
MODULI SPACES OF FLAT CONNECTIONS ON 2-MANIFOLDS,COBORDISM, AND WITTEN'S VOLUME FORMULASE. MEINRENKEN AND C. WOODWARD1. IntroductionAccording to Atiyah-Bott [AB],[A] the moduli space of at connections on a com-pact oriented 2-manifold with prescribed holonomies around the boundary is a �nite-dimensional symplectic manifold, possibly singular. A standard approach [W1, W2, V]to computing invariants (symplectic volumes, Riemann-Roch numbers, etc.) of the mod-uli space is to study the \factorization" of invariants under gluing of 2-manifolds alongboundary components. Given such a factorization result, any choice of a \pants de-composition" of the 2-manifold reduces the computation of invariants to the three-holedsphere.Consider a compact, connected, simple Lie group G with maximal torus T , and letA � t be some choice of a fundamental Weyl alcove. We interpret A as the set ofconjugacy classes in G since for every conjugacy class C � G there is a unique � 2 Awith exp(�) 2 C. For �1; �2; �3 2 A letM(�30; �1; �2; �3)denote the moduli space of at G-connections on the three-holed sphere �30 for which theholonomies around the three boundary components lie in the conjugacy classes labeledby the �j.Thanks to the following result of L. Je�rey [J], the moduli spaces M(�30; �1; �2; �3)are well-understood when the holonomies are small. Use the normalized invariant innerproduct on g to identify g �= g� and let O�j be the coadjoint orbit through �j, equippedwith the Kostant-Kirillov-Souriau symplectic form, and O��j the same space with theopposite symplectic form.Theorem 1.1 (Je�rey). For �1; �2; �3 2 A su�ciently small, there is a symplectomor-phism M(�30; �1; �2; �3) �= O��1 �O��2 �O��3==Gof the moduli space with a symplectic reduction of a triple product of coadjoint orbits.In [MW2] we prove the following result for more general holonomies:Date: May 20, 1997.Supported by a Feodor Lynen fellowship from the Humboldt foundation.Supported by an NSF postdoctoral fellowship. 1



2 E. MEINRENKEN AND C. WOODWARDTheorem 1.2. For �1; �2; �3 2 int(A) generic there is an oriented orbifold cobordismM(�30; �1; �2; �3) � aw2W+a�(�1)length(w) (O��1 �O��2 �O�w �3)==G:(1)Here the signs indicate a change in orientation relative to the symplectic orientation,and W+a� is the set of all w in the a�ne Weyl group Wa� such that wA � t+. Thesymplectic forms extend to a closed 2-form over the cobordism. For G = SU(n) bothsides are smooth manifolds and the cobordism is a manifold cobordism.The genericity assumption guarantees that both sides have at worst orbifold singulari-ties. Cobordisms of manifolds together with closed 2-forms were introduced and studiedby Ginzburg-Guillemin-Karshon [GGK].The main point of this article is not to give a complete proof of the theorem (which willappear in [MW2]) but rather to explain the main ideas and to present as an applicationan elementary proof of Witten's formulas for symplectic volumes. These formulas wereproved in Witten's original paper [W1]; alternative proofs appear for SU(2) in [D1, T,JW1, JW2] and for higher rank in [L1, L2, JK]. In a forthcoming paper, we use similarcobordism techniques to compute the Verlinde numbers.This article is organized as follows. In the following section we introduce the Guillemin-Ginzburg-Karshon notion of cobordism of Hamiltonian spaces and give some examples.In section 3 we recall the construction of the symplectic form on moduli spaces for 2-manifolds with boundary. In section 4 we explain our construction of the cobordism(1), and in section 5 we use (1) to calculate volumes of moduli spaces. In the appen-dix we collect some background material on Hamiltonian group actions and symplecticreduction. 2. Hamiltonian cobordismLet K be a compact Lie group. By a Hamiltonian K-manifold, we mean a triple(M;!;�) consisting of a manifold M with an action of K, an invariant closed 2-form! 2 
2(M)K , and an equivariant moment map � 2 C1(M; k�)K satisfyingdh�; �i = !(�M ; �)(2)for all � 2 k, where �M denotes the fundamental vector �eld.Introducing the complex 
K(M) = (
(M)
S(k�))K of equivariant di�erential forms,with equivariant di�erential ~d�(�) = d�(�) � 2�i �(�M)�(�), Equation (2) may berephrased as the cocycle condition for the equivariant 2-form~! = ! + 2�i�:We denote its equivariant cohomology class by [~!] 2 H�K(M). If ! is non-degenerate itis called symplectic. In the symplectic case, the Liouville volume is de�ned as Vol(M) =RM exp(!).



MODULI SPACES OF FLAT CONNECTIONS 3For any � 2 k�, the reduced space M� is de�ned as the quotientM� := ��1(�)=K�:For � = 0 we will also use the notation M0 = M==K. If � is a regular value of �, theaction of the stabilizer group K� on ��1(�) is locally free and the reduced spaceM� is anorbifold, with a naturally induced closed 2-form !�. Given a second Hamiltonian actionof a Lie group H onM such that the actions of H and K commute, the K-reduced spaceM� becomes a Hamiltonian H-orbifold. If ! is symplectic then !� is symplectic.The notion of cobordism of Hamiltonian spaces was recently introduced by Guillemin-Ginzburg-Karshon [GGK].De�nition 2.1. [GGK] Let (M1; !1;�1) and (M2; !2;�2) be two oriented HamiltonianK-manifolds with proper moment maps. We call M1 and M2 cobordant and writeM1 � M2 if there exists an oriented Hamiltonian K-manifold with boundary (N;!;�)with proper moment map such that @N = M1 [ (�M2) and such that ! resp. � pullback to !i resp. �i.(The properness assumption on the moment map is crucial since otherwise this notionof cobordism would be more or less void.) There is an analogous de�nition of cobordismsof Hamiltonian orbifolds.One is mainly interested in the case that the \ends" of the cobordism are symplectic.Their orientation, however, need not agree with the symplectic orientation. LettingMj;rdenote the connected components of Mj, we have as an obvious cobordism invariant thesigned symplectic volume: Xr �Vol(M1;r) =Xr �Vol(M2;r)where the signs are +1 or �1 according whether or not the orientation agrees with thesymplectic orientation.The simplest example of a Hamiltonian cobordism is provided by two cohomologousequivariant 2-forms ~!j = !j+2�i�j on a compact oriented G-manifoldM . Thus supposeM1 = M2 = M and that there exists a 1-form � 2 
1(M)K such that!2 � !1 = d�; �2 � �1 = ��]where �] : M ! g� is de�ned by h�]; �i = �(�M)�. Let N = M � [0; 1] with pointsdenoted (m; t), and let! = !1 + d(t�); �(m; t) = (1� t)�1(m) + t�2(m):Then (N;!;�) provides a cobordism of Hamiltonian K-manifolds, M1 �M2.One of the main results in [GGK] is that any compact symplectic Hamiltonian T -manifold with (M;!;�) with isolated �xed points is cobordant in the above sense toits \polarized" linearization around the �xed points. More precisely, let aj(p) 2 t�,



4 E. MEINRENKEN AND C. WOODWARDj = 1; : : : ; n = 12 dimM be the weights for the T -action at the �xed points. ThusTpM �= C n , and the induced T -action has moment map	p : TpM ! t�; z 7! �(p)� 12Xj jzjj2 aj(p):Choose a vector � 2 t that is not perpendicular to any of the weights aj(p). Leta]j(p) = signhaj(p); �i aj(p)denote the polarized weights and �j(p) = #fjj haj(p); �i < 0g the number of signchanges. Let TpM ] denote the tangent space, with the modi�ed T -action with momentmap 	]p : z 7! �(p)� 12Xj jzjj2 a]j(p):Theorem 2.2. [GGK] For any compact symplectic Hamiltonian T -manifold M withisolated �xed points, there is a cobordism of Hamiltonian T -manifoldsM � ap2MT (�1)�(p) TpM ]:If M1 �M2 is a cobordism of Hamiltonian K-manifolds, and � 2 k� a regular value ofthe moment map for the cobordism, reduction gives rise to a cobordism (M1)� � (M2)�.Using a simple perturbation argument, [GGK] show that if K� is a maximal torus it isin fact su�cient to assume that � is a regular value for the moment maps �1;�2.For example, in Theorem 2.2 we have a cobordismM� � ap2MT (�1)�(p) (TpM ])�As an immediate consequence one obtains the formula of Guillemin-Lerman-Sternberg[GLS] Vol(M�) =X(�1)�(p) #�pVol(T ) �p(�(p)� �);where �p is the push-forward of the characteristic measure on the positive orthant Rn+under the map Rn ! t�; x 7! nXj=1 xj a]j(p);�p the generic stabilizer for the action on TpM ], and Vol(T ) the volume with respect toan inner product on t which we also use to identify measures and functions.Example 2.3. Let T be the maximal torus of K and t�+ � t� � g� some choice of apositive Weyl chamber. Let � 2 int(t�+) and O� = K � � �= K=T the coadjoint orbitthrough �, equipped with the KKS symplectic form �� 2 
2(O�). The moment mapfor the K-action on O� is the embedding �� : O� ,! k�. Let O(T )� denote the orbit



MODULI SPACES OF FLAT CONNECTIONS 5considered as a T -manifold, with moment map prt� � ��. The T -�xed points are just theWeyl conjugates w ��, and taking the polarizing vector � in int(t+) the polarized weightsare the positive roots. ThusVol(O(T )� )� = #Z(G)Vol(T ) Xw2W(�1)length(w)�(w�� �)(3)where � is the measure determined by the positive roots. This formula is the classicalanalogue of the Kostant multiplicity formula.Example 2.4. Suppose (M;!;�) is a compact HamiltonianK-manifold, and � 2 t�+. LetX1 = O� �M be the product, with diagonal K-action and !X1 = �� + !M . Let X2 bethe associated bundle X2 = K �T M:There exists a unique closed 2-form !X2 on X2 for which the K-action is Hamiltonian,with moment map �X2 , and such that the pull-back of !X2 resp. �X2 to M is given by! and prt� � � + �. There is a K-equivariant di�eomorphism� : X2 = K �T M ! X1 = O� �M; [k;m] 7! (k � �; k �m):We leave it as an exercise to the reader to verify that the pull-back ��~!X1 of the equivari-ant symplectic form on X1 is equivariantly cohomologous to the equivariant form ~!X2 .It follows that for any regular value � 2 int(t�+) of the moment maps of both X1 and X2,there is an oriented orbifold cobordism of reduced spaces (O��M)� � (K�T M)� . Thereduction on the right hand side is easily determined: Since �X2([k;m]) = k�(�+prt���),the � -level set condition is prt� � � = k�1� � �. Since this is contained in t� only if k�1represents an element w of the Weyl group, it follows that the reduction is a disjointunion of T -reductions of M at values w� ��. Denoting by M (T ) the space M consideredas a Hamiltonian T -manifold, we �nd a cobordism(O� �M)� � aw2W(�1)length(w)M (T )w���:The resulting formulaVol(O� �M)� = Xw2W(�1)length(w)Vol(M (T )w���)may be considered the classical analogue to the Frobenius reciprocity formula. Special-izing to the case where M = O� is a coadjoint orbit (� 2 int(t�+)) and combining withthe previous example we �nd a cobordism(O� �O�)� � aw12W Xw22W(�1)length(w1w2)(k=t)w1�+w2���



6 E. MEINRENKEN AND C. WOODWARDwhere k=t has symplectic structure given by any T -invariant Hermitian metric.1 As aconsequence we have for symplectic volumes the formulaVol(O� �O�)� = #Z(G)Vol(T ) Xw12W Xw22W(�1)length(w1w2)�(w1�+ w2� � �)(4)which is the classical analogue of the Steinberg formula. This was derived in Guillemin-Prato [GP] by a di�erent method.3. Moduli Spaces of Flat ConnectionsIn this section we recall the construction of moduli spaces of at connections over2-manifolds. Let G be a simple, compact, connected Lie group and T � G its maximaltorus. The integral lattice f� 2 tj exp(�) = 1g will be denoted by �. We let the weightlattice �� � t� be its dual and let R+ � �� be a system of positive roots of G. 2 Denoteby t+ � t the positive Weyl chamber determined by R+ and byA = f� 2 t+j h�max; �i � 1gthe closed fundamental alcove, where �max 2 R+ is the highest root. We identify A withthe set Conj(G) of conjugacy classes of G viaA �= t=Wa� �= T=W �= G=Ad(G) = Conj(G);(5)where W is the Weyl group and Wa� = �oW the a�ne Weyl group.Consider a compact, connected, oriented 2-manifold � = �bh of genus h with b bound-ary components B1; : : : ; Bb. Let A(�) �= 
1(�; g) denote the space of connections onthe trivial bundle � � G. We take these connections to be of a �xed Sobolev classr > 12 and consider A(�) as a Banach manifold. The gauge group G(�) = Map(�; G)consisting of maps of Sobolev class r + 1 is a Banach Lie group, which acts on A(�) byg �A = Adg(A)� g�1dg. For any boundary Bj and any connection A 2 A(�), the holo-nomy HolBj (A) around Bj is well-de�ned up to conjugacy; here we take the orientationof the boundary @� to be opposite to the orientation induced from �. Given conjugacyclasses C1; : : : ; Cb � G labeled by �1; : : : ; �b 2 A, letM(�; �1; : : : ; �b) := fA 2 A(�)j curv(A) = 0; HolBj (A) 2 Cjg=G(�)(6)be the moduli space of at connections with holonomies in Cj. (This space is independentof the choice of Sobolev class r.) There is a canonical isomorphism between this space1Any two such structures are equivariantly symplectomorphic.2Note that we work with real weights as in [BrD]. Our main motivation for this convention is thatthe \pre-quantizable" coadjoint orbits G ��, (� 2 t� � g�) are precisely those through real weight latticepoints. By contrast Witten [W1, W2] works with in�nitesimal roots and weights, these di�er by a factor2�i and give rise to di�erent powers of 2� in some of his formulas.



MODULI SPACES OF FLAT CONNECTIONS 7and the representation varietyn(a; c) 2 G2h � C1 � : : :� Cb��� hYi=1[a2i�1; a2i] = bYj=1 cjo=G(7)given by describing each gauge equivalence class in terms of its parallel transport. Thisdescription shows thatM(�; �1; : : : ; �b) is a compact, strati�ed space (usually singular).It was one of the basic observations in Atiyah-Bott [AB] that the spacesM(�; �1; : : : ; �b)carry natural symplectic structures, and that (6) can in fact be viewed as a symplecticquotient. Indeed, A(�) carries a natural symplectic form!A(a1; a2) = Z� a1 �̂ a2 (ai 2 TAA(�) �= 
1(�; g));using the normalized invariant inner product on g for which �max has length p2. 3 TheG(�)-action preserves the symplectic form and is in fact Hamiltonian, with moment mapgiven by 	(A) = (curv(A); Aj@�) 2 
2(�; g)� 
1(@�; g);that is h	(A); �i = Z� curv(A) � � + Z@� �� (A � �);for � 2 
0(�; g) = Lie(G(�)). This exhibits M(�; �1; : : : ; �b) as a symplectic reductionsince the pull-backs AjBj are determined up to gauge equivalence by the conjugacy classof their holonomies HolBj (A).In the presence of at least one boundary component, it is convenient to perform theabove reduction in stages. Let G(@�) = Map(@�; G) (maps of Sobolev class r + 12) bethe gauge transformations of the boundary. Since G is simply connected, the restrictionmap G(�)! G(@�) is surjective. Its kernel G@(�) consists of gauge transformations thatare the identity on the boundary. The moment map for the action of G@(�) on A(�) isjust the curvature A! curv(A). Let M(�) be the symplectic quotientM(�) = A(�)==G@(�) = fA 2 A(�)j curv(A) = 0g=G@(�):Donaldson proved in [D1] that if the boundary of � is non-empty (b � 1), the spaceM(�)is a smooth (!) symplectic Banach manifold. The residual action of G(@�) = G(�)=G@(�)is Hamiltonian, with moment map given by [A]! ��@�A 2 
1(@�; g).Choose orientation preserving parametrizations Bj �= S1 of the boundary components,thereby identifying the gauge group G(Bj) with the loop group LG = Map(S1; G) and
1(Bj; g) with Lg� := 
1(S1; g). Thus M(�) is an example of a Hamiltonian LGb-manifold with proper moment map � : M(�) ! (Lg�)b. It admits a description in3This inner product is related to the Killing form by h�; �i = �(8�2 nG)�1 tr(ad� ad�), where nG isthe dual Coxeter number of G.



8 E. MEINRENKEN AND C. WOODWARDterms of holonomies, just as the spaces M(�; �1; : : : ; �b):M(�) = n(a; c; �) 2 G2g �Gb�1 � (Lg�)b��� 2gYi=1[a2i�1; a2i] = bYi=1 Adci Hol(�i)o(8)where c1 = 1. In this description the action of g = (g1; : : : ; gb) 2 LGb is given byg � ai = Adg1(0) ai; g � cj = g1(0) cjgj(0)�1; g � �j = Adgj ��j � gj�1 dgjand the moment map is the projection to the (Lg�)b-factor.Note that the moment map is equivariant with respect to the a�ne action of LG onLg� which corresponds to interpreting Lg� as connections on S1 and LG as the gaugegroup.4 The basic examples are as follows:Example 3.1. a. The moduli spaceM(�10) of the 1-holed sphere is the based loop group
G = LG=G. The moment map sends h 2 
G to h � 0 = �h�1dh 2 Lg�.b. The moduli space M(�20) of the 2-holed sphere is LG � Lg�. The moment map is(h; �)! (h � �;��).The Hamiltonian loop group spaces M(�) have been studied from various points ofview by Donaldson [D1], Segal [S], S. Chang [C] and others. They satisfy the followingfactorization property, which we learned from S. Martin [M]:Theorem 3.2. Let � be obtained from a possibly disconnected 2-manifold �̂ by gluingtwo boundary components B� � @�̂. Let LG act on M(�̂) by the diagonal actioncorresponding to these two boundary circles; here we reverse the orientation on B� so thatthe B�-moment map is [Â] ! ���B�Â. The moduli space M(�) is given by symplecticreduction M(�) =M(�̂)==LG:This follows formally because the zero level condition is that the restrictions ÂjB�match up. A more detailed proof is given in [MW1].We view g as a subset of Lg� by identifying � 2 g with the connection �d�2� 2 
1(S1; g),so that the diagram g�� exp!!BBBBBBBBBLg� Hol // Gcommutes. The moduli spaces M(�bh; �1; : : : ; �b) with �xed holonomies are obtainedfrom the Hamiltonian LGb-manifold M(�bh) as symplectic reductions: Given �j 2 A �t � g � Lg� we haveM(�bh; �1; : : : ; �b) =M(�bh)�1;::: ;�b = ��1(�1; : : : ; �b)=(LG)�1 � : : :� (LG)�b :4Passing to the central extensiondLG makes this into a linear action, where Lg� is identi�ed withthe a�ne subspace Lg� � f1g � cLg�. Thus M(�) can also be viewed as a HamiltoniandLGb-manifoldwhere the central circle(s) acts with constant moment map 1.



MODULI SPACES OF FLAT CONNECTIONS 9To achieve a better understanding of these spaces we need to recall a few elementaryfacts about the a�ne coadjoint action of LG on Lg�. The fact that every connection onS1 is determined up to gauge equivalence by the conjugacy class of its holonomy meansthat Lg�=LG = G=Ad(G) = A:That is, every coadjoint LG-orbit passes through exactly one point of the fundamentalalcove A. For any � 2 A, the stabilizer group (LG)� is compact, and depends only on theopen face � of A containing �. It is isomorphic (via the map g 7! g(1)) to the centralizerin G of exp(�).The a�ne coadjoint LG-action admits �nite dimensional slices which can be con-structed as follows. Let A� be the union of all open faces � of A that contain � in theirclosure; thus (LG)� � (LG)� for � 2 A�. Then U� := (LG)� �A� is a slice for the actionat �.Proposition 3.3. Let �j � A be open faces containing �j. The pre-image��1(U�1 � : : :� U�b) �M(�bh)(9)is a smooth, �nite dimensional symplectic submanifold, and is a Hamiltonian (LG)�1 �: : : � (LG)�b-manifold with the restriction of � serving as a moment map. The modulispace (6) is obtained from (9) as a �nite dimensional reduction at �1; : : : ; �b.This follows from the symplectic cross-section theorem for Hamiltonian LG-manifoldswith proper moment maps. (See e.g. [MW1] for a proof.) Note that the restriction of� is only a�ne-equivariant if at least one of the �j is contained in the closed face of Aopposite to f0g. Shifting by the vector (�1; : : : ; �b) 2 (Lg�)b makes it into an equivariantmoment map. The �nite dimensional spaces (9) are generalized versions of the extendedmoduli spaces introduced by Chang, Huebschmann and Je�rey.The fact that the moduli spaces (6) can be obtained as �nite-dimensional reductionshas a number of implications. First of all, it shows that they are strati�ed symplecticspaces in the sense of Sjamaar-Lerman [SL] (see Appendix A.1), and therefore havewell-de�ned symplectic volumes. We also know that the function(�1; : : : ; �b) 7! Vol(M(�bh; �1; : : : ; �b))is continuous and piecewise polynomial over �(M(�bh)) \ int(A)b (see Appendix A.2).Another consequence is that if (�1; : : : ; �b) 2 Ab is a regular value and (�1; : : : ; �b) 2 Absu�ciently close to (�1; : : : ; �b), there is a symplectic �brationM(�bh; �1; : : : ; �b)!M(�bh; �1; : : : ; �b)with �ber a product of coadjoint orbits,(LG)�1 � (�1 � �1)� : : :� (LG)�b � (�b � �b) � Lg��1 � : : :� Lg��b(see Appendix A.3).



10 E. MEINRENKEN AND C. WOODWARD4. Construction of the CobordismInstead of reducing with respect to all LG-factors at once, we can also reduce withrespect to only some of the factors. This is important because the action of (LG)b�1 �(LG)b on M(�bh) is always free, so that the corresponding reduction is always regular.Reduced spaces near a given value of the moment map are �ber bundles over the reducedspace at that value. This would be automatic for �nite-dimensional Hamiltonian K-manifolds (see Appendix A.3) and is shown for Hamiltonian LG-manifolds in [MW2].Let us apply this to the case of the three-holed sphere. We wish to understand thereductions M(�30)�1;�2;� for �j small. From the holonomy description (8), we haveM(�30)0;0;� = 
G = LG=Gas a Hamiltonian LG-manifold (alternatively this also follows from the \Gluing equalsReduction" principle, Theorem 3.2). The holonomy description tells us furthermore thatthe zero level set for the LG2 � LG3-action is an associated bundle LG�G (G�G).Since the coadjoint orbit (LG)0 � � through a small value � 2 A is just the usualcoadjoint orbit O� for G, we obtain the following description of the nearby reductionsM(�30)�1;�2;�. Let LG0 = G act on the product of coadjoint G-orbits O��1 � O��2 by thediagonal action, with moment mapO��1 �O��2 3 (�1; �2) 7! �(�1 + �2) 2 g�:(10)The principal bundle G ! LG ! 
G has a canonical LG-invariant connection comingfrom the splitting of Lie algebras Lg = g � 
g. The minimal coupling form on theassociated bundle LG �G (O��1 � O��2) de�ned by this connection is the unique closed2-form that pulls back to the given 2-form on O��1 �O��2 and for which the LG-action isHamiltonian. The corresponding moment map is given byLG�G (O��1 �O��2) 3 [g; �1; �2] 7! � g � (�1 + �2):For �j su�ciently small the minimal coupling form is symplectic (i.e. weakly non-degenerate).Proposition 4.1. [MW2] For �1; �2 2 A su�ciently small there is an LG-equivariantsymplectomorphism M(�30)�1;�2;� �= LG�G (O��1 �O��2):(11)As a �rst application we recover Je�rey's result, Theorem 1.1: If �1; �2 are small weobtain a solution of �g � (�1 + �2) = �3 2 A with �j 2 O�j only if g is contained in thesubgroup of constant loops, G � LG. HenceM(�30)�1;�2;�3 = LG�G (O��1 �O��2)�3 = (O��1 �O��2)�3 = O��1 �O��2 �O��3==G;q.e.d.For general �j, Proposition 4.1 does not hold { in fact the induced space LG�G (O��1�O��2) will not even be symplectic if �1; �2 2 A get too big. However, just as in the �nitedimensional setting (see Appendix A.3) we can make the following weaker statement:



MODULI SPACES OF FLAT CONNECTIONS 11Let A0 := f� 2 A jh�max; �i < 1g be the set of all points in the alcove such that theisotropy group (LG)� is contained in (LG)0 = G.Theorem 4.2. [MW2] For all �1; �2 2 A0, there exists an LG-equivariant di�eomor-phism � : MI :=M(�30)�1;�2;� !MII := LG�G (O��1 �O��2)and an LG-invariant 1-form � on MI such that the 2-forms !I; !II and the momentmaps �I ; �II are related by��!II = !I + d�; ���II = �I � h�; (�)Mi:Our method of proof in [MW2] is to combine Proposition 4.1 with a Duistermaat-Heckman type result, using that the equivariant cohomology classes on both sides varylinearly with �1; �2. The slopes of both changes have to be equal since for small �j thetwo spaces are symplectomorphic.As we explained in Section 2, the existence of an equivariant di�eomorphism suchthat the equivariant 2-forms are cohomologous implies that there is a cobordism ofHamiltonian LG-manifolds MI �MIIin the sense of Ginzburg-Guillemin-Karshon. Theorem 1.2 follows immediately by re-duction: (MI)�3 � (MII)�3 . We thus need to compute reductions at �3 2 int(A) of theHamiltonian LG-manifold LG�G (O��1 �O��2). The �3-level set is given by the equation� g � (�1 + �2) = �3:Since G � t+ = g, we may assume �(�1 + �2) 2 t+. Then g�1 maps �3 2 int(A)to �(�1 + �2) 2 t+, which implies that g � A � t+: In other words, g�1 representsan element w 2 W+a� with w�3 = �(�1 + �2). This shows that the reduction at �3 is adisjoint union of all reductions (O��1�O��2)w�3 as w ranges over overW+a�. A careful checkof orientations gives Theorem 1.2. We see that it is in fact su�cient that �1; �2 2 A0and �3 2 int(A).The above argument generalizes to the case of a b-holed sphere with b � 3: We haveM(�b0; �1; : : : ; �b) � aw2W+a�(�1)length(w) (O��1 � : : :�O��b�1 �O�w�b)==Gif �1; : : : ; �b�1 2 A0 and �b 2 int(A) are generic.Remark 4.3. For the case of G = SU(n), the cobordism is actually a cobordism of man-ifolds. The reason why no orbifold singularities appear is as follows. By the holonomydescription, every stabilizerK for the action of LGb onM(�bh) is isomorphic (by the mapLG! G; g 7! g(1)) to an intersection Tj Zgj of centralizers of elements in G. For everyk 2 K and every gj in this list, gj is contained in Zk, so that Zgj contains the center ofZk. Consequently, K can only be discrete if every Zk is semi-simple. However, preciselyfor G = SU(n) there are no semi-simple centralizers other than G itself, so that K has tobe equal to Z(SU(n)). Since the cobordism is given by the product M(�30)�1;�2 � [0; 1],



12 E. MEINRENKEN AND C. WOODWARDit follows that every discrete stabilizer for the LG-action is Z(G). Hence any reducedspace at a regular value is smooth.5. Witten's volume formulasIn this section we explain how to obtain Witten's volume formulas from the cobordismin Theorem 1.2. Since Liouville volumes of symplectic orbifolds are clearly invariantsunder oriented cobordism, we have the formulaVol(M(�30; �1; �2; �3)) = Xw2W+a�(�1)length(w) Vol(O�1 �O�2 �Ow�3==G):(12)The volumes on the right hand side are given by the classical analogue (4) of Steinberg'sformula discussed in Section 2. Combining (4) with (12) gives an explicit formula forthe volumes of the moduli space M(�30)�1;�2;�3 . It is convenient to replace the sum overW+a� =Wa�=W �= � by a sum over the integral lattice � � Wa�, using the W -invarianceof the function � 7!Pw2W (�1)length(w)�(w�� �):Theorem 5.1. For � = (�1; �2; �3) 2 int(�(M(�30)) \ A3), the Liouville volume of themoduli space M(�30)�1;�2;�3 is given by the formulaVol(M(�30)�1;�2;�3)= (�1) 12 dimG=T #Z(G)Vol(T ) Xl2� Xw1; w22W(�1)length(w1 w2)�(w1�1 + w2�2 + �3 + l)(13)(where the wi-summation is to be carried out before the summation over the integrallattice �).Note that this holds without regularity assumptions on the �j, since it is knownfrom basic properties of DH-measures that the volume function is continuous overint(�(M(�30)) \ A3), even at singular values.This formula can be re-cast in the following form due to Witten. Let A : T ! R bethe W -anti-invariant functionA(exp �) = Y�2R+ 2 sin(�h�; �i):We label the irreducible G-representations by their dominant weights � 2 ��+ := �� \ t+and let �� : G! C denote the character and d� = ��(e) the dimension.Theorem 5.2. (Witten formula for the three-holed sphere.) For � = (�1; �2; �3) 2int(�(M(�30)) \ A3), the volume of the moduli space of the three-holed sphereM(�30)�1;�2;�3 is given byVol(M(�30)�1;�2;�3) = #Z(G) Vol(G)Vol(T )3 3Yj=1A(e�j ) X�2��+ 1d� 3Yj=1��(e�j ):(14)



MODULI SPACES OF FLAT CONNECTIONS 13Here Vol(T ) and Vol(G) are the Riemannian volumes with respect to the normalizedinner product on g.Proof. Note �rst that the right hand sides of both (14) and (13) de�ne naturally Wa�-anti-invariant tempered distributions in �1; �2; �3 2 t. It is su�cient to show that weget the same answer if we apply the constant coe�cient di�erential operatorD3 = Y�2R+h�; @@�3 i:to both expressions. (We use the fact that D3 u = 0 has no W -anti-invariant solutionsin the space of tempered distributions.) The measure � satis�es D3�(�3) = �(�3). Usingthe Poisson summation formula, we obtain:1#Z(G)D3Vol(M(�30)�1;�2;�3)= (�1) 12 dimG=TVol(T ) Xl2� Xw1; w22W(�1)length(w1 w2)�(w1�1 + w2�2 + �3 + l)= (�1) 12 dimG=TVol(T )2 X�2�� Xw1; w22W(�1)length(w1 w2)e2�ihw1�1+w2�2+�3;�i:In this sum, weights � 2 �� which lie on a wall of some Weyl chamber do not contributebecause Xw2W(�1)length(w)e2�ihw �;�i = 0if � has a non-trivial stabilizer in W . Since �� \ int(t+) = � + ��+, we can rewrite thesum as (�1) 12 dimG=TVol(T )2 X�2��+ Xw1; w2; w2W(�1)length(w1 w2) e2�ihw1�1+w2�2+�3;w(�+�)i= (�1) 12 dimG=TVol(T )2 X�2��+ Xw1; w2; w32W(�1)length(w1 w2) e2�ihw1�1+w2�2+w3�3;�+�i= D3 (�1) 12 dimG=TVol(T )2 X�2��+ (2�i)� 12 dimG=TQ�2R+h�; �+ �i 3Yj=1 � Xwj2W(�1)length(wj)e2�ihwj�j ; �+�i�:The last expression is identi�ed with the right hand side of (14), using the Weyl characterformula ��(exp �) = Pw2W (�1)length(w)e2�ihw(�+�);�ii 12 dimG=T A(e�)(15)



14 E. MEINRENKEN AND C. WOODWARDand the Weyl dimension formulad� = Q�2R+h�; �+ �iQ�2R+h�; �i = (2�) 12 dimG=T Vol(G=T ) Y�2R+h�; �+ �i:(16)Here Vol(G=T ) is the Riemannian volume of G=T with respect to the inner product ong (see e.g. [BGV]).Remark 5.3. The di�erential equation for D3Vol(M(�30)�1;�2;�3) appearing in this proofis interpreted in Je�rey-Weitsman [JW2] in terms of symplectic volumes of intersectionsof divisors in the moduli space.From the volume formula for the three-holed sphere, formulas for the general case areobtained by gluing. For this we need:Proposition 5.4. Let � = �bh be obtained from a possibly disconnected 2-manifold �̂ bygluing two boundary components B� � @�. Suppose � = (�1; : : : ; �b) 2 int Ab is suchthat M(�; �1; : : : ; �b) contains at least one connection with stabilizer Z(G). ThenVol(M(�; �1; : : : ; �b)) = 1k ZAVol(M(�̂; �1; : : : ; �b; �; ��))jd�jHere the measure jd�j on A � t is the normalized measure for which t=�� has measure1, and k = 1 if �̂ is connected and equal to #Z(G) if �̂ is disconnected.This is proved in Je�rey-Weitsman [JW2]. It also follows from the \Gluing equalsReduction" principle, Theorem 3.2 since the proof of Theorem A.3 goes through forHamiltonian loop group actions with proper moment maps ([MW1], Proposition 3.12).The reason for the factor 1k is that the generic stabilizer for the LG � LG-action onM(�̂; �1; : : : ; �b; �; �) is Z(G) if �̂ is connected, Z(G) � Z(G) otherwise. Carrying outthe integrations gives:Proposition 5.5. Suppose 2h + b � 3. For all �1; : : : �b 2 int(A) such thatM(�bh; �1; : : : ; �b) contains the gauge equivalence class of at least one connection withstablizer Z(G), the Liouville volume of the moduli space M(�bh; �1; : : : ; �b) is given bythe formulaVol(M(�bh; �1; : : : ; �b)) = #Z(G)Vol(G)2h�2+bVol(T )b bYj=1A(e�j ) X�2��+ 1d2h�2+b� bYj=1 ��(e�j ):Proof. This follows from Proposition 5.4 and (14) by iterated gluing of 3-holed spheres.We have to use that A(e�)A(e��) = jA(e�)j2 and that by Weyl's integration formula andthe orthogonality relations of irreducible characters,ZA ��1(e�)��2(e�) jA(e�)j2 jd�j = � 1 if �1 = ��20 otherwise



MODULI SPACES OF FLAT CONNECTIONS 15where jd�j is the measure on t which is normalized with respect to the lattice �. InProposition 5.4 we need to use instead Lebesgue measure normalized with respect to ��.Since these two measures di�er by a factor Vol(T )2 (where Vol(T ) is the volume of T withrespect to the inner product on t � g), we get an overall factor Vol(T )2(3h�3+b) from the3h� 3+ b gluing circles, which combines with the factor Vol(T )�3(2h�2+b) correspondingto the number of 3-holed spheres to a factor Vol(T )�b.Remark 5.6. The moduli space M(�0h) for a surface without boundary and genus h � 2always contains a connection with stabilizer equal to Z(G).Finally, we would like to get rid of the assumption that the �j lie in the interior of thefundamental alcove. For � = (�1; : : : ; �b) 2 Ab such that ��1(�) contains a connectionwith stabilizer Z(G), we have by Appendix A.1, Equation (19)Vol M(�bh; �1; : : : ; �b) = lim�j!�j�j2int(A) Vol M(�bh; �1; : : : ; �b)Vol(K1 � (�1 � �1)) : : :Vol(Kb � (�b � �b))where Kj = (LG)�j . Note that Kj contains the maximal torus T of G. A natural choiceof positive Weyl chamber for Kj is given by t�+;j = R+ � (A� �j), and the correspondingset R+j of positive roots of Kj is the set of all roots � of G such that h�; �ji 2 f0;�1g.The Liouville volume of a coadjoint orbit Kj � (�j � �j) is related to the Riemannianvolume of Kj=T byVol(Kj � (�j � �j)) = (2�) 12 dimKj=T Y�2R+j h�; �j � �ji Vol(Kj=T )(17)(see e.g. [BGV]). Since Kj �= Zexp(�j) the factor Vol(Kj=T ) combines with Vol(G=T )�1to give the Riemannian volume of the conjugacy class C�j = G=Zexp(�j ). Moreoverlim�j!�j Q�2R+ 2 sin(�h�; �ji)Q�2R+j 2�h�; �j � �ji = Y�2R+h�;�ji62f0;1g 2 sin(�h�; �ji)so that we obtain:Theorem 5.7 (Witten Formula). Suppose 2h + b � 3. Let � = (�1; : : : ; �b) 2 Ab besuch that the level set ��1(�) contains a connection with stabilizer Z(G). The volumeof the moduli space of the 2-manifold �bh with �xed holonomies �1; : : : ; �b is given by theformulaVol(M(�bh; �1; : : : ; �b))= #Z(G) Vol(G)2h�2 bYj=1 �Vol(C�j ) Y�2R+h�;�j i62f0;1g2 sin(�h�; �ji)� X�2��+ 1d2h�2+b� bYj=1 ��(e�j )



16 E. MEINRENKEN AND C. WOODWARDIn particular, Vol(M(�0h)) = #Z(G) Vol(G)2h�2 X�2��+ 1d2h�2�The above formulas can be made more explicit for G = SU(2). Viewed as an elementof t, the exponential of � is the diagonal matrix �I 2 Z(SU(2)) and the fundamentalalcove is the interval [0; �]. Since � = �2 has length 1p2 , we have Vol(T ) = p2. Also,Vol(SU(2)=T ) = 12� and #Z(G) = 2. The character of the k-dimensional representationis given by �k(exp(t�)) = sin(�kt)sin(�t) :For b = 0 the above formula readsVol(M(�0h)) = 2h(2�)2h�2 �(2h� 2):In particular, Vol(M(�02)) = 1�2 �(2) = 16 which matches with the well-known factM(�02) �= C P (3). For b = 1, � = t� we have to distinguish the three cases 0 < t < 1and t = 0; 1. For t = 0 we have Vol(M(�1h; 0)) = Vol(M(�0h)) as expected. For t = 1we �nd �k(exp �) = (�1)k+1 k and thereforeVol(M(�1h; �)) = 2h(2�)2h�2 1Xk=1 (�1)k+1k2h�2 = 2h � 22�h(2�)2h�2 �(2h� 2):For 0 < t < 1 we haveVol(M(�1h; t�)) = 2h 1Xk=1 1(2�k)2h�1 sin(�kt):The Fourier summation gives Bernoulli polynomials, see [D2]. In particular, for h = 1the result is the sawtooth functionVol(M(�11; t�)) = 2( t2 � [ t2]):Appendix A. Background on Symplectic ReductionIn this appendix we summarize some basic facts about reduction of Hamiltonian K-manifolds, where K is a compact connected Lie group. Let T � K be the maximaltorus of K, and t�+ � t� � k� a closed fundamental Weyl chamber. Thus t�+ = k�=Kparametrizes the set of coadjoint orbits in k�. The stabilizer K� of a point � 2 t�+depends only on the open face of t�+ containing �; in particular K� = T for � 2 int(t�+).



MODULI SPACES OF FLAT CONNECTIONS 17A.1. Singular reduced spaces. We start with a brief discussion of singular symplecticquotients. Most of this material is due to Sjamaar-Lerman [SL]. Suppose that (M;!;�)is a connected symplectic Hamiltonian K-manifold (dimM = 2n) with proper momentmap. Decomposing M according to conjugacy classes of stabilizer groups, and thendecomposing further into connected components gives the orbit type strati�cationM = [M�:There exists a unique principal stratumMprin which is open and dense; the correspondingstabilizer group � � K (de�ned up to conjugacy) is called the principal stabilizer.Suppose now that � 2 k� is a possibly singular value of �. Using local normal forms onecan show that every intersection ��1(�) \M� is smooth, and the decomposition��1(�) = [���1(�) \M�makes ��1(�) into a strati�ed singular space. Moreover, taking the quotient by K�one obtains a strati�cation of the reduced space M� = ��1(�)=K� all of whose strataare symplectic manifolds. It is shown in [SL] that every M� has a unique open, denseconnected principal stratum Mprin� . If ��1(�) meets Mprin thenMprin� = (��1(�) \Mprin)=K�:The local structure of the singular space M� is that of an iterated symplectic cone (see[SL], section 6), which implies in particular that the singular strata have �nite Liouvillevolume. One de�nes Vol(M�) to be the Liouville volume of Mprin� .Let us now assume that the generic stabilizer � is discrete, which implies that �jMprinis a submersion. From the Liouville form !n=n! and any translation invariant volumeform on k�, the level sets ��1(�)\Mprin acquire natural volume forms and orientations.Their volume Vol(��1(�)) := Vol(��1(�)\Mprin) is related to the volume of the reducedspace Vol(M�) by Vol(��1(�)) = Vol(M�)VolK � � Vol(K)#�(18)where Vol(K � �) is the symplectic volume of the coadjoint orbit through �, and Vol(K)the volume of K with respect to the dual measure on k. The function � 7! Vol(��1(�)) iscontinuous over �(Mprin). Combining this with Vol(K ��)=Vol(K ��) = Vol(K� �(���)),the symplectic volume of the coadjoint K�-orbit through � � � 2 k��, it follows that forany � 2 �(Mprin) \ t�+, Vol(M�) = lim�!� Vol(M�)Vol(K� � (�� �)) :(19)This is particularly useful since it allows to compute volumes of singular reduced spacesas limits of volumes of regular reduced spaces. We emphasize that (19) does not hold if� 2 t�+ is not contained in �(Mprin).



18 E. MEINRENKEN AND C. WOODWARDA.2. Duistermaat-Heckman. Suppose that H is another compact Lie group and that(M;!; (�;	)) is a compact Hamiltonian K �H-manifold. Let � be an open face of t�+.The tangent space to � is given by z(K�)�, the dual of the Lie algebra of the center ofK�. Let �(M)reg be the set of regular values of �.Theorem A.1 (Duistermaat-Heckman). Let M be a compact Hamiltonian K � H-manifold with moment map (�;	). The K-reduced spaces M� for � in a connectedcomponent of the set � \ �(M)reg are H-equivariantly di�eomorphic, and the cohomol-ogy class of the H-equivariant 2-forms ~!� varies linearly: That is,[~!�1 ]� [~!�2 ] = h�1 � �2; ~cifor a �xed class ~c 2 H�H(M�1)
 z(K�).An immediate consequence of the DH-theorem is that if (M;!;�) is a compact sym-plectic Hamiltonian K-manifold, the function � 7! Vol(M�) is given by a polynomial onevery connected component of � \ �(M)reg.Note that in Theorem A.1 we did not require that ! be symplectic. The result is aconsequence of two facts in equivariant cohomology: First, for any compact HamiltonianK �H-manifold (M;!; (�;	)), with 0 a regular value of �, the equivariant cohomologyclass of ~!0 is the image of the K �H-equivariant class of ~! under the mapH�K�H(M)! H�K�H(��1(0))! H�H(M==K):Second, for any regular value � of �, zero is a regular value for the diagonal action onM � O�� , and M� = M � O�� ==K. Clearly, as � varies in � the equivariant cohomologyclass of the equivariant 2-form on M �O�� �= M �K=K� varies linearly.A.3. Symplectic Fibrations. Suppose that (M;!; (�;	)) is a compact a HamiltonianK � H-manifold. Let �; � be open faces of t�+ with � � � , and let � 2 � and � 2 �regular values of �, contained in the same connected component of �(M)reg. Choosingan H-equivariant di�eomorphism ��1(�) �= ��1(�) makes M� into a �ber bundle overM� , with �ber the coadjoint orbit K�=K� �= K� � (�� �) � k��:M� �= ��1(�)�K� (K� � (�� �))�:Let � 2 
1(��1(�); k�)K� be an H-invariant principal connection, and let ��;� be theKKS-form on K� � (�� �). The closed 2-form on ��1(�)�K� � (�� �) given by���! � ��;� � dh�; �i(where �� : ��1(�) ! M and � : K� � (� � �) ! k�� are the embeddings) is basic, andtherefore descends to a closed 2-form on the associated bundle ��1(�)�K� (K� �(���))�known as the minimal coupling form of Sternberg [S]. It is easy to see that the H-actionon this bundle is Hamiltonian, with moment map naturally induced from 	.Theorem A.2 (Fibrations of Reduced Spaces). Let the associated bundle��1(�)�K� (K� � (�� �))� !M�(20)



MODULI SPACES OF FLAT CONNECTIONS 19be equipped with the minimal coupling form for an H-invariant principal connection � 2
1(��1(�); k�). The H-equivariant closed 2-form on M� is equivariantly cohomologousto the equivariant minimal coupling form. If ! is symplectic and � su�ciently close to�, the minimal coupling form is symplectic, and M� is equivariantly symplectomorphicthe associated bundle ��1(�)�K� (K� � (�� �))�.Symplectic �brations by coadjoint orbits are studied in great detail in the book [GLS].A.4. Diagonal reduction. Suppose now that (M;!; (�+;��)) is a compact connectedsymplectic Hamiltonian K � K-manifold. (Typically M is the direct product of twoHamiltonian K-manifolds (M�; !�;��).) Suppose also that the generic stabilizers�diag � diag(K) for the diagonal K-action on ��1diag(0) and � � K �K for the K �K-action on M are discrete. Let � : t�+ ! t�+ be the involution de�ned byK � (��) := K � (��) �= (K � �)�:Theorem A.3. The symplectic volume of M== diag(K) is related to the volumes of theK �K-reduced spaces byVol(M== diag(K)) = Vol(T ) #�#�diag Zt�+ Vol(M�;��) jd�j:Here jd�j is any choice of Lebesgue measure on t� and Vol(T ) the volume of the toruswith respect to the induced measure on t.Notice that this result is more or less obvious if K = T is a torus. The general casereduces to the abelian case as follows: By the Guillemin-Sternberg symplectic cross-section theorem, the subset Y = (�+;��)�1(int(t�+)�� int(t�+)) is a smooth symplecticsubmanifold ofM , and is a Hamiltonian T �T -manifold with the restriction of (�+;��)as a moment map. Moreover, (K � K) � Y is open and dense in M which implies thatY== diag(T ) �M== diag(K) is open and dense.References[A] M. F. Atiyah: The geometry and physics of knots. Cambridge University Press, Cambridge, 1990[AB] M. F. Atiyah, R. Bott: The Yang-Mills equations over Riemann surfaces. Phil. Trans. R. Soc.London 308 (1982), 523{615.[BGV] N. Berline, E. Getzler, M. Vergne: Heat kernels and Dirac operators. Grundlehren der Mathe-matischen Wissenschaften 298. Springer-Verlag, Berlin, 1992.[BrD] T. Br�ocker, T. tom Dieck: Representations of compact Lie groups. Graduate Texts in Mathemat-ics, 98. Springer-Verlag, New York, 1985.[C] S. Chang: In preparation.[D1] S. K. Donaldson: Boundary value problems for Yang-Mills �elds. J. Geom. Phys. 8 (1992), 89{122.[D2] S. K. Donaldson: Gluing techniques in the cohomology of moduli spaces. Topological methods inmodern mathematics (Stony Brook, NY, 1991), 137{170, Publish or Perish, Houston, TX, 1993[GGK] V. Ginzburg, V. Guillemin, Y. Karshon: Cobordism theory and localization formulas for Hamil-tonian group actions. Int. Math. Res. Notices 5 (1996), 221{234.[GS] V. Guillemin, S. Sternberg: Symplectic techniques in physics. Cambridge University Press, 1990.
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