
ON THE UNFOLDING OFFOLDED SYMPLECTIC STRUCTURESANA CANNAS DA SILVAVICTOR GUILLEMINCHRISTOPHER WOODWARDAbstrat. A folded sympleti struture is a losed 2-form whihis nondegenerate exept on a hypersurfae, and whose restritionto that hypersurfae has maximal rank. We show how a ompatmanifold equipped with a folded sympleti struture an some-times be broken apart, or \unfolded", into honest ompat sym-pleti orbifolds.A folded sympleti struture indues a spin- struture whihis anonial (up to homotopy). We desribe how the index of thespin- Dira operator behaves with respet to unfolding.1. IntrodutionTwo manifolds an be summed along di�eomorphi submanifolds,provided that we are given an orientation-reversing isomorphism of thenormal bundles of the submanifolds. When the submanifolds are singlepoints, the sum is the usual onneted sum.The sum operation is more subtle in a sympleti setting. Let(M1; !1) and (M2; !2) be ompat sympleti manifolds of dimension2d and with orientations indued by the sympleti forms. In [1℄ Audinshowed that, with some rare exeptions, there is no way of equippingthe onneted sum M1#M2 with a sympleti struture that is om-patible with !1 and !2. (She showed even more: there is no almostomplex struture on M1#M2 whih is ompatible with !1 and !2.)On the other hand, onneted sums of the form M = M1#M2, whereM2 has the opposite of the sympleti orientation, an sometimes beperformed sympletially; for instane, in dimension 4,M1#CP2 is the(omplex) blow-up of M1 at a point.Date: Otober 10, 1998. 1



2 UNFOLDINGGrossberg and Karshon proved that M =M1#M2 an be equippedwith a spin- struture that is ompatible with !1 in the usual senseand with !2 under the negative orientation (see [6℄). One of the goalsof this paper is to show that the Grossberg-Karshon result is related tothe existene of a ertain type of presympleti struture on M whihis ompatible with the !i's.A folded sympleti form1 on a ompat 2d-dimensional mani-fold, M , is a losed two-form, !, whih is sympleti exept along ahypersurfae, Z, (alled the folding hypersurfae) and, for p 2 Z, isequal to the two-formx1dx1 ^ dy1 + dx2 ^ dy2 + : : :+ dxd ^ dyd (1.1)in an appropriate Darboux oordinate system. (Thus, in partiular, Zis de�ned in this oordinate system by the equation x1 = 0.) The basifats about folded sympleti forms (most of whih are well-known) areolleted in x2; and in x3 we will give some examples of these forms,the simplest of whih exist on the even-dimensional spheres.In x5 we will prove that if M is oriented and the ohomology lass[!℄ is the image in H2(M ;R) of an integer ohomology lass, there is anatural way of assoiating with ! a spin- struture. More expliitly,in x4 we will prove the following: Let U be a neighborhood of Z andlet J0 be a omplex struture on the tangent bundle T (M n U) (i.e. analmost omplex struture onM nU) whih is ompatible with !. Thenthe omplex struture J0 � (rotation by 900) (1.2)on the vetor bundle T (M n U)�R2 ;extends over M . In other words, there exists a omplex struture, J ,on the real vetor bundle TM �R2, whose restrition to M n U is theomplex struture (1.2). It is not hard to see that ! and J give rise ina natural way to a spin- struture on M (see x5 for details) and in x6we will show that the Grossberg-Karshon result an be regarded as aonsequene of this fat by proving that a onneted sum,M1#M2, oftwo sympleti manifolds possesses a folded sympleti struture.The folding hypersurfae, Z, in the de�nition above is equipped witha anonial null-foliation whose leaves are one-dimensional. In x7 we1The term \folded" is due to Melrose [15℄. Many folded sympleti forms ariseas pull-baks of sympleti forms under maps with only folding singularities.



UNFOLDING 3will prove the result below (whih is one of the two main results of thispaper):If the leaves of the null-foliation are losed submanifolds ofZ, the folded sympleti struture on M an be \unfolded".By this we mean the following: Let W 0i , i = 1; : : : ; N , be the on-neted omponents of M n Z and let Wi be the losure of W 0i . FromWi one gets a topologial spae, Mi, by identifying points, p1 and p2,on the boundary of Wi if p1 and p2 are on the same leaf of the null-foliation. We will prove that Mi is a ompat orbifold and that thefolded sympleti struture on M indues a sympleti struture (ofthe usual kind) on Mi. The \unfolding" of M is, by de�nition, theoperation M  tMi. For example, let M be the onneted sum ofompat onneted 2d-dimensional sympleti manifolds,M =M1#M2 : (1.3)Then by unfolding one reovers M1 and M2.Coming bak to the spin- struture onM whih we desribed above,let �= be the spin- Dira operator. Sine the index of this operator onlydepends on !, we will denote it by Ind(M). The seond main result ofthis paper is the following formula for this index:Ind(M) =X(�1)�i ZMi exp(!i)Todd(Mi) ; (1.4)where we orient the Mi's sympletially, �i = 0 if the orientation in-dued on Mi byM agrees with its sympleti orientation and �i = 1 ifnot. For example, for the onneted sum (1.3), this formula redues toInd(M) = Ind(M1)� Ind(M2) :We will prove the formula above in x8. For the onneted sum (1.3), anequivariant version of this formula is losely related to the equivariantindex theorem proved by Grossberg and Karshon in [6, x12℄.Aknowledgements: Cannas, Karshon and Tolman have reentlyproved in [3℄ an analogue for spin- manifolds of the \quantizationommutes with redution" theorems of [4℄, [7℄, [13, 14℄ and [16, 17℄,and there is some overlap between their results and the results reportedon here. The proof of (1.4) is partly modeled on Meinrenken's proofof a similar result in [14℄. Allen Knutson alerted us for a serious signmistake on an earlier version of this paper. Finally, we are indebtedto Mih�ele Vergne for her kindness to us during our stay at the �Eole



4 UNFOLDINGNormale in June of 1995 (during whih the �rst draft of this paper waswritten). 2. Folded Sympleti StruturesLet M be a 2d-dimensional manifold and ! 2 
2(M) a losed two-form. Let Z be the set of points where !d is zero. If !d intersetsthe zero setion of ^2dT �M tranversally, Z will be a odimension onesubmanifold ofM . Let us assume that !d has this property. We denoteby � the inlusion map of Z into M .De�nition. If the form (��!)d�1 2 
2d�2(Z) is non-vanishing, ! issaid to be a folded sympleti form and Z its folding hypersur-fae.For a proof that this de�nition is equivalent to the de�nition in x1,see the omments at the end of this setion or see [11, p.157℄.It is lear that the property of being folded is an open property: if!0 is folded and ! is a losed two-form whih is C1-lose to !0, then! is also folded. However, this property is far from being generi: Indimension 4 it is generially true that !2 is transverse to zero, but notthat ��! is non-vanishing; in dimensions 6 and higher even the �rstassertion is false. (In partiular, the set Z is not a manifold generiallyexept in dimension 4. See [11℄ for a disussion of generi singularitiesof losed two-forms.)Suppose now that M is oriented. Then Z aquires fromM a anon-ial orientation in the following manner: Let M+ be the set of points,p, where !dp > 0 and M� the set where !dp < 0. ThenM n Z =M+ [M� (2.1)and by the tubular neighborhood theorem one gets from (2.1) an ori-entation of the normal bundle of Z and hene of Z itself.Let E ! Z be the rank 2 vetor bundle whose �ber at z is theannihilator of ! in TzM . From the (2d � 2)-form !d�1 one gets anorientation of the quotient bundle (��TM)=E, and hene, from the ori-entation of TM , an orientation of E. Moreover, from the orientationsof E and of TZ, one gets an orientation of the intersetion of these twobundles, whih is a rank-one subbundle, F , of TZ. Let v be an orientednon-vanishing setion of F (i.e. a vetor �eld with the property that



UNFOLDING 5vz 2 F+z for all z 2 Z) and let � 2 
1(Z) be a one-form for whih{v� = 1. We will need in x8 the following global variant of (1.1).Theorem 1. Suppose that Z is ompat. Then there exists a neigh-borhood, U , of Z and an orientation preserving di�eomorphism,' : Z � (�"; ") �! U ; (2.2)suh that ' Æ �0 = � (2.3)and '�! = ����! + d(t2���) ; (2.4)�0 being the inlusion map z 7! (z; 0), � the projetion (z; t) 7! z, andt the oordinate funtion on (�"; ").Proof. Let w be a vetor �eld on M suh that, for all z 2 Z, (wz; vz)is an oriented basis of Ez, and for the moment let the map ' in (2.2)be the map whih takes lines (z; t), �" < t < " onto the integralurves of w. If we require that (2.3) hold, this ' will be unique. (Itwill not be the ' that we want, but will turn out to be a good �rstapproximation to it.) Via ' we an identify U with Z � (�"; ") and wwith the vetor �eld ��t. Moreover, we an extend v to all of U via theinlusion TzZ ,! T(z;t)U . Let � as above be the projetion of U ontoZ whih maps (z; t) to z. We will prove the theorem by applying the\Moser trik" to the forms!0 := ����! + d(t2���) (2.5)and !1 := ! : (2.6)For this we will need the following \folding" riterion:Lemma 2.7. Let t� be a losed two-form on U . Then the form ����!+t� is a folded sympleti form on a possibly smaller open neighborhood,U1 = Z � (�"; "), of Z if and only if �(w; v) is nonvanishing on Z.Proof of Lemma 2.7. This follows from the fat that the d-thexterior power of this form is(d� 1)t(����!)d�1 ^ �+O(t2) ;so this form is folded if and only if (����!)d�1 ^ � is nonvanishing onZ. However, the annihilator of ����!z in TzU is spanned by wz and vz;



6 UNFOLDINGso the nonvanishing of this form is equivalent to the nonvanishing of�(w; v). 2It is lear from (2.5) that !0 is of the form above, i.e.!0 = ����! + t�0where �0 := 2dt���+ td(���) ; (2.8)and the same is also true of !. To see this note that, sine w = ��t ,{w����! = 0. On the other hand, {w! = 0 on Z, so !�����! is zero atall points of Z. Sine Z is de�ned by the equation t = 0, we onludethat ! � ����! = t�1, for �1 2 
2(U).By (2.8), �0(w; v) = 2 on Z; so, by Lemma 2.7, !0 is folded. More-over, sine ! is folded, �1(w; v) is nonvanishing on Z. In fat, beauseof the orientation onventions disussed above, �1(w; v) is positive onZ.We will next show that !0 an be deformed into !1 by a \folded"homotopy:Lemma 2.9. For 0 � s � 1, the form!s := (1 � s)!0 + s!1is folded (with folding hypersurfae Z).Proof of Lemma 2.9. !s is of the form !s = ����! + t�s where�s = (1 � s)�0 + s�1. Hene, the funtion �s(w; v) is positive on Z,and so, by Lemma 2.7, !s is folded. 2Therefore, {v!s and {w!s vanish on Z, and the following is an easyorollary of Lemma 2.9.Lemma 2.10. Given � 2 
1(U), one an �nd a vetor �eld, u, withthe property {u!s = �if and only if {v� and {w� vanish on Z.Remark. Sine !s is sympleti on the omplement of Z, this vetor�eld, if it exists, is unique.



UNFOLDING 7To prove Theorem 1, reall that by the \Moser trik" the proof anbe redued to �nding a vetor �eld, vs, on U whih vanishes on Z,depends smoothly on s, and satis�esDvs!s = � �!s = !0 � !1 : (2.11)Indeed, if suh a vetor �eld exists, one an integrate the equationd'sds Æ '�1s = vswith '0 equal to the identity and 's Æ �0 = �0, to get a di�eomorphism,'s, satisfying '�s!s = !0. To solve (2.11), one observes that !0 � !1 islosed and vanishes on Z. Therefore, sine Z is a deformation retrat ofU , there exists a one-form, �, whih satis�es d� = !0�!1 and vanishesto the seond order on Z. Hene, (2.11) is equivalent tod{vs!s = d� ;so it suÆes to solve {vs!s = � (2.12)and, by Lemma 2.10, there exists a unique vs satisfying (2.12) (and vshas to vanish to �rst order on Z.) 2Remarks.1. From Theorem 1 and the lassial Darboux theorem, one getsanother proof of (1.1). (By the lassial Darboux theorem, i�! =dx2dy2 + : : : + dxddyd. Now apply Theorem 1 with x1 = t and� = dy1.)2. Let G be a ompat Lie group. If G ats on M and this ationpreserves !, one an arrange for � to be G-invariant and themap (2.2) to be G-equivariant.3. If Z is not ompat, the assertion of Theorem 1 is still true pro-vided we replae " by an appropriate ontinuous funtion " : Z !R+. 3. Examples1. If we regard the even-dimensional sphere S2d as the set of unitvetors in R2d+1, we obtain a folded sympleti form on S2d byrestriting to S2d the formdx1 ^ dy1 + : : :+ dxd ^ dyd :The folding hypersurfae is the equator S2d \ fxd+1 = 0g.



8 UNFOLDINGAlternatively, this folded sympleti form on S2d may be ob-tained by doubling a 2d-dimensional disk equipped with the stan-dard sympleti form, dx1 ^ dy1 + : : :+ dxd ^ dyd, i.e. gluing two2d-dimensional disks equipped with standard sympleti formsalong their sphere boundaries, after reversing the orientation onone of the disks.Yet a third way to onstrut this folded sympleti struture onS2d justi�es the name \folded". Consider the folding map fromthe sphere to the disk,� : S2d ! D2d ;folding along the equator. Let � = dx1 ^ dy1 + : : :+ dxd ^ dyd bethe standard sympleti form on D2d. Then ! = ��� is a foldedsympleti form on S2d.2. Let (M1; !1) and (M2; !2) be ompat sympleti manifolds ofdimension 2d and with orientations indued by the sympletiforms. Let M =M1#M2be the onneted sum, where M2 has the opposite of the sym-pleti orientation. Then M has a folded sympleti form whihoinides with the !i's away from a tubular neighborhood of thesurgery. To see this, onentrate on the small annuli Ai ' S2d�1�I, i = 1; 2, where the surgery ours. The sympleti form !i re-strited to Ai is di�eomorphi to d(ri ^ ���), i = 1; 2, where riis a oordinate on I, � is the projetion S2d�1 � I ! S2d�1 and� is the standard ontat one-form on S2d�1. Choose oordinatest1; t2 suh that ri = 1+ t2i for ti > ". Finally, extend ! aross theonneted sum by de�ning it to be! = d[(1 + t2) ^ ���℄ ;where t = �t1 on the interval t < �" and t = t2 on the intervalt > ". The folding hypersurfae of ! is given by t = 0. For ageneralization of this folding onstrution, see x6.3. The produt of any ontat manifold with the irle admits afolded sympleti form. This an be seen by doubling a symple-tization of the ontat manifold (f. [2℄).In partiular, sine Martinet [10℄ proved that any orientable 3-manifold admits a ontat form, we onlude that the produt ofany orientable 3-manifold with the irle admits a folded symple-ti form.



UNFOLDING 9More generally, given a ontatomorphism  of a ontat man-ifold X, onsider the mapping torus M = X � [0; 1℄= �, where(p; 0) � ( (p); 1). The sympletizationX � [0; 1℄ has a !-onaveboundary, say X � f0g, and a !-onvex boundary, say X � f1g.There is a folded sympleti form on M obtained by gluingX � [0; 1℄ to X � [0; 1℄ under the identi�ation by  of the !-onvex boundaries and the identity identi�ation of the !-onaveboundaries.4. The notion of folded sympleti form holds for arbitrary even-dimensional manifolds, not neessarily orientable. For instane,the folded sympleti form on S2d whih we �rst desribed is in-variant under the involution x 7! �x, and hene indues a foldedsympleti form on the real even-dimensional projetive spaes,RP2d.It follows that the real blow-up of a folded sympleti manifoldat a point (away from the folding hypersurfae) admits a foldedsympleti form. In fat, the real blow-up at a point of a 2d-dimensional manifoldM amounts to taking the onneted sum ofM with RP2d.4. Stable Complex StruturesLet U be a neighborhood of the folding hypersurfae in M as inTheorem 1. Sine ! is sympleti on M n U , there exists an almostomplex struture, J0, on M n U whih is ompatible with !, in thesense that, for all p 2M n U , the mapr; s 2 TpM 7�! !p(Jr; s)is a positive de�nite symmetri bilinear form. It is lear from theorientation onsiderations that J0 annot be extended to all of M ;however, we will prove that one an add a trivial R2 bundle to TMand extend the omplex strutureJ0 � (rotation by 900) (4.1)to all of M :Theorem 2. There exists a omplex struture, J , on the real (2d+2)-dimensional vetor bundle TM �R2, and a C -linear isomorphism(TM �R2)MnU ' T (M n U)� C :



10 UNFOLDINGMoreover, TM �R2 has a struture of sympleti vetor bundle whihis anonial up to homotopy, and the homotopy lass of J is uniqueprovided J is ompatible with the sympleti struture on TM �R2.Proof. Let E be the vetor subbundle of TU spanned by the vetor�elds w and v, as in x2. This is a sympleti subbundle of TU , andwe will denote by E? its sympleti orthoomplement. Without lossof generality, one an assume that J0 extends over the set jtj � "2, and,on this set, is the sum of omplex strutures on E and E?. One analso assume that the omplex struture on E? extends over all of Uand that on the set t � � "2 the omplex struture on E is given byJ0w = �v and J0v = w (4.2)and on the set t � "2 byJ0w = v and J0v = �w : (4.3)Consider, for 0 � � � �, the 4� 4 matrix:A� := 2664 0 os � 0 sin �� os � 0 sin � 00 � sin � 0 os �� sin � 0 � os � 0 3775 :It is easy to hek that A2� = �Id, At� = �A� and A0 = �A�. LetBt = A� where � = �" t + �2 . By (4.2) and (4.3), Bt de�nes a omplexstruture on the bundle E �R2 over the set jtj � "2 , whih agrees withthe omplex struture (4.1) on jtj = "2 provided one identi�es R2 withC over t � � "2 by the map (x; y) 7! x+ iy, and over t � "2 by the map(x; y) 7! x� iy. (This struture an be made to depend smoothly ont by modifying the parametrization slightly in the viinity of t = � "2 .)Sine the omplex struture on E? is already de�ned on all of U , thisonludes the proof of the �rst assertion of Theorem 2.Let 
0 be the standard sympleti struture on R2. OverM nU , theanonial sympleti struture, 
, on TM �R2 is
 = � ! � 
0 on M+ n U! � (�
0) on M� n U :On U onsider the splitting (anonially unique up to homotopy)TU �R2 = E? � E �R2 :On E?, the form 
 is the restrition of !, and E? is 
-orthogonal toE � R2. Let (w; v; e; f) be an oriented orthonormal basis of E � R2with respet to a metri h�; �i. We an assume that for t � � "2 the



UNFOLDING 11anonial sympleti struture on E �R2 is given relative to this basisby 
(a; b) = hA0a; bi ;and on the set t � "2 by 
(a; b) = hA�a; bi ;where A� is as above. When jtj � "2 , we delare the anonial symple-ti struture on E �R2 to be given by
(a; b) = hBta; bi ;whereBt = A� for � = �" t+�2 . (In order to have smoothness in t we needto modify the parametrization slightly in the viinity of t = � "2.) Thisde�nes a anonial sympleti struture on the vetor bundle TM�R2,whih is unique up to homotopy.2The set of all J 's ompatible with a sympleti struture on TM�R2is ontratible (see, for instane, [12, p.67℄). 2Remark. The Z-tangent bundle of M , ZTM , is the vetor bundleoverM whose setions are the vetor �elds on M whih are tangent toZ. The Z-tangent bundle of M is stably isomorphi to TM , where theisomorphism is anonial up to homotopy. A folded sympleti formon M indues a struture of omplex vetor bundle on ZTM whih isanonial up to homotopy (see [2℄).A anonial stable omplex struture on TM indued by the foldedsympleti form is homotopi to a anonial stable almost omplexstruture indued by the stable isomorphism ZTM 's TM . For moredetails, see [2℄. 5. Spin- StruturesWe will next desribe how Theorem 2 an be used to de�ne a spin-struture on M . Reall that a spin- struture is de�ned as follows.The spin group is the onneted double overingSpin(2d) p�! SO(2d)with kernel Z2 = f1;�1g. One takes the entral extension of this:Spin(2d) := Spin(2d)�Z2 U(1) ;2Sine �1(SO(4)) =Z2, there are two non-homotopi paths onneting A0 to A� ;the other hoie is given by matries analogous to the A�'s but with opposite signsalong the anti-diagonal. We are delaring the anonial path A� to be as above.



12 UNFOLDINGU(1) being the group of omplex numbers of modulus one, and Z2 thesubgroup generated by (�1;�1). The map (A;�) 7! (p(A); �2) de�nesa double overing Spin(2d) ��! SO(2d)�U(1) : (5.1)Suppose now that the manifoldM is oriented, and is equipped witha riemannian metri and a hermitian line bundle. From the orientationand the metri, one gets a prinipal SO(2d) bundle, PSO(2d), namelythe bundle of oriented orthonormal frames, and from the hermitianline bundle one gets an assoiated irle bundle, PU(1).De�nition. A spin- struture is a prinipal Spin(2d)-bundle,PSpin(2d) !M , and a double overing3PSpin(2d) �! PSO(2d) � PU(1)whih is equivariant with respet to (5.1).Let us now see how the omplex struture on TM � R2 enables usto get suh a double overing.4 By [8, appendix D℄, there are anonialmorphisms of Lie groups Spin(2d + 2)���������j 3U(d+ 1) � - SO(2d + 2)�U(1)�? (5.2)� being the standard two-fold overing of SO(2d+2)�U(1) by Spin(2d+2), � the map \inlusion �det" and j its anonial lifting to Spin(2d+2) (lo. it., formula D.10).Let H be a hermitian inner produt on TM�R2 whih is ompatiblewith J and let PU(d+1) be the orresponding unitary frame bundle.Setting PU(1) := PU(d+1) �det U(1) ;PSO(2d+2) := PU(d+1) �inlusion SO(2d + 2) ; andPSpin(2d+2) := PU(d+1) �j Spin(2d + 2) ; (5.3)3The produt � is the �ber produt here and elsewhere in the paragraphs below.4A similar argument is ontained in [3℄.



UNFOLDING 13one gets from (5.2) morphisms of bundles PSpin(2d+2)���������j 3PU(d+1) � - PSO(2d+2) � PU(1)�?On the other hand, by restriting ReH to TM , one gets a riemannianmetri on M and a bundle of oriented orthonormal frames, PSO(2d).Moreover, there is a natural inlusion� : PSO(2d) � PU(1) �! PSO(2d+2) � PU(1) :Let PSpin(2d) be the set of all pairs (z;w), z in PSO(2d)�PU(1) and w inPSpin(2d+2), suh that �(z) = �(w), and let � be the mapPSpin(2d) �! PSO(2d) � PU(1) (5.4)mapping (z;w) to z. This map is a double overing. Furthermore,beause of the ommutativity of the mapsSpin(2d) inl�! Spin(2d + 2)� # # �SO(2d)�U(1) inl�! SO(2d + 2) �U(1)the ation of Spin(2d) on PSpin(2d+2) leaves PSpin(2d) �xed (as a set)and makes PSpin(2d) into a prinipal Spin(2d)-bundle. Thus (5.4) de-�nes a spin- struture onM . By (5.3), the line bundle assoiated withthis spin- struture, i.e. the line bundle orresponding to PU(1), isd+1̂C (TM �R2) : (5.5)From this spin- struture one an get other spin- strutures bytwisting with line bundles. The general priniple is the following: LetG be a Lie group whih ontains U(1) as a entral subgroup, and letPG ! M be a prinipal G-bundle and L� ! M an hermitian linebundle. Let P �U(1) be the irle bundle assoiated with L�. On the �berprodut PG � P �U(1) ;G ats by its ation on the left fator and U(1) ats by its diagonalation. The U(1)-ation ommutes with the ation of G, so the quotientQ�G := (PG � P �U(1))=U(1)



14 UNFOLDINGhas a residual G-ation whih makes it into a prinipal G-bundle. Wewill all this the twisting of PG by L�.One an apply this onstrution to PSpin(2d), sine Spin(2d) ontainsU(1) as a entral subgroup. Let P 2�U(1) be the irle bundle orrespond-ing to the line bundle L2�, and let Q2�U(1) be the twisting of PU(1) byP 2�U(1). The double overing (5.4) is equivariant with respet to thehomomorphism  : U(1) �! U(1) ; (a) = a2 :The double overing P �U(1) �! P 2�U(1)is also equivariant with respet to . By taking the quotient of eahside of the four-fold overingPSpin(2d) � P �U(1) �! (PSO(2d) � PU(1))� P 2�U(1)by the diagonal ation of U(1) via , one gets a double overingQ�Spin(2d) �! PSO(2d) �Q2�U(1) : (5.6)We will all this the twisting of the spin- struture (5.4) by L�. Notethat, by (5.5), the line bundle de�ned by Q2�U(1) is the tensor produtd+1̂C (TM �R2) 
 L2� :In partiular, if the folded sympleti form that we started withis integral, i.e. [!℄ is the image in H2(M ;R) of a ohomology lass� 2 H2(M ;Z) and L� is the line bundle whose Chern lass is �, wewill all (5.6) the anonial spin- struture on our folded sympletimanifoldM . Sine this struture depends on J , H, et., this de�nitionis a bit of a misnomer. However, it is to some extent justi�ed by thefollowing result.Theorem 3. If �= is the spin- Dira operator assoiated with this spin- struture, the index of �= is given by the formulaZM exp(!)Todd(TM �R2; J) : (5.7)Proof. This is just a speial ase of the Atiyah-Singer formula forthe spin- Dira operator. (See, for instane, [8℄, formula D.20.) 2



UNFOLDING 15Note that the Todd lass of TM�R2 sits in the rational ohomologyof M , so it is unhanged by smooth isotopies of J . Therefore, sine Jis determined up to isotopy by !, it only depends on ! and hene sodoes the expression (5.7). Thus the index of �= is a folded sympletiinvariant of M . 6. FoldingLet W = W 2d be a ompat manifold with boundary equipped witha sympleti form, !. Theorem 1, the normal form theorem for foldedsympleti forms, has the following analogue for manifolds with bound-ary. Let t :W ! R+ be a de�ning funtion for the boundary, i.e.p 2 �W , t(p) = 0 and dtp 6= 0 ; 8p 2 �W ; (6.1)and let v be the hamiltonian vetor �eld assoiated with t. By (6.1), vis tangent to the boundary and on the boundary is nonvanishing. Let� be a one-form on �W with the property {(v)� = 1.Theorem 4. There exists a ollar neighborhood, U = �W � [0; "), of�W on whih ! is di�eomorphi to����! + d(t���) ; (6.2)� being the inlusion map of �W into W and � the projetion (p; t) 7! p.Proof. The boundary �W is a oisotropi submanifold of W ,and (6.2) has the same restrition to �W as !, so this is a onsequeneof the oisotropi imbedding theorem of Gotay [5℄ and Weinstein [18℄.2Remark. Though t and v are not anonially de�ned, the orientationof the normal bundle of �W de�ned by dt is anonially de�ned andhene so is the orientation of the null-foliation of �W de�ned by v.We will now desribe a folding result whih one an obtain fromthis theorem. Let W1 and W2 be ompat oriented 2d-dimensionalmanifolds with boundary. Suppose that � : U1 ! U2 is an orientation-reversing di�eomorphism of ollar neighborhoods of the boundaries,Ui ' �Wi � I, i = 1; 2, induing an orientation-reversing di�eomor-phism � of the boundaries. Let M be the ompat oriented manifold(without boundary) that one gets fromW1 tW2



16 UNFOLDINGby identifying U1 with U2 via �, where W2 denotes the manifold W2equipped with the opposite orientation. Let !i be a sympleti formon Wi. We orient W1 and W2 by their sympleti orientations; theorientations in W1 tW2 path together to de�ne an orientation of M .Let �i be the inlusion of Z into Wi and suppose that��1!1 = ����2!2 = � :Suppose also that the two orientations of the null-foliation agree. ByTheorem 4, we may assume that the ollar neighborhoods are of theform Ui ' Z � [0; "i), and that, on Ui, !i is di�eomorphi to���+ d(ti���) ; i = 1; 2 :De�ne a folded sympleti form, !, on M by setting ! = !i on Wi n Uiand setting ! = ��� + d(t2���)on Z � (�Æ2; Æ1), where Æ2i = "i and t is a oordinate funtion on theinterval (�Æ2; Æ1), whih satis�est2 = t1 on Æ12 < t < Æ1and t2 = t2 on � Æ2 < t < �Æ22 :Sine U1 and U2 an be hosen to be arbitrarily small, we have proved:Theorem 5. For every neighborhood, U , of Z, there exists a foldedsympleti form on M with folding hypersurfae Z suh that ! = !i onWi n U .The onstrution we have just desribed will be alled folding. Wewill next desribe an analogous \unfolding" onstrution.7. UnfoldingLet (M;!) be a ompat oriented folded sympleti manifold, andlet Z be its folding hypersurfae. For the moment we will assumethat M and Z are onneted and hene that M n Z onsists of twoonneted omponents. We will denote their losures by W1 and W2.These are manifolds-with-boundary with the ommon boundary Z. LetU = Z � (�"; ") be a tubular neighborhood of Z in M on whih ! hasthe normal form ����! + d(t2���) ;



UNFOLDING 17and let U1 = Z � [0; ") and U2 = Z � (�"; 0℄ be the intersetions of Uwith W1 and W2 respetively. Let t1 be a oordinate funtion on theinterval [0; "2) suh that t1 = t2 on the interval "2 < t < ", and let t2be a oordinate funtion on the interval [0; "2) suh that t2 = t2 on theinterval �" < t < � "2 . Then the sympleti form!1 = ����! + d(t1���) (7.1)an be extended to a sympleti form on W1 by setting it equal to !on W1 n U1 and the form!2 = ����! + d(t2���) (7.2)an be extended to a sympleti form on W2 by setting it equal to !on W2 n U2. Thus, to summarize, we have proved:Theorem 6. M an be \unfolded" into two sympleti piees, (Wi; !i),i = 1; 2, whih are ompat manifolds-with-boundary, having Z as theirommon boundary.Modulo some assumptions about the null-foliation on Z, this resultan be onsiderably improved. We �rst make the (very strong) assump-tion that the null-foliation is �brating, i.e. that there exists a �brationp : Z ! B (7.3)whose base is a ompat manifold, B, and whose �bers are the leaves ofthe null-foliation. Let v be a nonvanishing vetor �eld whose integralurves are the �bers, and let f(b) be the period of the integral urvesitting over b; f(b) depends smoothly on b, so we an reparametrizethese integral urves by replaing v by the vetor �eldw := 2�f vwhose integral urves are of period 2�. This modi�ed vetor �eld gen-erates an ation of S1 on Z, and makes the �bration (7.3) into a prin-ipal S1-bundle. Let � be a onnetion form on this bundle, i.e. anS1-invariant one-form satisfying {(w)� = 1. One an extend the a-tion of S1 to the neighborhood U1 = Z � [0; "1) of Z in W1 by lettingit at trivially on [0; "1). This ation preserves the form !1; indeed,by (7.1), {(w)!1 = �dt1, so this ation is hamiltonian with momentmap t1. Now apply the \sympleti utting" operation to U1. By sym-pleti redution there is a unique sympleti form, !B, on B suh thatp�!B = ��1!1. Let U01 = U1 n Z. Sympleti utting (f. [9℄) says thatthe disjoint union B [ U01



18 UNFOLDINGan be made into a sympleti manifold in suh a way that B imbedsinto this manifold as a sympleti submanifold of odimension two.Moreover, one an do this without hanging the sympleti form, !1,on U01 exept on a small open set0 < t1 < "01 � "1 :This glues together with the sympleti form, !1, on W1 n U1 to give asympleti struture to the disjoint unionM1 = B [ (W1 n Z) :One an apply the same onstrution to W2 and thus �nally show:Theorem 7. If the null-foliation on Z is �brating, then M an be\unfolded" into ompat sympleti manifolds, M1 and M2, eah ofwhih ontains B as an imbedded odimension two hypersurfae.If the null-foliation is not �brating, one an still obtain a resultof this sort provided that the leaves of the null-foliation are losedsubmanifolds of Z. By the slie theorem, we an show that any leaf hasan open neighborhood di�eomorphi to S1 �Zn R2d�1, where the null-foliation sits as the diretions tangent to S1, and Zn ats on R2d�1 byrotations. Hene, there is a loally free ation of S1 on Z whose orbitsare the leaves of the null-foliation and the argument above suÆes toshow:Theorem 8. If the leaves of the null-foliation are losed submanifoldsof Z, then M an be \unfolded" into ompat sympleti orbifolds, M1and M2, eah of whih ontains B as an imbedded odimension twosympleti suborbifold.We have also been assuming up to this point that Z is onneted.This hypothesis an also be relaxed. If the onneted omponents ofM n Z are W 0i , i = 1; : : : ; N , one an unfold Z, one omponent ata time, thus obtaining, in plae of the W 0i 's, ompat orbifolds, Mi,i = 1; : : : ; N , just as above.8. Spin- IndexLet M be a ompat onneted oriented 2d-dimensional manifold,and let ! 2 
2(M) be a folded sympleti form with folding hypersur-fae Z. For simpliity we will assume that Z is onneted and henethatM nZ onsists of two onneted piees. Suppose, as in x7, that thenull-foliation on Z is �brating. Then, by Theorem 7, M unfolds into



UNFOLDING 19two ompat sympleti manifolds, (Mi; !i), i = 1; 2. We orient theMi's by their sympleti orientations. Without loss of generality, wean assume that the (sympleti) orientation on M1 oinides with theorientation indued byM , and that the (sympleti) orientation onM2is opposite to the orientation indued by M . The goal of this setionis to ompute the integral (5.7). (If [!℄ is an integer ohomology lass,this integral is, by Theorem 3, the index of the spin- Dira operator.)Expliitly we will prove:Theorem 9. The integral (5.7) is equal toZM1 exp(!1)Todd(M1)� ZM2 exp(!2)Todd(M2) : (8.1)Remarks.1. The ohomology lasses [!1℄ and [!2℄ need not be integer oho-mology lasses. When they are, the two summands of (8.1) arejust the Riemann-Roh numbers of M1 and M2.2. If the null-foliation on Z is not �brating, but the leaves are losed,Theorem 8 says that M has an unfolding of the type in x7; how-ever, the Mi's are orbifolds. In this ase, the formula (8.1) isstill valid provided the terms on the right are replaed by theKawasaki-Riemann-Roh numbers of M1 and M2.3. If Z is not onneted, formula (8.1) has to be replaed by theslightly more ompliated formula (1.4).Proof. Choose a neighborhood, U ' Z � (�"; "), of the foldinghypersurfae of the form given by Theorem 1, where, in the notationof x2, ! is di�eomorphi to����! + d(t2���) :The integral (5.7) an be written as a sumZMnU exp(!)Todd(TM �R2; J) + (8.2)+ ZU exp(!)Todd(TM �R2; J) : (8.3)Apply the \Meinrenken trik" to the integral (8.3) (f. [14℄): Pik aonnetion form, �, for the ation of S1 on U , and note that, by Stokes'



20 UNFOLDINGtheorem, the integral (8.3) an be written as the value at x = 0 of thefuntion of x given byZ�U � exp(!)Todd(TM �R2; J)d� � x :Now eah of the two boundary omponents of �U an be identi�edwith Z. Let p : Z ! B be the �bration with total spae Z andsympleti base (B;!B), as in x7. The restrition of TM �R2 to eahof these boundary omponents is a omplex vetor bundle of the formp�TB � C 2 ;the omplex struture on TB being any omplex struture whih isompatible with !B.Thus the ontribution of eah of the boundary omponents is, up tosign (see below), equal toZB exp(!B)Todd(TB)� � x ;where p�� = d� (so � is the urvature of the onnetion �).However, the signs of these two ontributions di�er. The reason forthis is that the orientation onM indues on (Z�f"g)=S1 an orientationwhih is ompatible with !d�1B and on (Z � f�"g)=S1 an orientationwhih is ompatible with �!d�1B .Hene, the integral (8.3) is zero.Consider now the expression (8.1). RegardMi as a union (Mi nUi)[Ui, where U1 = B [ (Z � (0; "))and U2 = B [ (Z � (�"; 0)) :Reall from x7 that the sympleti strutures on U1 and U2 are aquiredby applying the \sympleti utting" operation to Z � (0; ") and Z �(�"; 0).By assumption, TM �R2 is isomorphi on M n U to T (M n U)� C .Thus the summand (8.2) is equal toZM1nU1 exp(!1)Todd(M1)� ZM2nU2 exp(!2)Todd(M2) ;where the minus sign follows from the mismath between the (symple-ti) orientation of M2 and the orientation indued by M .
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