

1 Continuity of Solutions (obstacle problem)

Below, let D be a smooth bounded open set, and $\sigma : [0, \infty) \rightarrow [0, \infty)$ a continuous, nondecreasing function with $\lim_{t \searrow 0} \sigma(t) = 0$. Let U be a ball (this can be removed with appropriate modifications, but is not relevant here). Let

$$[v]_{\sigma, U} = \sup_{x, y \in U} \frac{|u(x) - u(y)|}{\sigma(|x - y|)}.$$

Let (for C^1 functions v)

$$[v]_{\sigma, 1, U} = \sup_{x, y \in U} \frac{|u(x) + (y - x)\nabla u(x) - u(y)|}{|x - y|\sigma(|x - y|)}.$$

Lemma 1.1. *For C^1 functions v , the seminorms $[v]_{\sigma, 1, U}$ and $[\nabla v]_{\sigma, U}$ are equivalent, in the sense that*

$$[v]_{\sigma, 1, U} \leq C_1 [\nabla v]_{\sigma, U} \leq C_2 [v]_{\sigma(C_3, \cdot), 1, U}$$

where $C_i = C_i(n)$.

Proof. We have

$$|u(x) + (y - x)\nabla u(x) - u(y)| = \left| \int_0^1 [\nabla u(yt + x(1-t)) - \nabla u(x)] \cdot (y - x) dt \right| \leq |y - x|\sigma(|x - y|)[\nabla u]_{\sigma, U}$$

from the fundamental theorem of calculus. For the other direction,

$$|(\nabla u(x) - \nabla u(y)) \cdot (x - y)| \leq |u(x) + (y - x)\nabla u(x) - u(y)| + |u(y) + (x - y)\nabla u(y) - u(x)| \leq 2|y - x|\sigma(|x - y|)[\nabla u]_{\sigma, 1, U}.$$

Fix a unit vector e orthogonal to $x - y$; we may then find a point $z \in U$ such that $e \in \text{span}(x - y, x - z)$, $|z - y| + |z - x| \leq 4|x - y|$ and $|(z - y) \cdot e| \geq \frac{1}{4}|z - y|$, $|(z - x) \cdot e| \geq \frac{1}{4}|y - x|$. Indeed, such a z may always be found on the intersection of $B_{|x-y|/2}(\frac{x+y}{2})$ and the plane of points equidistant from x and y ; at least half of this disk will be contained in u , and one may check that this contains sufficient points. Then we have

$$|u(x) + (z - x)\nabla u(x) - u(z) - u(y) - (z - y)\nabla u(y) + u(z) + u(y) + (x - y)\nabla u(y) - u(x)| \leq 9|y - x|\sigma(4|x - y|)[\nabla u]_{\sigma, 1, U},$$

so

$$|(z - x)(\nabla u(x) - \nabla u(y))| \leq 9|y - x|\sigma(4|x - y|)[\nabla u]_{\sigma, 1, U}.$$

Hence, using $x - z = e(x - z) \cdot e + (x - y)\frac{(x - z) \cdot (x - y)}{|x - y|^2}$

$$|(x - z) \cdot e| |e \cdot (\nabla u(x) - \nabla u(y))| \leq \frac{|(x - z) \cdot (x - y)| |(x - y) \cdot (\nabla u(x) - \nabla u(y))|}{|x - y|^2} + |(x - z) \cdot (\nabla u(x) - \nabla u(y))|,$$

and

$$|e \cdot (\nabla u(x) - \nabla u(y))| \leq 100\sigma(4|x - y|)[\nabla u]_{\sigma, 1, U}.$$

□

Lemma 1.2. *Let u be a continuous function on D , smooth on the closed set $F \subseteq D$, with the property that*

$$\Delta u = 0$$

on $D \setminus F$, and

$$|u(x) - u(y)| \leq \sigma(|x - y|)$$

for $x \in F$ and $y \in D$. Then if $U \subseteq D$ is a ball of radius r whose quadruple is also contained in D and U intersects F ,

$$|u(x) - u(y)| \leq C_1\sigma(C_2|x - y|) + C_3|x - y|\frac{\sigma(4r)}{r}$$

for any $x, y \in U$.

Note that for $\sigma(t) = Ct^\alpha$, this implies $[u]_{\sigma,U} \leq C_4$. Indeed, this will be true for any σ with $t/s \leq \sigma(t)/\sigma(s)$ for $t \leq s$.

Proof. Take any $x, y \in U$ and set $\min\{d(x, F), d(y, F)\} = d$. Note that $d < 2r$ from the assumption that U intersects F , so B_d is contained in the quadruple of U . If $|x - y| \leq \frac{1}{2}d$, then we have

$$|u(x) - u(y)| \leq C(n) \frac{|x - y|}{d} \operatorname{osc}_{B_d(x)} u$$

by applying elliptic estimates on $B_d(x)$. As $\partial B_d(x)$ intersects F , we have a point $z \in \partial B_d$ such that $|u(y) - u(z)| \leq \sigma(|y - z|)$; this guarantees that $\operatorname{osc}_{B_d(x)} u \leq 2\sigma(2d)$.

If instead $|x - y| \geq \frac{1}{2}d$, let x' and y' be the two points in F closest to x, y respectively. Assume that $d = |x - x'| \leq 2|x - y|$; then $|y - y'| \leq |x - y| + |x - x'| \leq 3|x - y|$ and $|x' - y'| \leq 6|x - y|$. This gives

$$|u(x) - u(y)| \leq |u(x) - u(x')| + |u(x') - u(y')| + |u(y') - u(y)| \leq 3\sigma(6|x - y|).$$

□

Here is a version for the derivatives instead.

Lemma 1.3. *Let u be a continuous function on D , smooth on the closed set $F \subseteq D$, with the property that*

$$\Delta u = 0$$

on $D \setminus F$, and

$$|u(x) + (y - x)\nabla u(x) - u(y)| \leq |x - y|\sigma(|x - y|)$$

for $x \in F$ and $y \in D$. Assume also that there is a $\phi : D \rightarrow \mathbb{R}$ with $u = \phi$ on F and $[\phi]_{\sigma,1,D} \leq 1$. Then if $U \subseteq D$ is a ball of radius r whose quadruple is also contained in D and U intersects F ,

$$|\nabla u(x) - \nabla u(y)| \leq C_1\sigma(C_2|x - y|) + C_3|x - y| \frac{\sigma(4r)}{r}$$

for any $x, y \in U$.

The extra assumption about ϕ is not really needed, and may be removed by the same argument as was used to prove the harder part of Lemma 1.1.

Proof. Take any $x \in U \setminus F$ and find $y \in F$ such that $|x - y| = d(x, F) < 2r$. Then we have that

$$v(x) = u(x) - \nabla u(y)(x - y) - u(y)$$

is harmonic on $B_{d(x,F)}(x)$, and so

$$|\nabla u(x) - \nabla u(y)| = |\nabla v(x)| \leq C(n) \frac{4|x - y|\sigma(2|x - y|)}{|x - y|} \leq C\sigma(2|x - y|).$$

Combined with the assumption on ϕ , this implies that for any $x \in U$ and $y \in F \cap U$,

$$|\nabla u(x) - \nabla u(y)| \leq C_1\sigma(C_2|x - y|).$$

The conclusion now follows by applying Lemma 1.2 to each component of ∇u . □