Structure / Nonstructure in Finite Model Theory

Gregory Cherlin

ASL Annual Meeting
UCB March 25 (2:40–3:10)
in fact, my friend, it’s not safe to make thin cuts; it’s safer to go along cutting through the middle of things, and that way one will be more likely to encounter real classes. ... whenever there is a class of anything, it is necessarily also a part of whatever it is called a class of, but it is not at all necessary that a part is a class.

Decision Problems with finite constraints

Tameness problems for classes of finite structures
Tameness problems for classes of finite structures

- \mathcal{Q}: a class of finite structures with an embedding relation \leq
- \mathcal{P}: a property of subsets of \mathcal{Q}
- $C \subseteq \mathcal{Q}$ a set of constraints
- $\mathcal{Q}_C : \{q \in \mathcal{Q} : c \nleq q \ (c \in C)\}$
Tameness problems for classes of finite structures

- \mathcal{Q}: a class of finite structures with an embedding relation \leq
- \mathcal{P}: a property of subsets of \mathcal{Q}
- $C \subseteq \mathcal{Q}$ a set of constraints
- $\mathcal{Q}_C : \{ q \in \mathcal{Q} : c \not\leq q \ (c \in C) \}$

Problem $(\mathcal{Q}, \mathcal{P}, C)$: $\mathcal{P}(\mathcal{Q}_C)$?
Decision Problems with finite constraints

Tameness problems for classes of finite structures

- \mathcal{Q}: a class of finite structures with an embedding relation \leq
- \mathcal{P}: a property of subsets of \mathcal{Q}
- $C \subseteq \mathcal{Q}$ a set of constraints
- $\mathcal{Q}_C : \{q \in \mathcal{Q} : c \not\leq q \ (c \in C)\}$

Problem $(\mathcal{Q}, \mathcal{P}, C)$: $\mathcal{P}(\mathcal{Q}_C)$?

Problem $(\mathcal{Q}, \mathcal{P})$: $C \mapsto$ answer (for C finite).
Decision Problems with finite constraints

Tameness problems for classes of finite structures

- \(\mathcal{Q} \): a class of finite structures with an embedding relation \(\leq \)
- \(\mathcal{P} \): a property of subsets of \(\mathcal{Q} \)
- \(C \subseteq \mathcal{Q} \) a set of constraints
- \(\mathcal{Q}_C : \{ q \in \mathcal{Q} : c \not\leq q \ (c \in C) \} \)

Problem \((\mathcal{Q}, \mathcal{P}, C)\): \(\mathcal{P}(\mathcal{Q}_C) \)?

Problem \((\mathcal{Q}, \mathcal{P})\): \(C \mapsto \) answer (for \(C \) finite).

Two cases of interest:
Decision Problems with finite constraints

Tameness problems for classes of finite structures

- \mathcal{Q}: a class of finite structures with an embedding relation \leq
- \mathcal{P}: a property of subsets of \mathcal{Q}
- $C \subseteq \mathcal{Q}$ a set of constraints
- $\mathcal{Q}_C = \{q \in \mathcal{Q} : c \not\leq q \ (c \in C)\}$

Problem $(\mathcal{Q}, \mathcal{P}, C)$: $\mathcal{P}(\mathcal{Q}_C)$?

Problem $(\mathcal{Q}, \mathcal{P})$: $C \mapsto$ answer (for C finite).

Two cases of interest:

- $\mathcal{P} = WQO$: No infinite antichain
Decision Problems with finite constraints

Tameness problems for classes of finite structures

- \(\mathcal{Q} \): a class of finite structures with an embedding relation \(\leq \)
- \(\mathcal{P} \): a property of subsets of \(\mathcal{Q} \)
- \(C \subseteq \mathcal{Q} \): a set of constraints
- \(\mathcal{Q}_C : \{ q \in \mathcal{Q} : c \not\leq q \ (c \in C) \} \)

Problem \((\mathcal{Q}, \mathcal{P}, C)\): \(\mathcal{P}(\mathcal{Q}_C) \)?

Problem \((\mathcal{Q}, \mathcal{P})\): \(C \mapsto \) answer (for \(C \) finite).

Two cases of interest:
- \(\mathcal{P} = \text{WQO} \): No infinite antichain
- *Universality*: The class has a universal countable limit.
I WQO
 • Worst case scenario
 • A Finiteness Theorem
 • Concrete Cases

II Universality
 • Beyond the pale
 • Within the pale
WQO

Universality
Theorem (Harvey Friedman)

There is a computable well-founded partial ordering \leq^* of \mathbb{N} for which the set

$$\{ n \in \mathbb{N} : (\mathbb{N}, \leq^*)_n \text{ is WQO} \}$$

is complete Π^1_1.
Theorem (Harvey Friedman)

There is a computable well-founded partial ordering \leq^* of \mathbb{N} for which the set

$$\{ n \in \mathbb{N} : (\mathbb{N}, \leq^*)_n \text{ is WQO} \}$$

is complete Π^1_1.

Construction: (\mathbb{N}, \leq_1) computably linearly ordered so that

$$\{ n \in \mathbb{N} : (\mathbb{N}, \leq_1)_n \text{ is WO} \}$$

is complete Π^1_1.

WQO
Theorem (Harvey Friedman)

There is a computable well-founded partial ordering \leq^* of \mathbb{N} for which the set

$$\{ n \in \mathbb{N} : (\mathbb{N}, \leq^*)_n \text{ is WQO} \}$$

is complete Π_1^1.

Construction: (\mathbb{N}, \leq_1) computably linearly ordered so that

$$\{ n \in \mathbb{N} : (\mathbb{N}, \leq_1)_n \text{ is WO} \}$$

is complete Π_1^1.

$\leq^* = \leq \cap \leq_1$
Theorem (Harvey Friedman)

There is a computable well-founded partial ordering \leq^* of \mathbb{N} for which the set

$$\{ n \in \mathbb{N} : (\mathbb{N}, \leq^*)_n \text{ is WQO} \}$$

is complete Π^1_1.

Construction: (\mathbb{N}, \leq_1) computably linearly ordered so that

$$\{ n \in \mathbb{N} : (\mathbb{N}, \leq_1)_n \text{ is WO} \}$$

is complete Π^1_1.

$\leq^* = \leq \cap \leq_1$ — Then $(\mathbb{N}, \leq^*)_n$ is WQO iff $(\mathbb{N}, \leq_1)_n$ is WO
A Finiteness Theorem

Theorem (CL2000)

Let Q be a well-founded quasiorder and k fixed. Then there is a finite set Λ_k of infinite antichains such that:

$\forall C \subseteq Q \text{ If } C \subseteq Q, |C| \leq k, \text{ and } Q_C \text{ is not WQO, then there is an antichain } l \in \Lambda_k \text{ with } l \subseteq^* Q_C.$
Theorem (CL2000)

Let Q be a well-founded quasiorder and k fixed. Then there is a finite set Λ_k of infinite antichains such that:

\[
\forall C \subseteq Q \text{ if } C \subseteq Q, |C| \leq k, \text{ and } Q_C \text{ is not WQO,}
\]

then there is an antichain $I \in \Lambda_k$ with $I \subseteq^* Q_C$.

Idea (Nash-Williams): Use I such that $Q \ll^{<I} = \{q : q \leq \text{almost all } a \in I\}$ is WQO.
A Finiteness Theorem

Theorem (CL2000)

Let Q be a well-founded quasiorder and k fixed. Then there is a finite set Λ_k of infinite antichains such that:

$$\forall C \subseteq Q \text{ if } C \subseteq Q, \ |C| \leq k, \text{ and } Q_C \text{ is not WQO, then there is an antichain } I \in \Lambda_k \text{ with } I \subseteq^* Q_C.$$

Idea (Nash-Williams): Use I such that $Q << I = \{q : q \leq \text{ almost all } a \in I\}$ is WQO.

Construction:

$$\Lambda_{k+1} = \Lambda_k \cup \bigcup_{l_1, \ldots, l_{k+1} \in \Lambda_k} \{I_C : \text{critical } C \text{ in } \prod_i Q << l_i\}$$
Topology
Open sets Q_C with C finite.
Points $Q^<<l$.
Topology

Open sets Q_C with C finite.
Points $Q^{<<I}$.

Favorable Case:
- Isolated points are dense;
- Isolated points are effectively given ($Q^{<<I}$ decidable).
Open sets \mathcal{Q}_C with C finite.
Points $\mathcal{Q}^{<<I}$.

Favorable Case:

- Isolated points are dense;
- Isolated points are effectively given ($\mathcal{Q}^{<<I}$ decidable).

Question: Does this happen in the cases of interest?
Open sets Q_c with C finite.
Points $Q^{<<I}$.

Favorable Case:
- Isolated points are dense;
- Isolated points are effectively given ($Q^{<<I}$ decidable).

Question: Does this happen in the cases of interest? (Yes in one simple case: vertex colored paths)
Cases of Interest: Graphs

- Graphs with forbidden subgraphs:
Cases of Interest: Graphs

- Graphs with forbidden subgraphs:

 G. Ding 1992: $l_0 =$ cycles, $l_1 =$ bridges

 \[\Lambda = \{ l_0 \} \]

 the unique isolated point.
Cases of Interest: Graphs

- Graphs with forbidden subgraphs:
 G. Ding 1992: $l_0 = \text{cycles}$, $l_1 = \text{bridges}$

$$\Lambda = \{l_0\}$$

the unique isolated point.

- Graphs with forbidden induced subgraphs:
 Unclear . . .
Cases of Interest: Tournaments

- Tournaments:
 \(\mathcal{A}_1 = \{ l_1, l_2 \} \):
 \[l_1 = \{ N_{1,n,D} : n \geq 7 \}, \quad l_2 = \{ N_{2,2n+1,H} : n \geq 4 \} \].

- \(N_{k,n} \): Linear of order \(n \), but with successors and edges \((i, j) \) with \(i \equiv j \mod k \) reversed.
- \(N_{k,kn+1,D} \) or \(N_{k,kn,H} \): “mark” the ends (1 or 2 marker vertices)
Cases of Interest: Tournaments

- Tournaments:
 \(\Lambda_1 = \{ l_1, l_2 \}: l_1 = \{ N_{1,n,D} : n \geq 7 \}, l_2 = \{ N_{2,2n+1,H} : n \geq 4 \} \).

 \(N_k,n \): Linear of order \(n \), but with successors and edges \((i, j)\) with \(i \equiv j \mod k \) reversed.

 \(N_k, kn+1,D \) or \(N_k, kn,H \): “mark” the ends (1 or 2 marker vertices)

Theorem (Latka)

A set of finite tournaments determined by one “forbidden tournament” is wqo iff the infinite antichains \(l_1, l_2 \) are incompatible with the constraint.

Proof: tree decompositions and Kruskal’s Lemma.
Cases of Interest: Tournaments

- Tournaments:
 $\Lambda_1 = \{l_1, l_2\}: l_1 = \{N_{1,n,D} : n \geq 7\}, l_2 = \{N_{2,2n+1,H} : n \geq 4\}$.

Theorem (Latka)

A set of finite tournaments determined by one "forbidden tournament" is wqo iff the infinite antichains l_1, l_2 are incompatible with the constraint.

Proof: tree decompositions and Kruskal’s Lemma.

Corollary

The WQO problem for classes of tournaments determined by at most two forbidden tournaments is (p-time) decidable.

Remark. No actual bound on the degree of the polynomial...
Cases of Interest: Pattern Classes

- Pattern Classes of Permutations

Theorem (Knuth, 1969)

The permutations which can be sorted using a stack are those omitting the pattern \((231)\) and their number is given by the Catalan numbers (cf. Macmahon 1915).
Cases of Interest: Pattern Classes

- Pattern Classes of Permutations

Theorem (Knuth, 1969)

The permutations which can be sorted using a stack are those omitting the pattern (231) and their number is given by the Catalan numbers (cf. Macmahon 1915).

Themes:
- Characterize permutations sortable by variations on stacks
- Algorithmic problems for such classes of permutations
- Rates of growth for the the numbers of such permutations
- WQO (Antichains)
Tournaments: Infinite Antichains

An antichain:
Tournaments: Infinite Antichains

An antichain:

$|\Lambda_1| = 3$ [Atkinson/Murphy/Ruškuc 2002]
Tournaments: Infinite Antichains

An antichain:

\[
\Lambda_1 = 3 \quad \text{[Atkinson/Murphy/Ruškuc 2002]}
\]

References:

N. Ruškuc, “Decidability questions for pattern avoidance classes of permutations,” in *Third International Conference on Permutation Patterns, Gainesville, Fla.*, 2005

The Main Question

Once more:

\(Q\): Finite relational structures with signature \(\sigma\) (with symmetry conditions).

- Isolated points are dense?
- Isolated points are effectively given (\(Q^{<<l}\) decidable)?
1. WQO

2. Universality
Universality

(\mathcal{Q}, \leq): \textit{weak} substructure.

Property \mathbb{P}: existence of a universal countable \textit{limit}
Universality

\((\mathcal{Q}, \leq)\): weak substructure.

Property \(P\): existence of a universal countable limit

(?) When does a finite set of forbidden structures allow a universal structure?
Universality

(Q, \leq): weak substructure. Property \mathbb{P}: existence of a universal countable limit

(?) When does a finite set of forbidden structures allow a universal structure?

Examples (Graphs)

- Forbid K_n (Henson via Fraïssé)
- C a set of cycles: *forbid odd cycles up to some fixed size* (CSS, 1999)
Universality

\((Q, \leq)\): weak substructure.
Property \(\mathbb{P}\): existence of a universal countable limit

(?) When does a finite set of forbidden structures allow a universal structure?

Theorem

With forbidden induced subgraphs this question is undecidable

(which is to be expected)
(Q, ≤): weak substructure.
Property P: existence of a universal countable limit

When does a finite set of forbidden structures allow a universal structure?

Theorem

With forbidden induced subgraphs this question is undecidable

(which is to be expected) ;

Theorem

with forbidden weak substructures, there is a good theory.
Universality

(Q, \leq): weak substructure.

Property P: existence of a universal countable limit $(?)$ When does a finite set of forbidden structures allow a universal structure?

Theorem

With forbidden induced subgraphs this question is undecidable;

Theorem

with forbidden weak substructures, there is a good theory.

... why the difference? ...
Undecidability

Tiling Problems

0-1 tilings
Tiling Problems

0-1 tilings

Structurally, these are models of the form \((\mathbb{Z}, S, R)\) with \(S\) the successor function and \(R\) a binary relation.
Tiling Problems

0-1 tilings

Structurally, these are models of the form \((\mathbb{Z}, S, R)\) with \(S\) the successor function and \(R\) a binary relation.

When there is a tiling then some further decoration of \(\mathbb{Z}^2\) gives \(2^{\aleph_0}\) countable variations, and no universal structure.
Tiling Problems

0-1 tilings

Structurally, these are models of the form (\mathbb{Z}, S, R) with S the successor function and R a binary relation.

When there is a tiling then some further decoration of \mathbb{Z}^2 gives 2^{\aleph_0} countable variations, and no universal structure.

When there is no tiling then there is a bound on the sizes of connected components, and there is a universal homogeneous structure.
Undecidability

Tiling Problems

0-1 tilings

Structurally, these are models of the form \((\mathbb{Z}, S, R)\) with \(S\) the successor function and \(R\) a binary relation.

When there is a tiling then some further decoration of \(\mathbb{Z}^2\) gives \(2^{\aleph_0}\) countable variations, and no universal structure.

When there is no tiling then there is a bound on the sizes of connected components, and there is a universal homogeneous structure.

To forbid a pattern places a condition on induced subgraphs.
Algebraic Closure

$\text{acl}_C(A)$: e.g., if you bound the vertex degree by forbidding a star, then the algebraic closure of a point is its connected component.
Algebraic Closure

$\text{acl}_C(A)$: e.g., if you bound the vertex degree by forbidding a star, then the algebraic closure of a point is its connected component.

Theorem

If the algebraic closure operator is locally finite then the model completion of the theory of C-free graphs is \aleph_0-categorical (and its model is universal).
Other tameness conditions
Other tameness conditions

- Number of models
Other tameness conditions

- Number of models
- **Stability and its kin (for the associated theory).**

Question

Is stability (and so on) a decidable property, as a function of the constraint set C? Is this combinatorially interesting (or robust) at the finite level?