I Homogeneous Structures

- Distance Homogeneous Graphs

II Universal Graphs

- Trees
I. Homogeneous Structures

2. Recent Developments

3. Universality

4. Applications

5. Questions
Homogeneity

\[A \simeq B \implies A \sim B \text{ under } \text{Aut}(\Gamma) \]

E.g. \((\mathbb{Q}, <)\)

Around Homogeneous Universal Graphs

Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions
Homogeneity

\[A \simeq B \implies A \sim B \text{ under } \text{Aut}(\Gamma) \]

E.g. \((\mathbb{Q},<)\)

Urysohn 1927 (Ph.D. 1921; d. 1924, aged 26): \(\mathbb{U} \)

Rado 1964: \(G \)

Fraïssé 1954: \(\Gamma \leftrightarrow \text{Sub}(\Gamma) \)
Fraïssé 1954: $\Gamma \leftrightarrow \text{Sub}(\Gamma)$
Amalgamation

Fraïssé 1954: $\Gamma \leftrightarrow \text{Sub}(\Gamma)$
Amalgamation of Metric Spaces

1-point extensions: \(A_i = A_0 \cup \{u_i\} \).

\[
\begin{align*}
 d^+(u_1, u_2) &= \min(d(u_1, a) + d(u_2, a)) \\
 d^-(u_1, u_2) &= \max|d(u_1, a) - d(u_2, a)|
\end{align*}
\]

Any positive \(d \) in \([d^+, d^-]\) will do.
Amalgamation of Metric Spaces

1-point extensions: \(A_i = A_0 \cup \{u_i\} \).

\[
\begin{align*}
d^+(u_1, u_2) &= \min(d(u_1, a) + d(u_2, a)) \\
d^-(u_1, u_2) &= \max|d(u_1, a) - d(u_2, a)|
\end{align*}
\]

Any positive \(d \) in \([d^+, d^-]\) will do.

\(\mathbb{U}_0 \): The universal homogeneous countable rational-valued metric space.

\(\mathbb{U} \): The completion of \(\mathbb{U}_0 \).
Homogeneous Graphs and Digraphs

Henson 1971: G_n (K_n-free graph), its automorphisms and structure
Henson 1972: $D_{\neg\mathcal{T}}$ (\mathcal{T}-free digraph)
Henson 1971: G_n (K_n-free graph), its automorphisms and structure
Henson 1972: D_{-T} (T-free digraph)

Lachlan-Woodrow 1980: Homogeneous graphs classified. Imprimitive or Degenerate: $(mK_n)^\pm$; Primitive finite: P, $E(K_{3,3})$
Primalite infinite: $(G_n)^\pm$
Henson 1971: G_n (K_n-free graph), its automorphisms and structure
Henson 1972: $D_{\neg T}$ (T-free digraph)

Lachlan-Woodrow 1980: Homogeneous graphs classified.
Imprimitive or Degenerate: $(mK_n)^\pm$; Primitive finite: P, $E(K_{3,3})$
Primitive infinite: $(G_n)^\pm$
Lachlan 1984: Homogeneous tournaments classified
I_1, C_3, Q, S, T_∞
Cherlin 1993 (Banff): Homogeneous directed graphs
Homogeneous Graphs and Digraphs

Henson 1971: G_n (K_n-free graph), its automorphisms and structure
Henson 1972: $D_{\neg I}$ (I-free digraph)

Lachlan-Woodrow 1980: Homogeneous graphs classified. Imprimitive or Degenerate: $(mK_n)^\pm$; Primitive finite: P, $E(K_3,3)$
Primitive infinite: $(G_n)^\pm$
Lachlan 1984: Homogeneous tournaments classified $I_1, C_3, \mathbb{Q}, \mathbb{S}, T_\infty$
Cherlin 1993 (Banff): Homogeneous directed graphs
Tools: Fraïssé, Finite Ramsey theorem
I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions
Some recent developments

Torrezão de Souza/Truss 2008: Colored PO

Color classes $c_1 \leq c_2 \leq c_1$, densely colored; *connections between pairs of color class components; triples*. Fraïssé for existence.
Some recent developments

Torrezão de Souza/Truss 2008: Colored PO

Kechris-Pestov-Todorcevic 2005: Fraïssé+Ramsey+Top. Dynamics

Glasner: “This remarkable paper is a tour de force where three experts in disparate areas—model theory, structural Ramsey theory and topological dynamics—collaborate in creating a unified and beautiful theory.”
Some recent developments

Kechris-Pestov-Todorcevic 2005: Fraïssé+Ramsey+Top. Dynamics

Minimal flows: compact actions with every orbit dense. Extremely amenable: no nontrivial minimal flow
Some recent developments

Kechris-Pestov-Todorcevic 2005: Fraïssé+Ramsey+Top. Dynamics

- The extremely amenable closed subgroups of Sym_∞ are exactly the groups of the form $\text{Aut}(\mathbb{A})$ with \mathbb{A} the Fraïssé limit of a Fraïssé order class with the Ramsey property.
- If \mathbb{A} is one of the following structures, then the universal minimal flow $M(G)$ of the group $G = \text{Aut}(\mathbb{A})$ is its action on the space of linear orderings of the universe of \mathbb{A}_0:
 - $G_n \ (n \leq \infty)$;
 - $(\mathbb{N}, =)$;
 - \mathbb{U}_0
Cameron: classify connected graphs which are homogeneous as metric spaces in the graph metric.
Cameron: classify connected graphs which are homogeneous as metric spaces in the graph metric.

\[\delta \leq 2: \text{Lachlan-Woodrow} \]
Distance homogeneous graphs?

Cameron: classify connected graphs which are homogeneous as metric spaces in the graph metric.

\[\delta \leq 2: \text{Lachlan-Woodrow} \]

\[\Gamma_1 = \Gamma(v_*): \text{Homogeneous graph} \]
Distance homogeneous graphs?

Cameron: classify connected graphs which are homogeneous as metric spaces in the graph metric.

\[\delta \leq 2: \text{Lachlan-Woodrow} \]

\[\Gamma_1 = \Gamma(v_\bullet): \text{Homogeneous graph} \]

A catalog?
A catalog

1. \(\delta \leq 2 \) (L-W);
A catalog

1. $\delta \leq 2$ (L-W);
2. Locally finite and limits of such
A catalog

1. $\delta \leq 2$ (L-W);
2. Locally finite and limits of such
 - $C_n \ (n \leq \infty)$
 - “Doubles”
A catalog

1. $\delta \leq 2$ (L-W);
2. Locally finite and limits of such
 1. $C_n (n \leq \infty)$
 2. “Doubles”
A catalog

1. $\delta \leq 2$ (L-W);
2. Locally finite and limits of such
 - C_n ($n \leq \infty$)
 - “Doubles”
A catalog

1. $\delta \leq 2$ (L-W);
2. Locally finite and limits of such
 - C_n ($n \leq \infty$)
 - “Doubles”
 - Tree-like (r-tree of s-cliques: $r, s \leq \infty$)
A catalog

1. $\delta \leq 2$ (L-W);

2. Locally finite and limits of such
 - C_n ($n \leq \infty$)
 - “Doubles”
 - Tree-like (r-tree of s-cliques: $r, s \leq \infty$)

3. Fraïssé type
 - $\delta \leq d$;
 - Omit $(1, d)$-subspaces ($d \geq 3$);
 - Omit odd cycles up to order $2K + 1$;
 - Omit triangles of perimeter $\geq C$.

Some interactions in these constraints.
Exceptional $\Gamma_1 \rightarrow$ Exceptional Γ.
Exceptional $\Gamma_1 \rightarrow$ Exceptional Γ.

Difficulty: Γ_k
Exceptional $\Gamma_1 \rightarrow$ Exceptional Γ.

Difficulty: Γ_k

Homogeneous metric space; not necessarily with the graph metric, because of the parity condition.
Exceptional $\Gamma_1 \rightarrow$ Exceptional Γ.

Difficulty: Γ_k

Homogeneous metric space; not necessarily with the graph metric, because of the parity condition.

But (Γ_{k-1}, Γ_k) should be.

Extend the classification project?
Komjáth-Mekler-Pach 1988: Universal graphs omitting paths; or omitting cycles of odd length
Komjáth-Mekler-Pach 1988: Universal graphs omitting paths; or omitting cycles of odd length

Data: Finitely many constraints C (finite, connected “forbidden” graphs).
Universal countable C-free graph? ? Decidable ?
Existentially complete \mathcal{C}-free graphs. (Generalizes Fraïssé.)
Existentially complete \mathcal{C}-free graphs. (Generalizes Fraïssé.)

If the existentially complete countable graph is unique, then it is universal.

And there is an exact criterion for this in terms of the algebraic closure.
Forbid \mathcal{C}. What is $acl_\mathcal{C}(A)$?
Forbid \mathcal{C}. What is $acl_{\mathcal{C}}(A)$?

- Forbid C_4. Then for points u, v at distance 2, the “midpoint” is a definable function $f(u, v)$. Such points are in the “definable closure” of u, v.

Algebraic Closure
Forbid \mathcal{C}. What is $acl_{\mathcal{C}}(A)$?

- Forbid C_4. Then for points u, v at distance 2, the “midpoint” is a definable function $f(u, v)$. Such points are in the “definable closure” of u, v.

- Forbid a star S_k. Then for any u, the neighbors of u are “algebraic” over u: they lie in a u-definable finite set.
Theorem (CSS 1999)

Let \(C \) be a finite set of forbidden graphs, \(T \) the theory of the existentially complete \(C \)-free graphs. Then the following are equivalent.

1. \(T \) has a unique countable model
2. The algebraic closure operator is locally finite.
Theorem (CSS 1999)

Let \mathcal{C} be a finite set of forbidden graphs, T the theory of the existentially complete \mathcal{C}-free graphs. Then the following are equivalent.

1. T has a unique countable model
2. The algebraic closure operator is locally finite.

Proof.

\Rightarrow: General nonsense (Ryll-Nardzewski, Engeler, Svenonius)

\Leftarrow: Close analysis: over any finite algebraically closed set, the set of types is finite.
I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions
Conjectured by Menachem Kojman:

Theorem

If \mathcal{C} is closed under homomorphism (i.e., the image of a constraint in \mathcal{C} under graph homomorphism is \mathcal{C}-forbidden) then acl is degenerate and there is a universal \mathcal{C}-free graph.

Example. Odd cycles.
Conjectured by Menachem Kojman:

Theorem

If C is closed under homomorphism (i.e., the image of a constraint in C under graph homomorphism is C-forbidden) then acl is degenerate and there is a universal C-free graph.

Example. Odd cycles.

Theorem (Cherlin-Shi 1996)

For C a finite set of cycles the following are equivalent.

1. There is a universal C-free graph.
2. C consists of all odd cycles up to a fixed length.
Theorem (Cherlin-Shelah 2007)

For $\mathcal{C} = \{ T \}$ a single tree, the following are equivalent.

1. There is a universal \mathcal{C}-free graph.
2. The tree T is an extension of a path by at most one additional edge.
Theorem (Cherlin-Shelah 2007)

For $\mathcal{C} = \{ T \}$ a single tree, the following are equivalent.

1. There is a universal \mathcal{C}-free graph.
2. The tree T is an extension of a path by at most one additional edge.

(⇐ : Cherlin-Tallgren 2007, based on KMP)
...and trees

Theorem (Cherlin-Shelah 2007)

For $C = \{ T \}$ a single tree, the following are equivalent.

1. There is a universal C-free graph.
2. The tree T is an extension of a path by at most one additional edge.

(\iff: Cherlin-Tallgren 2007, based on KMP)

Shelah’s idea: Pruning

To prune a tree T: T' is obtained by removing all leaves.
Pruning Trees

Lemma

If there is a T-free universal graph G then there is a T'-universal graph G^*, consisting of the vertices of G of infinite degree.
Pruning Trees

Lemma

If there is a T-free universal graph G then there is a T'-universal graph G^*, consisting of the vertices of G of infinite degree.

Minimal trees: those which prune to a path or near-path. (15 cases).
In general: Remove a minimal block-leaf. (Or a downward-closed family.)

Conjectures
General Pruning

In general: Remove a minimal block-leaf. (Or a downward-closed family.)

Conjectures

Conjecture

If there is C-free universal graph, then C has complete blocks and a path-like structure, with very few exceptions.
General Pruning

In general: Remove a minimal block-leaf. (Or a downward-closed family.)

Conjectures

Conjecture

If there is C-free universal graph, then C has complete blocks and a path-like structure, with very few exceptions.

Conjecture

For a single connected constraint C, the problem of determining whether there is a universal C-free graph is algorithmically decidable.
Two Questions

- Is the generic triangle-free graph G_3 pseudofinite (i.e., are its properties shared by finite graphs)?

 “Alice’s Restaurant” extension properties
Two Questions

- Is the generic triangle-free graph G_3 pseudofinite (i.e., are its properties shared by finite graphs)?

 “Alice’s Restaurant” extension properties

Vershik: there is a random construction of G_3.
Two Questions

- Is the generic triangle-free graph G_3 pseudofinite (i.e., are its properties shared by finite graphs)?

 “Alice’s Restaurant” extension properties

Vershik: there is a random construction of G_3. Namely, build a graph on \mathbb{R} for which the extension properties are satisfied on open sets, and take a countable subgraph at random, with respect to a probability measure on \mathbb{R}.
Two Questions

- Is the generic triangle-free graph G_3 pseudofinite (i.e., are its properties shared by finite graphs)?

 “Alice’s Restaurant” extension properties

Vershik: there is a random construction of G_3. Namely, build a graph on \mathbb{R} for which the extension properties are satisfied on open sets, and take a countable subgraph at random, with respect to a probability measure on \mathbb{R}.

- The Hairy Ball Problem Let K be a finite graph consisting of a complete graph together with a single finite path attached to each vertex. Is there a universal K-free graph?
A Concrete Example

The Bouquet $K_5 \land K_5$

$(K_5 + K_5)$ - free

(Algebraic closure running along the mid-line)