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MUMFORD’S GIT

G complex reductive group

X smooth polarized projective (or quasiprojective) G-variety

Xss semistable locus

X//G = Xss/G assume locally free, stack-theoretic git quotient:
proper smooth Deligne-Mumford stack with projective coarse
moduli space

Example: X = Cn,G = C×,Xss = (Cn)− {0},X//G = Pn−1.



KIRWAN’S MAP

KG(X) equivariant K-homology group: Grothendieck group of
coherent G-sheaves on X.

KG(X) equivariant K-cohomology ring Grothendieck group of
G-equivariant vector bundles on X, isomorphic via duality to
KG(X)

Kirwan map: κG
X : KG(X)→ K(X//G), [E] 7→ [(E|Xss)/G]

Can use either algebraic or topological K-theory.

Kirwan surjectivity: Kirwan, [22], Harada-Landweber [17,
Theorem 3.1], Halpern-Leistner [16, Corollary 1.2.3]:



EXAMPLE: K-THEORY OF TORIC VARIETIES
Suppose that X is a vector space, G a torus, X//G a smooth toric
DM stack with projective coarse moduli space

KG(X) = Rep(G) representation ring

[Xi] ∈ KG(X) weight space of i-th factor Xi ⊂ X

ODi structure sheaf for i-th prime invariant divisor Di ⊂ X//G

Then κG
X(1− [Xi]

−1) = [ODi ]

If Di1 ∩ . . . ∩Dik = ∅ then
k∏

j=1

(1− [Xij ]
−1) =

k∏
j=1

[ODij
]

= [ODi1∩...∩Dik
] = 0.

These are all the relations in the K-theory by Vezzosi-Vistoli [30,
Section 6.2].



K-THEORY OF TORIC VARIETIES CONTINUED

Relations: if Di1 ∩ . . . ∩Dik = ∅ then
∏k

j=1(1− [Xij ]
−1) = 0.

For the projective line P1 = C2//C× both weights are one and
the prime divisors are the points at 0 and∞.

{0} ∩ {∞} = ∅ implies

K(P1) = K(C2//C×) = Z[L,L−1]/(1− L−1)2.

Extension to stacks by Borisov-Horja [2]



QUANTUM K-THEORY

Mg,n(X, d) moduli of stable n-pointed genus g maps of class d

[Ovir] class of the virtual structure sheaf onMg,n(X, d). (Y.P. Lee
[23])

K-theoretic Gromov-Witten invariants

τg,n,d : KG(X)⊗n → KG(pt),

(α1, . . . , αn) 7→ χG(ev∗1 α1 ⊗ . . .⊗ ev∗n αn ⊗ [Ovir]) (1)

Do not satisfy Behrend-Manin axioms: splitting axiom has
corrections, no divisor axiom.

equivariant quantum K-theory QKG(X) := KG(X)⊗ Λ where Λ is
some Novikov ring (various choices).



QUANTUM PRODUCT

K-theoretic genus zero Gromov-Witten potential

F : QKG(X)→ QKG(pt), α 7→
∑

d∈H2(X)

∑
n≥0

τ0,n,d(α, . . . , α)qd/n!.

quantum K-theory pairing Bα(β, γ) = ∂1∂β∂γF(α).

no grading so Bα is not constant in α!

quantum K-theory product: Bα(β ?α γ, κ) = ∂β∂γ∂κF(α).

Quantum connection∇α = (1− ζ)∂α + α? is flat (Givental).

QKG(X) is a Frobenius manifold but the identity is not flat.



SAMPLE COMPUTATIONS

Givental-Lee: K-theoretic graph potential for complete flag
varieties

Buch-Mihalcea [3]: computation of three-point invariants for
projective spaces and Grassmannians (Anders has a computer
program)

Givental-Tonita [9] Iritani-Milanov-Tonita [19]: more
computations

Taipale [28]: Qde fundamental solution for partial flag varieties

Gorbounov-Korff [15]: Presentation of quantum cohomology of
the Grassmannian.

Maulik-Okounkov [25]: Connections with rep’n theory

Givental June 2015 [10]: permutation-equivariant quantum
K-theory I-IV (Google scholar notification)



MAIN RESULT: QUANTUM KIRWAN MAP

Thm (G-W) There exists a canonical formal Kirwan map in
quantum K-theory

κG
X : QKG(X)→ QK(X//G)

with the property that the linearization Dακ
G
X is a

homomorphism:

Dακ
G
X(β ? γ) = Dακ

G
X(β) ?Dακ

G
X(γ).

If X//G is a free quotient (conj in general) Dακ
G
X is surjective for

generic α



BACKGROUND: MAPS TO QUOTIENT STACKS

One wants a good notion of stable map to a quotient stack X/G.

Problem: There are two natural stability conditions,
corresponding to stability on X and stability of maps to
∗/G = BG as in Narasimhan-Seshadri-Ramanathan.

Idea: build into the moduli space a datum (one-form) which
tells you which stability condition to consider. (Mathematical
version of “area-dependent field theory” in physics”).

The quasimaps of Ciocan-Fontanine-Kim-Maulik [4] etc. are a
different version, which enforces X-stability at the special
points; works in all genera; related to vortices on curves with
cylindrical ends by Venugapalan [31].



AFFINE GAUGED MAPS

Defn: A affine gauged map to a quotient stack X/G consists of

a projective nodal curve C of genus zero

non-singular, distinct points z1, . . . , zn ∈ C

a map u : C→ X/G

a one-form λ : C→ P(ωC ⊕ C).



MONOTONICITY AND STABILITY CONDITIONS

(Monotonicity) λ only has double poles, and is “decreasing”
from z0 to any zi in the sense that it is∞, . . . ,∞, finite, 0, . . . , 0.

(Stability) u is X-stable on λ−1(∞) and G-stable on λ−1(0)

Any component on which u is trivializable has at least three
special points, or two special points and non-zero, finite λ.

Darkly shaded: λ−1(∞) Lightly shaded: λ−1(0).



MODULI SPACES OF AFFINE GAUGED MAPS

MG
(A,X) moduli stack of stable affine gauged maps is a

Deligne-Mumford stack with perfect obstruction theory.

The combinatorial type of such an affine map is a colored tree Γ
in the language of Boardman-Vogt from the 1960’s.

MG
(A,X) = ∪ΓMG

Γ(A,X)

MG
(A,X, d) locus of homology class d ∈ HG

2 (X,Q).



PROPERNESS

Like many similar theories, once one has the right definitions
via symplectic geometry one can try to kill the symplectic
geometry completely. I will only talk about the algebraic story.

(Originally we wanted the symplectic approach because it is
more general. E.g. Wang-Xu arXiv:1505.05945 does
compactness for vortices with Lagrangian boundary
conditions)



VALUATIVE CRITERION FOR PROPERNESS

(C, z, λ,u : C→ X/G)→ S− {s0} family over the punctured
smooth curve. Want unique extension over central fiber.

Define u : u−1(Xss)→ X//G. Note u−1(Xss) ⊃ {z0} 6= ∅

w = u−1(X − Xss) the base points with some ordering.

Properness of X//G: (C, z ∪ w,u : C→ X//G) extends as a stable
map (after étale cover) to central fiber.

Canonicity: the one-form λ extends over the central fiber, so
that λ(zi) <∞, i > 0.



EXTENDING THE BUNDLE

Collapse components of C on which λ = 0.

The bundle P := u∗(Xss → X//G) extends canonically except
over the limits of the base points.

Colliot-Thélène and Sansuc [6], see also Ciocan-Fontanine et al
[4], Solis [27] implies the bundle extends uniquely over the
limits of the base points.

Once one has the bundle extension, u extends as a stable
section of P×G X by properness of C,X.



DEFINITION OF QUANTUM KIRWAN

IX//G rigidified inertia stack of X//G

ev = (ev0, ev1, . . . , evn) :MG
n (A,X)→ IX//G × (X/G)n

evaluation maps at z0, . . . , zn

M : QK(X//G)→ QK(X//G) Maurer-Cartan map combining all
multiplications.

κG
X : QKG(X)→ QK(X//G),

α 7→M−1
∑
d,n

(qd/n!) evd
0,∗(ev∗1 α⊗ . . .⊗ ev∗n α). (2)



THE HOMOMORPHISM PROPERTY

The linearized map Dακ
G
X : QKG(X)→ QK(X//G) is a

?-homomorphism:

Dακ
G
X(β ?α γ) = Dακ

G
X(β) ?κG

X(α) Dακ
G
X(γ)

for any α ∈ QKG(X).

Proof by divisor equivalence:M2(A) ∼= P1 via the “distance”
between z1 and z2.



APPLICATION: QUANTUM K-THEORY OF TORIC

VARIETIES, TORIC DM STACKS

G torus

X vector space with weight spaces Xj with weights
µj, j = 1, . . . , k. Define

ζ+(d) =
∏

µj(d)≥0

(1− [Xj]
−1)µj(d)

ζ−(d) = qd
∏

µj(d)≤0

(1− [Xj]
−1)−µj(d)

Thm: (QK(X//G), ?κG
X(0)) is generated by [X1]±, . . . , [Xk]

± with

K-theoretic Batyrev relations ζ+(d)− ζ−(d), d ∈ HG
2 (X).

(N.B. there is a formal completion I am not discussing.)



USEFUL OR USELESS?

The indeterminacy κG
X(0) is the canonical bulk deformation

depending on the presentation of X//G as git quotient.

In the cohomology case, it vanishes for all Fano varieties, so
one gets a presentation of small quantum cohomology.

In K-theory, κG
X(0) might not vanish even for Fano varieties ( no

grading.) κG
X(0) does vanish for weighted projective spaces, so

one at least gets an explicit result in that case.



PROOF IS AN EULER CLASS COMPUTATION
The proof does not use any hypergeometric functions, any
symplectic geometry, or any formulas for fundamental qde
solutions.

Let E+ :=
⊕

µj(d)≥0 ev∗1 X
⊕µj(d)

j vector bundle overMG
1 (A,X).

Section σ :MG
1 (A,X)→ E+ given by u 7→ derivatives of uj at z1

up to order µj(d).

Derivatives makes sense because of λ! The zeroes of the section
are isomorphic moduli spaces of maps of lower degree:

σ−1(0) MG
1 (A,X, d′)

MG
1 (A,X, d′ − d)

-

?



PROOF IS AN EULER CLASS COMPUTATION
Let E+ :=

⊕
µj(d)≥0 ev∗1 X

⊕µj(d)

j vector bundle overMG
1 (A,X).

Section σ :MG
1 (A,X)→ E+ given by u 7→ derivatives of uj at z1

up to order µj(d).

Derivatives makes sense because of λ! The zeroes of the section
are isomorphic to moduli spaces of maps of lower degree:

poly’s of degree d’ vanishing to order d poly’s of degree d’

poly’s of degree d’ - d

-

?



EULER CLASS COMPUTATION CONTINUED

.

poly’s of degree d’ vanishing to order d poly’s of degree d’

poly’s of degree d’ - d

-

?

The class ζ+(d) is the Euler class of E+ whose zero set is on
upper left so

χ(MG
1 (A,X, d′), ev∗1 ζ+(d)⊗Ovir

d′ ) = χ(σ−1(0),Ovir
d′ )

= χ(MG
1 (A,X, d′ − d), ev∗1 ζ−(d)⊗Ovir

d′−d) (3)

for any degree d′.



INJECTIVITY PART OF PROOF

Using the mmp we get an equality of dimension [20],
dim(QKG(X)/ relations) = dim(QK(X//G)).

Mmp running for a twice blow-up of P1 × P1

This shows that QKG(X)/ relations = QK(X//G).



CONSEQUENCES

(i) The quantum K-theory and quantum cohomology of toric
DM stacks are isomorphic over Z.

(ii) Mirror description: QK(X//G) = Jac(W) where W is the
Givental potential and Jac(W) its Jacobian ring.

(iii) Toric DM stacks related by crepant transformations have
isomorphic QK. (True in general by Givental-Tonita [9]?)

(iv)QK(X//G) =
⊕

Zi
QK(Zi) where Zi ranges over centers of

mmp transitions (True in general?)



GAUGED K-THEORETIC GROMOV-WITTEN

INVARIANTS

Goal: “formula” for fundamental qde solution in quantum
K-theory

A gauged map from C to X consists of

I (Curve) a nodal projective curve Ĉ
I (Markings) z0, . . . , zn ∈ Ĉ disjoint from each other and the

nodes;
I (Parametrization) a stable map v : Ĉ→ C of degree [C];
I (Map) a map Ĉ→ X/G to the quotient stack X/G,

corresponding to a bundle P→ C and section
u : Ĉ→ (v∗P)(X)



MUNDET SEMISTABILITY

Mundet semistability interpolates between bundle stability and
target stability: u : C→ X/G morphism.

σ parabolic reduction of u∗(X→ X/G)

ξ is a central weight of the corresponding Levi subgroup

Mundet weight sum of the Ramanathan and Hilbert-Mumford
weights

µM(σ, ξ) = µR(σ, ξ) + λµHM(σ, ξ).

u : Ĉ→ C× X/G is Mundet semistable if

µM(σ, ξ) ≤ 0

for all pairs (σ, ξ).

MG
n (C,X, d) stack of Mundet semistable maps.



GAUGED GRAPH INVARIANTS

For α1, . . . , αn ∈ KG(X) and d ∈ HG
2 (X) define

τG
X,n,d(C, α1, . . . , αn) =

χ(MG
n (C,X, d), ev∗0 α0 ⊗ ev∗1 α1 ⊗ . . . ev∗n αn ⊗ [Ovir]) (4)

τG
X : QKG(X)→ Λ,

α 7→
∑
n≥0

∑
d∈HG

2 (X,Z)

(Qd/n!)τG
X,n,d(C, α, . . . , α). (5)

This is the K-theoretic analog of the “G-function” in Givental’s
paper.



LOCALIZED GRAPH INVARIANTS

Localization in the case that C = P1 gives what Givental calls
I-functions

τG
X,± : QKG×C×(X)→ QKC×(X//G)

Example: In the toric case

τG
X,−(α, ζ, q) =

∑
d∈HG

2 (X)

qd exp
(

Ψdα

1− ζ−1

) ∏k
j=1
∏0

m=−∞(1− X−1
j ζm)∏k

j=1
∏µj(d)

m=−∞(1− X−1
j ζm)

.

(6)

where Ψdα is the twist of α by the character d followed by
classical Kirwan



ADIABATIC LIMIT THEOREM

The diagram

QKG(X) QK(X//G)

ΛG
X

sτG
X

-
κG

X

+ τX//G

commutes in the limit ρ→∞.

For the localized graph potentials τX//G,± ◦ κG
X = τG

X,±

Generalizes formulas of Ciocan-Fontanine-Kim [5], Iritani [21]
(big I function in QH) and Givental-Tonita [9] (QK of CI of low
degree) and Givental [10] 2015 “toric q-hypergeometric series
[α = 0] represents a value of the big J-function in the quantum
K-theory”



WALL-CROSSING

Suppose that L± → X are two polarizations. Difference
between K-theoretic Gromov-Witten graph potentials on X//±G
is measured by an explicit sum of wall-crossing terms:

QKG(X,L−) QK∨G(X) QKG(X,L+)

QK(X//−G) Λ̃G
X QK(X//+G)

?

κG
X,−

� -

?

κG
X,+

-
τX//−G

�
τX//+G

Consequence: Invariance of graph potentials under simple
flops induced by vgit. (generalizes Y.P. Lee et al. in quantum
cohomology case)



ABELIANIZATION
Suppose T ⊂ G is a maximal torus, τX//T are the g/t-twisted
K-theoretic Gromov-Witten graph invariants as in
Bertram-Ciocan-Fontanine-Kim [1]. There is a commutative
diagram

QKG(X) QKT(X)

QK(X//G) QK(X//T)

ΛG
X ΛT

X

?

κX,G

-

?

κX,T

?

τX//G

?

|W|−1τX//T

�

We didn’t prove anything for J-functions yet, this is a result
about graph potentials.



PROOF OF ABELIANIZATION

First check it in the Mundet chamber λ = 0 where all bundles
are trivial using Halpern-Leistner’s [16] virtual localization
theorem.

Then show both sides have the same wall-crossing property,
hence it holds for λ→∞.

Then use the adiabatic limit theorem.

Open problems: (i) formulas for fundamental qde solutions,
presentations for quantum K-theory rings for non-abelian git
quotients generalizing Taipale [28] for partial flag case. (ii)
Invariance of fundamental qde solutions under weighted flops.
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