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Structure @ Morley rank (rk (X))
Theory
@ Connected group

[G:Hl <o = G=H.
X,Y C Ggeneric = XN Y generic

@ d(X): definable subgroup generated by X.
@ Fubini: Zilber-Lascar-Borovik-Poizat



The Algebraicity Conjecture

coeo [l Conjecture (Algebraicity)

Finite Morley

REGTY G: finite Morley rank, connected.
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B H: maximal connected solvable normal, definable.

Structure

e 1 s H-G—G—1

G: a central product of algebraic groups.

Equivalently: The simple groups are algebraic.
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REGTY G: finite Morley rank, connected.
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R H: maximal connected solvable normal, definable.

Struct ~
Theory 1 3H- GG 1

G: a central product of algebraic groups.

Equivalently: The simple groups are algebraic.
Theorem (ABC, 2008)

1= Uh(G)—-G—G—1

U>(G): 1 — O2(G) — [, Li (char 2, Altinel’s Jugendtraum -
and his habilitation - and Wagner's good tori)
G: Connected 2-Sylow divisible abelian. (“odd type”)
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Gomeo: [ Theorem (Degenerate Type)
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Rank If there is no nontrivial connected abelian p-subgroup, then
Gregory there is no p-torsion.
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Theorem (Burdges-Altinel)
The centralizer of a divisible torsion subgroup is connected.
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If there are no p-unipotent subgroups, then any p-element
which centralizes a maximal divisible p-subgroup T liesin T.
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Theorem (Burdges-Altinel)
The centralizer of a divisible torsion subgroup is connected.

Corollary

If there are no p-unipotent subgroups, then any p-element
which centralizes a maximal divisible p-subgroup T liesin T.

Proof.

T the definable hull of a maximal divisible p-subgroup.
H = C(T)/T connected.
H has no p-torsion. O

A\
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Jorsion in Definably primitive: no nontrivial G-invariant definable

Groups of

el equivalence relation.
ank
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Theorem (BC)

(G, X) definably primitive. Then rk (G) is bounded by a
e function of rk (X).

Groups

MPOSA = Macpherson-Pillay/O’Nan-Scott-Aschbacher
A description of the socle of a primitive permutation group,
and the stabilizer of a point in that socle.

@ Affine: The socle A is abelian and can be identified with
the set X on which G acts.

@ Non-affine: The socle is a product of copies of one
simple group.
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Generic multiple transitivity
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Gregory

Cherlin (G, X) definably primitive. Then rk (G) is bounded by a
function of rk (X).

Permuttion Generic transitivity: one large orbit.
Generic t-transitivity: on X!

Proposition

(G, X) definably primitive. Then the degree of multiple
transitivity of G is bounded by a function of rk (X).

(Special case of the theorem, but sufficient.)
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Groups Strategy: Let T be a maximal 2-torus.

@ Derive an upper bound on the complexity of T from
rk (X);

@ Derive a lower bound on the complexity of T from t.
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Groups Strategy: Let T be a maximal 2-torus.

@ Derive an upper bound on the complexity of T from
rk (X);

@ Derive a lower bound on the complexity of T from t.

The upper bound: rk (T/O(T)) < rk (X). This is because
the stabilizer of a generic element of X is torsion-free.
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(G, X) definably primitive, generically t-transitive. Then t is
bounded by a function of rk (X).
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Permutation

Groups Strategy: Let T be a maximal 2-torus.
@ Derive an upper bound on the complexity of T from
rk (X);

@ Derive a lower bound on the complexity of T from t.
The upper bound: rk (T/O(T)) < rk (X). This is because
the stabilizer of a generic element of X is torsion-free.

But the lower bound requires attention.
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We want to show that a large degree of generic transitivity (¢
large) blows up rk (T/T) for T the definable hull of a
2-torus.
The group G will induce the action of Sym, on any ¢
independent generic points.
Trading T in for a smaller torus, and trading t in for a smaller
value as well (but not too small) we can set this up so that
we have:

@ a finite group X operating on T, covering Sym;,

@ — and sitting inside a connected group H —

@ such that T is the definable hull of a maximal 2-torus in

H.

Let us simplify considerably.
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We want to show that a large degree of generic transitivity (¢
large) blows up rk (T/T) for T the definable hull of a
2-torus.

We can set this up so that we have:
@ a finite group X operating on T, covering Symy;,
@ — and sitting inside a connected group H —
@ such that T is the definable hull of a maximal 2-torus in
H.

Imagine the simplest case: Sym; sits inside G and acts on
T, the definable hull of a maximal 2-torus.

It seems reasonable that this action can be exploited to blow
up T,and also T/ T.
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We want to show that a large degree of generic transitivity (¢
large) blows up rk (T/T) for T the definable hull of a
2-torus.

We can set this up so that we have:

@ a finite group X operating on T, covering Symy;,
@ — and sitting inside a connected group H —

@ such that T is the definable hull of a maximal 2-torus in
H.

Imagine the simplest case: Sym; sits inside G and acts on
T, the definable hull of a maximal 2-torus.

It seems reasonable that this action can be exploited to blow
up T,and also T/ T.

There is a glaring hole in this argument.
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o and T is the definable hull of a maximal 2-torus.

The problem: if Sym; acts trivially on T, then this says
nothing.



Plugging a hole

Torsion in
Groups of
Finite Morley

The Setup
T inside G,
G connected,
Sym; actson T,
Sl [ large,

and T is the definable hull of a maximal 2-torus.
The problem: if Sym; acts trivially on T, then this says
nothing.
But since this configuration is in a connected subgroup of G,
and T is a maximal 2-torus, the 2-elements of Sym; act
nontrivially on T, and the action of Alt; is faithful.
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The Setup
T inside G,
G connected,
Sym; actson T,
Sl [ large,

and T is the definable hull of a maximal 2-torus.
The problem: if Sym; acts trivially on T, then this says
nothing.
But since this configuration is in a connected subgroup of G,
and T is a maximal 2-torus, the 2-elements of Sym; act
nontrivially on T, and the action of Alt; is faithful.

So we are done.
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More results on torsion
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Assume no p-unipotents.
e Semisimplicity
If G is connected, then every p-element is in a torus.
e Sylow theory
Torsion For all primes p
e Weyl groups N(T)/T.
If the Weyl group is nontrivial, it contains an involution.

(Burdges-Deloro) If the group is minimal simple, the
Weyl group is cyclic
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@ Permutation Groups
@ Classification in odd type and low 2-rank
© Bounds on 2-rank revisited?

Torsion



Other aspects
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e embedding, black box group theory ...

© Burdges unipotence theory and the Bender method

© Generix strikes back [Nesin, Jaligot]

© Conjugacy of Carter subgroups [Frécon]

© Quasithin methods
©@ Amalgam method, representation theory (even type)
@ Component analysis (odd type) [Borovik, Altseimer,

Burdges]
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e embedding, black box group theory ...

© Burdges unipotence theory and the Bender method

© Generix strikes back [Nesin, Jaligot]

© Conjugacy of Carter subgroups [Frécon]
© Quasithin methods
©@ Amalgam method, representation theory (even type)
@ Component analysis (odd type) [Borovik, Altseimer,
Burdges]

Desiderata
L*-group theory in odd type (absolute bounds on
2-rank)
Control of actions of 2-tori on degenerate type groups.
and
Bad groups and non-commutative geometry ... ?
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