
1 Continuity of Solutions (obstacle problem)

Below, let D be a smooth bounded open set, and σ : [0,∞) → [0,∞) a continuous, nondecreasing function
with limt↘0 σ(t) = 0. Let U be a ball (this can be removed with appropriate modifications, but is not
relevant here). Let

[v]σ,U = sup
x,y∈U

|u(x)− u(y)|
σ(|x− y|)

.

Let (for C1 functions v)

[v]σ,1,U = sup
x,y∈U

|u(x) + (y − x)∇u(x)− u(y)|
|x− y|σ(|x− y|)

.

Lemma 1.1. For C1 functions v, the seminorms [v]σ,1;U and [∇v]σ,U are equivalent, in the sense that

[v]σ,1,U ≤ C1[∇v]σ,U ≤ C2[v]σ(C3,·),1,U

where Ci = Ci(n).

Proof. We have

|u(x) + (y − x)∇u(x)− u(y)| = |
ˆ 1

0

[∇u(yt+ x(1− t))−∇u(x)] · (y − x)| ≤ |y − x|σ(|x− y|)[∇u]σ,U

from the fundamental theorem of calculus. For the other direction,

|(∇u(x)−∇u(y))·(x−y)| ≤ |u(x)+(y−x)∇u(x)−u(y)|+|u(y)+(x−y)∇u(y)−u(x)| ≤ 2|y−x|σ(|x−y|)[∇u]σ,1,U .

Fix a unit vector e orthogonal to x − y; we may then find a point z ∈ U such that e ∈ span(x − y, x − z),
|z − y|+ |z − x| ≤ 4|x− y| and |(z − y) · e| ≥ 1

4 |z − y|, |(z − x) · e| ≥ 1
4 |y − x|. Indeed, such a z may always

be found on the intersection of B|x−y|/2(x+y2 ) and the plane of points eqidistant from x and y; at least half
of this disk will be contained in u, and one may check that this contains sufficient points. Then we have

|u(x)+(z−x)∇u(x)−u(z)−u(y)−(z−y)∇u(y)+u(z)+u(y)+(x−y)∇u(y)−u(x)| ≤ 9|y−x|σ(4|x−y|)[∇u]σ,1,U ,

so
|(z − x)(∇u(x)−∇u(y))| ≤ 9|y − x|σ(4|x− y|)[∇u]σ,1,U .

Hence, using x− z = e(x− z) · e+ (x− y) (x−z)·(x−y)
|x−y|2

|(x− z) · e||e · (∇u(x)−∇u(y))| ≤ |(x− z) · (x− y)||(x− y) · (∇u(x)−∇u(y))|
|x− y|2

+ |(x− z) · (∇u(x)−∇u(y))|,

and
|e · (∇u(x)−∇u(y))| ≤ 100σ(4|x− y|)[∇u]σ,1,U .

Lemma 1.2. Let u be a continuous function on D, smooth on the closed set F ⊆ D, with the property that

4u = 0

on D \ F , and
|u(x)− u(y)| ≤ σ(|x− y|)

for x ∈ F and y ∈ D. Then if U ⊆ D is a ball of radius r whose quadruple is also contained in D and U
intersects F ,

|u(x)− u(y)| ≤ C1σ(C2|x− y|) + C3|x− y|
σ(4r)

r

for any x, y ∈ U .
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Note that for σ(t) = Ctα, this implies [u]σ,U ≤ C4. Indeed, this will be true for any σ with t/s ≤ σ(t)/σ(s)
for t ≤ s.

Proof. Take any x, y ∈ U and set min{d(x, F ), d(y, F )} = d. Note that d < 2r from the assumption that U
intersects F , so Bd is contained in the quadruple of U If |x− y| ≤ 1

2d, then we have

|u(x)− u(y)| ≤ C(n)
|x− y|
d

osc
Bd(x)

u

by applying elliptic estimates on Bd(x). As ∂Bd(x) intersects F , we have a point z ∈ ∂Bd such that
|u(y)− u(z)| ≤ σ(|y − z|); this guarantees that oscBd(x) u ≤ 2σ(2d).

If instead |x − y| ≥ 1
2d, let x′ and y′ be the two points in F closest to x, y respectively. Assume that

d = |x− x′| ≤ 2|x− y|; then |y − y′| ≤ |x− y|+ |x− x′| ≤ 3|x− y| and |x′ − y′| ≤ 6|x− y|. This gives

|u(x)− u(y)| ≤ |u(x)− u(x′)|+ |u(x′)− u(y′)|+ |u(y′)− u(y)| ≤ 3σ(6|x− y|).

Here is a version for the derivatives instead.

Lemma 1.3. Let u be a continuous function on D, smooth on the closed set F ⊆ D, with the property that

4u = 0

on D \ F , and
|u(x) + (y − x)∇u(x)− u(y)| ≤ |x− y|σ(|x− y|)

for x ∈ F and y ∈ D. Assume also that there is a φ : D → R with u = φ on F and [φ]σ,1,D ≤ 1. Then if
U ⊆ D is a ball of radius r whose quadruple is also contained in D and U intersects F ,

|∇u(x)−∇u(y)| ≤ C1σ(C2|x− y|) + C3|x− y|
σ(4r)

r

for any x, y ∈ U .

The extra assumption about φ is not really needed, and may be removed by the same argument as was
used to prove the harder part of Lemma 1.1.

Proof. Take any x ∈ U \ F and find y ∈ F such that |x− y| = d(x, F ) < 2r. Then we have that

v(x) = u(x)−∇u(y)(x− y)− u(y)

is harmonic on Bd(x,F )(x), and so

|∇u(x)−∇u(y)| = |∇v(x)| ≤ C(n)
4|x− y|σ(2|x− y|)

|x− y|
≤ Cσ(2|x− y|).

Combined with the assumption on φ, this implies that for any x ∈ U and y ∈ F ∩ U ,

|∇u(x)−∇u(y)| ≤ C1σ(C2|x− y|).

The conclusion now follows by applying Lemma 1.2 to each component of ∇u.
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