
1 Free Boundary Problems: Introduction

Speaking roughly, a free boundary problem has two unknowns: a set Ω ⊆ Rn and a function u : Ω → R.
Neither the Rn for the domain nor the R for the range are sacred, but let us stick to this formulation for
simplicity. The boundary ∂Ω is the eponymous free boundary. The problem itself consists of finding solutions
Ω, u which satisfy certain conditions:

• u solves an equation (typically a PDE) on Ω.

• u satisfies a boundary condition with respect to which this PDE is well-posed on ∂Ω.

• u satisfies an additional condition on ∂Ω which renders the problem overdetermined. This is known as
the free boundary condition.

A common variation we will also consider is the two-phase problem, in which (usually) u also satisfies an
equation on Rn \ Ω, as well as a boundary condition for that equation from the side of Rn \ Ω. In this case
the free boundary condition will likely involve the values and derivatives of the function from each side.

It will be important to distinguish the global formulation of free boundary problems, which often has
additional challenges and subtleties, from the local nature of the problem. To this end, let us assume that we
are working over U ⊆ Rn, and that over ∂U some suitable, fixed, and irrelevant to our purposes boundary
condition for u is given. The specifics of this will vary from problem to problem, but the general principle is
to focus on the free boundary.

Some examples are in order:

1. Here u > 0 on Ω, and satisfies 4u = 0 there. The boundary condition is u = 0 on ∂Ω, while the
free boundary condition is |∇u| = 1 (this may also be written as uν = −1, where ν is the outward
unit normal vector to ∂Ω). This is known as the Bernoulli problem, and is one of the oldest and most
common archetypes for free boundary problems. The term one-phase problem, if no further context is
given, often refers to this equation. The variational formulation of this problem is sometimes called
the Alt-Caffarelli problem after a well-known and popular paper on the subject from 1981.

2. Let u > 0 on Ω again, but now 4u = 1 on Ω. The boundary condition is again u = 0. The free
boundary condition can be stated in various ways, but one is that ∇u = 0 (as we will discuss, though,
this is not really the best way to understand it). This is known as the obstacle problem, or is at any rate
a very simplified formulation of it. This is the second standard archetype of free boundary problems.

3. Here is a version of the Bernoulli problem with two phases: let u > 0 on Ω and u < 0 on Ω̄c, with
u = 0 on ∂Ω. We assume that 4u = 0 on both Ω and Ω̄c (though not at points on ∂Ω itself). The free
boundary condition is |∇u|Ω|2 − |∇u|Ωc |2 = 1 (here these are meant to indicate the derivatives from
either side of the boundary). Note that if u ≥ 0, this reduces to the one-phase variant.

4. Problems of the following type are often called Stefan problems: thinking of |Rn as denoting n−1 space
variables (x) and one time variable (t), let u > 0 satisfy ∂tu−4u = 0 in Ω and u = 0 on ∂Ω. The free
boundary condition may be written as follows: if V denotes the velocity of ∂Ω in the direction of the
outward normal to it, then V = |∇u|. Note that to enforce that u = 0 on ∂Ω, we have automatically
that V = ∂tu/|∇u| (and V = 0 if |∇u| = 0), so this may be expressed as ∂tu = |∇u|2. Other variations
on this give rise to different but related free boundary problems.

5. Another common evolution problem is the Hele-Shaw flow, which is like the Stefan problem but with the
heat equation replaced with 4u = 0 (the Laplacian taken only in the space directions, so along slices).
This is a blend of elliptic and parabolic equations (the parabolic effect being in the free boundary
condition itself).

6. Here is a problem with a different flavor: on Ω, 4u = 0, with the Neumann boundary condition
uν = 0 on ∂Ω (where ν is a unit normal). The free boundary condition is |∇u|forward along ν |2 −
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|∇u|backward along ν |2 = H, where H is the mean curvature of ∂Ω. This is actually not enough informa-
tion to identify the problem fully, but one example of this type is the Mumford-Shah energy minimizers
from image segmentation.

7. Let, this time, (u, P ) : U ⊆ R3× [0,∞)→ R3×R satisfy ∂tu+u ·∇u+∇P = 0 and div u = 0 in Ω (the
incompressible Euler equations). On ∂Ω, they satisfy the (typical) boundary condition V = u ·ν, where
ν is the outward unit normal and V is the velocity of Ω in that direction; this condition essentially
means that ∂Ω remains the boundary of the fluid as the fluid evolves. The free boundary condition
here is P = 0, which renders the problem overdetermined (this is perhaps not entirely obvious). This
is the water waves problem; it has quite different behavior than any of the previous examples, but is
heavily studied in various related formulations in the dispersive equations community.

Free boundary problems may be thought of as PDE for boundaries of sets coupled with PDE for functions
on that set. Like with any PDE, it is helpful to ask what type of PDE this boundary is satisfying. In all of the
examples other than the last two, the answer is either elliptic or parabolic (in the second-to-last, the answer
is also elliptic in some weaker and less useful sense, while in the final example, the answer is dispersive).
The reason for this answer will only become clear later in the course. However, as a disclaimer, we will
focus exclusively on elliptic (and maybe, time-permitting, parabolic) free boundaries; this is not because
they are somehow more interesting or popular, but rather reflects my personal ignorance of the dispersive
and hyperbolic literature, where the methods used are quite different.

It is best to view all of these examples as nonlinear partial differential equations. This, at a first glance,
is a confusing remark, as the first two examples (on which we will focus very heavily) are obviously linear:
a linear PDE coupled with two linear boundary conditions rendering it overdetermined. Note, though, that
it is not just u which we are solving for, but Ω itself. And the fact of the matter is that any problem whose
solution is a set is inherently nonlinear; we cannot perform linear algebra on sets, or at least not in any way
under which our problems are invariant.

We are therefore faced with the typical challenges of nonlinear PDE: the potential behavior of solutions
is limitlessly complicated, the existance theory is not trivial, uniqueness is often just not true, and the tools
available to understand regularity are, to speak frankly, primitive. We also have the additional challenge
that as our solutions are sets, we have no idea how to even deploy PDE methods: while it may be the case,
philosophically, that as argued above the boundary ∂Ω is solving a differential equation, this will never rise
above the level of a deep-seated belief and into the realm of mathematical rigor. We will have to tackle the
boundary as-is, as a geometric object, and translate what PDE techniques we wish to bring to the table into
a form compatible with that fact.

A historical remark: the theory of free boundary problems saw a leap in level of understanding in
the late 1970s and early 1980s similar to what nonlinear elliptic equations saw in the late 50s and early
60s. Prior to these developments, there were some known approaches to existance (especially local-in-time
existance to evolution problems and existance for whichever problems could be formulated variationally).
The regularity of the solution was understood in some cases (notably for the obstacle problem). A more
general understanding was available for evolution problems in one space variable (and possibly stationary
problems in two variables, though I’m not as familiar with the literature there). The turning point required
a synthesis of techniques in nonlinear PDE with rather different methods developed for a differnet geometric
problem: minimal surfaces (we will discuss this problem to some extent as well). With these tools, it is now
possible to understand the finer properties of solutions as well as their boundaries.

2 Harmonic Functions

A core aspect of free boundary theory is an extremely clear understanding of the PDE being solved in the
domain. To that end, let us start with some review:

Definition 2.1. A function u : U ⊆ Rn → R is harmonic u ∈ C2(U) and 4u = 0.
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A useful way of thinking about harmonic functions is the following mean value property :

Theorem 2.1. Let u be harmonic on U , and Br(x) ⊂⊂ U . Then

 
Br(x)

u = u(x) (2.1)

and  
∂Br(x)

u = u(x). (2.2)

Proof. Let us set

f(r) =

 
∂Br(x)

u =

 
∂B1

u(x+ ry)dy.

Set v(y) = u(x+ ry), noting that v is harmonic on B1. Then f ′(r) is given by

f ′(r) =

 
∂B1

∇v(y) · ydy =

 
B1

div(∇v) = 0.

Hence f is constant. From the continuity of u at x it follows that limr↘0 f(r) = u(x), giving (2.2). Then
(2.1) follows by integrating (2.2) in r.

Lemma 2.2. Let u ∈ L1
loc(U) satisfy (2.1) for every Br(x) ⊂⊂ U (for some representative of u). Then u is

a smooth function on U , and is also harmonic.

Proof. Fix some B3r(x) ⊂⊂ U . We have that for any y ∈ B2r(x),

|u(y)| ≤ 1

|Br|

ˆ
Br(y)

|u| ≤ C(r)‖u‖L1 <∞.

We also have that u is a continuous function, from the continuity property for the Lebesgue integral

lim
y→x

ˆ
Br(y)

u =

ˆ
Br(x)

u.

One may then check that for any continuous u, the function (for fixed r)

g(x) =

ˆ
Br(x)

u

is continuously differentiable, with derivative

∇g(x) =

ˆ
∂Br(x)

u(z)(z − x)dz

(by checking this on smooth functions and approximating, for example). It follows that u is continuously
differentiable on Br, with derivative bounded by a quantity depending only on r and the L1 norm of u. Now,
the components of ∇u also satisfy (2.1), and so we may continue in this manner to obtain that u is smooth
on U (in fact, the careful reader may use the explicit form of the estimate to deduce that u is real analytic).

Finally, arguing as in the proof of Theorem 2.1 we have that (2.2) holds for u as well, and that

ˆ
Br(x)

4u = 0

for every Br(x) ⊂⊂ U ; this latter fact implies that u is harmonic.

The following definitions will become more relevant soon, but let us save them for now:
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Definition 2.2. We say that u is subharmonic on U if u ∈ C2(U) 4u ≥ 0 (resp. superharmonic, ≤ 0).

Definition 2.3. We say that u is mean value subharmonic on U if u ∈ L1
loc(U), is upper semicontinuous,

and for every Br(x) ⊂⊂ U (and some representative of u),

u(x) ≤
 
Br(x)

u.

(resp. mean value superharmonic, lower, ≥).

To clarify, I use the term upper semicontinuous here and below to refer to functions Ω → [0, 8), i.e.
they are finite from above. Requiring upper semicontinuity is not necessary in all definitions of subharmonic
which follow; in some, it will follow from the remainder of the definition. However, this is not always clear,
and in some of the definitions is not true.

It is possible to show, with some effort, that an upper semicontinuous function satisfying the mean value
inequality is actually locally integrable so long as it is not −∞, though we do not pursue this point further. It
will, in fact, then also satisfy the remaining natural mean value properties, such as the monotonicity of both
interior and boundary mean value integrals. On the other hand, one may show that if the function is assumed
to be locally integrable and has monotone mean value integrals, then it admits an upper semicontinuous
representative. I do not know whether merely the mean value inequality as stated above, without any further
assumptions, implies the existence of an upper semicontinuous representative.

Proposition 2.3. A subharmonic function is mean value subharmonic. A mean value subharmonic function
with a C2 representative is subharmonic.

There are three basic, essential ways to think about harmonic functions besides the mean value property,
which we examine below.

2.1 Maximum Principle

Theorem 2.4. Let u be a mean value subharmonic function on a connected domain U . Assume that there
is an x ∈ U such that

u(x) = sup
U
u.

Then u is constant.

Proof. We have that

u(x) ≤
 
Br

u ≤ sup
U
u(<∞)

for any r with Br(x) ⊂⊂ U , which means that u = supU u almost everywhere on every such Br. Given any
other point y in U with the Lebesgue density of {u < supU u} at y greater than zero, we may connect x and
y by a finite path of balls which contain each of their neighbor’s centers, and repeating this argument on
these balls will give a contradiction.

While the property below, known as the Harnack inequality, is not exactly a consequence of the maximum
principle, it may be thought of as a kind of quantitative version, and belongs in the same category of tools.

Theorem 2.5. Let u be a nonnegative harmonic function on B2. Then there is a constant C = C(n) such
that

sup
B1

u ≤ Cu(0).
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Proof. We have that

u(x) =

 
B1/2(x)

u = C(n)

ˆ
B1/2(x)

u ≤ C(n)

ˆ
B3/2

u = C(n)u(0),

where the mean value property was used twice.

An alternative, equivalent, form replaces u(0) by infB1 u and can be proved similarly.

The maximum principle suggests some other reasonable notions of subharmonic functions:

Definition 2.4. An upper semicontinuous function u is said to be comparison subharmonic if for all
Br(x) ⊂⊂ U and all superharmonic functions v on Br(x) with v ≥ u on ∂Br(x), we have v ≥ u on
Br(x).

This is the weakest type of subharmonic function worth working with, and is a commonly used definition.

Definition 2.5. An upper semicontinuous function u is said to be viscosity subharmonic if for all φ ∈ C2(U)
such that phi(x) = u(x) for some x ∈ U and φ > u otherwise, we have 4phi ≥ 0.

This, on the other hand, is a perhaps odd but very powerful way of thinking about subsolutions, and
while not at all necessary here we present it while the going is easier so the reader might internalize it
before it becomes truly necessary. Heuristically, if you can touch your subharmonic function from above
by a smooth function, then that smooth function better not have 4u < 0 at that point: if it does, then
your subharmonic function has an even smaller Laplacian, as D2φ ≥ D2u at this local maximum for the
difference, and so the trace is also smaller. The reader may rightly object that D2u makes no sense and that
we are probably testing only at a small subset of the relevant points, but the fact remains:

Proposition 2.6. A function is viscosity subharmonic if and only if it is comparison subharmonic. A
function which is mean value subharmonic is comparison subharmonic.

It is not true that a comparison subharmonic function must be mean value subharmonic (e.g. −∞ is a
counterexample). That turns out to be the only counterexample, though, as we discuss briefly at the end of
this section. It is important, especially in the viscosity definition, to assume that u is upper semicontinuous.

Proof. Let u be viscosity subharmonic, and assume that there is a ball Br(x) ⊂⊂ Ω and a superharmonic
function h on it such that h ≥ u on ∂Br(x) and h(y) < u(y) for some y ∈ Br(x). Observe that for a sufficiently
small ε, the function v(z) = h(z) + ε(r2 − |x − z|2) will have that supBr(x)(u − v) = u(y′) − v(y′) > 0 for
some y′ ∈ Br(x) (the supremum is attained, as u− v is upper semicontinuous and is less than or equal to 0
on ∂Br(x)). Let c = supBr(x)(u− v) > 0, and define w(z) = v(z) + c+ ε/2|y′ − z|2. We have that w is C2

on Bs(y
′) for a small s, that w > u away from y′, and that w(y′) = u(y′). From the definition of viscosity

subsolution, it follows that 4w(y′) ≥ 0, which contradicts that 4w ≤ −2n · ε/2.

Conversely, let u be a comparison subharmonic function on Ω, and let φ be a test function as in the
definition of viscosity subharmonic. Assume that 4φ(x) < 0; we may then also assume that 4φ(x) < 0 on
Br(x). Then by assumption, we may find a c > 0 such that φ − c ≥ u on ∂Br(x), while φ(x) − c < u(x).
This is a contradiction.

That mean value subharmonic functions are comparison subharmonic follows directly from Theorem
2.4.

Proposition 2.7. Let Ω be bounded, u be viscosity subharmonic, and u ≤ 0 on ∂Ω. Then u ≤ 0 on Ω.

Proof. Assume that supΩ u = M > 0. Let wc(x) = M + c − ε|x|2, where ε is chosen in such a way that
w0 ≥ 0 on Ω. Let c(≥ 0) be the smallest value such that infΩ wc − u ≥ 0, and let x be the point where the
infimum is attained (in Ω). Then v(y) = wc(y) + |x − y|4 has the following properties: v(y) = u(y); v > u
away from y; and 4v(y) = 4wc(y) = −2nε < 0. This contradicts the viscosity subharmonicity of u.
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The maximum principle allows us to construct harmonic functions. This is typically known as Perron’s
Method, and is outlined below. While the use of viscosity subharmonic functions is entirely unnecessary
here, we will use this as an opportunity to see how to work with them.

Lemma 2.8. Let F be a family of viscosity subharmonic functions. Let u(x) = lim supy→x supv∈F v(y) be
the upper semicontinuous envelope of the supremum of them, and assume that u <∞ (at every point). Then
u is viscosity subharmonic.

The upper semicontinuous envelope in this lemma is largely to resolve a technical point: the maximum
of two upper semicontinuous functions need not be upper semicontinuous. The minimum, however, is upper
semicontinuous, and the reader may verify that u is the smallest upper semicontinuous function to lie above
all v ∈ F .

Proof. Take any point x ∈ Ω and function φ ∈ C2(Ω) such that φ(x) = u(x) and φ > u away from x. Fix
ε > 0. Then there is a δ > 0 such that φ−u > δ outside of Bε(x), and a τ ∈ (0, ε) such that |φ(·)−φ(x)| < δ/4
on Bτ (x). In particular, that means that for every v ∈ F , φ − v > δ outside of Bε(x). On the other hand,
we may find a y ∈ Bτ and a v ∈ F such that u(x) − v(y) < δ/4 (by the definition of u); it follows that
φ(y)− v(y) < δ/2.

Let cε = infΩ(φ − v). From the information gathered above, we see that 0 ≤ cε < δ/2. As v is upper
semicontinuous, and φ− v > δ outside of Bε, the infimum must be attained at some point xε in Bε. Using
φ− cε as a test function in the definition of viscosity subsolution for v, we see that 4φ(xε) ≥ 0. As ε→ 0,
we have that xε → 0, so from the fact that φinC2(Ω), we have that 4φ(x) ≥ 0.

Lemma 2.9. Let u be a viscosity subsolution on Ω, and assume that u∗(x) = lim infy→x u(y) is not a
viscosity supersolution. Then there exists a viscosity subsolution v on Ω with v ≥ u, v = u outside of
Br(x) ⊂⊂ Ω, and v > u on Bδr(x) for some small δ.

Proof. As u∗ is not a viscosity supersolution, we may find a φ such that φ < u∗ except at some point x
where φ(x) = u∗(x), and 4φ ≥ ε > 0 on Br(x) for some small ε, r. Let w(y) = φ(y) + ε/2 · (r2 − |y − x|2);
then w = φ < u∗ on ∂Br(x) and is subharmonic on Br(x). Applying Lemma 2.8, we see that v(z) =
lim sups→z max{u(s), w(s)} is viscosity subharmonic on Br(x); as u ≥ u∗ > w outside of Br(x), we also
have that v is viscosity subharmonic on Ω. From this we see that v = u outside of Br(x). On the other
hand, on Bt(x) for a small t, we have w > u∗(x) + ε

4r
2 > u(x′) + ε

8r
2 for some x′ in Bt/2(x); as u is upper

semicontinuous, this implies that w > u on Bs(x
′) for an even smaller s, as claimed.

Theorem 2.10. Let Ω be a bounded open set, and g−, g+ be viscosity sub and superharmonic with g− = g+

on ∂Ω. Then there is a harmonic u in C(Ω̄) with u = g− = g+ on ∂Ω.

Proof. Let F = {v viscosity subharmonic on Ω : g− ≤ v ≤ g+}; this is nonempty as it contains g− (g− ≤ g+

from Proposition 2.7). Applying Lemma 2.8, we have that u(x) = lim supy→x supv∈F v(y) is subharmonic.
Assume that u∗ (in the notation of Lemma 2.9) is not superharmonic; then there exists a subharmonic v
with v ≥ u, v = u on ∂Ω, and v > u on some ball. This v has v ≤ g+ from Proposition 2.7, and so v ∈ F .
This, however, contradicts v > u; we have shown that u∗ is superharmonic. Finally, applying Proposition 2.7
to u− u∗ (using that they are equal on ∂Ω, as u ∈ F), we have that u ≤ u∗, giving u = u∗ is harmonic.

This is often most usefully combined with the following type of fact (far more general versions are
available, but we do not pursue this here):

Lemma 2.11. Let Ω = B1 and g be a continuous function on ∂B1. Then there exists a viscosity superhar-
monic u with u = g on ∂B1.

Proof. We will write down a family of superhamonic functions whose infimum is continuous at ∂B1; this will
imply the conclusion provided that they have the following two properties: they are all larger than or equal
to g on ∂B1, and for every δ > 0 and any x ∈ ∂B1, there is a member of the family v with v(x) < δ.
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To do so, we include, first, the constant function max g in our family. We then add in (for all x ∈ ∂B1

and δ ∈ (0, 1]) vx,δ, which is defined by:

vx,δ(y) = g(x) + δ + αx,δx · (x− y),

where αx,δ is chosen to be the smallest value possible so that v ≥ g on ∂B1. It remains only to verify that
the infimum of all of these functions u is continuous on ∂B1. Note that u is upper semicontinuous and u ≤ g
on ∂B1, by construction. On the other hand, by applying the same construction to −g, we produce a family
of linear functions F ′ with the same properties, but from below. Letting w be their supremum, we have that
g ≤ w ≤ u ≤ g on the boundary, and w ≤ u on the interior; as w is lower semicontinuous, this implies that
both are continuous along ∂B1.

The functions g+ and g− are known as barriers. The use of such arguments, where an explictly given
subharmonic function is used with the comparison principle to give some information about a harmonic
function, will be very common once we start discussing free boundary problems.

Note that we used a kind of global argument to deduce that the largest subharmonic function we produced
is continuous. This can be avoided for harmonic functions. To see why, first consider the relationship between
maximal subharmonicity and mean value subharmonicity again. Let u be a viscosity subharmonic function
and Br(x) be a ball inside of Ω. Then u is upper semicontinuous on ∂Br(x), and so may be represented as
an infimum of a decreasing sequence of continuous functions {vi} on ∂Br (this is a fact from real analysis).
We may, via the method just shown, extend each vi to a harmonic function on Br(x). In particular, this
means that

vi(x) =

 
∂Br(x)

vi.

As u(x) ≤ vi(x) from the maximum principle, and as the integrals converge by the monotone convergence
theorem, we have that

u(x) ≤
 
∂Br(x)

u

(it is possible that both sides are −∞ here). One may also use the fact that as u ≤ vi on Br(x), we have

ˆ
Br(x)

u ≤
ˆ
Br(x)

vi =
r

n

ˆ
∂Br(x)

vi →
r

n

ˆ
∂Br(x)

u;

the second equality is equivalent to the monotonicity of the volume means
ffl
Br(x)

vi, and similarly this implies

that  
Br(x)

u

is nondecreasing in r, and so controls u(x).

Some consequences of these facts: first, if u fails to be locally integrable near a point, then it must
be −∞ on that entire connected component of Ω (notice that this is also true of local intgrability along
circles, perhaps surprisingly). Second, a mean value subharmonic function also satisfies the boundary mean
value inequality and the monotonicity of the volume averages (this was not immediately obvious from the
definition).

Third, consider any viscosity subharmonic u which is constructed as in Perron’s method, as the largest
subharmonic function lying below a given function g on ∂Ω. We claim that u(x) =

ffl
∂Br(x)

u. Indeed, solve

for the harmonic functions vi as above, with data approximating the data of u on ∂Br. If vi(x) > u(x) + δ
for all i (recall that vi(x) converges to the boundary integral), we may find a vi with vi < u+δ/4 on ∂Br(x).
Then max{vi − δ/2, u} gives a subharmonic function (from Lemma 2.8) which differs from u only on Br(x),
and yet is larger than it at x, contradicting the maximality of u. Hence u is harmonic (and u = u∗). Note
that we did not require any information about g or Ω to conclude this, other than a guarantee that u exists
and is not −∞ (so, say, g is continuous and bounded).
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This is a more traditional approach to Perron’s method, and is a bit different from our earlier theorem. It
sacrifices some generality and, importantly, it required us to already know how to solve the Dirichlet problem
on some given domain. On the other hand, it gives a stronger conclusion: it separates out the question of
existence of a harmonic function and the manner in which it satisfies the boundary values, allowing for local
barrier constructions to be used.

2.2 Dirichlet’s Principle

We now take a different perspective on harmonic functions. First, some notation and review:

Definition 2.6. A distribution is a continuous linear functional on C∞c (Ω). The derivative of a distribution
f is defined by

∂ef(φ) = −f(∂eφ).

Let H1(Ω) represent the Sobolev space of functions in L2(Ω) whose distributional derivatives admit repre-
sentations as L2(Ω) functions, equipped with the norm

‖u‖L2(Ω) + ‖∇u‖H1(Ω).

Let H1
0 (Ω) be the closure of C∞c (Ω) in H1(Ω).

Proposition 2.12. For any bounded Ω ⊆ Rn, we have that

‖u‖Lp ≤ C(diam Ω)‖∇u‖L2

for 1 ≤ p ≤ 2∗ := 2n
n−1 . If p < 2∗, then the embedding H1 → Lp is compact: any sequence converging weakly

in H1 will converge strongly in Lp.
‖∇u‖L2(Ω)

is an equivalent norm for H1
0 (Ω).

For a sufficiently regular Ω (say Lipschitz), there is a well-defined, continuous linear mapH1(Ω)→ L2(Ω),
called the trace. We let H1/2(Ω) be the image of H1 under this trace map; it’s straightforward to check that
H1/2(∂Ω) includes smooth functions.

Now consider the variational problem

min{1

2

ˆ
Ω

|∇u|2 : u ∈ H1(Ω), trace(u) = g}, (2.3)

where Ω is a sufficiently smooth domain and g is given.

Theorem 2.13. The problem (2.3) admits a unique solution u; moreover, u is harmonic.

Proof. There are several things to check. Let us start with a general way of showing that a minimizer exists.
Let

α = inf{E[u] :=
1

2

ˆ
Ω

|∇u|2 : u ∈ H1(Ω), trace(u) = g}

and uk be a sequence of functions in H1 with

lim
k
E[uk] = α.

Let v ∈ H1 be any function with trace g. Then wk = v − uk ∈ H1
0 , and

1

2

ˆ
Ω

|∇wk|2 = E[uk] + E[v]−
ˆ

Ω

∇v · ∇uk ≤ C.
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It follows that wk admits a weakly convergent subsequence, with ∇wk → ∇w weakly in L2. This gives

E[w] ≤ lim inf E[wk],

so setting u = v−w, E[u] = α (we used the weak convergence). Moreover, w ∈ H1
0 , so v ∈ H1 and has trace

g; we have obtained a minimizer.

For the uniqueness, let u and v be two minimizers. Then

E[
u+ v

2
] = α/2 +

1

2

ˆ
Ω

∇u · ∇v ≤ α,

with equality if and only if ∇u = c∇v. This, together with the trace condition, implies u = v.

Now we must check that u is harmonic. We will check that 4u = 0 in the sense of distributions; it is
then not difficult to check that u satisfies the mean value property and is hence harmonic (further details
and alternative approaches will be discussed later). To do so, take any φ ∈ C∞c (Ω). Then

E[u+ tφ] ≥ E[u]

implies that

t

ˆ
Ω

∇u · ∇phi ≥ −t2E[φ].

Sending t to 0 from either side gives

0 =

ˆ
Ω

∇u · ∇phi =

ˆ
Ω

u4phi,

which implies the conclusion.

This suggests the following definitions:

Definition 2.7. A function in H1(Ω) is called variationally subharmonic if E[u] ≤ E[φ] for any φ with
u− φ = 0 on ∂Ω (in the sense of traces) and φ ≤ u.

Definition 2.8. A function in H1(Ω) is called weakly subharmonic if
´

Ω
∇u · ∇φ ≤ 0 for any φ ∈ H1

0 (Ω).

Definition 2.9. A function in L1(Ω) is called distributionally subharmonic if 4u ≥ 0 in the sense of
distributions.

An important point to make is that the Laplacian of a function which is distributionally subharmonic
defines a nonnegative functional on the space of continuous compactly supported functions, and so 4u is
given by a positive Borel measure by the Reisz representation theorem. In particular, all steps of the proof
of Theorem 2.1 still work in this case (using also the L1 assumption), and we may deduce that u is mean
value subharmonic (the converse is also true). We are deliberately ignoring the upper semicontinuity issue,
but the clever reader should be able to show that a distributionally subharmonic function in fact admits an
upper semicontinuous representative.

Variational and weak subharmonicity is equivalent, by a variant of the uniqueness argument used above,
and both imply distributional subharmonicity. These notions are not, however, equivalent (due to the extra
H1 assumption).

2.3 Green’s Functions

Our final perspective on harmonic functions will be through Green’s functions and the Newtonian potential.
The key premise is the following one: the function

Φ(x) =

{
c(n)|x|n−2 n > 2

−c(n) log |x| n = 2,

known as the fundamental solution of the Laplace equation, or the Newtonian potential, satisfies −4Φ = δ0
(if c(n) is chosen appropriately).
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Lemma 2.14. For any v ∈ C∞c (Rn), ˆ
Φ4v = −v(0).

in particular, v is (distributionally) superharmonic.

Proof. Take any such v. Then we have ˆ
Φ4v = lim

ε→0

ˆ
Rn\Bε

Φ4v.

We compute the derivatives of Φ:

∇Φ = c(n)
x

|x|n

and
4Φ = 0

away from the origin. Using the divergence theorem,ˆ
Rn\Bε

Φ4v =

ˆ
Rn\Bε

4Φv +

ˆ
∂Bε

x

|x|
· ∇Φv − x

|x|
· ∇vΦ

= c(n)ε1−n
ˆ
∂Bε

v +O(ε).

Sending ε→ 0 concludes the argument.

When solving boundary value problems, it helps to localize the fundamental solution to a function on
the given domain; this is called the Green’s function:

Definition 2.10. Let Ω be a domain, and let G(x, y) be a solution to the boundary value problem

−4xG(x, y) = δy x ∈ ΩG(x, y) = 0 x ∈ ∂Ω.

Such a G is called the Green’s function of Ω.

The regularity assumption in the below is not strictly necessary.

Lemma 2.15. Let Ω be a bounded open set with Lipschitz boundary. Then there is a unique Green’s function
G for Ω.

Proof. The uniqueness follows from the maximum principle applied to the difference.

To prove the existence, one only needs to find (for every y) a function h(x) which is harmonic on Ω
and agrees with Φ(x − y) on ∂Ω. As the latter is clearly in H1/2(∂Ω), we may do so via the variational
method (note, though, that to show that the resulting function is continuous would require further arguments
which we do not pursue here). Alternatively, we may use Perron’s method here after showing that Lipschitz
domains admit the upper and lower barriers required (this is true, and may be verified as an exersize).

Let K(x, y) = ∂ν,xG(x, y) : ∂Ω × Ω → R; this is usually known as the Poisson kernel. At least if the
domain is sufficiently smooth, this is a well-defined quantity, and can be used to solve the Dirichlet problem.
We are not going to explore the smoothness requirements in depth here; the main point is that the divergence
theorem must apply. A careful reader may in fact verify the identity below for Lipschitz (or weaker) domains.

Lemma 2.16. Let Ω be a bounded, open, smooth domain, and g be a continuous function on ∂Ω. Then

u(x) =

ˆ
∂Ω

K(x, y)g(y)dy

solves {
4u = 0 in Ωu = g in ∂Ω

The boundary condition may be interpreted in H1/2 sense.
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The boundary condition may also be interpreted in the sense of continuous functions, with a bit more
work (which we delay until later).

Proof. Let φ be any smooth function on Ω̄. Then we have that

ˆ
Ω

4xG(x, y)φ(x)−G(x, y)4φ(x)dx =

ˆ
∂Ω

∂νG(x, y)φ(x)− ∂νφ(x)G(x, y),

which gives

φ(x)−
ˆ

Ω

G(x, y)4φ(x)dx =

ˆ
∂Ω

∂ν,xG(x, y)φ(x).

Let v be the solution to the boundary value problem in question. Replacing v by vε, which is a sequence of
smooth functions converging to v in H1(Ω) ∩C2

loc(Ω) (this may be arranged by a standard density theorem
on a small region around ∂Ω and by mollifying directly near ∂Ω), we have that

v(x) =

ˆ
∂Ω

K(x, y)g(y)dy.

This implies the conclusion.

A similar argument shows that G(x, y) = G(y, x).

We close here to mention the following construction: given a smooth Ω and a continuous function g on
∂Ω, we may define a funcional from C(∂Ω) to R, ωx, via

ωx(g) = hg(x),

where hg is the solution to the Laplace equation on Ω with boundary values g. Then so long as g ≥ 0, so is h,
meaning that this is a positive functional. By the Reisz representation theorem, this means that Ωx is given
by a Borel measure supported on ∂Ω. This measure is called the harmonic measure. The above lemma shows
that the Radon-Nikodym derivative of ωx with respect to surface measure on ∂Ω is given by the Poisson
kernel K(·, x). This notion is easy to generalize to all situations where one can solve the Dirichlet problem
(and, in fact, to arbitrary domains, via either limiting arguments or by using Perron’s method directly).
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