MULTIPLICITY-FREE HAMILTONIAN ACTIONS
NEED NOT BE KAHLER

CHRIS WOODWARD

ABSTRACT. Multiplicity-free actions are symplectic manifolds with a very high degree of sym-
metry. Delzant [2] showed that all compact multiplicity-free torus actions admit compatible
Kahler structures, and are therefore toric varieties. In this note we show that Delzant’s result
does not generalize to the non-abelian case. Our examples are constructed by applying U(2)-
equivariant symplectic surgery to the flag variety U(3)/T3. We then show that these actions
fail a criterion which Tolman [9] shows is necessary for the existence of a compatible Kahler
structure.
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1. INTRODUCTION

In this note we investigate the equivariant version of the question “when is a symplectic
manifold K&hler?” That is, suppose that a Lie group G acts on a symplectic manifold (M,w).
When does there exist an invariant complex structure J such that w(-,.J-) defines a Riemmanian
metric on M7

The main point of this note, which builds on work by S. Tolman [9], is that even Hamiltonian
actions which are multiplicity-free need not be Kahler. Multiplicity-free actions are maximal in
the following sense: if the action of G has discrete principal isotropy subgroup, then dim M <
dim G+ rank G'. If equality holds, the action is called multiplicity-free. In the case that GG is a
torus, multiplicity-free actions are all Kdhler: Delzant [2] proved that any compact multiplicity-
free torus action admits a Kéahler structure, and is a smooth projective toric variety. Because
of Delzant’s result, and the fact that transitive actions, which if the group is compact are
coadjoint orbits, are all Kahler, it was thought that all compact multiplicity-free actions might
be Kéahler. In particular, it was thought that any compact multiplicity-free action might be
the Hamiltonian action associated to a spherical variety (the non-abelian analogue of a toric
variety; see e.g. [7].) We show here that this is not the case. F. Knop has independently
constructed examples of non-Kahler multiplicity-free actions, by a different method.

The idea of proof is to construct an example related to Tolman’s using “equivariant sym-
plectic surgery.” This type of surgery (see [10]) is a type of “symplectic cutting” as defined by
Lerman [6], and uses the fact that any Hamiltonian group action has a densely-defined action

of a maximal torus, which commutes with the original action.
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2. TOLMAN’S EXAMPLE

Tolman proves that a symplectic gluing of two halves of two six-dimensional Hamiltonian
T?-spaces, M, and M, results in a non-K#hler Hamiltonian 7%-space Ms. In this note we
will consider a closely related gluing which is represented in Figure 1. The pictures show the

N
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Figure 1: The X-rays for (1) M; (2) M; and (3) M;

images under the moment map of the connected components of the non-principal orbit-type
strata of My, M,, and Ms;, respectively, from left to right. That is, the points are the images
of the fixed points, and the line segments are the images of the submanifolds fixed by circle
subgroups of T2. (In general, there are orbit-type strata with discrete isotropy groups, but in
these examples it turns out that there aren’t any.) Note that an intersection of two lines is not
necessarily the image of a fixed point.

The manifold M; is a generic coadjoint orbit of U(3), with the Hamiltonian action of T2
obtained by restricting the action of U(3) to T? = U(1)% x Id C U(3). The manifold M, is a
toric variety with the action of 72 obtained by restricting that of T3 to T? x Id C T®. The
polytope P C (t%)* & R? associated to this toric variety is obtained by making the vertices
of the outer triangle have z-coordinate 0 and those of the inner triangle z-coordinate 1, and
giving each vertex z and y coordinates as drawn. The middle picture in Figure 1 is then the
projection of P onto the z-y plane. The pictures are representations of an invariant which
Tolman calls the X-ray.

To describe this invariant, let (M, w) be a compact Hamiltonian T-space with moment map
® : M — . Recall that the orbit-type stratum My corresponding to a subgroup H C T is
the set of points m € M such that the isotropy subgroup T,, equals H. For some H, My
is connected and dense; My is called the principal stratum. Let y(M) = {Xy,..., Xy} be
the set of connected components of orbit-type strata, and let Hy, ..., Hy be the corresponding
isotropy subgroups. For each X; the closure X; is a component of the fixed point set of H;,
and by the equivariant Darboux theorem a symplectic submanifold. By the Atiyah-Guillemin-
Sternberg convexity theorem, the image ®(X;) is a convex polytope which is the convex hull of
the images of fixed points contained in X;. If the polytopes ®(X;) are distinct, we will define

the X-ray to be the set {®(X;),7 € {1,...,k}}. This is slightly different from the definition in
[9]-
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2.1. X—ray computations. The X-rays of actions considered in this note are computable
from fixed point data (that is, the value of the moment map plus the weights of the action at
each fixed point.) One begins by noting that each X; contains 7T-fixed points in its closure.
Let z be such a fixed point, and U a neighborhood of z. Let x(U) (resp. x(1;M)) denote the
set of components of orbit-type strata of U (resp. T, M). The set X; N U is then an element
of x(U). By linearizing the action at z, one can identify U with a neighborhood of 0 in T,,M,
so that y(U) becomes identified with x(7;M). Conversely, any element of x(U) is contained
in a unique element of y(M). Let @ and y be T-fixed points, and let us say that X € x(T, M)
and Y € x(71,Y) are identified if X and Y correspond to the same element of y(M). By the
convexity theorem, to determine the X-ray it suffices to know the sets x(7,Y) and the images
¢ () for each fixed point z, together with this identification. There is a simple fact which in
some cases determines this identification: by definition of the moment map, the image ®(X)
is an open subset of an affine space orthogonal to j, where [ is the Lie algebra of the isotropy
group H of any point in X. Thus, X € x(I,M) and Y € x (T, M) can be identified only if both
sets have the same isotropy group, H, and if ®(x) € ®(y) +5°, where h° C t* is the annihilator
of b.

Using this method we can compute the X-ray for the action of 7?2 on the flag variety
My = U(3)A for a generic A € £;. ! Here T? denotes the subgroup 72 x Id of the maximal
torus 72 of U(3). Since the center of U(3) acts trivially on M, the T?-fixed points are exactly
the T3-fixed points. These are the elements of WA, where W is the Weyl group of the maximal
torus T2 C U(3). The weights of T? at a fixed point wA are +ay, fay and +a3, where oy, az,
and as are the positive weights restricted to 2 C 3. With respect to the standard basis for
the Cartan subalgebra of U(3), the positive roots are

(1,-1,0), (0,1,—1), (1,0,—1)

and so
ap = (17 _1)7 Q3 — (07 1)7 Qa3 — (170)
From this list of weights we deduce that the there are only four non-principal isotropy groups
of points in the neighborhood of each fixed point: the left factor, right factor and diagonal
subgroups of T2, and T? itself. For each one-dimensional isotropy subgroup H and fixed point
wA, there is only one other fixed point in the set ®(wA)+h°. This determines the X-ray, which
is shown in Figure 1.
To compute the X—ray for My, we will apply the theory of toric varieties.

Lemma 2.1. Let M be a smooth projective toric variety with moment map ® : M — t* and
moment polytope A, and let ' C A be any open face. Then the isotropy subgroup of any point
m € ®7Y(F) is connected and has Lie algebra equal to the annihilator F° of .

For a proof from the symplectic viewpoint, see [2]. By Lemma 2.1, if F'is any face of P, then
the isotropy subgroup for the action of T2 at any point in @51(F) is the intersection T2 N T3.
Furthermore, the moment map ®, for 7% is ®3 composed with projection onto Lie(7?) = R2. If
Fis a 0 or 1-dimensional face of P, then @51(F) is a component of a non-principal orbit-type
stratum of the 7% action whose whose image under ®, is the projection of F onto (t*)*. If F

"We could also take M) to be an SU(3)-coadjoint orbit, and restrict to the action of the maximal torus. Our
reason for not doing so will become apparent later.



4 CHRIS WOODWARD

is a 2-dimensional face, the intersection 72 N T3 is trivial, so @51(F) is part of the principal
orbit-type stratum for the T%-action. This implies that the X-ray is as shown in Figure 1.

2.2. Non-existence of a compatible Kahler structure. Let M3 denote the Hamiltonian
T-manifold constructed by gluing “half” of M; together with “half” of M;, as in [9]. Tolman’s
extendibility criterion in [9] implies that M3 does not admit any invariant compatible Kahler
structure. Indeed, let C' be the cone based at p in Figure 1, and generated by the line segments
pq and pr. If M admits a Kdhler structure then there would exist an orbit Y of the complex
torus T with the property that ®(Y) = C near p. In this case Y is the dense T orbit in the
stable manifold of p with respect to the gradient flow of any Morse function of the form (®, v),
for a generic v € t such that (v,q¢ — p) < 0 and (v,r — p) < 0. By Atiyah’s theorem [1], ®(Y)
must be a convex polytope with vertices contained in ®(MJ). From the X-ray one sees that

such a polytope does not exist.?

3. CONSTRUCTION BY U(2)-EQUIVARIANT SYMPLECTIC SURGERY

In this section we give an alternative construction of Tolman’s example which uses E. Ler-
man’s symplectic cutting technique [6]. The advantage is that (1) the construction is more
explicit, and (2) the construction shows that the example has a multiplicity-free U(2)-action.

3.1. Lerman’s definition of symplectic cutting. Symplectic cutting is a surgery operation
which is closely related to Marsden-Weinstein symplectic reduction. To describe the simplest
case of the construction, let (N, wy) be a Hamiltonian G-space and p: N — R a moment map
for a G-equivariant U(1) action on N. Let a € R be a regular value of y, let N, = p~!(a)/U(1)
be the reduced space and let N, be the subset u~!(—oc,a) C N.

Lemma 3.1 (Lerman). The union N<y = Ny U Ny has the structure of a Hamiltonian G-
orbifold. Furthermore, if N, is smooth then N<, is smooth as well.

Proof. Let N x C be the product with symplectic structure 7fwy + 75 (dz A dz) /27, where m
and 7o are the projections. Define v : N x C — R by

v(n,2) = u(n) + |+2/2
so that v is the moment map of the diagonal action of U(1) on N x C, which is equivariant
with respect to the action of G on the left factor. Let N<, be the reduction of N x C at a.
Then we can write -
New = 1M a)/U(1) U~ (=0, a)
as claimed. O

The space N, is called the symplectic cut of N at a. The identification of a dense subset
(N<a)<aq of Z\fga with No, C N is an equivariant symplectomorphism. This implies that N,
is defined even if y is only smooth in a neighborhood U of u=1(a). (That is, p only defines
an U(1) action locally.) Indeed, we can assume that U = p~'(b,c) for some b,c € R. The
symplectic cut U<, is well-defined, and we define (see [6])

Definition 3.2. The symplectic cut N<, of N at a is the union of U<, and N, modulo the
identification of (U<,)<q With N, N U.

2There is an alternative proof (worked out by S. Tolman, S. Wu, and the author) that Mz is not Kahler
which uses Witten’s equivariant holomorphic Morse inequalities. See Wu and Mathai [8].



MULTIPLICITY-FREE HAMILTONIAN ACTIONS NEED NOT BE KAHLER 5

3.2. Equivariant symplectic surgery. We begin by explaining the following statement: any
Hamiltonian G-action has a canonical densely defined, G-equivariant action of T'. This follows
from a version of the symplectic cross-section theorem [5, Theorem 26.2]. Let ] be a closed
positive Weyl chamber. For each Weyl wall o C ] (not necessarily codimension 1) let G, be
the isotropy subgroup of any point in o.

Theorem 3.3. Let M be any Hamiltonian G-space with moment map ® : M — g*, let ¢ C t}
be a Weyl wall, and let U, C g’ be the maximal set such that x € U, implies G, C G,. Then
®~1(U,) is a Hamiltonian G,-space, called the symplectic cross-section for o.

Note that ®~1(GU,) = G xg, ®~1(U,). If Z, is the center of GG, then we can define a new
action of Z, by requiring that the action agree with the old action of Z, on ®~(U,), and
that the action commute with the action of . In particular if ¢ = int t; then we have a new
G-equivariant action of 7" on the (dense if non-empty) subset GO~ (U,) = &' (g,,). We call
the new action of Z, the induced action, and denote it by p.

Let ¢ : g — t} be the quotient map, and define ® = go®. For the following proposition,
see e.g. [4],[10].

Proposition 3.4. The composition of ® with the projection w7, : £ — zx 15 @ moment map
for the induced action of Z,.

Since symplectic cutting is local, if @ € R is such that u = (®, X) is smooth at y~'(a), and if
furthermore the induced action of U(1) = exp(tX) C T is free on u~'(a), then the symplectic
cut of M at a is a Hamiltonian G-space M<, with moment polytope

Acy ={ve A | (v,X) < a}.
Note that in order to check that the induced action of U(1) is free, by equivariance it suffices
to check that the left action of U(1) is free on @~ (t3)Np~"(a). Also, note that if the hyperplane

H = {v € t| (v, X) = a} meets perpendicularly every face o of the positive chamber such
that ¢ N H N A is non-empty, then g is smooth at u=!(a).

3.3. Construction of the example. We will apply equivariant surgery to a flag variety. Let
My = U(3) ) for some element A = diag(Aq, Az, As) of u(3)* with Ay > Ay > A3. The action of
U(3) on My restricts to a Hamiltonian action of U(2) via the embedding of U(2) in U(3) given
by A — diag(A,1). The moment map @y 5y : My — u(2)* is the projection of M; onto u(2)*.
Since dim My = 6 = (dim 4rank)U(2), and U(2) acts freely on a dense subset, the action of
U(2) on M, is multiplicity-free. Let T C U(2) be the diagonal maximal torus.

Proposition 3.5. The moment polytope of the action of U(2) on My is A" = [Ag, A1] X [As, A2).

For a proof see [5, page 364] or [10]. We now apply U(2)-equivariant surgery. In this case
the map ® = ¢ o @rr(y) has two components, @y and ®,. Let p be the function @ 4 2¢; and
U(1)1,2 the circle subgroup {(z, 2%)|z € U(1)} C U(1)* whose induced action has moment map
p. Let @ € R be such that y=!(a) is the inverse image under ® of the dotted line shown in

Figure 2. Then p is smooth at p='(a), since p~!(a) lies entirely in GY,. The symplectic cut
(My)<q, of My at a using p is therefore well-defined.

Proposition 3.6. (M;)<, is a smooth Hamiltonian U (2)-space, whose X-ray as a T*-space is
the same as Ms.?

®Conjecturally, (Mi)<q is T?-equivariantly symplectomorphic to Ms.
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Figure 2: Construction by symplectic cutting

Proof. To see that (M;)<, is smooth, it’s enough to check that the induced action of U(1); 5 is
free on =" (a), or equivalently, since the induced action is U(2)-equivariant, that U(1); 5 acts
freely on =1 (a) N @~ (¢1). This is shown either explicitly (see [10] page 6 or [5] page 364) or
using the following lemma:

Lemma 3.7 (Delzant [3]). Let M a multiplicity-free compact Hamiltonian G-space with mo-
ment map ® : M — g*, moment polytope A and trivial principal isotropy subgroup. Let F be
a face of A contained in int £, and let m be a point in O~1(F). Then the isotropy subgroup
Gy of m is connected and its Lie algebra is F° C t.

By Lemma 3.7 the isotropy subgroups of points in p=!(a) NV, are {Id} x U(1) and {Id}.
These intersect U(1)y o trivially, so U(1)1 2 acts freely on p=!(a). Therefore, (M)<, is a smooth
Hamiltonian U(2)-space which has the moment polytope shown on the above right. Since T
acts freely on a dense subset of Y, the group U(2) acts freely on a dense subset of GY,. Since
dim((Mi)<q) = 6 = (dim +rank)U(2) the action of U(2) on (M;)<, is multiplicity-free.

Now consider the action of T = U(1)? C U(2) on (M))<a, and let &7 : (M;)<, — t* be the
moment map. Let us compute the X-ray for (M;)<,. Since (Mi)<, is a symplectic cut, the
T-fixed points are those lying in u~'(—00,a) and the “new” fixed points in p~'(a)/U(1)1 2.
From Figure 2, we see that there is only one “old” fixed point ¢; with ®7(¢;) = 21, and by
Delzant’s lemma (or explicitly) there are T-fixed points ¢z, g3 whose images under ®7 are z,
and zs resp. The points wgq;, ¢ = 1,2, 3, where w is the non-trivial element of the Weyl group,
are also T-fixed points, whose images under & are wz;.
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We now compute the other polytopes in the X-ray of (M;)<,. The splitting
Ty (Mi)<a 2 T3, (Y4)<a D u(2)"/t7
implies that there are two weights of T'on T}, (M; )<, which are weights of T acting on Ty, (Y4 )<a
and a third weight equal to —a;. The two weights of the action on T}, (Y )<, are proportional
to the directions of the two edges of the moment polytope at x;. The weights at the T-fixed
points wgq; are obtained by Weyl reflection. By the reasoning similar to the computation of the

X-ray of My, the X—ray can be computed from this fixed point data, and coincides with the
X-ray of M3 above. O
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