
MULTIPLICITY-FREE HAMILTONIAN ACTIONSNEED NOT BE K�AHLERCHRIS WOODWARDAbstract. Multiplicity-free actions are symplectic manifolds with a very high degree of sym-metry. Delzant [2] showed that all compact multiplicity-free torus actions admit compatibleK�ahler structures, and are therefore toric varieties. In this note we show that Delzant's resultdoes not generalize to the non-abelian case. Our examples are constructed by applying U(2)-equivariant symplectic surgery to the 
ag variety U(3)=T 3. We then show that these actionsfail a criterion which Tolman [9] shows is necessary for the existence of a compatible K�ahlerstructure. Contents1. Introduction 12. Tolman's example 23. Construction by U(2)-equivariant symplectic surgery 4References 71. IntroductionIn this note we investigate the equivariant version of the question \when is a symplecticmanifold K�ahler?" That is, suppose that a Lie group G acts on a symplectic manifold (M;!).When does there exist an invariant complex structure J such that !(�; J �) de�nes a Riemmanianmetric on M?The main point of this note, which builds on work by S. Tolman [9], is that even Hamiltonianactions which are multiplicity-free need not be K�ahler. Multiplicity-free actions are maximal inthe following sense: if the action of G has discrete principal isotropy subgroup, then dimM �dimG+ rank G. If equality holds, the action is called multiplicity-free. In the case that G is atorus, multiplicity-free actions are all K�ahler: Delzant [2] proved that any compact multiplicity-free torus action admits a K�ahler structure, and is a smooth projective toric variety. Becauseof Delzant's result, and the fact that transitive actions, which if the group is compact arecoadjoint orbits, are all K�ahler, it was thought that all compact multiplicity-free actions mightbe K�ahler. In particular, it was thought that any compact multiplicity-free action might bethe Hamiltonian action associated to a spherical variety (the non-abelian analogue of a toricvariety; see e.g. [7].) We show here that this is not the case. F. Knop has independentlyconstructed examples of non-K�ahler multiplicity-free actions, by a di�erent method.The idea of proof is to construct an example related to Tolman's using \equivariant sym-plectic surgery." This type of surgery (see [10]) is a type of \symplectic cutting" as de�ned byLerman [6], and uses the fact that any Hamiltonian group action has a densely-de�ned actionof a maximal torus, which commutes with the original action.1



2 CHRIS WOODWARDWe would like to thank S. Tolman, Y. Karshon, and V. Guillemin for suggesting improve-ments. The author was supported by a Sloan Doctoral Dissertation Fellowship.2. Tolman's exampleTolman proves that a symplectic gluing of two halves of two six-dimensional HamiltonianT 2-spaces, M1 and M2, results in a non-K�ahler Hamiltonian T 2-space M3. In this note wewill consider a closely related gluing which is represented in Figure 1. The pictures show the
(1) (2) (3)pq rFigure 1: The X{rays for (1) M1 (2) M2 and (3) M3images under the moment map of the connected components of the non-principal orbit-typestrata of M1, M2, and M3, respectively, from left to right. That is, the points are the imagesof the �xed points, and the line segments are the images of the submanifolds �xed by circlesubgroups of T 2. (In general, there are orbit-type strata with discrete isotropy groups, but inthese examples it turns out that there aren't any.) Note that an intersection of two lines is notnecessarily the image of a �xed point.The manifold M1 is a generic coadjoint orbit of U(3), with the Hamiltonian action of T 2obtained by restricting the action of U(3) to T 2 = U(1)2 � Id � U(3). The manifold M2 is atoric variety with the action of T 2 obtained by restricting that of T 3 to T 2 � Id � T3. Thepolytope P � (t3)� �= R3 associated to this toric variety is obtained by making the verticesof the outer triangle have z-coordinate 0 and those of the inner triangle z-coordinate 1, andgiving each vertex x and y coordinates as drawn. The middle picture in Figure 1 is then theprojection of P onto the x-y plane. The pictures are representations of an invariant whichTolman calls the X{ray.To describe this invariant, let (M;!) be a compact Hamiltonian T -space with moment map� : M ! t�. Recall that the orbit-type stratum MH corresponding to a subgroup H � T isthe set of points m 2 M such that the isotropy subgroup Tm equals H . For some H , MHis connected and dense; MH is called the principal stratum. Let �(M) = fX1; : : : ; Xkg bethe set of connected components of orbit-type strata, and let H1; : : : ; Hk be the correspondingisotropy subgroups. For each Xi the closure Xi is a component of the �xed point set of Hi,and by the equivariant Darboux theorem a symplectic submanifold. By the Atiyah-Guillemin-Sternberg convexity theorem, the image �(Xi) is a convex polytope which is the convex hull ofthe images of �xed points contained in Xi. If the polytopes �(Xi) are distinct, we will de�nethe X-ray to be the set f�(Xi); i 2 f1; : : : ; kgg. This is slightly di�erent from the de�nition in[9].



MULTIPLICITY-FREE HAMILTONIAN ACTIONS NEED NOT BE K�AHLER 32.1. X{ray computations. The X{rays of actions considered in this note are computablefrom �xed point data (that is, the value of the moment map plus the weights of the action ateach �xed point.) One begins by noting that each Xi contains T -�xed points in its closure.Let x be such a �xed point, and U a neighborhood of x. Let �(U) (resp. �(TxM)) denote theset of components of orbit-type strata of U (resp. TxM). The set Xi \ U is then an elementof �(U). By linearizing the action at x, one can identify U with a neighborhood of 0 in TxM ,so that �(U) becomes identi�ed with �(TxM). Conversely, any element of �(U) is containedin a unique element of �(M). Let x and y be T -�xed points, and let us say that X 2 �(TxM)and Y 2 �(TxY ) are identi�ed if X and Y correspond to the same element of �(M). By theconvexity theorem, to determine the X{ray it su�ces to know the sets �(TxY ) and the images�(x) for each �xed point x, together with this identi�cation. There is a simple fact which insome cases determines this identi�cation: by de�nition of the moment map, the image �(X)is an open subset of an a�ne space orthogonal to h, where h is the Lie algebra of the isotropygroup H of any point in X . Thus, X 2 �(TxM) and Y 2 �(TyM) can be identi�ed only if bothsets have the same isotropy group, H , and if �(x) 2 �(y)+h0, where h0 � t� is the annihilatorof h.Using this method we can compute the X{ray for the action of T 2 on the 
ag varietyM1 = U(3)� for a generic � 2 t�+. 1 Here T 2 denotes the subgroup T 2 � Id of the maximaltorus T 3 of U(3). Since the center of U(3) acts trivially on M�, the T 2-�xed points are exactlythe T 3-�xed points. These are the elements of W�, where W is the Weyl group of the maximaltorus T 3 � U(3). The weights of T 2 at a �xed point w� are ��1;��2 and ��3, where �1, �2,and �3 are the positive weights restricted to t2 � t3. With respect to the standard basis forthe Cartan subalgebra of U(3), the positive roots are(1;�1; 0); (0; 1;�1); (1; 0;�1)and so �1 = (1;�1); �2 = (0; 1); �3 = (1; 0):From this list of weights we deduce that the there are only four non-principal isotropy groupsof points in the neighborhood of each �xed point: the left factor, right factor and diagonalsubgroups of T 2, and T 2 itself. For each one-dimensional isotropy subgroup H and �xed pointw�, there is only one other �xed point in the set �(w�)+h0. This determines the X{ray, whichis shown in Figure 1.To compute the X{ray for M2, we will apply the theory of toric varieties.Lemma 2.1. Let M be a smooth projective toric variety with moment map � : M ! t� andmoment polytope �, and let F � � be any open face. Then the isotropy subgroup of any pointm 2 ��1(F ) is connected and has Lie algebra equal to the annihilator F 0 of F .For a proof from the symplectic viewpoint, see [2]. By Lemma 2.1, if F is any face of P , thenthe isotropy subgroup for the action of T 2 at any point in ��13 (F ) is the intersection T 2 \ T 3F .Furthermore, the moment map �2 for T 2 is �3 composed with projection onto Lie(T 2) �= R2. IfF is a 0 or 1-dimensional face of P , then ��13 (F ) is a component of a non-principal orbit-typestratum of the T 2 action whose whose image under �2 is the projection of F onto (t2)�. If F1We could also take M1 to be an SU(3)-coadjoint orbit, and restrict to the action of the maximal torus. Ourreason for not doing so will become apparent later.



4 CHRIS WOODWARDis a 2-dimensional face, the intersection T 2 \ T 3F is trivial, so ��13 (F ) is part of the principalorbit-type stratum for the T 2-action. This implies that the X{ray is as shown in Figure 1.2.2. Non-existence of a compatible K�ahler structure. Let M3 denote the HamiltonianT -manifold constructed by gluing \half" ofM1 together with \half" of M2, as in [9]. Tolman'sextendibility criterion in [9] implies that M3 does not admit any invariant compatible K�ahlerstructure. Indeed, let C be the cone based at p in Figure 1, and generated by the line segmentspq and pr. If M admits a K�ahler structure then there would exist an orbit Y of the complextorus TC with the property that �(Y ) = C near p. In this case Y is the dense TC orbit in thestable manifold of p with respect to the gradient 
ow of any Morse function of the form h�; vi,for a generic v 2 t such that (v; q � p) < 0 and (v; r� p) < 0. By Atiyah's theorem [1], �(Y )must be a convex polytope with vertices contained in �(MT3 ). From the X{ray one sees thatsuch a polytope does not exist.23. Construction by U(2)-equivariant symplectic surgeryIn this section we give an alternative construction of Tolman's example which uses E. Ler-man's symplectic cutting technique [6]. The advantage is that (1) the construction is moreexplicit, and (2) the construction shows that the example has a multiplicity-free U(2)-action.3.1. Lerman's de�nition of symplectic cutting. Symplectic cutting is a surgery operationwhich is closely related to Marsden-Weinstein symplectic reduction. To describe the simplestcase of the construction, let (N; !N) be a Hamiltonian G-space and � : N ! R a moment mapfor a G-equivariant U(1) action on N . Let a 2 R be a regular value of �, let Na = ��1(a)=U(1)be the reduced space and let N<a be the subset ��1(�1; a) � N .Lemma 3.1 (Lerman). The union N�a = Na [ N<a has the structure of a Hamiltonian G-orbifold. Furthermore, if Na is smooth then N�a is smooth as well.Proof. Let N � C be the product with symplectic structure ��1!N + ��2(dz ^ dz)=2i, where �1and �2 are the projections. De�ne � : N � C ! R by�(n; z) = �(n) + jzj2=2so that � is the moment map of the diagonal action of U(1) on N � C , which is equivariantwith respect to the action of G on the left factor. Let N�a be the reduction of N � C at a.Then we can write N�a �= ��1(a)=U(1)[ ��1(�1; a)as claimed.The space N�a is called the symplectic cut of N at a. The identi�cation of a dense subset(N�a)<a of N�a with N<a � N is an equivariant symplectomorphism. This implies that N�ais de�ned even if � is only smooth in a neighborhood U of ��1(a). (That is, � only de�nesan U(1) action locally.) Indeed, we can assume that U = ��1(b; c) for some b; c 2 R. Thesymplectic cut U�a is well-de�ned, and we de�ne (see [6])De�nition 3.2. The symplectic cut N�a of N at a is the union of U�a and N<a modulo theidenti�cation of (U�a)<a with N<a \ U .2There is an alternative proof (worked out by S. Tolman, S. Wu, and the author) that M3 is not K�ahlerwhich uses Witten's equivariant holomorphic Morse inequalities. See Wu and Mathai [8].



MULTIPLICITY-FREE HAMILTONIAN ACTIONS NEED NOT BE K�AHLER 53.2. Equivariant symplectic surgery. We begin by explaining the following statement: anyHamiltonian G-action has a canonical densely de�ned, G-equivariant action of T . This followsfrom a version of the symplectic cross-section theorem [5, Theorem 26.2]. Let t�+ be a closedpositive Weyl chamber. For each Weyl wall � � t�+ (not necessarily codimension 1) let G� bethe isotropy subgroup of any point in �.Theorem 3.3. Let M be any Hamiltonian G-space with moment map � :M ! g�, let � � t�+be a Weyl wall, and let U� � g�� be the maximal set such that x 2 U� implies Gx � G�. Then��1(U�) is a Hamiltonian G�-space, called the symplectic cross-section for �.Note that ��1(GU�) �= G �G� ��1(U�). If Z� is the center of G�, then we can de�ne a newaction of Z� by requiring that the action agree with the old action of Z� on ��1(U�), andthat the action commute with the action of G. In particular if � = int t�+ then we have a newG-equivariant action of T on the (dense if non-empty) subset G��1(U�) = ��1(g�reg). We callthe new action of Z� the induced action, and denote it by �.Let q : g� ! t�+ be the quotient map, and de�ne ~� = q � �. For the following proposition,see e.g. [4],[10].Proposition 3.4. The composition of ~� with the projection �� : t� ! z�� is a moment mapfor the induced action of Z�.Since symplectic cutting is local, if a 2 R is such that � = h~�; Xi is smooth at ��1(a), and iffurthermore the induced action of U(1) = exp(tX) � T is free on ��1(a), then the symplecticcut of M at a is a Hamiltonian G-space M�a with moment polytope��a = fv 2 � j hv;Xi � ag:Note that in order to check that the induced action of U(1) is free, by equivariance it su�cesto check that the left action of U(1) is free on ��1(t�+)\��1(a). Also, note that if the hyperplaneH = fv 2 t� j hv;Xi = ag meets perpendicularly every face � of the positive chamber suchthat � \H \� is non-empty, then � is smooth at ��1(a).3.3. Construction of the example. We will apply equivariant surgery to a 
ag variety. LetM1 = U(3)� for some element � = diag(�1; �2; �3) of u(3)� with �1 > �2 > �3. The action ofU(3) on M1 restricts to a Hamiltonian action of U(2) via the embedding of U(2) in U(3) givenby A ! diag(A; 1). The moment map �U(2) : M1 ! u(2)� is the projection of M1 onto u(2)�.Since dimM1 = 6 = (dim+rank)U(2), and U(2) acts freely on a dense subset, the action ofU(2) on M1 is multiplicity-free. Let T � U(2) be the diagonal maximal torus.Proposition 3.5. The moment polytope of the action of U(2) on M1 is �0 = [�2; �1]� [�3; �2].For a proof see [5, page 364] or [10]. We now apply U(2)-equivariant surgery. In this casethe map ~� = q � �U(2) has two components, ~�1 and ~�2. Let � be the function ~�1 + 2~�2 andU(1)1;2 the circle subgroup f(z; z2)jz 2 U(1)g � U(1)2 whose induced action has moment map�. Let a 2 R be such that ��1(a) is the inverse image under ~� of the dotted line shown inFigure 2. Then � is smooth at ��1(a), since ��1(a) lies entirely in GY+. The symplectic cut(M1)�a of M1 at a using � is therefore well-de�ned.Proposition 3.6. (M1)�a is a smooth Hamiltonian U(2)-space, whose X{ray as a T 2-space isthe same as M3.33Conjecturally, (M1)�a is T 2-equivariantly symplectomorphic to M3.
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Figure 2: Construction by symplectic cuttingProof. To see that (M1)�a is smooth, it's enough to check that the induced action of U(1)1;2 isfree on ��1(a), or equivalently, since the induced action is U(2)-equivariant, that U(1)1;2 actsfreely on ��1(a) \ ��1(t�+). This is shown either explicitly (see [10] page 6 or [5] page 364) orusing the following lemma:Lemma 3.7 (Delzant [3]). Let M a multiplicity-free compact Hamiltonian G-space with mo-ment map � : M ! g�, moment polytope � and trivial principal isotropy subgroup. Let F bea face of � contained in int t�+, and let m be a point in ��1(F ). Then the isotropy subgroupGm of m is connected and its Lie algebra is F 0 � t.By Lemma 3.7 the isotropy subgroups of points in ��1(a) \ Y+ are fIdg � U(1) and fIdg.These intersect U(1)1;2 trivially, so U(1)1;2 acts freely on ��1(a). Therefore, (M1)�a is a smoothHamiltonian U(2)-space which has the moment polytope shown on the above right. Since Tacts freely on a dense subset of Y+, the group U(2) acts freely on a dense subset of GY+. Sincedim((M1)�a) = 6 = (dim+rank)U(2) the action of U(2) on (M1)�a is multiplicity-free.Now consider the action of T = U(1)2 � U(2) on (M1)�a, and let �T : (M1)�a ! t� be themoment map. Let us compute the X{ray for (M1)�a. Since (M1)�a is a symplectic cut, theT -�xed points are those lying in ��1(�1; a) and the \new" �xed points in ��1(a)=U(1)1;2.From Figure 2, we see that there is only one \old" �xed point q1 with �T (q1) = x1, and byDelzant's lemma (or explicitly) there are T -�xed points q2; q3 whose images under �T are x2and x3 resp. The points wqi; i = 1; 2; 3, where w is the non-trivial element of the Weyl group,are also T -�xed points, whose images under �T are wxi.



MULTIPLICITY-FREE HAMILTONIAN ACTIONS NEED NOT BE K�AHLER 7We now compute the other polytopes in the X{ray of (M1)�a. The splittingTqi(M1)�a �= Tqi(Y+)�a � u(2)�=t�implies that there are two weights of T on Tqi(M1)�a which are weights of T acting on Tqi(Y+)�aand a third weight equal to ��1. The two weights of the action on Tqi(Y+)�a are proportionalto the directions of the two edges of the moment polytope at xi. The weights at the T -�xedpoints wqi are obtained by Weyl re
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