
ON THE UNFOLDING OFFOLDED SYMPLECTIC STRUCTURESANA CANNAS DA SILVAVICTOR GUILLEMINCHRISTOPHER WOODWARDAbstra
t. A folded symple
ti
 stru
ture is a 
losed 2-form whi
his nondegenerate ex
ept on a hypersurfa
e, and whose restri
tionto that hypersurfa
e has maximal rank. We show how a 
ompa
tmanifold equipped with a folded symple
ti
 stru
ture 
an some-times be broken apart, or \unfolded", into honest 
ompa
t sym-ple
ti
 orbifolds.A folded symple
ti
 stru
ture indu
es a spin-
 stru
ture whi
his 
anoni
al (up to homotopy). We des
ribe how the index of thespin-
 Dira
 operator behaves with respe
t to unfolding.1. Introdu
tionTwo manifolds 
an be summed along di�eomorphi
 submanifolds,provided that we are given an orientation-reversing isomorphism of thenormal bundles of the submanifolds. When the submanifolds are singlepoints, the sum is the usual 
onne
ted sum.The sum operation is more subtle in a symple
ti
 setting. Let(M1; !1) and (M2; !2) be 
ompa
t symple
ti
 manifolds of dimension2d and with orientations indu
ed by the symple
ti
 forms. In [1℄ Audinshowed that, with some rare ex
eptions, there is no way of equippingthe 
onne
ted sum M1#M2 with a symple
ti
 stru
ture that is 
om-patible with !1 and !2. (She showed even more: there is no almost
omplex stru
ture on M1#M2 whi
h is 
ompatible with !1 and !2.)On the other hand, 
onne
ted sums of the form M = M1#M2, whereM2 has the opposite of the symple
ti
 orientation, 
an sometimes beperformed symple
ti
ally; for instan
e, in dimension 4,M1#CP2 is the(
omplex) blow-up of M1 at a point.Date: O
tober 10, 1998. 1



2 UNFOLDINGGrossberg and Karshon proved that M =M1#M2 
an be equippedwith a spin-
 stru
ture that is 
ompatible with !1 in the usual senseand with !2 under the negative orientation (see [6℄). One of the goalsof this paper is to show that the Grossberg-Karshon result is related tothe existen
e of a 
ertain type of presymple
ti
 stru
ture on M whi
his 
ompatible with the !i's.A folded symple
ti
 form1 on a 
ompa
t 2d-dimensional mani-fold, M , is a 
losed two-form, !, whi
h is symple
ti
 ex
ept along ahypersurfa
e, Z, (
alled the folding hypersurfa
e) and, for p 2 Z, isequal to the two-formx1dx1 ^ dy1 + dx2 ^ dy2 + : : :+ dxd ^ dyd (1.1)in an appropriate Darboux 
oordinate system. (Thus, in parti
ular, Zis de�ned in this 
oordinate system by the equation x1 = 0.) The basi
fa
ts about folded symple
ti
 forms (most of whi
h are well-known) are
olle
ted in x2; and in x3 we will give some examples of these forms,the simplest of whi
h exist on the even-dimensional spheres.In x5 we will prove that if M is oriented and the 
ohomology 
lass[!℄ is the image in H2(M ;R) of an integer 
ohomology 
lass, there is anatural way of asso
iating with ! a spin-
 stru
ture. More expli
itly,in x4 we will prove the following: Let U be a neighborhood of Z andlet J0 be a 
omplex stru
ture on the tangent bundle T (M n U) (i.e. analmost 
omplex stru
ture onM nU) whi
h is 
ompatible with !. Thenthe 
omplex stru
ture J0 � (rotation by 900) (1.2)on the ve
tor bundle T (M n U)�R2 ;extends over M . In other words, there exists a 
omplex stru
ture, J ,on the real ve
tor bundle TM �R2, whose restri
tion to M n U is the
omplex stru
ture (1.2). It is not hard to see that ! and J give rise ina natural way to a spin-
 stru
ture on M (see x5 for details) and in x6we will show that the Grossberg-Karshon result 
an be regarded as a
onsequen
e of this fa
t by proving that a 
onne
ted sum,M1#M2, oftwo symple
ti
 manifolds possesses a folded symple
ti
 stru
ture.The folding hypersurfa
e, Z, in the de�nition above is equipped witha 
anoni
al null-foliation whose leaves are one-dimensional. In x7 we1The term \folded" is due to Melrose [15℄. Many folded symple
ti
 forms ariseas pull-ba
ks of symple
ti
 forms under maps with only folding singularities.



UNFOLDING 3will prove the result below (whi
h is one of the two main results of thispaper):If the leaves of the null-foliation are 
losed submanifolds ofZ, the folded symple
ti
 stru
ture on M 
an be \unfolded".By this we mean the following: Let W 0i , i = 1; : : : ; N , be the 
on-ne
ted 
omponents of M n Z and let Wi be the 
losure of W 0i . FromWi one gets a topologi
al spa
e, Mi, by identifying points, p1 and p2,on the boundary of Wi if p1 and p2 are on the same leaf of the null-foliation. We will prove that Mi is a 
ompa
t orbifold and that thefolded symple
ti
 stru
ture on M indu
es a symple
ti
 stru
ture (ofthe usual kind) on Mi. The \unfolding" of M is, by de�nition, theoperation M  tMi. For example, let M be the 
onne
ted sum of
ompa
t 
onne
ted 2d-dimensional symple
ti
 manifolds,M =M1#M2 : (1.3)Then by unfolding one re
overs M1 and M2.Coming ba
k to the spin-
 stru
ture onM whi
h we des
ribed above,let �= be the spin-
 Dira
 operator. Sin
e the index of this operator onlydepends on !, we will denote it by Ind(M). The se
ond main result ofthis paper is the following formula for this index:Ind(M) =X(�1)�i ZMi exp(!i)Todd(Mi) ; (1.4)where we orient the Mi's symple
ti
ally, �i = 0 if the orientation in-du
ed on Mi byM agrees with its symple
ti
 orientation and �i = 1 ifnot. For example, for the 
onne
ted sum (1.3), this formula redu
es toInd(M) = Ind(M1)� Ind(M2) :We will prove the formula above in x8. For the 
onne
ted sum (1.3), anequivariant version of this formula is 
losely related to the equivariantindex theorem proved by Grossberg and Karshon in [6, x12℄.A
knowledgements: Cannas, Karshon and Tolman have re
entlyproved in [3℄ an analogue for spin-
 manifolds of the \quantization
ommutes with redu
tion" theorems of [4℄, [7℄, [13, 14℄ and [16, 17℄,and there is some overlap between their results and the results reportedon here. The proof of (1.4) is partly modeled on Meinrenken's proofof a similar result in [14℄. Allen Knutson alerted us for a serious signmistake on an earlier version of this paper. Finally, we are indebtedto Mi
h�ele Vergne for her kindness to us during our stay at the �E
ole



4 UNFOLDINGNormale in June of 1995 (during whi
h the �rst draft of this paper waswritten). 2. Folded Symple
ti
 Stru
turesLet M be a 2d-dimensional manifold and ! 2 
2(M) a 
losed two-form. Let Z be the set of points where !d is zero. If !d interse
tsthe zero se
tion of ^2dT �M tranversally, Z will be a 
odimension onesubmanifold ofM . Let us assume that !d has this property. We denoteby � the in
lusion map of Z into M .De�nition. If the form (��!)d�1 2 
2d�2(Z) is non-vanishing, ! issaid to be a folded symple
ti
 form and Z its folding hypersur-fa
e.For a proof that this de�nition is equivalent to the de�nition in x1,see the 
omments at the end of this se
tion or see [11, p.157℄.It is 
lear that the property of being folded is an open property: if!0 is folded and ! is a 
losed two-form whi
h is C1-
lose to !0, then! is also folded. However, this property is far from being generi
: Indimension 4 it is generi
ally true that !2 is transverse to zero, but notthat ��! is non-vanishing; in dimensions 6 and higher even the �rstassertion is false. (In parti
ular, the set Z is not a manifold generi
allyex
ept in dimension 4. See [11℄ for a dis
ussion of generi
 singularitiesof 
losed two-forms.)Suppose now that M is oriented. Then Z a
quires fromM a 
anon-i
al orientation in the following manner: Let M+ be the set of points,p, where !dp > 0 and M� the set where !dp < 0. ThenM n Z =M+ [M� (2.1)and by the tubular neighborhood theorem one gets from (2.1) an ori-entation of the normal bundle of Z and hen
e of Z itself.Let E ! Z be the rank 2 ve
tor bundle whose �ber at z is theannihilator of ! in TzM . From the (2d � 2)-form !d�1 one gets anorientation of the quotient bundle (��TM)=E, and hen
e, from the ori-entation of TM , an orientation of E. Moreover, from the orientationsof E and of TZ, one gets an orientation of the interse
tion of these twobundles, whi
h is a rank-one subbundle, F , of TZ. Let v be an orientednon-vanishing se
tion of F (i.e. a ve
tor �eld with the property that



UNFOLDING 5vz 2 F+z for all z 2 Z) and let � 2 
1(Z) be a one-form for whi
h{v� = 1. We will need in x8 the following global variant of (1.1).Theorem 1. Suppose that Z is 
ompa
t. Then there exists a neigh-borhood, U , of Z and an orientation preserving di�eomorphism,' : Z � (�"; ") �! U ; (2.2)su
h that ' Æ �0 = � (2.3)and '�! = ����! + d(t2���) ; (2.4)�0 being the in
lusion map z 7! (z; 0), � the proje
tion (z; t) 7! z, andt the 
oordinate fun
tion on (�"; ").Proof. Let w be a ve
tor �eld on M su
h that, for all z 2 Z, (wz; vz)is an oriented basis of Ez, and for the moment let the map ' in (2.2)be the map whi
h takes lines (z; t), �" < t < " onto the integral
urves of w. If we require that (2.3) hold, this ' will be unique. (Itwill not be the ' that we want, but will turn out to be a good �rstapproximation to it.) Via ' we 
an identify U with Z � (�"; ") and wwith the ve
tor �eld ��t. Moreover, we 
an extend v to all of U via thein
lusion TzZ ,! T(z;t)U . Let � as above be the proje
tion of U ontoZ whi
h maps (z; t) to z. We will prove the theorem by applying the\Moser tri
k" to the forms!0 := ����! + d(t2���) (2.5)and !1 := ! : (2.6)For this we will need the following \folding" 
riterion:Lemma 2.7. Let t� be a 
losed two-form on U . Then the form ����!+t� is a folded symple
ti
 form on a possibly smaller open neighborhood,U1 = Z � (�"; "), of Z if and only if �(w; v) is nonvanishing on Z.Proof of Lemma 2.7. This follows from the fa
t that the d-thexterior power of this form is(d� 1)t(����!)d�1 ^ �+O(t2) ;so this form is folded if and only if (����!)d�1 ^ � is nonvanishing onZ. However, the annihilator of ����!z in TzU is spanned by wz and vz;



6 UNFOLDINGso the nonvanishing of this form is equivalent to the nonvanishing of�(w; v). 2It is 
lear from (2.5) that !0 is of the form above, i.e.!0 = ����! + t�0where �0 := 2dt���+ td(���) ; (2.8)and the same is also true of !. To see this note that, sin
e w = ��t ,{w����! = 0. On the other hand, {w! = 0 on Z, so !�����! is zero atall points of Z. Sin
e Z is de�ned by the equation t = 0, we 
on
ludethat ! � ����! = t�1, for �1 2 
2(U).By (2.8), �0(w; v) = 2 on Z; so, by Lemma 2.7, !0 is folded. More-over, sin
e ! is folded, �1(w; v) is nonvanishing on Z. In fa
t, be
auseof the orientation 
onventions dis
ussed above, �1(w; v) is positive onZ.We will next show that !0 
an be deformed into !1 by a \folded"homotopy:Lemma 2.9. For 0 � s � 1, the form!s := (1 � s)!0 + s!1is folded (with folding hypersurfa
e Z).Proof of Lemma 2.9. !s is of the form !s = ����! + t�s where�s = (1 � s)�0 + s�1. Hen
e, the fun
tion �s(w; v) is positive on Z,and so, by Lemma 2.7, !s is folded. 2Therefore, {v!s and {w!s vanish on Z, and the following is an easy
orollary of Lemma 2.9.Lemma 2.10. Given � 2 
1(U), one 
an �nd a ve
tor �eld, u, withthe property {u!s = �if and only if {v� and {w� vanish on Z.Remark. Sin
e !s is symple
ti
 on the 
omplement of Z, this ve
tor�eld, if it exists, is unique.



UNFOLDING 7To prove Theorem 1, re
all that by the \Moser tri
k" the proof 
anbe redu
ed to �nding a ve
tor �eld, vs, on U whi
h vanishes on Z,depends smoothly on s, and satis�esDvs!s = � �!s = !0 � !1 : (2.11)Indeed, if su
h a ve
tor �eld exists, one 
an integrate the equationd'sds Æ '�1s = vswith '0 equal to the identity and 's Æ �0 = �0, to get a di�eomorphism,'s, satisfying '�s!s = !0. To solve (2.11), one observes that !0 � !1 is
losed and vanishes on Z. Therefore, sin
e Z is a deformation retra
t ofU , there exists a one-form, �, whi
h satis�es d� = !0�!1 and vanishesto the se
ond order on Z. Hen
e, (2.11) is equivalent tod{vs!s = d� ;so it suÆ
es to solve {vs!s = � (2.12)and, by Lemma 2.10, there exists a unique vs satisfying (2.12) (and vshas to vanish to �rst order on Z.) 2Remarks.1. From Theorem 1 and the 
lassi
al Darboux theorem, one getsanother proof of (1.1). (By the 
lassi
al Darboux theorem, i�! =dx2dy2 + : : : + dxddyd. Now apply Theorem 1 with x1 = t and� = dy1.)2. Let G be a 
ompa
t Lie group. If G a
ts on M and this a
tionpreserves !, one 
an arrange for � to be G-invariant and themap (2.2) to be G-equivariant.3. If Z is not 
ompa
t, the assertion of Theorem 1 is still true pro-vided we repla
e " by an appropriate 
ontinuous fun
tion " : Z !R+. 3. Examples1. If we regard the even-dimensional sphere S2d as the set of unitve
tors in R2d+1, we obtain a folded symple
ti
 form on S2d byrestri
ting to S2d the formdx1 ^ dy1 + : : :+ dxd ^ dyd :The folding hypersurfa
e is the equator S2d \ fxd+1 = 0g.



8 UNFOLDINGAlternatively, this folded symple
ti
 form on S2d may be ob-tained by doubling a 2d-dimensional disk equipped with the stan-dard symple
ti
 form, dx1 ^ dy1 + : : :+ dxd ^ dyd, i.e. gluing two2d-dimensional disks equipped with standard symple
ti
 formsalong their sphere boundaries, after reversing the orientation onone of the disks.Yet a third way to 
onstru
t this folded symple
ti
 stru
ture onS2d justi�es the name \folded". Consider the folding map fromthe sphere to the disk,� : S2d ! D2d ;folding along the equator. Let � = dx1 ^ dy1 + : : :+ dxd ^ dyd bethe standard symple
ti
 form on D2d. Then ! = ��� is a foldedsymple
ti
 form on S2d.2. Let (M1; !1) and (M2; !2) be 
ompa
t symple
ti
 manifolds ofdimension 2d and with orientations indu
ed by the symple
ti
forms. Let M =M1#M2be the 
onne
ted sum, where M2 has the opposite of the sym-ple
ti
 orientation. Then M has a folded symple
ti
 form whi
h
oin
ides with the !i's away from a tubular neighborhood of thesurgery. To see this, 
on
entrate on the small annuli Ai ' S2d�1�I, i = 1; 2, where the surgery o

urs. The symple
ti
 form !i re-stri
ted to Ai is di�eomorphi
 to d(ri ^ ���), i = 1; 2, where riis a 
oordinate on I, � is the proje
tion S2d�1 � I ! S2d�1 and� is the standard 
onta
t one-form on S2d�1. Choose 
oordinatest1; t2 su
h that ri = 1+ t2i for ti > ". Finally, extend ! a
ross the
onne
ted sum by de�ning it to be! = d[(1 + t2) ^ ���℄ ;where t = �t1 on the interval t < �" and t = t2 on the intervalt > ". The folding hypersurfa
e of ! is given by t = 0. For ageneralization of this folding 
onstru
tion, see x6.3. The produ
t of any 
onta
t manifold with the 
ir
le admits afolded symple
ti
 form. This 
an be seen by doubling a symple
-tization of the 
onta
t manifold (
f. [2℄).In parti
ular, sin
e Martinet [10℄ proved that any orientable 3-manifold admits a 
onta
t form, we 
on
lude that the produ
t ofany orientable 3-manifold with the 
ir
le admits a folded symple
-ti
 form.



UNFOLDING 9More generally, given a 
onta
tomorphism  of a 
onta
t man-ifold X, 
onsider the mapping torus M = X � [0; 1℄= �, where(p; 0) � ( (p); 1). The symple
tizationX � [0; 1℄ has a !-
on
aveboundary, say X � f0g, and a !-
onvex boundary, say X � f1g.There is a folded symple
ti
 form on M obtained by gluingX � [0; 1℄ to X � [0; 1℄ under the identi�
ation by  of the !-
onvex boundaries and the identity identi�
ation of the !-
on
aveboundaries.4. The notion of folded symple
ti
 form holds for arbitrary even-dimensional manifolds, not ne
essarily orientable. For instan
e,the folded symple
ti
 form on S2d whi
h we �rst des
ribed is in-variant under the involution x 7! �x, and hen
e indu
es a foldedsymple
ti
 form on the real even-dimensional proje
tive spa
es,RP2d.It follows that the real blow-up of a folded symple
ti
 manifoldat a point (away from the folding hypersurfa
e) admits a foldedsymple
ti
 form. In fa
t, the real blow-up at a point of a 2d-dimensional manifoldM amounts to taking the 
onne
ted sum ofM with RP2d.4. Stable Complex Stru
turesLet U be a neighborhood of the folding hypersurfa
e in M as inTheorem 1. Sin
e ! is symple
ti
 on M n U , there exists an almost
omplex stru
ture, J0, on M n U whi
h is 
ompatible with !, in thesense that, for all p 2M n U , the mapr; s 2 TpM 7�! !p(Jr; s)is a positive de�nite symmetri
 bilinear form. It is 
lear from theorientation 
onsiderations that J0 
annot be extended to all of M ;however, we will prove that one 
an add a trivial R2 bundle to TMand extend the 
omplex stru
tureJ0 � (rotation by 900) (4.1)to all of M :Theorem 2. There exists a 
omplex stru
ture, J , on the real (2d+2)-dimensional ve
tor bundle TM �R2, and a C -linear isomorphism(TM �R2)MnU ' T (M n U)� C :



10 UNFOLDINGMoreover, TM �R2 has a stru
ture of symple
ti
 ve
tor bundle whi
his 
anoni
al up to homotopy, and the homotopy 
lass of J is uniqueprovided J is 
ompatible with the symple
ti
 stru
ture on TM �R2.Proof. Let E be the ve
tor subbundle of TU spanned by the ve
tor�elds w and v, as in x2. This is a symple
ti
 subbundle of TU , andwe will denote by E? its symple
ti
 ortho
omplement. Without lossof generality, one 
an assume that J0 extends over the set jtj � "2, and,on this set, is the sum of 
omplex stru
tures on E and E?. One 
analso assume that the 
omplex stru
ture on E? extends over all of Uand that on the set t � � "2 the 
omplex stru
ture on E is given byJ0w = �v and J0v = w (4.2)and on the set t � "2 byJ0w = v and J0v = �w : (4.3)Consider, for 0 � � � �, the 4� 4 matrix:A� := 2664 0 
os � 0 sin �� 
os � 0 sin � 00 � sin � 0 
os �� sin � 0 � 
os � 0 3775 :It is easy to 
he
k that A2� = �Id, At� = �A� and A0 = �A�. LetBt = A� where � = �" t + �2 . By (4.2) and (4.3), Bt de�nes a 
omplexstru
ture on the bundle E �R2 over the set jtj � "2 , whi
h agrees withthe 
omplex stru
ture (4.1) on jtj = "2 provided one identi�es R2 withC over t � � "2 by the map (x; y) 7! x+ iy, and over t � "2 by the map(x; y) 7! x� iy. (This stru
ture 
an be made to depend smoothly ont by modifying the parametrization slightly in the vi
inity of t = � "2 .)Sin
e the 
omplex stru
ture on E? is already de�ned on all of U , this
on
ludes the proof of the �rst assertion of Theorem 2.Let 
0 be the standard symple
ti
 stru
ture on R2. OverM nU , the
anoni
al symple
ti
 stru
ture, 
, on TM �R2 is
 = � ! � 
0 on M+ n U! � (�
0) on M� n U :On U 
onsider the splitting (
anoni
ally unique up to homotopy)TU �R2 = E? � E �R2 :On E?, the form 
 is the restri
tion of !, and E? is 
-orthogonal toE � R2. Let (w; v; e; f) be an oriented orthonormal basis of E � R2with respe
t to a metri
 h�; �i. We 
an assume that for t � � "2 the
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anoni
al symple
ti
 stru
ture on E �R2 is given relative to this basisby 
(a; b) = hA0a; bi ;and on the set t � "2 by 
(a; b) = hA�a; bi ;where A� is as above. When jtj � "2 , we de
lare the 
anoni
al symple
-ti
 stru
ture on E �R2 to be given by
(a; b) = hBta; bi ;whereBt = A� for � = �" t+�2 . (In order to have smoothness in t we needto modify the parametrization slightly in the vi
inity of t = � "2.) Thisde�nes a 
anoni
al symple
ti
 stru
ture on the ve
tor bundle TM�R2,whi
h is unique up to homotopy.2The set of all J 's 
ompatible with a symple
ti
 stru
ture on TM�R2is 
ontra
tible (see, for instan
e, [12, p.67℄). 2Remark. The Z-tangent bundle of M , ZTM , is the ve
tor bundleoverM whose se
tions are the ve
tor �elds on M whi
h are tangent toZ. The Z-tangent bundle of M is stably isomorphi
 to TM , where theisomorphism is 
anoni
al up to homotopy. A folded symple
ti
 formon M indu
es a stru
ture of 
omplex ve
tor bundle on ZTM whi
h is
anoni
al up to homotopy (see [2℄).A 
anoni
al stable 
omplex stru
ture on TM indu
ed by the foldedsymple
ti
 form is homotopi
 to a 
anoni
al stable almost 
omplexstru
ture indu
ed by the stable isomorphism ZTM 's TM . For moredetails, see [2℄. 5. Spin-
 Stru
turesWe will next des
ribe how Theorem 2 
an be used to de�ne a spin-
stru
ture on M . Re
all that a spin-
 stru
ture is de�ned as follows.The spin group is the 
onne
ted double 
overingSpin(2d) p�! SO(2d)with kernel Z2 = f1;�1g. One takes the 
entral extension of this:Spin
(2d) := Spin(2d)�Z2 U(1) ;2Sin
e �1(SO(4)) =Z2, there are two non-homotopi
 paths 
onne
ting A0 to A� ;the other 
hoi
e is given by matri
es analogous to the A�'s but with opposite signsalong the anti-diagonal. We are de
laring the 
anoni
al path A� to be as above.



12 UNFOLDINGU(1) being the group of 
omplex numbers of modulus one, and Z2 thesubgroup generated by (�1;�1). The map (A;�) 7! (p(A); �2) de�nesa double 
overing Spin
(2d) ��! SO(2d)�U(1) : (5.1)Suppose now that the manifoldM is oriented, and is equipped witha riemannian metri
 and a hermitian line bundle. From the orientationand the metri
, one gets a prin
ipal SO(2d) bundle, PSO(2d), namelythe bundle of oriented orthonormal frames, and from the hermitianline bundle one gets an asso
iated 
ir
le bundle, PU(1).De�nition. A spin-
 stru
ture is a prin
ipal Spin
(2d)-bundle,PSpin
(2d) !M , and a double 
overing3PSpin
(2d) �! PSO(2d) � PU(1)whi
h is equivariant with respe
t to (5.1).Let us now see how the 
omplex stru
ture on TM � R2 enables usto get su
h a double 
overing.4 By [8, appendix D℄, there are 
anoni
almorphisms of Lie groups Spin
(2d + 2)���������j 3U(d+ 1) � - SO(2d + 2)�U(1)�? (5.2)� being the standard two-fold 
overing of SO(2d+2)�U(1) by Spin
(2d+2), � the map \in
lusion �det" and j its 
anoni
al lifting to Spin
(2d+2) (lo
. 
it., formula D.10).Let H be a hermitian inner produ
t on TM�R2 whi
h is 
ompatiblewith J and let PU(d+1) be the 
orresponding unitary frame bundle.Setting PU(1) := PU(d+1) �det U(1) ;PSO(2d+2) := PU(d+1) �in
lusion SO(2d + 2) ; andPSpin
(2d+2) := PU(d+1) �j Spin
(2d + 2) ; (5.3)3The produ
t � is the �ber produ
t here and elsewhere in the paragraphs below.4A similar argument is 
ontained in [3℄.



UNFOLDING 13one gets from (5.2) morphisms of bundles PSpin
(2d+2)���������j 3PU(d+1) � - PSO(2d+2) � PU(1)�?On the other hand, by restri
ting ReH to TM , one gets a riemannianmetri
 on M and a bundle of oriented orthonormal frames, PSO(2d).Moreover, there is a natural in
lusion� : PSO(2d) � PU(1) �! PSO(2d+2) � PU(1) :Let PSpin
(2d) be the set of all pairs (z;w), z in PSO(2d)�PU(1) and w inPSpin
(2d+2), su
h that �(z) = �(w), and let � be the mapPSpin
(2d) �! PSO(2d) � PU(1) (5.4)mapping (z;w) to z. This map is a double 
overing. Furthermore,be
ause of the 
ommutativity of the mapsSpin
(2d) in
l�! Spin
(2d + 2)� # # �SO(2d)�U(1) in
l�! SO(2d + 2) �U(1)the a
tion of Spin
(2d) on PSpin
(2d+2) leaves PSpin
(2d) �xed (as a set)and makes PSpin
(2d) into a prin
ipal Spin
(2d)-bundle. Thus (5.4) de-�nes a spin-
 stru
ture onM . By (5.3), the line bundle asso
iated withthis spin-
 stru
ture, i.e. the line bundle 
orresponding to PU(1), isd+1̂C (TM �R2) : (5.5)From this spin-
 stru
ture one 
an get other spin-
 stru
tures bytwisting with line bundles. The general prin
iple is the following: LetG be a Lie group whi
h 
ontains U(1) as a 
entral subgroup, and letPG ! M be a prin
ipal G-bundle and L� ! M an hermitian linebundle. Let P �U(1) be the 
ir
le bundle asso
iated with L�. On the �berprodu
t PG � P �U(1) ;G a
ts by its a
tion on the left fa
tor and U(1) a
ts by its diagonala
tion. The U(1)-a
tion 
ommutes with the a
tion of G, so the quotientQ�G := (PG � P �U(1))=U(1)



14 UNFOLDINGhas a residual G-a
tion whi
h makes it into a prin
ipal G-bundle. Wewill 
all this the twisting of PG by L�.One 
an apply this 
onstru
tion to PSpin
(2d), sin
e Spin
(2d) 
ontainsU(1) as a 
entral subgroup. Let P 2�U(1) be the 
ir
le bundle 
orrespond-ing to the line bundle L2�, and let Q2�U(1) be the twisting of PU(1) byP 2�U(1). The double 
overing (5.4) is equivariant with respe
t to thehomomorphism 
 : U(1) �! U(1) ; 
(a) = a2 :The double 
overing P �U(1) �! P 2�U(1)is also equivariant with respe
t to 
. By taking the quotient of ea
hside of the four-fold 
overingPSpin
(2d) � P �U(1) �! (PSO(2d) � PU(1))� P 2�U(1)by the diagonal a
tion of U(1) via 
, one gets a double 
overingQ�Spin
(2d) �! PSO(2d) �Q2�U(1) : (5.6)We will 
all this the twisting of the spin-
 stru
ture (5.4) by L�. Notethat, by (5.5), the line bundle de�ned by Q2�U(1) is the tensor produ
td+1̂C (TM �R2) 
 L2� :In parti
ular, if the folded symple
ti
 form that we started withis integral, i.e. [!℄ is the image in H2(M ;R) of a 
ohomology 
lass� 2 H2(M ;Z) and L� is the line bundle whose Chern 
lass is �, wewill 
all (5.6) the 
anoni
al spin-
 stru
ture on our folded symple
ti
manifoldM . Sin
e this stru
ture depends on J , H, et
., this de�nitionis a bit of a misnomer. However, it is to some extent justi�ed by thefollowing result.Theorem 3. If �= is the spin-
 Dira
 operator asso
iated with this spin-
 stru
ture, the index of �= is given by the formulaZM exp(!)Todd(TM �R2; J) : (5.7)Proof. This is just a spe
ial 
ase of the Atiyah-Singer formula forthe spin-
 Dira
 operator. (See, for instan
e, [8℄, formula D.20.) 2



UNFOLDING 15Note that the Todd 
lass of TM�R2 sits in the rational 
ohomologyof M , so it is un
hanged by smooth isotopies of J . Therefore, sin
e Jis determined up to isotopy by !, it only depends on ! and hen
e sodoes the expression (5.7). Thus the index of �= is a folded symple
ti
invariant of M . 6. FoldingLet W = W 2d be a 
ompa
t manifold with boundary equipped witha symple
ti
 form, !. Theorem 1, the normal form theorem for foldedsymple
ti
 forms, has the following analogue for manifolds with bound-ary. Let t :W ! R+ be a de�ning fun
tion for the boundary, i.e.p 2 �W , t(p) = 0 and dtp 6= 0 ; 8p 2 �W ; (6.1)and let v be the hamiltonian ve
tor �eld asso
iated with t. By (6.1), vis tangent to the boundary and on the boundary is nonvanishing. Let� be a one-form on �W with the property {(v)� = 1.Theorem 4. There exists a 
ollar neighborhood, U = �W � [0; "), of�W on whi
h ! is di�eomorphi
 to����! + d(t���) ; (6.2)� being the in
lusion map of �W into W and � the proje
tion (p; t) 7! p.Proof. The boundary �W is a 
oisotropi
 submanifold of W ,and (6.2) has the same restri
tion to �W as !, so this is a 
onsequen
eof the 
oisotropi
 imbedding theorem of Gotay [5℄ and Weinstein [18℄.2Remark. Though t and v are not 
anoni
ally de�ned, the orientationof the normal bundle of �W de�ned by dt is 
anoni
ally de�ned andhen
e so is the orientation of the null-foliation of �W de�ned by v.We will now des
ribe a folding result whi
h one 
an obtain fromthis theorem. Let W1 and W2 be 
ompa
t oriented 2d-dimensionalmanifolds with boundary. Suppose that � : U1 ! U2 is an orientation-reversing di�eomorphism of 
ollar neighborhoods of the boundaries,Ui ' �Wi � I, i = 1; 2, indu
ing an orientation-reversing di�eomor-phism � of the boundaries. Let M be the 
ompa
t oriented manifold(without boundary) that one gets fromW1 tW2



16 UNFOLDINGby identifying U1 with U2 via �, where W2 denotes the manifold W2equipped with the opposite orientation. Let !i be a symple
ti
 formon Wi. We orient W1 and W2 by their symple
ti
 orientations; theorientations in W1 tW2 pat
h together to de�ne an orientation of M .Let �i be the in
lusion of Z into Wi and suppose that��1!1 = ����2!2 = � :Suppose also that the two orientations of the null-foliation agree. ByTheorem 4, we may assume that the 
ollar neighborhoods are of theform Ui ' Z � [0; "i), and that, on Ui, !i is di�eomorphi
 to���+ d(ti���) ; i = 1; 2 :De�ne a folded symple
ti
 form, !, on M by setting ! = !i on Wi n Uiand setting ! = ��� + d(t2���)on Z � (�Æ2; Æ1), where Æ2i = "i and t is a 
oordinate fun
tion on theinterval (�Æ2; Æ1), whi
h satis�est2 = t1 on Æ12 < t < Æ1and t2 = t2 on � Æ2 < t < �Æ22 :Sin
e U1 and U2 
an be 
hosen to be arbitrarily small, we have proved:Theorem 5. For every neighborhood, U , of Z, there exists a foldedsymple
ti
 form on M with folding hypersurfa
e Z su
h that ! = !i onWi n U .The 
onstru
tion we have just des
ribed will be 
alled folding. Wewill next des
ribe an analogous \unfolding" 
onstru
tion.7. UnfoldingLet (M;!) be a 
ompa
t oriented folded symple
ti
 manifold, andlet Z be its folding hypersurfa
e. For the moment we will assumethat M and Z are 
onne
ted and hen
e that M n Z 
onsists of two
onne
ted 
omponents. We will denote their 
losures by W1 and W2.These are manifolds-with-boundary with the 
ommon boundary Z. LetU = Z � (�"; ") be a tubular neighborhood of Z in M on whi
h ! hasthe normal form ����! + d(t2���) ;



UNFOLDING 17and let U1 = Z � [0; ") and U2 = Z � (�"; 0℄ be the interse
tions of Uwith W1 and W2 respe
tively. Let t1 be a 
oordinate fun
tion on theinterval [0; "2) su
h that t1 = t2 on the interval "2 < t < ", and let t2be a 
oordinate fun
tion on the interval [0; "2) su
h that t2 = t2 on theinterval �" < t < � "2 . Then the symple
ti
 form!1 = ����! + d(t1���) (7.1)
an be extended to a symple
ti
 form on W1 by setting it equal to !on W1 n U1 and the form!2 = ����! + d(t2���) (7.2)
an be extended to a symple
ti
 form on W2 by setting it equal to !on W2 n U2. Thus, to summarize, we have proved:Theorem 6. M 
an be \unfolded" into two symple
ti
 pie
es, (Wi; !i),i = 1; 2, whi
h are 
ompa
t manifolds-with-boundary, having Z as their
ommon boundary.Modulo some assumptions about the null-foliation on Z, this result
an be 
onsiderably improved. We �rst make the (very strong) assump-tion that the null-foliation is �brating, i.e. that there exists a �brationp : Z ! B (7.3)whose base is a 
ompa
t manifold, B, and whose �bers are the leaves ofthe null-foliation. Let v be a nonvanishing ve
tor �eld whose integral
urves are the �bers, and let f(b) be the period of the integral 
urvesitting over b; f(b) depends smoothly on b, so we 
an reparametrizethese integral 
urves by repla
ing v by the ve
tor �eldw := 2�f vwhose integral 
urves are of period 2�. This modi�ed ve
tor �eld gen-erates an a
tion of S1 on Z, and makes the �bration (7.3) into a prin-
ipal S1-bundle. Let � be a 
onne
tion form on this bundle, i.e. anS1-invariant one-form satisfying {(w)� = 1. One 
an extend the a
-tion of S1 to the neighborhood U1 = Z � [0; "1) of Z in W1 by lettingit a
t trivially on [0; "1). This a
tion preserves the form !1; indeed,by (7.1), {(w)!1 = �dt1, so this a
tion is hamiltonian with momentmap t1. Now apply the \symple
ti
 
utting" operation to U1. By sym-ple
ti
 redu
tion there is a unique symple
ti
 form, !B, on B su
h thatp�!B = ��1!1. Let U01 = U1 n Z. Symple
ti
 
utting (
f. [9℄) says thatthe disjoint union B [ U01
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an be made into a symple
ti
 manifold in su
h a way that B imbedsinto this manifold as a symple
ti
 submanifold of 
odimension two.Moreover, one 
an do this without 
hanging the symple
ti
 form, !1,on U01 ex
ept on a small open set0 < t1 < "01 � "1 :This glues together with the symple
ti
 form, !1, on W1 n U1 to give asymple
ti
 stru
ture to the disjoint unionM1 = B [ (W1 n Z) :One 
an apply the same 
onstru
tion to W2 and thus �nally show:Theorem 7. If the null-foliation on Z is �brating, then M 
an be\unfolded" into 
ompa
t symple
ti
 manifolds, M1 and M2, ea
h ofwhi
h 
ontains B as an imbedded 
odimension two hypersurfa
e.If the null-foliation is not �brating, one 
an still obtain a resultof this sort provided that the leaves of the null-foliation are 
losedsubmanifolds of Z. By the sli
e theorem, we 
an show that any leaf hasan open neighborhood di�eomorphi
 to S1 �Zn R2d�1, where the null-foliation sits as the dire
tions tangent to S1, and Zn a
ts on R2d�1 byrotations. Hen
e, there is a lo
ally free a
tion of S1 on Z whose orbitsare the leaves of the null-foliation and the argument above suÆ
es toshow:Theorem 8. If the leaves of the null-foliation are 
losed submanifoldsof Z, then M 
an be \unfolded" into 
ompa
t symple
ti
 orbifolds, M1and M2, ea
h of whi
h 
ontains B as an imbedded 
odimension twosymple
ti
 suborbifold.We have also been assuming up to this point that Z is 
onne
ted.This hypothesis 
an also be relaxed. If the 
onne
ted 
omponents ofM n Z are W 0i , i = 1; : : : ; N , one 
an unfold Z, one 
omponent ata time, thus obtaining, in pla
e of the W 0i 's, 
ompa
t orbifolds, Mi,i = 1; : : : ; N , just as above.8. Spin-
 IndexLet M be a 
ompa
t 
onne
ted oriented 2d-dimensional manifold,and let ! 2 
2(M) be a folded symple
ti
 form with folding hypersur-fa
e Z. For simpli
ity we will assume that Z is 
onne
ted and hen
ethatM nZ 
onsists of two 
onne
ted pie
es. Suppose, as in x7, that thenull-foliation on Z is �brating. Then, by Theorem 7, M unfolds into



UNFOLDING 19two 
ompa
t symple
ti
 manifolds, (Mi; !i), i = 1; 2. We orient theMi's by their symple
ti
 orientations. Without loss of generality, we
an assume that the (symple
ti
) orientation on M1 
oin
ides with theorientation indu
ed byM , and that the (symple
ti
) orientation onM2is opposite to the orientation indu
ed by M . The goal of this se
tionis to 
ompute the integral (5.7). (If [!℄ is an integer 
ohomology 
lass,this integral is, by Theorem 3, the index of the spin-
 Dira
 operator.)Expli
itly we will prove:Theorem 9. The integral (5.7) is equal toZM1 exp(!1)Todd(M1)� ZM2 exp(!2)Todd(M2) : (8.1)Remarks.1. The 
ohomology 
lasses [!1℄ and [!2℄ need not be integer 
oho-mology 
lasses. When they are, the two summands of (8.1) arejust the Riemann-Ro
h numbers of M1 and M2.2. If the null-foliation on Z is not �brating, but the leaves are 
losed,Theorem 8 says that M has an unfolding of the type in x7; how-ever, the Mi's are orbifolds. In this 
ase, the formula (8.1) isstill valid provided the terms on the right are repla
ed by theKawasaki-Riemann-Ro
h numbers of M1 and M2.3. If Z is not 
onne
ted, formula (8.1) has to be repla
ed by theslightly more 
ompli
ated formula (1.4).Proof. Choose a neighborhood, U ' Z � (�"; "), of the foldinghypersurfa
e of the form given by Theorem 1, where, in the notationof x2, ! is di�eomorphi
 to����! + d(t2���) :The integral (5.7) 
an be written as a sumZMnU exp(!)Todd(TM �R2; J) + (8.2)+ ZU exp(!)Todd(TM �R2; J) : (8.3)Apply the \Meinrenken tri
k" to the integral (8.3) (
f. [14℄): Pi
k a
onne
tion form, �, for the a
tion of S1 on U , and note that, by Stokes'



20 UNFOLDINGtheorem, the integral (8.3) 
an be written as the value at x = 0 of thefun
tion of x given byZ�U � exp(!)Todd(TM �R2; J)d� � x :Now ea
h of the two boundary 
omponents of �U 
an be identi�edwith Z. Let p : Z ! B be the �bration with total spa
e Z andsymple
ti
 base (B;!B), as in x7. The restri
tion of TM �R2 to ea
hof these boundary 
omponents is a 
omplex ve
tor bundle of the formp�TB � C 2 ;the 
omplex stru
ture on TB being any 
omplex stru
ture whi
h is
ompatible with !B.Thus the 
ontribution of ea
h of the boundary 
omponents is, up tosign (see below), equal toZB exp(!B)Todd(TB)� � x ;where p�� = d� (so � is the 
urvature of the 
onne
tion �).However, the signs of these two 
ontributions di�er. The reason forthis is that the orientation onM indu
es on (Z�f"g)=S1 an orientationwhi
h is 
ompatible with !d�1B and on (Z � f�"g)=S1 an orientationwhi
h is 
ompatible with �!d�1B .Hen
e, the integral (8.3) is zero.Consider now the expression (8.1). RegardMi as a union (Mi nUi)[Ui, where U1 = B [ (Z � (0; "))and U2 = B [ (Z � (�"; 0)) :Re
all from x7 that the symple
ti
 stru
tures on U1 and U2 are a
quiredby applying the \symple
ti
 
utting" operation to Z � (0; ") and Z �(�"; 0).By assumption, TM �R2 is isomorphi
 on M n U to T (M n U)� C .Thus the summand (8.2) is equal toZM1nU1 exp(!1)Todd(M1)� ZM2nU2 exp(!2)Todd(M2) ;where the minus sign follows from the mismat
h between the (symple
-ti
) orientation of M2 and the orientation indu
ed by M .



UNFOLDING 21In order to prove the theorem it suÆ
es to show thatZU1 exp(!1)Todd(M1)� ZU2 exp(!2)Todd(M2)is zero. To see this, note that, in view of the 
anoni
al form of Theo-rem 1, one gets from the involution t 7! �t a symple
tomorphism fromM+ \ U onto M� \ U , whi
h des
ends to a symple
tomorphism fromU1 onto U2. 2Remark. Let G be a 
ompa
t Lie group. If G a
ts on M and thisa
tion preserves !, then, by averaging, we 
an arrange that all auxiliarydata is G-invariant, so that the index of the spin-
 Dira
 operatorbe
omes a virtual representation of G. In this 
ase, formula (8.1) holdsas an isomorphism of virtual representations, yielding an equivariantversion of Theorem 9. Referen
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