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1. Introduction

Geometry is part of the everyday lives of children. Suppose one child wants to
bounce a ball to a friend. The child has to figure out the angle to throw the ball at
so that the friend can catch it. The weight of the ball and the force needed to throw
it are related to the surface area of the ball (if hollow) or its volume (if solid). In
order to connect geometry to kids’ everyday lives, middle school geometry teachers
should have a thorough and nuanced content knowledge.

This book is meant to be used for university courses aimed at deepening the content
knowledge of (i) teachers currently teaching geometry in middle school; (ii) those
teaching lower grades and working towards middle grades math accreditation; and
(iii) teachers of special needs children. The text includes workshop problems at
the end of each chapter which are meant to be worked on collaboratively. It also
contains various problems, some of which are labelled as activities meaning that
they are especially amenable to in-class discussion.

Each chapter ends with a section containing problems from various state level assess-
ments. Several of these problems are included as examples of the type of problems
that have been used in past assessments on that chapter’s topics, and could be
used by the teacher as practice or assessment problems for their students. Other
problems are included to highlight the fact that sometimes assessments contain
problematic (vague) language or misuse terminology. Lastly, some problems are
followed by sample student work, which serves to familiarize the teacher-learners
with common student reasoning and/or errors; the sample work can also be used in
the middle school classroom with the purpose of having the students critique the
presented work. The optional topics (refraction, ellipses, etc.) are indicated with
asterisks in the section headers. The last chapter contains an instructor’s guide to
some of the activities, since the motivation for and subtleties in the activities may
not be clear at first reading.

The book is designed to be compatible with the Common Core State Standards
in Mathematics and related standards. Originally we planned to discuss how each
problem related to particular standard in the Common Core; but this turned out
to be problematic because of continual changes in the Common Core and the fact
that many states have chosen to adopt closely related, but not identical, standards.
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2. Distances, lines, and measurement

Imagine that a child rolls a ball to another child who is close by. How can this
situation be represented geometrically? The locations of the two children and the
ball might be represented as points, while the path of the ball would be represented
as a line segment (if the ball is stopped) or a ray (if the second child fails to stop
the ball and it keeps going.)

The concepts of points, lines, and so on are idealized versions of what happens in
real life, where the positions of the children and ball are much more complicated
than just three points, the actual path is curved, and the ball does eventually stop
so the path is not a ray.

The objectives of this chapter are: (i) to introduce the concepts of points, lines,
rays, line segments and their properties; (ii) to learn what it takes to make a precise
definition; (iii) to introduce the concept of congruence at an informal level; (iv) to
learn to reason using distances; and (v) to discuss issues involved in measurements,
including rules of measurements, choice of units, and working correctly with units.

2.1. Lines, rays, segments, and distances.

Children should learn to use clear definitions in discussion with others and in their
own reasoning. In geometry it is not possible to be completely precise at a level
suitable for children, and we will simply try to be as precise as possible. We start
by giving descriptions of the most fundamental terms in geometry. They are shown
in Figure 1.

P

R

Q

←→
PQ

T

S

TS

U

−→
UR

Figure 1. A line, line segment, and ray

A point is a location with no width, denoted P,Q,R, etc.
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A line is a straight path extending infinitely in both directions. The line

through points P and Q is denoted
←→
PQ.

A ray is a portion of a line on one side of a point on the line. The ray

starting at U and passing through R is denoted
−−→
UR.

A line segment is a portion of a line between two points on the line. The
segment between T and S is denoted TS.

A plane is a flat surface extending infinitely in all directions.

Graphically we represent points with some width, since otherwise the points would
be invisible. An arrowhead indicates that a path extends infinitely in that direction
as in Figure 1.

Each geometric object above is an idealization that represents part of the reality
familiar to children. A point could represent the location of the child’s desk in a
classroom; a line could represent a highway passing through the child’s town; a line
segment could represent the path of a ball rolled between two children and a ray
could represent the path of a kicked ball as it moves away from the kicker.

Any type of geometry requires some set of axioms, which are statements that are
taken to be true and on which the rest of the theory is built. The descriptions of
a line as a straight path, point as a location and so on are not really mathematical
definitions but rather informal descriptions that are part of the set of axioms for
the kind of geometry considered here. We will not emphasize the axiomatic point
of view.

Distances between points

Distances depend on the choice of a unit segment whose length we all agree on. For
example, in the United States citizens use Imperial units such as one inch or one
foot but also metric units such as one centimeter or one meter. If a ruler is exactly
one foot long, then it represents a unit segment of one foot. The length of a line
segment is the number of unit segments (including parts of unit segments) needed
to cover it. For example, the segment below is covered by exactly 8 full units and
2 half units in length, and so has total length 9 units.

Figure 2. Dividing a line segment into unit intervals and parts of intervals

The distance between two points P,Q is the length of the segment between them,
denoted PQ. For example, in Figure 3, the distance between P and Q is approx-
imately 8.9 cm, not 12 cm. This is the distance a person would travel in the best
possible situation that there is a road, path, etc. from the starting point straight to
the ending point.
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8 cm
P R

4 cm

Q

Figure 3. The distance between P and Q is the length of a seg-
ment that is not shown

Measuring distances

Since points cannot be drawn with zero width, each point is represented as a dot
with some small width. The distance between the points is represented by the
distance between the centers of the dots.

To measure the distance between points in a plane, place a ruler so that the centers
of the dots representing the points lie on the edge. Place zero on the ruler at the
center of the dot representing the first point, and read off the distance to the center
of the dot representing the second point.

Activities involving measuring will often have children using manipulatives. Some
of the most accessible manipulatives for children are parts of their own bodies. For
example, children might measure the length of one of their fingers to get an idea
of length and different units. Children might be asked to guess the length of their
finger first, and then measure to assess the accuracy of their guess. Some of the
issues involved in such an activity include where the finger starts and how to align
the ruler with the object being measured.1

Figure 4. Measuring the length of a finger

Common classroom objects such as pencils, books, or sides of the desk can also
be used for activities involving guessing then measuring. Other useful manipula-
tives in the geometry class to which we will be referring throughout the book are
Magna-Tiles, Zome tools, and Pattern blocks. These are best suited for work with

1Photo credit I. Radu.

http://magnatiles.com/
http://www.zometool.com/
http://products.lakeshorelearning.com/search#w=pattern\ blocks
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two-dimensional and three-dimensional objects, but one could certainly explore the
length of the various Zome sticks, or of the edges of a Magna-Tile piece or of a
pattern block.

2.2. Congruence and equality of segments.

Often in sports games there are two goals at the end of a field. In order for the game
to be fair the goals should be the same shape and size. Two objects that are the
same shape and size are called congruent. However, this informal definition can be
very misleading since shape and size are somewhat vague terms. For example, do a
short and long rectangle have the same shape because they are both rectangles? A
better definition that avoids these problems is the following.

Two shapes are congruent if one can be changed into the other by a combination
of slides, flips, and turns.

So two line segments are congruent if and only if one segment can be moved without
stretching to exactly match the other. Types of motions will be discussed in more
detail in Chapter 7.

We write PQ ∼= RS if the segments PQ, RS are congruent. Often congruent
segments are indicated in a figure by giving each the same number of hash marks.
For example, in Figure 5, segments TU and TS are congruent, but TU and US are
not.

T

SU

Figure 5. Congruent and non-congruent segments
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Congruence of segments via lengths

Calling the sentence above the definition of congruence means that the sentence
above explains the meaning of the word congruent. Statements that are true in
mathematics based on already known or agreed upon statements are called theorems.
Here is an example of a theorem about congruence of line segments:

Line segments are congruent if and only if they have the same length.

The following is a viable argument for why the theorem is true. A hands-on version
of it is likely to be accessible to middle school students.

We justify the two directions of the theorem separately. First, if two segments are
congruent, then one could be moved to match the other, so their corresponding
endpoints would also match. Therefore, the two segments have to be of the same
length. Conversely, given two line segments with the same length, we can slide
the segments so that they have a common endpoint. Then we can rotate one of
the segments so the two line segments point in the same direction. Since the two
segments have the same length, the second endpoints of the two segments now
match. Therefore, the two segments are congruent. See Figure 6 for a pictorial
representation of this argument in which the segments are represented by pens.

Figure 6. Demonstration of congruence

The property of being congruent if and only if the lengths are the same does not
hold for non-straight paths. By a path we mean the set of positions traced out by a
moving point. The length of a path is the number of units of length (including parts
of units) needed to cover it. Two paths may have the same length without being
congruent. Figure 7 shows two paths with the same length that are not congruent.

Figure 7. Non-congruent paths with the same length
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Congruence versus equality

Two lines are equal if they are actually the same line. For example, if P and Q

are points, then the line
←→
PQ is exactly the same as (that is, geometrically coincides

with) the line
←→
QP , and so we can write

←→
PQ =

←→
QP .

Similarly, rays and line segments are equal if they geometrically coincide. Imagine
that one child rolls a ball to another in approximately a straight line segment, and
the other child rolls it back. The path of the ball is approximately a line segment;
let’s call this segment PQ for the first roll and QP for the return roll. As line

segments, PQ and QP are equal. The rays
−−→
PQ and

−−→
QP are not equal since they

are infinite in different directions. See Figure 8 where
−−→
PQ =

−→
PR.

R

Q

P

−→
PQ =

−→
PR

←→
PQ =

←→
PR =

←→
QR

Figure 8. Equal rays and lines

Objects can be congruent without being equal. Sometimes, when someone talks
informally about line segments being “the same”, the person may mean that the
two segments are congruent. If so, one uses the symbol ∼=. However, there are
some situations where one wants to use strict equality of geometric objects to mean
“geometrically coincides with”.

Sometimes it is taught that congruence should be used for geometric objects, and
equality for their measurements. It might be helpful to tell students that this is
usually the case in most, but not all, geometric arguments.
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2.3. Tools for drawing and measuring.

Children should be familiar with tools in geometry appropriate for their grade or
course and to make sound decisions about when each of these tools might be helpful,
recognizing both the insight to be gained from their use and their limitations. They
should also be able to use technological tools such as geometry software packages,
if age-appropriate, to explore and deepen their understanding of concepts.

Tools for drawing lines, rays and line segments include straightedges and rulers as
well as computer packages such as the open-source package GeoGebra. A straight-
edge is a ruler without distances marked.

If you are viewing this document on a computer, tablet, or phone with internet
access, clicking on the following link will open the software package GeoGebra.

GeoGebra

On the “GeoGebra apps” page, if you click on “Geometry”, you will see several
tools at the top of the screen.

The arrow tool allows objects to be selected and moved.

The point tool allows points to be drawn. GeoGebra automatically labels
them A,B,C , and so on.

The line tool allows lines to be drawn. Follow the instructions to first choose
one point on the line, then another.

Each tool button in the toolbar has a small arrow that allows that tool to be changed
to another. For example, clicking on the little arrow in the line tool allows you to
change it to a line segment tool, either using two points to specify a line segment
or specifying an endpoint and a length.

Other tools allow the creation of polygons, circles, angles, reflections, rotations,
translations, and so on. We will discuss these notions in later chapters.

http://www.geogebra.org/webstart/geogebra.html
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Problem 2.3.1. Compare and contrast the designated shapes as indicated on the
following page. For each pair of shapes, find one similarity and one difference;
measure the shapes with a ruler or tape measure as necessary. Try to use the
vocabulary and notation introduced above, e.g. “in the sixth shape the two line
segments AB and BC have endpoint B in common ..... ”.

A
B

A
B

C D

A

B

C

B

C

A

A
B

C

A

B

A B

A
B

A B A

BA B

1

3

5

7

9

11

2

4

6

8

10
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Shape Shape Ways shapes are alike Ways shapes are not alike
Shape 1 Shape 3

Shape 9 Shape 11

Shape 2 Shape 4

Shape 6 Shape 8

Shape 8 Shape 10
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Working correctly with units

Children should learn to be careful about specifying units of measure in geometry,
and to work with units correctly throughout a problem. When adding lengths, the
unit should appear on each side of the equals sign, as shown below:

2 in + 3 in + 2 in + 3 in = (2 + 3 + 2 + 3) in = 10 in

or, in more detail,

2 in + 3 in + 2 in + 3 in = 2× 1 in + 3× 1 in + 2× 1 in + 3× 1 in

= (2 + 3 + 2 + 3)× 1 in

= 10× 1 in

= 10 in.

Many people will omit the units from intermediate steps as a way of saving time;
please be aware that this is a “shortcut”, that is, not really correct but may be
acceptable in some circumstances.

When converting lengths from one unit to the other, units should be used correctly,
as in:

24 in = 24 in
1ft

12 in
=

24

12
ft = 2ft

or

24 in = 2(12 in) = 2ft.

This seems to require unnecessary effort now, but it will help later with more
complicated volume and area problems, as well as more complicated conversions.
Even if a student or teacher chooses to drop units from part of the computation, the
person should realize that he or she is taking a shortcut (i.e., writing it wrongly.)
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2.4. Arrangements of lines and points.

The paths of two children on a playground that meet are said to intersect. If the
paths intersect, then the children are in danger of colliding. They collide if they meet
the intersection point at the same time. On the other hand, if they are running side
by side then they are running in parallel and will not intersect unless they change
direction. Children who are lined up in a hallway are colinear: they all are in the
same line. In what follows we define these terms more precisely and show examples
of each in Figure 9.

Colinear points

Intersecting lines

Parallel line segmentsA bisected line segment

Parallel linesPerpendicular lines

Figure 9. Configurations of lines and segments

Two lines intersect if they meet, that is, have points in common.

Two lines that do not intersect and lie in the same plane are parallel.

Two lines that meet at a right angle are perpendicular.

Two line segments are parallel if they are part of parallel lines.

Points are colinear if they lie on the same line.

A line segment is bisected by an intersecting line if it is cut into two con-
gruent pieces, that is, two pieces of equal length.

For example, two points are always colinear, because there is a line passing through
them. Note that the line on which they lie does not need to be drawn for the points
to be colinear. Three points may or may not be colinear. If they are not colinear,
then they are the vertices of a triangle. (Triangles are presented in a later chapter.)
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Problem 2.4.1. Compare and contrast the designated shapes; add points with
labels as necessary. For each pair of shapes, find one similarity and one difference.

A C B

A B

C

A C B

A C BB

A B

C D

A B

C D

1

3

5

7

9

10

2

4

6

8
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Shape Shape Ways shapes are alike Ways shapes are not alike
Shape 1 Shape 3

Shape 5 Shape 7

Shape 7 Shape 9

Shape 9 Shape 10

Shape 2 Shape 4

Shape 6 Shape 8
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Problem 2.4.2. Consider the drawing with points P,Q,R, S, T, U marked.

P RQ

S

T

U

(1) Draw PS,
−→
QS, and finally

←→
RS.

(2) Describe (using standard notation) a pair of lines that are perpendicular,
so that each line passes through two of the given points. Explain how you
know the lines are perpendicular.

(3) Describe (using standard notation) a pair of lines that are parallel, each
passing through at least two of the given points. Explain how you know the
lines are parallel.

(4) Measure the distances PQ,QR,PR. Add your measurements to find PQ+
QR,QR+PR,PQ+PR. (Do not adjust so that you get the “right” answer.)

PQ QR PR PQ + QR QR + PR PQ + PR

(5) Measure the distances PQ,QS, PS. Add your measurements to find PQ+
QS,QS+PS, PQ+PS. Explain how these are related to PQ,QS and PS.

PQ QS PS PQ + QS QS + PS PQ + PS
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2.5. Reasoning using distances.

Children should be able to reason abstractly and quantitatively about distances,
and relate the language of geometry to situations in their own life. For example,
the shortest distance between any two children (in plane geometry) is the length of
the line segment between them, thinking of the children as points.

Here is an example of reasoning using distances. Suppose that three children, Pedro,
Quinlan, and Rachel, live in the same city or town. If Pedro goes from his house to
Rachel’s apartment, passing by Quinlan’s house, the distance traveled is at least as
much as if he went straight to Rachel’s in a straight line.

P

R

Q

be less than or equal to
the sum of the other two
no matter how the points
are positioned.

This distance has to

Figure 10. The triangle inequalities

More generally, for any three points P,Q,R, the distance between any two points
is less than or equal to the sum of the other two distances. We use the symbol
≤ to denote less than or equal to or is at most, and the symbol < to denote less
than. The first symbol is somewhat confusingly called an inequality and the second
a strict inequality. So the distances between points P,Q,R satisfy the inequalities

PR ≤ PQ+QR, PQ ≤ PR+RQ, RQ ≤ PQ+ PR.

The points P,Q,R are not colinear if and only if the inequalities above are strict,
that is,

PR < PQ+QR, PQ < PR+RQ, RQ < PQ+ PR.

These inequalities are known as the triangle inequalities.

Because a line segment is always the shortest path between two points, the distances
between the points can be used to determine whether points are colinear. For
example, if PQ and QR are each equal to 1 centimeter and PR is equal to 2
centimeters, then Q is on the line segment between P and R. The path from P to
Q to R has the same length as the straight path from P to R, and so both paths
must be the same.
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Children should be able to make conjectures in geometry and use logic to explore
the truth of their conjectures. Typically conjectures in geometry are made after
drawing pictures of various possibilities. Here is an example of a problem for which
drawing various possibilities can help with answering the problem.

Problem 2.5.1. Pedro, Quinlan, and Rachel are friends. If the distance from
Pedro to Quinlan’s house is 200 feet, and the distance from Quinlan’s to Rachel’s
apartment is 300 feet, what are all the possibilities for the distance from Pedro’s
house to Rachel’s apartment?

(1) Draw several possibilities for the locations of Pedro, Quinlan, and Rachel’s
places.

(2) Use your pictures to make a conjecture for an answer to the question above.
(3) Justify your answer using the triangle inequalities.

Here is a possible answer to part (3). Using the inequality PR ≤ PQ+QR gives

PR ≤ 200 feet + 300 feet = 500 feet.

So the distance from Pedro’s to Rachel’s is at most 500 feet.

The distance from Pedro’s to Rachel’s is at least 100 feet, since

QR ≤ PQ+ PR so 300 feet ≤ 200 feet + PR

so 300 feet− 200 feet ≤ PR

so (300− 200) feet ≤ PR

so 100 feet ≤ PR.

Problem 2.5.2.

(1) Using string and a yardstick measure
(a) the length of your arms;
(b) the length of your legs; and
(c) the distance from your heels to your shoulders.

(2) About what fraction of the length of your leg is the length of your arm?
(3) Now measure the height of the highest place on the wall you can reach.

How does it relate to the prior measurements?
(4) Consider the height of the lowest place on the wall you can reach with

your hands without bending at your waist and without bending your knees.
Without measuring, explain how it relates to the prior measurements?

(5) Now measure the height of the lowest place you can reach without bending
at your waist and without bending your knees. Does this confirm your
expectation from (4)?
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Here are some more problems that encourage making viable arguments.

Problem 2.5.3. True or false? In each case, give a viable argument for your
answer.

(1) If two line segments do not intersect, then they are parallel.
(2) If two lines do not intersect, then they are parallel.
(3) If points A,B,C are such that AB + BC is strictly bigger than AC, then

A,B,C are not colinear.
(4) If John is 5 feet from Martha and Martha is 6 feet from Sam, then Sam is

at least 1 foot away from John.
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2.6. Units and conversion.

Children might or might not be familiar with distances given in feet or yards. For
example, their heights are usually measured in feet, and some schools ask them
to run a hundred yard dash or a hundred meter dash. They are also familiar with
measurements of time in different units, such as months or years.

Changing from one unit to another is called conversion. For example, for distance
we have

1 yard = 3 feet

while for time we have
1 year = 12 months.

Units can be multiplied and divided just like numbers. So for example, dividing
1 yard = 3 feet by 1 yard gives

1 yard

1 yard
=

3 feet

1 yard
.

Simplifying we get
1 = 3 ft/ yard.

The quantity 3 ft/ yard is called a conversion factor. Because the conversion factor
is equal to one and multiplying by one does not change a quantity, one can multiply
by the conversion factor to convert from yards to feet. For example, if a child runs
a one-hundred yard dash, then in feet the child has run

100 yards = (100 × 1 yard) × 3 ft

yard

=
100 × 3 ft× 1 yard

1 yard

= (100 × 3) ft× 1 yard

1 yard

= 300 ft.

The multiplication by the conversion factor is justified because the conversion factor
is equal to one. The conversion factor 3 ft/yard is an exact conversion factor. Other
factors are approximate, for example, 3.3ft/meter is an approximate conversion
factor which means that

1 ≈ 3.3ft/m.

So

100 m ≈ 100 m × 3.3 ft/ m

≈ (100 × 3.3) ft× m/ m

≈ 330 ft.

Note that we used the squiggly ≈ instead of the straight = throughout the com-
putation, because the final answer 100 m ≈ 330 ft is only an approximate equality.
However, it would also be correct to write an equals sign on the second and third
lines above, as long as one remembers that the result of the computation is still an
approximation of the original quantity.



23

Here is a sample conversion of a time measurement: A child who is 8 years old has
age given in months by

8 years = 8 years× 12 months

1 year
= 96 months.

Here are some commonly used conversion factors. We use the approximately equal
symbol ≈ if two quantities are only approximately equal, for example

1 mile ≈ 1.6 kilometers.

We use the equals sign = if two quantities are exactly equal, for example

1 yard = 3 feet.

It is also correct to write

1 mile = 1.6 . . . kilometers .

Here are some common conversion factors and symbols for units:

1 inch = 1” = 2.54 centimeters
1 foot = 1’ ≈ 0.305 meters
1 yard ≈ 0.914 meters
1 mile ≈ 1.609 kilometers
1 nautical mile ≈ 1.852 kilometers
1 centimeter ≈ 0.39 inches
1 meter ≈ 3.28 feet
1 kilometer ≈ 0.62 miles
1 kilogram ≈ 2.2 pounds
1 pound = 16 ounces

Two methods for unit conversion are substitution and ratios. In substitution, one
unit is substituted for the corresponding amount of another unit. In the ratio
method, the ratio of units equal to one is multiplied and then the units in numerator
and denominator are cancelled. Both methods are explained in more detail in the
following example.

Here is a sample problem: Convert 10 miles to kilometers. A teacher’s solution
using ratios is given below:

10mi = 10× 1mi

≈ 10× 1mi
1.6km

1mi
≈ (10× 1.6)km

≈ 16km.

To go from the first line to the second line, we used that the ratio 1.6km
1mi

is approx-
imately one, and multiplying by 1 does not change a quantity. The quantities 1mi
from the numerator and denominator were then cancelled, and 10 was multiplied
by 1.6 to obtain a final answer.
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By a teacher’s solution we mean a solution that is presented in a way so that all of
the audience can understand, using correct notation.

Using substitution, an answer is:

10mi = 10(1mi) ≈ 10(1.6 km) ≈ 16 km.

A commonly-used variation on the ratio method is the method of proportions in
which one solves for the unknown quantity:

1 mi

1.6 km
≈ 10 mi

X km
so

Xkm ≈ (10 mi)
1.6 km

1 mi
≈ 16km.

There are many variations on this method. The proportion should be formulated
so that on each side of the equation, the numerator and denominator of the frac-
tion are equivalent expressions for the same quantity. Additionally, the units in
the proportion should be listed in such a way that when solving, the “old” units
are canceled, as shown in the example above. Given these subtleties involved in
formulating the correct proportion for the desired conversion, students often make
mistakes using this method, and for this reason we do not recommend it.

Here is a sample problem on conversion using ratios: Convert 100kmh to mph. An
answer using ratios is given below:

100kmh =
100km

hr
≈ 100km

hr

(

.62mi

km

)

≈ 62mi

hr
≈ 62mph.
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Converting temperatures

Most children get their temperature taken when they get sick. In the United States
the temperature is usually taken in degrees Fahrenheit, but international thermome-
ters usually use degrees Celsius. In fact, there are three widespread systems for mea-
suring temperatures: Fahrenheit, Celsius, and Kelvin. We discuss only converting
between the first two since Kelvin is used mostly for scientific purposes.

Celsius is designed so that 0◦C is the freezing point of water and 100◦C is the
boiling point.

Fahrenheit is designed so that 32◦F is the freezing point of water and 212◦F is the
boiling point.

Originally, Fahrenheit chose 96◦F to be the human temperature. He measured un-
der the arm, so there was a slight difference between that and today’s measurement
of 98.6◦F . He chose the numbers so that 64◦F degrees separate human temperature
(approximately) and the freezing point of water.

The conversion from Celsius to Fahrenheit is a shifted conversion: temperature in
degrees F is

TF = 32◦F + (9◦F/5◦C)TC .

Problem 2.6.1. (1) Convert 5◦C to Fahrenheit.
(2) Convert 33◦F to Celsius.
(3) Suppose the temperature goes up by one degree Celsius. How much is the

corresponding rise in Fahrenheit?
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2.7. Workshops.

Workshop 2.7.1.

(1) Using either ruler/GeoGebra/Magna-Tiles/Zome tools draw or make a model
or floor plan of your house or apartment or classroom. (The plan should
not be too complicated, that is, it should not take long to construct or
draw. On the other hand, it should not just be a rectangle. Try to include,
for example, the location of a window, door, or desk. If GeoGebra is used,
please include a print-out of the GeoGebra diagram.)

(2) Label the corners and line segments of your model or drawing using standard
notation as above.

(3) Measure the length of two line segments in your plan, in (i) inches and (ii)
centimeters.

Segment Length in Inches Length in Centimeters

(4) Convert the measurements in inches above to centimeters, using the rule
1 in ≈ 2.54 cm. Example: 5in ≈ 5in(2.54cm/in) ≈ 12.7cm. Make sure to
give a teacher’s solution, that is, a solution that communicates your work
clearly to all members of the audience.

(5) Does your conversion match your actual measurement? Why or why not?
(6) What possible errors might beginning learners make using a ruler?
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Workshop 2.7.2.

(1) Can you find points A,B,C so that the distances between them are
(a) AB = 2 cm, BC = 3 cm, AC = 4 cm?
(b) AB = 1 cm, BC = 4 cm, AC = 7 cm?
(c) AB = 4 cm, BC = 1 cm, AC = 9 cm?
(d) AB = 8 cm, BC = 1 cm, AC = 9 cm?
If possible, draw the triples of points so that the distances are those given
above. If not possible, explain why not.

(2) Suppose that four points have the property that three pairs have distance
1 in, two pairs have distance 2 in, and one pair has distance 3 in. (That
is, of the distances AB,AC,AD,BC,BD,CD, three are 1 in, two are 2 in,
and one is 3 in.) Draw a possible picture of the four points.

(3) Is there more than one possible configuration of 4 points meeting the con-
ditions in (2)? Explain your answer.

Workshop 2.7.3.

Do the following conversions using at least two different methods (e.g. ratios, sub-
stitutions). In each case, explain your method in one or two sentences. Make sure to
give a teacher’s solution, that is, a solution which communicates your work clearly
to all members of the audience.

(1) 10ft to inches.
(2) 10.2ft to inches.
(3) 40 inches to feet.
(4) 1000ft to meters.
(5) 65mph to km/hr. Note that 1 mph = 1 mi/hr.
(6) 10lbs to kg.
(7) challenge: 11.999 . . . inches to feet.

Workshop 2.7.4.

(1) The average body temperature is 98.6 degrees Fahrenheit. Convert this to
degrees Celsius.

(2) During the last minute, the temperature change has been approximately
0◦C. Find the corresponding temperature change in degrees Fahrenheit.
(Hint: a change of 0◦C means there has been no change.)

(3) The global average temperature increase in the period 1900-2000 was ap-
proximately 0.7◦C Find the temperature rise for 1900-2000 in degrees Fahren-
heit.

(4) Can you give a formula that allows you to calculate a change in temperature
in Fahrenheit, based on a change in temperature in Celsius?

(5) Is there a temperature for which the number of degrees F equals the number
of degrees C?
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2.8. Assessments and sample student work.

Here is a typical assessment problem on lengths and converting units of length.

Problem 2.8.1. (Adapted from [NJ]) Kathryn is using a piece of cloth that is 23
yards in length for two projects. She cuts off a piece from the cloth that is 2 yards
in length to keep for her second project.

(1) What is the length, in feet, of the piece of cloth Kathryn is using for her
first project? Show your work or explain your answer.

(2) Kathryn’s second project uses at least 1/2 and no more than 3/4 of the piece
of cloth that she cut from the original piece. What is a possible length, in
inches, for the cloth used in the second project? Show your work or explain
your answer.

Many student mistakes on the problem above are caused by misreading. Others are
caused by conversion errors, for example, 21 yards divided by 3 gives 7 feet. The
conversion errors can be avoided by working correctly with units, and having the
students cancel units in the numerator and denominator. Two sample responses are
shown below. Note that even responses marked with full 3/3 scores had mistakes,
e.g. are not using units correctly.
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3. Angles

A child who bounces a ball to a friend knows that the direction of the ball will change
when it bounces. In order to send the ball to the friend the child has to figure out
what angle to throw it at. In everyday language an angle can mean an amount of
turning, the difference between two directions, or a shape formed where lines, line
segments, or rays meet. The Common Core State Standards define an angle as a
shape formed by rays with a common endpoint. Angles are usually measured in
degrees (or in later mathematics, radians), using a protractor. Measuring angles
and drawing angles of a given measure can be used to predict the paths of reflecting
objects such as light rays bouncing off mirrors or objects bouncing off walls.

The objectives of this chapter are: (i) to appreciate different aspects of the concept
of an angle; (ii) to discuss why rays instead of line segments are used in the formal
definition of angles; (iii) to discuss how the sizes of angles are compared; (iv) to
review angle measurement in degrees, discuss correct use of protractors, and briefly
mention angle measurement in radians; and (v) to discuss a few basic facts involving
angles and learn to reason with them.

3.1. Angles, angle measures, and protractors.

A child on a skateboard who does a full turn is said to do a 360 degree rotation.
So for most children, an angle will most naturally represent an amount of turning.
For example, telling a child to turn to face the other way is to tell them to do a 180
degree rotation.

The Common Core State Standards in geometry do not define an angle as an amount
of turning; instead, an angle is defined to be a geometric shape:

An angle is a geometric shape formed by a pair of rays starting at the same point,
called the vertex of the angle.

The common core is a bit vague about which shape is meant. We interpret the
angle as the wedge shape that is “between” the two rays with a common starting
point as in Figure 11. Usually it is clear what is meant by “between”.

P

Q

∠QPR R

P

Q

∠QPR R

Figure 11. An angle
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The common starting point of the two rays is called the vertex of the angle. The
two rays starting at the vertex are called the sides of the angle.

Each pair of rays with the same starting point defines two angles, depending on
whether the angle is formed by going from one ray to the other ray clockwise or

counterclockwise. If
−−→
QP,

−−→
QR are the rays as in Figure 12 below (that is, not going

in opposite directions) then the smaller angle is denoted ∠PQR.

QQ R

P

R

P

Figure 12. Two different angles formed by the same (up to a slide) rays

The bigger angle is the reflex angle defined by the rays. There is no standard
notation for the reflex angle defined by two rays.

If the rays go in opposite directions, so that the two rays form a straight line, then
we say that the angle is linear. In this case, there are still two angles formed by the
rays, but neither is reflex, as shown in Figure 13.

The measure of an angle is the amount of turning it represents, often measured in
degrees where 360 degrees represents a full turn. In other words, 1 degree represents
1/360 of a full turn, 90 degrees represent one-quarter of a full turn, and so on. Note
that a 540 degree turn leaves a person facing the same direction as a 180 degree
turn, but a 540 degree turn is not the same as a 180 degree turn for a skateboarder.

Apparently, the number 360 was chosen in Babylonian mathematics because it was
believed to be approximately the number of days in one year, and so it took about
360 days for the Sun to go around the Earth in a circle.

Figure 13. Two different linear angles
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The symbol ◦ is used to mean degrees. The measure of an angle is denoted with a
small m, that is, m∠PQR is the measure of the angle ∠PQR.

In more advanced courses, angles are measured in radians. The radian measure of
an angle involves arc length, which is discussed in Chapter 6.

Two angles are congruent if they have equal measures, or equivalently, if one can
be made to coincide with the other by sliding and turning (see Chapter 7 below for
more details on motions). We write ∠PQR ∼= ∠STU if the angles ∠PQR,∠STU
are congruent.

We can also talk about angles coinciding, which in the strict sense means that
the angles are overlayed. For example, in Figure 14, the angles ∠PQR,∠STU are
congruent, but the angles ∠PQR,∠V QW are coincident, that is, equal.

P

Q R

S

T U

V

W

Figure 14. Coincident versus congruent angles

We write ∠PQR = ∠V QW to mean that the angles ∠PQR and ∠V QW coincide.
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Protractors

Angles are measured or drawn using a protractor, right angle, or computer pack-
ages such as GeoGebra. As shown in Figure 15, part of the protractor is usually
a semicircle, with opposite points marked 0 and 180 degrees. The center of the
protractor is the midpoint between the opposite points. Note that it is often not on
the edge of the protractor. Each degree is represented by 1/360 of a circle drawn on
the protractor. This means that if one protractor is larger than another, then the
degree markings on the larger protractor are further apart than the degree markings
on the smaller protractor.2 Some online assessments have on-line protractor tools
which are meant to simulate the use of an actual protractor.

Figure 15. A common protractor

Problem 3.1.1. How many degrees do you think the following angles have? Make
a conjecture without using a protractor.

2Photo credit Luigi Chiesa. Used under GNU Free Documentation License.
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Problem 3.1.2. Mark each of the centers of the protractors shown with a star. 3

Problem 3.1.3. Using your prior knowledge about protractors, measure the angles
in Problem 3.1.1 using a protractor.

3Images from https://www.officesupply.com/school-supplies/student-teacher-supplies/basic-
school-supplies/compasses-protractors/ and [NJ]. Images used under Fair Use for educational
purposes.
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Measuring angles with a protractor

To measure an angle that is not reflex, place the center of the protractor over the
vertex of the angle, so that 0 degrees marking on the protractor matches up with
the first ray. The number on the protractor that is closest to the second ray is
the measure of the angle. Be careful to place the center of the protractor over the
vertex of the angle. If the angle is reflex, then the measure is 360 degrees minus the
measure of the non-reflex angle with the same rays.

On state assessments students have to use a protractor cut out from a piece of
paper. For example, here is a New Jersey assessment protractor.4

Figure 16. Another assessment protractor

4Image from [NJ] used under Fair Use guidelines.
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More vocabulary about angles

Sometimes we want to think of an angle as having a direction, that is, clockwise
or counterclockwise. In this case, there is a slightly different definition of angle: A
directed angle is an angle with a specified direction (that is, clockwise or counter-
clockwise). It can be specified by choosing one of the rays as the starting ray and
the other ray as the ending ray. See Figure 17.

Figure 17. Directed angles

We also want to talk about angles formed by line segments with a common endpoint.
If two line segments PQ,PR have a common endpoint P , then the angle formed
by the segments PQ,PR will mean the angle ∠QPR, that is, formed by the rays−−→
PQ,

−→
PR. However, the definition of angles uses rays instead of segments since the

definition of congruence of angles given above only works with rays.

P

Q

∠QPR R

P

Q

∠QPR R

Figure 18. Notation for angles

Note that size of the angle is not determined by - or even related to - the length
of the segments representing the angle. In Figure 19 we give an example of line

segments of different sizes which form the same angle. Here S is a point on
−−→
PQ,

not equal to P , and T is on a
−→
PR, not equal to P . The angles are coincident, that

is, ∠QPR = ∠SPT , and so have the same measure even though the line segments
are different sizes.

Sometimes angles are denoted by numbers or letters as in Figure 20. Using our
notation for coincident angles, we have on the left

∠a = ∠PQR.

On the right ∠1 is congruent to ∠PQR:

∠1 ∼= ∠PQR
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P

R

S

T

∠QPR = ∠SPTQ

Figure 19. More notation for angles

P

Q

R

P

Q

R

a

1

Figure 20. Different notation for angles

and so they have the same measure:

m∠1 = m∠PQR.

In different situations, a lower case letter or number may be used to indicate the
measure of the angle as in Figure 28. The meaning of notation should hopefully be
clear from the context of the particular problem.
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Interior angles of a triangle

Any triangle has three interior angles, that is, angles on the inside of the triangle.
If the vertices of the triangle are labeled P,Q,R, then these angles are denoted
∠PQR,∠QPR,∠QRP in Figure 21.

P

Q

R

∠QPR

∠PQR

∠QRP

Figure 21. Interior angles of a triangle
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The following problems provide practice with using terminology and notation about
angles precisely.

Problem 3.1.4. (1) Label points and identify any angles in the figure below
using standard notation. For each angle, identify the pair of rays that form
the angle.

(2) Compare and contrast the angles below.

Ways shapes are alike Ways shapes are not alike

(3) Consider the angles shown below. Draw an angle whose measure is the sum
of the measures of the shown angles and an angle whose measure is the
difference of the measures of the shown angles.
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Problem 3.1.5. Consider a rectangle with vertices A,B,C,D. Which of the fol-

lowing rays form an angle? (i)
−−→
AB and

−→
AC. (ii)

−−→
AB and

−−→
DA. (iii)

−→
EA and

−−→
EC,

where E is the point shown.

E

D C

BA

Problem 3.1.6. (a) Measure an angle formed by you and two of your classmates
seated around the table, using available tools. Use suitable notation in a diagram
for the angle below. (String may be used if available.)

For parts (b) and (c) use the following diagram:

A

B
C

O

(b) Find the measure of ∠COA. Is it possible to find the sum of the measures of
∠AOB,∠BOC,∠COA by only knowing the measure of ∠COA? If so, find it. If
no, explain why.

(c) Measure the angles ∠AOB,∠BOC.

(d) Find the sum of the measures of ∠AOB,∠BOC,∠COA.

(e) Does this match the sum in your answer from (b)? Why or why not?
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3.2. Acute, right, obtuse, adjacent, opposite.

One way to think of angle is as a measure of sharpness. For example, children
playing with blocks that have small angles are more likely to get hurt than those
playing with blocks with large angles. Many blocks have only right angles which
are those formed by perpendicular lines.

An angle is acute if the angle has measure less than 90 degrees, or, infor-
mally, if the angle is less than 90 degrees.

An angle is right if the angle measure is 90 degrees. Conventionally, a right
angle is indicated with a small pair of perpendicular lines at the angle, as
shown in Figure 22.

acute right obtuse

Figure 22. Types of angles

An angle is obtuse if the angle measure is more than 90 degrees and less
than 180 degrees.

An angle is reflex if the angle measure is more than 180 degrees and less
than 360 degrees.

Of the two angles determined by a pair of rays with the same endpoint,
exactly one is a reflex angle unless both are 180 degrees. Earlier we defined
a reflex angle as the larger of the two shapes formed by two rays meeting at
a vertex; the description above is an equivalent way of expressing the same
idea.

A straight or linear angle is one that measures 180 degrees, that is, one that
is formed by rays pointing in opposite directions as explained above Figure
13. 5

Two angles are adjacent if they share a ray and do not (otherwise) overlap.
See Figure 23 for two examples of adjacent angles.

When two lines intersect, four angles are formed. The angles directly op-
posite to each other are opposite angles. Angles 1 and 3 and also angles 2
and 4 in Figure 24 below are opposite.

Two angles are complementary if their measures add up to 90 degrees, and
supplementary if their measures add up to 180 degrees. For example, angles
1 and 2 in Figure 24 are supplementary.

5The notation ∠PQR is unclear for linear angles, since it isn’t clear which angle (that is, which
side) is referred to. One could resolve this confusion, for example, by going counterclockwise from
−−→
QP to

−→
QR.
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Figure 23. Adjacent angles

1

2

3

4

Figure 24. Opposite angles

Both children and professional mathematicians can have trouble remembering this
vocabulary. Unfortunately, during assessments children don’t have the chance to
ask about vocabulary. A common trick for remembering the difference between
complementary and supplementary is:

complementary comes first in the dictionary and complementary angles have
measures that sum to 90 degrees;6

supplementary comes later in the dictionary and supplementary angles have
measures that sum to 180 degrees.

6Here is another way of remembering: Q: What did one complementary angle say to the other?
A: You’re (a)cute!
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So the order of the terms in the alphabet is the same as the numerical order of the
sum of angle measures.

Note the difference between adjacent and supplementary angles: Any two adjacent
angles at the intersection of two lines are supplementary, but supplementary angles
need not be adjacent since supplementary angles do not necessarily share a side.

The following problem requires a bit of familiarity with the game of baseball. The
problem is meant to introduce the language of “angle formed by two rays” and
similar terminology that has sometimes appeared on state assessments.

Problem 3.2.1. A picture of a baseball diamond is shown below. We think of the
bases and posts as points.

A

B

C

D

F
E

(1) Suppose a ball is hit from home plate towards second base. Is its path best

represented by (a) the line
←→
AC, (b) the ray

−→
AC (c), the ray

−→
CA, or (d) the segment

AC? Draw your answer on the picture.

(2) The runner runs from home plate to first base. Is the runner’s path best repre-

sented by (a) the line
←→
AB (b) the ray

−−→
AB (c) the ray

−−→
BA or (d) the segment AB?

Draw your answer on the picture.

(3) Find and name two rays in the picture that form a perpendicular angle.

(4) Find and name two rays in the picture that form a linear angle.

(5) Find and name two segments that do not intersect.
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Distances between shapes

The distance between two shape is the minimum distance between a point in the
first shape and a point in the second shape. See Figure 25.

distance between shapes

Figure 25. Distance between shapes

In particular the distance from a point to a line is the length of the line segment
perpendicular to the line, that begins at the point. In order to find the distance of
a point to a line, find the line perpendicular to the given line and passing through
the point, as in Figure 26.

P

L

Figure 26. The distance of a line to a point

Problem 3.2.2. (1) Draw a line segment perpendicular to the given segment
through the given point. Explain your construction. (Why is it perpendic-
ular?) You may use a right angle and ruler, as necessary.
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(2) Find the distance of the point to the line, by measuring.

Children should consider the available tools when solving a mathematical problem
and attend to precision when measuring. The following problem does not specify
what tools to use, which allows the solver to make that decision as part of the
problem solving process.

Problem 3.2.3. Find the distance of the given point to the given line.
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3.3. Reasoning with angles.

Children should be able to construct viable arguments that explain why basic facts
in geometry are true. The following problems are meant for discussion and may use
facts that will be discussed shortly afterwards:

Problem 3.3.1. For each of the following statements, decide whether it is true and
explain your answer:

(i) If two lines intersect at a point, then any two adjacent angles sum to 180 degrees
(or more precisely, have measures that sum to 180 degrees.)

(ii) If two lines intersect at a point, then any two opposite angles are congruent.

Problem 3.3.2. (Adapted from [SM]) In the figure, XW = XY,m∠WXY = 38◦

and X,Y, Z are colinear. Find the measures of ∠XWY and ∠ZYW .

38◦

X

W

Y

Z
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Moving angles

Two angles are congruent if one can be obtained from the other by translation
(sliding) and/or rotation (turns), as we already mentioned on page 31. In this case
the measures of the two angles are equal. The fact that the measure of an angle
does not change when translated or rotated is called the moving principle for angles.
Translations and rotations are discussed more in Chapter 7.

Figure 27. Congruent angles

Problem 3.3.3. In the picture below, which of the following angles are related to
the angle marked c by slides and turns? Explain your answer (the direction of slide,
amount of turn, and so on.)

a
b

c
d

e
f

g

h
i

j

k

l

m

Line 1

Line 2

Line 3

Line 4
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We discuss two consequences of the moving principle for angles. First, suppose that
two lines meet at a point as in Figure 28. Turning around that point by 180 degrees
changes each angle to its opposite angle. It follows that opposite angles have equal
measure.

a

b

c

d

a = c, b = d

Figure 28. Opposite angles have equal measures denoted a, b, c, d

If you have internet access, a GeoGebra demonstration can be found below:

Opposite angles are congruent

Students can explore the relationship between opposite angles in a variety of hands-
on ways. One approach involves linked ice pop sticks (or pencils) as in Figure 29. By
keeping one stick fixed and rotating the other one around the “intersection point”
(where the sticks are linked), students can observe how opposite angles change in
the same way, at the same pace (that is, either both increase or both decrease in
measure as the rotating stick keeps moving). This exploration helps students build
a “common sense” understanding of opposite angles and experience the dynamic
side of geometry, which allows them to “view” a large number of examples in a short
amount of time. Another hands-on exploration of opposite angles can be designed
using a sheet of paper with two intersecting lines drawn on it. Students can be
asked to formulate a conjecture regarding the relationship between two opposite
angles indicated on the paper, and then to find a way to convince others that their
conjecture is correct. Some may fold the paper to make one angle overlap the other
one; others may cut out the angles and use the rotation argument discussed in the
paragraph above. Both ways are valid and provide an opportunity to discuss how
the moving principles for angles was applied in each case. Note that the folding
argument involves a reflection, so it is not a direct application of the moving principle
as stated on page 46.7

7Photo credit I. Radu

http://tube.geogebra.org/student/m830853
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Figure 29. Popsicle stick exploration of opposite angles

We now discuss the second application of the moving principle for angles. Suppose
two parallel lines are cut by a third line as in Figure 30. The angles at the first
intersection point can be slid along the third line to match the corresponding angles
at the second intersection point.

a b

c d

a’ b’

c’ d’

a = a’, b= b’, c = c’, d = d’

Figure 30. Angles formed by parallel lines

It follows that the angles at the first intersection point have the same measure as
the corresponding angles at the second intersection point. This property is logically
equivalent to Euclid’s parallel postulate.
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If you have internet access, a GeoGebra demonstration can be found below:

Corresponding angles are congruent

The angle sliding argument discussed above (and demonstrated by the GeoGebra
applet) can also be explored in a low-technology manner, using paper materials.
As shown in Figure 31, all one needs is a drawing of parallel lines (Lines 1 and 2)
intersected by a third line (Line 3), and a cutout angle of equal measure to one of
the angles from the drawing. The cutout angle can be slid along Line 3 until it
overlaps with an angle corresponding to the original one; the cutout could also be
rotated around one of the intersecting points to show (or reinforce) the congruence
of opposite angles. This activity offers an opportunity for students to practice
terminology by explaining what they are doing at each step, and to relate the
exploration to the moving principle for angles, thus linking the informal approach
to its theoretical background.8

Figure 31. Exploring corresponding angles with paper cutouts

8Photo credit I. Radu

http://tube.geogebra.org/student/m850253
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Problem 3.3.4. (1) Draw a line segment parallel to the given segment through
the given point. Explain your construction. (Why is it parallel?) You may
use a right angle and ruler, as necessary.

(2) Draw a parallel line one inch away from the given one. How do you know
that your drawn line is parallel?
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Dividing angles

Suppose we divide up an angle into smaller angles. In this situation, the measure of
the larger angle is the sum of the measures of the smaller angles. For example, we
can divide a linear angle (measure of 180 degrees) into two right angles (measures
of 90 degrees).

This principle is sometimes called the additivity principle for angles: If two angles
∠BAC and ∠CAD share a vertex and ray and lie in the same plane so that they
make up a larger angle ∠BAD, then m∠BAC +m∠CAD = m∠BAD as in Figure
32.

B

A

C

D

Figure 32. Additivity principle for angles

Problem 3.3.5. Suppose that three lines in the plane are such that no two lines
are parallel as in Figure 33. Explain how to slide and turn the interior angles of the
triangle below so that they make up a linear angle. Explain how you know that the
constructed angle is linear.

c

a

b

Figure 33. Sum of the measures of the interior angles of a triangle

The problem above shows that the interior angles of a triangle make up a linear
angle. By the additivity principle for angles, the sum of the measures of the interior
angles is 180 degrees.

If you have internet access, you can click on the following link to see a GeoGebra
illustration of the fact that the interior angles of a triangle sum to 180 degrees:
(Drag the black points to animate the figure.)
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Interior angles of a triangle

This property of the interior angles of a triangle is discussed more below in Workshop
3.7.1. A hands-on way of exploring the sum of the measures of the interior angles
in a triangle involves paper cutouts and translations (sliding). In Figure 34, angles
1 and 1’ are congruent, as are angles 2 and 2’, respectively (because we already
know that opposite angles are congruent). Sliding cutout angles 1’ and 2’ along
sides of the triangle, we can create what appears to be a linear angle “at the top”
of the triangle. At the middle school level, classroom discussion should relate this
activity to the moving principle for angles, as well as engage students in finding
reasons to believe that the created angle is a linear angle in general (meaning, for
any triangle). 9

Figure 34. Exploring the sum of angle measures in a triangle.

Problem 3.3.6. Fill in the missing angles, without measuring. Line 1 and Line 2
are parallel.

?

?

?

?
?

?

?

?

35◦ 35◦

Line 1

Line 2

Problem 3.3.7. (Adapted from [SM]) In the figure below, AB is parallel to CD,
m∠ABC = 82◦, and m∠ADC = 48◦. Find m∠BAD and m∠BCD.

9Photo credit I. Radu

http://www.geogebratube.org/student/m13141
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A

CD

B

Summary

In the discussion above we covered the following four facts about angles that are
often used in reasoning about geometry in a plane.

(1) (Opposite angles) Opposite angles have equal measures.
(2) (Version of the Parallel Postulate) If two parallel lines are cut by a third

line, then the angles at the first intersection point have the same measure
as the corresponding angles at the second intersection point.

(3) (Interior angles of a triangle) The measures of the interior angles of a triangle
sum to 180 degrees.

(4) (Additivity Principle) If two angles ∠BAC and ∠CAD share a vertex and
ray and lie in the same plane so that they make up a larger angle ∠BAD,
then m∠BAC +m∠CAD = m∠BAD.

For the following problem one needs to know the definition of angle bisector: It is
a ray with the same vertex as the angle that divides the angle into two angles of
equal measure, as in Figure 35.

P

Q R

S

Figure 35. An angle bisector

Regarding the relevant standards, bisectors are only covered in the High School
Common Core State Standards, although presumably students should be familiar
with the idea of bisector before then.
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3.4. Reflections.

When light hits a smooth mirror or reflects off water, it reflects with angle of
reflection equal to the angle of incidence, that is, the angle that the light beam
hits the surface with. Both angles are measured from the normal line, that is, the
line perpendicular to the surface. The angle of incidence is often denoted i and the
angle of reflection r as in Figure 36.

i r

normal line

path of light

reflecting surface

Figure 36. Angles of incidence and reflection

To find the path of a light beam reflecting off a mirror, seen from the side, perform
the following steps: (a) draw the normal to the line representing the mirror using
a protractor; (b) measure the angle of incidence; and (c) use a protractor again to
draw an angle of the same measure on the other side of the normal as in Figure 36.

Problem 3.4.1. Draw the paths of the light rays shown. In each case, indicate the
angle of incidence.

mirror

third raysecond rayfirst ray
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3.5. Refraction∗.

When light hits another transparent object, such as water or glass, the part that
passes through does so with angle of refraction approximately equal to the angle of
incidence divided by the index of refraction.10 The index of refraction is about 1.5
for glass.

i

normal line

r

angle of refraction r ≈ angle of incidence i / index of refraction p

path of
light ray

surface of water or glass

Figure 37. Refraction

For example, if the angle of incidence is 45◦, as shown in the figure above, then the
angle of refraction is about 45◦/1.5 = 30◦.11

When the light leaves the glass, it changes angle again. The angle of the outgoing
ray r has measure approximately equal to the measure of the incoming ray i times
1.5, so that the angle of the ray is that before it entered the glass. See Figure 38.

10The precise relationship is called Snell’s law and involves the sinusoidal function, which we
are approximating by the identity to keep things at the middle school level.

11Since we have approximated the sinusoidal function by the identity, this is off by about 2
degrees from the actual answer.
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r

path of
light ray

normal line

normal line

Figure 38. A light ray entering and then leaving a slab of glass

Problem 3.5.1. Draw the paths of the light rays shown until the ray meets the
other side of the glass. (It changes direction again as it leaves the glass, but you
do not need to show the path after it leaves.) In each case, indicate the angle of
incidence.
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first ray second ray
third ray

glass

Problem 3.5.2. (Challenge) Your friend throws you in a pool. From the bottom
of the pool does your friend look taller or shorter than usual? Explain your answer
using a picture.
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3.6. Optics of curved objects∗.

For a curved mirror or curved lens, the reflection/refraction angle is measured from
the normal (or perpendicular) line to the surface. This is the line perpendicular to
the tangent line to the mirror, that is, the line that has the same direction as the
mirror at the reflection/refraction point. The angle of incidence is the angle between
the incoming ray and the normal line. Figure 39 shows a picture of reflection off a
curved mirror, while Figure 40 shows a picture of a ray of light as it refracts through
a lens.

normal line

i

r

path of light

tangent line

Figure 39. Reflection off a curved object

Problem 3.6.1.

(a) Draw the path of a light ray reflecting off the following mirror. (Actually, it
reflects a second time but you need not draw the second reflection.)
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i

r

path of light

tangent line

normal line

Figure 40. Refraction through a curved object

(b) Suppose the shape above was not a mirror, but represents the boundary between
air and a piece of glass. Indicate the path of the light ray as it enters the glass.
(Write down the index of refraction you are using.) Label your answer clearly to
distinguish it from your answer to part (a).
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Problem 3.6.2. Draw the paths of the light rays shown, as they pass through the
lens. Each time the ray passes through or leaves the lens, indicate the angle of
incidence.

There are situations where light does not travel in a straight line. For example,
objects like black holes bend light, so that two images of an object can appear on
the other side of a black hole. Also, light travels along fiber-optic cable, which
clearly bends; this is how many telephone and cable services now work.

Problem 3.6.3. (Challenge) Consider a person viewing an object through a lens,
as shown. Will the object look larger or smaller to the viewer, than if the lens were
not there? Explain your answer with a drawing showing how light travels through
the lens.

viewer object 
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3.7. Workshops.

Workshop 3.7.1.

(1) Suppose Pat is standing at point A and is facing point B. He then walks
to point B and turns counterclockwise to face C. He walks to point C and
turns counterclockwise to face point A. Finally, he walks to point A and
turns counterclockwise to face point B again. How much has Pat turned
altogether? How can this be used to show that the measures of the interior
angles of a triangle sum to 180 degrees?

A

C

B

(2) In the figure below, Lines 1 and 2 are parallel, A is a point on Line 1 and
B and C are points on Line 2. Use the material discussed in this section
to explain why the sum of the measures of the interior angles of a triangle
is 180 degrees.
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Line 1

Line 2

A

B C

(3) Take a triangle and fold over the corners over the edges of a rectangle as
shown in the figure below. (Your triangle should probably be bigger than
the triangle in the figure. You may want to use colored paper or similar.)
Explain carefully how to fold so that the three corners meet at a point. (How
did you know where to fold each time?) Explain how this is relevant to the
fact that the sum of the measures of the angles of the original triangle must
be 180 degrees. (If this problem is being submitted, please submit your
folded triangle.)

a b c

b

ca

folds to

(4) Take a paper triangle and tear off a piece around each vertex. Now arrange
the corners to make a linear angle. (A large triangle, possibly made of
colored paper, works best, possibly with masking tape so that the corners
can be re-attached.) Discuss how this method compares to the others in
this problem. What are some advantages or disadvantages of using each
method in a middle school classroom? (If this work is being submitted,
please submit your triangle with corners torn off.)
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Workshop 3.7.2.

(a) Johnny walks to school by walking 100 feet north, turning left 90 degrees,
walking 200 feet, turning right 30 degrees, walking 100 feet, turning 222 degrees
right, walking 50 feet. Draw his path using the scale that 100 real feet equals 1 map
inch.

N
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(b) Pirate Jack has hidden his treasure according to the map shown. Your friend
is on Jack’s island (equipped with a protractor) and you have to communicate to
him, over cell phone, how to get to the treasure. What instructions would you give
(based on one step per centimeter on the map)?

start

treasure

treasure island

old tree
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Workshop 3.7.3.

(a) In the games of pool or billiards, a ball bounces off the edge of the playing
table with only a small loss of speed. Draw the path of the ball shown, with initial
direction shown by the line segment in the figure, until it bounces twice. Explain
each step of your construction.

(b) Can you draw a path of the ball so that it bounces off a wall once and goes into
the corner pocket? (This is a challenging problem if one is to use only the material
used so far; we will revisit this problem later.) Explain the logic of each step in
your construction.

(c) Indicate where to place mirrors in the periscope, so that anyone looking in it
can see out. (The mirrors do not have to be parallel to the walls.) Draw the path
of a possible light ray passing through the periscope. Explain each step in your
construction.
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viewer

(d) Indicate where to place mirrors in the following more complicated periscope so
that anyone looking in it can see out. (The mirrors do not have to be parallel to
the walls.) Draw the path of a possible light ray passing through the periscope.
Explain each step in your construction.

viewer

(e) (This part requires two small mirrors and a laser pointer.) Check your design
by using the mirrors and laser pointer to “build” a periscope laid out horizontally.
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3.8. Assessments and sample student work.

Many assessment problems on angles test the vocabulary on right angles, perpen-
dicular lines, and parallel lines. However, children are not always familiar with the
assessment vocabulary. Here is an example from [NJ].

Problem 3.8.1. In the figure below: (1) Name two rays that form a right angle.
(2) Name two lines that intersect each other but are not perpendicular. (3) Name
two lines that appear to be parallel.

A

B

C

D

E

F G

H

I

Sample Answer from [NJ] with Score 3/3: Possible rays are GA and GF, GA and
GC, GC and GD, GD and GF or other combinations. Possible intersecting but
non-perpendicular lines are AD and BE, CF and BE, DA and EB, FC and EB, HI
and EB or other combinations. Possible parallel lines are AD and HI or DA and
IH.

Note that the test writers do use but do not insist on the use of notation
←→
GA,

−→
GA

and so on. They write [NJ] “It was not necessary for students to use the ↔ or →
to denote rays and lines. However, the correct 2 letters were necessary. There were
a number of students who used commas in between letters, or also used 3 letters,
which is incorrect notation.”

Sample Answer from [NJ] with Score 2/3: (1) F,G and E,G. (2) EB and HI.
(3) AD and HI.

The response shows nearly complete understanding of the problem’s mathematical
concepts. The student incorrectly answers (1), and answers correctly parts (2), (3).
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Score: 1/3.

Sample Answer from [NJ] with Score 0/3: Two rays that form a right angle are
A,C. Two lines that intersect are F,C and A,D. Two lines that are parallel are
A,D and H, I.

Sample Answer from [NJ] with Score 0/3:

Note: The sample responses show that few of the students are really familiar with
the concept that an angle is made of two rays with a common vertex.



69

4. Polygons

Paths taken by children while walking often consist of a sequence of straight line
segments. Such a path is called polygonal. Other polygonal paths include boundaries
of regions such as many playgrounds, gardens, and yards.

Elementary geometry often does not distinguish between the region inside a shape
and the shape itself, since the difference is usually clear from the context. For
example, we might say that a park has a square shape when in fact we mean that
the boundary of the park is a square region; similarly, saying that a bike path is a
square means that the bike path consists of four segments of equal lengths at right
angles. To distinguish the two possibilities graphically, regions should be shaded.

The objectives of this chapter are: (i) to work towards a definition of polygons; (ii)
to review basic terminology and properties of triangles and quadrilaterals; and (iii)
to develop a better understanding of the sum of the measures of the interior and
exterior angles of polygons.

4.1. Polygons, vertices, edges.

Children who walk or drive to school often take a path which is a sequence of
straight line segments and changes of direction. Such a path is called a polygonal
path: a shape formed by a sequence of line segments, such that any two consecutive
line segments intersect in an endpoint. The endpoints of the line segments in a
polygonal path are called vertices and the line segments in a polygonal path are
called edges.

Figure 41 shows polygonal paths in a plane with five edges.

Figure 41. Polygonal paths

A polygonal path is closed if the last point in the last segment is the first point in
the first segment. For example, in Figure 41, the path on the right is closed but the
one on the left is not.

A polygonal path is non-self-crossing if it does not cross itself.

A polygon is a polygonal path that satisfies all of the following conditions:



70

Non−self−crossingSelf−crossingSelf−crossing

Figure 42. Self-crossing (left and middle) and non-self-crossing
(right) paths

(1) closed;
(2) non-self-crossing; and
(3) no two edges that meet in a vertex form a linear angle.

In other words, at every vertex there is some change in direction.

not a polygon

Figure 43. A polygonal path with no change in direction at a vertex

a polygon not a polygon (curved sides) not a polygon (not closed)

Figure 44. Figures that are polygons and not polygons

Other authors have different definitions of polygon; unfortunately, there is no “stan-
dard definition”. For the rest of this book, we will use polygon in the sense defined
above.
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An n-gon is a polygon with n edges, where n is some positive integer.

The number of edges of a polygon is always equal to the number of vertices: if we
choose a direction to go around the polygon, each edge is followed by a vertex, so
there is a one-to-one correspondence between vertices and edges.

A polygon is rectilinear if all of the angles are right angles.

Figure 45. Rectilinear (left) and non-rectilinear (right) polygons

4.2. Regions.

A region in a plane is a set of points that is two dimensional in the sense that starting
at any point in the region, one can move a small distance in any direction contained
in the plane and stay inside the region. Examples of regions include geographic
regions such as states, counties as well as yards, playgrounds, and parks. The inside
of a polygon is a polygonal region while the polygon itself is not a region.

The boundary of a region in a plane is its edge, or more technically, the set of points
such that any circle drawn around the point contains in its interior points both
points inside and outside the region. For example, the boundary of a country is its
border. The boundary of an ocean is its shore. The boundary of a river is its bank.

region boundary

Figure 46. A region and its boundary

Polygonal regions can be built easily with commonly available manipulatives such as
pattern blocks, Magna-tiles, or paper cutouts. Many engaging activities for middle
school students can be done with these manipulatives, as will be discussed in more
detail on page 77.

We draw regions by shading them. For example, a shaded square indicates the set
of points inside the square.
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A square The region inside

a square

Figure 47. A square and a square region

Any polygon divides the plane into two regions, the region inside the polygon and
the region outside the polygon.

A region is convex if the line segment between any two points inside the region stays
inside the region. For example, the state of Colorado is convex, but the state of
Florida is not convex, because a line segment from Panama City to Miami goes over
the water. 12

Figure 48. Florida is a non-convex region

12Retrieved from http://edr.state.fl.us/content/area-profiles/county/index.cfm. Used under
fair use guidelines.
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Interior and exterior angles

The interior angle of a polygon at a vertex is the angle pointing to the inside. Note
that an interior angle can be more than 180 degrees, that is, it can be a reflex angle
as in Figure 49.

a reflex interior 
angle

Figure 49. A polygon with a reflex interior angle

An exterior angle of a polygon is an angle formed by an edge and a line extended
from an adjacent edge as in Figure 50.

exterior angle

Figure 50. An exterior angle

Note that if the polygon is not convex then the internal and external angles may
overlap as in Figure 51.
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exterior angle
interior angle

Figure 51. An exterior angle of a non-convex polygon

If the polygon is convex, then the sum of the measures of the interior and exterior
angles at each vertex is 180◦. If the polygon is not convex then this is still true if
one takes the angles to be directed as on page 35, so that some angles may have
negative measure. For example, in Figure 51, if the indicated interior angle has
measure 220◦, the exterior angle has measure −40◦ as a directed angle, then the
sum of measures of the interior and exterior angles is 180◦.
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Problem 4.2.1. Compare and contrast the designated shapes. For each pair of
shapes, find one similarity and one difference. (Recall that if the shape is shaded
then it represents a region.)

Shape 4

Shape 6

Shape 2

Shape 1

Shape 3

Shape 5

Shape 7 

Shape 8 

Shape 9
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Shape Shape Ways shapes are alike Ways shapes are not alike
Shape 1 Shape 3

Shape 5 Shape 7

Shape 7 Shape 9

Shape 8 Shape 9

Shape 2 Shape 4

Shape 6 Shape 4
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Regions and pattern blocks

There are many interesting questions one can ask about pattern blocks and polyg-
onal regions. The open-ended nature of these questions and the hands-on context
can provide an engaging environment for students of all levels. In the following
problems we will assume that the types of pattern blocks shown in Figure 52 13 are
available.

Figure 52. Types of pattern blocks

Alternatively, a free interactive applet allowing the user to play with pattern blocks
can be found at the National Library of Virtual Manipulatives nlvm.usu.edu.

Problem 4.2.2. Using only pattern blocks, determine whether you can build each
of the following regions. In each case, give a logical explanation of whether or not
it is possible to build the region.

(1) a polygonal region with 7 vertices?
(2) polygonal region with 8 vertices?
(3) a polygonal region with two reflex interior angles?
(4) (Challenge) a convex polygonal region with 8 vertices?
(5) (Challenge) a convex polygonal region with 7 vertices?

There are many perimeter and area questions that can be asked about polygonal
regions created with pattern blocks; we will explore some of these in Chapter 5.

13Photo credit I. Radu.

http://nlvm.usu.edu/en/nav/frames_asid_169_g_1_t_3.html?open=activities&from=topic_t_3.html
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4.3. Triangles.

A triangle is a polygon with three edges, that is, a 3-gon.

There are different conventions on whether a triangle is allowed to be degenerate,
that is, to have colinear vertices. We choose to not allow triangles to be degenerate.

A triangle is isosceles if it has (at least) two sides of equal length, equilateral if all
sides have equal lengths, and scalene otherwise.

equilateral isosceles scalene

Figure 53. Types of triangles

In our conventions, an equilateral triangle is a special kind of isosceles triangle.

A right triangle has a right angle.

An acute triangle has only acute angles.

An obtuse triangle has one obtuse angle.

The Common Core State Standards are unclear about whether students are ex-
pected to know the terms scalene, acute, obtuse. Many state assessments have
tested this vocabulary in the past.

For any right triangle, the hypotenuse is the longest side, or equivalently, the side
opposite the right angle. (The equivalence of these two definitions follows from the
Pythagorean theorem, which is discussed later.)

The legs of a right triangle are the two shorter sides, or equivalently, the sides
adjacent to the right angle.

Problem 4.3.1. Indicate whether each statement is true or false. Explain your
answers.

(1) Any triangle has at most one right angle.
(2) Any triangle has at most two acute angles.
(3) Any isosceles triangle is equilateral.
(4) Any equilateral triangle is isosceles.
(5) Any scalene triangle has at most two acute angles.
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4.4. Quadrilaterals.

The following problem is meant for discussion, to illustrate the wide range of defini-
tions about quadrilaterals within any particular group of people, including children.
This is especially true of any group with international backgrounds, since vocabu-
lary for quadrilaterals varies from country to country.

Problem 4.4.1. Answer true/false, based on your understanding of types of quadri-
laterals, but without looking up the precise definitions. Explain your reasoning.

(1) Any rectangle with three equal side lengths is a square.
(2) Any rectangle that is also a rhombus is a square.
(3) Any kite with three equal side lengths is a rhombus.
(4) In any rhombus, any two opposite angles are congruent.
(5) In any rhombus, the measures of any two consecutive angles sum to 180

degrees.
(6) In a trapezoid, any two opposite angles have the same measure.
(7) Any trapezoid with three right angles is a rectangle.
(8) Any quadrilateral with three right angles has two pairs of parallel sides.
(9) Every quadrilateral with at least two right angles is a trapezoid.

(10) Every polygon with four right angles is a rectangle.
(11) Every triangle with two congruent angles also has two equal side lengths.
(12) Every polygon has at least one acute angle.

Hint: (9) is tricky.
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Vocabulary on quadrilaterals

We will use the following definitions for different types of quadrilaterals.

A quadrilateral is a 4-gon, meaning it is a polygon with 4 sides. Some books also
call quadrilaterals quadrangles, meaning they have 4 angles.

A square is a quadrilateral with four congruent sides and all angles right angles.

A parallelogram is a quadrilateral with two sets of parallel sides.

A trapezoid is a quadrilateral with at least one pair of parallel sides. Some books
require a trapezoid to have exactly one pair of parallel sides. In fact, the conventions
in various countries are slightly different.

A rhombus is a quadrilateral with four congruent sides.

A rectangle is a quadrilateral with four right angles.

A kite is a quadrilateral with two pairs of equal-length sides such that the equal-
length sides share a vertex. Kites are not necessarily convex.

square
rectangle

trapezoid kite

quadrilateral

rhombus
parallelogram

kite

Figure 54. Types of quadrilaterals

Note that in the Common Core State Standards, a square is a special kind of
rectangle. Continuing this logic, a parallelogram is a special kind of trapezoid, a
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square is a special kind of rectangle, a rhombus is a special kind of kite, and these
are all special kinds of quadrilaterals.

Other authors have different conventions. For example, for Euclid a trapezoid was
anything that was not a rhombus. In mathematics there is no “right answer”
on questions of terminology. Only once everyone agrees on conventions can every
statement be true or false. In other words, the meaning of the word “trapezoid”
can be decided by a vote (it is an issue of vocabulary) but the question of whether
2 + 2 = 4 is true cannot be decided by a vote (we all agree what it means).

Problem 4.4.2. (Adapted from [MCAS]) Jason drew a closed shape with the fol-
lowing properties: It has exactly four angles; All angles are right angles. Opposite
sides are congruent. Opposite sides are parallel.

(1) On graph paper, draw a shape that has the same properties as Jason’s
shape.

(2) On graph paper, draw a different shape that also has the same properties
as Jason’s shape.

(3) Jason also drew the trapezoid shown below.

List 3 properties of the trapezoid.
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GeoGebra as a manipulative

GeoGebra can be quite helpful in exploring whether universal statements such as
those in Problem 4.4.1 are true. Universal statements are those that assert that
something holds true for all objects of a certain type. A way to approach a universal
statement is to use GeoGebra’s point-dragging feature. This allows the user to
consider a wide variety of examples quickly, in a dynamic manner, and note whether
the property of interest appears to hold in each of those examples. This playful
investigation is not meant to replace more formal arguments, but rather to give
students an intuitive feel for the relationships among the geometrical objects in the
problem; such dynamic exploration can later inspire a more formal argument or
suggest a counterexample.

Constructing objects with certain built-in properties in GeoGebra requires a sig-
nificant amount of geometric reasoning in itself. By “built-in” we are referring
to properties that should hold even when certain points of the drawing are being
dragged. Additionally, no other properties should be built-in: if you are asked to
draw a rhombus, you should not draw a square, as it would have more built-in
properties than required and would not provide the most general object with the
given properties. For example, to investigate the statement

Any quadrilateral with two pairs of congruent opposite sides is a parallelogram

one needs to construct a quadrilateral with the specified built-in properties (i.e.,
two pairs of congruent opposite sides) and no additional built-in properties, and
then investigate whether it appears to be a parallelogram no matter how much
point dragging is done. How can such a quadrilateral be constructed? There are
several ways to accomplish this, each requiring the user to think deeply about the
nature and properties of basic geometric concepts such as circles, angle and segment
bisectors, congruent polygons, and transformations, to name only a few.
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Geoboards as manipulatives

A Geoboard is a manipulative that lends itself to a great variety of explorations on
the topics of polygons and perimeter and area of polygons. It consists of a physical
board with a certain number of nails half driven in it, around which one can wrap
plastic rubbers to create representations of polygons. A popular version contains
nails in a 5× 5 formation, as shown in the picture below. For the remainder of this
book we will refer to this type of Geoboard.

Figure 55. Geoboards

A few examples of Geoboard questions/tasks involving polygons are:

Problem 4.4.3.

(1) Make a few right triangles. What is the largest one you can make?
(2) What is the smallest right triangle you can make?
(3) Can you make an isosceles trapezoid with bases of length 3 units and 2

units?
(4) What is the longest rhombus you can make?

These questions can be attempted by students of all levels and at the same time
can be taken into more challenging directions by either the instructor or students,
as needed. Note the use of the terms “largest”, “longest”, and “smallest” when
referring to polygons; they are not part of the conventional terminology on polygons,
which creates an opportunity to ask students what they might mean and negotiate
a unique meaning for each of them. Additionally, the questions implicitly invite a
discussion of what a “unit” may be in the context of a Geoboard. Could it be 1
inch? Or perhaps the distance between two consecutive nails (along a horizontal or
vertical line)? Does the problem solver have a choice, and if so, what should guide
that choice?

A free easy-to-use interactive Geoboard can be found at:

Mathematics Learning Center

In Chapter 5 we will continue the discussion on Geoboards by exploring perimeter
and area questions.

http://www.mathlearningcenter.org/web-apps/geoboard
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4.5. Venn diagrams∗.

In this chapter we discussed various types of polygons and the relationships among
them. For example, a square is a special type of rhombus, etc.. We can use Venn
diagrams to represent these relationships in a more visual manner. A Venn dia-
gram shows the relationship between different groups. For example, if one group is
contained in another, one draws a bigger circle used to represent the larger group
around a smaller circle used to represent the smaller group. If two groups have
members in common, one draws the two circles intersecting.

S T

S T

S T

Every member of S is also a member of T

S and T have no members in common

S and T have some members in common
but one is not contained in the other

Figure 56. Relationships between groups

Here is a sample problem: Draw a Venn diagram for the following sets: 10th grade
students, 11th grade students, high school students, female students.

A sample answer is as follows. First note that 10th grade students and 11th grade
students do not have any students in common, so the picture looks like this:
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students
11th grade
students

10th grade

Now both of these groups are contained in high school students:

11th grade students10th grade students

high school students

Finally female students intersect all of these groups, so the final picture looks like
this:
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10th grade students 11th grade students

high school students

female students

Problem 4.5.1. Draw a Venn diagram for the following sets: 10th grade students,
players on the high school football team, players in the high school orchestra, and
kindergartners.

Using Venn diagrams, squares, rectangles, rhombi, and parallelograms are related
as follows.

parellolograms

squares
rhombi rectangles

A common confusion is whether an equilateral triangle is isosceles. According to our
conventions, the answer is yes: an equilateral triangle has three equal side lengths,
so at least two equal side lengths, and so is isosceles. That is, our definition of
isosceles triangle is the inclusive definition which includes equilaterals, as opposed
to the exclusive definition which disallows them.

Problem 4.5.2. Draw a Venn Diagram representing the relationship among squares,
rectangles, rhombi, and trapezoids.
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4.6. Interior angles of polygons.

Cutting polygons into triangles

We already saw that the sum of the measures of the interior angles of a triangle is
180 degrees. What about the sum of angles of a quadrilateral? A special case is a
rectangle. In this case, there are four right angles, so the sum of the angles is 360
degrees.

Problem 4.6.1. Provide an argument for the fact that any quadrilateral can be
cut into two triangles. Deduce a formula for the sum of measures of interior angles
of a quadrilateral.

The following theorem is often used to justify the formula for the sum of the interior
angles of a polygon.

Any polygon can be divided into triangles.

A viable argument for convex n-gons can be given as follows. Choose one vertex
and connect it to all the other vertices. The result is a division of the polygon
into n− 2 triangles. (Can you find a general argument for why this is true for any
convex polygon?) Alternatively, put an extra point in the middle of the polygon
and connect it to the outside vertices. The result is a division of the polygon into
n triangles.

Figure 57. Ways of dividing a convex polygon into triangles

Problem 4.6.2. (Optional challenge problem) Show that any polygon can be di-
vided into triangles. (Hint: There are always two vertices that can be joined by
a line segment that does not pass outside the polygon. To see this, arrange the
polygon so there is a unique “highest” vertex. Consider the triangle formed by that
vertex and the two adjacent vertices. Either this triangle contains another vertex
of the polygon, or it does not. In the first case, connect the two vertices adjacent
to the highest vertex. In the second case, find the highest vertex inside the triangle
and join it to the highest vertex in the polygon. Use this fact to show that any
polygon can be divided into triangles.)
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The sum of interior angles of a polygon

Problem 4.6.3. Cut the pentagon below (or a copy of it on paper) into triangles.
Without measuring or using any formulas, can you relate the sum of the interior
angles of the pentagon to the sum of the interior angles of the triangles? Explain
your answer.

Figure 58. A convex polygon

The Problem 4.6.3 motivates the following theorem:

For any integer n > 2, the sum of the measures of the interior angles of an n-gon
is 180(n− 2) degrees.

Students should be able to construct a viable argument for a such statement. One
such argument reduces the problem to a simpler form, by dividing the n-gon into
n− 2 triangles. Note that the sum of the angles in any triangle is 180 degrees, and
the sum of the interior angles of the n-gon is the sum of the interior angles of the
triangles. Hence, the sum of the measures of the interior angles is the number of
triangles times 180 degrees, that is, (n− 2)180◦.

A regular polygon is one for which each side has the same length and each interior
angle has the same measure. For example, a regular quadrilateral is a square. Since
a regular n-gon has n interior angles with the same measure, each angle measure is
equal to 180(n− 2)/n degrees.
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The sum of the exterior angles of a polygon

What can one say about the sum of the measures of the exterior angles of a polygon?

Problem 4.6.4. Draw a polygon and its exterior angles on a piece of paper. (An
example is shown below.) Using scissors, cut out the exterior angles and arrange
them so that they have a common vertex. What is the sum of the measures of these
exterior angles?

The activity in Problem 4.6.4 supports the following conjecture:

For any integer n > 2, the sum of the measures of the exterior angles of a
n-gon is 360 degrees.

Here is a viable argument for this fact about exterior angles. Think of the n-gon
as a clockwise path. The total amount of turning is the sum of the measures of
the exterior angles. Since the total amount of turning once around the path is 360
degrees, starting at and returning to the same point, the sum of the measures of
the exterior angles is also 360 degrees.

If you have internet access, you can see an illustration of this in the interactive
GeoGebra applet available by clicking on the following link:

Exterior angles of a polygon

If the polygon is not convex, then the sum-of-angles formula above is still true if
one takes the angles to be directed as on page 35, so that the exterior angles may
have negative measure.

We can use the fact that the sum of the exterior angles of a polygon is 360 degrees
to deduce the formula for the sum of the measures of the interior angles. Note that

http://www.geogebratube.org/student/m14667
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each interior angle is equal to 180 degrees minus the corresponding exterior angle.
Therefore, the sum of the interior angles is the sum of n 180-degree angles minus the
sum of all exterior angles. So, the sum of the interior angles is equal to n(180)−360
degrees, which is equal to (n− 2)180 degrees.
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4.7. Workshops.

Workshop 4.7.1.

(1) (a) Give precise directions for someone who wants to travel along the pen-
tagon shown below (including angle measures and distances).

(b) Find the sum of the measures of the interior angles by measuring.
(c) Explain how you can find the sum of interior angles without measuring.
(d) Explain how you can find the sum of exterior angles without measuring.

(2) (a) Give precise directions for someone who wants to travel along a pen-
tagram shaped path as shown below, using only four turns.

(b) Is this path a polygon? Explain.
(c) Find the sum of the interior angles at the vertices (turning points,

which are the shaded points) by measuring. Find the sum of the exte-
rior angles at the vertices (including a final fifth turn necessary come
back to the starting direction) by measuring.

(d) Can you find the sum of the measures of the five exterior angles without
measuring? Explain why or why not.

(e) Can you find the sum of the measures of the interior angles without
measuring? Explain why or why not.
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Workshop 4.7.2.

(1) For each labelled angle, use your protractor to bisect the angle. Then, use
your ruler to bisect the side opposite the angle. In each case, say whether
the ray bisecting the angle bisects the opposite side as well.

A B

D

C

Can you give a criterion characterizing the triangles that have an angle
bisector that bisects the opposite side? Explain.

(2) Suppose that a kite ABCD has equal side lengths AB = BC and CD =
DA.
(a) Does AC bisect BD (for any such kite)? Why or why not? If not, give

a counterexample. If so, give a logical argument which works for any
kite. (You might want to consider, for example, what happens when
you fold the kite along BD; do the two halves exactly match? Why or
why not.)

(b) Does BD bisect AC (for any such kite)? If not, give a counterexample.
If so, give a logical argument which works for any kite.

(3) Suppose that ABCD is a rhombus.
(a) Does AC bisect BD? If not, give a counterexample. If so, give a

logical argument which works for any rhombus. Are these segments
perpendicular? Explain.

(b) Does BD bisect AC? If not, give a counterexample. If so, give a logical
argument which works for any rhombus.

(4) Suppose that ABCD is a rectangle.
(a) Does AC bisect BD? Why or why not? If so, give a logical argument

which works for any rectangle.
(b) Does BD bisect AC? Why or why not? If so, give a logical argument

which works for any rectangle.
(c) Are the segments AC and BD congruent? Why or why not? If so,

give a logical argument which works for any rectangle.

If your answer was “yes” for any of the “why” or “why not” questions above, make
sure that you give a logical explanation which works for all of the given shapes.
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Workshop 4.7.3.

The following workshop uses pattern blocks, which also can be found online at
nlvm.usu.edu.

(1) Using only pattern blocks, can you build a polygonal region whose boundary
has 11 vertices? 14 vertices? 18 vertices? If the answer is yes, show the
shape.

(2) Is there any number of vertices for which one cannot build an associated
polygonal region using only pattern blocks? Explain why or why not.

(3) Give an approximation for the interior angle measures of each type of block.
Explain how you arrived at the approximation.

(4) Make a polygonal region with an interior angle of 330 degrees and an exterior
angle of 30 degrees. Is it a convex region? If yes, explain why. If not, how
many additional pattern blocks do you need to make it convex? (Possibly
by changing the measures of the interior and exterior angles.) How many
vertices does the new polygonal region have?

(5) Using only pattern blocks, can you make a polygonal region with an internal
angle measuring more than 330 degrees?

http://nlvm.usu.edu/en/nav/frames_asid_169_g_1_t_3.html?open=activities&from=topic_t_3.html
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Workshop 4.7.4.

For the following problem you may use a Geoboard or the online manipulative at

Mathematics Learning Center.

Your answer should explain how you interpret the informal terms “tallest” and
“shortest”.

(1) Make a few isosceles triangles. What is the tallest one you can make? Please
be sure to consider triangles with tilted bases.

(2) What is the shortest isosceles triangle you can make? Please be sure to
consider triangles with tilted bases.

(3) How many non-congruent isosceles triangles can you create on a Geoboard?
Explain how you know that your triangles are isosceles.

(4) How many non-congruent squares can you make on a Geoboard? Be sure
to consider “tilted squares”. Explain how you know that the squares you
constructed are isosceles.

(5) (Challenge) Can you make an equilateral triangle on a Geoboard? (Hint:
You might want to consider slopes of the edges, or areas of the triangles
that are possible to construct on a Geoboard.)

http://www.mathlearningcenter.org/web-apps/geoboard
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4.8. Assessments and sample student work.

The following is a sample assessment problem from fourth grade geometry.

Problem 4.8.1. (from [MCAS], grade four) For this question, you will draw three
shapes on the grid below.

(1) On a grid, draw a parallelogram. Label your parallelogram A.
(2) On a grid, draw a triangle that has two sides that are perpendicular to

each other. Label your triangle B. Put an X on each of the sides that
are perpendicular. Explain how you know the sides you labeled X are
perpendicular.

(3) On a grid, draw a shape that has at least one pair of parallel sides, at least
one pair of perpendicular sides, and only two right angles. Label your shape
C.

(4) What is the mathematical name of the shape you drew in part ???

The answer on the left below received one point out of four, while the answer on
the right received two points.

One interesting aspect of this problem is the existence of multiple correct answers
to part (3). One correct answer is a right trapezoid. The reader is encouraged to
find additional correct answers to this part.
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5. Perimeter and area

There are several notions of how big a region is. One measure is the length of
the boundary, which is called the perimeter of the region. Another measure of the
bigness of a region is called the area. We will explain these concepts below.

The objectives of this chapter are: (i) to have a better understanding of the con-
cepts of perimeter and area, especially of the fundamental properties governing the
concept of area, and (ii) to use these properties to understand how the area formulas
for rectangles, parallelograms, triangles, and trapezoids came about.

5.1. Perimeter.

Recall from the discussion around Figure 46 that the boundary of a region is its
edge. The notion of a boundary is an idealized concept in which the boundary has
no thickness, just as a line has no thickness. In real life, boundaries often have
width; for example, the beach is the boundary between the ocean and land.

The terminology is a little vague as to whether the boundary is part of the region
or not. For example, is the square part of the square region it encloses? We will
formulate questions to avoid this problem. (The technical term for a region which
contains its boundary is a closed region, while a region that does not contain its
boundary is an open region.)

Some examples of regions and their boundaries are:

the perimeter of a playground is the length of fence that is needed to go
around the boundary;

the perimeter of an ocean is the length of its shore;

the perimeter of a country is the length of its border.

The perimeter of a region is the length of its boundary. In English, perimeter is
sometimes used as a synonym for boundary, especially for camps, as in the sentence
the soldiers guarded the perimeter of the camp.

Perimeters of polygons

When we talk about perimeters, it is always in the context of regions. This makes
it confusing when we talk about perimeters of polygons, since we really mean the
perimeter of the region inside the polygon.

Here is an example involving rectangles. The perimeter of a rectangle with length
l and height h really means the perimeter of the region inside the rectangle. Since
there are two sides of length l and two sides of length h, the perimeter of the
rectangle is 2l + 2h.

To find the perimeter of a polygonal region, measure the length of each portion of
the boundary and add. If the boundary of a region is a collection of segments, the
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measuring can be done with a ruler. For curved regions, one can sometimes use a
piece of string.

The following are past assessment problems involving perimeter.

Problem 5.1.1. (1) (Adapted from [MI]) Find the perimeter of the rectangle
shown, in centimeters, by measuring.

(2) (Adapted from [NJ]) Bob has a rectangular garden that is 4 feet wide and
12 feet long. Find the perimeter.

(3) (Adapted from [CST]) An isosceles triangle has two sides with length y and
one side with length y/2. What is its perimeter?

(4) (Adapted from [CST]) A rectangle with one side length equal to 15 inches
has perimeter p inches. Which equation could be used to find the width of
the rectangle?
(a) p = 15 + w/2.
(b) p = 15− w.
(c) p = 30 + 2w.
(d) p = 30− 2w.
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Regions with no well-defined perimeter

Some regions are so complicated that their boundary does not have a well-defined
length, that is, their perimeter is not easily defined. Figure 59 shows a Mandelbrot
set. In real life, something like a coastline is so complicated that it does not have a
well-defined length.14

Figure 59. A region with a complicated boundary

The Common Core State Standards do not seem to have an explanation of perimeter
of a region as the length of the boundary of a region. However, students are expected
to understand perimeter.

Perimeters of regions with disconnected boundaries

The boundary of a region can have different parts not connected to each other,
in which case the perimeter is the sum of the lengths of the parts. For example,
suppose that a farm in the shape of a square with side lengths 2 mi is located in a
forest, which is the shape of a square with side lengths 10 mi as in Figure 60.

forest

farm

Figure 60. A region with a disconnected boundary

The boundary of the forest has two parts: the outer part with length 40 miles, and
the boundary around the farm, which has length 8 miles. The perimeter of the
forest is the total length of the boundary, that is, 48 mi.

14Created by Wolfgang Beyer with the program Ultra Fractal 3. Used under the Creative
Commons License.
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Geoboard activities on perimeter

Geoboards provide a fun, engaging environment for exploring perimeter (see Chap-
ter 4.4 for a description of a Geoboard). Questions can range from routine to
challenging. A few non-trivial questions are:

Problem 5.1.2. For the following problem you may use a Geoboard or the online
manipulative at

Mathematics Learning Center.

(1) Approximate (without measuring) the perimeter of the polygon below.

(2) What is the greatest possible perimeter for a Geoboard trapezoid? Explain
your answer and give an approximation for its perimeter.

(3) Make a polygon of greater perimeter than the trapezoid from the previous
question. How do you know it is greater? Use any tools you deem necessary.

These types of questions can lead to open discussion on: what the unit should be
if one is not specified by the problem; how the distance between two consecutive
“diagonal” nails compares to that between two consecutive nails along a horizontal
or vertical line; and how to use available tools such as string or pencils to compare
these two distances if the students are not familiar with the Pythagorean theorem.

The notion of perimeter can also be explored with pattern blocks, as in the Problem
below.

Problem 5.1.3. If the side of the square block is 1 unit in length, what is the
perimeter of the polygonal region in the Figure below?

http://www.mathlearningcenter.org/web-apps/geoboard
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5.2. Areas of regions.

Children often divide themselves into groups in order to play games. Each game
often takes place in some region of the playground. The number of children that
can fit into each region is closely related to the area of each region. A unit square
(also called a square unit) is a square with side lengths equal to one unit. The area
of a region is defined as follows:

The area of a region is the number of unit squares (or parts of unit squares)
needed to cover the region without overlap. Conventionally, we add the phrase
square units (or square inches, square meters) after the number to indicate what

type of area unit the number refers to.

“Without overlap” means that the insides of the unit squares should not overlap;
the unit squares are still allowed to overlap at vertices and edges.

What this definition means practically is that to find the area of a region using the
definition of area, one can cover the region with non-overlapping square units (or
parts of square units) and count them. For many regions, there may be no good
way of breaking up the region into fractions of unit squares, and a person trying to
find an area may have to resort to approximation techniques; that is, approximating
the region by one that can be broken up into fractions of unit squares.

Activities involving square manipulatives can be used to illustrate the meaning of
area for children. For example, Figure 61 shows a region made of seven squares.15

Figure 61. A polygonal region built from manipulatives

If each square is a unit square, then the region has area seven square units. Children
can be asked to find several different polygonal regions with the same (given) area.
An issue that arises in this activity is whether the corners of the squares need

15Photo credit I. Radu
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to match up. In other words, does sliding one of the squares slightly change the
area? This is related to the Moving Principle for Area discussed on page 103. This
activity provides a good context for discussing the importance of being explicit
about additional assumptions one may be making about a given problem if certain
aspects of it are not clear, and the fact that different assumptions may lead to
different answers.

Area can be explored using pattern blocks involving shapes other than squares, as
in the following problem.

Problem 5.2.1. Assuming that the area of the triangle in the figure below is 1
square unit, find an approximation for the area of the region in the figure. 16

Sometimes the area of a region cannot be expressed as an integer or even fractional
numbers of the chosen type of square unit. In Figure 62, the region on the left can
be covered by three unit square inches, so the area is 3 square inches. In Figure 62,
the region on the right can be covered by one square inch and two rectangles each
with side lengths

√
2− 1 inches and 1 inch. So the total area is

1 in2 + (
√
2− 1) in× 1 in + 1 in× (

√
2− 1) in = (2

√
2− 1) in2.

(Not to scale) 

1 inch

1 inch

2 inches

2 inches

1 inch

√
2 inches

1 inch

√
2 inches

Figure 62. Two regions

Problem 5.2.2. Find the area of the following region.

16Photo credit I. Radu
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Here is a sample answer: The given region is covered by 27 full units, 5 half units,
and 1 quarter unit, for a total of 29.75 square units.

Problem 5.2.3. (Adapted from [NJ]) Find the area of the region below, where
each little square is 1/4 of a square inch.

Note that in the case of published assessment problems such as this one, we have
deliberately avoided changing the wording or adding clarification; the wording of
this question and others like it can be an interesting topic of discussion. An obvious
question is whether the test writers mean the students to round off the lengths to
the nearest half-centimeter or not, since the vertices do not seem to fit well with
the lattice points.

Problem 5.2.4. Using only pattern blocks (and assuming that the side of the
square is 1 unit):

(1) Make a polygon of perimeter 8 units
(2) Can you make a polygon of perimeter 8 units whose area is greater than

that of the polygon you created for part (1)?
(3) Can you make a polygon of perimeter 8 units whose area is smaller than

that of the polygon you created for part (1)?
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Properties of Area

Often a playground will be divided into different regions devoted to different games.
The area of the playground is the sum of the areas of the regions for each game.
This is an example of the following principle.

Additivity principle for area: If two regions do not overlap (except at the
boundaries), then the area of the combined region is the sum of the areas of the
two regions.

+= A2
A

A1

Figure 63. Additivity principle for area

There is also a slightly different principle for the area of a difference of two regions:

Difference principle for area: If one region is inside another region, then the
area of the region outside the first but inside the second of the two original regions
is the difference of the areas.

= −
A

A1 A2

Figure 64. Difference principle for area

Moving principle for area: If one region can be moved to perfectly overlap with
another without stretching, then the areas of the two regions are equal.
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5.3. Areas of rectangles.

Children should understand the meaning of quantities in geometry, not just how to
compute them. This is especially true for areas, where an overemphasis on “plug-
and-chug” formulas can lead to an inability to investigate the area of a region of a
shape for which there is no formula.

Problem 5.3.1.

For this problem, assume you do not know the formula for the area of a rectangle.

(1) Find the area of the rectangle below in several ways.

1in 

(2) Explain in several ways why the area of the rectangle below is 3 1
9
square

inches, assuming that the area of each big square is 1 square inch. On what
assumptions are you basing your answer?
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Areas of rectangles

A standard shape for playgrounds, playing fields, rooms etc. is a rectangle. The area
of a rectangle with integer side lengths can be found using the additivity principle
for area: A rectangle with base b and height h can be broken up into b × h unit
squares and so has area

Arect = b× h.

The above statement is not the definition of area, but something that follows from
the definition. We also sometimes refer to the dimensions of a rectangle as length
and width instead of base and height, in which case the area is the product of the
length and width.

Here is a sample problem that uses the formula: If a playground is a rectangle of
width 30 feet and length 40 feet, what is the area of the playground?

30 feet× 40 feet = (30× 40)× ( feet× feet) = 1200 feet2.

Note the correct use of units.

The area formula for a rectangle above holds even if the side lengths are not integers.
To see this we consider a sequence of cases. First, suppose that the base b and height
h are fractions of the form b = 1/n of a unit of length, and h = 1/m of a unit of
length where n and m are whole numbers. We can make a unit square by taking
n×m copies of the original rectangle and arranging them in m rows and n columns.
The original rectangle has 1/nm-th of the area of the unit square, that is, 1/nm
square units. Note that

1

nm
=

1

n
× 1

m
= b× h

units of area. So the formula holds in the particular case of the base and height
being unit fractions of one unit of length. See Figure 65 for an illustration of an
example. An exploration of why the formula holds for non-unit fractions is given in
Problem 10.5.2.
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1/5

1/2

area is 1/10 square
units

1 square unit

Figure 65. Explaining the area formula in the case of fractional units

In the case that the base b and height h are possibly irrational, we approximate b
and h by rational numbers, say b′ and h′. We can apply the area formula for this
rectangle since it has rational lengths. So the area of rectangle with base b′ and
height h′ is b′ × h′. By taking b′ and h′ closer and closer to b and h, respectively,
one gets that the area of the original rectangle is b× h.

The following problem explores the formula further in the case of rational side
lengths, assuming that the formula is known for integer side lengths and unit fraction
side lengths.

Problem 5.3.2. Given a rectangle of side lengths 3/4 units and 2/5 units, find its
area in two different ways as follows:

(1) by breaking it up into smaller rectangles;
(2) by forming a larger rectangle using a number of copies of the original.

How does this support the formula for area of a rectangle in the case of rational
side lengths?
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Problem 5.3.3. (Adapted from [PARCC]) Small squares with edge lengths of 1/4
inch will be packed into a rectangle with length 4 1

2
in and width 3 3

4
in. How many

small squares are needed to completely fill the rectangle?

Problem 5.3.4. If a playground is a rectangle of width 30 feet and length 40 feet,
and each child needs roughly 25 square feet of play space, then how many children
roughly fit on the playground?

Problem 5.3.5.

(1) (Adapted from [NJPEMSM]) The Johnsons are planning to build a 5-foot
wide brick walkway around their rectangular garden, which is 20 feet wide
and 30 feet long. Find the area of the walkway in two ways.

(2) Find the perimeter of the walkway from (a). (The boundary of the region
has two parts.)

(3) (Adapted from [NJ]) : Mrs. Rodriguez is planning to build a new rectangu-
lar brick patio. She plans on using bricks that are 1 foot wide by 2 feet long.
She would like the new patio to be 12 feet by 14 feet. She expects that no
bricks will need to be cut. Mrs. Rodriguez uses only whole 1-foot-by-2-foot
bricks. State how many bricks should be used. Justify your answer.

(4) Determine the total area and the perimeter of the new patio from part (3).
Show all your work.

The following problem concerns the relationship between area and perimeter.

Problem 5.3.6. A rectangle with height 4 and base 6 has area 24 and perimeter
20.

(i) Find a rectangle, also with perimeter 20, that has more area than the given
rectangle.

(ii) Find a rectangle, also with perimeter 20, that has less area than the given
rectangle.

Problem 5.3.7.

(1) Use the moving and additivity principles about area to determine the area,
in square inches, of the shaded region in the figure below. The shape is
a 2-inch by 2-inch square, with a square placed diagonally inside, removed
from the middle. The lengths of the diagonals of the small square are 1 inch;
note that these are oriented horizontally and vertically. In determining the
area of the shape, use no formulas other than the one for area of rectangles.
Explain your method clearly.
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2 inches

1 inch
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(2) Find the area of the following regions without using the formula for the area
of a triangle. Each grid square is a unit square. (Hint: how much area do
the “white regions” have?)

(3) Find the areas of the figures below by fitting each in a big rectangle and
subtracting off areas of simple shapes. Each grid square is a unit square.
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5.4. Areas of parallelograms.

Our strategy for finding the areas of shapes more complicated than rectangles is to
reduce to the case of a rectangle by using the moving and additivity principles of
area. We start with parallelograms.

Problem 5.4.1. Indicate how you might cut and re-arrange each parallelogram to
make it into a rectangle. In each case, how do you know that the new quadrilateral
is a rectangle?

For middle school classroom activities of this type, we recommend the use of colored
stock paper to show the regions that have been cut and pasted.
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Any parallelogram can be changed into a rectangle by the following steps: First,
choose a base of the parallelogram. Second, cut off a part of the parallelogram by
making a perpendicular line at one end of the base. Third, move the part of the
parallelogram that is not over the base to the other side. Repeat this procedure to
make a rectangle with the same base and height as the original parallelogram.

move the triangle to make a rectangle

move the triangle and the pentagon

Figure 66. Cutting and pasting to change a parallelogram into a rectangle

Since cutting and pasting (without overlap) does not change area, the area of a
parallelogram with base b and height h is the same as that of the rectangle,

Apar = b× h.

Note that there is some freedom with the choice of base. In the second region in
Figure 66, if one chooses the long side as the base then only one cut and paste is
necessary. In this case the base and height are different than for the original choice,
so one obtains a different expression for the area.

Another method for re-arranging, which leads to the same result, is shown in the
following GeoGebra applet, if you have internet access:

Rearranging a parallelogram into a rectangle

The area formula for the parallelogram can also be explained using the following
approximation method. Suppose we cut the parallelogram into layers and slide them
over (that is, shear) to make an approximate rectangle, as in Figure 67. 17

17Photo credit I. Radu

http://tube.geogebra.org/student/m794
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Figure 67. Shearing a rectangle does not change the area

The approximate rectangle has the same area as the parallelogram, by the moving
and additivity principles for area. The difference between the approximate rectangle
and the rectangle becomes smaller and smaller as we take smaller and smaller layers,
so we may pretend that the approximate rectangle is in fact a rectangle.

The rectangle has the same height and base as the parallelogram, so the area of the
parallelogram is

Apar = Aapproximate rectangle ≈ Arect = b× h.

A GeoGebra demonstration of this shearing argument is given, , if you have internet
access, at

Finding the area of parallelograms by shearing

The shearing argument for the area of a parallelogram formula can also be explored
using a set of index cards, as shown in Figure 68. There are good opportunities for
engaging middle school students in conceptually rich discussion around this activity.

Figure 68. Shearing a stack of paper

Problem 5.4.2. (1) Where do you see a parallelogram in Figure 68?
(2) In Figure 68, how do the dimensions of the rectangle compare to those of

the parallelogram?
(3) What happens to the area of the “parallelogram side” of the stack when we

shear?

http://tube.geogebra.org/student/m843071
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5.5. Areas of triangles.

Problem 5.5.1. (1) Examine the triangles in the figure below. In what ways
are the triangles similar? In what ways are the triangles different?

(2) Using the techniques we have considered so far, find the area of each triangle.
(Do not use any area formula for the triangle.) Assume that a grid square
is a unit square.

(3) How do the areas of the triangles relate to those aspects that the triangles
have in common?

(4) Conjecture a formula for the area of a triangle.

The formula for the area of the triangle is one of the most well-known formulas in
elementary geometry. This formula is actually three formulas, since there are three
different possible choices of base.

A base of a triangle is a side, thinking of the triangle as placed on that side. There
are three choices of which side to choose as base. We also use the term base to refer
to the length of the side chosen as base. Given a base, the height is the distance of
the vertex not on the base to the line containing the base, that is, the length of the
perpendicular segment from that vertex to the line.

heightheight

base base

Figure 69. Base and height

One can find the height of a given triangle with respect to a given base as follows.
If the vertex is not over the base (see the figure above), extend the line segment
containing the base using your ruler. Using a right angle tool, find the line segment
perpendicular to the base that passes through the vertex opposite the base. The
height is the length of this segment. See Figure 70.

The distance from the vertex to the base is not the height of the triangle. This
distance is called the slant height; note that it plays no role in the area formula.
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Choose a base Extend the base

Measure the height

Find the perpendicular line

Figure 70. Finding the height

the slant height is not the height

Figure 71. The slant height

The area of a triangle (that is, the area of the region inside the triangle)
with base b and height h is

Atri = b× h/2.

A justification of the formula for the area of a triangle is given in Workshop 5.7.3.
If you have internet access, you can see a GeoGebra applet illustrating the principle
in the following link:

Area of a triangle as half the area of a parallelogram

Problem 5.5.2. Find the area for the following triangle in two ways:

(1) by choosing a base side and using a ruler to find the approximate base and
height of the triangle; and

(2) by finding the area of the big rectangle in which the triangle “sits” and then
subtracting off areas of right triangles that have a horizontal base.

How do the area values found in the two ways compare? Discuss in which situations
each method is a better method for finding the area of a triangle.

http://www.geogebratube.org/student/m5012
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Problem 5.5.3. Activity from [SM]: The figure below is made up of a rectangle
and a triangle. The area of the triangle is 72in2. Find the area of the figure. (Figure
is not drawn to scale.)

8 in. 

6 in.

Problem 5.5.4. (Challenge) Show that the area of the triangle below is (ad−bc)/2.
(Do not assume any numerical values for a, b, c, d.)

a

b

c

d

Problem 5.5.5. Find the areas of the regions shown in the figure.



116

5.6. Areas of trapezoids.

Our strategy for finding the areas of trapezoids is similar to that for triangles. We
put two congruent trapezoids together to make a region whose area we already
know.

Problem 5.6.1. Show that a parallelogram can be formed from two congruent
trapezoids. Explain how you know that the new figure is a parallelogram.

The problem above shows that given a trapezoid with height h and bases b1, b2, we
can take a copy of the same trapezoid and put it together with the original to make
a parallelogram with base b1 + b2 and height h, as in Figure 72. Since the area
of the trapezoid is half the area of the parallelogram, the area of a trapezoid with
parallel side lengths b1 and b2 and height h is

Atrap =
(b1 + b2)

2
× h

that is, the average of the lengths of the parallel sides, times the height.

b2

b1

h

Figure 72. Making a parallelogram from two copies of a trapezoid

Problem 5.6.2. Activity from [MCAS]: The rear window of Alex’s van is shaped
like a trapezoid with an upper base measuring 36 inches, a lower base measuring 48
inches, and a height of 21 inches.

What is the area, in square inches, of the entire trapezoidal rear window? Show or
explain how you got your answer.
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5.7. Workshops.

Workshop 5.7.1.

Consider the rectangle below: (not to scale)

Assume the rectangle has a width measuring 4 cm and a length measuring 9 cm.
Suppose further that the rectangle is cut in half horizontally and one piece is at-
tached to the other, without overlap, to form an L-shaped polygon shown below.

(1) How does the area of the new figure compare to the area of the original
rectangle? Explain.

(2) How does the perimeter of the new figure compare to the perimeter of the
original rectangle? Explain.

(3) Make a conjecture about how you can cut and rearrange the original rec-
tangle (with one cut) so that the resulting quadrilateral has the smallest
possible perimeter. Provide supporting evidence.

(4) Make a conjecture about how you can cut and rearrange the original rec-
tangle (allowing multiple cuts) so that the resulting quadrilateral has the
smallest possible perimeter. Provide supporting evidence.
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Workshop 5.7.2. from [NJ]:

Veronica is making a rectangular garden. She plans to put a fence around the
garden using 28 feet of fencing, and she wants the garden to be 8 feet long.

(1) How wide will Veronica’s garden be? Show how you got your answer.
(2) If Veronica is going to put fence posts two feet apart around the outside of

the garden, how many fence posts will she need? Show all of your work to
explain your answer.

(3) By what factor would the area of her garden change if the length and width
are scaled (multiplied) by a factor of two?

(4) How many posts would she need for the new garden (with twice the length
and width) if they are still spaced two feet apart?

(5) Suppose that, instead of an 8 foot long garden, she wants a garden of 45
square feet (still using 28 feet of fencing). What should the dimensions of
her garden be?

(6) Is there a non-rectangular shape that would give the same perimeter and
area as her garden in (5)?
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Workshop 5.7.3.

Explain the area formula for triangles.

(1) Draw a right triangle. Find a way to make it into a rectangle by using
copies or cutting and pasting. (It may be helpful to use colored paper and
scissors.) Explain the logic of why the figure you created is a rectangle. Is
there a second way of creating a rectangle from two copies of the given right
triangle? Explain why or why not.

(2) Draw a triangle that is not a right triangle. Show that you can make a
parallelogram using two copies of the triangle. (It may be helpful to use
colored paper and scissors.) Explain the logic of why the figure you created
is a parallelogram. Is there a second way of creating a parallelogram from
two copies of the given triangle? (It may be helpful to use colored paper
and scissors, or GeoGebra.)

(3) Draw a triangle that is an obtuse triangle. Show that there is a base so that
using two congruent copies of the triangle, one can create a rectangle with
the base and height of the original triangle by cutting and rearranging.

(4) Explain the area formula for a triangle, using additivity of area and one of
your constructions from (2).

(5) Consider the triangle below.

What is the best (most precise) way of finding the area of the triangle?
Is there a method that gives the area exactly? Carry out the best method
you can find.

(6) Explain the area formula for a trapezoid, using additivity of area. Make sure
to explain why a parallelogram can always be created using two congruent
copies of the trapezoid. Explain carefully why the resulting shape is a
parallelogram, in particular why opposing sides are parallel.
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Workshop 5.7.4.

All of the problems below should be done without measuring.

(a) Find the area of the triangle ABC below. Explain your logic.

B

4

D
3

A
5

C

(b) Find the length CD in the figure below. Explain your logic.

A

C

B D4

8

3

?

(not to scale)

(c) Can you find the area of the parallelogram below without measuring? If yes,
find it. If not, can you find a range of possible values for its area? In each case,
explain your answer.

(not to scale) 

6

7

(d) In the diagram below, AD is perpendicular to AC and the area of the paral-

lelogram ABCD is 35 square units. Find the distance from B to
←→
AC (that is, the

distance along the shortest path). Explain your logic.
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5

A B

CD

(not to scale)
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Workshop 5.7.5.

You may wish to use a Geoboard, or the online version at

Mathematics Learning Center

to assist with this problem.

A lattice polygon is a polygon in the coordinate plane whose vertices have integer
coordinates. (On a geoboard, we assume that the pegs are at the points with integer
coordinates.)

(1) (a) Create or draw a lattice triangle with area 3. Explain your answer.
(b) Create or draw a lattice square with area 5. Explain your answer.

(2) There is a relationship between the number of lattice points inside a poly-
gon, the number of lattice points on the boundary, and the area of the
polygon. In order to find this relationship, perform the following steps:
(a) Draw several lattice polygons, and record the areas, number of lattice

points inside, and number of lattice points on the boundary for each.
What kind of formula might you expect? Discuss.

(b) Possibly by drawing more polygons and collecting more data (you may
need to reorganize the data into a table), find the formula. Check
that your formula works for a type of polygon you have not already
considered.

(c) Justify the formula for rectilinear polygons (polygons with only right
angles) by drawing unit squares centered at each lattice point; how
many of these square are there? Explain. (Challenge: Can you think
of a way of justifying the formula for any kind of polygon?)

http://www.mathlearningcenter.org/web-apps/geoboard
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5.8. Assessments and sample student work.

Problem 5.8.1. (Adapted from [MCAS]) Five geometric terms are given below:
acute, obtuse, equilateral, right, isosceles.

David drew the six triangles shown below.

A

B

C

F

E

D

(1) Identify one of the geometric terms listed that can be used to describe
triangle A. Explain your reasoning.

(2) Which two of the geometric terms listed can be used to describe triangle
B? Explain your reasoning.

David grouped his triangles as shown below.

B

F
F

C

B

D

(3) Using geometric terms, explain what the two triangles in each group have
in common.



124

Problem 5.8.2. Activity adapted from [MCAS]: Danielle measured two of the
computer screens in her school’s computer lab.

Screen 1 is in the shape of a rectangle with a width of 12 inches and height of 9
inches and a diagonal length of x. Screen 2 is in the shape of a rectangle with a
width of y and a height of 8.2 inches and diagonal length of 15.4 inches.

1. What is the area, in square inches, of Screen 1? Show or explain how you got
your answer.

2. What is x, the diagonal length in inches of Screen 1? Show or explain how you
got your answer.

3. Which computer screen, Screen 1 or Screen 2, has the greater area? Show your
work or explain how you got your answer.

Sample student answers are below. Note the incorrect use of units in most of the
answers.

Score 4/4 (left) and 3/4 (right)

Score 2/4 (left) and 1/4 (right).
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Score 0/4:
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Problem 5.8.3. (From [MCAS]) Carrie’s garden is rectangular in shape and mea-
sures 10 feet in width and 14 feet in length.

1. What is the area, in square feet, of Carrie’s garden? Show or explain how you
got your answer.

Carrie wants to put a fence along the perimeter of her garden. She will pay $15 per
foot of fence that she uses.

2. What is the amount of money, in dollars, that Carrie will pay for the fence?
Show or explain how you got your answer.

Roberto has a garden in the shape of a square. The perimeter of his garden is equal
to the perimeter of Carrie’s garden.

3. What is the area, in square feet, of Roberto’s garden? Show or explain how you
got your answer.

Sample student answers showed confusion between area and perimeter. The fact
that the second part of the problem required finding the perimeter first caused
problems. Many of the answers showed incorrect work with units.

Problem 5.8.4. An assessment problem adapted from New York [NY] concerning
area is given below:

Jeremy wants to determine the area of his school’s library. A diagram of the library
is given below. What is the area, in square feet, of the library?

22 feet

5 feet

30 feet

8 feet

Sample answer for 1/3 points: “To find the area, I need to do length times width.
The length is 30 feet. The width is 5 + 8 = 13 feet. So the area is 30 times 13 =
390 square feet.”
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6. Circles

In this chapter we introduce circles, investigate their area and perimeter, and in-
troduce the irrational number π. The number π can be defined either as

(1) the ratio of the circumference to the diameter of any circle, or
(2) the ratio between the area and the square of the radius of any circle.

The objectives of this chapter are: (i) to introduce circles and arcs, and investigate
how they occur in real life; (ii) to describe how to draw circles using compasses;
(iii) to study the circumference of circles, and introduce the number π; (iv) to study
the area of circles, and the formula for the area of the circle; and (v) to study the
lengths of arcs and areas of sectors.

6.1. Circles and compasses.

Children should try to use clear definitions in mathematics in discussion with others
and in their own reasoning. It is quite difficult to state a clear definition of a circle,
as the following problem illustrates.

Problem 6.1.1. Which of the following is a good definition of the circle and why?

(1) A circle consists of points that are the same distance from another point.
(2) A circle consists of points that are a given distance from a given point.
(3) A circle consists of points in the plane that are the same distance from a

given point.
(4) A circle consists of all points in a plane that are a given distance from a

given point in that plane.

Problem 6.1.2. Suppose a cell phone tower is located at a position P and the
transmission has range r equal to 10 km. Suppose that the surface of the earth
nearby is well approximated by a plane.

(1) Describe the set of points Q in the plane whose distance from P is less than
r, both mathematically and practically in terms of the cell phone reception.

(2) Describe the set of points Q in the plane whose distance from P is more than
r, both mathematically and practically in terms of the cell phone reception.

(3) (Challenge) In what pattern should towers be placed so that everyone has
cell phone reception, and the smallest number of towers is used? (Assume
that every tower has the same transmission radius.)

The following vocabulary relates to circles and regions associated to them:

A circle of radius of length r with center P is the set of points in a plane
containing P whose distance to P is r.

The region inside of the circle is the set of points in the plane whose distance
from the center is less than r. This is also called the disk of radius r with
the given center.
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The region outside the circle is the set of points in the plane whose distance
from the center is greater than r.

A radius of a circle is any line segment connecting the center of the circle
with a point on the circle, or the length of any such segment.

A diameter of a circle is a line segment with endpoints on the circle and
passing through the center, or the length of any such segment.

rP

d

Figure 73. A circle with center P , radius r and diameter d
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Drawing circles

Circles can be drawn using a compass. Traditionally, a compass is a device consisting
of two arms joined at a vertex. More recent versions, such as a safety compass,
simply have an arm of a fixed length which may be placed onto the paper and a
sliding piece that allows the user to draw circles of any radius. See Figure 74 and
Figure 75 for examples.

Figure 74. A Sparco compass. Probably not allowed in today’s classrooms

Figure 75. An ETA safety compass with no sharp points

To draw a circle of a given radius r with a given center P , first find a point Q with
the distance r to the center, using a ruler. Then place the point of the sharp arm
of the compass on P , adjust the compass so that the second arm ends on the point
Q, and rotate the second arm to trace out the circle. See Figure 6.1.

r r
QPQP

Figure 76. Drawing a circle



130

Some state assessments use vocabulary involving arcs, such as:

A circular arc is a portion of a circle.

The central angle of an arc is the angle formed by the rays starting at the
center of the circle and passing through the endpoints of the arc.

A semicircle is half of a circle.

Problem 6.1.3. Compare and contrast the designated shapes. For each pair of
shapes, find one similarity and one difference.

Shape 1

Shape 3

Shape 5

Shape 7 

Shape 6

Shape 4

Shape 2
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Shape Shape Ways shapes are alike Ways shapes are not alike
Shape 1 Shape 3

Shape 1 Shape 2

Shape 3 Shape 4

Shape 5 Shape 7

Shape 3 Shape 6

Shape 6 Shape 7
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Most circles appearing in real life do not come “with centers marked” and so to find
areas one has to find the center, as in the following problem.

Problem 6.1.4. (a) Find the center of the circle below by folding.

(b) Find the center of the circle by drawing at least one tangent line (line that meets
the circle exactly once)18 and drawing a perpendicular through the intersection
point. Where is the center? Give a brief justification of your answer.

(c) Find the center of the circle by drawing at least one chord (line segment with
endpoints on the circle) and drawing a perpendicular through its midpoint. Where
is the center? Give a brief justification of your answer.

(d) Explain why any pair of points lies on infinitely many circles.

(e) (Challenge) Show that each triple of distinct points either lies on exactly one
line or exactly one circle.

18In general, the tangent line to a curved path at a point is the line passing through the point
with the same “direction” as the curve at that point.
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Problem 6.1.5. (1) Draw a circle of radius 1 inch around the point A in the
figure below.

A B

(2) Draw a circle of radius 1.5 inches around the point B.
(3) Using one color, shade the region consisting of points that are less than 1

inch from the point A.
(4) Using another color, shade the region consisting of points that are more

than 1 inch from the point A, and less than 1.5 inches from the second
point B.

(5) Using a third color, shade the region that is more than 1 inch from the point
A, and more than 1.5 inches from the second point B.

(6) Choose an intersection point of the two circles and label it C. What are
the distances AC and BC?

(7) What is the relationship between AB,AC and BC? Explain your reasoning.
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Constructions with compass and straightedge

Circles and their properties can be used to construct many other geometrical figures.
By a “construction with compass and straightedge” we mean a construction that
can be carried out only by drawing circles of arbitrary radius and drawing lines of
arbitrary length; measuring distances, angles, or using a right angle are not allowed.

Problem 6.1.6. (From [NJPEMSM])

(1) Draw two points A,B and a line segment between them. Using your com-
pass find two points C,D such that A,B,C,D are the vertices of a rhombus.
Describe your steps and explain why your figure is a rhombus.

(2) Use your construction from part (1) to construct the midpoint of the seg-
ment AB. Explain your answer.

(3) Use a straightedge and compass to construct a regular hexagon. Describe
your steps and explain why your figure is a hexagon.

The following problem illustrates the differences between compass-straightedge con-
structions and constructions using ruler and protractor as well.

Problem 6.1.7. (From [NJPEMSM])

(1) (a) Use a ruler to draw an isosceles triangle. Describe your steps.
(b) Use a straightedge and compass to help you draw an isosceles triangle.

Explain why the triangle you drew must be isosceles.
(c) With only a ruler and pencil, try to draw an equilateral triangle. Why

is this difficult?
(d) Afterwards, use a straightedge and compass (and no ruler) to help you

draw an equilateral triangle and explain why the triangle you drew
must be equilateral.

(2) (a) Using a ruler and compass, draw a triangle with one side of length 5
inches and the angles at the vertices on that side measuring 30 degrees
and 45 degrees, respectively. (You may use a protractor to measure
angles.)

(b) Can you construct any other triangle(s) with the same conditions?
(c) Given the measures of two angles of a triangle and the length of a side

between them, how many different-looking triangles can be drawn?
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6.2. Circumference.

The circumference of a circle is the perimeter of the region inside it.

You can measure the perimeter of a circle approximately by placing a string around
the circle and then straightening it out and measuring the length.

If you have internet access, clicking on the following link will display an applet.
Drag the point to straighten out the perimeter:

Straightening out the perimeter of a circle.

Problem 6.2.1. Measure the perimeter of a variety of circular objects (say a glass,
a yogurt lid, ....) by using a string, and the diameter using a ruler. Make a table
showing the diameter and circumference. What do you notice?

Object Diameter Circumf. of Circle Ratio of Circumf. to Diameter

A

B

C

http://www.geogebratube.org/student/m4042
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The relationship between circumference, diameter, and radius

Problem 6.2.2.

(1) How many ways can you think of to estimate the circumference of a circle
with radius one inch?

(2) Draw such a circle; try at least two different methods and compare them.
(3) Try the same with a circle of radius two inches. How do your answers for

the two circles relate? Can you explain the relationship?

As the above activity suggests, doubling the radius of a circle also doubles the
circumference. More generally, rescaling a circle by any factor rescales the circum-
ference by the same factor. So the ratio of circumference to diameter is the same
for any circle. This is the basis for the definition of the number π:

The ratio of circumference C to diameter d is the same for any circle, and
is denoted π. That is, π = C/d.

The first few digits of π are 3.1415926.... The number π is irrational: it cannot be
represented as a fraction of integers, or equivalently, its decimal expansion cannot be
represented with a repeating pattern. This means that in practice, approximations
such as π ≈ 3.14 are used.19

Because diameter is twice the radius, the circumference is also related to the radius
of the circle. Using the definition of π and the relationship between diameter and
radius, we have

π = C/d = C/(2r),

and multiplying both sides by 2r gives

2rπ = 2r(C/2r) = C.

In summary:

The circumference C of a circle of radius r is given by C = 2πr.

Problem 6.2.3. Suppose a string is wrapped tightly around the equator of the
earth. How much extra string is needed to be able to lift the string one foot above
the ground along the entire equator? (Suppose the earth is uniformly spherical for
simplicity.)

19A viable argument for the irrationality of π is outside the scope of this book, although you
might become somewhat convinced of this irrationality by looking at the decimal expansion and
seeing there are no patterns.
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Lengths of Circular Arcs

Problem 6.2.4. Find the lengths of the circular arcs using proportionality. (What
part of each circle does each arc represent?) Use any tools you deem necessary.

5 cm 5 cm 4 cm

Arc Circumference Measure of central angle Length of Arc
First

Second

Third

As the problem above suggests, an approach to finding the length of circular arcs
that works for any arc involves finding the fraction of the circle that the arc repre-
sents. If the measure of the central angle is a (in degrees) then the fraction of the
whole circle represented by the arc is a/360◦. Given that the circumference of a
circle of radius r is 2πr, this shows the following:

The length of the arc with central angle of measure a is

larc = 2πr(a/360◦).

Problem 6.2.5. A pizza is 1.5ft in radius and is cut into 12 congruent slices. Find
the perimeter of each slice.

Problem 6.2.6. New York and Philadelphia are approximately 100 miles apart.
Suppose that a town is located within 60 miles of New York and 80 miles of Philadel-
phia.

(a) Sketch, by shading, the possible locations of the town, using a scale of 1cm :
20mi.

(b) Find the perimeter of the shaded region from (a). You can measure angles and
(straight?) distances using any tools you deem necessary.
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6.3. Areas of circles.

Problem 6.3.1. Cut up the circle below into thin sectors (“pizza slices”) and
arrange them to make an approximate rectangle.

(a) What are the dimensions of the rectangle, in terms of the dimensions of the
original circle?

(b) What is the area of this rectangle, which is approximately the area of the circle?

(c) Use this to express the area of a circle in terms of the radius.
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The formula for the area of a circle

The area of a circle (that is, of the region inside it) can be found using the additivity
principle for area by dividing a circle up into congruent sectors (pizza slices) as
follows. Consider a circle of circumference C and radius r. Divide the region inside
the circle into congruent sectors. These sectors can be re-arranged to make an
approximate rectangle with length C/2 and width r, as shown in Activity 6.3.1. If
you have internet access, you can click here to bring up a GeoGebra applet that
illustrates the principle. (Click on the circumference box that appears to the right
of the drawing after straightening.)

Straightening out the perimeter of a circle.

The above activity and applet demonstrate that the area of a circle with circum-
ference C and radius r is the same as the area of a rectangle with length C/2 and
width r:

Acirc = (C/2)× r.

Since we already showed that C = 2πr, the area is

Acirc = (C/2)× r = (2πr/2)× r = πr2.

That is, the area A of a circle with radius r is

Acirc = πr2.

For example, (note the correct use of units) the area of a circle with radius 2 feet is

A = π(2 ft)2 = π 4 ft2 = 4π ft2.

Working correctly with units will prevent students from confusing the area formula
with the perimeter formula: only with the area formula is it possible to get an
answer in square units.

Another definition of the number π

The area formula shows that the ratio of the area of a circle to the square of the
radius is the same for any circle. We could have defined π this way, instead of as
the ratio between the circumference and diameter.

Three amazing facts about circles

To summarize, in this chapter we’ve covered the following three amazing facts:

(1) The ratio between the circumference and diameter of a circle is the same
for all circles!

(2) The ratio between the area and radius squared of a circle is the same for
all circles!

(3) The two ratios are the same!

http://www.geogebratube.org/student/m4042
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Annuli

An annulus is the region between two circles with the same center in a plane. The
plural form of annulus is usually annuli. For children the most familiar example of
an annulus might be the shape of a digital video disk (dvd). The area of the dvd is
related to how much data can be recorded on it. See Figure 77. 20

Figure 77. An annulus

Problem 6.3.2. Suppose there is a circular park with radius 200 feet with a circular
reservoir in the center of radius 10 feet. The reservoir is off limits (and in fact is
fenced off) and not considered part of the park.

(1) What is the perimeter of the park?
(2) What is the area of the park?

Your answers should use properties of area and perimeter rather than any formulas
you might be familiar with.

A common mistake in solving the first part of problems such as Problem 6.3.2
is to subtract the radii to find the perimeter, rather than add them. Here is an
example of how this confusion arises in problems. The answer depends on whether
the fountain is part of the park or not; if it is not considered part of the park, then
the perimeter of the park is 2π(210 feet). If it is considered part of the park, the
perimeter is 2π(200 feet). Questions should be worded to avoid this confusion.

A common mistake in solving the second part of problems such as Problem 6.3.2
is to subtract radii rather than areas. For example, suppose the problem is to find
the area of the annulus with inner radius 5 cm and outer radius 9 cm. Here is an
incorrect answer: A = π(9 − 5)2 = 16π cm2 . A correct answer is

A = π((9 cm)2 − (5 cm)2) = π(81 cm2−25 cm2)

= π(81− 25) cm2 = 56π cm2 .

The difference property of area may be used to give a formula for the area of an
annulus. If the radius of the inner circle of an annulus is r1 and the radius of the

20 Retrieved 2016 from https://en.wikipedia.org/wiki/File:DVD-4.5-scan.png, Licensed under
Public Domain.
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outer circle is r2 then the area Aann of the annulus is

(1) Aann = πr22 − πr21 = π(r22 − r21).

For example, the area of an annulus of inner radius 1 foot and outer radius 2 feet
(note the correct use of units!) is

A = π((2 ft)2 − (1 ft)2) = π(4ft2 − 1ft2) = π(4− 1)ft2 = 3πft2.

Similarly there is a formula for perimeter: The perimeter of the annulus with inner
radius r1 and outer radius r2 is the sum of the lengths of the inner and outer
boundaries:

Pann = 2πr1 + 2πr2 = 2π(r1 + r2).

Sectors

A sector of a circle is a region formed by two radii and the circular arc between
them. In other words, a sector is the shape of a pizza slice. At a pizza party, the
area of the pizza slice is related (in an inverse way) to how many pieces each child
would eat.

Figure 78. A sector

Problem 6.3.3. Find the areas of the following sectors using your compass, by
viewing each sector as a portion of the region inside a circle. For each sector find
what proportion of the circle it represents and then find its area.

5 cm 5 cm 

4 cm

As the problem above suggests, an approach to finding the area of sectors that works
for any sector involves finding the fraction of the disk that the sector represents.
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If the measure of the central angle of the sector is a then the sector is (a/360◦)-th
of the circle with the same radius and center. Given that the area of a circle with
radius r is πr2, the area of the sector with central angle of measure a is

Asector = πr2(a/360◦).

Problem 6.3.4. A pizza is 1ft in radius and is cut into pieces so that the angle of
each slice at the vertex is 30 degrees. Find the area of each slice.
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We conclude the section on circles with a fun (maybe) problem involving rainbows
and a few scientific facts about them.

Problem 6.3.5. Images of rainbows are always part of circles.

(1) Find the center of the circle of which the rainbow is part in the picture
below by drawing several tangent lines and drawing the perpendicular lines
at the tangent points.

21

(2) Using your compass, extend the picture of the rainbow outside of the pho-
tograph so that it forms a circle. (Not all will fit on the page.)

(3) What is the length of the portion of the photo of the rainbow shown? (The
rainbow itself has no length; it is an optical effect.)

(4) What is the area of the sector whose boundary is the rainbow shown?
(5) (Challenge) Using the fact that the center of the circle, the viewer, and the

sun are colinear, approximately what time was it when the picture above
was taken? (Suppose the sun rises at 7am and sets at 7pm, to make things
easier.)

(6) (Challenge) The sunlight reflects off the raindrops at maximum intensity at
an angle of 42 degrees. (That is, the angle with vertex at the raindrop and
rays given by the incoming and outgoing ray of light has angle measure 42
degrees.) Can there be a rainbow if the sun is directly overhead?

If you have internet access, a GeoGebra demonstration of the maxi-
mum intensity at 42 degrees can be found here. See also [CA], available
at this link.

(7) (Challenge) In what situation might you see a rainbow that is a full circle?

21Retrieved under public domain license at www.publicdomainpictures.net on September 3,
2015. Credit: ALangova

http://tube.geogebra.org/student/m1071261
http://www.ams.org/samplings/feature-column/fcarc-rainbows
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6.4. Ellipses, parabolas, and hyperbolas∗.

Ellipses, parabolas, and hyperbolas can be thought of as shadows of circles. They
play an important role in mathematics and physical science. For example, the
earth moves around the sun in an ellipse. The orbit of the earth is almost circular;
however for comets such as Haley’s comet the orbit is much more elliptical. These
concepts sometimes appear in science standards.

Ellipses

The following is an informal definition of an ellipse:

An ellipse is obtained from a circle by stretching in one direction only, or
by viewing the circle from an angle.

A common misconception about ellipses is that they have straight portions. That
is true of, say, the shape of a track around a soccer field, but that shape is not an
ellipse.

A more precise definition of an ellipse is the following: An ellipse with focal points
P,Q (also known as foci) and transverse diameter d is the set of points whose
distance to P plus the distance to Q is equal to d.

An ellipse can be drawn roughly by drawing a rectangle and then drawing the ellipse
so that it is tangent to each edge of the rectangle as shown in Figure 79.

Figure 79. An ellipse inscribed in a rectangle

If a circle is tilted towards or away from the viewer, then it appears as an ellipse.
For example, in most drawings of a cylinder the top and bottom appear as ellipses.
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Here is a sample problem: Draw an ellipse whose foci are 4 units apart and whose
points have the property that the sum of distances to the foci is 10 units.

A sample answer is as follows. Draw circles with radii 1, 2, 3, . . . units centered on
the first focus, and similarly for the second focus. For each pair of circles whose
radii sum to 10 units, mark the two intersection points of the two circles. These
points can be found by finding one point (say the point that is 3 units to the right
of the right focus) and moving to other points with the same sum of differences by
“following the diamonds” as in the figure below;

Because moving to the opposite vertex in a diamond raises one distance by one
unit and lowers the other by unit, the sum of distances remains the same. A rough
drawing of the ellipse can be obtained by connecting these points.
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Problem 6.4.1. Draw the ellipse whose foci are shown that consists of points
whose distances to the foci sum to 14 units.

Problem 6.4.2. Draw an ellipse with transverse diameter 10 units and whose foci
are 4 units by first drawing the rectangle that the ellipse is inscribed in. (Hint: to
find the dimensions of the rectangle, use the fact that the intersections of the ellipse
with the rectangle are points of the ellipse, and therefore meet the conditions in the
definition of the ellipse.)

Problem 6.4.3. This problem, which requires internet access, explores how the
transverse diameter (sum of distances from point on ellipse to the foci) and the
distance between the foci affect the shape of the ellipse. Click here for the applet if
you have internet access.

http://tube.geogebra.org/material/show/id/1371241
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Parabolas

Children are familiar with parabolas as the shape of paths of thrown objects. For
example, if a child throws a ball to another then the path taken is approximately a
parabola.

More precisely, the parabola with focus point P and axis L is the set of points such
that the distance to P is equal to the distance to L.

Here is a sample problem: Give a rough drawing of the parabola whose focus and
axis are shown.

A sample answer is as follows: Draw circles with radii 1, 2, 3, . . . units centered on
the focus, and lines at unit intervals parallel to the axis. The parabola then passes
through those intersection points corresponding to equal distance to the focus and
axis.

axis

focus
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Problem 6.4.4. Give a rough drawing of the parabola whose focus and axis are
shown.

axis

focus

Problem 6.4.5. The following GeoGebra activity explores how the relationship
between the focus and the directrix affect the shape of a parabola. It requires
internet access and can be accessed here.

http://tube.geogebra.org/material/show/id/1371271
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Hyperbolas

The shape of a hyperbola is less familiar to children than that of ellipses and parabo-
las. Cutting a cone vertically along a plane that does not contain the vertex of the
cone produces a hyperbola. What might be more familiar to a child is the part of
a wall illuminated by a flashlight: as the flashlight is angled to become parallel to
the wall, the illuminated part changes from an ellipse to a hyperbola. In nature,
hyperbolas occur as paths of objects in space that are not trapped into orbit.

Figure 80. A flashlight hyperbola
22

More precisely, a hyperbola with focal points C1, C2 and focal difference d is the set
of points P such that the difference between the distances PC1 and PC2 is d. See
Figure 81.

There are always two component curves to a hyperbola. To roughly draw a hy-
perbola, draw two bisecting lines (to be the asymptotes of the hyperbola) then the
hyperbola, which gets closer to the lines “further out”.
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Figure 81. Part of a hyperbola

Here is a sample problem: Give a drawing of the hyperbola whose foci are 4 units
apart, such that the difference of distances to the foci is 2 units.

A sample answer is as follows. Draw circles with radii 1, 2, 3 units centered on the
first focus and second focus. The intersection of the third circle around the first
focus, and the first circle around the second focus, has distance 3 to the first focus
and 1 to the second focus. The difference between the distances is 2, so this point
lies on the hyperbola. Similarly, the intersection of the 4th circle around the first
focus and the 2nd circle around the second, the intersection of the 5th circle around
the first and the 3rd around the second are all on the hyperbola. You can make the
picture more accurate by drawing circles with radii 1, 1.5, 2, 2.5 units if necessary.
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Problem 6.4.6. Give a rough drawing of the hyperbola whose foci are 4 units
apart consisting of points whose distances to the foci have difference 1 unit.

Problem 6.4.7. The following GeoGebra applet allows the user to investigate how
the focal distance and the distance between the focal points affect the shape of a
hyperbola. It requires internet access and can be accessed here.

The orbits of planets, asteroids, spacecraft and comets in our solar system that
repeat are all elliptical, with one of the foci of the ellipse at the position of the sun.
However, a hyperbolic path is also possible, if the asteroid or spacecraft goes back
out into space. In fact, hyperbolic orbits are often used by NASA spacecraft to
“sling themselves” around planets.

23

23Retrieved under creative commons license from https://en.wikipedia.org/wiki/Conic section#/media/File:Conic Sections.svg
March 2016.

http://tube.geogebra.org/material/show/id/1371335
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Figure 82. Conic sections

Circles, ellipses, parabolas, and hyperbolas can also be visualized as conic sections,
that is, the set of intersection points of a cone with circular base and a plane. Figure
82 shows conic sections.
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6.5. Workshops.

Workshop 6.5.1. (from [NJPEMSM])

(1) Smallville is 7 miles south of Gotham. Will is 8 miles from Gotham and 6
miles from Smallville. Draw a map showing where Will could be. (Try to
make the figure colorful, sufficiently large, drawn precisely, and with suitable
notation and labels.) Be sure to show a scale for your map. Explain your
reasoning. How many possible locations are there for Will?

(2) What if Will is at most 8 miles away from Gotham and at most 6 miles
away from Smallville?

(3) A new Giant Superstore is being planned somewhere in the vicinity of town
A and town B, towns that are 10 miles apart. The developers will say only
that all the locations they are considering are more than 7 miles from town
A and more than 5 miles from town B. Draw a map showing town A and
town B and all possible locations of the Giant Superstore. Be sure to show
the scale of your map. Explain how you determined all possible locations
for the Superstore.
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Workshop 6.5.2.

(1) A reflecting pool will be made in the shape of the shaded region shown
below. The square has side lengths 10 ft. What is the area and perimeter
of the pool? Explain your reasoning.

(2) A cafeteria has a recycling container for cans. The recycling container has
a lid that is in the shape of a circle with an opening in the center that is
also in the shape of a circle. The lid and its dimensions (6 in and 30 in) are
shown in the diagram. Find the area and circumference of the lid. Explain
your reasoning.

6 inches

30 inches
(3) Suppose that a forest on flat terrain has perimeter 20 miles, but there is no

information on the shape of the forest. What can you say about the forest’s
area? Can you find a forest with area 20 square miles and perimeter 20
miles, and what would its shape be?
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Workshop 6.5.3.

(a) Find the area of each region below, using the approximation π ≈ 3.14. (Use the
symbol ≈ in your work, and give two decimal places of accuracy. Make sure to use
units correctly, e.g. πr2 = π(2 units)2 = . . ..)

(b) (Adapted from [SM]) The figure is made up of two semicircles and a quarter
circle. Find its area and perimeter.

2 m2 m
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Workshop 6.5.4.

A pizza pie with circumference 30 inches is sliced into eight equal slices. Give
answers to (a) and (b) that are exact, that is, not approximate. In each case,
explain your answer.

(a) What is the perimeter of each slice?

(b) What is the area of each slice, in square inches?

(c) Tom eats one slice. What is the area of the pizza that remains?

(d) Jerry eats one slice, but leaves the outer one inch of crust which he doesn’t like.
What is the area of the crust of his slice that remains? (Colored paper and scissors
may be helpful here.)

(e) What percent of the pizza area has Jerry “wasted”, that is, not eaten?

(Here is another version of this problem: use a real pizza, if you can find one.
Find the circumference first by measuring the radius and using the formula for
circumference. Then gives approximate answers for each part above.)

Workshop 6.5.5.

For this problem use only compass and straightedge. This means that you should
carry out the constructions only by drawing circles of arbitrary radius and drawing
lines of arbitrary length; measuring distances, angles, or using a right angle are not
allowed. If you are using Geogebra, this means that you should only use the line,
line segment, or circle tools, and not any of the other tools like the polygon tool.

(1) Draw points A,B and a line segment connecting them. Construct (using
circles!) a line that is perpendicular to the line segment AB and passes
through the point A. Describe your steps and explain why the segment you
have drawn is perpendicular to AB.

(2) Using only circle and lines (not a right angle!) construct a square that has
AB as one side. Describe your steps and explain why your figure is a square.

(3) Draw a circle. Then, by more circles and lines, construct a square whose
vertices all lie on the circle. Describe your steps and explain why your figure
is a square.

(4) Using the previous steps in the workshop, using circle and lines to construct
a regular octagon. Describe your steps and explain why your figure is a
regular octagon.
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6.6. Assessments and sample student work.

Problem 6.6.1. (Adapted from [MCAS]) A cafeteria has a recycling container for
cans. The recycling container has a lid that is in the shape of a circle with an
opening in the center that is also in the shape of a circle. The lid and some of its
dimensions are shown in the diagram below.

6 inches

30 inches

(a) Find the circumference of the lid. (b) Find the area of the lid, including the
hole. (c) Find the area of the lid, not including the hole.

Some sample responses are given below. We warn the reader that the sample
responses shown below are marked as if the question means the circumference of the
outer circle. However, the question should really have specified which circumference
is being talked about; annuli have both inner and outer circumferences.

Score 3/4. The student subtracted
radii instead of areas to find the area
of the difference.
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Score 2/4. This student got confused
about which circumference was being
asked for, perhaps because the ques-
tion was posed vaguely. The student
seems not to know how to do the last
question.

Score 1/4.

Score 0/4
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Problem 6.6.2. (Adapted from [MCAS]) The rear window of a car has the shape
of a trapezoid with height 21 inches, bottom side with length 48 inches, and top
side with length 36 inches. An 18-inch rear window wiper clears a 150◦ sector of a
circle on the rear window, as shown in the diagram below.

150 deg
18 in

A. Find the area of the rear window.

B. What fractional part of a complete circle is cleared on the rear window by the
18-inch wiper? Show or explain how you got your answer.

C. What is the area, in square inches, of the part of the rear window that is cleared
by the wiper? Show or explain how you got your answer.

D. What percent of the area of the entire rear window is cleared by the wiper?
Show or explain how you got your answer.

Sample Answer for 3/4. In general
incorrect responses showed lack of
awareness of how to find the area of a
portion of a circle.
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7. Motions

A motion such as a slide, turn, or flip is a change in position over time. Each figure
changes under a motion to a possibly new figure. Some motions are rigid, which
means that they involve no stretching. Others, like dilations (scaling), involve a
scaling factor as well as a center representing the point from the stretching is done.
The introduction of motions as a basis for reasoning in geometry is a major (and
controversial) feature of the Common Core State Standards.

The objectives of this chapter are: (i) to introduce the notion and precise definitions
for translations, reflections, rotations, and dilations; (ii) to describe how to draw
these motions when applied to figures; (iii) to discuss the classification of motions
of the plane; (iv) to introduce and recognize different kinds of symmetry; and (v)
to describe how to draw a shape with given symmetry.

7.1. Types of motions.

By a motion of a figure we mean a way of changing every point to a (possibly differ-
ent) other point so that no two points get changed to the same point. For example,
rotations (turns), translations (slides), reflections (flips) and dilations (stretches)
are motions. Folding in half is not a motion of the plane because two points are
“folded” to the same point. See Figure 83 for examples.

Rotation (Turn)

Dilation (Rescaling)

Translation (Slide)

Reflection (Flip)

Figure 83. Types of motions

One can spend a long time talking about what is meant precisely by a motion (for
example, is tearing allowed?), but since we mostly talk about rigid motions and
dilations, we will avoid doing so. During board demonstrations of motions, Magna-
Tiles may be helpful since they attach to most blackboards and can be easily slid,
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turned, and reflected. Cutouts with colored paper with masking tape attached on
one side may also be used for translations and rotations, but not reflections since
the tape is only on one side.

Two children on a Ferris wheel or merry-go-round stay the same distance apart as
the wheel turns. A rigid motion is a motion that preserves distances, that is, for any
two points P,Q that are changed to points P ′, Q′, the distance PQ is equal to the
distance P ′Q′. Motions that are rigid include rotations, translations and reflections.
Other motions, such as dilations, do not preserve distances and so are not rigid.
For example, a magnifying glass has the effect of dilating a figure: distances seem
much larger when looking through the glass.

The following are some sample assessment problems on rigid motions of the plane.
Answer them based on what you know already about such motions; the different
types of motions will be described precisely in the following sections.

Problem 7.1.1. (Adapted from [NJ])

(a) Which motion shows only a slide:

A

C

B

D

(b) Activity from [NJ]:

Which of the following describes the change from Figure 1 to Figure 2? A. slide B.
turn right C. flip D. turn left

Figure 1 Figure 2
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Problem 7.1.2. (Parts 1-3) For each picture below, help Alice to describe precisely
how the position of Carlos has changed (comparing “before” and “after” pictures)
using your own understanding about motions of a plane such as translations, rota-
tions, and reflections. In each case, give a variety of descriptions, if possible. In the
figure, the two ellipses sticking out of Carlos are his feet, seen from above.

Alice

Teacher’s
Desk

Trash
Bin

After
Carlos

Before
Carlos

Picture 1

Alice

Teacher’s
Desk

Trash
Bin

Carlos
Before

Carlos
After

Picture 2

Alice

Teacher’s
Desk

Trash
Bin

Carlos

Before

After

Carlos

Picture 3

(Part 4) How would your answers change if Carlos were not a person but a (perfectly
symmetric) ball?

There are three special kinds of rigid motions of the plane: translations (slides),
rotations (turns), and reflections (flips). Each type of motion is specified by different
information. A translation of the plane is specified by giving a distance and a
direction. A rotation of the plane is specified by giving a center, direction, and
amount of rotation. A reflection of the plane is specified by giving a line of reflection.
At the end of the chapter, we also discuss dilations which are non-rigid motions. A
dilation of the plane is specified by a scaling factor and a center.
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7.2. Translations.

A translation is another name for a slide. Children will be familiar with the idea of
sliding an object along the floor without turning.

As suggested by the problems above, a translation is specified by a direction and
distance. More precisely, the translation of a point P by a distance D along a ray
R is the point obtained by moving from P by distance D along R.

Problem 7.2.1. Find the translation of the point P by the distance D and ray R
given below, using the following steps.

(1) Draw a passing through point P that is parallel to ray R. How do you know
whether the line you have drawn is parallel to the given ray?

(2) Find the point P ′ at distance D from P along the line L, in the direction
of R.

D

R

P
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Translations of Figures

The translation of a figure means the translation of every point on the figure. To
find the translation of a given polygon in the given direction, it’s enough to find the
translation of each of the vertices. This is because translations (as well as rotations,
reflections, and dilations) transform line segments into line segments. An example
is shown in the Figure 84. Each vertex has moved the same direction and distance.

Answer: The translation of the

given figure is the new triangle

in the figure above.

Problem: Draw the translation of the

given figure by the given direction

and distance (represented by the arrow)

Figure 84. Finding translations of figures

If you have internet access you can click here to bring up a GeoGebra applet which
illustrates a translation of a figure:

Translating a figure

Translations of figures can also be done colorfully at the board with the Magna-Tile
manipulatives, as in Figure 85. 24 The advantage of using Magna-Tiles in this case
is that they allow the instructor to demonstrate the motion in action, by sliding the
original object along the drawn rays, and then leaving it on the board in the target
position.

24Photo credit I. Radu

http://tube.geogebra.org/student/m1038517
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Figure 85. Translating a Magna-Tile trapezoid

Problem 7.2.2. Find the translation of the given polygon in the given direction
and distance.



166

Problem 7.2.3. Start by drawing a simple shape or design that is not symmetrical.

(1) Translate your shape 2 cm east and then translate your resulting shape by
3 cm northeast.

(2) What single transformation (reflection, translation, or rotation) will take
your initial shape to your final shape?

(3) Can you say anything about the effect of combining two translations in
general?

(4) Does the order in which you do the translations matter? Explain your
answer.

7.3. Rotations.

A rotation is another name for a turn. For the following two exploratory problems,
use your own understanding about rotations.

Problem 7.3.1.

(1) Suppose two children sit on opposite ends of a see-saw. How could the
movement of each child be described best as a rigid motion?

(2) How does the distance between the children change under the motion?
(3) Suppose a child holds an ice cream cone in her right hand with arm out-

stretched. What do you think will happen to the ice cream if the child
rotates the cone by 90 degrees by rotating her arm by 90 degrees around
her shoulder? Try a similar motion yourself with a pencil or pen represent-
ing the cone and discuss your answers.

(4) How does the angle formed by the cone and the arm change under the
motion?

Problem 7.3.2. Using the following steps, find the rotation of the point P around
the center Q by 60 degrees clockwise. You can use a ruler, compass and protractor
as you see fit.

(1) Draw the line segment from P to Q.
(2) Find a ray that makes an angle of 60 degrees with the segment PQ in a

clockwise direction.
(3) Find the point P ′ on the ray that is the same distance from Q as P .

P

Q
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More precisely, the rotation of a point Q around a center P by an angle of measure
a in a given direction (clockwise or counterclockwise) is the point R whose distance

to P is the same as the distance from Q to P , and such that the angle from
−−→
PQ to−→

PR in the given direction has measure a. See Figure 86.

a

P

Q

R

Figure 86. Rotation of a point counterclockwise

The rotation of a figure or object means the rotation of every point on the figure
or object. Rotations of figures or objects usually change the “direction” that the
figure or object is pointing. If you have internet access you can click here to bring
up a GeoGebra applet which illustrates a rotation of a figure:

Rotating a figure

Problem 7.3.3. Find the rotation of the given shapes around the point P by an
angle of 60 degrees counterclockwise.

http://tube.geogebra.org/student/m1039745
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P

Problem 7.3.4. Start by drawing a simple shape or design that is not symmetrical.

(1) Rotate your shape around a point by 60 degrees clockwise, and then rotate
the resulting shape around a different point by 60 degrees counterclockwise.

(2) What single transformation (reflection, translation, or rotation) will take
your initial shape to your final shape?

(3) Can you say anything about the effect of combining two rotations in general?
(4) Does the order that you do the rotations matter? Explain your answer.

7.4. Reflections.

A reflection is another name for a flip. The reflection of a shape is often called a
mirror image, in which the shape has been reflected over a line or plane (in three
dimensions, the plane of the mirror). For example, the wings of a butterfly are
reflections of each other over a line, namely the line corresponding to the body of
the butterfly.

Problem 7.4.1. Based on your understanding of reflections in the plane, find the
reflection of the point P over the line L given below using a right angle and ruler
as appropriate:

(1) Find the line perpendicular to the line L that passes through the through
the point P . Denote that line L′.

(2) On L′ draw the point P ′ that is the same distance to L as P , but on the
other side of L.

L

P
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More precisely, the reflection of a point P over a line L is the point Q such that
←→
PQ

is perpendicular to line L and the distance from P to L is the same as that from Q
to L. The reflection of a figure means the reflection of every point on the figure.

To find the reflection of a given polygon over a given line, it’s enough to find the
reflection of each of the vertices.

Problem 7.4.2. Find the reflection of the shapes over the line shown.

Reflections of figures can also be done colorfully at the board with the Magna-Tile
manipulatives, as in Figure 87. 25

Problem 7.4.3. Start by drawing a simple shape or design that is not symmetrical.

(1) Reflect your shape over a horizontal line, and then reflect the resulting
shape over a line making a 45 degree with the original line.

25Photo credit I. Radu
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Figure 87. Reflecting a Magna-Tile trapezoid

(2) What single transformation (reflection, translation, or rotation) will take
your initial shape to your final shape?

(3) Can you say anything about the effect of combining two reflections in gen-
eral?

(4) Does the order that you do the reflections matter? Explain your answer.
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The following problem provides more practice with the three motions covered so
far.

Problem 7.4.4.

(1) Consider the translation T that moves point A to point B. Draw the result
of moving the shaded region by translation T. Explain the steps you used
to move the region.

A

B

(2) Draw the result of flipping the shaded region below over the line given.
Explain your steps.

(3) Draw the result of rotating the shaded region by 30 degrees in the clockwise
direction around the given point. Explain your steps.
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7.5. Dilations.

Dilations (rescalings) often occur in real life asmodels of larger objects. For example,
toy cars are often made to a 1 : 24 scale. If the length of the toy car is 6 inches then
the length of the real car would be

6 inches × 24 = 144 inches

= 144 inches× 1 foot

12 inches

=
144

12
feet

= 12 feet.

Figure 88. A dilation in real life

26

Problem 7.5.1. Based on your understanding of rescalings (dilations), which of
the following are the same for a model car and the real car? Explain briefly.

(1) the ratio of the radius of the tires to the height of the car;
(2) the ratio of the circumference of the tires to the height of the car;
(3) the height of the antenna;
(4) the surface area of the car;
(5) the ratio of the radius of the tires to the volume of the car.

A rescaling or dilation by a factor s from a point P (called the center of the dilation)
is a motion of the plane that changes the distance of any point to P by the factor
s, and leaves the direction the same. In real life, we usually think of dilations as
increasing the size, but in mathematics dilations can also decrease size, as in the
case of the model car.

In the definition above, “leaves the direction the same” means that the center P ,
the point Q, and the rescaled point Q′ are colinear. In Figure 89, the point Q′ is
the dilation of point Q from center P by a scale factor of 2.

Problem 7.5.2. Find the dilation of the point Q from the center P with scale
factor 1.5 by the following steps:

(1) Using your ruler, draw the ray from P to Q and measure the distance
between P and Q.

(2) Multiply the distance by the scale factor.

26Red car from Pixabay, released under Creative Commons CC0 into the public domain
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P

Q

Q’d

2d

Figure 89. A dilation

(3) Using your ruler, draw point Q′ on the ray
−−→
PQ, so that distance PQ′ is the

distance computed in step (2).

P

Q

The dilation of a figure or object means the dilation of every point on the figure
or object. A dilation is a motion that is not rigid, that is, it does not preserve
distances between points in a figure. Instead, each linear measurement of the figure
changes by the scale factor. If you have internet access you can click here to bring
up a GeoGebra applet which illustrates a dilation of a figure.

Dilating a figure

Problem 7.5.3. (We suggest doing at most two of the following):

(1) The following picture shows a square with a point at its center. Draw the
square whose side lengths are twice as long as the shown square, with the
same center.

http://tube.geogebra.org/student/m1098321
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(2) The following picture shows a polygon with a point inside. Draw the figure
obtained by scaling by a factor of two from the point.

(3) The following picture shows a circle with a point inside. Draw the figure
obtained by scaling by a factor of two from the point.
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Dilations preserve angles

Suppose a toy sailboat is a model of a real life sail boat that is a dilation by some
factor. The measure of the angle at the top of the sail is the same for the toy
boat as for the real boat. This property of dilations is called preservation of angle.
For example, a dilation of a rectangle is again a rectangle, and the dilation of an
equilateral triangle is again an equilateral triangle, because the angles before and
after the dilation have the same measure. In notation, if P,Q,R are points mapped
to P ′, Q′, R′ under a dilation then ∠PQR ∼= ∠P ′Q′R′.

A viable argument for preservation of angles under dilation can be given as follows.
For points P , Q, R that are mapped by a dilation with scale factor s to points P ′,
Q′, R′, we will first show that angles ∠PQR and ∠P ′Q′R′ are congruent in a special
case, namely when the center of dilation is Q. Figure 90 shows why the angles are

congruent in this case: the rays
−−→
QP and

−−→
QR stay the same under the dilation.

Q

P

R

P’

R’

Figure 90. Any angle is unchanged by a dilation around its vertex

Next, note that two dilations by the same scale factor differ by a translation. For
example, in Figure 91 the triangle Q1R1S1 is the dilation of QRS from point P1,
while Q2R2S2 is the dilation of the triangle QRS from point P2 by the same scale
factor. Since triangles Q1R1S1 and Q2R2S2 are congruent and have the same
orientation, Q2R2S2 is related to Q1R1S1 by a translation.

Because of this, any dilation of ∠PQR by factor s can be carried out in two stages:
first, dilate by factor s from center Q, and then do a translation. Since dilation
from Q preserves the angle ∠PQR, and translations preserve angles, so does any
dilation.
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Q

S

R2

Q2

S2

R1

S1

P1 P2

Q1

R

Figure 91. Dilations of a figure from two centers are related by a translation

In fact, any motion preserving angles is a combination of a rigid motion and a
dilation; we will give a viable argument for this later. An example of a motion that
does not preserve angles is the following: the motion of the plane that stretches by
a factor of 2 in the x direction only. This is not a combination of a rigid motion
and a dilation. For example, if a rectangle is stretched along the x-axis only, the
angle formed by the diagonals changes.

Problem 7.5.4. Start by drawing a simple shape or design that is not symmetrical.

(1) Dilate your shape from a point with scale factor 2, and then dilate the
resulting shape around a different point by a scale factor of 1/4.

(2) What single transformation (reflection, translation, rotation, or dilation)
will take your initial shape to your final shape?

(3) Can you say anything about the effect of combining two dilations in general?
(Hint: it depends whether the two scale factors are reciprocals or not.)

(4) Does the order that you do the dilations matter? Explain your answer.
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7.6. Shears∗.

A shear is an example of a motion that might be familiar to children who have seen
sky-writing. At first, sky-writing is clear but after some time, differences in the
wind speed distort the sky-writing. Here is a shear of the letter H , in a horizontal
direction shown below the word. The top of the letter moves more to the right than
the bottom.

Figure 92. A shear

A shear is a motion of the plane that maps lines to lines but is not rigid. A shear is
specified by a shear factor indicating the amount of shear, a shear ray, and a side

of the shear ray. A shear with direction given by a ray
−−→
PQ and shear factor c is the

motion of the plane which moves each point R in the shear direction to a new point

R′ by a distance equal to c times the distance of the point R to the line
←→
PQ, if the

point is on the given side of the ray, and minus c times the distance of the point to

the line containing the ray if the point R is on the other side of the line
←→
PQ. See

Figure 93 for an example where the shear factor is 1 and the given side of the ray
is the shear direction.
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After
Before

P Q

R R’

SS’

Figure 93. A shear

Shears do not preserve distance, but they do preserve area of a region. Break the
region up into squares with one side parallel to the direction of the shear. The
shear transforms each of these squares into parallelograms with the same base and
height, hence the same area. Since the sheared region has area given by the sum of
the areas of the parallelograms, it has the same area as the original figure.

Figure 94. Areas of parallelograms are unchanged by shears
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Problem 7.6.1. Find the shear of the figure shown below, along the line L shown
below, so that

(1) The shear factor is 1;
(2) The shear factor is −1/2;
(3) The top vertex in the figure moves four units to the right.

L
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7.7. Motions of a line. Instead of starting with motions of a plane we could
have first discussed motions that can be performed in a line (that is, without going
outside the line.) Motions of a line include translations, reflections, and dilations.
There are no “rotations” of a line, unless the angle of rotation is 180 degrees so that
the line is turned around. However, a 180 degree rotation of a line is the same as a
reflection over the center of the rotation.

Problem 7.7.1. In each case, find a combination of motions of the line (transla-
tions, reflections, and dilations) that transforms the points A,B to the correspond-
ing points A′, B′, using what you understand already about motions. Describe each
motion as precisely as possible: as a translation by a certain amount and direction,
reflection over a specified point, or dilation from a specified center by a specified
scale factor.

(a)

(b)

(c)

(d)

(e)

A B A’ B’

A B B’ A’

B’A=A’ B

A BA’ B’

B A’AB’
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Motion Type Precise Description
(a)

(b)

(c)

(d)

(e)

Note that each type of motion of a line is specified by different information. A
translation of the line is specified by giving a distance and a direction. A reflection
of the line is specified by giving a point of reflection. A dilation of the line is specified
by a scaling factor and a center.

7.8. Symmetry.

Many objects in real life (butterflies, wallpaper patterns, wheels) have symmetry.
A symmetry of a figure is a motion that leaves the figure unchanged.

The first type of symmetry we discuss is line symmetry. A line symmetry means
that the figure is unchanged by reflection over the line. For example:

(1) The butterfly in Figure 95 has (almost exact) line symmetry.

Figure 95. Line symmetry in real life

27

27Image ”LucasMorphomenelaus” by Hippolyte Lucas retrieved from
http://www.rareprintsgallery.com/. Licensed under Public Domain via
http://commons.wikimedia.org/wiki/File:LucasMorphomenelaus.jpg#/media/File:LucasMorphomenelaus.jpg
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(2) The letters C, I and O (in some fonts) have horizontal line symmetries,
meaning they look the same when turned upside down.

(3) A square has four different kinds of line symmetry, as shown in Figure 96.

Figure 96. Multiple line symmetries

(4) The letters T, I and O have vertical line symmetries, meaning they look the
same when flipped from left to right.

Problem 7.8.1. (Adapted from [VA]) What is the total number of lines of sym-
metry of the letter H?

Problem 7.8.2. Which of the following figures does not have a line of symmetry?
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Problem 7.8.3. Activity from [TX]: Which statement is true about the letters
A,D,H,M,X?

(1) They do not have any lines of symmetry.
(2) They all have at least 1 line of symmetry.
(3) They all have exactly 1 line of symmetry.
(4) They all have more than 1 line of symmetry.

Problem 7.8.4. Draw an equilateral triangle. Then, draw all its lines of symmetry.

Next we discuss rotational symmetry. If n is an integer then an n-fold rotational
symmetry is symmetry around a point consisting of rotations by 360/n degrees.
For example, squares have 4-fold while equilateral triangles have 3-fold symmetry
around their centers.

Problem 7.8.5. Adapted from [CST]) Which figure has a line of symmetry and a
rotational symmetry?

A B C D

Problem 7.8.6. In the following, words may be written in upper case or lower
case.

(1) Identify an English word with vertical line symmetry.
(2) Identify an English word with horizontal line symmetry.
(3) Identify an English word with rotational symmetry.

Problem 7.8.7. If a figure has rotational symmetry with respect to an angle of
100 degrees, what other kinds of rotational symmetry does it have?

Finally we discuss translational symmetry. A translational symmetry means that
a translational motion leaves the figure unchanged. Only figures that extend in-
finitely in both directions along some line can have a translational symmetry. For
example, graph paper that extends infinitely horizontally and vertically has many
translational symmetries (east, north, northeast, . . . ).
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Drawing figures with given symmetry

To draw a figure with given symmetry, start with a given figure, then apply to
it each motion corresponding to the symmetry required by the problem until the
figure is symmetric in the required ways. (In principle, this might take infinite time
for something like a translational symmetry, but eventually one runs out of page
space and can stop the drawing.) The larger figure (consisting of all the copies of
the original figure) has the required symmetry.

For example, suppose we want to create a figure with a given line symmetry. Draw
a figure on one side of the line and then reflect it to create a larger figure (the
resulting kite) with reflection symmetry.

Figure 97. Creating figures with line symmetry

Similarly, to draw a figure with a given rotation symmetry we start with a given
figure and then rotate it a number of times by the given angle to create a larger
figure (starry shape) with the specified rotation symmetry.

To draw a figure with a given translational symmetry we start with a given figure
and then (pretend to) translate it infinitely many times in the given direction and
by the given distance to create a larger figure (staircase shape) with the specified
translation symmetry.

To create figures with several different symmetries, one applies each symmetry re-
peatedly and hopes that one will obtain a final figure which has the required sym-
metries.28

28Certain combinations of symmetries cannot be achieved in finite time. For example, if two
lines create an irrational angle measure (in degrees) then the only closed figure with both line
symmetries is the circle whose center is the intersection of the lines; starting with any other initial
figure and applying the symmetries repeatedly will take infinite time.
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Figure 98. Creating figures with rotational symmetry

Figure 99. Creating figures with translational symmetry

Drawing figures with several different symmetries can take a long time by hand,
even if possible. GeoGebra can help draw the figures more quickly. For example,
Figure 100 shows a figure with both reflection and translation symmetry obtained
by starting with a triangle and repeatedly translating and reflecting.

Figure 100. Creating figures with multiple symmetries



186

Problem 7.8.8. Draw (on paper or with GeoGebra)

(1) a figure with 3-fold symmetry;
(2) a figure with line symmetry;
(3) a figure with both 2-fold and 3-fold symmetry around the same point; (What

symmetry does the final figure have?)
(4) a figure with a 3-fold symmetry and a line symmetry;
(5) a figure with a line symmetry and a translation symmetry;
(6) a figure with a 3-fold symmetry and a translation symmetry.

Symmetry is a useful method of solving problems in geometry. For example, if two
line segments are related by a symmetry then they have the same length, and so if
you have already measured one length then you don’t need to measure the other.
Similarly, the area of a two-dimensional shape with reflection symmetry over a line
can be found by finding the area of one-half of the shape (the part on one side of
the line) and then multiplying by two.

There are 17 different types of symmetries of the plane such as those above (that is,
combinations of translational, rotational, and reflectional symmetry). TheWikipedia
entry on wallpaper groups is a good place to learn more.

http://en.wikipedia.org/wiki/Wallpaper_group
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Problem 7.8.9. Find all possible symmetries in the following images, from Egypt
and Islamic Spain (the Alhambra) respectively, ignoring colors. 29 Each design has
line symmetries, translation symmetries, and rotation symmetries. Identify

(1) the lines of the line symmetries,
(2) the directions and amounts of the translation symmetries, and
(3) the centers and angles of the rotation symmetries.
(4) How do the symmetries change if one requires the motions to preserve col-

ors?

29 Source: http://en.wikipedia.org/wiki/Wallpaper group, retrieved 4/2015
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Problem 7.8.10. The following problem requires Geogebra. Using Geogebra’s
“image” button (on the same menu as ABC) make a wallpaper with an image of
an animal or similar by the following steps:

(1) Import an image into Geogebra.
(2) By repeatedly rotating and translating your image (translations should be

by the same vector), create a larger pattern with rotational and (approxi-
mate) translational symmetry. Here approximate means that as far as you
can see on the screen, the image has translational symmetry.

(3) (Challenge) Make a pattern with (approximate) “dilational” symmetry, by
repeatedly dilating your original image.
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7.9. Workshops.

Workshop 7.9.1.

The classroom building has accidentally been built a long way from the ocean. The
ocean is represented by the wavy lines in the picture below. Let’s pretend that we
can move the building using a rigid motion.

(a) Find a translation that moves the building within one inch of the ocean. Draw
the translation reasonably precisely, and describe the direction and distance of the
translation. Describe what tools you used to draw your answer.
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(b) Find a reflection which moves the building within one inch of the ocean. (The
building does not have to look “straight up” after the reflection.) Draw the reflection
reasonably precisely, and describe the line of reflection. Describe what tools you
used to draw your answer.
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(c) Find a rotation which moves the building within one inch of the ocean. (The
building will no longer be upright after the rotation.) Draw the rotation reasonably
precisely, and describe the center, direction, and amount of rotation. Describe what
tools you used to draw your answer.

(d) Find a dilation which moves the building within one inch of the ocean. Draw
the dilation reasonably precisely, and describe the center and scale factor. (Note
that a dilation can never be specified only by the scale factor, unless the scale factor
is 1.) Describe what tools you used to draw your answer.
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(e) (Challenge) Sometimes a negative scale factor is allowed in dilations, which
means that each point moves to a point on the other side of the center of dilation.
Find a dilation with negative scale factor which moves the building within one inch
of the ocean. (Hint: the building will be upside down.)
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Workshop 7.9.2.

(1) Johnny’s ice cream cone is sadly too small. Dilate his ice cream cone by a
factor of two, using the vertex of the cone as the center.

(2) Dilate the cone from (1) by a factor of two, using a center that is outside
the cone.

(3) How do the two dilated cones relate? (Hint: it is a rigid motion.)
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(4) The figure shows a point and an ice cream cone. Using your ruler, pro-
tractor, and/or compass draw the rotation of the ice cream cone around
the point by 60 degrees counterclockwise. Explain in a few sentences
which tools you used and how. (Hint: the ice cream cone will no longer be
right-side-up.)
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(5) Draw the reflection of the cone over the line shown.

(6) Draw the translation of the cone by one inch up on the figure below.
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Workshop 7.9.3.

(1) On a new page draw a simple shape or design that is not symmetrical. What
can you say about the net effect of rotating your shape about some point and
then translating the resulting shape in some direction? Can the net effect
be expressed through one single transformation (reflection, translation, or
rotation)?

(2) On a new page draw a simple shape or design that is not symmetrical.
What can you say about the net effect of dilating the shape from some
center and then translating the resulting shape in some direction? Can
the net effect be expressed through one single transformation (reflection,
translation, rotation, or dilation)?

(3) On a new page draw a simple shape or design that is not symmetrical.
What can you say about the net effect of rotating the shape around some
center and then reflecting the resulting shape over a line? Can the net ef-
fect be expressed through one single transformation (reflection, translation,
rotation, or dilation)?

(4) When we apply two transformations to a shape, does it matter which order
we apply them? Explain your answer, discussing cases as necessary.
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7.10. Assessments and sample student work.

Problem 7.10.1. Adapted from [MCAS]) Hexagon PQRSTU is shown in the dia-
grams below. In the diagram, Line 1 passes through the midpoints of QR and UT .
Line 2 passes through vertices R and U .

Line 1

Line 2

P

Q R

S

T
U

1. Is Line 1 a line of symmetry? Explain your reasoning.

2. Is Line 2 a line of symmetry? Explain your reasoning.

3. Is there a line other than Line 1 or Line 2 that is a line of symmetry for hexagon
PQRSTU?

(a) If there is another line of symmetry, describe where the line would be on the
hexagon.

(b) If there is not another line of symmetry, explain why not.

Sample student work is below.
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Many students were confused about the definition of line of symmetry. For example,
line of symmetry was defined as a line that cuts the shape into two equal areas, or
a line that goes from left to right that cuts the shape into two equal shapes.
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8. Coordinates and the Pythagorean theorem

The path of a child on the way to school may consist of a number of blocks in one
direction, followed by a number of blocks in another direction. So a location near a
school can be specified by a pair of numbers, usually called coordinates, giving the
number of blocks in each direction that the location is from the school. The distance
between two locations given in coordinates can be computed by the Pythagorean
theorem. Coordinates are also useful in describing motions. For example, the trans-
lation of a shape can be given by adding given numbers to the coordinates of each
point in the shape.

The objectives of this chapter are: (i) to introduce number lines and coordinate
axes; (ii) to discuss and justify the Pythagorean theorem; (iii) to discuss and justify
the formula for the distance between two points given in coordinates; and (iv) to
describe translations, reflections, rotations, and dilations of the plane in coordinates.

8.1. Number lines, real numbers, coordinates.

A number line is a line with numbers marked at regular intervals, so that the
difference between any two numbers is proportional to their distance on the number
line. Each number line has an origin represented by the number zero (which may
not be shown) as well as a unit length representing the distance between any two
consecutive integers. In the case of the number line below, negative numbers are
represented to the left of zero, and positive numbers are represented to the right.

−1 1 20

Figure 101. An example of a number line

For an example in real life, thermometers of the old style (using mercury to measure
temperature) are marked with numbers indicating degrees in Fahrenheit and Cel-
sius. See Figure 102. Note that 0 degrees Fahrenheit is not the same as 0 degrees
Celsius. 30

A frequent error that students make when working with number lines is putting the
numbers in the spaces between hash marks, instead of at the hash marks.

Problem 8.1.1. For this problem you can use any tools you deem necessary.

(1) Draw 9 on the number line below:

15 18

30Downloaded from https://www.enasco.com/product/TB15831M June 2016. Used under Fair
Use guidelines.
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Figure 102. Number line on a thermometer

(2) Draw 0 on the number line below:

3.333.......2

(3) What number does the point P below represent?

32 34
P

(4) Which of the questions above can be easily answered using only a compass?

Problem 8.1.2. Consider the number line below and a circle of diameter equal to
2 units (with respect to the unit of the given number line).

102 6 840

(1) If we straighten the circumference of the circle and place the resulting seg-
ment on the number line, starting at the origin, what is the coordinate of
the endpoint of the segment?

(2) If we place the same segment on the number line starting at 1, what is the
coordinate of the endpoint of the segment?

There is a one-to-one correspondence between real numbers and points on the num-
ber line. Recall that a real number is associated with a decimal expansion, either
with finitely many or infinitely many digits. For example, any integer is a real num-
ber, as is any rational number. The number π is a real number that is not rational,
with the decimal expansion π = 3.14159 . . .. The number π corresponds to a point
on the number line in between the numbers 3 and 4, and is about 1/7-th of the way
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from 3 to 4. The idea of a real number as cutting the number line into two pieces
is commonly used in later math courses.

8.2. Coordinates in the plane.

To describe the position of an object on a plane one needs a pair of coordinates.
Coordinate axes are perpendicular number lines intersecting at their origins. Any
point in a plane equipped with coordinate axes is described by an ordered pair of real
numbers, called the coordinates of the point. In notation this means that a point
with coordinates (x, y) is obtained by moving x units in the horizontal direction
and y units in the vertical direction from the origin. If a coordinate is negative,
then the movement along the associated axis is opposite to the positive direction
of the number line. As an example, the point (−1, 2) and the square with vertices
(2, 2), (2,−2), (−2,−2), (−2, 2) are shown in Figure 103.

x

y

x

y

(−1,2)

(2,−2)

(2,2)(−2,2)

(−2,−2)

Figure 103. A point and a square on the coordinate plane

The terminology ordered pair is used on standardized assessments and should be
explained to students. The coordinates of a point are the distances required to
move from (0, 0) to the point along each of the coordinate axes, in the positive or
negative direction depending on the sign of the coordinate. Often the coordinate
axes are labelled x, y.

The two number lines do not necessarily need to use the same unit length. For
example, if the horizontal axis represents time and the vertical axis represents pop-
ulation of the United States, typical units might be 10 years for the horizontal axis
and 1 million people for the vertical axis; these units do not have to be the same
length.
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Problem 8.2.1. Activity adapted from [MCAS]:

(1) Plot and label point P (4, 6) and point Q (4, 2) on your grid.
(2) Line segment PQ is one side of a rectangle. On your grid, draw a rectangle

PQRS with a length of 4 units and a width of 2 units.
(a) Label point R and point S.
(b) Write the coordinates of point R and point S.

(3) On your grid, draw the two diagonals of rectangle PQRS. What are the
coordinates of the point where the two diagonals intersect? Explain your
answer.

y

x

Sample student responses showed that many students know how to draw points
with given coordinates, but not how to write down coordinates of given points.
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8.3. The Pythagorean theorem.

The following is an exploratory problem meant to give some insight into the material
developed later in this section.

Problem 8.3.1. Below is a right triangle with squares attached on each side.

(1) By measuring, compute the area of each square. Make sure to work carefully
with units.

(2) How do the areas of the three squares relate?
(3) Do you think that a similar relationship would hold for any triangle? How

about for any right triangle?
(4) Can you think of a way of justifying your answer to part (c) using your

understanding of lengths of sides of right triangles?

The Pythagorean theorem is a relationship between the lengths of the sides of a
right triangle. There are several equivalent formulations.

(Pythagorean Theorem) For any right triangle, the square of the length of
the hypotenuse is equal to the sum of the squares of the lengths of the legs.

That is, the leg lengths a, b and hypotenuse length c of a right triangle satisfy the
equality

a2 + b2 = c2.

An equivalent form of the equation in the Pythagorean theorem above is

c =
√

a2 + b2.
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a

b
c

Figure 104. A right triangle with hypotenuse c and legs a, b

Working correctly with units in the Pythagorean theorem means putting the units
inside the square root sign. For example, if a right triangle has one leg a equal to
2in and second leg b equal to 3in then the triangle has hypotenuse length

c =
√

(2in)2 + (3in)2 =
√

13in2 =
√
13in.

However, even many mathematicians avoid this and just add the units in at the end
to save time.

Problem 8.3.2. Consider the following four right triangles inside a square. Sup-
pose that square has side lengths c, while the right triangles have legs a, b.

(1) What kind of quadrilateral is formed by the sides of the right triangles in
the middle of the big square? Explain your answer.

(2) Using principles of area, explain how the areas of the shapes in this figure
are related, and discuss their relation to the Pythagorean theorem, if any.
31

If you have internet access you can click here to bring up a GeoGebra applet which
illustrates the Pythagorean theorem:32

Justifying the Pythagorean theorem

31 Adapted from the 2nd century BCE text Zhou Bi Suan Jing, see
http://en.wikipedia.org/wiki/Zhou Bi Suan Jing.

32 See http://www.dam.brown.edu/people/mumford/blog/2015/Pythagoras.html for more on
the history.

http://tube.geogebra.org/student/m1205057
 http://en.wikipedia.org/wiki/Zhou_Bi_Suan_Jing
http://www.dam.brown.edu/people/mumford/blog/2015/Pythagoras.html
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Problem 8.3.3. For each of the triangles below, give approximations to the missing
lengths, if possible, without measuring. Explain your reasoning, in particular, how
you identified any right angles. Make sure to work correctly with units throughout
the problem.

5 cm

 cm4

cm3

?

? 6 cm 

4 cm

?

? ?

8 cm

9 cm

Problem 8.3.4. Here is a sample problem: In a right triangle, a leg is 6in long
and the hypotenuse is 7in long. Find the length of the other leg.

Here is a possible student answer: 62 + b2 = 72 = 36 + b2 = 49 = b2 =
13 = b =

√
13 = 3.6 in.

Discuss the correctness of the answer.
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Problem 8.3.5. (Adapted activity from [TX]) Tai sailed east from a Marina for 48
miles, then south for 14 miles as shown in the Figure. What is the shortest distance
Tai can sail to return to the Marina?

Marina
48 miles

14 miles

Problem 8.3.6. Find the distance between the points (−1, 1) and (2,−1) without
measuring, ignoring units.
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Finding distances using coordinates

The distance between points (3, 1) and (2, 5) is the hypotenuse of the right triangle
with these points and also the point (3, 5) as vertices. The leg lengths of this triangle
are 3− 2 = 1, 5− 1 = 4.

2 4

2

4

(3,1)

(3,5)(2,5)

Figure 105. A triangle in the coordinate plane

By the Pythagorean theorem the length of the hypotenuse (ignoring units) is
√

(3− 2)2 + (5− 1)2 =
√

12 + 42 =
√
17.
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Distance Formula

The method used in the previous example works for finding the distance between
any pair of points (x1, y1) and (x2, y2):

(x1, y1) (x2, y1)

(x2, y2)

|x2 − x1|

|y2 − y1|

x

y

Figure 106. The distance formula via the Pythagorean theorem

The right triangle with hypotenuse from (x1, y1) to (x2, y2) has legs with lengths
|x2−x1| and |y2−y1|. Applying the Pythagorean theorem to this triangle we obtain

distance2 = (x2 − x1)
2 + (y2 − y1)

2

since the absolute values disappear when taking squares. Taking square roots we
obtain a formula for the distance between the two points:

distance =
√

(x2 − x1)2 + (y2 − y1)2.

Note that the distance formula only holds if the units on both axes are the same.



209

Coordinates in space

To describe the position of a point in space, a triple of coordinates is needed. A set
of coordinate axes in space is a triple of perpendicular number lines meeting at the
origin, as in Figure 107 (without hash marks, to simplify the picture). 33

x

y

z

(x1, y1, z1)

z1

x1

y1

Figure 107. Coordinate axes in space

One can think of the three directions at the corner of a box as coordinate axes in
the positive directions.

The coordinates of a point in space are the three numbers giving the distance nec-
essary to move along each axis from the origin to the given point.

Problem 8.3.7. (1) A pencil box has dimensions 2 in × 2 in × 6 in. What is
the longest pencil that can fit inside the box?

(2) Suppose two points in space have coordinates (x1, y1, z1) and (x2, y2, z2)
respectively. Can you give a formula for the distance between the two
points?

33Retrieved from http://commons.wikimedia.org/wiki/File:Rectangular coordinates.svg in Oc-
tober 2014
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More activities on the Pythagorean Theorem

Problem 8.3.8. (Activity on special triangles)

(1) A triangle is a 45◦ − 45◦ − 90◦ triangle if it has interior angles of 45◦, 45◦

and 90◦.
(a) Which of the following adjectives apply to a 45◦ − 45◦ − 90◦ triangle:

isosceles, scalene, right, equilateral?
(b) Find the side lengths of a 45◦ − 45◦ − 90◦ triangle with hypotenuse 1

unit.
(2) A triangle is a 30◦ − 60◦ − 90◦ triangle if it has interior angles of 30◦, 60◦

and 90◦.
(a) Which of the following adjectives apply to a 30◦ − 60◦ − 90◦ triangle:

isosceles, scalene, right, equilateral?
(b) Find the side lengths of a 30◦ − 60◦ − 90◦ triangle with hypotenuse 1

unit. (Hint: show that two such triangles can be put together to make
an equilateral triangle.)

Problem 8.3.9. In triangle ∆ABC, D lies on the segment AC and BD is perpen-
dicular to AC. If AB is 6 cm, BC is 8 cm, and AC is 10 cm, what is BD?
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The converse of the Pythagorean theorem

The Pythagorean theorem works only for right triangles. What happens if the
triangle is not a right triangle?

Imagine starting with a right triangle with legs a and b, as in the figure below.
Lowering the top vertex decreases a and b without changing c, and makes the top
angle larger. The new triangle is an obtuse triangle. On the other hand, raising the
top vertex of the right triangle increases a and b without changing c, and makes the
top angle smaller. The new triangle is an acute triangle.

a b

c

a’’ b’’

c’’

a’ b’

c’

right triangle
lower

acute triangle

raise

obtuse triangle

Figure 108. Understanding the converse of the Pythagorean theorem

This suggests that if c is the length of the longest side of the triangle then

a2 + b2 < c2 for obtuse triangles
a2 + b2 > c2 for acute triangles

For a more convincing demonstration, suppose that we start with a triangle with
an acute angle between the sides labelled a and b as in Figure 109.
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C

A

B1

B2

b

ca

Figure 109. Understanding the converse of the Pythagorean the-
orem, again

Using the Pythagorean theorem twice, convince yourself that

C = A+B1 −B2.

Note the following facts. The areas of the squares at the top are C = c2 and A = a2.
Also B1 − B2 < b2 since B1 is the area of a square that is smaller than that with
side lengths b. This shows that

c2 < a2 + b2

for triangles for which the edges labelled a, b form an acute angle. There is a similar
discussion if the angle formed by a, b is obtuse.

To summarize, if two sides of a triangle are not perpendicular, then the sum of the
squares of their lengths is not the square of the length of the remaining side. This
is equivalent to the converse of the Pythagorean theorem which states:

If the side lengths of a triangle are a, b, c and a2 + b2 = c2 then the sides with
lengths a, b form a right angle.
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8.4. Motions in coordinates.

Many motions such as translations have a simple description in terms of coordinates.
That is, given the coordinates of a point (called the input) there is a rule for
determining the moved point (called the output). The pair of points related by a
motion is called an input-output pair.

Problem 8.4.1. Guess the rigid motion: The table below contains several input-
output pairs.

(1) Deduce the rule and fill in the remaining parts of the table. For the blank
rows, fill in both a possible input and possible output pair.

Input Output Notes
(3, 5) (4, 7)
(-2, 4) (-1, 6)
(-3, -2) (-2, 0)
(1, -4) (2, -2)

(0, 0)
(5, 6)

(2) What is an algebraic way to describe this rigid motion?

(3) What is a geometric way to describe this rigid motion?

Problem 8.4.2. Here is another rigid motion. The table below contains several
input-output pairs.

(1) Deduce the rule and fill in the remaining parts of the table.

Input Output Notes / Rule?
(0,0) (0,0)
(3,5) (3,-5)
(-2,4) (-2,-4)
(-3,-2)
(1,-4)

(6,7)
(-3,-4)

(2) What points are not moved at all by this motion?

(3) What algebraic description does this motion have?

(4) What geometric description does this motion have (as opposed to an alge-
braic description)?
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Problem 8.4.3. Here is yet another rigid motion. The table below contains several
input-output pairs.

(1) Deduce the rule and fill in the remaining parts of the table. For the blank
rows, fill in both a possible input and possible output pair.

Input output Notes / Rule?
(0,0) (0,0)
(3,5) (5,3)
(-2,4) (4,-2)
(-3,-6)
(1,-4)

(-3,-4)
(5,6)

(2) If the input is a particular point with coordinates (a, b), what is the output?

(3) What geometric description does this motion have (as opposed to algebraic
description)?

(4) What points are not moved at all by this motion? Why?

Problem 8.4.4. The table below contains several input-output pairs.

(1) Deduce the rule and fill in the remaining parts of the table.

Input Output Rule?
(0,0) (0,0)
(1,0) (0,-1)
(2,0) (0,-2)
(0,1) (1,0)
(0,2) (2,0)
(1,1) (1,-1)

(2) What point(s) are not moved at all by this motion?

(3) What geometric description does this motion have (as opposed to algebraic
description)?

(4) Suppose the input is (a, b). What algebraic expression gives the output?
Explain why.
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Translations in coordinates

Problem 8.4.5. The circles C and C′ drawn below are related by a translation.
Find three pairs of corresponding points relating circle C and C′. Then, guess the
rule for the translation in coordinates that takes C to C′.

C

C’

Point Coordinates of point Coordinates of corresponding point

Rule: (x, y) 7→
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Reflections and rotations in coordinates

Reflections over certain lines have nice coordinate descriptions. There are also
formulas for reflections in coordinates for arbitrary lines. These are outside the
scope of this book and we will not describe them here. The following problem is an
exploration of line reflections that can be nicely described in coordinates.

Problem 8.4.6. Find the coordinate descriptions of

(1) Reflection over the y-axis
(2) Reflection over the line x = y
(3) Reflection over the line x = −y.

An easy way to investigate the change in coordinates under a certain rotation is
by using a square piece of paper (see Figure 110). By placing one of its corners
at the center of rotation and rotating the square in the direction indicated by the
problem, one can easily see what happens to the coordinates of key points such as
(0, 1), (1, 1), (1, 0) and (0,−1).

Figure 110. Using a square sheet to explore rotation

The coordinate descriptions of most rotations involve trigonometry. However, sim-
ple cases often have nice answers which can be discovered by guesswork, often by
finding the rotations of a few points such as (1, 0), (0, 1) and (−1, 0), deducing the
rule, and then checking the rule on other points.

Here is a sample problem: Find the coordinate description for rotation around (0, 0)
by 90 degrees counterclockwise. An answer can be given as follows: The point (1, 0)
rotates to (0, 1). The point (0, 1) rotates to (−1, 0). The point (0,−1) rotates to
(1, 0). From this one can guess the formula (x, y) 7→ (−y, x). One can check that
this formula works for the point (−1,−1) which rotates to (1,−1).

Problem 8.4.7. Find the coordinate description for rotation around (0, 0) by

(1) 180 degrees clockwise;
(2) 270 degrees clockwise.

Here is a sample problem: Given the figure below find (i) the translation by (2,1) ,
(ii) the rotation around (0, 0) by 225 degrees counterclockwise, and (iii) the reflection
over the line x = y.
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A sample answer is below.

slide by (2,1)

225 degrees

x=y

Problem 8.4.8. (Challenge) How many input-output pairs does it take to uniquely
identify

(1) a translation?
(2) a rotation?
(3) a reflection?
(4) an arbitrary rigid motion?
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8.5. Workshops.

Workshop 8.5.1. (Adapted from [NJ])

A coordinate grid shows Alice’s neighborhood. Point A (7,5) represents Alice’s
house. Her friends Barbara, Carlos, and Dana also live in the neighborhood.

y

x

(1) Plot Point A on the grid. Barbara’s house is at the point (1, 5). Plot that
point and label it Point B. Carlos’ house is at the point (1, 2). Plot that
point and label it Point C.

(2) If Alice walks to Barbara’s house and the two girls then walk to Carlos’
house before returning to Alice’s, which type of triangle is formed?

(3) Point D represents Dana’s house. When the four houses are connected by
line segments, they form a trapezoid. Find and label a Point D on the grid.
Identify the coordinates of the point you labeled as Point D and explain
why quadrilateral ABCD is a trapezoid.

(4) Alice says that the angle ADC measures 45 degrees. What is a possible
location (in coordinates) for Dana’s house if quadrilateral ABCD is still a
trapezoid? Can Dana’s house be at more than one location given the above
conditions?

(5) (Using the location of Dana’s house from part D) What distance does Alice
walk if she walks from her house to Dana’s, then to Carlos’, and then back
to her house? Give an exact answer, not an approximation, ignoring units.
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Workshop 8.5.2.

(1) The points (0,0) and (3,2) are two vertices of a polygon.
(a) If the polygon is a square, what are all the possibilities for the other

two vertices?
(b) If the polygon is a nonrectangular parallelogram, what are the other

two vertices?
(c) If the polygon is a right isosceles triangle, what are the possibilities for

the other vertex?
(2) The points (3,3) and (2,6) are two vertices of a right isosceles triangle.

(a) List at least three points that could be the third vertex.
(b) How many isosceles right triangles with vertices (3,3) and (2,6) can

you draw? Explain all the possibilities.

Workshop 8.5.3.

Suppose an Egyptian pyramid (a right pyramid with a square base) has a height of
100 feet and a square base with side lengths of 200 feet.

(1) What are the heights of the triangular faces?
(2) Using thick colored paper and tape, build a model of the pyramid using a

scale such as 1 model cm = 10 real feet.
(3) What are the areas of the faces?
(4) What is the distance between two opposite vertices on the bottom of the

pyramid?
(5) What is the distance between the top vertex and any of the bottom vertices?

Workshop 8.5.4.

(1) Find the distance between (−1,−1) and (1, 1).
(2) Find the distance between (−1,−1,−1) and (1, 1, 1).
(3) Find the distance between (1, 0) and the line x = y.
(4) What is the height of an equilateral triangle with side lengths 1?
(5) What is the height of an isosceles triangle with side lengths 1, 1 and 1/2,

using the side of length 1/2 as base?
(6) (Challenge) In an equilateral triangle, the center is the point that is the

same distance from all the vertices. In an equilateral triangle with side
lengths 1 inch, what is the distance from the center to each of the sides?
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Workshop 8.5.5.

(1) Draw a right triangle with legs a, b and hypotenuse c. On each edge, draw
the square with that side length. Cut out the squares. Show by cutting and
re-arranging that the sum of the areas of the smaller squares is the area of
the bigger square.

(2) Consider the two squares with edge lengths a+ b:

b

a

a

b

a

b

c

c

c

ba

b

a

a b

b

a

b a

c

Using additivity of areas, explain why this justifies the Pythagorean theo-
rem.

(3) The converse of a logical implication is the reverse implication. The converse
of the Pythagorean theorem states that any triangle whose side lengths
satisfy a2 + b2 = c2 is a right triangle. Give an example of the converse by
doing the following:
(a) Find a set of numbers a, b, c satisfying a2+b2 = c2, not using geometry.
(b) Draw a triangle with those side lengths. Explain what tools you used

in your drawing.
(c) Find the right angle in the drawing. Explain what tools you used and

how.
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Workshop 8.5.6.

On graph paper, draw x− and y− axes and plot the following points, labeling them
A, B, C, and D: (4, 5), (−4, 3), (−3,−5), (2,−1).

(1) Plot the locations of these points after they have been reflected across the
x-axis, labeling them A′, B′, C′, and D′.

(2) If (a, b) is a point in a coordinate plane, what will its location be after it
has been reflected across the x-axis? Explain your answer.

(3) On a different graph paper, plot the locations of A,B,C,D after they have
been reflected over the line x+ y = 1.

(4) (Challenge) If (a, b) is a point in a coordinate plane, what will its location
be after it has been reflected across the line x+y = 1? Explain your answer.

Workshop 8.5.7.

On graph paper, draw x- and y- axes, and plot the following points, labeling them
A, B, C, and D: (3, 4), (−5, 2), (−4,−5), (3,−4).

(1) Plot points A, B, C, and D and their locations after they have been rotated
clockwise by 90 degrees around the origin, labeling them A′, B′, C′, and
D′.

(2) If (a, b) is a point in a coordinate plane, what will its location be after it has
been rotated 90 degrees around the origin clockwise? Explain your answer.

(3) On a different graph paper, plot the locations of A,B,C,D after they have
been rotated clockwise by 45 degrees around the point (2, 2), labeling them
A′′, B′′, C′′, and D′′.

(4) (Challenge) If (a, b) is a point in a coordinate plane, what will its location
be after it has been rotated 45 degrees clockwise around the point (2, 2)?
Explain your answer.
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8.6. Assessments and sample student work.

Here is an assessment problem adapted from New Jersey [NJ] that illustrates the
importance of distinguishing between properties of a shape and its definition.

Problem 8.6.1. A coordinate grid shows Alice’s neighborhood. Point A, at (4,5),
represents Alice’s house. Her friends Barbara, Carlos, and Dana also live in the
neighborhood.

Part A: Plot Point A on the grid in your answer booklet. Barbara’s house
is at the point (1, 5). Plot that point and label it Point B. Carlos’ house is
at the point (1, 2). Plot that point and label it Point C.

Part B: If Alice walks to Barbara’s house and the two girls then walk to
Carlos’ house before returning to Alice’s, which type of triangle is formed
by their path?

Part C: Point D represents Dana’s house. When the four houses are con-
nected by line segments, they form a trapezoid. Find and label a Point D
on the grid. Identify the coordinates of the point you labeled as Point D
and explain why quadrilateral ABCD is a trapezoid.

A student gave the following answer to Part C: “(7, 2). The quadrilateral is a
trapezoid because it has two right angles.” The assessment guide states “ This is a
2-point response because the student has correctly completed Parts A and B of the
problem and identified a Point D that creates a trapezoid, but the explanation is
incorrect.”

Here is another student answer: “Acute triangle. (5, 5). Two parallel lines.” The
assessment guide states “This is a 1-point response because the student correctly
answers only Part A. The student attempts to answer Parts B and C; however, the
responses are incorrect.”
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Problem 8.6.2. (Adapted from [MCAS]) On the grid in your Student Answer
Booklet, copy the x-axis, the y-axis, and triangle LMN shown below.

y

L M

N

x

1. On your grid, draw the image of triangle LMN after it is translated 4 units to
the left. Label the image PQR. List the coordinates for points P, Q, and R.

2. On your grid, draw the image of triangle LMN after it is translated 6 units up
and 3 units to the right. Label the image TUV. List the coordinates for points T,
U, and V.

3. On your grid, draw the image of triangle LMN after it is reflected over the x-axis.
Label the image XYZ. List the coordinates for points X, Y, and Z.

Here is a student answer which received half-credit 2/4:

This answer showed a confusion about what it means to move 4 units to the left.
Instead of moving each point 4 units to the left, the student created a space of 4
units between the triangles.
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Problem 8.6.3. (Adapted from [MCAS])

y

x

m

Triangle PQR has vertices located at the following points: P at (1, 6), Q at (4, 2),
R at(4, 6)

(1) Plot points P, Q, and R, and draw triangle PQR on your coordinate grid.
Be sure to label the vertices of your triangle with the letters P, Q, and R.

(2) Draw the reflection of triangle PQR across line m on your coordinate grid.
Label this new triangle STU.

(3) Write the coordinates of points S, T, and U.

Here is a student answer that received 3/4 credit:

Incorrect student answers often did not recognize that the reflection should be
the same distance on the other side of the line of reflection, although they often
recognized that distances are preserved under reflection.
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9. Congruence and similarity

Children often play with toy cars that are the same shape as a real car, but a
different size. On the other hand, if they have blocks then many of the blocks will
be exactly the same size and shape, but just in different locations. In this chapter
we will try to describe more precisely how objects such as these are related.

Shapes such as blocks are congruent if they have the same size and shape, or more
precisely, if there is a combination of flips, turns, and slides that changes one shape
to the other.

Shapes such as the toy car and real car are similar if one can be changed to the other
by flips, turns, slides, and rescalings. The notion of similarity in mathematics is not
the same as that used in everyday language. For example, in everyday language,
that one house is similar to another house means that the two houses are more or
less the same size and style, but in mathematics a house ten times as big as another
is similar, as long as every dimension is ten times as big. Similar shapes have
congruent angles, that is, corresponding angles have the same measure. However,
the concept of mathematical similarity is often misunderstood: many people think
that any two rectangles are similar, but this is not true.

The objectives of this chapter are: (i) to introduce the notions of congruence and
similarity both informally and precisely; (ii) to discuss problems with the various
definitions; (iii) to describe various methods of reasoning using congruence and
similarity; (iv) to apply the concept of similarity to proportional reasoning and
maps.

9.1. Congruence.

Informally, two figures are congruent if they have the same size and shape. More
precisely,

two figures are congruent if one can be transformed into the other by a rigid
motion.

Problem 9.1.1. Describe three pairs of congruent shapes in the following diagram
of a soccer field. Label the figure with symbols as necessary.
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34

Problem 9.1.2. Agree on an interpretation for each statement and then decide
whether it is true. In each case, draw a picture to support your answer. Congruence
criteria are discussed in more detail in the next section.

(1) If two triangles have congruent corresponding angles then the triangles are
congruent.

(2) If two triangles have corresponding sides of equal lengths then the triangles
are congruent.

Problem 9.1.3. Which of the shapes below are congruent? Fill in the table after
the figure and give an informal explanation in each case.

A

C

D

L

K

B
G

F

H

34Diagram by Nuno Tavares at https://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Soccer field -
empty.svg/2000px-Soccer field - empty.svg.png. Used under creative commons license.
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Pair of Shapes Congruent Explanation
A,D

B,L

F,H

C,K

F, H

B, L
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Problem 9.1.4. (1) Which of the shapes in the figure below are congruent?
(2) Choose one pair of congruent shapes and give a precise description of the

rigid motion needed to change one to the other, i.e. translation by ..... in
the direction of ...., rotation around the point .... by the angle ....., reflection
over the line ..... etc.

A

B

D

C

Shape Shape List of motions needed precise description of motions
(distances, directions)
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9.2. Congruence of triangles.

How much information does it take to specify a triangle? The following problem
explores this question.

Problem 9.2.1. For this problem you may use a compass, a ruler, and a protractor
as necessary.

(1) How many non-congruent triangles can you draw with side lengths 7 cm, 5
cm, and 3 cm?

(2) How many non-congruent triangles can you draw with side lengths 7 cm, 3
cm, and 2 cm?

(3) How many non-congruent quadrilaterals can you draw with side lengths 7
cm, 5 cm, 3 cm, and 2 cm? It may help to experiment with straws for this
problem.

(4) You are told that a triangle has side lengths 7 cm and 5 cm, and the angle
between them measures 135◦. How many non-congruent triangles can you
draw with this property?

(5) You are told that a triangle has angles with measures 30◦ and 135◦, and
the side between the two angles measures 5 cm. How many non-congruent
triangles can you draw with this property?

(6) You are told that a triangle has side lengths 7 cm and 5 cm, and an angle
not between them measures 45◦. How many non-congruent triangles can
you draw with this property?

(7) You are told that a triangle has side lengths 7 cm and 5 cm, and an angle
not between them measures 135◦. How many non-congruent triangles can
you draw with this property?

Reasoning about geometry involves reasoning about congruence, and especially,
reasoning about congruence of triangles. As suggested by the problem above, there
are three criteria for congruence of triangles commonly known as SSS, ASA, and
SAS. Any two triangles satisfying one of these criteria are congruent.

Two triangles satisfy the SSS (side-side-side) criterion if they have corre-
sponding sides of the same lengths.

Two triangles satisfy the ASA (angle-side-angle) criterion if they have two
corresponding angles with the same measure, and the corresponding sides
between the two angles have the same length.

Two triangles satisfy the SAS (side-angle-side) criterion if they have two side
lengths in common, and the angles formed by the two sides are congruent.

Beware that it is not true that any two triangles with congruent corresponding
angles are necessarily congruent. That is, the AAA criterion does not imply con-
gruence. Neither does the SSA criterion (side-side-angle) imply congruence. In the
example below, the triangles PQR and PQR′ have two side lengths and an angle
congruent (PQ ∼= PQ,QR ∼= QR′,∠QPR ∼= ∠QPR′) but are not congruent.

However, the side-side-angle criterion does hold for acute triangles, as one of the
possibilities in Figure 111 (the triangle with the obtuse angle) is ruled out.
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P Q

R

R’

Figure 111. The side-side-angle criterion

Justification of the SSS criterion.

Children should be able to give a viable argument for why triangles with the con-
gruent corresponding sides are congruent. Here is one possible argument. Suppose
that two triangles have the same side lengths. Slide and turn the first triangle so
that the two triangles share a side, say of length a. Suppose the other side lengths
of the triangles are b, c, and the sides with these lengths intersect in points P for
the first triangle, and Q for the second. Then P lies on the circles of radii b, c whose
centers are the endpoints of the side of length a, and the same is true for Q. The
two circles intersect in two points, and these points are related by a reflection.

b
c

a

cb

P

Q

Figure 112. Justification of the side-side-side criterion

To see that these are related by a reflection, we can reason by symmetry: Each circle
is unchanged by reflection over any line through its center. So reflecting both circles
over the line through their centers changes each point of intersection between the
circles to the other point of intersection.
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9.3. Reasoning using congruence.

Problem 9.3.1. Which figure shows two congruent triangles? Explain your answer
carefully using the definition of congruence, that is, what rigid motion shows that
the two triangles are congruent?

TriangleParallelogramTrapezoidKite

Problem 9.3.2. For this problem, you can use hands-on pattern blocks or virtual
pattern blocks (e.g., http://www.mathplayground.com/patternblocks.html).

(1) How many different ways are there to build polygons congruent to the yellow
hexagon? Explain how you know that they are congruent to the original
hexagon.

(2) Using moving principles of area, explore the relationship between the area
of the tan rhombus and the area of the orange square. ( Hint: use squares,
triangles, and tan rhombi to build a ”house” two different ways.)

http://www.mathplayground.com/patternblocks.html
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9.4. Similarity.

Informally, two objects are similar if they have the same shape but different size.
For example, different toy models of the same car can have the same shape but
different size as in Figure 113.

Figure 113. A model car is similar to the original

There are several problems with the informal definition. One of the familiar cate-
gories of shapes is the class of rectangles. In that sense all rectangles have the same
shape. But do we want to say that every rectangle is similar to every other rectan-
gle? And do we really want to say that two unit squares are not similar because
they do have the same size? This issue can be addressed by saying that two figures
are similar if they have the same shape but not necessarily the same size. However,
the first issue is still not fixed by this version of the definition.

So we will want a better definition. But to make sense of the definition we should
“want”, let us first look at the notions of “scaling up” and “scaling down” figures
in the plane. By scaling up/down we mean that every distance in a figure gets
multiplied/divided by a constant called the scale factor.

Figure 114 shows examples of two figures that are rescalings while Figure 115 shows
two figures that are not rescalings of each other.

Figure 114. Figures that are rescalings

35

Similarity via motions

Here is the precise definition of similarity:

35Retrieved from https://en.wikipedia.org/wiki/Morpho rhetenor#/media/File:Morpho rhetenor rhetenor MHNT dos.jpg
March 2016.
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Figure 115. Figures that are not rescalings

Two figures are called similar if one can be changed to the other by a rigid
motion and dilation, that is, a combination of transformations that are
among the following types: translations, rotations, reflections, or dilations.

A combination of these motions is called a similarity transformation. The scale
factor relating two similar figures is the scale factor in the dilation.

We use the symbol ∼ to indicate similarity. For example, if triangles ABC and
DEF are similar we write ∆ABC ∼ ∆DEF . (We really prefer the notation ABC ∼
DEF , but putting ∆ in front of the vertices for triangles seems to be standard.)

Problem 9.4.1. Balloons come in different shapes, for example, the usual “round
type” and the “skinny” type used by “balloon guys” to make balloon animals.
Suppose that a balloon of the round type is blown up by several breaths, and then
by several more breaths. Is the new balloon shape similar to the old one? What
about for the skinny balloons?
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36

36Used according to subscription from http://www.dreamstime.com/martinedegraaf info Co-
pright Martine De Graaf — Dreamstime.comFile ID: 6602338 License: Royalty-free
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Problem 9.4.2. Fill in the table below the figure identifying which of the shapes
below are similar, according to the precise definition given above. Use any tools
you deem necessary. Explain your answer in terms of the definition.

A

C

D

L

K

B
G

F

H

Pair of Shapes Similar Explanation
G,D

C,H

J,I

A,K
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Similarity and proportionality

There is a different explanation of similarity given in other commonly used text-
books:

Two figures are similar if (1) the measures of their corresponding angles are
equal and (2) the lengths of their corresponding sides increase by the same
factor, called the scale factor.

Note that this definition seems not to apply to circles: what is the “side” of a circle?
By the definition above, a circle would be similar to an ellipse, which is certainly
false!

To avoid this problem, the Common Core State Standards adopt the definition
using similarity transformations. Whether the greater precision in the common
core definition will be accessible to students is a matter of some debate.

Problem 9.4.3. Toy cars are often made to a 1 : 72 scale. This means that each
measurement of the toy car is related to the real car by a factor of 72. Determine
whether the following model cars are dilations of each other by measuring several
distances and finding the scale factors between the toy cars, if possible. Assuming
the left-most car is made on a 1 : 72 scale to the real car, what scale (to the real
car) are the other models? Explain your answer.
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As this problem suggests, if two figures are both similar to a third figure then the
first two figures must be similar. For example, if one toy car is a 1 : 72 model and
another toy car is a 1 : 36 model, then the two toy cars are similar with a scale
factor of 2.
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Similarity and angle preservation

Problem 9.4.4. For this problem, use any tools you deem necessary. Consider the
following pair of sailboats.

B
C’

F’

H’

I’

K’

F J

E K A

C

D

G

H

I

D’

G’

A’

B’

E’

J’

Fill in the following tables.

AB = A′B′ = AB/A′B′ =

HC = H ′C′ = HC/H ′C′ =

AD = A′D′ = AD/A′D′ =

m∠ABC = m∠A′B′C′ =

m∠HAB = m∠H ′A′B′ =

For each table, find one sentence that expresses the relationship expressed in the
table. How does this relate to similarity?

Similarity preserves angles and ratios of distances: If two figures are similar and
P,Q,R are points in the first figure and P ′, Q′, R′ the corresponding points in
the second, then the angles PQR and P ′Q′R′ are congruent, while the distances
PQ,P ′Q′, PR,P ′R′ etc. have the same ratio: PQ/P ′Q′ = PR/P ′R′ etc.
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Similarity and pattern blocks

Problem 9.4.5. For this problem, you can use hands-on pattern blocks or virtual
pattern blocks (e.g., http://www.mathplayground.com/patternblocks.html).

(1) Using only pattern blocks, build a scaled version of the red trapezoid (use
scale factor 2). Explain how you know it is similar to the original trapezoid.
(a) Can you do it in more than one way?
(b) How many pattern blocks do you need if you want to use as few blocks

as possible?
(c) What if, additionally, you want to maximize the number of red trape-

zoids used?
(d) Is there a way to do it using only red trapezoids?

(2) Using only pattern blocks, build a scaled version of the red trapezoid using
scale factor 3.
(a) Try to find multiple ways to do it, while aiming to use up to 11 blocks.
(b) Is there a way to do it using only red trapezoids?

(3) Using only pattern blocks, build scaled versions of the yellow hexagon. Ex-
plain how you know they are similar to the original hexagon.
(a) For scale factor 2, if you want to use as many yellow hexagons as pos-

sible, how many ways are there to build the larger hexagon? Explain
your answer briefly.

(b) For scale factor 3, what is the maximum number of yellow hexagons
you can use? Explain your answer briefly.

(c) For scale factor 4, what is the minimum number of blocks you need?
Explain your answer briefly.

http://www.mathplayground.com/patternblocks.html
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The angle-angle-angle criterion

The angle-angle or angle-angle-angle criterion for similarity, abbreviated AA or
AAA states:

Triangles with congruent corresponding angles are similar.

In practice, to verify the criterion it is enough to check that the two triangles have
at least two angle measures in common. This is because the sum of the interior
angles of a triangle is 180 degrees and so if two angle measures are equal, then the
third angle measure is also equal.

Here is a viable argument for the angle-angle-angle criterion. Given two triangles
with congruent angles, one can slide, rotate, and flip the first triangle so that the
triangles share a vertex and an angle at that vertex and the corresponding angles
are in the same direction from that vertex. See for example, the triangles APQ and
ABC in the Figure 116. Choose a dilation from the point A that maps the point
P to the point B. Since dilations preserve angles and angles ∠APQ and ∠ABC

are congruent, this dilation from point A changes the ray
−−→
PQ to the ray

−−→
BC. So

Q transforms to a point on the ray
−−→
BC. Also Q transforms to a point on the ray−→

AQ, since this ray is unchanged by this dilation. Combining these facts shows that

Q transforms to the unique point on the intersection of
−−→
BC and

−→
AQ, which is the

point C. Therefore the triangles APQ and ABC are related by a dilation, and are
therefore similar.

A

B

C

P

Q

Figure 116. Triangles related by a dilation

If you have internet access you can click below to bring up a GeoGebra applet which
illustrates the angle-angle-angle criterion:

Demonstrating the angle-angle-angle criterion

http://tube.geogebra.org/student/m1245427
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Finding a similarity transformation relating similar figures

Given two similar figures, children should be able to find a similarity transformation
(combination of translations, reflections, dilations, and rotations) that relates them.
Here is a step-by-step process to identify the needed similarity transformation.

(1) Identify triples P,Q,R of points in the first figure and corresponding points
P ′, Q′, R′ in the second.

(2) Do a translation that changes P to P ′, if necessary. The points Q,R change
into points Q′′, R′′.

(3) Do a rotation and dilation from P ′ that changes Q′′ to Q′, if necessary. The
point R′′ changes into a point R′′′.

(4) If necessary, do a reflection over the line
←−→
P ′Q′ that changes R′′′ to R′. This last

step is necessary only if the original figure has a different orientation than the final
figure.

P’

P

Q R

R’

P’

R’’’

R’’
Q’’

Step 1

Step 2

Q’

Figure 117. Finding a similarity transformation
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Problem 9.4.6. Find a similarity transformation that changes the figure on the
left to the one on the right. Describe each motion precisely.

Problem 9.4.7. Determine whether the following figures are similar, and for any
two that are similar find the scale factor. For any similar pair, verify your answer
by measuring several corresponding distances in each picture.37

37Art work copyright M. Woodward 2016, used by permission.
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9.5. Reasoning using similarity.

Similarity can be used in geometric reasoning in various ways. If two figures are
known to be similar, then the ratios of distances in one can be determined from the
other. If the scale factor is known, then the actual lengths or distances in one can
be determined from the other.

Problem 9.5.1. If the triangles PQR and STU are similar, and PQ = 3.4 cm,
QR = 2.6 cm, and SU = 5.2 cm, find TU .

P

Q

R

S

T

U

2.6cm

3.4cm

5.2cm

Problem 9.5.2. (Adapted from [CST]) Miranda enlarged a picture proportionally.
Her original picture is 4 cm wide and 6 cm long. If the new picture is 20 cm wide,
what is its length?
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Behavior of area under scaling

The following problem is meant as an exploration of how area changes under scaling.

Problem 9.5.3. adapted from [TX].

(1) Find the area of a square with edge lengths 3 feet.
(2) Find the area of a square with edge lengths 6 feet.
(3) Suppose that one square has twice the side lengths of another square. How

do the areas relate?
(4) Suppose that one shape is obtained from another by scaling by a factor of

2. How do the areas of the shapes relate?

As the problem above suggests, the area of a region changes in an easily described
way under rescaling. To explore how area changes under scaling, suppose that the
first region R1 is filled with A1 unit squares, and let R2 denote the region obtained
by rescaling region R1 by a scale factor s. Let A2 be the area of the region R2.
Under rescaling, each unit square in the first region R1 becomes a square of side
lengths s in the second region R2, as shown in Figure 118.

s1

Figure 118. Area under rescaling

Each square of side lengths s can be filled with s2 unit squares (or parts of unit
squares). Therefore,

A2 = #unit squares to fill R2

= # squares of side-length s to fill R2

×#unit squares per square of side-length s

= #unit squares to fill R1

×#unit squares per square of side-length-s

= A1 × s2.
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Problem 9.5.4. The following two moon shapes are similar. If the area of the big
moon is 7 square units, what is the area of the small moon?

9.6. Similarity and maps. A map of a reasonably sized part of the earth’s
surface is a “scaled down” picture of the geography of that part of the world.

Since the earth’s surface is curved, a map on a piece of paper is only approximately
similar to the region of the earth it represents.

Common numerical scales on topographical maps are 1:25,000, 1:50,000, 1:200,000,
and 1:500,000. The scale factor 1:25,000 means one inch on the map represents
25,000 inches on the earth’s surface. The scale factor 1:500,000 means one inch
on the map represents 500,000 inches on the ground. Because the earth’s surface
is curved and maps are flat, distances on maps are only approximately rescaled
distances on the earth’s surface.

Problem 9.6.1. Find the distance between the capitals of Alabama and Florida
using the map of state capitals below.38

38Downloaded from nationalmap.gov/small scale/.../states capitals.pdf January 2016.



246

9.7. Workshops.

Workshop 9.7.1.

(1) Are the following houses similar? Explain your answer.

(2) If the houses are similar, what is the scale factor i) from the small house to
the big house; and ii) from the big house to the small house?

(3) Find the area of each house (with respect to the square units of the grid).
How do the two areas compare to each other? Is there any relationship
between the scale factors you found in b) and the areas of the two houses?

(4) Find a sequence of transformations that transforms the house in the 1st
quadrant into the one in the 4th quadrant. Each motion should be described
precisely.

(5) Is there a unique answer to part (4)? Explain your answer.
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Workshop 9.7.2.

(1) (from Beckmann [B]) Johnny is working on the following problem:
A poster that is 4 feet wide and 6 feet long is to be scaled down to a small

poster that is 1 foot wide. How long should the poster be?
Johnny solves the problem this way:
One foot is 3 feet less than 4 feet so the length of the small poster should

also be 3 feet less than the length of the big poster. This means the small
poster should be 6 - 3 = 3 feet long.

Is Johnny’s reasoning valid? Why or why not? If not, how might you
convince Johnny that his reasoning is not correct? In this case, what would
be a correct way to solve the problem?

(2) A museum wants to put a scaled down copy of one of its paintings onto a
3-inch by 5-inch card. The painting is 42 inches by 65 inches. Explain why
the copy of the painting cannot fill the whole card without leaving blank
spaces (i.e. explain why there will have to be a border). Recommend to
the museum a size for the copy of the painting that will fit on the 3-inch
by 5-inch card. Show your recommendation here in the 3” × 5” rectangle
below.

(3) A large American flag can be 5 feet tall by 9 feet 6 inches wide. Suppose
Congress decrees that the United States convert to the metric system and
the flag should be 1 meter tall. (1 meter is about 3.28 feet). How wide should
the new flag be? (Hint: the scale factor, that is, the ratio of proportions, is
1m/3.28ft).
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(4) In the games of pool or billiards, a ball bounces off the edge of the playing
table with only a small loss of speed. Using similarity, determine what the
path of the ball shown below should be, so that it bounces off the wall and
goes into the corner pocket.

(5) Using similarity and congruence, explain why the apparent paradox below
is not actually a paradox. 39

39By Krauss - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37256611
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Workshop 9.7.3.

(1) The diagonals of any parallelogram bisect each other. In this workshop you
will explain why in two ways.

(a) Draw the diagonals of the parallelograms, and label all points.
(b) Identify all congruent angles and triangles in the figure.
(c) Choose a pair of congruent triangles and find a rigid motion that

changes one to the other.
(d) Explain why the lengths of the two parts of each diagonal are the same,

using the fact that rigid motions preserve distances.
(e) Use a criterion for congruence of triangles to show the diagonals of the

parallelogram bisect each other.
(2) Investigate the following conjectures.

(a) Any parallelogram whose diagonals are congruent must be a rectangle.
(Hint: show that there are lines of symmetry parallel to the edges.)

(b) Any quadrilateral with two pairs of opposite congruent sides must be a
parallelogram. (Hint: show that there is rotational symmetry around
the point where the diagonals intersect.)

(c) In any kite the diagonals bisect each other.
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Workshop 9.7.4.

(1) Suppose that a right triangle with side lengths 3, 4, 5 is resting on the hy-
potenuse as base. Find its height exactly, without measuring.

(2) A right triangle with side lengths 3, 4, 5 is placed on its hypotenuse as base.
Its height is the length of a segment perpendicular to the base, that divides
the triangle into two other triangles. Explain why these triangles are similar
to the original triangle. For each of these triangles find the corresponding
scale factor (to the original triangle) and its side lengths.

(3) Suppose that the right triangle as above with side lengths a, b, c has area
A. Find the scale factors and the areas of the smaller triangles.

R

b

Q

Sc

a

P

(4) Explain why the areas of the smaller triangles add up to the area A of the
larger triangle. Deduce the Pythagorean theorem.
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9.8. Assessments and sample student work.

Problem 9.8.1. ( from [MCAS], on the use of similarity in maps)

Part of a map is shown below. Each point is labeled to indicate the town that it
represents. The map has a scale in which 1 inch represents 20 miles.

Scale

1 inch : 20 miles

Mayfield

Hearne

Shelton

a. Using your ruler, what is the distance, in inches, between Mayfield and Shelton
on the map?

b. What is the actual distance, in miles, between the towns of Mayfield and Shelton?
Show or explain how you used the scale to get your answer.

c. What is the actual distance, in miles, between the towns of Hearne and Shelton?
Show or explain how you used the scale to get your answer.

d. The town of Sawyer is located 50 miles from Mayfield. On the full map, what
should be the distance, in inches, between Sawyer and Mayfield? Show or explain
how you got your answer.

Here is a sample answer, which received half-credit 2/4: (The figure here is smaller
than the exam print-out, so the distances measured do not match).
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Here is a sample answer, which received 1/4:

Incorrect answers showed confusion about working with units. The notation “1
inch:20 miles” is inherently confusing as written, because it is hard to figure out
whether one is supposed to multiply or divide by 20. It might be helpful to write
1 map inch = 20 real miles. Then the answer might be written 5 map inches = 5
map inches × 20 real miles/ map inch = 100 real miles. Even correct answers fail
to recognize a fool-proof procedure for getting the right answer.
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10. Solids, volumes, and surface areas

Real life is three-dimensional, and shapes in three dimensions are often called solids.
Many solids, such as children’s blocks, are polyhedra, meaning that they have flat
faces joined by edges. For example, most people’s houses or apartments are poly-
hedral, meaning they have no curved surfaces. Note that we use the word solid to
describe a shape such as a house, even though the inside is filled just with air. The
volume is a measure of how big a solid is, which is different from the height, width,
surface area etc. Another example of a solid is a solid sphere, such as the earth or
the sun, approximately. The ratio of volumes of similar solids can be determined
by knowing just the scale factor, without knowing the volumes themselves. For
example, the radius of the earth is approximately twice as big as that of the planet
Mars, so the volume of the earth is approximately eight times as big as that of
Mars.

The objectives of this chapter are (i) to introduce the notions of solids, polyhedra,
and faces; (ii) to describe different kinds of solids such as cylinders, prisms, cones
and pyramids; (iii) to introduce surface area and volume, and give formulas for the
surfaces areas and volumes of some standard shapes; (iv) to explore how volume
and surface area change under scaling, and (v) to discuss the different methods for
conversion of areas, volumes, and rates between different systems of measurement.

10.1. Solids and polyhedra.

A solid is a three-dimensional shape such as a box or ball. A polyhedron is, infor-
mally, a three-dimensional solid with flat faces and straight edges. We adopt the
convention that a polyhedron should have “no holes”, that is, is closed in the sense
that every edge is contained in two faces. There are several versions of a precise
definition of polyhedron and polyhedral surface in common use but no universally
accepted one.

Polyhedra can be built easily out of Magna-Tiles. Figure 119 shows a few examples
of polyhedra built out of Magna-Tiles (the “house” and “tent”) as well as non-
polyhedra (the ones that are not closed).

A polyhedral surface is the surface of a polyhedron. A polyhedral surface is made
up of polygonal regions called faces of the polyhedron.

Just as we required for polygons that no two edges meet at 180 degrees, for poly-
hedra we require that no two faces of a polyhedron meet at 180 degrees.

A solid cube, or cube for short, is a polyhedron with six faces that are all squares
and meet at right angles. The surface of a solid cube is a cubical surface. A cubical
surface can be built out of 6 squares, or 5 squares and two triangles fitting together
to a square; in the latter case we still say that the faces of the cube are squares,
not triangles. Most people (including most mathematicians) abuse terminology and
refer to a cubical surface also as a cube.

A net of a polyhedron is a diagram in the plane that can be “folded up” to the
surface of the polyhedron.
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Figure 119. Polyhedra and non-polyhedra using Magna-Tiles

Figure 120 shows nets for a cube and for a tetrahedron (polyhedron with four faces).

Figure 120. Nets

In both the top and bottom parts of Figure 120, the net is shown on the left and
the solid on the right. Note that above we drew the cube so that its edges are
parallel on a page. This is actually unrealistic, since the rules of perspective (as we
learn in art class) dictate that parallel lines in three-dimensional space are actually
converging to a point on a horizon when drawn on the plane. So a more realistic
depiction of a cube is given in Figure 121; see also the photograph of a cube in
Figure 133.
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Figure 121. A cube in perspective

For more on the mathematics of perspective we recommend the book [VP]. As far
as we can tell, most texts and assessments depict cubes without perspective, that
is, in a way that is visually inaccurate but perhaps conceptually less confusing than
using perspective. If you have internet access, you can bring up an animation of a
net using GeoGebra below:

Net for a dodecahedron

A polyhedron is convex if the line segment between any two points inside the poly-
hedron stays inside the polyhedron.

Convex polyhedron Non−convex polyhedron

Figure 122. Convex and non-convex polyhedra

http://tube.geogebra.org/student/m292517
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Problem 10.1.1. (Corrected from [SM]) The figure shows a polyhedron. Which
of the following can be a net of the given polyhedron? Note that the polyhedron is
shown from the side, so that the actual base and top are “longer” than they appear
in the picture.
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Problem 10.1.2. Which of the following can be the net of a polyhedron?

(c)

(a) 
(b)

(d)

Problem 10.1.3. Draw a net that can be folded up into

(1) a cube;
(2) an octahedron (regular polyhedron with eight faces; see Figure 128.)
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10.2. Cylinders and prisms.

A cylinder is a region of points in space between a base and a congruent top, like
a soup can. Usually the top face is directly above the bottom face, but more
generally a cylinder with a two-dimensional (usually circular) base is the region in
space obtained by translating the base some distance at an angle from the plane
containing the base. If the angle is a right angle, the cylinder is right, otherwise the
cylinder is oblique.

Typically the base of a cylinder is circular, but terminology in more advanced
mathematics allows the base of a cylinder to be any shape. The advantage of this
approach is that the formulas for the volumes of prisms and cylinders in terms of the
area of the base and the height are the same and so do not need to be memorized
separately. The top of the cylinder can also be considered a base, by flipping the
cylinder over. Thus each cylinder has two bases.

A prism is a cylinder on a polygonal base. A prism is called triangular, rectangular,
pentagonal, hexagonal etc. if its base is a triangle, rectangle, pentagon, hexagon
etc. A right rectangular prism is what we usually think of as a box.

Right Prism Oblique Prism

Right Cylinder Oblique Cylinder

Figure 123. Cylinders

A footnote to the Common Core State Standards in first grade states that students
do not need to learn formal names such as “right rectangular prism”.

Problem 10.2.1.

(1) What kind of polygons are the faces of a cylinder on a polygonal base? Are
all the faces congruent?
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(2) What can you say about the planes containing the bases of a cylinder on a
polygonal base?

Figure 124 shows right and oblique cylinders with bases that are curvy but not
circular:

Figure 124. Cylinders with curved bases

A cone is a region in space of points between a base, which is usually circular, and
a point not in the same plane as the base, called the vertex.

A pyramid is a cone on a polygonal base, so that a square pyramid is the kind found
in Egypt.

Standard cone

Cone on a square (pyramid)

Cone on a triangle (tetrahedron)

Figure 125. Cones and pyramids

For regular polygonal bases, cones can be either right or oblique. A right cone is
one in which the center of the polygonal base lies on the perpendicular from the top
vertex. Figure 125 shows some right cones. Figure 126 shows some oblique cones.
Figure 127 shows a cone with a crazy base.

By convention, if no base or obliqueness is mentioned, then the cone is a right cone
with circular base so that the cone looks like an ice cream cone upside down.
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Oblique cone Oblique cone on a square (pyramid)

Figure 126. Oblique cones

Figure 127. A cone with a curved base

10.3. Visualizing solids.

Visualization of solids (being able to picture the solid in your mind based on limited
information given) is a skill that can be developed through practice or games and
toys such as blocks. In this section we present problems covering various techniques
for visualization such as nets, slicing, and depiction of different viewpoints.

Problem 10.3.1. (Adapted from [NJ])

(1) Name each figure.
(2) How many faces does each figure have?
(3) Name one way that the two figures are the same.
(4) Name one way that the two figures are different.

Problem 10.3.2. (From [PARCC])

(1) Which of the following shapes are possible horizontal slices of the cube
on the left in Problem 10.3.1? (a) squares (b) rectangles (c) triangles (d)
trapezoids.

(2) Which of the following shapes are possible vertical slices of the cube? (a)
squares (b) rectangles (c) triangles (d) trapezoids.
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(3) Which of the following shapes are possible horizontal slices of the square
pyramid shown in Problem 10.3.1? (a) squares (b) rectangles (c) triangles
(d) trapezoids.

(4) Which of the following shapes are possible vertical slices of the square pyra-
mid? (a) squares (b) rectangles (c) triangles (d) trapezoids.
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Problem 10.3.3. (Adapted from [MI]) Which of the following is a picture of a
cone? Of a cylinder? Of a rectangular prism?

(b) (c)(a) 

Problem 10.3.4. (Partly from [MCAS]) Using Magna-tiles:

(1) Build a triangular prism.
(2) Build a rectangular prism.
(3) How many faces does a triangular prism have?
(4) How many more faces does a rectangular prism have than a triangular prism

has? Show or explain how you got your answer.
(5) How many faces does a hexagonal prism have? Show or explain how you

got your answer.
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Problem 10.3.5. Which of the following nets can be folded up (possibly after
cutting along edges) to obtain the cube at the upper left?
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Problem 10.3.6. Which of the following nets can be folded up (possibly after
cutting along edges) to obtain a tetrahedron?

(a) (b) (c)
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Problem 10.3.7. (Adapted from [MCAS]): Michael stacked cubes to make the
structure shown below. Michael used a total of 14 cubes to make his structure.

Right side

Front

(1) Draw the right side view of Michael’s structure. Be sure to label your
drawing “right side view.”

(2) Draw the front view of Michael’s structure. Be sure to label your drawing
“front view.”

(3) Draw one possible top view for Michael’s structure. Be sure to label your
drawing “top view.” Show or explain how you got your answer.

Spheres

Informally, children are familiar with spheres as shapes of balls. A basketball is the
shape of a sphere and is filled with air. A baseball is solid all the way through.
In geometry, for a given point P and a positive number r we have the following
definitions:

A sphere of radius r and center P is the set of points in space that are
distance r from P .

A solid sphere of radius r and center P is the region in space of points that
are distance at most r from P .

Problem 10.3.8. (1) What geometrical shape is formed by the set of points
that lie both on a sphere and in a plane? Describe the various possibilities
depending on the position of the plane with respect to the sphere.

(2) What geometrical shape is formed by the set of points that lie both in a
solid sphere and in a plane? Describe the various possibilities depending on
the position of the plane.

(3) What geometrical shape is formed by the set of points that lie in two dif-
ferent spheres? Describe the various possibilities depending on the position
of the spheres.

(4) (Challenge) Describe, as best you can, the geometrical shape formed by
the set of points that lie in both a sphere and a solid sphere. Describe
the various possibilities depending on the position of the sphere and solid
sphere.
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10.4. Regular polyhedra.

We say that a polyhedron is regular if the faces are congruent regular polygons and
the angles between the faces at each edge are congruent. In fact, there are only
five regular convex polyhedra. To understand why, we introduce a number at each
vertex called the angle defect, which is the difference between 360◦ and the sum of
the angles at the vertex. For example, if the polyhedron is a cube then there are
three angles at each vertex summing to 270◦, and so the angle defect is 90◦.

Problem 10.4.1. (1) Find the angle defect at each vertex for the regular tetra-
hedron.

(2) For an arbitrary regular convex polyhedron, explain why the angle defect
is the same for each vertex.

(3) (Challenge) Explain why the angle defect of a convex polyhedron at a vertex
is always positive.

(4) Explain why each angle between edges meeting at a vertex must be less
than 120◦. (Hint: how many faces meet at each vertex?)

(5) Explain why each face of a regular polyhedron can have at most 5 sides.
(Hint: Which regular polygons have angles less than 120◦?)

Once one understands that each face can have at most five sides, the classification
of regular polyhedra breaks down as follows. For triangular faces, each regular poly-
hedron with triangular faces can have 3, 4, or 5 triangles meeting at each vertex. In-
deed having 6 triangles meeting at a vertex would yield an angle defect of 0 degrees,
which is not possible for polyhedra as in the problem above. These polyhedra are
the tetrahedron, octahedron, and icosahedron respectively. For square faces, there
can be only three faces meeting each vertex, and one obtains a cube. For pentago-
nal faces, there is again a single arrangement, resulting in the dodechadron. Here
is a nice picture of the convex regular polyhedra, taken from Wikipedia (probably
generated with Mathematica), from which the description above was modelled.40.

Note that in two dimensions, for any natural number greater then two there is a
regular polygon with that number of sides. In contrast, in dimension three, there
are only a finite number of regular polyhedra.

40Retrieved 2014 from Wikipedia

http://en.wikipedia.org/w/index.php?title=Regular_polyhedron&oldid=458060198
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Figure 128. Convex and non-convex regular polyhedra

10.5. Regions in space and volumes.

A child in a classroom can move towards the front or back of the classroom, from
side to side, and, when excited, jump up and down. The interior of a classroom is
an example of a region in space.

A region in space is a part of space in which someone can move in three
independent directions (for example, north-south, east-west, and up-down).

The region inside a house is divided into regions between floors: The region under
the first floor is often called the basement while the region above the top-most ceiling
is called the attic.

The surface of a region in space is its boundary. The surface of the region inside a
house is the part of the house usually covered by siding, roofing, and foundation.
To give another example, the earth takes up a region in space, whose surface is
the surface that we usually stand on. The inside of a balloon is a region in space,
whose surface is the balloon itself (pretending that the balloon has no thickness.)
An ocean takes up a region in space, whose surface is not only the usual surface of
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the ocean but also the surface where the ocean meets the bottom. The interior of
a sphere is also a region in space.

The volume of a region of space (that is, a solid) is informally the amount of space
that the solid takes up. More formally, the volume of a region of space is the
number of unit cubes (or parts of unit cubes) needed to fill the region without gaps
or overlap.

The English word fill is a bit confusing, because when we talk about solids such
as the solid Earth, the solid is already filled. What we mean is that we first take
everything out of the three-dimensional region to make it empty, and then count
how many unit cubes are needed to fill it.

Here is a sample problem: Find the volume of the cube on the left of the figure
below, using the definition of volume.

A sample answer is as follows. Since the cube is made up of 3 vertical “layers” and
each layer has 3 × 3 = 9 unit cubes, we can conclude that the big cube has 3 × 9
unit cubes and so its volume is 27 cubic units. The left cube is made of 27 unit
cubes (cubes of side lengths 1), and so has volume 27. One gets the same volume if
all the small cubes are arranged in three rows, as shown in the figure above.
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Problem 10.5.1. (From [SM]) The figure below shows a solid consisting of stacked
cubes each of edge length 1 in. Find its volume.

How would your answer change if each cube had edge length 2 in?

Volume of a right rectangular prism

We are interested in investigating the volume of a right rectangular prism, that is,
a box. If the length l, height h, and width w are all integers, then we can fill the
box by h layers of smaller boxes, each of height 1, and each layer containing w rows
of l unit cubes. The total number of unit cubes in one such layer is l × w, so the
total number of unit cubes in the prism is h× (l × w).

l
l

w

1

l

h
w

w

1

Figure 129. Splitting a prism into layers

Figure 129 shows the case h = 2, l = 3 and w = 4. In this case, the total number of
cubes is 24 and each cube has volume one cubic unit, so the volume of the box is
24 cubic units. This procedure suggests that the volume of a box with dimensions
l, h, w is

volume = number of cubes × volume of each cube
= l × w × h.
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The formula for the volume of a rectangular prism can be extended to the case that
the length, height and width are not integers. Suppose that l, h, w are unit fractions
of a unit length, say l = 1/n, h = 1/m,w = 1/p. Since a cube of unit volume divides
into nmp smaller cubes, the cube of dimension l, h, w has volume 1/nmp = lhw.

Any right rectangular prism with rational side lengths divides into prisms with unit
fraction side lengths; combining the arguments above proves the volume formula
for these prisms. The following problem explores the formula further in the case of
rational side lengths, assuming that the formula is known for integer side lengths
and unit fraction side lengths.

Problem 10.5.2. Given a right rectangular prism of side lengths 3/4 units, 4/5
units, and 2/3 of a unit, find its volume in two different ways as follows:

(1) by breaking it up into smaller rectangular prisms;
(2) by forming a larger rectangular prism using a number of copies of the orig-

inal. How does this support the formula for the volume of a rectangular
prism in the case of rational side lengths?

Finally any prism with irrational side lengths may be approximated by those with
rational side lengths and one obtains the volume formula as a limit. We will return
to the discussion of volumes of prisms with other kinds of bases in Section 10.7.
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Problem 10.5.3. Activity on Volumes of Boxes

(1) Consider a rectangular box with height 3 inches on a base that is 4 inches
by 5 inches. How many unit cubes can you arrange in a single layer in this
box? Note that this language assumes we want to completely cover the base
with cubes.

(2) How many such layers can you put into the box to fill it up?
(3) Write the volume of the box both as a sum and as a product.
(4) What shapes make up the boundary of the box? What are their areas?

What is the surface area of this box? Draw a net for this box.
(5) Consider a box with dimension 8 inches, 7 inches and 6 inches. What is the

maximum number of 2 cm by 2 cm by 2 cm plastic cubes can be stacked
neatly inside the box?

Problem 10.5.4. Activity on Volumes of Boxes

(1) Find the volumes of the boxes shown.

4in

4in

10 in 10 inches

area 20 square inches

(2) Find the volume of a water tank in the shape of a rectangular prism mea-
suring 5 ft by 10 ft by 10 ft.

(3) A rectangular tank with a base measuring 1ft by 1 ft contains water and a
stone. With the stone, the height of the water is 10 in. After the stone is
removed, the height of the water is 8 in. Find the volume of the stone in
in3.

Problem 10.5.5. (from [PARCC]) Small cubes with edge lengths of 1/4 inch will
be packed into a right rectangular prism with length 4 1

2
in, width 5 in, and height

3 3
4
in. How many small cubes are needed to completely fill the right rectangular

prism?
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We mention a brief warning on the notation for volume formulas. Some sources
use V = B × h for the formula of the volume of a prism. This has the danger of
introducing significant errors. For example, consider the following problem: Find
the volume of a prism with square base having lengths 10 feet, and height 20 feet.
Many people will write V = 10× 20 = 200 cubic feet, which is incorrect. This error
can be fixed by working correctly with units: If someone writes

V = 10ft× 20ft = 200ft2,

that person can see that they have used the formula incorrectly because the outcome
is an answer in square feet, not cubic feet. The correct answer should be

V = B × h = (10ft× 10ft)× 20ft = 2000ft3.

This is why we prefer the better notation V = Abase × h.

Properties of volume

Volume satisfies moving and additivity properties that are similar to those for area.
For example, the volume of the region inside the house is the sum of the volumes of
the attic, the basement, and the regions between each two consecutive floors. The
formal statements are:

(Congruence/Moving Property) Congruent regions in space have the same
volume.
(Additivity Principle) If a region in space is cut into two parts, then the
volumes of the parts sum to the volume of the original region.

Each of these properties can be explained by thinking of a region in space as filled
with unit cubes (or parts of unit cubes). Congruent regions can be moved to overlap
exactly with each other, and moving does not change the number of cubes needed to
fill each region. It follows that the volumes of any two congruent regions (which are
the number of unit cubes used to fill them) are equal. For the additivity principle,
the number of unit cubes it takes to fill the larger region is the sum of the numbers
of unit cubes for each part.

In Chapter 5 we saw that shearing a plane figure does not change its area. Simi-
larly, shearing a three-dimensional object does not change its volume. In the three
dimensional context, what we mean by shearing is slicing the region into regions of
small vertical height and moving the slices horizontally to form a new shape. For
example, a non-right rectangular prism can be thought of as a deck of cards or stack
of paper which has not been straightened; straightening the deck so that they form
a right rectangular prism is an example of a shear. See Figure 130. In particular,
since the base and height of a non-right rectangular prism are the same as those of
the right rectangular prism obtained by shearing, we conclude that the volume of
a non-right rectangular prism is also given by the formula Vprism = l × w × h.
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Figure 130. Shearing a non-right prism into a right prism

10.6. Surface area.

The surface of a child is made up of his or her skin, while the surface of the earth
is partly covered by the oceans. More generally, the boundary of a solid in space is
often called a surface. For example, spheres, cubes, and cylinders are surfaces.

The surface can be distinguished from the region inside it by adding the word
“solid”. For example, the earth is approximately a solid sphere also called a ball.

The surface area of a solid is the area of the surface of the solid, that is, the area
of its surface if we flattened it out. Some surfaces cannot be easily flattened but we
may view any sufficiently nice surface as made up of approximately flat pieces. We
will discuss curved surfaces more in Section 10.8.

The lateral surface area of a prism or cylinder is the area of the surface minus the
area of any bases, that is, the sides without the top or bottom.

Problem 10.6.1. The figure below shows a solid consisting of stacked cubes each
of edge length 1 in. Find its surface area.

How would your answer change if each cube had edge length 2 in?
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Problem 10.6.2. (In this problem, it may be helpful to have at least nine cubes
or Lego blocks to help with visualization.) In each diagram below, each square
represents a column with the indicated height. For each diagram, draw a picture of
the associated building. Use a perspective in which each dimension is visible. (The
answer to the first problem is given as an example.) Find its volume and surface
area. (Discuss: should the base be included in the surface area?)

Diagram
Height

Answer
Sample 

1

321

1 2

21

1

2 3

2

1

(a)

(b)

(c)

(d)
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Behavior of surface area and volume under scaling

The following problem is meant as an exploration of how volume and surface area
change under scaling.

Problem 10.6.3.

(1) Find the volume and surface area of a cube with edge lengths 3 feet.
(2) Find the volume and surface area of a cube with edge lengths 6 feet.
(3) Suppose that one cube has twice the side lengths of another cube. How do

the volumes relate?
(4) Suppose that one cube has twice the side lengths of another cube. How do

the surface areas relate?

As the problem above suggests, the volume and surface area of a region in space
changes in an easily described way under rescaling, as shown in Figure 131.

scale factor 2

scale factor 2

volume scales by 2x2x2 =8

surface area scales by 2x2=4

Figure 131. Scaling volume and surface area

To explore how volume changes under scaling, suppose that the first region R1 is
filled with V1 unit cubes, and let R2 denote the region obtained by rescaling region
R1 by a scale factor s. Let V2 be the volume of the region R2. Under rescaling,
each unit cube in the first region R1 becomes a cube of side lengths s in the second
region R2. Each cube of side lengths s can be filled with s3 unit cubes (or parts of
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unit cubes). Therefore,

V2 = no. unit cubes to fill R2

= no. cubes of side-length s to fill R2

× no. unit cubes per cube of side-length s

= no. unit cubes to fill R1

× no. unit cubes per cube of side-length-s

= V1 × s3.

Note that the explanation above does not rely on the region being of any particular
shape. For example, suppose you have a sphere of volume 2 cubic feet. If you double
the radius, how much is the volume of the resulting sphere? It is not necessary to
know the volume formula for the sphere to answer this problem: If R1 is the region
inside the first sphere and R2 is the region inside the second sphere then the volumes
V1, V2 are related by

V2 = V1s
3 = 2ft3 × 23 = 16ft3.

A similar discussion using unit square shows that surface area scales as the square
of the scale factor:

A2 = A1 × s2.

In summary, volume scales as the cube of the scale factor while surface area scales
as the square.

Problem 10.6.4. From [MCAS]:

A fish tank at a science museum in the shape of a rectangular prism has a 10 feet
by 6 feet base and a height of 5 feet.

(1) What is the volume, in cubic feet, of the fish tank? Show your work.
(2) The tank is made of glass and does not have a cover. What is the surface

area, in square feet, of the outside of the fish tank? Show your work.
(3) A new fish tank is being built for the museum. The new tank will have

different dimensions than the first tank, but will have the same volume as
the first tank. What could the dimensions of the new tank be? Show or
explain how you got your answer.

Problem 10.6.5. (Adapted from [VA]) A company makes two similar cylindrical
containers. The surface area of the smaller container is 0.8 times that of the larger.
If the height of the larger container is 60 cm, what is the height of the smaller
container?

10.7. Volumes and surface areas of cylinders and cones.

The height of a prism or cylinder is the distance between the plane of the top and
the plane of the bottom. Notice that this is not the same as the distance from a
point on the top to the corresponding point on the base.

The height of a pyramid or cone is the distance of the vertex to the plane containing
the base.
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height of cylinder height of cone

Figure 132. Heights of cones and cylinders

Problem 10.7.1. (Requires popped popcorn, paper, and tape)

(1) Take a piece of paper (standard size or similar) and roll it in the short
direction to make a cylinder with circular base; use tape to attach the two
sides without overlap. Using a ruler find the height of the cylinder and the
radius of the base.

(2) Take a different piece of paper of the same size as in the previous part.
Bend it in the long direction to make a cylinder of a different shape. Using
a ruler find the height of the new cylinder and the radius of the base.

(3) Which cylinder do you think will have the biggest volume, and why?
(4) Test your conjecture by filling one cylinder with popped popcorn, then using

that popcorn to try to fill the other cylinder.
(5) In items (1) and (2), how do the radii of your cylinders compare to the

dimensions of the paper?

Problem 10.7.2. (From [PARCC]) A right circular cone is shown in the figure.
Point A is the vertex and point B lies on the circumference of the base of the cone.
The cone has a height of 24 units and a diameter of 20 units. What is the distance
from point A to point B?

A

B
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Figure 133. A cube built with Zome tools

Problem 10.7.3. Consider a unit cube with a point at the center. (This can be
done with Zome tools if available or with nets. A depiction using Zome tools is
shown in Figure 133.)

(1) Draw a line segment between each vertex and the center and visualize the
convex pyramidal regions whose edges are these line segments. How many
pyramidal regions in space does this divide the interior of the cube into?

(2) What is the volume of each of these pyramidal regions, based on the fact
that they divide the cube and are all congruent?

(3) For each pyramidal region, find the area of the base and the height.
(4) Write an equation expressing the relationship between the volume of each

pyramidal region, its base, and its height.
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Volume formulas for prisms, pyramids, cylinders and cones

Because of the additivity principle for volume, the volume of a collection of non-
overlapping rectangular prisms is the sum of the volume of the individual prisms.
For example, if each individual prism in the figure below has base area 1 square
unit and height 7 units, then the volume of each is 7 cubic units and the volume of
the region in space as a whole is 5× 7 u3, that is, 35 cubic units.

Figure 134. A region in space made up from rectangular prisms

Using rectangular prisms one can create many different regions in space. In particu-
lar one can cut up a cylinder into pieces, almost all of which are rectangular prisms
with the same height. Using the additivity principle for volumes, the volume of the
prism cylinder is approximately the sum of the volumes of the rectangular prisms.
Using the distributivity property of multiplication over addition, this implies that
the volume of a prism or cylinder whose base has area Abase and whose height is h
is

Vcyl = Abase × h.

The volume of a pyramid or cone must be less than the volume of the prism or
cylinder with the same base and height, since it fits inside it.

Another special type of pyramids for which the volume formula is more easily derived
are right-angled pyramids: these are pyramids whose top vertex lies above an edge or
or vertex of the base. The GeoGebra applet linked below gives a visual explanation
of the volume formula for right-angled pyramids with the top vertex lying above a
base vertex, as the pyramid shown in Figure 135.

Three pyramids forming a cube

We already discovered the volume formula for this kind of cone above, in Problem
10.7.3. The volume of a right rectangular pyramid (a pyramid whose top vertex lies
above the center of the base) that has base area Abase and height h is given by

Vcone = (1/3)Abase × h.

Using that volumes are invariant under shears justifies the formula for the volume of
a pyramid that is not right. To see that the formula is true for a cone on any base,

https://www.geogebra.org/o/MdwqmNKf
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Figure 135. A right-angled pyramid whose top vertex lies over a
base vertex

note that any cone can be divided into small cones with square bases. The formula
for the volume in general follows from the distributivity property, by adding up the
volumes of the pieces.

The PARCC assessment formula sheet (see [PARCC]) uses the slightly different
notation (1/3)B×h. However, a common error is to write V = (1/3)base×height
and then use a length of the base instead of the area. This is the kind of mistake
that can be avoided by working correctly with units throughout, since only if an
area is multiplied by a height will the answer become a number of cubic units.

Problem 10.7.4. (1) Find the volume of a barrel that has base with area 10
square feet and is 3 feet high.

(2) Find the volume of a barrel that has base with radius 10 feet and is 3 feet
high.

(3) Find the volume of a barrel that has base with diameter 10 feet and is 3
feet high.

Problem 10.7.5. (Adapted from [VA]) Which of the following two objects have
the same volume?

(1) A cylinder with radius 3 cm and height 4 cm;
(2) A cone with height 2 cm and diameter 6 cm;
(3) A cylinder with diameter 2 cm and height 6 cm.

Problem 10.7.6. From [TX]: A cylindrical glass vase is 6 inches in diameter and
12 inches high. There are 3 inches of sand in the vase. Which of the following is
closest to the volume of the sand in the vase?
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(1) 85 cubic in.
(2) 254 cubic in.
(3) 54 cubic in.
(4) 339 cubic in.

Problem 10.7.7. A pyramid with square base of sides 200 feet by 200 feet is
intended to be built 100 feet high to house the tomb of a king. However, before
the pyramid can be finished the king is overthrown by his son and the project is
abandoned. The resulting structure is only 50 feet high, and was built from the
bottom to top so that the top 50 feet of the would-be-pyramid is missing. What is
the volume of the resulting structure?
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Surface areas of circular cylinders and cones

Children are familiar with circular cylinders through everyday objects such as soup
cans. 41

Figure 136. A cylinder in real life

Problem 10.7.8. A soup can has a radius of 1 in and a height of 4 in. What
dimensions should the label (fitting around the can, without tops) have? What is
its area?

The surface area of a cylinder can be decomposed into the area of the sides, called
the lateral surface area, and the areas of the top and the bottom. In the soup can
example, the lateral surface area is the area of the label. The lateral part of a right
cylinder with height h and radius r can be flattened to a rectangle of height h and
width 2πr, so the lateral surface area is the same as the area of this rectangle:

Acyl,lateral = 2πrh.

The total surface area of the right cylinder (with the top and bottom) is

Acyl = 2πrh+ 2πr2.

The following problem explores the lateral surface area of a right circular cone.

Problem 10.7.9. The lateral surface of a cone is made from one-fourth of the
interior of a circle of radius 8 inches (by joining radii).

(1) Determine the total surface area of the cone, including the base.
(2) What is the height of the cone? Explain your answer.

Problem 10.7.10. (1) Consider a right circular cone with base a circle of ra-
dius 3 in and height 4 in. What is the distance between a point on the
perimeter of the base and the vertex of the cone?

41 Photo by Jonn Leffmann. Used under the Creative Commons Attribution 3.0 Unported
license.
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(2) What is the circumference of the circle with radius the distance you found
in part (1)? How does it compare to the circumference of the base of the
cone?

(3) Express the lateral surface area of the cone in terms of the area of the circle
that you found in part (2).

(4) (Challenge) Make a conjecture for the lateral surface area of the right cir-
cular cone in terms of the radius of the base and its height.

10.8. Volumes and surface areas of spheres.

The eighth-grade Common Core State Standards ask students to know the formulas
for the volumes of cones, cylinders, and spheres and use them to solve real-world
and mathematical problems. The inclusion of these formulas in the standards is
somewhat debatable. In the age of technology, knowing how to use a formula is a
skill that doesn’t qualify someone for any job. This is because computers can do
“plug and chug” mathematics much better than humans can. Almost all middle
school students and teachers do not know the origin of the formula, and even many
professional mathematicians mistakenly believe that one needs calculus. On the
other hand, one might say that it is helpful to know that there is a formula.

Given that these formulas are on the Common Core State Standards, we will forge
ahead and explain how one can understand them, without using any mathematics
beyond similarity of triangles. We start with the formula for the surface area of a
sphere, which is easier to understand than the volume in the sense that one can
explore surface area experimentally using fruit peels. (One can also go the other
way, trying to understand the volumes of spheres first and then surface areas.)

Problem 10.8.1. Cut up an orange peel horizontally, still on the orange, into four
pieces of equal height. (This requires a knife and ruler but may be done in advance
for safety.)

(1) Make a conjecture about how the areas of the pieces compare to each other.
Check your conjecture by cutting the non-circular pieces into smaller parts
and re-arranging so that the parts of a non-circular piece fit on top of a
circular piece.
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(2) How does the surface area of the orange with radius r compare to the lateral
surface area of the cylinder with radius r and height 2r? Explain your
answer without using the formulas for the surface areas of either shape.
You may wish to rearrange the pieces of the peel on top of a rectangle
representing the lateral surface of the cylinder.

(3) What is the lateral surface area of the cylinder with radius r and height 2r?
(4) Find the formula for the surface area of the sphere in terms of its radius,

using your comparison with the cylinder.

Surface area of spheres

The justification for the formula for the surface area of the sphere depends on the
additivity principle for surface area. We cut the surface into pieces of equal height,
and add them up to get the total surface area. Each piece, as shown in Figure 137,
is approximately an annulus. In order to compute the area of each piece, we need
to know the circumference of the annulus as well as the width. It turns out that,
amazingly, each piece has exactly the same area. As one moves higher in the sphere,
the pieces have smaller circumference but larger width. These two effects cancel.

h

r’

r

w

Figure 137. Cutting the sphere horizontally into pieces

To understand this cancellation, we consider the two triangles in Figure 137. In fact
the two triangles in the figure are approximately similar. This is an application of
the angle-angle-angle criterion. The radius of the sphere meets the surface of the
sphere at a right angle, so the angles of the small and large right triangles meeting
at that point are approximately complementary. Since the acute angles in a right
triangle are always complementary, each angle in the large right triangle has the
same measure as some angle in the small right triangle, and the triangles are similar
by the angle-angle criterion.

This gives a formula for the area of each piece, as follows. Let r be the radius of
the sphere, r′ the radius of the bottom circle of the shaded region, h the height of
the shaded region, and w the width of the peel layer on the outside of the orange.
Because the triangles are approximately similar we have that

r′/r ≈ h/w or equivalently r′w ≈ rh.

Each piece, after flattening, is approximately a rectangle of length 2πr′ and width
w and so has area

(2) Apiece ≈ length× width = 2πr′w ≈ 2πrh.
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Having found the area of each piece, we can now find the surface area of the sphere
by adding up the areas of all the pieces. If the number of pieces is n then each piece
has height

h = height of sphere/number of pieces = 2r/n.

So the total area of the sphere is approximately

Asphere = number of pieces× area of each piece

≈ n× 2πrh

= n× 2πr(2r/n)

= 4πr2

which is Archimedes’ formula. By dividing the sphere into pieces, of smaller and
smaller height one sees Archimedes’ formula is exact.

Surface area of cylinders and spheres, compared

Another way of viewing this argument is to say that the sphere has the same surface
area as the lateral surface area of the cylinder in which it is inscribed, that is,

perimeter of base× height = 2πr × 2r = 4πr2.

This is because each piece of the sphere (layer of peel) has the same area as a
piece of the sphere near the equator. The piece of the sphere near the equator is
approximately equal in shape to a piece of the cylinder with the same height and
radius as the sphere. After replacing each piece of the sphere with the corresponding
part of the cylinder, one gets a cylinder with the same height and radius as the
original sphere. Archimedes was so proud of this result that he ordered it to be
etched onto his tombstone.

Problem 10.8.2. Suppose a can of tennis balls contains three tennis balls. Which
is greater, the lateral surface area of the can or the total surface area of the three
balls?42

Problem 10.8.3. Find the surface area of the sphere with radius

(a) 1 cm;

(b) 4 miles;

42Photo copyrightTom Hutton 2016. Used with permission.
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(c) 5 feet.

First express the answers using π, and then give an approximation for each to the
nearest unit.

Volumes of spheres

The volume of a sphere can be found by using the additivity principle for volume.
We divide the sphere into pieces each of which is approximately a pyramid with a
trapezoidal or triangular base as follows. Cut the sphere of radius r horizontally
into pieces of equal height. Then cut the sphere into congruent pieces of equal angle
from the vertical axis as shown in Figure 138. Connect each piece to the center of
the sphere to form an approximate pyramid. The volume of the sphere is the sum
of the volumes of these pieces.

Figure 138. Dividing the region inside the sphere into pieces of
equal volume

We will now explain why any two of the smaller pyramidal-type regions of space
inside the sphere have the same volume. Each of the pieces of the surface of the
sphere cut up in this way has the same area by (2). If there are p pieces, then the
area of the base of each pyramidal shape is

Abase = Asphere/p = 4πr2/p.

Each piece is approximately a pyramid with height r. Using the formula for the
volume of a pyramid we get

Vpiece ≈ (1/3)area of base× height = (1/3)(4πr2/p)× r

= (4/3)πr3/p.

Finally we add up the volumes of the pieces to get the volume of the sphere. Since
the number of pieces is p we get

Vsphere = number of pieces× volume of each piece

≈ p× (4/3)πr3/p

= (4/3)πr3.
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The approximations in the above calculation turn into equalities as the sphere is
divided into smaller and smaller pieces. That is, the volume of a sphere of radius r
is

Vsphere = (4/3)πr3.

Problem 10.8.4. (a) (A similar problem can be found in the Everyday Mathe-
matics [EM] 6th grade curriculum.) Estimate the volume of the body of a stuffed
animal, by approximating each piece of the body as one of the types of solids we
have discussed above. 43

Body Radius or Height Volume Volume Numb. Total
Part Length/Width (cm) (cm) formula Parts Volume

1

(b) Suppose you have a (right, rectangular) pool in your back yard of dimensions
20 ft by 20 ft and depth 5 ft. How could you measure the volume of your body?
You have the following tools, not all of which may be necessary: a ruler, a hose (to
fill the pool), and a cup.

(c) Measure the dimensions of a can of root beer and a root beer glass, similar to
those shown in the Figure below. Find the volume of both. Will the contents of
the can fit in the glass? (Hint: One cannot just take the average of the areas of the
top and bottom of the glass and multiply by the height. 44 45

43The original problem asked to use the students body, but teachers in practice avoided the
problem due to sensitivities of the children. For this reason, a stuffed animal was substituted.

44Used under GNU Free Documentation license. https://commons.wikimedia.org/wiki/File:Rootbeerfoam2.JPG
45From https://s3.amazonaws.com/everipedia-storage/ProfilePics/69693548642.PNG



288

10.9. Conversion of area, volumes, and rates.

Unit conversion at its core involves proportional reasoning. Each quantity of some
unit is equivalent to a quantity of another unit determined by the conversion factor.
Two methods for unit conversion are substitution and ratios. As we mentioned
earlier, in the substitution method, one unit is replaced with an equivalent number
of units of the desired type (for example, 1 ft is replaced with 12 inches); in the
ratio method, the given quantity is multiplied by a ratio of units that is equal to 1
(for example, the ratio (1 ft)/(12 inches).

Substitution

Replace the unit that needs to be converted with the equivalent unit, and then
simplify. For example, to convert 50 inches2 to square feet we write

50 inches2 = 50((1/12)ft)2 = 50/144 ft2.

As seen in the examples below, square units get multiplied by the conversion factor
twice and cubic units get multiplied three times.

Problem: Convert 80 square miles to square kilometers. Sample answer:
80 miles2 ≈ 80(1.6km)2 = 80(1.6)2km2 = 80(2.56)km2 = 204.8km2.
Problem: Convert 10 cubic feet to cubic meters. Sample answer: 10 ft3 ≈
10 (1/3.2m)3 = 10/(3.2)3m3 which is about .305m3.

Ratios To convert using ratios, multiply by the ratio of the two equivalent units
(which is equal to 1) to an appropriate power, and then simplify. Since multiplying
by one does not change quantities, this method produces an equivalent expression
in different units.

Here is a sample problem: Convert 50 square inches to square feet.

A sample answer is as follows. 50 inches2 = 50 inches2( 1 ft
12 inches

)2 = 50
144

ft2.
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Problem 10.9.1. Convert the following using either method.

(1) 10 square miles, to square feet.
(2) 10 cubic feet, to cubic inches.
(3) 100 square kilometers, to square centimeters.

Problem 10.9.2. Convert each of the following measurements, by both methods
(substitution and ratios)

(1) 175 inches to yards.
(2) 100 meters to feet.
(3) 70 miles per hour to kilometers per minute.
(4) 1 square mile to square feet. You may approximate.
(5) 10 ft × 44 yards × 2 inches to cubic feet.
(6) 1 cubic meter to cubic inches.

The following is a non-traditional conversion problem in which you are required to
determine the conversion factors.

Problem 10.9.3. The inhabitants of a remote island do not use money; instead,
they barter goods. Four ducks are worth two blankets. Three blankets are worth
two coats. Tom has many ducks and needs a coat. Considering the given barter
rates, how many ducks must he exchange for a coat?

(1) Solve the problem using substitution.
(2) Solve the problem using the ratio method.
(3) Can you solve this problem using any other method?

Problem 10.9.4. Water drips out of a tub faucet at 2 deciliters per minute. The
capacity of the tub is 0.24 cubic meters. How long will it take for 2/3 of the tub
to be filled with water if no water drains? Express your answer in hours. (Note: 1
liter = 1 cubic decimeter).
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10.10. Workshops.

Workshop 10.10.1.

The figure below shows a one-story house formed by gluing together a right rectan-
gular prism and a right pyramid with rectangular base. Make sure to explain your
work briefly for each part.

20ft

10ft

5 feet

10ft

(1) Find the volume of the house.
(2) Find the surface area of the house, including the floor area.
(3) Convert the volume of the house to cubic yards.
(4) By what factor should the house be rescaled so that the floor area is dou-

bled?
(5) By what factor should the house be rescaled so that the volume of the house

is doubled?
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Workshop 10.10.2. from [MCAS]:

A water dunking tank at a carnival is in the shape of a right circular cylinder. Its
height is 5 feet, and the radius of the base is 3 feet.

(1) What is the lateral surface area, in square feet, of the tank? Show your
work.

(2) On the first day of the carnival, the dunking tank was filled with water to
a height of 4 feet. What was the volume, in cubic feet, of the water in the
tank on the first day of the carnival? Show your work.

(3) A teacher volunteering for charity at the carnival, gets dunked. Suppose
that the height of the water rises 2 inches. Deduce the teacher’s volume.

At the end of the second day of the carnival, some water was drained from the tank.
The volume of water drained was 35.3 cubic feet.

(4) Using your answer from part (2), determine the height, in feet, of the water
remaining in the tank after the water was drained at the end of the second
day. Show your work.

The water that was drained from the tank was poured into containers,
each in the shape of a right rectangular prism. Each container was 2 feet
in length, 1.5 feet in width, and 3 feet in height.

(5) What was the least number of containers needed to hold all the water that
was drained at the end of the second day? Show your work.
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Workshop 10.10.3.

A right pyramid with triangular base has base side lengths 200 feet and height 200
feet. Find

(1) the volume of the pyramid;
(2) the area of the base;
(3) the height of each of the triangular sides (Recall: this is the distance from

the top vertex to the base of the triangular side, not to the base of the
pyramid.)

(4) the area of each triangular side; and
(5) the distance from any of the corners of the base to the vertex at the top

of the pyramid. (You will need to approximate a square root for this. Any
reasonable answer is fine.)
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Workshop 10.10.4.

(1) Suppose that one swimming pool is three times as long, deep, and wide as
another swimming pool. Suppose it takes 20 hours to fill the small pool
with a hose. How many hours will it take to fill the large pool?

(2) A recipe for apple pie calls for 6 regular size apples. You have a bag of
apples whose length, height, and width are half those of regular apples.
How many apples do you need for the apple pie?

(3) Suppose that a balloon (not necessarily spherical) is of the type that as it
inflates, each of the resulting shapes is similar to each other. Suppose that
four breaths blow up a balloon to a diameter of 1 ft, where by diameter we
mean the distance between points on the balloon that are furthest away from
each other. What is the diameter after an additional breath? (Assume that
each breath takes up equal volume. Hint: By what factor does the volume
increase on the fifth breath? Deduce from this factor the scale factor for
the fifth breath.)

(4) A sphere has volume 2 ft3. A second sphere has radius twice that of the
first sphere. Find the volume of the second sphere.

(5) A sphere has radius 2 ft. A second sphere has volume twice that of the first
sphere. Find the radius of the second sphere.
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Workshop 10.10.5. (Sea level and global warming)

(1) Estimate how long it takes to fly half way around the world, and the ap-
proximate speed. (Hint: it takes about 6 hours to fly from New York to Los
Angeles and the Pacific ocean is VERY large. Planes travel about ten times
as fast as cars.) There is no exactly right answer, just reasonable guesses.

(2) Estimate the circumference of the earth, using this data. Using this estimate
the radius of the earth.

(3) Using (2) estimate the surface area of the earth.
(4) The Greenland ice sheet is almost 2,400 kilometers long in a north-south

direction, and its greatest width is 1,100 kilometers at a latitude of 77◦ N,
near its northern margin. The thickness is generally more than 2 km (see
picture) and over 3 km at its thickest point. Approximately how much ice
(in cubic miles) is contained in the Greenland ice sheet?

46

(5) How much would sea level rise if half the ice in Greenland melted (in meters
and in feet)? (Hints: You need the approximate surface area of the Earth
from (3) for this as well as the fact that about 2/3 of the Earth’s surface
is ocean and would remain so after the melting. Also, the sea level rise is
approximately the volume of the ice divided by the ocean surface area.

46Retrieved from https://commons.wikimedia.org/wiki/File:Greenland ice sheet AMSL thickness map-
en.png March 2016. Public domain illustration obtained from NOAA.
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10.11. Assessments and sample student work.

Problem 10.11.1. (Adapted from [MCAS])

Erika has a cylindrical container with a diameter of 6 inches and a height of 1.5
feet.

(1) What is the height, in inches, of the container? Show or explain how you
got your answer.

(2) What is the volume, in cubic inches, of the container? Show or explain how
you got your answer. (Use 3.14 for π.)

(3) Erika filled the container with 250 cubic inches of sand. What is the ap-
proximate height, in inches, of the sand that Erika put in the container?
Show or explain how you got your answer.

A sample answer for half-credit is given below.

Incorrect answers showed incorrect use of units.

Problem 10.11.2. (from [MCAS]) Ray had a block of wood in the shape of a
rectangular prism:

6 inches

4 inches

5 inches

(1) Ray painted the front face of the block red. What is the area, in square
inches, of the face he painted red? Show or explain how you got your answer.

(2) Ray painted the top and bottom faces of the block black. What is the area,
in square inches, of the faces he painted black? Show or explain how you
got your answer.

(3) Ray painted the other faces of the block white. What is the area, in square
inches, of the faces he painted white? Show or explain how you got your
answer.
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A sample answer for half-credit is shown below:

Incorrect answers showed awareness of the formula area = base x height, but con-
fusion about what to do with it. Also, incorrect use of units was common, even in
answers marked as correct, and many answers did not give sufficient detail of work.
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11. Instructor’s guide to activities

In this Chapter we comment on some of the subtleties the Instructor may wish to
mention regarding the material. In each chapter, we have selected several problems
and workshops from the text and then discussed some of the struggles and questions
of the teacher-learners who have worked through the problems previously. Since
the text was originally used with in-service teachers, much of the advice primarily
concerns that audience, but we have found that many of the same issues arise with
undergraduates as well. Our hope is that this guide will allow the Instructor to
better communicate with the students for a more effective course.

Chapter 2

• In the section “Working correctly with units” on page 14, the instructor
might want to emphasize that units satisfy the same associativity and dis-
tributivity properties as numbers, as in the equality 2in+ 3in+ 2in+ 3in =
(2 + 3 + 2 + 3)in.

• In the Problem 2.4.1, the instructor might want to emphasize that there
is some ambiguity in the figures, and bring up the question of whether, in
shape 5, point B is on the line?

• In Problem 2.6.1 the instructor might want to mention or have teacher-
learners discover the formula for conversion of change of temperatures: A
Celsius change ∆TC produces a shift of ∆TF = (9◦F/5◦C)∆TC in Fahren-
heit.

• In Problem 2.7.1 two possible errors are lining up the end of the ruler instead
of zero with the beginning of the object, and using the wrong side of the
ruler for a given unit system.

Chapter 3

• In the section “Measuring angles with a protractor” on page 34 the instruc-
tor might want to emphasize that it might be the case that the rays in the
angle are not drawn with enough length to reach the edge of the protractor.
In this case, the rays have to be extended (using the straight part of the
protractor) before the angle can be measured. Also, it might be that the
angle to be measured has measure more than 180 degrees. In that case, one
can draw the ray opposite to the first ray, measure the angle of the second
ray from that, and add 180 degrees to the answer.

• In Chapter 3.1 the instructor might want to mention that the length of the
rays shown in an angle, are not related to “how big” the angle is.

• In Chapter 3.1 the instructor might want to note that the use of the same
number of arcs may be used to indicate congruence of angles. However, a
single arc used in two different angles may or may not indicate congruence.

• In Chapter 3.1 the letter a is often used for both the angle and the measure
of it. So it may be correct to write both a = 90◦ and ma = 180◦, where
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in the first case a indicates the measure and in the second case the angle
itself.

• In Problem 3.2.2, the grid may be used to find the slope of the perpendicular
line.

• In the basic facts about angles on page 46, the instructor should explain
what “corresponding angles” mean.

• The additivity principle for angles on page 51 is justified in the workshops,
and not in the text.

• In Problem 3.3.5 students should be encouraged to justify carefully the
linearity of the angle that they construct.

• In the Problem 3.3.7 the instructor may wish to discuss how the answer
to the problem might change depending on whether square is considered a
trapezoid or not. Based on the definition in this text, a square is considered
a trapezoid.

• In Problem 3.5.2, it might help to ask whether the person at the bottom
of the pool has to look higher or lower than if the water was not there in
order to see their friend.

• The problem 3.7.3 (b) about billiards is challenging; a hint is to think about
the reflection of the pocket over the horizontal line representing the edge of
the table.

Chapter 4

• In Problem 4.2.2 it would be good to agree on some ground rules on what
are acceptable combinations of pattern blocks (whether vertices are required
to match) through classroom discussion before doing the problem. There
is also an interesting general question of whether given n, one can build a
convex n-gon using pattern blocks.

• When covering the material on page 80 the instructor may wish to discuss
the following: What guides how much you put in definitions? Do you put
everything or just the minimal amount in definitions? Could we remove
something from the definition of a square and still have the same object?
(That is, should definitions be “minimal” to specify the object?)

• Problem 4.3.1 is one of the first classification problems in the text. One of
the things that is most difficult for teacher-learners is the idea of parsing
different mathematical objects into classes and subclasses. The subclass of
a class idea is particularly challenging; for instance, many teacher-learners
will not realize that equilateral triangles are also isosceles. Number (5)
is especially tricky for them because the overlap between the acute, right,
and obtuse angle classifications and the scalene, isosceles and equilateral
classifications is subtle. This is also a good place to encourage them to draw
a variety of different types of examples for each classification: for example
sometimes teacher-learners only draw acute isosceles triangles, leading to
mistakes further on later problems.

• Regarding Problem 4.4.1, many times people want to classify shapes by
‘look’, meaning they have a standard picture of what, say, a trapezoid looks
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like in their head, and anything that looks different isn’t a trapezoid. This
leads to mistakes because rectangles, for example, don’t ‘look like’ trape-
zoids, but of course still are trapezoids. The purpose of this exercise is to
get them out of this habit and get them thinking about the mathematical
definitions. As the hint implies, part i) is tricky because they will rarely
attempt to draw a quadrilateral where the right angles are not adjacent,
because it doesn’t seem natural. Also, this problem assumes that the audi-
ence had basic familiarity with all of these shapes. In-service teachers and
most pre-service teachers will recall this information. The instructor may
want to adjust the problem depending on the audience.

• In Problem 4.4.2, the instructor may want to briefly discuss the phrasing
of the question.

• Regarding Problem 4.5.2, we have noticed that there is a wide variety in
familiarity with Venn Diagrams. (It is why this first example is worked out
explicitly.) It may be worth working out more simple examples before using
them to classify longer lists of shapes.

• Problem 4.7.2 is another example where the people might resort to physi-
cally measuring segments. The instructor should encourage teacher-learners
to come up with more abstract arguments about why the segments are or
are not bisected.

• The last workshop concerns a formula called Pick’s theorem. More ex-
planation of the formula can be found by clicking here, or cut-and-paste
http://www.jamestanton.com/wp-content/uploads/2009/04/
picks theorem focus web-version.pdf into your browser. Another part of
this workshop which might be added is the following: Express the sum
1+2+ . . .+30 as the number of lattice points in a lattice polygon. Find the
area of the polygon. Find the number lattice points (hence the sum above)
using Pick’s theorem.

• In Problem 4.7.4, students should be encouraged to make extensions to
the line segments shown in order to help solve the problem. In general,
the instructor may wish to emphasize that an important part of problem
solving in geometry is to make additions to a given figure, showing and
choosing notation for additional angles, points, etc. It is possible to solve
the problem only using the facts discussed in this section. It may be helpful
for students to have string to measure perimeters.

Chapter 5

• In Problem 5.3.4, a sample answer is as follows: The playground will fit 48
children since

30 feet× 40 feet

(25 feet2/ child
=

1200

25

feet2 × child

feet2

= 48 children.

• On page 105, the instructor may wish to discuss possible justifications for
the area of a rectangle before launching into the various cases. In particular
it may not be clear at all that the formula needs justification in the case
that the height and base are not integers.

http://www.jamestanton.com/wp-content/uploads/2009/04/picks_theorem_focus_web-version.pdf
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• On page 116, the area formula for trapezoids is justified in the workshops,
and so not in the text.

• In the justification for the area formula for a triangle in Workshop 5.7.3,
the teacher-learners should be encouraged to discuss how one knows that
two congruent triangles form a parallelogram.

• Workshop 5.3.7: For part (a), the instructor may wish to encourage teacher-
learners to avoid using the Pythagorean theorem, instead computing the
area of the white square by using the fact that a triangle is half a rectangle.
Parts (b) and (c) reinforce this idea: in particular they should realize that
exact answers (i.e. not counting fractional parts of squares) are possible.

• For Problem 5.5.4, the argument may be related to the arguments necessary
for Workshop 4.7.4.

• In Workshop 5.7.4, note that the problem can be solved in two ways. Each
way ignores one piece of the given information, so the problem given actually
contains extraneous information.

Chapter 6

• In Problem 6.1.2, it is difficult to give a full explanation for why the best
coverage while minimizing the number of towers is achieved through a tri-
angular lattice. Our intention with this part of the problem is to give
the teacher-learners an opportunity to informally consider this question by
comparing the coverage from at least two different patterns.

• In Problem 6.1.5 (7) the instructor might wish to discuss the connection
with the triangle inequalities.

• In Problem 6.1.6, the instructor may wish to refer back to Workshop 4.7.2
which explained the bisecting natures of diagonals in rhombi.

• In Problem 6.3.1, the instructor may wish to have the slices cut up in
advance.

• In Problem 6.5.2 (3), possible shapes of the forest include shapes with holes;
alternatively one can start with a square and remove square corners until
the area of the forest is the desired one.

Chapter 7

• In Figure 83, the instructor may wish to engage the students in discussing
where the centers, lines, etc. of dilation, reflection, etc. are in each case.

• In Problem 7.1.1 part (b), the correct answer is claimed to be (C). However,
there seems to be nothing wrong with answers (B) and (D); a turn doesn’t
have to be 90 degrees.

• Before describing procedures for producing motions, the instructor might
wish to have a brief discussion about whether the teacher-learners know
how to produce them.

• In Problem 7.1.2, the class discussion should cover what needs to be specific
for each motion to be described fully.

• In Problem 7.3.1 part (c), the phrasing is left deliberately vague to allow for
rotations in multiple planes and multiple beginning positions of the arm.
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The context of this problem is also a good opportunity to discuss precision
of language.

• In Workshop 7.9.3 (1), the instructor may wish to encourage teacher-learners
to consider the more general case where the angle of rotation is not specified.

Chapter 8

• In the discussion of the number line, the instructor might want to discuss
whether if there is just one number, say 13, can one figure out where to put
15.

• Before discussing the Pythagorean theorem, the instructor may wish to
discuss possible statements, for example, whether a2 + c2 = b2 is a correct
statement of the Pythagorean theorem in the absence of additional details
on the meaning of these variables.

• In Problem 8.3.3, in one case there is no solution, while in another there
are multiple solutions. These problems are meant to encourage students to
question the validity of assumptions.

• Issues to discuss in Problem 8.3.4 include the following: The student mis-
uses the equal sign to indicate equivalence of equations, omits units, and
uses equals when he/she means approximates.

• The justification of the SSS criterion is also given in a workshop.

• In Problem 8.3.5, some students may answer that the shortest distance is
the least of the options given.

Chapter 9

• Acceptable answers in Problem 9.1.3 involve specifying rigid motions in the
case of congruent figures or referring to corresponding distances or angles
that are not congruent, in the case of non-congruent figures. The instructor
may have to provide some guidance about the specificity required for the
answers.

• In Problem 9.2.1, the instructor may with to encourage teacher-learners to
consider each issue in a more general sense. Note that in the third part,
there are infinitely many possibilities.

• In Problem 9.4.2, the instructor may again have to provide guidance about
the level of detail provided in the answers.

Chapter 10

• In Problem 10.3.1, possibly the authors of the exam want the answer “cube”
or “pyramid”. But it could be other shapes, for example, a prism on a non-
rectangular base. Possibly the only correct answer is “prism on a parallel-
ogram” for the first picture and “cone on a parallelogram” for the second.
It would be interesting to know whether any teacher-learners pointed out
that one cannot deduce that a solid is a cube from such a picture.
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• In Problem 10.3.2 (1), note that trapezoids are defined in 4.4 as quadri-
laterals with at least one pair of parallel sides, whereas other texts define
trapezoids as having exactly one pair of parallel sides.

• In Problem 10.5.1, the figure can be viewed in multiple ways. So in theory,
multiple answers are possible, although most will view the figure as a box
with two additional cubes attached.

• In Problem 10.6.2, the buildings may be drawn from a number of per-
spectives. Some perspectives may not reveal all of the components of the
building.
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