
CLASSIFYING HOMOGENEOUS STRUCTURES, I

GREGORY CHERLIN

Abstract. The first of three lectures on some current problems in the classification of
homogeneous structures.

1. Introduction

3 lectures on problems involving the classification of homogeneous structures in the sense
of Fräıssé:

• some finite structures;
• homogeneous ordered graphs
• metrically homogeneous graphs

Recall homogeneity.
The first classification theorem is Fräıssé’s characterization in terms of amalgamation

classes. We want something more explicit.
Context

• model theory
• combinatorics (Ramsey theory): any class of finite structures with the Ramsey

property

C → (B)Ak

has the amalgamation property (else, color A by whether it embeds into a given
extension in B)
• (KPT2004) Topological dynamics: extremely amenable groups (requires an order)

or groups with universal minimal flow metrizable (e.g., the space of all possible
orderings).

Of special interest nowadays: ordered structures, metric spaces (Nešetřil: finite metric
spaces have the Ramsey property).

My interest in the finite case is much older. I’ll say something about this first.

1.1. Homogeneous finite graphs (Sheehan 1974, Gardiner 1976).

• C5, E(K3,3)
• m ·Kn and its complement

(Can be proved by induction.)
Primitive ones: C3, C5, E(K3,3)
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Lachlan: For a fixed finite relational language, there are finitely many homogeneous
structures such that the finite ones are the ones that embed in a way that respects the
automorphism groups.

E.g., m ·Kn reflects ∞ ·K∞.
More generally, the stable structures are the downward closure in this sense, and are

obtained by adjusting the sizes of certain equivalence classes.
(CFSG)

1.2. Binary Conjecture. Sn, Cp, AO(q) (anisotropic). Reduced to the almost simple
case, Cherlin/Wiscons

Theorem 1. Finite, affine, binary, primitive implies Cp, Dp, or AO−2 (q).

How to visualize O−2 (q): F = Fq2 , N = NF/F1
, G = kerN ·Gal(F/Fq).

Rough Idea of the proof.
AG should be solvable, so aim first to show that this is the case, then that this can be

represented as a 1-dimensional semilinear group, and finally that it actually is AO−2 (q) in
nontrivial cases.

A more honest version.
E(G) is the largest normal subgroup which is a central product of quasisimple factors.

Show that E(G) = 1 and this is close enough to solvable to proceed as indicated.
Use CFSG and the corresponding classification of quasi-simple groups.

The recognition process.

Lemma 1.1. If AG is a binary affine group acting then G is generated by involutions.

Lemma 1.2 (Main Step). AG acting on A, g ∈ G, g2 = 1 (exactly) on A0, a ∈ A. Then
there is an involution t so that t acts like g on A0 ∪ {a}.

Proof. Induction on |A \A0|.
X = A ∪ {a, ag}.
Order X with a < ag.

f1(x) =

{
x if x ≥ xg

−x if x < xg
f2(x) =

{
xg

−1
if x ≥ xg

−xg if x < xg

f1(x)h = f2(x)

—Because we use g or g−1 unless we have the pair (a, ag) in which case we want
(−a, ag) ∼ (−ag, a), conjugate by a translation.

h agrees with g on X but not on ag. So by induction t exists for h, hence for g.
�

So in the 1-dimensional semi-linear case the Galois action (if nontrivial) has order 2 and
inverts the multiplicative part of G. We just have to argue further that all elements of
norm 1 occur.
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2. Back to the infinite

Problem (Main Problem (Lachlan)). Is the relation

A1 ∧ · · · ∧Ak ` B1 ∨ · · · ∨B`

decidable?

In all cases studied: definitely. If we ask for the number of homogeneous structures
satisfying the conditions we get a more subtle combinatorial problem (determining which
subsets of a partially ordered set are w.q.o., for example).

We should also take note of the following.

Lemma 2.1 (Nešetřil). Let A be a class of ordered finite structures with joint embedding
which satisfies the structural Ramsey theorem

∀A,B∃C C → (B)A2

Then A is an amalgamation class.

Proof. Take an amalgamation problem A→ A1, A2 in A and a structure B containing A1

and A2. Take C → (B)A2 . Given an embedding f : A → C, we give it color 1 if there is
an embedding f1 of A1 into C extending f , such that f1 extends to an embedding g1 of B
into C, and otherwise give it color 2.

Any embedding of B into C induces some embedding of A into C with color 1, so in a
monochromatically embedded copy B′ of B all embeddings of A have color 1. Now take a
copy of A2 in B′ and the corresponding embedding of A. This extends to an embedding
of A1 into C. So C is an amalgam of A1 with A2 over A. �

2.1. The Case of Tournaments. The classification (Lachlan 1984)

I, ~C3,Q, S,Γ∞

The technique introduced by Lachlan in this proof remains the main one.

Easy case: Local Orders. More generally, omit I ~C3:
T = SL; if homogeneous, T = S or T = L (first four cases).

Proposition 2.2. If A is an amalgamation class of finite tournaments containing the

tournament I ~C3, then A contains all finite tournaments.

Definition 2.3. A′: 1-point extension property
A∗: linear extension property
A+: 1-point stack extension property

Lemma 2.4. A∗ is an amalgamation class.

(try also possible amalgamation procedures . . . )

Lemma 2.5 (Technical Lemmas).

(1) If I ~C3 ∈ A, then I ~C3 ∈ A+

(2) A+ ⊆ A∗
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Corollary 2.6. If I ~C3 ∈ A, then I ~C3 belongs to an amalgamation class contained in A′.

Main Proof. We show by induction on n = |T | that I ~C3 ∈ A implies T ∈ A.
n = 1, clear.
n + 1. T = T ′ ∪ I.
T ′ belongs to any amalgamation class containing I ~C3, hence is in A′ by the Corollary.

This means T is in A. �

2.2. From stacks to linear extensions. A+ ⊆ A∗:
Lachlan’s Ramsey argument.

2.3. From A to A+. L[C3] ∪ I. How to do induction on the height of the stack?
Problem: If you fix one copy of C3, the rest falls into two different 1-types.

Change of Category. Ample 2-tournaments

H = (H1, H2): I ~C3 in H1, and both cross types realized in H.

Lemma 2.7. If H is ample, then any configuration L[C3] ∪ I embeds, with L[C3] in H1,
and I in H2.

Reduce by induction to I ~C3 =⇒ [~C3, ~C3] and triangles (ab, c).
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