

rn
E(u, r)− 1

rn+1

ˆ
∂Br

u2

has

∂rW (u, r) ≥ 2

rn+2

ˆ
(u− x · ∇u)2.

This may be verified by a direct computation, together with the weak form of the free boundary condition
in Theorem 7.1 applied to vector fields approximating x1Br .

Notice that W is invariant under rescaling, in the sense that if ur(x) = u(rx)
r , then W (ur, 1) = W (u, r).

Let W (u, 0+) be the limit of W (u, r) as r ↘ 0; we then have that if u0 is a blow-up limit of u,

W (u0, S) = lim
r↘0

W (ur, S) = lim
r↘0

W (u, rS) = W (u, 0+).

In particular, ∂rW (u0, r) = 0, so u0 − x · ∇u0 a.e. on Rn. This implies that u0(x) = |x|u0(x/|x|), i.e. that
u0 is 1-homogeneous. We have shown that

Proposition 12.2. Let u be a local minimizer on B1 and u(0) = 0. Then if u0 is a blow-up limit of u,
u0(x) = |x|u0(x/|x|). The free boundary ∂{u0 > 0} and the set {u > 0} are invariant under dilation.
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The above is only interesting if 0 ∈ Σ, for otherwise we have already shown a much stronger property
(the blow-up is a unique half-linear solution). For singular points, though, this is the starting point of the
analysis.

Definition 12.1. We say that an entire local minimizer u is a singular cone if 0 ∈ Σ and u is 1-homogeneous.
Let n∗ be given by

n∗ = min{n : ∃ a singluar cone in Rn}.

First, in light of Theorem 8.1, we may upgrade the convergence of local minimizers slightly to say that
limits of singular points are singular points.

Lemma 12.3. Let uk → u be local minimizers on B1 with the convergence as in Theorem 6.2, and 0 ∈ Σuk .
Then 0 ∈ Σu.

Proof. Assume this is not the case; then ∂{u > 0} ∩Bτ is contained in {|xn| ≤ εF τ/2} for sufficiently small
τ and some choice of basis, by Theorem 8.1. It follows that ∂{uk > 0} ∩ Bτ ⊆ {|xn| ≤ εfτ} for large k,
from the convergence of the free boundaries. Applying Theorem 8.1 to uk gives that 0 ∈ ∂∗{uk > 0}, a
contradiction.

Next, we have the following observation about cones:

Lemma 12.4. Let u be a singular cone.

1. If there is a point x 6= 0, x ∈ Σ, then n∗ < n.

2. If Hs(Σ ∩B1) > 0 (with s ≥ 1), then there exists a singular cone v in Rn−1 with Hs−1(Σv ∩B1) > 0.

Proof. First, if x ∈ Σ, then so is tx for all t > 0. Let u0 be a blow-up of u at x; we claim that if e = x/|x|,
then ∂eu0 = 0. Indeed,

∇u(x+ ry) · x+ ry

|x+ ry|
= u(x+ ry) ≤ C(n)r

from the fact that u is 1-homogeneous, so

|∇u(x+ ry) · e| ≤ |e− x+ ry

|x+ ry|
+ Cr → 0

as r → 0. As this converges to ∇u0(y) at almost every point, we have ∂eu0 = 0. Moreover, u0 is 1-
homogeneous.

Finally, one may check that if u0 is an entire local minimizer with ∂eu0 = 0, and v : Rn−1 → R is such
that u(x) = v(x− (x · e)e), then v is an entire local minimizer on Rn−1 directly. As 0 ∈ Σu0

by Lemma 12.3,
0 ∈ Σv; this proves (1).

(2) can be shown with the aid of a geometric measure theory argument due to Federer, which essentially
guarantees that there is a point x ∈ B1 such that performing a blow-up at x, the limit u0 has Hs(Σu0

∩B1) >
0. The rest follows in the same way.

For the lemma of Federer; see [14] (in the minimal surface context, but the argument is mostly inde-
pendent of the problem). The point of the above is the following connection between n∗ and the size of
Σ.

Theorem 12.5. Let u be a local minimizer on B1. Then:

1. If n < n∗, Σ is empty.

2. If n = n∗, Σ is a discrete set (i.e. contains no accumulation points).
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3. If n > n∗, then for every s > 0, Hn−n∗+s(Σ) = 0 (i.e. the Hausdorff dimension of Σ is at most n−n∗).

Proof. For (1), assume x ∈ Sigma and perform a blow-up at x; using Lemma 12.3 the blow-up limit is a
singular cone. This is a contradiction to the definition of n∗.

For (2), assume that xk → x, with x, xk ∈ Σ. Set rk = |xk − x| and take a blow-up limit along a
subsequence of the rk at x. If u0 is the limit, then 0 ∈ Σu0 , and also y = limxk/rk ∈ ∂B1 (along a
subsequence) is in Σu0

. Applying the previous lemma gives a contradiction.

For (3), we again use the lemma of Federer to perform a blow-up at a point x so that the limit u0 has
Hn−n∗+s(Σu0 ∩B1) > 0. Then apply the lemma above repeatedly, to obtain a singular cone in dimension n∗
with Hs(Σv ∩B1) > 0. Then apply the first part of the lemma once, to obtain a singular cone in dimension
n∗ − 1, a contradiction.

13 Classification of Cones

The previous section is not very interesting unless one has some way of estimating n∗. Let us start with the
easy cases:

Lemma 13.1. n∗ > 1.

Proof. x+ is the unique 1-homogeneous entire local minimizer in R, up to reflection: the 1-homogeneous
functions in R are αx+ + βx−; if α, β both are nonzero this is clearly not minimal, while if α or β is not 1
this fails to satisfy the free boundary condition.

By separating variables, we have that an α-homogeneous harmonic function on a conical set K in Rn
satisfies, on K ∩ ∂B1,

4Sn−1u+ (α(n− 2) + α2)u = 0

on K. If u = 0 on ∂K, then u is a positive Dirichlet eigenfunction on ∂B1 ∩K, meaning λ1(∂B1 ∩K) =
α(n− 2) + α2.

Lemma 13.2. n∗ > 2.

Proof. Let u be a singular cone. Then each connected component of ∂{u > 0} ∩ ∂B1 has first Dirichlet
eigenvalue 1. This means that this set is either a half-circle or the union of two half-circles (the Dirichlet
eigenvalues are fully determined by the length of a circular arc), and the latter contradicts density bounds.
Thus {u > 0} is a half-plane, contradicting that 0 is a singular point.

We also have, due to Caffarelli, Jerison, and Kenig [7]:

Theorem 13.3. n∗ > 3.

The state of the art, due to Jerison and Savin [12], is:

Theorem 13.4. n∗ > 4.

And finally, this is due to De Silva and Jerison [11]:

Theorem 13.5. n∗ ≤ 7.

The proofs of all three of these results are quite involved. The key observation is that local minimizers,
in addition to satisfying the stationarity condition (7.6), also have a stability property which can also be
obtained by performing domain variations (this time to second order). This takes the form
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ˆ
∂{u>0}

Hφ2 ≤
ˆ
{u>0}

|∇φ|2

for any smooth φ compactly supported on Rn \{0}. Here H is the mean curvature of ∂{u > 0}, oriented
inwards; it turns out to be nonnegative. The proof of Jerison and Savin proceeds by plugging in certain
nonlinear combinations of second derivatives of u into this inequality, after multiplying by a cutoff.
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