Connected Groups of Finite Morley Rank

Gregory Cherlin

April 5, 2008
MWMT
Contents

I Structure
- Algebraicity Conjecture
- Groups without 2-tori
- Groups with 2-tori

II Geometry
- Maximal p-tori
- Carter Subgroups

III Application: Permutation Groups
- MPOSA
- Generic Multiple Transitivity
- Maximal 2-tori

IV Desiderata
- Borovik Program
- Better bounds for permutation groups
- Odd type L-group theory
I. Connected groups of finite Morley rank (in general)

II. Generic covering and conjugacy theorems

III. Semisimple torsion
Connected Groups of Finite Morley Rank

Gregory Cherlin

I. Structure

Essential Notions

Algebraicity and Structure

II. Geometry

Good Tori

Carter subgroups

III. Application

Generic t-transitivity

Lower bounds for T

Desiderata
Essential Notions—Generalities

- Morley rank ($rk(X)$)
- **Generic set:** $rk(X) = rk(G)$
- Connected group

 $[G : H] < \infty \implies G = H.$

 $X, Y \subseteq G$ generic $\implies X \cap Y$ generic

- $d(X)$: definable subgroup generated by X.
- **Fubini:** Lascar-Borovik-Poizat
Essential Notions—\(p\)-groups and Types

- **\(p\)-torus**: divisible abelian \(p\)-group

- **Types**:
 - **Degenerate**: No infinite 2-subgroup
 - **Even**: Nondegenerate, no nontrivial 2-torus
 ("characteristic two type")

- **\(p\)-unipotent**: definable, connected, bounded exponent, nilpotent \(p\)-group
The Algebraicity Conjecture

Conjecture (Algebraicity)

\[G: \text{finite Morley rank, connected.} \]
\[H: \text{maximal connected solvable normal, definable.} \]

\[1 \rightarrow H \rightarrow G \rightarrow \tilde{G} \rightarrow 1 \]

\[\tilde{G}: \text{a central product of algebraic groups.} \]

Equivalently: The simple groups are algebraic.
Borovik Programme

- FSG (15,000 pp., or 5,000 pp.)
- (No bad fields)
- **Minimal Counterexample**

... The perils of incomplete inductive arguments ...
Groups without 2-tori (I)

1 → \(O_2(G) \) → \(G \) → \(\bar{G} \) → 1

\(O_2(G) \): maximal normal unipotent 2-subgroup;

\[
\bar{G} = U_2(\bar{G}) \ast \hat{O}(\bar{G})
\]
Groups without 2-tori (I)

1 → \(O_2(G) \) → \(G \) → \(\bar{G} \) → 1

\(O_2(G) \): maximal normal unipotent 2-subgroup;

\[\bar{G} = U_2(\bar{G}) \ast \hat{O}(\bar{G}) \]

- \(U_2(\bar{G}) \): product of algebraic groups;
- \(\hat{O}(G) \): no involutions
Groups without 2-tori (I)

1 → \(O_2(G)\) → \(G\) → \(\bar{G}\) → 1

\(O_2(G)\): maximal normal unipotent 2-subgroup;

\[\bar{G} = U_2(\bar{G}) \ast \hat{O}(\bar{G})\]

- \(U_2(\bar{G})\): product of algebraic groups;
- \(\hat{O}(G)\): no involutions

Definition

\[U_2(G) = \langle U \leq G : 2\text{-unipotent} \rangle.\]
Groups without 2-tori (II)

\[\bar{G} = U_2(\bar{G}) \ast \hat{O}(\bar{G}) \text{ (Algebraic } \ast \text{ degenerate.)} \]
Groups without 2-tori (II)

\[\bar{G} = U_2(\bar{G}) \ast \hat{O}(\bar{G}) \] (Algebraic * degenerate.)

Ingredients

Theorem (E,M)

A simple group of even type is algebraic.

There are no simple groups of finite Morley rank of mixed type.

Theorem (D)

A connected degenerate type group contains no elements of order two.
Groups without 2-tori (II)

\[\bar{G} = U_2(\bar{G}) \ast \hat{O}(\bar{G}) \] (Algebraic \ast degenerate.)

Ingredients

Theorem (E,M)

A simple group of even type is algebraic. There are no simple groups of finite Morley rank of mixed type.

Methods: Finite group theory, good tori, Wagner on fields of finite Morley rank—**classification**

Theorem (D)

A connected degenerate type group contains no elements of order two.
Groups without 2-tori (II)

\[\bar{G} = U_2(\bar{G}) \ast \hat{O}(\bar{G}) \] (Algebraic \ast degenerate.)

Ingredients

Theorem (E,M)

A simple group of even type is algebraic.
There are no simple groups of finite Morley rank of mixed type.

Methods: Finite group theory, good tori, Wagner on fields of finite Morley rank—classification

Theorem (D)

A connected degenerate type group contains no elements of order two.

Methods: Black box group theory, genericity arguments—soft methods
The Three Waves

Theorem (E)

A simple group of even type is algebraic.
The Three Waves

Theorem (E)

A simple group of even type is algebraic.

1st No bad fields, no degenerate type simple sections.
2nd No degenerate type simple sections.
3rd General case
The Three Waves

Theorem (E)

A simple group of even type is algebraic.

1st No bad fields, no degenerate type simple sections.

2nd No degenerate type simple sections.

3rd General case

The base case: Groups with strongly embedded subgroups.

1st Altınel’s Thesis

2nd Jaligot’s Thesis

3rd Altınel’s Habilitation . . . Limoncello
The Three Waves

Theorem (E)

A simple group of even type is algebraic.

1st No bad fields, no degenerate type simple sections.
2nd No degenerate type simple sections.
3rd General case

The base case: Groups with strongly embedded subgroups.

1st Altınel’s Thesis
2nd Jaligot’s Thesis
3rd Altınel’s Habilitation . . . Limoncello

From FSG to Geometry (good tori). (More below.)
1 \to U_2(G) \to G \to \tilde{G} \to 1

\tilde{G}: No nontrivial unipotent 2-subgroups.
Groups with 2-Tori

\[1 \to U_2(G) \to G \to \tilde{G} \to 1 \]

\(\tilde{G} \): No nontrivial unipotent 2-subgroups.
Back to the Borovik Programme: bounds on Prüfer 2-rank.

Theorem (Borovik, Burdges, Cherlin, Jaligot)

In a minimal connected nonalgebraic simple group of finite Morley rank, the Prüfer 2-rank is at most 2.

—Burdges unipotence theory for elimination of hypotheses on bad fields.
—Analysis of minimal simple groups: Deloro (with technology of Burdges, Frécon).
Groups without 2-unipotent subgroups

In a more geometrical vein . . .

Theorem

- 2-elements are toral.
- Maximal 2-tori are conjugate.
- Any 2-element in the centralizer of a maximal 2-torus belongs to that 2-torus.
- The generic element of G belongs to $C^\circ(T)$ for a unique maximal 2-torus T.

But this is a shift in emphasis . . .
I. Structure
 • Essential Notions
 • Algebraicity and Structure

II. Geometry
 • Good Tori
 • Carter subgroups

III. Application
 • Generic t-transitivity
 • Lower bounds for T

Desiderata
Definition

A definable divisible abelian subgroup T of G is a **good torus** if every definable subgroup of T is the definable hull of its torsion subgroup.

The multiplicative group of a field of finite Morley rank is a good torus [Wagner]. Maximal good tori are conjugate [Cherlin].

Limoncello (Even type with strongly embedded subgroups IV): finiteness of the number of conjugacy classes of 1-dimensional algebraic tori contained in a fixed definable subgroup.
Good tori

Definition

A definable divisible abelian subgroup T of G is a **good torus** if every definable subgroup of T is the definable hull of its torsion subgroup.

Rigidity properties:

R-I $N^o(T) = C^o(T)$

R-II Any uniformly definable family of subgroups of T is finite.
Definition

A definable divisible abelian subgroup T of G is a **good torus** if every definable subgroup of T is the definable hull of its torsion subgroup.

Theorem

- *The multiplicative group of a field of finite Morley rank is a good torus* [Wagner].
- *Maximal good tori are conjugate* [Cherlin].
Definition

A definable divisible abelian subgroup T of G is a **good torus** if every definable subgroup of T is the definable hull of its torsion subgroup.

Theorem

- The multiplicative group of a field of finite Morley rank is a good torus [Wagner].
- Maximal good tori are conjugate [Cherlin].

Limoncello (Even type with strongly embedded subgroups IV):

finiteness of the number of conjugacy classes of 1-dimensional algebraic tori contained in a fixed definable subgroup.
Theorem \((T_p)\)

If \(T\) is a \(p\)-torus and \(H = C^\circ(T)\), then the union of the conjugates of \(H\) is generic in \(G\).
Generic Covering and Conjugacy

Theorem (T_p)

If T is a p-torus and $H = C^o(T)$, then the union of the conjugates of H is generic in G.

Properties of $H = C^o(T)$:
- Almost self-normalizing (Rigidity-I)
- Generically disjoint from its conjugates: $H \setminus (\bigcup H^{[G \setminus N(H)]})$ generic in H.

Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing and generically disjoint from its conjugates then:

- For $X \subseteq H$, we have in H.

Definition

X is generous in G if the union of its conjugates is generic in G.

Desiderata

I. Structure
- Essential Notions
- Algebraicity and Structure

II. Geometry
- Good Tori
- Carter subgroups

III. Application
- Generic t-transitivity
- Lower bounds for T

Desiderata
Theorem (T\(_p\))

If \(T \) is a \(p \)-torus and \(H = C^\circ(T) \), then the union of the conjugates of \(H \) is generic in \(G \).

Lemma (Genericity Lemma)

If a definable subgroup \(H \) of \(G \) is almost self-normalizing and generically disjoint from its conjugates then:

- \(\bigcup H^G \) is generic in \(G \);
- For \(X \subseteq H \), we have \(\bigcup X^G \) generic in \(G \) if and only if \(\bigcup X^H \) is generic in \(H \).
Generic Covering and Conjugacy

Theorem (Tₚ)

If T is a p-torus and \(H = C^\circ(T) \), then \(H \) is generous in \(G \).

Lemma (Genericity Lemma)

If a definable subgroup \(H \) of \(G \) is almost self-normalizing and generically disjoint from its conjugates then:

- \(\bigcup H^G \) is generic in \(G \);
- For \(X \subseteq H \), we have \(\bigcup X^G \) generic in \(G \) if and only if \(\bigcup X^H \) is generic in \(H \).*

Definition

\(X \) is generous in \(G \) if the union of its conjugates is generic in \(G \).
Generic Covering and Conjugacy

Theorem (T_p)

If T is a p-torus and $H = C^o(T)$, then in G.

Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing and generically disjoint from its conjugates then:

- H is generous in G;
- For $X \subseteq H$, we have X is generous in G if and only if X is generous in H.

Definition

X is generous in G if the union of its conjugates is generic in G.
Definition

A **Carter subgroup** of G is a connected definable nilpotent subgroup which is almost self-normalizing.
Carter Subgroups

Definition

A **Carter subgroup** of G is a connected definable nilpotent subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)

They exist.
Carter Subgroups

Definition

A **Carter subgroup** of G is a connected definable nilpotent subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)

They exist.

Theorem (Frécon)

In a K^-group, Carter subgroups are conjugate.*

A tour de force. This is a case where a minimal counterexample eventually dies completely. Along the way, Burdges’ Bender method is used, and many other things.
I. Structure
- Essential Notions
- Algebraicity and Structure

II. Geometry
- Good Tori
- Carter subgroups

III. Application
- Generic t-transitivity
- Lower bounds for T

Desiderata
Theorem (BC)

\((G, X)\) definably primitive. Then \(\text{rk} (G)\) is bounded by a function of \(\text{rk} (X)\).

Definably primitive: no nontrivial \(G\)-invariant definable equivalence relation.

MPOSA = Macpherson-Pillay/O’Nan-Scott-Aschbacher
A description of the **socle** of a primitive permutation group, and the stabilizer of a point in that socle.

- **Affine:** The socle \(A\) is abelian and can be identified with the set \(X\) on which \(G\) acts.
- **Non-affine:** The socle is a product of copies of one simple group.
Theorem

\((G, X)\) definably primitive. Then \(\text{rk}(G)\) is bounded by a function of \(\text{rk}(X)\).
Generic multiple transitivity

Theorem

\((G, X)\) definably primitive. Then \(\text{rk}(G)\) is bounded by a function of \(\text{rk}(X)\).

Generic transitivity: one large orbit.

Generic \(t\)-transitivity: on \(X^t\).
Generic multiple transitivity

Theorem

\((G, X)\) definably primitive. Then \(\text{rk}(G)\) is bounded by a function of \(\text{rk}(X)\).

Generic transitivity: one large orbit.

Proposition

\((G, X)\) definably primitive. Then the degree of multiple transitivity of \(G\) is bounded by a function of \(\text{rk}(X)\).

(Special case of the theorem, but sufficient.)
Bounds on t

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of $\text{rk} (X)$.
Bounds on t

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of $rk(X)$.

Strategy: Let T be the definable hull of a maximal 2-torus. Derive an upper bound on the complexity of T from $rk(X)$, and a lower bound on the complexity of T from t.
Bounds on t

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of $\text{rk}(X)$.

Strategy: Let T be the definable hull of a maximal 2-torus. Derive an upper bound on the complexity of T from $\text{rk}(X)$, and a lower bound on the complexity of T from t.

The upper bound: $\text{rk}(T/O_{\infty}(T)) \leq \text{rk}(X)$. This is because the stabilizer of a generic element of X is torsion-free.
Bounds on t

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of $rk(X)$.

Strategy: Let T be the definable hull of a maximal 2-torus. Derive an upper bound on the complexity of T from $rk(X)$, and a lower bound on the complexity of T from t.

The upper bound: $rk(T/O_{\infty}(T)) \leq rk(X)$. This is because the stabilizer of a generic element of X is torsion-free. But the lower bound requires attention.
We want to show that a large degree of generic transitivity (t large) blows up $rk\left(T / T_{\infty}\right)$ for T the definable hull of a 2-torus.

Let us simplify considerably.
We want to show that a large degree of generic transitivity (t large) blows up $rk\left(\frac{T}{T_{\infty}}\right)$ for T the definable hull of a 2-torus.

Let us simplify considerably.

The group G will induce the action of Sym_t on any t independent generic points.

Trading T in for a smaller torus, and trading t in for a smaller value as well (but not too small) we can set this up so that we have:

- a finite group Σ operating on T, and
- covering Sym_t, and
- sitting inside a connected group H such that
- T is the definable hull of a maximal 2-torus in H.

Imagine the simplest case: Sym_t sits inside G and acts on T, the definable hull of a maximal 2-torus. It then seems reasonable that this action can be exploited to blow up T, and also T/\widetilde{T}.

There is a glaring hole in this argument.
We want to show that a large degree of generic transitivity (\(t\) large) blows up \(rk(\, T / T_\infty\,)\) for \(T\) the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group \(\Sigma\) operating on \(T\), and
- covering \(Sym_t\), and
- sitting inside a connected group \(H\) such that
- \(T\) is the definable hull of a maximal 2-torus in \(H\).

Imagine the simplest case: \(Sym_t\) sits inside \(G\) and acts on \(T\), the definable hull of a maximal 2-torus.
We want to show that a large degree of generic transitivity (t large) blows up $rk\left(\frac{T}{T_\infty}\right)$ for T the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group Σ operating on T, and
- covering Sym_t, and
- sitting inside a connected group H such that
- T is the definable hull of a maximal 2-torus in H.

Imagine the simplest case: Sym_t sits inside G and acts on T, the definable hull of a maximal 2-torus. It then seems reasonable that this action can be exploited to blow up T, and also T/T_∞.
We want to show that a large degree of generic transitivity (t large) blows up $rk\left(\frac{T}{T_\infty}\right)$ for T the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group Σ operating on T, and
- covering Sym_t, and
- sitting inside a connected group H such that
- T is the definable hull of a maximal 2-torus in H.

Imagine the simplest case: Sym_t sits inside G and acts on T, the definable hull of a maximal 2-torus. It then seems reasonable that this action can be exploited to blow up T, and also T/T_∞.

There is a glaring hole in this argument.
Plugging a hole

The Setup

T inside G, G connected, Sym_t acts on T, t large, and T is the definable hull of a maximal 2-torus.

The problem:
The Setup

T inside G, G connected, Sym_t acts on T, t large, and T is the definable hull of a maximal 2-torus.

The problem: if Sym_t acts trivially on T, then this says nothing.
The Setup

T inside G, G connected, Sym_t acts on T, t large, and T is the definable hull of a maximal 2-torus.

The problem: if Sym_t acts trivially on T, then this says nothing.

However: at this point G can again be taken to be simple (via MPOSA) and therefore a dichotomy applies:

- Either G is algebraic or
- G contains no unipotent 2-subgroup.
Plugging a hole

The Setup

T inside G, G connected, Sym_t acts on T, t large, and T is the definable hull of a maximal 2-torus.

The problem: if Sym_t acts trivially on T, then this says nothing.

However: at this point G can again be taken to be simple (via MPOSA) and therefore a dichotomy applies:

- Either G is algebraic or
- G contains no unipotent 2-subgroup.

In the former case, we can trade 2 off for a prime different from the characteristic and use the bound on $rk\left(\frac{T}{T_\infty}\right)$ to control the rank of G—structure theory.
Plugging a hole

The Setup

T inside G, G connected, Sym_t acts on T, t large, and T is the definable hull of a maximal 2-torus.

The problem: if Sym_t acts trivially on T, then this says nothing.

However: at this point G can again be taken to be simple (via MPOSA) and therefore a dichotomy applies:

- Either G is algebraic or
- G contains no unipotent 2-subgroup.

In the former case, we can trade 2 off for a prime different from the characteristic and use the bound on $\text{rk}(T/T_\infty)$ to control the rank of G—structure theory.

In the latter case, recall that 2-elements in the centralizer of T belong to T. It follows easily that the action of Sym_t on T is faithful.
The Setup

T inside G, G connected, Sym_t acts on T, t large, and T is the definable hull of a maximal 2-torus. The problem: if Sym_t acts trivially on T, then this says nothing.

However: at this point G can again be taken to be simple (via MPOSA) and therefore a dichotomy applies:

- Either G is algebraic or
- G contains no unipotent 2-subgroup.

In the former case, we can trade 2 off for a prime different from the characteristic and use the bound on $rk\left(T/T_\infty\right)$ to control the rank of G—structure theory.

In the latter case, recall that 2-elements in the centralizer of T belong to T. It follows easily that the action of Sym_t on T is faithful.

And so, we are done!
I. Structure
- Essential Notions
- Algebraicity and Structure

II. Geometry
- Good Tori
- Carter subgroups

III. Application
- Generic t-transitivity
- Lower bounds for T

Desiderata
The original goal: a list of “intractable” minimal configurations.

I would like to see that in final form!

Better bounds on primitive permutation groups, particularly in the algebraic case.

Popov in characteristic 0, with algebraic actions.

L-group theory for odd type groups.

Frécon perhaps, in his work on conjugacy of Carter subgroups.
Desiderata

- The original goal: a list of “intractable” minimal configurations.

 I would like to see that in final form!

- Better bounds on primitive permutation groups, particularly in the algebraic case.

 Popov in characteristic 0, with algebraic actions.

- L-group theory for odd type groups.

 Frécon perhaps, in his work on conjugacy of Carter subgroups.

- **Absolute bounds** on Prüfer rank of groups of odd type

- Construction of bad field towers.

- Construction of bad groups
The original goal: a list of “intractable” minimal configurations.
I would like to see that in final form!

Better bounds on primitive permutation groups, particularly in the algebraic case.
Popov in characteristic 0, with algebraic actions.

L-group theory for odd type groups.
Frécon perhaps, in his work on conjugacy of Carter subgroups.

Absolute bounds on Prüfer rank of groups of odd type

Construction of bad field towers.

Construction of bad groups

And a pony!