Quantum non-abelian localization: Conjectures and partial results

Chris Woodward, Rutgers

joint with E. Gonzalez

Question: how are equivariant Gromov-Witten invariants of a Hamiltonian G-manifold related to those of its symplectic quotient?

thanks to C. Teleman
G is a compact, 1-connected Lie group with Lie alg \mathfrak{g}.
G is a compact, 1-connected Lie group with Lie alg \mathfrak{g}

T a maximal torus with Lie alg \mathfrak{t}
G is a compact, 1-connected Lie group with Lie alg \mathfrak{g}

T a maximal torus with Lie alg \mathfrak{t}

$W = N(T)/T$ its Weyl group
Notation

G is a compact, 1-connected Lie group with Lie alg \mathfrak{g}

T a maximal torus with Lie alg \mathfrak{t}

$W = N(T)/T$ its Weyl group

X a compact Hamiltonian G-manifold
Notation

G is a compact, 1-connected Lie group with Lie alg \mathfrak{g}

T a maximal torus with Lie alg \mathfrak{t}

$W = N(T)/T$ its Weyl group

X a compact Hamiltonian G-manifold

J invariant compatible almost complex str.
Notation

G is a compact, 1-connected Lie group with Lie alg \mathfrak{g}

T a maximal torus with Lie alg \mathfrak{t}

$W = N(T)/T$ its Weyl group

X a compact Hamiltonian G-manifold

J invariant compatible almost complex str.

$\Phi : X \rightarrow \mathfrak{g}^*$ moment map
Notation

\(G \) is a compact, 1-connected Lie group with Lie alg \(\mathfrak{g} \)

\(T \) a maximal torus with Lie alg \(\mathfrak{t} \)

\(W = N(T)/T \) its Weyl group

\(X \) a compact Hamiltonian \(G \)-manifold

\(J \) invariant compatible almost complex str.

\(\Phi : X \to \mathfrak{g}^* \) moment map

\(X/\!\!/G = \Phi^{-1}(0)/G \) symplectic quotient
$QH(X)$ counts holomorphic maps $u : \mathbb{P}^1 \to X$
Equivariant quantum cohomology

\(QH(X) \) counts holomorphic maps \(u : \mathbb{P}^1 \rightarrow X \)

\(QH_G(X)^{\text{Givental}} \) counts holomorphic maps \(u : \mathbb{P}^1 \rightarrow X \) equivariantly

\(QH_G(X) \) should count holomorphic maps
\(u : \mathbb{P}^1 \rightarrow X_G := X \times_{G_{\mathbb{C}}} EG_{\mathbb{C}} \)
Equivariant quantum cohomology

$QH(X)$ counts holomorphic maps $u : \mathbb{P}^1 \to X$

$QH_G(X)^{Givental}$ counts holomorphic maps $u : \mathbb{P}^1 \to X$
equivariantly

$QH_G(X)$ should count holomorphic maps $u : \mathbb{P}^1 \to X_G := X \times_{G_C} EG_C$

i.e. maps $v : \mathbb{P}^1 \to B G_C$ plus lifts to X_G
Equivariant quantum cohomology

\(QH(X) \) counts holomorphic maps \(u : \mathbb{P}^1 \to X \)

\(QH_G(X)^{\text{Givental}} \) counts holomorphic maps \(u : \mathbb{P}^1 \to X \) equivariantly

\(QH_G(X) \) should count holomorphic maps \(u : \mathbb{P}^1 \to X_{G_C} := X \times_{G_C} EG_C \)

i.e. maps \(v : \mathbb{P}^1 \to BG_C \) plus lifts to \(X_{G_C} \)

i.e. holomorphic \(G_C \)-bundles \(P \to X \) with sections

\(u : \mathbb{P}^1 \to P \times_{G_C} X \)
Equivariant quantum cohomology

\[QH(X) \] counts holomorphic maps \(u : \mathbb{P}^1 \rightarrow X \)

\[QH_G(X)^{Givental} \] counts holomorphic maps \(u : \mathbb{P}^1 \rightarrow X \) equivariantly

\[QH_G(X) \text{ should count holomorphic maps} \]
\(u : \mathbb{P}^1 \rightarrow X_{G_C} := X \times_{G_C} EG_C \)

i.e. maps \(v : \mathbb{P}^1 \rightarrow BG_C \) plus lifts to \(X_{G_C} \)

i.e. holomorphic \(G_C \)-bundles \(P \rightarrow X \) with sections
\(u : \mathbb{P}^1 \rightarrow P \times_{G_C} X \)

i.e. triples \((P, A, u)\) of principal \(G \)-bundle \(P \), connection \(A \),
and holomorphic \(u : \mathbb{P}^1 \rightarrow P \times_{G} X \)
Gauged holomorphic maps

Algebraic approach still on X a point (moduli of bundles on a nodal curve? See e.g. Frenkel-Teleman to appear)
Gauged holomorphic maps

Algebraic approach still on X a point (moduli of bundles on a nodal curve? See e.g. Frenkel-Teleman to appear)

Symplectic approach: Fix P principal G-bundle
Gauged holomorphic maps

Algebraic approach still on X a point (moduli of bundles on a nodal curve? See e.g. Frenkel-Teleman to appear)

Symplectic approach: Fix P principal G-bundle

$$\mathcal{A}(P, X) = \{(A, u), \bar{\partial}_A u = 0\}$$ space of gauged hol. maps
Gauged holomorphic maps

Algebraic approach still on X a point (moduli of bundles on a nodal curve? See e.g. Frenkel-Teleman to appear)

Symplectic approach: Fix P principal G-bundle

$\mathcal{A}(P, X) = \{(A, u), \bar{\partial}_A u = 0\}$ space of gauged hol. maps

$G(P)$ group of gauge transformations acts on $\mathcal{A}(P, X)$
Gauged holomorphic maps

Algebraic approach still on X a point (moduli of bundles on a nodal curve? See e.g. Frenkel-Teleman to appear)

Symplectic approach: Fix P principal G-bundle

$$\mathcal{A}(P, X) = \{(A, u), \bar{\partial}_A u = 0\}$$ space of gauged hol. maps

$G(P)$ group of gauge transformations acts on $\mathcal{A}(P, X)$

moment map

$$\mathcal{A}(P, X) \rightarrow \Omega^2(\mathbb{P}^1, P(g)), (A, u) \mapsto F_A + \text{Vol } u^* \Phi$$
Gauged holomorphic maps

Algebraic approach still on X a point (moduli of bundles on a nodal curve? See e.g. Frenkel-Teleman to appear)

Symplectic approach: Fix P principal G-bundle

$\mathcal{A}(P, X) = \{(A, u), \bar{\partial}_A u = 0\}$ space of gauged hol. maps

$G(P)$ group of gauge transformations acts on $\mathcal{A}(P, X)$

moment map $\mathcal{A}(P, X) \to \Omega^2(\mathbb{P}^1, P(\mathfrak{g})), (A, u) \mapsto F_A + \text{Vol } u^* \Phi$

Depends on two-form $\text{Vol} \in \Omega^2(\mathbb{P}^1)$ and inner product $\mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$.
Symplectic vortices

\[M(P, X) := \mathcal{A}(P, X) \sslash G(P) = \{ F_A + \epsilon^{-1} \text{Vol} \ u^* \Phi = 0 \} / G(P) \]
Symplectic vortices

\[M(P, X) := \mathcal{A}(P, X)/G(P) = \{ F_A + \epsilon^{-1} \text{Vol} u^* \Phi = 0 \}/G(P) \]

\(M(P, X) \) is the *moduli space of symplectic vortices*
Symplectic vortices

\[M(P, X) := \mathcal{A}(P, X) / G(P) = \{ F_A + \epsilon^{-1} \text{Vol} u^* \Phi = 0 \} / G(P) \]

\(M(P, X) \) is the \textit{moduli space of symplectic vortices}

Studied by Salamon, Mundet, Cieliebak, Gaio,
\[M(P, X) := \mathcal{A}(P, X) \!\!/G(P) = \{ F_A + \epsilon^{-1} \text{Vol} u^* \Phi = 0 \}/G(P) \]

\(M(P, X) \) is the \textit{moduli space of symplectic vortices}.

Studied by Salamon, Mundet, Cieliebak, Gaio,

Compactification \(\overline{M}(P, X) \) obtained by allowing sphere bubbles in fibers of \(P(X) \)
\[M(P, X) := \mathcal{A}(P, X) / G(P) = \{ F_A + \epsilon^{-1} \text{Vol} u^* \Phi = 0 \} / G(P) \]

\(M(P, X) \) is the *moduli space of symplectic vortices*

Studied by Salamon, Mundet, Cieliebak, Gaio,

Compactification \(\overline{M}(P, X) \) obtained by allowing sphere bubbles in fibers of \(P(X) \)

Question: how does \(\overline{M}(P, X) \) depend on \(\epsilon \)?
Finite Dimensional Analogy

\[X_0, X_1 \text{ Hamiltonian } G\text{-manifolds} \]
X_0, X_1 Hamiltonian G-manifolds

$X = X_0 \times X_1$ with two form $\omega_0 + \epsilon^{-1}\omega_1$
X_0, X_1 Hamiltonian G-manifolds

$X = X_0 \times X_1$ with two form $\omega_0 + \epsilon^{-1} \omega_1$

diagonal action of G has moment map $\Phi_0 + \epsilon^{-1} \Phi_1$
Finite Dimensional Analogy

\(X_0, X_1 \) Hamiltonian \(G \)-manifolds

\(X = X_0 \times X_1 \) with two form \(\omega_0 + \epsilon^{-1} \omega_1 \)

diagonal action of \(G \) has moment map \(\Phi_0 + \epsilon^{-1} \Phi_1 \)

\(X//G \) is a \(X_0 \) bundle over \(X_1//G \) for \(\epsilon \) small
Finite Dimensional Analogy

\[X_0, X_1 \text{ Hamiltonian } G\text{-manifolds} \]
\[X = X_0 \times X_1 \text{ with two form } \omega_0 + \epsilon^{-1}\omega_1 \]

diagonal action of \(G \) has moment map \(\Phi_0 + \epsilon^{-1}\Phi_1 \)
\[\frac{X}{G} \text{ is a } X_0 \text{ bundle over } \frac{X_1}{G} \text{ for } \epsilon \text{ small} \]
\[\frac{X}{G} \text{ is a } X_1 \text{ bundle over } \frac{X_0}{G} \text{ for } \epsilon \text{ large} \]
X_0, X_1 Hamiltonian G-manifolds

$X = X_0 \times X_1$ with two form $\omega_0 + \epsilon^{-1}\omega_1$

diagonal action of G has moment map $\Phi_0 + \epsilon^{-1}\Phi_1$

X/G is a X_0 bundle over X_1/G for ϵ small

X/G is a X_1 bundle over X_0/G for ϵ large

In between have wall-crossing formulas, for example Kalkman
Infinite volume limit

studied by Gaio-Salamon
Infinite volume limit

studied by Gaio-Salamon

A 0-vortex is a collection of holomorphic maps to $X, X//G$, and vortices on \mathbb{C}.
studied by Gaio-Salamon

A 0-vortex is a collection of holomorphic maps to $X, X \sslash G$, and vortices on \mathbb{C}.

$\overline{M}(P, X)_0$ moduli space of 0-vortices
Infinite volume limit

studied by Gaio-Salamon

A \textit{0-vortex} is a collection of holomorphic maps to $X, X\parallel G$, and vortices on \mathbb{C}.

$\overline{M}(P, X)_0$ moduli space of 0-vortices

Conjecture: $\overline{M}(P, X)_0$ compactifies $\overline{M}(P, X)_\epsilon$ as $\epsilon \to 0$
Infinite volume limit

studied by Gaio-Salamon

A *0-vortex* is a collection of holomorphic maps to $X, X/\!/G$, and vortices on \mathbb{C}.

$\overline{M}(P, X)_0$ moduli space of 0-vortices

Conjecture: $\overline{M}(P, X)_0$ compactifies $\overline{M}(P, X)_\epsilon$ as $\epsilon \to 0$

Very similar results by Ziltener, who conjectures a quantum Kirwan map

$$Q\kappa_G : QH_G(X) \to QH(X/\!/G)$$

counting stable vortices on \mathbb{C}.
Infinite volume limit

studied by Gaio-Salamon

A 0-vortex is a collection of holomorphic maps to $X, X//G$, and vortices on \mathbb{C}.

$\overline{M}(P, X)_0$ moduli space of 0-vortices

Conjecture: $\overline{M}(P, X)_0$ compactifies $\overline{M}(P, X)_\epsilon$ as $\epsilon \to 0$

Very similar results by Ziltener, who conjectures a quantum Kirwan map

$$Q_{\kappa_G} : QH_G(X) \to QH(X//G)$$

counting stable vortices on \mathbb{C}.
Zero volume limit

studied by Gonzalez-Woodward
Zero volume limit

studied by Gonzalez-Woodward

A ∞-vortex is a map $u : \mathbb{P}^1 \to X$ with $\int_{\mathbb{P}^1} u^* \Phi \text{Vol}_{\mathbb{P}^1} = 0$
Zero volume limit

studied by Gonzalez-Woodward

\(\infty \)-vortex is a map \(u : \mathbb{P}^1 \to X \) with \(\int_{\mathbb{P}^1} u^* \Phi \, \text{Vol}_{\mathbb{P}^1} = 0 \)

Stable \(\infty \)-vortices allow sphere bubbling
Zero volume limit

studied by Gonzalez-Woodward

A \(\infty \)-vortex is a map \(u : \mathbb{P}^1 \to X \) with \(\int_{\mathbb{P}^1} u^* \Phi \text{Vol}_{\mathbb{P}^1} = 0 \)

Stable \(\infty \)-vortices allow sphere bubbling

\(\overline{M}(X)_{\infty} \) moduli space of stable \(\infty \)-vortices
Zero volume limit

studied by Gonzalez-Woodward

A ∞-vortex is a map $u : \mathbb{P}^1 \to X$ with $\int_{\mathbb{P}^1} u^* \Phi \text{Vol}_{\mathbb{P}^1} = 0$

Stable ∞-vortices allow sphere bubbling

$\overline{M}(X)_{\infty}$ moduli space of stable ∞-vortices

G acts on $\overline{M}_{0,3}(X)$ and $\overline{M}(X)_{\infty}$ is the pre-symplectic quotient

$$\overline{M}(X)_{\infty} = \overline{M}_{0,3}(X) \sslash G$$
Zero volume limit

studied by Gonzalez-Woodward

A ∞-vortex is a map $u : \mathbb{P}^1 \to X$ with $\int_{\mathbb{P}^1} u^* \Phi \text{Vol}_{\mathbb{P}^1} = 0$

Stable ∞-vortices allow sphere bubbling

$\overline{M}(X)_{\infty}$ moduli space of stable ∞-vortices

G acts on $\overline{M}_{0,3}(X)$ and $\overline{M}(X)_{\infty}$ is the pre-symplectic quotient

$$\overline{M}(X)_{\infty} = \overline{M}_{0,3}(X) \sslash G$$

Theorem: $\overline{M}(X)_{\infty}$ is a compactification of $\overline{M}(P, X)_\epsilon$, $\epsilon \to \infty$.
Say \((A_\alpha, u_\alpha)\) is a sequence of \(\epsilon_\alpha\) vortices with \(\epsilon_\alpha \to \infty\).
Proof of compactness

Say \((A_\alpha, u_\alpha)\) is a sequence of \(\epsilon_\alpha\) vortices with \(\epsilon_\alpha \to \infty\)

Assume bounded energy and bounded first derivative
Proof of compactness

Say \((A_\alpha, u_\alpha)\) is a sequence of \(\epsilon_\alpha\) vortices with \(\epsilon_\alpha \to \infty\).

Assume bounded energy and bounded first derivative \(X\) compact implies \(\|F_{A_\alpha}\|_{L^2} < C\epsilon_\alpha^{-1}\).
Proof of compactness

Say \((A_\alpha, u_\alpha) \) is a sequence of \(\varepsilon_\alpha \) vortices with \(\varepsilon_\alpha \to \infty \)

Assume bounded energy and bounded first derivative.

\(X \) compact implies \(\| F_{A_\alpha} \|_{L^2} < C\varepsilon_\alpha^{-1} \).

\(\mathbb{P}^1 \) simply connected, Uhlenbeck compactness implies \(\| A_\alpha \|_{L^1} < C\varepsilon_\alpha^{-1} \) after gauge.
Proof of compactness

Say \((A_\alpha, u_\alpha)\) is a sequence of \(\epsilon_\alpha\) vortices with \(\epsilon_\alpha \to \infty\)

Assume bounded energy and bounded first derivative \(X\) compact implies \(\|F_{A_\alpha}\|_{L^2} < C\epsilon_\alpha^{-1}\).

\(\mathbb{P}^1\) simply connected, Uhlenbeck compactness implies \(\|A_\alpha\|_{L^2_1} < C\epsilon_\alpha^{-1}\) after gauge.

Vortex equation implies \(\epsilon_\alpha (dA_\alpha + A_\alpha \wedge A_\alpha) = u_\alpha^* \Phi \text{Vol}_{\mathbb{P}^1}\)
Say \((A_\alpha, u_\alpha)\) is a sequence of \(\epsilon_\alpha\) vortices with \(\epsilon_\alpha \to \infty\).

Assume bounded energy and bounded first derivative \(X\) compact implies \(\|F_{A_\alpha}\|_{L^2} < C\epsilon_\alpha^{-1}\).

\(\mathbb{P}^1\) simply connected, Uhlenbeck compactness implies \(\|A_\alpha\|_{L^2_1} < C\epsilon_\alpha^{-1}\) after gauge.

Vortex equation implies \(\epsilon_\alpha (dA_\alpha + A_\alpha \wedge A_\alpha) = u_\alpha^* \Phi \text{ Vol}_{\mathbb{P}^1}\)

Integrate to get \(\int_{\mathbb{P}^1} u_\alpha^* \Phi \text{ Vol}_{\mathbb{P}^1} \to 0\)
Definition of vortex invariants

\[\overline{N}(P, X) \] moduli space of vortices with framings at
\[z_1, \ldots, z_n \in \mathbb{P}^1 \]
Definition of vortex invariants

\[\overline{N}(P, X) \] moduli space of vortices with framings at \(z_1, \ldots, z_n \in \mathbb{P}^1 \)

\[\overline{N}(P, X) \to X^n \] evaluation maps
\[\overline{N}(P, X) \] moduli space of vortices with framings at \[z_1, \ldots, z_n \in \mathbb{P}^1 \]

\[\overline{N}(P, X) \to X^n \] evaluation maps

Compose

\[H_G(X)^n \to H_G^n(\overline{N}(P, X)) \to H(\overline{M}(P, X)) \to \mathbb{Q} \] to get vortex invariants
Definition of vortex invariants

\[\overline{N}(P, X) \] moduli space of vortices with framings at
\[z_1, \ldots, z_n \in \mathbb{P}^1 \]

\[\overline{N}(P, X) \to X^n \] evaluation maps

Compose

\[H_G(X)^n \to H_G \left(\overline{N}(P, X) \right) \to H \left(\overline{M}(P, X) \right) \to \mathbb{Q} \] to get vortex invariants

Integration requires virtual fundamental class
Definition of vortex invariants

\[\overline{N}(P, X) \] moduli space of vortices with framings at \(z_1, \ldots, z_n \in \mathbb{P}^1 \)

\[\overline{N}(P, X) \to X^n \] evaluation maps

Compose

\[H_G(X)^n \to H_{G^n}(\overline{N}(P, X)) \to H(\overline{M}(P, X)) \to \mathbb{Q} \] to get vortex invariants

Integration requires virtual fundamental class

Foundations somewhat unelegant, unsatisfactory
Definition of vortex invariants

\[\mathcal{N}(P, X) \] moduli space of vortices with framings at \(z_1, \ldots, z_n \in \mathbb{P}^1 \)

\[\mathcal{N}(P, X) \to X^n \] evaluation maps

Compose

\[H_G(X)^n \to H_G^n(\mathcal{N}(P, X)) \to H(\overline{M}(P, X)) \to \mathbb{Q} \] to get vortex invariants

Integration requires virtual fundamental class

Foundations somewhat unelegant, unsatisfactory
Conjectures

Conj 1: For $\epsilon \gg 0$, $\alpha \in H^*_G(X)^n$, $\langle \alpha \rangle_\epsilon = \langle \alpha \rangle^G_X$, the “invariant part” of Givental’s invariants.
Conjectures

Conj 1: For $\epsilon \gg 0$, $\alpha \in H_G(X)^n$, $\langle \alpha \rangle_\epsilon = \langle \alpha \rangle^G_X$, the “invariant part” of Givental’s invariants.

Conj 2: For $\epsilon^{-1} \gg 0$, $\langle \alpha \rangle_\epsilon = \langle Q\kappa_G(\alpha) \rangle_{X/G}$ where $Q\kappa_G$ is Ziltener’s (conjectural) quantum Kirwan map
Conjectures

Conj 1: For \(\epsilon \gg 0 \), \(\alpha \in H_G(X) \), \(\langle \alpha \rangle_\epsilon = \langle \alpha \rangle_X^G \), the “invariant part” of Givental’s invariants.

Conj 2: For \(\epsilon^{-1} \gg 0 \), \(\langle \alpha \rangle_\epsilon = \langle Q\kappa_G(\alpha) \rangle_{X/G} \) where \(Q\kappa_G \) is Ziltener’s (conjectural) quantum Kirwan map.

Conj 3: In between, have wall-crossing

\[
\sum_{\epsilon \in (\epsilon_0, \epsilon_1), \psi} \frac{\#W_\psi}{\#W \#W} \langle \alpha \rangle_{X, (g/g_\psi) \mathbb{C}, TX/TX_\psi, \epsilon}
\]
Conj 1: For $\epsilon \gg 0$, $\alpha \in H_G(X)^n$, $\langle \alpha \rangle_\epsilon = \langle \alpha \rangle^G_X$, the “invariant part” of Givental’s invariants.

Conj 2: For $\epsilon^{-1} \gg 0$, $\langle \alpha \rangle_\epsilon = \langle Q\kappa_G(\alpha) \rangle_{X/G}$ where $Q\kappa_G$ is Ziltener’s (conjectural) quantum Kirwan map.

Conj 3: In between, have wall-crossing $\langle \alpha \rangle_{\epsilon_1} - \langle \alpha \rangle_{\epsilon_0} = \sum_{\epsilon \in (\epsilon_0, \epsilon_1), \psi \in g} (\#W_\psi / \#W) \langle \alpha \rangle^X_{X, (g/g_\psi)^C, TX/TX^\psi}, \epsilon$.

Wall-crossing terms count vortices in X^ψ, twisted by Euler classes of index bundles $(g/g_\psi)^C$ and TX/TX^ψ, and allowing sphere bubbling in X.
Quantum Non-Abelian localization conjecture

\[\langle Q \kappa_G(\alpha) \rangle_{X/G} = \langle \alpha \rangle^G_X + \sum_{\epsilon \in (0, \infty)} \text{wall-crossing terms}. \]
Quantum Non-Abelian localization conjecture

\[\langle Q\kappa_G(\alpha) \rangle_{X/G} = \langle \alpha \rangle^G_X + \sum_{\epsilon \in (0, \infty)} \text{wall-crossing terms} \]

Not really Quantum, Non-Ab, or Local :)

\[\langle \alpha \rangle^G_X \]
Quantum Non-Abelian localization conjecture

\[\langle Q \kappa_G(\alpha) \rangle_{X/G} = \langle \alpha \rangle^G_X + \sum_{\epsilon \in (0, \infty)} \text{wall-crossing terms.} \]

Not really Quantum, Non-Ab, or Local :)

Theorem-in-progress: \[\langle \alpha \rangle_{X, \epsilon} = \langle \alpha \rangle^G_X + \sum_{\epsilon' > \epsilon} \text{wall-crossing terms for any } \epsilon > 0 \]
\[\left\langle Q \kappa_G(\alpha) \right\rangle_{X/G} = \left\langle \alpha \right\rangle^G_X + \sum_{\epsilon \in (0, \infty)} \text{wall-crossing terms}. \]

Not really Quantum, Non-Ab, or Local :)

Theorem-in-progress: \[\left\langle \alpha \right\rangle_{X, \epsilon} = \left\langle \alpha \right\rangle^G_X + \sum_{\epsilon' > \epsilon} \text{wall-crossing terms for any } \epsilon > 0 \]

In other words, we believe we have proved Conjectures 1 and 3.
motivation is the quantum Martin conjecture of Bertram, Ciocan-Fontanine, and Kim
motivation is the quantum Martin conjecture of Bertram, Ciocan-Fontanine, and Kim

Hori-Vafa: conjectured relation between GW invariants of Grassmannians and products of projective spaces
motivation is the quantum Martin conjecture of Bertram, Ciocan-Fontanine, and Kim

Hori-Vafa: conjectured relation between GW invariants of Grassmannians and products of projective spaces

Bertram et al: prove Hori-Vafa and conjectured

\[\langle \kappa_G(\alpha) \rangle_{X/G,d_G} = (\#W)^{-1} \sum_{d_T \mapsto d_G} \langle \kappa_T(\alpha') \rangle_{X/T,(g/t)_{\mathbb{C}}} \cdot \]
quantum Martin conjecture

motivation is the quantum Martin conjecture of Bertram, Ciocan-Fontanine, and Kim

Hori-Vafa: conjectured relation between GW invariants of Grassmannians and products of projective spaces

Bertram et al: prove Hori-Vafa and conjectured

\[
\langle \kappa_G(\alpha) \rangle_{X/G,d_G} = (\# W)^{-1} \sum_{d_T \to d_G} \langle \kappa_T(\alpha) \rangle_{X/T,(g/t)_C}.
\]

Right-hand side are twisted GW invariants
motivation is the quantum Martin conjecture of Bertram, Ciocan-Fontanine, and Kim

Hori-Vafa: conjectured relation between GW invariants of Grassmannians and products of projective spaces

Bertram et al: prove Hori-Vafa and conjectured

\[\langle \kappa_G(\alpha) \rangle_{X/G,d_G} = (\# W)^{-1} \sum_{d_T \mapsto d_G} \langle \kappa_T(\alpha) \rangle_{X/T,(g/t)_{\mathbb{C}}} \cdot \]

Right-hand side are twisted GW invariants

Ciocan-Fontanine, Kim, Sabbah, conj higher genus version
motivation is the quantum Martin conjecture of Bertram, Ciocan-Fontanine, and Kim

Hori-Vafa: conjectured relation between GW invariants of Grassmannians and products of projective spaces

Bertram et al: prove Hori-Vafa and conjectured

$$\langle \kappa_G(\alpha) \rangle_{X/G,d_G} = (\# W)^{-1} \sum_{d_T \to d_G} \langle \kappa_T(\alpha) \rangle_{X/T,(g/t)_C}.$$

Right-hand side are twisted GW invariants

Ciocan-Fontaninae, Kim, Sabbah, conj higher genus version
Theorem-in-progress: version of quantum Martin for any $\epsilon > 0$
quantum Martin conjecture: partial results

Theorem-in-progress: version of quantum Martin for any $\epsilon > 0$

Proof: Induction on $\dim(G)$ (for a slight generalization of the formula), Martin’s argument for $\epsilon = \infty$, and method of continuity
Theorem-in-progress: version of quantum Martin for any $\epsilon > 0$

Proof: Induction on $\dim(G)$ (for a slight generalization of the formula), Martin’s argument for $\epsilon = \infty$, and method of continuity

Quantum non-abelian localization in general would imply genus zero quantum Martin with Kirwan replaced by quantum Kirwan