CLASSIFYING HOMOGENEOUS STRUCTURES, I

GREGORY CHERLIN

ABSTRACT. The first of three lectures on some current problems in the classification of homogeneous structures.

1. INTRODUCTION

3 lectures on problems involving the classification of homogeneous structures in the sense of Fraïssé:

- some finite structures;
- homogeneous ordered graphs
- metrically homogeneous graphs

Recall homogeneity.

The first classification theorem is Fraïssé's characterization in terms of amalgamation classes. We want something more explicit.

Context

- model theory
- combinatorics (Ramsey theory): any class of finite structures with the Ramsey property

$$\mathcal{C} \to (\mathcal{B})_k^{\mathcal{A}}$$

has the amalgamation property (else, color \mathcal{A} by whether it embeds into a given extension in \mathcal{B})

• (KPT2004) Topological dynamics: extremely amenable groups (requires an order) or groups with universal minimal flow metrizable (e.g., the space of all possible orderings).

Of special interest nowadays: ordered structures, metric spaces (Nešetřil: finite metric spaces have the Ramsey property).

My interest in the finite case is much older. I'll say something about this first.

1.1. Homogeneous finite graphs (Sheehan 1974, Gardiner 1976).

- $C_5, E(K_{3,3})$
- $m \cdot K_n$ and its complement

(Can be proved by induction.) Primitive ones: $C_3, C_5, E(K_{3,3})$

GREGORY CHERLIN

Lachlan: For a fixed finite relational language, there are finitely many homogeneous structures such that the finite ones are the ones that embed in a way that respects the automorphism groups.

E.g., $m \cdot K_n$ reflects $\infty \cdot K_\infty$.

More generally, the stable structures are the downward closure in this sense, and are obtained by adjusting the sizes of certain equivalence classes.

(CFSG)

1.2. Binary Conjecture. S_n , C_p , AO(q) (anisotropic). Reduced to the almost simple case, Cherlin/Wiscons

Theorem 1. Finite, affine, binary, primitive implies C_p , D_p , or $AO_2^-(q)$.

How to visualize $O_2^-(q)$: $\mathbb{F} = \mathbb{F}_{q^2}$, $N = N_{\mathbb{F}/\mathbb{F}_1}$, $G = \ker N \cdot \operatorname{Gal}(\mathbb{F}/\mathbb{F}_q)$. Rough Idea of the proof.

AG should be solvable, so aim first to show that this is the case, then that this can be represented as a 1-dimensional semilinear group, and finally that it actually is $AO_2^-(q)$ in nontrivial cases.

A more honest version.

E(G) is the largest normal subgroup which is a central product of quasisimple factors. Show that E(G) = 1 and this is close enough to solvable to proceed as indicated.

Use CFSG and the corresponding classification of quasi-simple groups.

The recognition process.

Lemma 1.1. If AG is a binary affine group acting then G is generated by involutions.

Lemma 1.2 (Main Step). AG acting on $A, g \in G, g^2 = 1$ (exactly) on $A_0, a \in A$. Then there is an involution t so that t acts like g on $A_0 \cup \{a\}$.

Proof. Induction on $|A \setminus A_0|$.

 $X = A \cup \{a, a^g\}.$

Order X with $a < a^g$.

$$f_1(x) = \begin{cases} x & \text{if } x \ge x^g \\ -x & \text{if } x < x^g \end{cases} \quad f_2(x) = \begin{cases} x^{g^{-1}} & \text{if } x \ge x^g \\ -x^g & \text{if } x < x^g \end{cases}$$

$$f_1(x)^h = f_2(x)$$

—Because we use g or g^{-1} unless we have the pair (a, a^g) in which case we want $(-a, a^g) \sim (-a^g, a)$, conjugate by a translation.

h agrees with g on X but not on a^g . So by induction t exists for h, hence for g.

So in the 1-dimensional semi-linear case the Galois action (if nontrivial) has order 2 and inverts the multiplicative part of G. We just have to argue further that all elements of norm 1 occur.

 $\mathbf{2}$

2. Back to the infinite

Problem (Main Problem (Lachlan)). Is the relation

$$A_1 \wedge \cdots \wedge A_k \vdash B_1 \vee \cdots \vee B_\ell$$

decidable?

In all cases studied: definitely. If we ask for the *number* of homogeneous structures satisfying the conditions we get a more subtle combinatorial problem (determining which subsets of a partially ordered set are w.q.o., for example).

We should also take note of the following.

Lemma 2.1 (Nešetřil). Let \mathcal{A} be a class of ordered finite structures with joint embedding which satisfies the structural Ramsey theorem

$$\forall A, B \exists C \quad C \to (B)_2^A$$

Then \mathcal{A} is an amalgamation class.

Proof. Take an amalgamation problem $A \to A_1, A_2$ in \mathcal{A} and a structure B containing A_1 and A_2 . Take $C \to (B)_2^A$. Given an embedding $f : A \to C$, we give it color 1 if there is an embedding f_1 of A_1 into C extending f, such that f_1 extends to an embedding g_1 of B into C, and otherwise give it color 2.

Any embedding of B into C induces some embedding of A into C with color 1, so in a monochromatically embedded copy B' of B all embeddings of A have color 1. Now take a copy of A_2 in B' and the corresponding embedding of A. This extends to an embedding of A_1 into C. So C is an amalgam of A_1 with A_2 over A.

2.1. The Case of Tournaments. The classification (Lachlan 1984)

 $I, \vec{C}_3, \mathbb{Q}, S, \Gamma_\infty$

The technique introduced by Lachlan in this proof remains the main one.

Easy case: Local Orders. More generally, omit IC_3 :

T = SL; if homogeneous, T = S or T = L (first four cases).

Proposition 2.2. If \mathcal{A} is an amalgamation class of finite tournaments containing the tournament $I\vec{C}_3$, then \mathcal{A} contains all finite tournaments.

Definition 2.3. \mathcal{A}' : 1-point extension property

 \mathcal{A}^* : linear extension property

 \mathcal{A}^+ : 1-point stack extension property

Lemma 2.4. \mathcal{A}^* is an amalgamation class.

(try also possible amalgamation procedures ...)

Lemma 2.5 (Technical Lemmas).

(1) If $I\vec{C}_3 \in \mathcal{A}$, then $I\vec{C}_3 \in \mathcal{A}^+$ (2) $\mathcal{A}^+ \subseteq \mathcal{A}^*$

GREGORY CHERLIN

Corollary 2.6. If $I\vec{C_3} \in A$, then $I\vec{C_3}$ belongs to an amalgamation class contained in A'.

Main Proof. We show by induction on n = |T| that $I\vec{C}_3 \in \mathcal{A}$ implies $T \in \mathcal{A}$.

n = 1, clear.

n+1. $T = T' \cup I$.

T' belongs to any amalgamation class containing $I\vec{C}_3$, hence is in \mathcal{A}' by the Corollary. This means T is in \mathcal{A} .

2.2. From stacks to linear extensions. $\mathcal{A}^+ \subseteq \mathcal{A}^*$: Lachlan's Ramsey argument.

2.3. From \mathcal{A} to \mathcal{A}^+ . $L[C_3] \cup I$. How to do induction on the height of the stack? *Problem:* If you fix one copy of C_3 , the rest falls into two different 1-types.

Change of Category. Ample 2-tournaments

 $\mathbb{H} = (H_1, H_2)$: $I\vec{C}_3$ in H_1 , and both cross types realized in \mathbb{H} .

Lemma 2.7. If \mathbb{H} is ample, then any configuration $L[C_3] \cup I$ embeds, with $L[C_3]$ in H_1 , and I in H_2 .

Reduce by induction to $I\vec{C}_3 \implies [\vec{C}_3, \vec{C}_3]$ and triangles (ab, c).

3

References

[DM12] I. Dolinka and D. Mašulović, "Countable homogeneous linearly ordered posets," European J. Combin. 33 (2012), 1965–1973.

[Gar76] A. Gardiner, Homogeneous graphs, J. Comb. Th. 20 (1976), 94-102.

- [Lac84] A. Lachlan, "Countable homogeneous tournaments," Trans. Amer. Math. Soc. 284 (1984), 431-461.
- [LW80] A. Lachlan and R. Woodrow, "Countable ultrahomogeneous undirected graphs," Trans. Amer. Math. Soc. 262 (1980), 51-94.

[Sch79] J. Schmerl, "Countable homogeneous partially ordered sets," Alg. Univ. 9 (1979), 317-321.

[Sh74] J. Sheehan, Smoothly embeddable subgraphs, J. London Math. Soc. 9 (1974), 212-218.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY

4