Universal Graphs with Forbidden Subgraphs

Gregory Cherlin

July 5, 2013
Budapest
Universal Graphs with Forbidden Subgraphs

Gregory Cherlin

Outline

Origins

Universality and Homogeneity

Universality without Homogeneity
Universal Graphs with Forbidden Subgraphs

Gregory Cherlin

Outline
Origins
Universality and Homogeneity
Universality without Homogeneity

1 Origins

2 Universality and Homogeneity

3 Universality without Homogeneity
Origins

[**RADO64**]: Universal Graphs

- Universal (countable) graphs exist
- Universal locally finite graphs do not exist (de Bruijn)

[**KomPach91**] (survey): WHEN do universal graphs exist?
[RADO64]: Universal Graphs
[KomPach91] (survey): WHEN do universal graphs exist?
[ERDŐS-RÉNYI63]: Automorphisms
- $\text{Aut}(\Gamma) = 1$ for Γ random finite
- $\text{Aut}(\Gamma)$ rich for Γ random infinite

Thus there is a striking contrast . . . : while „almost all" finite graphs are asymmetric, „almost all" infinite graphs are symmetric.
Origins

[RADO64]: Universal Graphs
[KomPach91] (survey): WHEN do universal graphs exist?

[ERDŐS-RÉNYI63]: Automorphisms

Thus there is a striking contrast . . . : while „almost all" finite graphs are asymmetric, „almost all" infinite graphs are symmetric.

[KPT05] Aut Γ has fixed points \iff Structural Ramsey
[Pes98] Aut(\mathbb{Q}) has fixed points \iff Ramsey
Universality

We follow Rado’s line (or Komjáth/Pach’s interpretation of it) ...
Origins

Universality and Homogeneity

Universality without Homogeneity
A \simeq B \iff A \sim B \text{ (conjugate under } \text{Aut}(\Gamma))
Homogeneity

Definition (Homogeneity)

\[A \simeq B \iff A \sim B \]

Consequences

- **Universality** (modulo finite substructures)
- **Uniqueness** (modulo finite substructures)
- **Oligomorphic** (finitely many orbits on \(n \)-tuples)

As observed by Urysohn in 1924...
Homogeneity

Definition (Homogeneity)

\[A \simeq B \iff A \sim B \]

Consequences

- Universality (modulo finite substructures)
- Uniqueness (modulo finite substructures)
- Oligomorphic (finitely many orbits on \(n \)-tuples)

As observed by Urysohn in 1924 . . .
Urysohn 1924 (Letter)

“...[a] condition of homogeneity: the latter being, that it is possible to map the whole space onto itself... so as to carry an arbitrary finite set M into an equally arbitrary set M_1, congruent to the set M.”

Ref: [Hušek08]
Urysohn 1924 (Letter)

“. . . [a] condition of homogeneity: the latter being, that it is possible to map the whole space onto itself . . . so as to carry an arbitrary finite set M into an equally arbitrary set M_1, congruent to the set M.”

U: universal complete separable metric space
U_Q: universal rational-valued metric space
• U_Q is a universal graph (edges: $d(u, v) = 1$)
cf. Moss, Cameron . . .
Limits of Homogeneity

Theorem (Lachlan/Woodrow 1980)

The homogeneous graphs are (up to complementation)

- $C_5, K_3 \otimes K_3$ (9 vertices)
- $m \cdot K_n$ ($m, n \leq \infty$)
- Generic K_n-free [Henson71]

However, a structural Ramsey theorem requires an order …
Theorem (Cherlin 2013)

The homogeneous ordered graphs are

- Generic linear extensions of homogeneous partial orders with edge relation “comparability” (cf. [Schmerl79])
- Generically ordered homogeneous graphs (cf. [LachWood80])
- Generically ordered homogeneous tournaments with edges “a → b ⇐⇒ a < b” (cf. [Lachlan84])
- Homogeneous permutations (cf. [Cameron03])
1. Origins

2. Universality and Homogeneity

3. Universality without Homogeneity
A Decision Problem

Survey: [KomjathPach91]
Narrowing the focus:
A Decision Problem

Survey: [KomjathPach91]
Narrowing the focus:

Problem

C: finite set of finite, connected, forbidden subgraphs

Is there a universal C-free graph?
A Decision Problem

Survey: [KomjathPach91]

Narrowing the focus:

Problem

\[C : \text{finite set of finite, connected, forbidden subgraphs} \]

Is there a universal \(C \)-free graph?

Variant

Forbid \textit{induced} subgraphs
Survey: [KomjathPach91]
Narrowing the focus:

Problem

\[C : \text{finite set of finite, connected, forbidden subgraphs} \]

Is there a universal \(C \)-free graph?

Variant

Forbid induced subgraphs

- More general
- **Undecidable** via Wang’s domino problem
- for the brave . . .
What so special about SUBGRAPHS?

- Sample Theorems
- Conjectures
- **Underlying Theory** [CheSheShi97]
Sample Theorems

<table>
<thead>
<tr>
<th>Who, When</th>
<th>What</th>
<th>Which</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMP88</td>
<td>Forbid a long path</td>
<td>∃</td>
</tr>
<tr>
<td></td>
<td>No short odd cycles</td>
<td>"</td>
</tr>
<tr>
<td>ChShe07</td>
<td>Tree</td>
<td></td>
</tr>
<tr>
<td>ChShi96</td>
<td>Set of cycles</td>
<td></td>
</tr>
<tr>
<td>ChSheShi97</td>
<td>Hom-closed set</td>
<td></td>
</tr>
<tr>
<td>FürKom97</td>
<td>2-connected</td>
<td></td>
</tr>
<tr>
<td>Kom99,ChTal07</td>
<td>2 blocks</td>
<td></td>
</tr>
</tbody>
</table>

Forbid a long path, No short odd cycles, Tree, Set of cycles, Hom-closed set, 2-connected, 2 blocks: \(\min(m, n) \leq 5 \) not \((5, 5)\)!
Conjectures (1 Constraint)

Conjectures on existence of universal C-free graphs

1 (Solidity) Blocks of C should be complete

2 (Block-Path) After pruning trees, C should become a block-path
Conjectures on existence of universal C-free graphs

1 (*Solidity*) Blocks of C should be complete

2 (*Block-Path*) After pruning trees, C should become a block-path

Theorem (ChShe, in prep)

If the constraint C is a block path, and a universal C-free graph exists then C has complete blocks.

Corollary

$(2) \implies (1)$
Methods

- Pruning
- Algebraic Closure (+ Füredi-Komjáth method)
Non-Definition — a is C-algebraic over X if forbidding C bounds the number of vertices like a.
Non-Definition — a is \mathcal{C}-algebraic over X if forbidding \mathcal{C} bounds the number of vertices like a.

There are two ways to be algebraic:
- Obviously
- Or by transitivity
Non-Definition — a is C-algebraic over X if forbidding C bounds the number of vertices like a.

There are two ways to be algebraic:

- Obviously
- Or by transitivity

Example
Let C contain a star (i.e., we bound the vertex degrees). Then

- Obviously algebraic means *neighbor*
- Algebraic means *in the connected component*
Non-Definition — a is C-algebraic over X if forbidding C bounds the number of vertices like a.

There are two ways to be algebraic:

- Obviously
- Or by transitivity

Example (cont.)

- Forbidding C_4 makes a common neighbor unique. This can be iterated.
- Forbidding C, 2-connected but not complete, with a, b non-adjacent, makes \bar{a} unique over $C \setminus \{a, b\}$, where \bar{a} results by setting $a = b$.
Theorem

Let C be a finite set of finite connected forbidden subgraphs with all blocks complete. Then the following are equivalent.

- There is a universal C-free graph with oligomorphic automorphism group;
- The algebraic closure of a vertex is always finite.

The halting problem for the relation obviously algebraic in
Theorem

Let C be a finite set of finite connected forbidden subgraphs with all blocks complete. Then the following are equivalent.

- There is a universal C-free graph with oligomorphic automorphism group;
- The algebraic closure of a vertex is always finite.

The halting problem for the relation obviously algebraic in

Example

If C contains a star, decidable:

- Algebraic closure = connected component
- Oligomorphic iff some path forbidden
Pruning

The first method of pruning:

- For a tree, remove its leaves.
- Generally, remove a minimal block-leaf (or more generally, a “corner”)

Lemma

If C prunes to C', then a universal C-free graph will contain a universal C'-free graph. So we may argue inductively.
The **first** method of **pruning**:
- For a tree, remove its leaves.
- Generally, remove a minimal block-leaf (or more generally, a “corner”)

Lemma

If C prunes to C', then a universal C-free graph will contain a universal C'-free graph. So we may argue inductively.

Applications: from trees to near-paths (by treating the minimal case).
The first method of pruning:

- For a tree, remove its leaves.
- Generally, remove a minimal block-leaf (or more generally, a “corner”)

Lemma

If C prunes to C’, then a universal C-free graph will contain a universal C’-free graph. So we may argue inductively.

Applications: from trees to near-paths (by treating the minimal case).
— And probably . . .
A tentative Result

Theorem (CheShe, in progress)

Let C be a block-path with $\ell \geq 6$ blocks, all complete, of sizes $m_i = |B_i| \geq 3$ all i, and allowing a universal C-free graph. Then up to reversal the sequence (m_i) is one of: $(4, 4, 3^*)$, $(3, m, 3^*)$, $(m, 3^*)$

Is the end in sight? Not yet —
Problem

C: K_n plus n paths, 1 at each vertex. Is there a universal C-free graph?
A Problem for Graph Theorists

Problem

C: K_n plus n paths, 1 at each vertex. Is there a universal C-free graph?

Is this a problem for graph theorists?

Think about acl_C . . . Menger’s theorem?