1 Metrically Homogeneous Graphs

The Classification Problem

Γ connected, with graph metric \(d \).

Γ is metrically homogeneous if the metric space \((Γ, d)\) is (ultra)homogeneous.

(Cameron 1998) Classify the countable metrically homogeneous graphs.

Contexts: infinite distance transitive graphs, homogeneous graphs, homogeneous metric spaces

1.1 Finite Distance Transitive Graphs

Finite Distance Transitive Graphs

\(\text{distance transitivity} = \text{metric homogeneity for pairs} \)

Smith’s Theorem:

- Imprimitive case: Bipartite or Antipodal (or a cycle)
- Antipodal: maximal distance \(δ \)
- Reduction to the primitive case (halving, folding)

1.2 Homogeneous Graphs

Classification of Homogeneous Graphs

Metrically homogeneous diameter \(\leq 2 = \text{Homogeneous} \).

(The metric is the graph)

Fraïssé Constructions: Henson graphs \(H_n, H^c_n \)

Lachlan-Woodrow 1980 The homogeneous graphs are

- \(m \cdot K_n \) and its complement;
- The pentagon and the line graph of \(K_{3,3} \) (3 x 3 grid)
- The Henson graphs and their complements (including the Rado graph)

Method: Induction on Amalgamation Classes

Claim: If \(A \) is an amalgamation class of finite graphs containing all graphs of order 3, \(I_∞ \), and \(K_n \), then \(A \) contains every \(K_{n+1} \)-free graph.

Proof by induction on the order \(|A|\) where \(A \) is \(K_{n+1} \)-free

This doesn’t work directly, but a stronger statement can be proved by induction.

Induction via Amalgamation

\(A' \) is the set of finite graphs \(G \) such that any 1-point extension of \(G \) lies in \(A \).

Inductive claim: Every finite graph belongs to \(A' \).

Not making much progress yet, but . . .

1-complete: complete. 0-complete: co-complete.

\(A^p \) is the set of finite graphs \(G \) such that any finite \(p \)-complete graph extension of \(G \) belongs to \(A \).
\[\mathcal{A}^p \subseteq \mathcal{A}' \]
\[\mathcal{A}^p \text{ is an amalgamation class} \]

Target: The generators of \(\mathcal{A} \) all lie in one \(\mathcal{A}^p \), for some \(p \).

Lachlan’s Ramsey Argument

How to get into \(\mathcal{A}^p \):

1-point extensions of a large direct sum \(\oplus A_i \)

\[\implies \]

\(p \)-extensions of one of the \(A_i \).

If \(A_i \) is itself a direct sum of generators, we get a fixed value of \(p \).

1.3 Homogeneous Metric Spaces

Homogeneous Metric Spaces

- Rational-valued Urysohn space.
- \(\mathbb{Z} \)-valued Urysohn space is a metrically homogeneous space.
- Or \(\mathbb{Z} \cap [0, \delta] \)-valued.
- \(S \)-valued: Van Thé AMS Memoir 2010

A metrically homogeneous graph of diameter \(\delta \) is:

A \(\mathbb{Z} \)-valued homogeneous metric space with bound \(\delta \), and all triangles \((1, i, i + 1)\) allowed (connectivity).

2 A Catalog

2.1 Special Cases

Special Cases

- Diameter \(\leq 2 \) (Lachlan/Woodrow 1980)
- Locally finite (Cameron, Macpherson)
- \(\Gamma_1 \)-exceptional
- Imprimitive (Smith’s Theorem)

The Locally Finite Case

Finite of diameter at least 3 and vertex degree at least 3: Antipodal double covers of certain finite homogeneous graphs (Cameron 1980)

Infinite, Locally Finite: Tree-like \(T_{r,s} \) (Macpherson 1982)

Construction:
The graphs $T_{r,s}$

The trees $T(r,s)$: Alternately r-branching and s-branching.
Bipartite, metrically homogeneous if the two halves of the partition are kept fixed.

The graph obtained by “halving” on the r-branching side is $T_{r,s}$.
Each vertex lies at the center of a bouquet of r s-cliques.

Another point of view: the graph on the neighbors of a fixed vertex:
$\Gamma_1 : r \cdot K_{s-1}$.

From this point of view, we may also take r or s to be infinite!

Γ_i

$\Gamma_i = \Gamma_i(v)$: Distance i, with the induced metric.

Remark 1. If distance 1 occurs, then the connected components of Γ_i are metrically homogeneous.

In particular Γ_1 is a homogeneous graph.

Exceptional Cases: finite, imprimitive, or H_n^∞.
The finite case is Cameron+Macpherson, the imprimitive case leads back to $T_{r,s}$
with r or s infinite, and H_n^∞ does not occur for $n > 2$ (Cherlin 2011)

In other words, the nonexceptional cases are

- I_∞
- Henson graphs H_n including Rado’s graph.

Imprimitive Graphs

“Smith’s Theorem” (Amato/Macpherson, Cherlin):

Part I: Bipartite or antipodal, and in the antipodal case with classes of order 2 and
the metric antipodal law for the pairing:

$$d(x,y') = \delta - d(x,y)$$
Hence no triangles of diameter greater than 2δ:
\[d(x, z) \leq d(x, y') + d(y', z) = 2\delta - d(x, y) - d(x, z) \]

Part II: The bipartite case reduces by halving to a case in which Γ_1 is the Rado graph.
On the other hand, the antipodal case does not reduce: while distance transitivity is inherited after “folding,” metric homogeneity is not.
There is also a bipartite antipodal case.

2.2 Generic Cases

Some Amalgamation Classes
Within \mathcal{A}^δ: finite integral metric spaces with bound δ:
- $\mathcal{A}^\delta_{K,\text{even}}$: No odd cycles below $2K + 1$.
- $\mathcal{A}^\delta_{C,\text{bounded}}$: Perimeter at most C.
- $(1, \delta)$-constraints.

The first two classes are given (implicitly) in Komjath/Mekler/Pach 1988 as examples of constraints admitting a universal graph, which is constructed by amalgamation.
The last is a generalization of Henson’s construction. A $(1, \delta)$-space is a space in which only the distances 1 and δ occur (a vacuous condition if $\delta = 2$).
Any set S of $(1, \delta)$-constraints may be imposed.
Mixing: $\mathcal{A}^\delta_{K,C:S}$

Expectations ca. 2008
- The generic case is $\mathcal{A}^\delta_{\Delta:S}$ with Δ some set of forbidden triangles …
- and Δ is a mix of parity constraints K and size constraints C.
Not quite …

Variations on a theme
More examples
- $C = (C_0, C_1)$: C_0 controls large even parity, C_1 controls large odd parity
- $K = (K_1, K_2)$: K_1 controls odd cycles at the bottom, K_2 controls odd cycles midrange.
 - (i, j, k): $P = i + j + k$
 - For P odd, forbid
 \[P < 2K_1 + 1 \] \[P > 2K_2 + i \]
Triangle Constraints

Theorem 1. If A is a geodesic amalgamation class of finite integral metric spaces with diameter δ, determined by triangles, then A is one of the classes $A^\delta_{K,C,S}$

with $K = (K_1, K_2)$ and $C = (C_0, C_1)$.

But not all such classes work

Definability in Presburger Arithmetic

The classes $A^\delta_{K,C}$ are uniformly definable in Presburger arithmetic from the parameters $K_1, K_2, C_0, C_1, \delta$.

The k-amalgamation property is amalgamation for diagrams of order at most k.

With constraints of order 3, one expects k-amalgamation for some low k to imply amalgamation. (In the event, $k = 5$.)

Observation 1. k-amalgamation is a definable property in Presburger arithmetic for the classes $A^\delta_{K,C}$.

Therefore it should be expressible using inequalities and congruence conditions on linear combinations of the parameters.

Acceptable Parameters

- $\delta \geq 3$.
- $1 \leq K_1 \leq K_2 \leq \delta$ or $K_1 = \infty$ and $K_2 = 0$;
- $2\delta + 1 \leq C_{\min} < C_{\max} \leq 3\delta + 2$, with one even and one odd.

Conditions for amalgamation (or 5-amalgamation):

Conditions on K, C

- If $K_1 = \infty$:

 $$K_2 = 0, C_1 = 2\delta + 1,$$

- If $K_1 < \infty$ and $C \leq 2\delta + K_1$:

 $$C = 2K_1 + 2K_2 + 1, K_1 + K_2 \geq \delta, \text{ and } K_1 + 2K_2 \leq 2\delta - 1$$

 If $C' > C + 1$ then $K_1 = K_2$ and $3K_2 = 2\delta - 1$.

5
• If $K_1 < \infty$, and $C > 2\delta + K_1$:

$K_1 + 2K_2 \geq 2\delta - 1$ and $3K_2 \geq 2\delta$.
If $K_1 + 2K_2 = 2\delta - 1$ then $C \geq 2\delta + K_1 + 2$.
If $C' > C + 1$ then $C \geq 2\delta + K_2$.

Notes:
$C = \min(C_0, C_1), C' = \max(C_0, C_1)$
$C' > C + 1$ means we need both C_0 and C_1.

Conditions on \mathcal{S}

• If $K_1 = \infty$:

\mathcal{S} is \begin{align*}
\text{empty} & \quad \text{if } \delta \text{ is odd, or } C_0 \leq 3\delta \\
\text{a set of } \delta\text{-cliques} & \quad \text{if } \delta \text{ is even, } C_0 = 3\delta + 2
\end{align*}

• If $K_1 < \infty$ and $C \leq 2\delta + K_1$:

If $K_1 = 1$ then \mathcal{S} is empty.

• If $K_1 < \infty$, and $C > 2\delta + K_1$:

If $K_2 = \delta$ then \mathcal{S} cannot contain a triangle of type $(1, \delta, \delta)$.
If $K_1 = \delta$ then \mathcal{S} is empty.
If $C = 2\delta + 2$, then \mathcal{S} is empty.

2.3 Proofs

Antipodal Variations

• $\mathcal{A}_n^\delta = \mathcal{A}_{1,\delta-1;2\delta+1;2\delta+1;0}$ is the set of finite integral metric spaces in which no triangle has perimeter greater than 2δ.

• $\mathcal{A}_{a,n}^\delta$ is the subset of \mathcal{A}_n^δ containing no subspace of the form $I_2^{\delta-1}[K_k, K_{\ell}]$ with $k + \ell = n$; here $I_2^{\delta-1}$ denotes a pair of vertices at distance $\delta - 1$ and $I_2^{\delta-1}[K_k, K_{\ell}]$ stands for the corresponding composition, namely a graph of the form $K_k \cup K_{\ell}$ with K_k, K_{ℓ} cliques (at distance 1), and $d(x, y) = \delta - 1$ for $x \in K_k, y \in K_{\ell}$.
In particular, with $k = n, \ell = 0$, this means K_n does not occur.
Necessity: Amalgamation diagrams

Lemma 2. Let A be an amalgamation class of diameter δ determined by triangle constraints with associated parameters K_1, K_2, C, C'. Then

$$C > \min(2\delta + K_1, 2K_1 + 2K_2)$$

We suppose

$$C \leq 2\delta + K_1$$

and we show that

$$C > 2K_1 + 2K_2$$

Set $j = \lfloor \frac{C - K_1}{2} \rfloor$, and $i = (C - K_1) - j$. Then $1 < j \leq i \leq \delta$.

$C > \min(2\delta + K_1, 2K_1 + 2K_2)$

In the following amalgamation, vertices u_1, u_2 force $d(a_1, a_2) = K_1$ and $|a_1a_2c| = C$:

![Diagram](image)

\[d(c, u_1) = d(c, u_2) = i - 1\]

So omit ca_2u_1 or ca_2u_2, with $P \geq 2K_1 + 1, \ldots$

Proofs of amalgamation

Three amalgamation strategies:

- $d^-(a, b) = \max(d(a, x) - d(a, b))$
- $d^+(a, b) = \inf d(a, x) + d(x, b)$
- $\tilde{d}(a, b) = \inf[C - (d(a, x) + d(a, b))]$
Amalgamation for $A_{K,C}^\delta$

- If $C \leq 2\delta + K_1$:
 - If $d^-(a_1, a_2) \geq K_1$ then take $d(a_1, a_2) = d^-(a_1, a_2)$.
 - Otherwise:
 - If $C' = C + 1$ then:
 * If $d^+(a_1, a_2) \leq K_2$ then take $d(a_1, a_2) = \min(d^+(a_1, a_2), \bar{d}(a_1, a_2))$
 * If $d^-(a_1, a_2) < K_1$ and $K_2 < d^+(a_1, a_2)$ then take $d(a_1, a_2) = \bar{d}(a_1, a_2)$ if $\bar{d}(a_1, a_2) \leq K_2$ and $d(a_1, a_2) = K_1$ otherwise.
 - If $C' > C + 1$ then:
 * If $d^+(a_1, a_2) < K_2$ then take $d(a_1, a_2) = d^+(a_1, a_2)$;
 * If $d^-(a_1, a_2) < K_2 \leq d^+(a_1, a_2)$ then take
 \[
 d(a_1, a_2) = \begin{cases}
 K_2 - 1 & \text{if there is } v \in A_0 \text{ with } d(a_1, v) = d(a_2, v) = \delta \\
 K_2 & \text{otherwise}
 \end{cases}
 \]

- If $C > 2\delta + K_1$:
 - If $C' = C + 1$ then:
 * If $d^+(a_1, a_2) \leq K_1$ then take $d(a_1, a_2) = \min(d^+(a_1, a_2), \bar{d}(a_1, a_2))$;
 * If $d^+(a_1, a_2) > K_1$ then take
 \[
 d(a_1, a_2) = \begin{cases}
 K_1 + 1 & \text{if there is } v \in A_0 \text{ with } \\
 d(a_1, v) = d(a_2, v) = \delta, \\
 \text{and } K_1 + 2K_2 = 2\delta - 1 \\
 K_1 & \text{otherwise}
 \end{cases}
 \]
 - If $C' > C + 1$ then:
 * If $d^+(a_1, a_2) < K_2$ then take $d(a_1, a_2) = d^+(a_1, a_2)$;
 * If $d^+(a_1, a_2) \geq K_2$ then take $d(a_1, a_2) = \min(K_2, C - 2\delta - 1)$.

3 Conclusion

Completeness?

Good points:

- All cases with exceptional Γ_1
• $\delta \leq 3$, probably (Amato/Cherlin/Macpherson)
• Exact as far as triangle constraints are concerned
• Smith’s Theorem

Weak points
• Smith’s Theorem
 – Bipartite to be completed inductively
 – Antipodal description may be incomplete
• Induction to Γ_i is not always available

In fact, for antipodal graphs omitting K_n, triangles and $(1, \delta)$-constraints do not suffice.
That class was found on an ad hoc basis. (And is invisible in diameter 3.)

Toward a classification theorem

Strategy?

• (Step 0) Prepare diameter 4 and Γ_2 generally? (Prudent)
• (Step 1) Characterize triangles occurring in amalgamation classes
• (Step 2) Show that if the triangle constraints are as expected, then Γ_i has the expected constraints.
• (Step 3) Assuming the first two conditions, characterize Γ.

(Works in diameter 3)
... With Lachlan’s Ramsey method in reserve.

Furthermore

No need to wait for a classification:
• Ramsey theory for these homogeneous metric spaces
• Topological dynamics
• Other aspects of the automorphism group (normal subgroups, subgroups of small index)