1 Continuity of Solutions (obstacle problem)

Below, let D be a smooth bounded open set, and o : [0,00) — [0,00) a continuous, nondecreasing function
with limy\o0o(t) = 0. Let U be a ball (this can be removed with appropriate modifications, but is not

relevant here). Let
[’U} U= sup |U(£L’) —'Ll,(y)|
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Let (for C! functions v)
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Lemma 1.1. For C' functions v, the seminorms [v],1.v and [Vv],y are equivalent, in the sense that
Vo, < C1[V]ou < Colv]o(cs, v

where C; = Ci(n).

Proof. We have

1
lu(@) + (y — 2)Vu(z) — u(y)| = | / Vu(yt + z(1 = 1)) = Vu(@)] - (y — )| < |y = zlo(|lz — y[)[Vulou
0
from the fundamental theorem of calculus. For the other direction,

|(Vu(z)=Vu(y))-(z=y)| < Ju(@)+(y—2)Vu(z)—u(y)|+|u(y)+(@—y) Vuly) —u(z)| < 2ly—zlo(z—y))[Vuls1u.

Fix a unit vector e orthogonal to x — y; we may then find a point z € U such that e € span(z — y,x — z),
|z —y|+]z— 2| <4lz—y|land [(z —y) €| > 2|z —y|, |[(z —2) - ¢] > L|y — z|. Indeed, such a z may always
be found on the intersection of Bj,_/2( %) and the plane of points eqidistant from x and y; at least half

of this disk will be contained in u, and one may check that this contains sufficient points. Then we have
[0(@)+(z—2) V() —u(z) —uly)~ (=) Viuly)+u(z) +uly)+ (o—y) Vuly)—u(e)| < oy—alo(@z—y))[Vulrio,
SO

(z = 2)(Vu(z) — Vu(y))| < 9y — zlo(dz —y[)[Vuls1,0.

(xz—2)(z—y)
lz—y|?

[(z = 2) - (= yll(z —y) - (Vu(z) — Vu(y))|
|z —y|?

Hence, using x —z =e(z —2) e+ (x — y)

(= 2)-elle- (Vu(z) = Vu(y))| < +1(z = 2) - (Vu(z) = Vu(y))],

and
le - (Vu(z) — Vu(y))| < 1000 (4]x — y|)[Vuls1,u-
O

Lemma 1.2. Let u be a continuous function on D, smooth on the closed set F' C D, with the property that
Au =0

on D\ F, and
u(z) —u(y)| < oz —yl)
forx € F andy € D. Then if U C D is a ball of radius v whose quadruple is also contained in D and U

intersects F,
o(4r
u(e) — u(y)| < Cro(Cal —y) + Colar — | 77

for any x,y € U.



Note that for o(t) = Ct®, this implies [u], v < C4. Indeed, this will be true for any o witht/s < o(t)/o(s)
for t < s.

Proof. Take any z,y € U and set min{d(z, F'),d(y, F)} = d. Note that d < 2r from the assumption that U
intersects F', so By is contained in the quadruple of U If | — y| < %d, then we have

|z -y

OSC U

Ju(z) —u(y)] < Cln) == ose.

by applying elliptic estimates on By(z). As 0Bg4(x) intersects F', we have a point z € 9By such that
lu(y) — u(z)| < o(ly — 2]); this guarantees that oscp, () u < 20(2d).

If instead |z — y| > 3d, let 2’ and y’ be the two points in F closest to z,y respectively. Assume that
d=|x—2a'| <2z —yl; then |y —¢/| < |z —y| + |z — 2'| <3|z —y| and |z’ — ¢'| < 6|z — y|. This gives

u(z) —u(y)] < Ju(z) — w(@')] +u(z') —uy)] + [uly’) — w(y)| < 30(6lz —yl).

Here is a version for the derivatives instead.

Lemma 1.3. Let u be a continuous function on D, smooth on the closed set F C D, with the property that
Au =0

on D\ F, and
u(z) + (y — =) Vu(z) —u(y)| < |z —ylo(lz —yl)

forx € F and y € D. Assume also that there is a ¢ : D — R with w = ¢ on F and [¢lo,1,.p0 < 1. Then if
U C D is a ball of radius r whose quadruple is also contained in D and U intersects F,

o(4r)

r

|Vu(z) — Vu(y)| < Cro(Calz — y|) + C3|z — 9|
for any x,y € U.

The extra assumption about ¢ is not really needed, and may be removed by the same argument as was
used to prove the harder part of Lemma [L.1

Proof. Take any x € U \ F and find y € F such that |z — y| = d(x, F) < 2r. Then we have that
v(z) = u(z) = Vu(y)(z —y) — uly)
is harmonic on By, 7y (), and so

Az — ylo 2z — yl)

[Vu(z) — Vu(y)| = [Vo(z)] < C(n) =y

< Co(2]z —y)).

Combined with the assumption on ¢, this implies that for any z € U and y € FNU,

[Vu(z) = Vu(y)| < Cro(Calz = yl).

The conclusion now follows by applying Lemma to each component of Vu. O
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