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Abstract. On metrically homogeneous graphs.

1. The Problem

Definition 1.1. A connected graph is metrically homogeneous iff when considered
as a metric space in the graph metric, it is homogeneous.

Example 1. An n-cycle; a regular tree.

Remark 1.2. A homogeneous metric space is derived from a metrically homogeneous
graph iff the following hold.

• The metric is Z-valued.
• If the distance δ occurs, then a geodesic path of length δ occurs.

Remark 1.3. If Γ is a bipartite graph which is homogeneous as a metric space with
bipartition, then each part of Γ is also a metrically homogeneous graph with edge
relation d(x, y) = 2.

Lemma 1.4 (Macpherson). Let Tr,s be an s-regular tree of r-cliques. Then Tr,s is
metrically homogeneous.

Proof. Let T (r, s) be an (r, s)-regular bipartitioned tree. Then T (r, s) is homogeneous
as a metric space with bipartition. To see this, we have to check that the convex
closure of a finite set can be computed from the metric structure. For example, if
v1, v2, v3 are points at distances d1, d2, d3 from a common center v, then the perimeter
of the triangle (v1, v2, v3) is 2(d1+d2+d3), so the metric information gives us d1, d2, d3
and we can locate the center.

The induced metrically homogeneous graphs on the parts are Tr,s and Ts,r. �

Remark 1.5.
1. If G is a connected graph of diameter at most 2, then G is metrically homoge-

neous iff G is homogeneous.
2. If G is metrically homogeneous and v ∈ G, then the connected components

of the induced graph ∆i(v) are metrically homogeneous. In particular ∆1(v) is a
homogeneous graph, hence finite, imprimitive, or (up to complementation) a Henson
graph.
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Problem ([Cam98, Che11]). Classify the metrically homogeneous graphs.

2. A catalog

The finite metrically homogeneous graphs were classified by Cameron (1977) as
follows.

• The finite homogeneous graphs;
• The cycles;
• In diameter 3: the antipodal double of an independent set, a 5-cycle, or
E(K3,3).

Conjecture 1. The metrically homogeneous graphs are the following.

• Connected homogeneous graphs (δ ≤ 2).
• Finite antipodal graphs of diameter 3
• Tree-like graphs Tr,s (Γ1 is finite or imprimitive, or r = 2, s =∞)
• Komjáth-Mekler-Pach/Henson graphs Γδ)K,C;H)—to be explained
• One further variation Aδap,n

3. The Henson construction

A clique (or simplex) is a set of vertices at mutual distance 1. A (1, δ) space is a
set of vertices at distances 1 or δ.

If δ ≥ 3 is the diameter, and H is a set of (1, δ)-spaces, we denote by AδH the class
of H-free metric spaces of diameter δ.

Lemma 3.1. AδH is an amalgamation class.

More precisely, the range of possible values r for d(u, v) over the base A is d− ≤
r ≤ d+ with

d− = max(i− j | i = d(u, x), j = d(x, v))

d+ = min(i+ j | i = d(u, x), j = d(x, v))

Here d− < δ and d+ > 1 so the values 1, δ may be avoided.

4. The Komjáth-Mekler-Pach construction

[KMP88]: There are countable universal C-free graphs where C consists of

• All odd cycles with length below some bound 2K + 1; or
• All cycles of girth at length C

We will deal with the perimeters of triangles rather than the lengths of cycles.
We define the following classes of triangles depending on four numerical parameters
K1, K2, C0, C1.
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• Even perimeter at least C0;
• Odd perimeter at least C1;
• Odd perimeter below 2K1 + 1;
• Odd perimeter above 2(K2 + i) where i is an edge length.

Definition 4.1.
With K = (K1, K2) and C = (C0, C1), AδK,C is the class of finite integral metric

spaces of diameter at most δ, omitting the triangles of type (K,C).
When AδK,C is an amalgamation class, then ΓδK,C is the associated metrically ho-

mogeneous graph. We call this KMP -type.

Proposition 4.2. If a non-exceptional metrically homogeneous graph corresponds to
an amalgamation class given by triangles, then it is a KMP -type graph.

We may also pass to AδK,C;H by combining KMP and Henson constraints, under
mild conditions on H.

But we have not yet addressed the following.

Question 1. What conditions on δ, K, C correspond to having an amalgamation
class?

Some a priori considerations: the property of amalgamation can be stratified by
the size of the amalgamation diagram. Let Ak denote the amalgamation property
up to size k.

Lemma 4.3. For each k, there is a set of linear inequalities and congruences on the
parameters δ,K,C which corresponds to the property Ak.

Proof. Note that the class of forbidden triangles associated with δ,K,C is a uniformly
definable family of relations in Presburger arithmetic, and hence Ak is a definable
property in Presburger arithmetic. Apply quantifier elimination. �

Corollary 4.4. The following are equivalent.

• The amalgamation property for AδK,C is equivalent to Ak for some fixed k;

• The amalgamation property for AδK,C is equivalent to a finite combination of
linear inequalities and congruences on the parameters.

We now exhibit such a set of conditions.
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Amalgamation

δ ≥ 2; 1 ≤ K1 ≤ K2 ≤ δ or K1 =∞, K2 = 0;
C0 even, C1 odd; 2δ + 1 ≤ C0, C1 ≤ 3δ + 2

and

(I) K1 =∞ and K2 = 0, C1 = 2δ + 1; if δ = 2 then C ′ = 8;
or

(II) K1 <∞ and C ≤ 2δ +K1, and
• δ ≥ 3;
• C = 2K1 + 2K2 + 1;
• K1 +K2 ≥ δ;
• K1 + 2K2 ≤ 2δ − 1

(IIA) C ′ = C + 1 or
(IIB) C ′ > C + 1, K1 = K2, and 3K2 = 2δ − 1;

or
(III) K1 <∞ and C > 2δ +K1, and

• If δ = 2 then K2 = 2;
• K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ;
• If K1 + 2K2 = 2δ − 1 then C ≥ 2δ +K1 + 2;
• If C ′ > C + 1 then C ≥ 2δ +K2.

Method of proof: in one direction, give an explicit amalgamation procedure. In
the other direction, give many explicit amalgamation arguments, involving diagrams
of order 4 or 5.

As a corollary: amalgamation is equivalent to A5.

5. Antipodal variations

Definition 5.1. A graph of finite diameter δ is antipodal if for every vertex v there
is a unique vertex v′ with d(v, v′) = δ.

In some contexts, one requires only that the relation d(x, y) ∈ {0, δ} should be an
equivalence relation.

In the context of metrically homogeneous graphs, the antipodal graphs are the
ones with no triangle of perimeter greater than 2δ. They satisfy the useful anitpodal
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law

d(u, v′) = δ − d(u, v)

These graphs are in our catalog as KMP-type, but the Henson variations are
unusual. We let Aδap,n denote the downward closure of the class of antipodal graphs
with no n-clique. In intrinsic terms, the conditions are the stated bound on perimiters
together with the omission of all pseudo-cliques (A,B) on n-points; here A,B are
cliques and the distance between points of A and B is exactly δ−1. By the antipodal
law, if we wish to omit an n-clique then we must omit these pseudo-cliques as well.

6. Evidence for the Conjecture

We collect a number of prior results with more recent work, some in collaboration
with Amato and Macpherson, as follows.

Theorem 1. Any metrically homogeneous graph Γ not in the catalog satisfies the
following two conditions.

• Γ1 is primitive;
• Any two vertices at distance 2 have infinitely many common neighbors
• The diameter is at least 4.

We refer to the first two conditions as generic type. This can be written in a more
explicit way, in terms of the following breakdown.

• Γ1 is a Henson graph or random graph; or
• Γ1 is an independent set and each vertex of Γ2 has infinitely many neighbors

in Γ1.

There is no detailed plan of attack for the conjecture, but the natural approach is
to proceed by induction on diameter when δ is finite, and to get the classification in
infinite diameter either directly from the finite case, or from its proof.

In more detail one wants the following.

• For δ finite, show inductively:
– The constraints on triangles correspond to the anticipated amalgamation

class;
– Given specified constraints on triangles, any configuration omitting the

Henson constraints embeds;
• For δ infinite, show that the classification follows from the classification for δ

finite (this can be attacked directly).

For the diameter 3 classification [AChMc13] we followed this plan.

Hubička’s language: The parity metric
d2(u, v) = (do(u, v), de(u, v)) gives the shortest walk of odd (resp. even) length.
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This also has amalgamation with bounds d−, d+ similar to the metric case. But
it does not seem that a bound on diameter necessarily bounds the sizes of these
numbers.

Problem (Hubička). What are the diameter 2 graphs which are homogeneous for
the parity metric?

Note: de(u, u) = 0 but do(u, u) may be a nontrivial function. We may wish to
require this to be constant.
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[KMP88] P. Komjáth, A. Mekler and J. Pach, Some universal graphs, Israel J. Math. 64 (1988),

158–168.
[Sch79] J. Schmerl, “Countable homogeneous partially ordered sets,” Alg. Univ. 9 (1979), 317-321.
[Sh74] J. Sheehan, Smoothly embeddable subgraphs, J. London Math. Soc. 9 (1974), 212-218.

Department of Mathematics, Rutgers University


