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@ Morley rank (rk (X))
@ Generic set: rk (X) = rk (G)
@ Connected group

[G:H <o = G=H.
X,Y C Ggeneric = XN Y generic

@ d(X): definable subgroup generated by X.
@ Fubini: Lascar-Borovik-Poizat
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@ p-torus: divisible abelian p-group

@ Types:

Degenerate: No infinite 2-subgroup
Even: Nondegenerate, no nontrivial 2-torus
(“characteristic two type”)

@ p-unipotent: definable, connected, bounded exponent,
nilpotent p-group
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Conjecture (Algebraicity)

G: finite Morley rank, connected.
H: maximal connected solvable normal, definable.

Algebraicity and

1-H—-G—-G—1

G: a central product of algebraic groups.

Equivalently: The simple groups are algebraic.
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@ FSG (15,000 pp., or 5,000 pp.)
@ (No bad fields)
@ Minimal Counterexample

Algebraicity and
Structure

... The perils of incomplete inductive arguments . ..
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O,(@G): maximal normal unipotent 2-subgroup;

G = Us(G) * ()( G)
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O,(@G): maximal normal unipotent 2-subgroup;

G = Us(G) * ()( G)

e U>(G): product of algebraic groups;
e O(G): no involutions
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1- 0(G)— G— G—1

O,(@G): maximal normal unipotent 2-subgroup;

G = Ux(G) = O(G)

e U>(G): product of algebraic groups;
e O(G): no involutions

Definition

U>(G) = (U < G : 2-unipotent).
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A simple group of even type is algebraic.
sriare There are no simple groups of finite Morley rank of mixed

Structure

type.

Theorem (D)
A connected degenerate type group contains no elements
of order two.
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A simple group of even type is algebraic.
Gt There are no simple groups of finite Morley rank of mixed

type.

Methods: Finite group theory, good tori, Wagner on fields of
finite Morley rank—classification

Theorem (D)

A connected degenerate type group contains no elements
of order two.

Methods: Black box group theory, genericity
arguments—soft methods
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1st No bad fields, no degenerate type simple sections.
CEl  °nd No degenerate type simple sections.
3rd General case

The base case: Groups with strongly embedded subgroups.

1st Altinel’s Thesis

2nd Jaligot’s Thesis

3rd Altinel’s Habilitation ... Limoncello

From FSG to Geometry (good tori). (More below.)
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G: No nontrivial unipotent 2-subgroups.
Back to the Borovik Programme: bounds on Prifer 2-rank.

Algebraicity and
Structure

Theorem (Borovik, Burdges, Cherlin, Jaligot)

In a minimal connected nonalgebraic simple group of finite
Morley rank, the Priifer 2-rank is at most 2.

—Burdges unipotence theory for elimination of hypotheses
on bad fields.

—Analysis of minimal simple groups: Deloro (with
technology of Burdges, Frécon).
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@ Any 2-element in the centralizer of a maximal 2-torus
belongs to that 2-torus.

@ The generic element of G belongs to C°(T) for a
unique maximal 2-torus T.

But this is a shift in emphasis . ..
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Rank A definable divisible abelian subgroup T of G is a good
Gregory torus if every definable subgroup of T is the definable hull of
its torsion subgroup.

Rigidity properties:

R-1 N°(T) = C°(T)

R-II' Any uniformly definable family of subgroups of T is
finite.
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its torsion subgroup.

@ The multiplicative group of a field of finite Morley rank is
a good torus [Wagner].

@ Maximal good tori are conjugate [Cherlin].




Good tori
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Rank A definable divisible abelian subgroup T of G is a good
ey torus if every definable subgroup of T is the definable hull of
its torsion subgroup.

@ The multiplicative group of a field of finite Morley rank is
a good torus [Wagner].

@ Maximal good tori are conjugate [Cherlin].

Limoncello (Even type with strongly embedded subgroups
IV):

finiteness of the number of conjugacy classes of
1-dimensional algebraic tori contained in a fixed definable
subgroup.
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Generic Covering and Conjugacy
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Rank If T is a p-torus and H = C°(T), then the union of the
i conjugates of H is generic in G.

Properties of H = C°(T):
e Almost self-normalizing (Rigidity-I)
e Generically disjoint from its conjugates:
H\ (U HIG\WH generic in H.
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» If T is a p-torus and H = C°(T), then the union of the
s conjugates of H is generic in G.

Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing
and generically disjoint from its conjugates then:

@ |JHC is generic in G;
@ For X C H, we have | X G generic in G if and only if
U X" is generic in H.
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Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing
and generically disjoint from its conjugates then:

@ |JHC is generic in G;
@ For X C H, we have | J X G generic in G if and only if
U X" is generic in H.

Definition

X is generous in G if the union of its conjugates is generic in
G.

<
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Lemma (Genericity Lemma)

If a definable subgroup H of G is almost self-normalizing
and generically disjoint from its conjugates then:

@ H is generous in G;

@ For X C H, we have X is generous in G if and only if X
is generous in H.

Definition

X is generous in G if the union of its conjugates is generic in
G.

v
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Gregory A Carter subgroup of G is a connected definable nilpotent
' subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)
They exist.

Carter subgroups
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Rank Definition

Gregory A Carter subgroup of G is a connected definable nilpotent
' subgroup which is almost self-normalizing.

Theorem (Frécon-Jaligot)
They exist.

Carter subgroups

Theorem (Frécon)
In a K*-group, Carter subgroups are conjugate.

A tour de force. This is a case where a minimal
counterexample eventually dies completely. Along the way,
Burdges’ Bender method is used, and many other things.
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Definably primitive: no nontrivial G-invariant definable
equivalence relation.
I Aonioation MPOSA = Macpherson-Pillay/O’Nan-Scott-Aschbacher
i A description of the socle of a primitive permutation group,
and the stabilizer of a point in that socle.
@ Affine: The socle A is abelian and can be identified with
the set X on which G acts.
@ Non-affine: The socle is a product of copies of one
simple group.
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Generic t-transitivity: on X!
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function of rk (X).

Generic transitivity: one large orbit.
Generic t-transitivity: on X!

Proposition

(G, X) definably primitive. Then the degree of multiple
transitivity of G is bounded by a function of rk (X).

(Special case of the theorem, but sufficient.)
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bounded by a function of rk (X).

Strategy: Let T be the definable hull of a maximal 2-torus.
Derive an upper bound on the complexity of T from rk (X),
and a lower bound on the complexity of T from t.
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(G, X) definably primitive, generically t-transitive. Then t is
bounded by a function of rk (X).

Strategy: Let T be the definable hull of a maximal 2-torus.
Derive an upper bound on the complexity of T from rk (X),
and a lower bound on the complexity of T from t.

The upper bound: rk (T/O(T)) < rk (X). This is because
the stabilizer of a generic element of X is torsion-free.
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(G, X) definably primitive, generically t-transitive. Then t is
bounded by a function of rk (X).

Strategy: Let T be the definable hull of a maximal 2-torus.
Derive an upper bound on the complexity of T from rk (X),
and a lower bound on the complexity of T from t.

The upper bound: rk (T/O(T)) < rk (X). This is because
the stabilizer of a generic element of X is torsion-free.

But the lower bound requires attention.
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We want to show that a large degree of generic transitivity (¢
large) blows up rk (T/T) for T the definable hull of a
2-torus.
Let us simplify considerably.
The group G will induce the action of Sym; on any ¢
independent generic points.
Trading T in for a smaller torus, and trading t in for a smaller
value as well (but not too small) we can set this up so that
we have:

@ a finite group X operating on T, and

@ covering Sym;, and

@ sitting inside a connected group H such that

@ T is the definable hull of a maximal 2-torus in H.
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We can set this up so that we have:

@ a finite group ¥ operating on T, and

@ covering Sym;, and

@ sitting inside a connected group H such that

@ T is the definable hull of a maximal 2-torus in H.

Imagine the simplest case: Sym; sits inside G and acts on
T, the definable hull of a maximal 2-torus.



Connected

SN o We want to show that a large degree of generic transitivity (¢

Finite Morley

Rank large) blows up rk (T /T) for T the definable hull of a
ey 2-torus.
We can set this up so that we have:

@ a finite group X operating on T, and
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@ T is the definable hull of a maximal 2-torus in H.
Imagine the simplest case: Sym; sits inside G and acts on
T, the definable hull of a maximal 2-torus.

It then seems reasonable that this action can be exploited to
blow up T, and also T/T.
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s large) blows up rk (T /T) for T the definable hull of a
ey 2-torus.
We can set this up so that we have:

@ a finite group ¥ operating on T, and

@ covering Sym;, and

@ sitting inside a connected group H such that

@ T is the definable hull of a maximal 2-torus in H.
Imagine the simplest case: Sym; sits inside G and acts on
T, the definable hull of a maximal 2-torus.
It then seems reasonable that this action can be exploited to

blow up T, and also T/T.
There is a glaring hole in this argument.
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Finite Morley T inside G, G connected, Sym; actson T, t large, and T is
the definable hull of a maximal 2-torus.

The problem: if Sym, acts trivially on T, then this says
nothing.
However: at this point G can again be taken to be simple
(via MPOSA) and therefore a dichotomy applies:

@ Either G is algebraic or

@ G contains no unipotent 2-subgroup.
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However: at this point G can again be taken to be simple
(via MPOSA) and therefore a dichotomy applies:

@ Either G is algebraic or
@ G contains no unipotent 2-subgroup.
In the former case, we can trade 2 off for a prime different

from the characteristic and use the bound on rk (T/T) to
control the rank of G—structure theory.
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S— the definable hull of a maximal 2-torus.
Gl The problem: if Sym, acts trivially on T, then this says
nothing.
However: at this point G can again be taken to be simple
(via MPOSA) and therefore a dichotomy applies:

@ Either G is algebraic or
@ G contains no unipotent 2-subgroup.

In the former case, we can trade 2 off for a prime different
from the characteristic and use the bound on rk (T/T) to
control the rank of G—structure theory.

In the latter case, recall that 2-elements in the centralizer of
I belong to T. It follows easily that the action of Sym, on T
is faithful.



Plugging a hole

el The Setup
Finite Morley T inside G, G connected, Sym; actson T, t large, and T is
S— the definable hull of a maximal 2-torus.
Gl The problem: if Sym, acts trivially on T, then this says
nothing.
However: at this point G can again be taken to be simple
(via MPOSA) and therefore a dichotomy applies:

@ Either G is algebraic or
@ G contains no unipotent 2-subgroup.

In the former case, we can trade 2 off for a prime different
from the characteristic and use the bound on rk (T/T) to
control the rank of G—structure theory.

In the latter case, recall that 2-elements in the centralizer of
I belong to T. It follows easily that the action of Sym, on T
is faithful.

And so, we are done!
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| would like to see that in final form!

@ Better bounds on primitive permutation groups,
particularly in the algebraic case.
Popov in characteristic 0, with algebraic actions.
@ L-group theory for odd type groups.

Frécon perhaps, in his work on conjugacy of Carter
subgroups.
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Finite Morley @ The original goal: a list of “intractable” minimal
e configurations.
Chetin I would like to see that in final form!
@ Better bounds on primitive permutation groups,
particularly in the algebraic case.
Popov in characteristic 0, with algebraic actions.
@ L-group theory for odd type groups.

Frécon perhaps, in his work on conjugacy of Carter
subgroups.

Desiderata

@ Absolute bounds on Prifer rank of groups of odd type
@ Construction of bad field towers.

@ Construction of bad groups

@ And a pony!



	I. Structure
	Essential Notions
	Algebraicity and Structure

	II. Geometry
	Good Tori
	Carter subgroups

	III. Application
	Generic t-transitivity
	Lower bounds for T

	Desiderata

