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Abstract. We work toward the classification of the graphs finite con-
nected graphs C with no trivial blocks having the property that there
is a countable universal C-free graph.
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Introduction

A toy theorem. A highly simplified version of the result of the present
paper would be the following.

Proposition 1. Let C be a Rado constraint which is a solid block path in
which all blocks have order at least 4. Then the type of C is one of the
following, up to reversal.

Length 1: (n) (arbitrary);
Length 2: (m,n), min(m,n) ≤ 5, (m,n) 6= (5, 5);
Length 3: (m, 4, n)

Here we call C a Rado constraint if there is a countable weakly universal
C-free graph, and we call a graph a block path if its blocks (maximal 2-
connected subgraphs) can be arranged in a sequence (B1, B2, . . . , Bn) with
Bi ∩Bj empty for |i− j| > 1.

We call a block path solid if the blocks are in fact cliques. It is known
that a block path which is a Rado constraint must be solid. This allows us
to describe the isomorphism types of the graphs in question by the sequence
of clique sizes (up to reversal of the sequence).

In fact we conjecture the following.

Conjecture 1. Let C be a connected graph in which all blocks have order at
least 4. Then C is a Rado constraint if and only if C is a solid block path of
one of the types listed above.

Thus Proposition 1 is one of the main steps in the direction of this conjec-
ture, but only one. One would need to prove further that every constraint
listed actually is a Rado constraint (which is known in some cases), and also
that every Rado constraint with all blocks of order at least 4 is a block path,
a point that we hope to return to fairly soon.

What we really aim to do in the present paper is to prove a similar propo-
sition for the case in which all blocks have order at least 3. The list of
examples becomes longer and contains some infinite families. We also make
a corresponding conjecture in the spirit of Conjecture 1 for this case, but
without insisting on the point that everything on our list should necessarily
be a Rado constraint (we think it should not be far off, but it would be
miraculous if our thinning-down process gave the exact classification).

At the opposite extreme we have Rado constraints which are trees, that is
all blocks have order 2. These are also known explicity [CT07, CS05]: they
are just the paths and the trees differing from paths by the addition of one
edge.

However the mixed case, where blocks of order 2 are mixed together with
larger graphs, is not simply a combination of the two extremes. We conjec-
ture that the Rado constraints in general are close to block paths, and that
the list of relevant block paths is of the same general character as the list
given here, but it will be seen that the restriction to block size at least 3
brings major simplifications to the analysis.
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We remark that when the relevant universal graphs exist, they are canon-
ical (this is most easily seen via model theory) and they have rich and inter-
esting automorphism groups. In particular in the cases listed here, the corre-
sponding automorphism groups should be oligomorphic, and when viewed as
topological groups they are anticipated to have metrizable universal minimal
flows. However all of this remains conjectural, and deep, and would require
a substantial development of structural Ramsey theory, which at present has
been worked out in only a few cases, notably the case of a solid block path
of type (3, 3) [HuNe14(ppt)].

Leaving these broader issues aside, we now begin a more systematic pre-
sentation of our subject.

A decision problem. We are interested in the following general decision
problem.

Problem 1. Given C, a finite set of finite, connected graphs, determine
whether there is a countable strongly universal C-free graph.

It remains entirely unclear whether this is a decidable problem, and for
us that is the fundamental question, which we have approached from various
angles. Regardless of the status of the general problem, we have come to
believe that for the case of one constraint the problem should have an explicit
solution, and we are working toward that.

There is an extensive literature on the subject, some of which will be
recalled below. Much of the literature deals with the case in which C consists
of a single graph, which is also the focus of the present paper. But we consider
it very likely that when there is only one constraint, it should be possible to
give a complete classification of the constraints C allowing a weakly universal
C-free graph, or at the very least to prove the decidability of this restricted
form of the decision problem.

The subject begins with Rado’s paper [Ra64] and is surveyed in [KP91].
The scope of our decision problem is narrower than that of the survey in two
respects. In the first place, by restricting to constraints given by finite data,
we arrive at a decision problem. At the same time, this restriction allows
for the general theory presented in [CSS99]. In the second place, one may
consider the same problem in any cardinality, but the relevant theory changes
considerably when one passes to the uncountable case. For the latter, see
[Dž05].

Before going into the results of the present paper, let us lay out the defi-
nitions more explicitly.

Definition.
1. Let C be a set of graphs. Then a graph G is C-free if it contains no

subgraph isomorphic to a graph in C. When C consists of a single constraint
graph C, we say G is C-free.

2. A countable C-free graph G is weakly universal if every countable C-free
graph is isomorphic to a subgraph of G.
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3. A countable C-free graph is strongly universal if every countable C-free
graph is isomorphic to an induced subgraph of G.

One may vary the notion of C-freeness as well, forbidding only induced
subgraphs isomorphic to graphs in C. Then the corresponding decision prob-
lem is undecidable [Ch11b]. More precisely, it encodes the domino problem
of Hao Wang, which is a 2-dimensional version of the problem of determin-
ing an infinite word omitting certain finite subwords. This 1-dimensional
problem is decidable, as the existence of such an infinite word implies the
existence of a periodic one. The failure of this principle in two dimensions
is the basis of the theory of quasicrystals (e.g., Penrose tilings).

In spirit, Problem 1 lies somewhere between the 1- and 2-dimensional tiling
problems, and it seems closer to the 1-dimensional problem. To date all prob-
lems successively treated obey the periodicity principle; to understand what
this means requires familiarity with examples or with the general theory, but
it will be amply illustrated here.

These considerations suggest that Problem 1 is natural not only graph
theoretically but in regard to the general theory of algorithms.

Notions of universaiity; variations. The preferred notion of universality
is the strong form. The notions of strong and weak universality are clearly
very different. For example, if there are no constraints, then a countable
complete graph is weakly universal, while the construction of a strongly uni-
versal graph takes some argument ([ER63] or [Ra64]). At the same time, it
is generally the case that when there is a weakly universal countable C-free
graph there is also a strongly universal one, and furthermore, a canonical
one, with oligomorphic automorphism group: that is, the action of the au-
tomorphism group on n-tuples should have finitely many orbits, for each
n.

Thus we consider the following variations of the decision problem.

Problem 2. Given C, a finite set of finite, connected graphs, determine
whether there is a countable weakly universal C-free graph.

Problem 3. Given C, a finite set of finite, connected graphs, determine
whether there is a countable strongly universal C-free graph with oligomorphic
automorphism group.

The theory given in [CSS99] shows that this last version of the problem is
very close to the problem of finding an infinite word with finitely many for-
bidden subwords, though not necessarily close enough to ensure decidability.

Since the strong and weak forms of the decision problem tend to have the
same answer in most cases, it is desirable from a purely technical point of
view to treat them together. In other words, when a universal graph exists
one aims to show strong universality, but in the more common negative cases,
one aims to show the nonexistence of weakly universal graphs.



6 GREGORY CHERLIN AND SAHARON SHELAH

Main results. Since the emphasis on the present paper will be on the iden-
tification of negative cases, for the case of a single constraint, we adopt the
following terminology for brevity.

Definition. Let C be a graph. We call C a Rado constraint if there is a
countable weakly C-free graph.

In the present paper we begin the presentation of a general strategy for
the identification of all finite connected graphs which are Rado constraints.
It is not our intention to complete this classification, but rather to suggest a
combination of methods that may be adequate to the task, and some explicit
conjectures about the form of the result to be expected.

Any finite connected graph may be analyzed structurally in terms of its
associated tree of blocks. Here the blocks are the maximal 2-connected com-
ponents and the associated tree has two sorts of vertices: the cut vertices
and the blocks of the original graph. Here edges join cut vertices to the
blocks that contain them.

In the long run, we aim to generalize the following result.

Fact 1 ([CT07, CS05]). Let T be a finite tree. Then T is a Rado constraint
if and only if T is either a path or a path with one additional edge attached.
The case of a weakly or strongly universal graph with an oligomorphic auto-
morphism group corresponds to the case in which T is a path.

We consider first the case of block paths, that is graphs whose tree of graphs
forms a path. We have the following preliminary result. Going forward,
all constraints will be assumed to be finite and connected without further
mention. The point of dealing with connected graphs is that the C-free
graphs are closed under disjoint union if and only if C is connected. This
is the essential hypothesis. (For sets of more than one constraint it is not
necessary to take the constraints connected to achieve this, but one usually
does so anyway.)

Fact 2 ([CS14]). Let C be a block path. If C is a Rado constraint then every
block of C is complete.

The method of proof is to combine an explicit construction of Füredi-
Komjáth for the case of one block with two general inductive principles,
called pruning and symmetric local pruning respectively. This is also the plan
of attack with respect to the general problem, except that we must enlarge
our stock of explicit constructions to deal with the base of the inductive
analysis. So [CS14] may be taken as the first of a series, and the present
article as a continuation.

We call a graph whose blocks are all complete a solid graph. We aim here
at a partial determination of the block paths which are Rado constraints,
with Fact 2 giving us the point of departure. We are able to give a complete
determination of the block paths with all blocks nontrivial which are Rado
constraints (a block is trivial if it reduces to an edge). The general problem
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reduces to some extend to the case of nontrivial blocks, but with a great deal
of additional analysis still to be done.

We have mentioned what this looks like when we restrict attention to the
case in which all blocks have order at least 4: the block paths then have
length at most 3 and satisfy a few constraints on the block sizes.

In this case, it has been checked elsewhere ([?], following up on [Ko99])
that the listed types of length 1 or 2 actually are Rado constraints (with the
associated automorphism groups oligomorphic). This point has not yet been
checked for the cases listed under Length 3, other than some limited and
unpublished cases, and it may not be very easy to check. The verification at
the end of [CT07] that the listed candidates in length 2 actually are Rado
constraints required some detailed analysis. We believe that the graphs listed
in Proposition ?? are indeed Rado constraints, but all we claim at present
is that we can exclude anything not listed.

The main result of the present paper is the corresponding statement when
all blocks are nontrivial. This result has the same general character as the
foregoing but both the statement and proof become more elaborate. And
we remain in substantial doubt about some of the more extreme candidates
still on the list.

The full statement is as follows.

Theorem 1 (Fat Block Paths). Let C be a finite block path with no trivial
blocks. Suppose that there is a weakly universal C-free graph. Let ` be the
number of blocks in C. Then C has one of the following types.

` Form

(general) (3`−1, n); or (3`−2, n, 3) or (3`−2, 4, 4)

2 (4, n) or (5, n) with n ≥ 6

3 (n1,m, n3) with m = 3 or 4

4 (n1, 3, 3, n4) with n4 ≥ n1 + 2

" (3, n, 3, n) with n > 4

" (3, 4, 4, 4)

" (3, 4, 3, n) (4, 4, 3, n) with n ≥ 4

5 (4, 4, 3, 3, n) with n ≥ 9

" (3, n2, 3, 3, n5) with n2, n5 ≥ 4 and |n2 − n5| ≥ 2

" (3, 3, n, 3, n) with n ≥ 5

For the case of general block paths our result is considerably less satisfac-
tory, and obviously incomplete.

Theorem 2 (General Block Paths). Let C be a finite block path and suppose
there is a countable weakly universal C-free graph. Then C can be obtained
from block paths of the types listed in Theorem 1 by connecting them by paths.
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This leaves a great deal more to be analyzed if one aims at an explicit
classification comparable to Theorem 1.

But—all of this takes us only so far, and now we enter the realm of conjec-
ture. The point of this close analysis of the case of block paths is to cast light
on Rado constraints in general. In particular, we conjecture the following.

Conjecture 2. If C is a Rado constraint with all blocks nontrivial, then C
is a solid block path, as listed above.

As a proof of this will shed more light on the general problem than a
full treatment of the case of block paths, we intend to take this up next.
We believe we have all necessary ingredients for a proof of something more
general. But again the approach would be inductive and therefore involves
a substantial number of specific constructions to deal with the base of the
induction. This can be simplified considerably by assuming that all blocks
have order at least 4, but even that case requires something substantial.

Now we will lay out our expectations for the final classification more ex-
plicitly.

Conjectures. We begin with some general principles that guide our think-
ing but are not the object of a frontal assault. At this point it is worth
recalling explicitly that we are discussing only finite, connected constraint
graphs.

Conjecture 3 (Solidity Conjecture). Let R be a Rado constraint. Then the
blocks of R are complete.

For the next conjecture, we use the following terminology: a segment of
a graph G is a connected induced subgraph which is a union of some of the
blocks of G

Conjecture 4 (Segment Conjecture). If R is a Rado constraint then any
segment of R is a Rado constraint.

We can read off from the explicit list in Theorem 1 that the Segment
Conjecture is valid in the case of block paths with all blocks nontrivial.
Conversely, the proof of Theorem 1 would be much simpler if the Segment
Conjecture were known a priori.

We note that connected induced subgraphs of Rado constraints need not
be Rado constraints; a solid block path of type (5, 5) refutes this strong
monotonicity conjecture.

Now the essential point is to guess correctly the most general form of a
Rado constraint. Our current candidate runs as follows.

Definition. Let C be a connected graph. The interior C◦ of C is the
smallest segment containing all nontrivial blocks.

Any constraint graph C which is not itself a tree may be described as
a nonempty interior plus a certain number of attached trees. For v in the
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interior of C, it will be convenient to denote by Tv the tree attached at that
point, i.e., the connected component of (C \ (C◦ \ {v}) containing v.

(We notice that the same notions have been used by Gromov with the
terminology core and periphery.)

Conjecture 5 (Block Path Reduction). Let R be a Rado constraint which
is not a tree. Then

• The interior of R is a block path; in addition
• The attached trees are paths;
• The attached trees at cut vertices are trivial.

We give these three conditions in the order of decreasing confidence, with
considerably more stress on the first. But in an inductive proof of the con-
jecture, a stronger form may be easier to prove.

When the interior consists of a single block we have the following special
case.

Conjecture 6. Let C be a graph with a unique nontrivial block B, Then C
is a Rado constraint if and only each vertex of B is attached to a unique path
(possibly trivial).

It is only in this last case that we are prepared at present to conjecture a
completely precise description of the Rado constraints. Namely t is reason-
able to conjecture that the Rado constraints with a unique nontrivial block
are precisely the extensions of a complete graph by at most one path at each
vertex.

Remark. Conjecture 5 (Block Path Reduction) implies the solidity conjec-
ture.

This holds since the solidity conjecture was proved for block paths in
[CS14].

There is no obvious way to derive the Segment Conjecture from a purely
qualitative result. That conjecture is a useful principle to keep in mind,
but will probably only be verifiable after the fact, if a completely explicit
classification of the Rado constraints is found.

The segment conjecture and some additional considerations suggest the
following conjecture regarding the case of block paths. First, we rephrase
Theorem 2 more explicitly, in the following terms.

Definition. Let C be a block path. A 3-component of C is a maximal
connected subgraph all of whose blocks are nontrivial.

Then Theorem 2 states that the 3-components of a solid block path which
is a Rado constraint are again Rado constraints. We may distinguish external
3-components, that is those containing a leaf in the tree of blocks and the
internal 3-components. Then we conjecture the following.

Conjecture 7 (Internal 3-Components). The internal 3-components of a
Rado constraint consist of single blocks.
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This gives a general indication of what we would expect the explicit clas-
sification of block paths which are Rado constraints to look like when trivial
blocks are allowed.

The main technical point of the present article from our point of view is the
way the two pruning notions presented below, corner pruning and symmetric
local pruning, cooperate to reduce the entire classification problem to an
explicit collection of base cases. We always try corner pruning first, and
when that fails it generally produces a situation in which symmetric local
pruning succeeds. In some cases multiple attempts at corner pruning are
needed to reach a sufficiently symmetrical set up to apply symmetric local
pruning.

The result of this analysis is that one can characterize explicitly the
“pruning-minimal” examples (those for which any kind of pruning results
in a configuration in the catalog of allowable cases), and one then has the
task of dealing with the latter on an individual basis.

Thus we view the main argument as inductive; but the base of the induc-
tion consists of the analysis of block paths up through length 5. While even
at length 5 and below there are again many inductive reductions available,
still there remain about a hundred critical cases to be examined individually
(including a few stray cases of length 6 or 7, which prune down to sporadic
cases of length 4 or 5). There are also some cases of variable length relating
to the “generic” case of the analysis.

We will give the inductive argument in §2; after various preparations we
can treat the generic case (length at least 6) efficiently in Proposition 19
(§2.7.

We then indicate how the base of the induction is obtained in §§3-6. As
we have a large number of cases to treat and the details vary somewhat
unpredictably, we have documented this in considerable detail. After working
through the cases of length at most 4 one sees that much of the argument
becomes quite routine after the first few steps, so from length 5 onward we
mainly give a description of how the argument is to be set up in each case,
taking note of any exceptional features that arise here and there.

The final section touches on the case in which trivial blocks are allowed.
We are still looking for an intelligible criterion for the recognition of the

Rado constraints, in some form other than an explicit list. For the present, we
see the list as consisting essentially of type 3` with some minor perturbations
for length ` ≥ 6, and an unintelligible collection of special cases in shorter
length, where the loop construction encounters difficulties. This takes us
back to the fundamental question of the solvability of the corresponding
decision problem.
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1. Pruning and Theorem 2

We begin by describing two types of inductive argument which we refer
to as corner pruning and symmetric local pruning. These give us weak forms
of the Segment Conjecture adequate to support a variety of inductive argu-
ments. In particular, these principles give us a quick reduction of Theorem
2 to Theorem 1, as we shall see.

Corner pruning was introduced in [CS05] as a method for reducing the
classification of the Rado constraints which are trees to a large but manage-
able number of special cases. Symmetric local pruning was introduced in ??
to prove the solidity conjecture for block path constraints. Life would be
much simpler if we had a better approximation to the segment conjecture,
but what we have is enough to reduce general statements to a collection of
critical cases that can be worked through individually.

1.1. Corner Pruning.

Definition 2.
1. A segment of a graph C is a connected subgraph which is a union of

blocks.
2. A corner Cv of a graph C is a segment of the form {v} ∪ C ′ where v

is a cut vertex and C ′ is one of the connected components of C \ {v}. Note
that Cv contains a unique block B of C with v ∈ B, and that the pair (v,B)
determines the corner. We call v the root of Cv, and B its root block. Note
that a corner will frequently be treated as a graph with base point v (or
briefly: a pointed graph). For pointed graphs we use the notation

(v, C)

In particular, we may consider embeddings of one corner into another either
as a subgraph, or as a pointed subgraph.

Definition 3 (Pruning). Let (v, S) be a pointed graph, C a graph.
1. A corner Ca of C is pruned by (v, S) if there is an embedding of (a,Ca)

into (v, S) as a pointed subgraph.
2. The (v, S)-pruned graph C(v,S) is the graph obtained from C by deleting

the set of vertices in⋃
{Ca \ {a} | (a,Ca) is pruned by (v, S)}

We do not delete the base point of a pruned corner, only the remainder.
With (v, S) specified, we generally write C ′ for the pruned graph C(v,S).

In its most rudimentary form, we may prune a tree by removing all its
leaves. This corresponds to the case in which S consists of an edge. In our
context, the most rudimentary form of pruning is the pruning of a minimal
block leaf (that is, a block which is a leaf in the tree of blocks). This is the
most commonly used form.

The following can be stated more generally, for sets of constraints and sets
of corners, and is proved in that form in [CS14].
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Lemma 4 (Pruning Induction). Let C be a graph, (v, S) a pointed graph,
and C ′ = C(v,S). If there is a countable universal C-free graph (in either the
weak or strong sense) then there is a countable universal C ′-free graph.

This is our basic workhorse for inductive arguments. Sometimes we need
something more refined, to be described next.

1.2. Symmetric Local Pruning. Our second inductive technique is the
method of local pruning, also presented in [CS14]. We are interested in the
form this takes in the context of block paths, which is the following.

Lemma 5 (Symmetric Local Pruning [CS14, Lemmas 3.2,3.3]). Let C be a
block path allowing a countable weakly universal C-free graph. Let B a block
of C containing two cut vertices u, v, and let Lu, Ru, Lv, Rv be the corners
rooted at u and v respectively, with Ru and Lv the ones containing the block
B. Suppose that Lv \ {v} embeds into Ru \ {u}. Then there is a weakly
universal (Lv \ {v})-free graph.

1.3. Theorem 2 (Modulo Theorem 1).

Definition 6. Let k be fixed. A k-constituent of a graph C is a maximal
segment in which all blocks have order at least k.

When C is a block path, for any k it may be viewed as having some k-
constituents linked by chains of smaller blocks. The case of interest is k = 3,
when the constituents have no trivial blocks and are joined by paths.

Lemma 7. Let C be a finite block path which is a Rado constraint. Then
for any k, each k-constituent of C is a Rado constraint.

Proof. We argue by induction on the length of C. We suppose C0 is not C.
If the constituent C0 does not contain either block leaf of C, then we prune

a minimal block leaf of C to get C ′, in which C0 is again a constituent. Then
there is again a countable weakly universal C ′-free graph, and induction
applies.

The alternative is that C0 is a corner of C. Let the blocks of C be denotes
(B1, . . . , B`) and choose the notation so that C0 consists of the first i blocks
of C. Let C1 be corner consisting of the remaining blocks (Bi+1, . . . , B`).
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Prune the corner C1: if C0 remains, then there is a countable weakly
universal C0-free graph. So suppose that pruning C1 also removes a part
of C0. Then some reversed segment (Bj , Bj−1, . . . , B1) must embed as a
pointed graph into C1, and in particular Bj must go into Bi+1. But

|Bi+1| < k

so j ≥ i + 1 and C0 embeds into (Bi+2, . . . , B`). Now according to Lemma
5, taking v = vi+1

�

Proof of Theorem 2 (Modulo Theorem 1). Theorem 2 is essentially Lemma
7 with k = 3, apart from the fact that the result of Theorem 1 makes the
statement informative. �

Now we take up the proof of Theorem 1. Here the consideration of many
critical configurations seems to be unavoidable.
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2. The inductive argument

In the present section, we will state without proof the base of the inductive
proof of Theorem 1, and check that it suffices for an inductive argument
based on pruning—for the most part, the simplest kind of pruning: pruning
of minimal block leaves. We return to the particular constructions needed
to deal with the critical configurations which form the base of the induction
afterward.

There are many critical configurations of length at most 6 (that is, with
at most 6 blocks), a couple such configurations of length 7, as well as some
key configurations of variable length. These critical configurations cannot be
reduced by pruning to simpler ones (though many of them contain proper
segments which are also critical). Furthermore, we found it necessary to
treat each of the critical configurations individually. With a few exceptions,
the same method applies to each, but with specific variations that vary in a
not entirely predictable manner.

2.1. Critical Configurations.

Proposition 8. Let C be a solid block path of length ` and type (n1, . . . , n`).
Under any of the following conditions, C is not a Rado constraint.

• Length 2
(1) n1, n2 ≥ 6;
(2) n1 = n2 = 5.

• Length 3
(1) n1 = n2 = 5 ≤ n3;
(2) n1 = n2 = n3 = 6;
(3) 4 ≤ n1 = n3 < n2;
(4) 5 ≤ n2 < n1 = n3;
(5) 3 ≤ n1 < n2 < n3, n2 ≥ 5;
(6) 3 ≤ n2 < n1 < n3;
(7) 3 ≤ n1 < n3 < n2;

• Length 4
(1) n1 = n2 = n4 < n3;
(2) n1, n4 < n2, n3;
(3) n1 ≥ n4 > n2, n3; n2, n3 ≥ 3; n1 < n3 + n4 − 1;
(4) n4 > n1 > n2 > n3 ≥ 3;
(5) n4 > n2 > n1 > n3 ≥ 3;
(6) n2 ≥ n4 > n1 > n3 ≥ 3;
(7) n3 < n1 = n4 = 5 < n2;
(8) n4 > n1 > n3 > n2 ≥ 3;
(9) n1 = n3 = 4 < n4 < n2;
(10) n1 = n3 = 4 < n2 = n4;
(11) n1 = n3 = 4 < n2 < n4;
(12) Type (4, 4, 4, 4);
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(13) n1 = n2 = n3 = 4 < n4;
(14) n4 > n1 > n2 = n3 ≥ 4;
(15) n2 ≥ 5, n1 = n4 = 4, n3 = 3;
(16) n2 ≥ n4 ≥ 5, n1 = 4, n3 = 3;
(17) n1, n3 < n2 < n4, n1 6= n3;
(18) n1 = 3, n3 = 4 < n2 = n4;
(19) n1 = 3, n3 = 4 < n4 < n2;
(20) n2 ≥ 5, n1 = 3, n3 = n4 = 4;
(21) Type (3, n2, 3, n4), n4 > n2 ≥ 5;
(22) Type (3, n2, 3, n4), n2 > n4 ≥ 4;
(23) Type (3, 4, 4, n), n ≥ 5;
(24) Type (3, 3, 4, n), n ≥ 5;
(25) Type (4, 3, 4, n), n ≥ 5;

• Length 5
(1) Type (n1, n2, 3, n2, n1), n1, n2 ≥ 4, n1 6= n2;
(2) n3 = n4 = 3, n5 > n1 > n2 > 3;
(3) n3 = n4 = 3, n5 > n2 > n1 > 3;
(4) Type (4, 4, 4, 5+, 4);
(5) Type(4, 4, 4, 4, 4);
(6) Type (3, n2, 4, n4, 3), n2, n4 ≥ 5;
(7) Type (3, 4, 4, n4, 3), n4 ≥ 5;
(8) Type (3, 4, 4, 4, 3), n4 ≥ 5;
(9) Type (4, 4, 4, 3, 3);
(10) Type (n, 4, 4, 3, n);
(11) Type (4, 4, 4, 3, 4);
(12) Type (4, 4, 4, 3, n), n ≥ 5;
(13) Type (3, 4, 4, 3, 5), n5 ≥ 3;
(14) Type (3, n2, 4, 3, 3), n2 ≥ 5;
(15) Type (4, 4, 3, n, 3), n ≥ 5;
(16) Type (4, 4, 3, 4, 3);
(17) Type (4, 4, 3, 3, n), 4 ≤ n ≤ 8;
(18) Type (n1, 4, 3, 3, n1), n1 ≥ 4;
(19) Type (4, 4, 3, 4, 4);
(20) Type (n1, 3, n3, 3, n5), n1, n5 < n3;
(21) Type (n1, 3, n3, 3, n3), n3 > n1 ≥ 4;
(22) Type (3, 3, 4, 3, 4), n ≥ 4;
(23) Type (n, 3, n, 3, n), n ≥ 4;
(24) Type (n1, 3, 4, 3, n5), n5 > n1 ≥ 5;
(25) Type (4, 3, 4, 3, n), n ≥ 5;
(26) Type (3, 3, 4, 3, n), n ≥ 5;
(27) Type (n, 3, n3, 3, n), n > n3 ≥ 4;
(28) Type (3, n2, 3, n4, 3), n4 > n2 ≥ 4;
(29) Type (3, n, 3, n, 3), n ≥ 4;

• Length 6
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(1) Type (3, 4, 4, 4, 3, 3);
(2) Type (4, 4, 4, 3, 3, n), n ≥ 5;
(3) Type (4, 4, 4, 3, 3, 4);
(4) Type (4, 4, 4, 3, n5, 4), n5 ≥ 5;
(5) Type (4, 4, 4, 3, 4, 4);
(6) Type (3, 4, 4, 3, 3, n), n ≥ 3;
(7) Type (3, 4, 4, 3, n, 3), n ≥ 3;
(8) Type (4, 4, 3, 3, n, 3), n ≥ 5;
(9) Type (4, 4, 3, 4, 3, 4), n ≥ 3;
(10) Type (n1, 3, n3, 3, 3, n6), n6 > n1, n3 and n1, n3 ≥ 4;
(11) Type (n1, 3, n3, 3, 3, n6), n3 > n6 > n1 ≥ 4;
(12) Type (n, 3, n, 3, 3, n6), n6 > n ≥ 4;
(13) Type (3, 3, n3, 3, 3, n6), n6 > n3 ≥ 4;
(14) Type (3, 3, n3, 3, 3, n6), n3 > n6 ≥ 4;
(15) Type (n1, 3, 3, n, 3, n), 3 ≤ n1 < n;
(16) Type (n, 3, n3, 3, 3, n), n3 > n ≥ 4;
(17) Type (n, 3, n3, 3, 3, n), n > n3 ≥ 4;
(18) Type (n, 3, n, 3, 3, n), n ≥ 4;
(19) Type (3, n2, 3, 3, n5, 3), n5 > n2 ≥ 4;
(20) Type (3, 3, n, 3, n, 3), n ≥ 4;
(21) Type (3, 3, 4, 3, n, 3), n ≥ 5;

• Length 7
(1) Type (3, 4, 4, 3, 3, n, 3), n ≥ 3;
(2) Type (n, 3, 3, 3, n, 3, n), n ≥ 4;
(3) Type (3, 3, n3, 3, 3, n6, 3), n3 6= n6, n3 ≥ 4;
(4) Type (3, 3, 3, n, 3, n, 3);

• Variable Length
(1) n1, n` > ni (1 < i < `), n2 = 4;
(2) Type (3, 4, 4, 3, 3, . . . , 3);
(3) Type (4, 4, 3, 3 . . . , 3, 4);
(4) Type (n, 3, · · · , 3, n), ` ≥ 6;
(5) Type (n1, 3, · · · , 3, n`), n` > n1 ≥ 4, ` ≥ 6;
(6) Type (3, 3, . . . , n, 3, 3), n ≥ 4;

These points will all be proved by explicit constructions. First we will
carry out the inductive proof of Theorem 1, based on Proposition 8.

An efficient way of arriving at this list would be to assume the Segment
Conjecture initially. Given the known restrictions on Rado constraints of
length 2, one adds to the list all configurations of length 3 that contain a
non-Rado segment of length 2, but which cannot be reduced by pruning
to non-Rado segments. Then one examines the remaining configurations of
length 3 that are not settled by this.

One may then proceed similarly with length 4, with considerably sharper
constraints inherited from lengths 2,3, and so on. After the fact one must
eventually show by construction that every putatively “non-Rado” constraint
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so identified is indeed non-Rado. But this method does produce by a reason-
ably efficient process both the statement of Theorem 1 and the statement of
Proposition 8, as well as a proof that the latter implies the former.

Modulo Proposition 8, what needs to be shown to prove Theorem 1 is
that a solid block path which cannot be pruned by corner pruning or local
pruning down to one of the configurations ruled out by Proposition 8 must
be of one of the forms listed in Theorem 1.

For length 1 or 2, Proposition 8 and Theorem 1 say the same thing. For
length 3, some pruning is needed to complete the argument For lengths 4 and
5 we have a large number of critical configurations, but also a large number
of configurations which must be reduced to shorter length by pruning. And
from length 6 onward we begin to be in the general case, with relatively few
critical configurations, so that the argument deals mainly with the relevant
types of pruning.

2.2. Length up to 3. Proposition 1 is vacuous for length 1. The case of
length 2 was treated earlier, and in a sharper form, in [CT07]: in this case,
the configurations listed in Theorem 1 are precisely the Rado constraints, a
claim that we are not making in general.

Fact 3 (Length 2). Let C be a solid block path of length 2 of type (n1, n2).
Then C is a Rado constraint if and only if the following hold.

• min(n1, n2) ≤ 5
• (n1, n2) 6= (5, 5)

So our discussion begins in a serious way with length 3.

Proposition 9 (Length 3). Let C be a solid block path which is a Rado
constraint, of length 3, with all block sizes at least 3. Then

n2 ≤ 4 or n1 = n3 = 3

Proof. We choose notation so that n1 ≤ n3.
We may assume toward a contradiction that

n3 ≥ 4 n2 ≥ 5

Case 1. n1 = n3.
We may put the argument in tabular form, listing the relevant clauses of

Proposition 8 under appropriate hypotheses.

Hypothesis Clauses

n1 = n2 3.1,2

n1 6= n2 3.3,4

Here we must remark that when n1 = n2 = n3, we apply Lemma 5 to
conclude that a block path of type (n1, n2 − 1) is a Rado constraint, and
hence n2 ≤ 6.
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Case 2. n1 < n3.
Then by pruning, a solid block path of type (n2, n3) is a Rado constraint.

This forces n2 6= n3, and if n2 < n3 then n2 = 5.
If n1, n2, n3 are distinct then one of clauses 3.5,6,7 of Proposition 8 applies.
So there remains the case n1 = n2 < n3, and n2 = 5, which is covered by

clause 3.1 of Proposition 8. �

2.3. Forbidden segments: 5+5+ and 4+4+4+4+. It will be useful to prove
some forbidden segment results concerning segments of length 2. To begin
with, we want to show that the non-Rado solid block path constraints of
length 2 cannot occur as segments of Rado solid block path constraints. But
we will strengthen this for the case of solid block paths of length at least 4:
in this case we claim that whenever ni ≥ 5, then ni±1 = 3 (where defined).

Lemma 10. Let C be a solid block path of length ` in which all block sizes
are at least 5. If C is a Rado constraint then ` ≤ 2.

Proof. Supposing the contrary, let C be a counterexample of minimal length
` ≥ 3. By Proposition 9, ` 6= 3. So we suppose ` ≥ 4.

Then pruning a minimal block leaf will provide a counterexample of shorter
length unless ` = 4 and n1 = n4. In this case, pruning the block leaves will
give a solid block path of type (n2, n3), and we may suppose

n2 = 5

n3 ≥ 6

If n1 > 5 then pruning the reversed initial segment (B2, B1) leaves the
segment (B3, B4) with n3, n4 ≥ 6, contradicting the case of length 2.

If n1 = 5 then clause 4.1 of Proposition 8 applies and gives a contradiction.
�

Corollary 11. Let C be a solid block path of length ` which is a Rado
constraint. Suppose i < ` and ni, ni+1 ≥ 5. Then

• ni−1, ni+2 ≤ 4, when defined;
• min(ni, ni+1) = 5 and max(ni, ni+1) ≥ 6.

Proof. By Lemma 7, the 5-constituent containing the block Bi is a Rado
constraint. So Lemma 10 and Fact 3 apply. �

Lemma 12. Let C be a solid block path of length ` ≥ 2 with all block sizes
at least 3, and suppose that for some i < ` we have

ni, ni+1 ≥ 5

If C is a Rado constraint, then ` = 2.

Proof. We suppose C is a counterexample with `minimal. The case of length
3 is covered by Proposition 9. So we suppose

` ≥ 4(1)
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If 1 < i < `− 1, then prune a minimal block leaf to reduce the length by
at most 2. This forces ` = 4, i = 2, and n1 = n4. By Corollary 11 we have
n1 < 5 and clause 4.2 of Proposition 8 applies.

So i = 1 or `− 1, and we may choose the numbering so that

i = 1(2)

By Corollary 11 we have

min(n1, n2) = 5 max(n1, n2) ≥ 6(3)
n3 ≤ 4(4)

If n` < n1 then prune the last block to reach a contradiction. So we
suppose

n` ≥ n1(5)

Now we need to treat the cases ` = 4, ` > 4 separately.

Case 1. ` = 4
If n1 ≥ 6 then n2 = 5 and either clause 4.3 or 4.4 of Proposition 8 applies.

So n1 = 5, and n2 ≥ 6.
If n4 > n1 then depending on the relative size of n2 and n4, either clause

4.5 or 4.6 of Proposition 8 applies.
On the other hand, if n1 = n4 = 5, then clause 4.7 applies.
This disposes of the case ` = 4. The analysis in the second case is longer

and will again involve some special considerations for ` = 5.

Case 2. ` ≥ 5
We show first that

n5 ≥ 5(6)

Suppose on the contrary n5 ≤ 4. Prune the terminal segment R5 =
(B5, . . . , B`). If this leaves a segment containing (B1, B2, B3) then we con-
tradict the minimality of `. So there must be some reversed initial segment
(Bj , Bj−1, . . . , B1) embedding into R5 over a basepoint of B5. Since j ≥ 3,
this gives an embedding of (B4, B3, B2, B1) into (B4, B5, . . . , B`). Then by
Lemma 5, a solid block path of type (n1, n2, n3, n4 − 1) must be a Rado
constraint. This again contradicts the minimality of `. So (6) follows.

Next we show

n4 ≤ 4(7)

Otherwise, we have n4, n5 ≥ 5, and pruning the first block will yield a
contradiction unless ` = 5 and n1 = n5. In this case, we may choose the
numbering so that n4 ≤ n2. If n4 < n2 we prune the terminal segment
(B4, B5) for a contradiction. So we arrive at the symmetric case ` = 5,
n1 = n5 = 5, n2 = n4 ≥ 6, n3 ≤ 4. Then Lemma 5 says that a solid
block path of type (n1, n2, n3 − 1) is a Rado constraint, which in light of
Proposition 9 forces n3 = 3. In this case, if n4 > 3 then clause 5.1 applies.

So (7) holds.
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Now prune the terminal segment (B4, B5, . . . , B`). Again Lemma 5 will
apply, and gives a contradiction unless

n3 = 3(8)

At this point, we examine the possibility ` = 5 separately.
Pruning the terminal segment (B4, B5) will give a contradiction unless

n5 ≥ |B1B2| = n1 + n2 − 1 > n1, n2

In this case, pruning the initial block B1 leaves a solid block path of type
(n2, n3, n4, n5) with

n5 > n2 > n4 > n3 = 3

If n4 > n3 then clause 4.8 applies, and if n4 = n3 = 3, then clause 5.2 or 5.3
applies.

So we may suppose

` ≥ 6(9)

We summarize the conditions established so far.

n1, n2, n5 ≥ 5 n3 = 3 n4 ≤ 4

To conclude, it will suffice to consider n6.
If n6 ≥ 5 then pruning the reversed initial segment L3 = (B3, B2, B1)

will give a contradiction unless the terminal segment (B4, B5, . . . , B`) em-
beds into L3. In this case Lemma 5 gives a contradiction unless ` = 6 and
n4 = 3. Applying this to the reversal of C, it then follows that C is fully
symmetric. So pruning the block leaves B1, B6 leaves a solid block path of
type (n2, n3, n4, n5) with n2 = n5 ≥ 5 and n3 = n4 = 3. So clause 4.3 of
Proposition 8 applies.

On the other hand, if n6 ≤ 4, then we prune the terminal segment
R6 = (B6, B7, . . . , B`), getting a contradiction unless some reversed initial
segment (Bj , Bj−1, . . . , B1) embeds into R6 over a basepoint in B6. Since
n4 < n5 this forces the reversed initial segment (B4, B3, B2, B1) to embed
into (B5, B6, . . . , B`) and then Lemma 5 gives a Rado constraint of type
(n1, n2, n3, n4 − 1), contradicting the minimality of `. �

Lemma 13. Let C be a solid block path in which four consecutive block sizes
ni, ni+1, ni+2, ni+3 are at least 4. Then C is not a Rado constraint.

Proof. We take a counterexample C of minimal length `. By Lemma 7, all
block sizes of C are at least 4.

As pruning a minimal block leaf reduces the length by at most 2, we find

` ≤ 5(1)
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Case 1. ` = 4
Suppose first that n2 > 4. By Lemma 12 we have n1 = n3 = 4. If n4 = 4

then clause 4.1 applies to the reversal of C. If n4 > 4 then one of clauses
4.9,10,11 applies.

As the case with n3 > 4 is the same up to reversal, the remaining alter-
native is n2 = n3 = 4. We may suppose n1 ≤ n4.

If n1 = 4 then clause 4.12 or 4.13 applies. If n1 > 4 then clause 4.14
applies.

This completes the analysis when ` = 4.

Case 2. ` = 5
In this case we must have

n1 = n5(2)

Pruning B1, B5 gives a solid block path of type (n2, n3, n4). By Proposition
9 we conclude

n3 = 4(3)

We may suppose that n2 ≤ n4. Then the reversed initial segment (B3, B2, B1)
embeds into (B3, B4, B5) and Lemma 5 says that a solid block path of type
(n1, n2, n3 − 1) is a Rado constraint. By Proposition 9 we find

n2 = 4(4)

If n4 > 4 then by Lemma 12 we have n5 = 4, and clause 5.5 or 5.4 applies.
On the other hand, if n4 = 4 then the variable length clause V.1 applies

(we will use the label V for "variable").
�

2.4. Length 4.

Proposition 14 (Length 4). Let C be a solid block path which is a Rado
constraint, of length 4, with all block sizes at least 3.

Then up to reversal, C has one of the following types.

• n3 ≥ 5
(1) (n3, 3, n3, 3)
(2) (3, 3, n3, 3)

• n2 = n3 = 4
(1) (3, 4, 4, 4)

• n2 = 4, n3 = 3
(1) (4, 4, 3, n4) (n4 ≥ 3)
(2) (3, 4, 3, n4) (n4 ≥ 3)

• n2 = n3 = 3
(1) (n1, 3, 3, n4), n1 ≤ n4; if n1 ≥ 4 then n4 ≥ n1 + 2
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Proof. We treat first the special cases in which n1 = n4, or n2 ≥ 5.

Case 1. n1 = n4

Suppose first that n1 = n4 = 3. Then by clause 4.2, we have min(n2, n3) =
3 and we may suppose n2 = 3. This is one of the allowed types and there is
nothing more to prove in this case.

So now suppose that n1 = n4 ≥ 4. Then by Lemma 13 we may suppose
n3 = 3.

If n2 < n1 then clause 4.3 applies.
If n1 ≤ n2 then by Lemma 12 we find n1 = 4. As type (4, 4, 3, 4) is

allowed, we may suppose n2 ≥ 5. Then clause 4.15 applies.

Case 2. n2 ≥ 5, n1 6= n4

By Lemma 12 we have n1, n3 ≤ 4. Suppose first

• n1 = 4

If n4 = 3 then we prune the block B4 and contradict Proposition 9. So
n4 ≥ 4; but n4 6= n1, so n4 ≥ 5.

Now Lemma 13 yields n3 = 3. Then clause 4.16 or 4.17 applies.
Now suppose

• n1 = 3, n3 = 4

If n4 ≥ 5 then clause 4.17, 18, or 19 applies.
If n4 ≤ 4 then clause 4.2 or 4.20 applies.
Finally, suppose

• n1 = n3 = 3

The claim is that n4 = 3 or n2. In all other cases, clause 4.21 or 4.22
applies.

Since the case n3 ≥ 5 involves only a change of notation, the remaining case
is the following.

Case 3. n2, n3 ≤ 4, and n1 6= n4

We may suppose n2 ≥ n3.
If n2 = n3 = 4 then by Lemma 13 we may suppose n1 = 3. If n1 = 3 then

clause 2 applies, and if n1 = 4 then we have one of the allowed configurations,
of type (3, 4, 4, 4). If n1 ≥ 5 then clause 4.23 applies.

So we may suppose n3 = 3.
If n2 = 4, then as the configurations with n1 ≤ 4 are allowed, we may

suppose n1 ≥ 5. Then clauses 4.24,25 force n4 ≥ 5. If n4 > n1 then clause
4.8 applies to C. If n1 > n4 then the variable length clause V.?? applies.

Finally, suppose n2 = n3 = 3. Then we may suppose n1 < n4. If n1 = 3
we have no constraint, and if n1 ≥ 4 then by clause 4.3 we have n4 ≥ n1 + 2.

This completes the analysis in all cases. �
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2.5. Segments of type 4+4+. We now consider solid block paths contain-
ing two consecutive blocks of size 4 or more. We begin with the case in
which three consecutive blocks have order at least 4. Rather than establish-
ing an absolute result, we embed this into the context of an inductive proof
of Theorem 1.

Lemma 15. Let C be a solid block path of length ` in which all blocks have
size at least 3. Suppose that three consecutive block sizes ni, ni+1, ni+2 are all
at least 4, and C is a a Rado constraint. Suppose further that all solid block
paths of length less than ` which are Rado constraints satisfy the conditions
of Theorem 1. Then ` ≤ 4, and one of the following applies.

• ` = 3 and n2 = 4
• ` = 4 and C or its reversal is of type (4, 4, 4, 3)

Proof. Suppose the contrary.
By Lemma 13 the 4-constituent C0 containing the blocks Bi, Bi+1, Bi+2

consists of just these three blocks, and by Lemma 7 it is a Rado constraint.
In particular

ni+1 = 4(1)

If ` ≤ 4 then it suffices to apply Proposition 9 or 14. So we suppose

` ≥ 5(2)

We choose notation so that i ≤ `/2. Our first claim is

i = 1(3)

Supposing the contrary, notice that by Lemma 13 we have ni−1 = ni+3 =
3. Furthermore, after pruning a minimal block leaf we have one of the
configurations listed above, so ` ≤ 6 and indeed ` ≤ 5 if n1 6= n`.

Suppose first that n1 ≥ 4. Then i ≥ 3 so ` ≥ 6. It follows that ` = 6 and
n1 = n`. But here i = 3, ni+3 = 3, and we have a contradiction.

So n1 = 3. If n` > 3 then pruning the initial block B1 gives a contra-
diction. So n1 = n` = 3. Thus we are dealing with type (3, n2, 4, n4, 3) or
(3, 4, 4, 4, 3, 3) with n2, n4 ≥ 4, and one of clauses 5.6,7,8, 6.1 applies.

Thus claim (3) holds.
In particular,

n2 = 4 n4 = 3(4)

Next we dispose of the case ` = 5. If n5 < n1 we prune the final block B5

and find n1 = n2 = n3 = 4, hence n5 = 3 and clause 5.9 applies.
If n5 = n1 then again we prune the block B5 and we find n3 = 4. Then

clause 5.10 or 11 applies.
Now suppose n5 > n1. Then we prune the initial block B1 to find n3 = 4.

If n1 ≥ 5 then the variable length clause V.1 applies. If n1 = 4 then clause
5.12 applies.
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So we may suppose

` ≥ 6(5)

If n` < n1 we have an immediate contradiction by pruning the last block
B`, since the pruned block path should satisfy Theorem 1.

Similarly if n1 < n` and we prune the first block B1, then since ` ≥ 6
the only possibility for the type of the pruned block path C ′ is (4, 4, 3, 3, n6)
with n6 ≥ 9, so the type of C is (n1, 4, 4, 3, 3, n6) with 4 ≤ n1 < n6. Then
pruning the terminal segment (B5, B6) shows n1 = 4 and clause 6.2 applies.

So we suppose

n1 = n`(6)

If n`−1 = 3 we prune the terminal segment (B`−1, B`) and the pruned
block path must have type (4, 4, 4, 3), which implies ` = 6 and the type of C
is (4, 4, 4, 3, 3, 4). So clause 6.3 applies.

So we suppose

n`−1 ≥ 4(7)

In this case, after pruning the minimal block leaves and applying Theorem
1 to the residue, we find

` = 6(8)

and the type is (n1, 4, 4, 3, n5, n1).
If n1, n5 ≥ 5 we prune the reversed initial segment (B2, B1) and arrive at

a contradiction. So n1 or n5 equals 4.
If n1 = 4 < n5 then clause 6.4 applies. If n5 = 4 < n1 then the variable

length clause V.1 applies. If n1 = n5 = 4 then clause 6.5 applies. �

We continue this analysis for the case of two successive blocks of size at
least 4, a crucial case for the analysis in general.

Lemma 16. Let C be a solid block path of length ` ≥ 5 in which all blocks
have size at least 3. Suppose that two consecutive block sizes ni, ni+1 are both
at least 4, and C is a a Rado constraint. Suppose further that all solid block
paths of length less than ` which are Rado constraints satisfy the conditions
of Theorem 1. Then

ni = ni+1 = 4

and C or its reversal has one of the following types.
(1) (4, 4, 3`−2)
(2) (4, 4, 3, 3, n) with n ≥ 9 (length 5).

Proof. We suppose that C is a counterexample of length `, and that i is
minimized. In particular since C may be reversed, we have i ≤ `/2.

By Lemma 15 we have

ni−1, ni+2 = 3

when defined.
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We divide into cases according to the value of i.

Case 1. i ≥ 3

In this case, ` ≥ 6. If we prune a minimal block leaf then the length of
the residue is at least 4 and contains the pattern 3, ni, ni+1, 3, so we reach a
contradiction.

Case 2. i = 2

Then

n1 = n4 = 3

Suppose first
• n` > 3

Then pruning the first block B1 leaves a residue C ′ of the form (4, 4, 3, n)
with n ≥ 4 or (4, 4, 3, 3, n) with n ≥ 9 (bearing in mind that n` ≥ 4).

We find that ` = 5 or 6 and C has type (3, 4, 4, 3, n5) or (3, 4, 4, 3, 3, n6).
Then clause 5.13 or 6.6 applies.

Now suppose
• n1 = n` = 3

Then pruning the block leaves shows that n3 = 4. If ` = 5 then the type
is (3, n2, 4, 3, 3) and clause 5.14 or 5.13 applies. So suppose ` ≥ 6 and the
residue C ′ has length at least 4.

Then C has one of the following types.
(1) (3, 4, 4, 3, n5, 3) with n5 ≥ 4 (` = 6)
(2) (3, 4, 4, 3, 3, n6, 3) with n6 ≥ 9 (` = 7)
(3) (3, 4, 4, 3`−3) (` ≥ 5)

Now clause 6.7, 7.1 or V.2 applies.

Case 3. i = 1

In this case, we subdivide further by comparing n1 and n`.

Case 3A. n` < n1

Then we prune the final block B`, leaving a residue of length at least 4
with n1 = 4, hence n` = 3; so C is of one of the following types.

(1) (4, 4, 3`−2)
(2) (4, 4, 3, n, 3), n ≥ 4 (` = 5)
(3) (4, 4, 3, 3, n, 3), n ≥ 9 (` = 6)

As type (4, 4, 3`−2), is one of the allowed configurations, it suffices to deal
with the other two.

C has type (4, 4, 3, n, 3), with n ≥ 4 then clause 5.15 or 5.16 applies.
If C has type (4, 4, 3, 3, n, 3) with n ≥ 9then clause 6.8 applies.
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Case 3B. n` > n1

We prune the initial block B1, leaving a residue C ′ of length `− 1 whose
first and last block sizes are both at least 4. It follows that ` ≤ 6 and C is
of one of the following forms.

(1) (n1, n2, 3, 3, n5)
(2) (n1, 4, 4, 3, 3, n6), n6 ≥ 9

The type (n1, n2, 3, 3, 4, 4) cannot occur here as n` > n1 ≥ 4.
Pruning the terminal segment (B`−1, B`) shows that n2 = 4, and if ` = 6

then n1 = 4. That is, C has one of the following types.
(1) (n1, 4, 3, 3, n5), n5 > n1 ≥ 4
(2) (4, 4, 4, 3, 3, n6), n6 ≥ 9

In the first case, if n1 ≥ 5 then the variable length clause V.1 applies,
and if n1 = 4 then by clause 5.17 we arrive at the allowed configuration
(4, 4, 3, 3, n5) with n5 ≥ 9.

In the second case, clause 6.2 applies.

Case 3C. n1 = n`
We may suppose n2 ≥ n`−1, since otherwise we reverse C.
Suppose first that
• n2 > n`−1

Then we prune the terminal segment (B`−1, B`), leaving a residue C ′ of
length ` − 2 ≥ 3 of the form (n1, n2, 3, . . . , n`−2). If ` ≥ 6 then this forces
n1 = n2 = 4 and hence n`−1 = 3. So C is of one of the following forms.

(1) (4, 4, 3`−3, 4)
(2) (n1, 4, 3, 3, n1), n1 ≥ 5 (` = 5);
(3) (4, 4, 3, n4, 3, 4), n4 ≥ 4 (` = 6)
In the first case, the variable length clause V.3 applies.
In the second case, clause 5.18 applies.
In the last case, pruning the block leaves shows n4 = 44. and clause 6.9

applies.
Now suppose that
• n2 = n`−1

Then we have n3 = n`−2 = 3.
If ` = 5, then C has the symmetric type (n1, n2, 3, n2, n1). For n1 6= n2

this is covered by clause 5.1. If n1 = n2 then by Lemma 12 we have n1 = 4
and clause 5.19 applies.

If ` ≥ 6, then pruning the block leaves results in a residue C ′ of type
(n2, n3, . . . , n`−1) with n2 = n`−1 ≥ 4, n3 = n`−3 = 3, which contradicts the
relevant instance of Theorem 1. �

2.6. Length 5. Our target now is the following.

Proposition 17. Let C be a solid block path of length 5 with all block sizes
ni at least 3. If C is a Rado constraint, then up to reversal the type of C is
of one of the following forms.
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(1) (3, 3, 3, 3, n);
(2) (3, 3, 3, n, 3);
(3) (3, 3, 3, 4, 4);
(4) (4, 4, 3, 3, n) with n ≥ 9
(5) (3, n2, 3, 3, n5) with n2, n5 ≥ 4 and |n2 − n5| ≥ 2
(6) (3, 3, n, 3, n) with n ≥ 5

Proof. In Lemma 16 we disposed of the case in which two consecutive block
sizes are at least 4, so we suppose here that this is not the case.

Case 1. n3 ≥ 4
In this case, n2 = n4 = 3. We may suppose n1 ≤ n5.
If n5 < n3, then clause 5.20 applies.
Suppose n5 = n3. If n1 < n5 then clause 5.21 applies when n1 ≥ 4, and

when n1 = 4 clause 5.22 says that n3 ≥ 5, at which point we have an allowed
configuration. If n1 = n3 = n5 then clause 5.23 applies.

Finally, suppose n5 > n3.
If n1 < n5 then we prune the initial block B1 leaving a residue of type

(3, n3, 3, n5) with 4 ≤ n3 < n5. This forces n3 = 4: the type of C is
(n1, 3, 4, 3, n5) with n1 < n5 and n5 ≥ 5. Then clause 5.24, 25, or 26 applies.

If n1 = n5 > n3 then clause 5.27 applies.

Case 2. n2 ≥ 4
Now we have n1 = n3 = 3.
If n4 ≥ 4 then the type is (3, n2, 3, n4, 3) and we may suppose n2 ≤ n4.

Then clause 5.28 or 5.29 applies.
Suppose n4 = 3, so the type is (3, n2, 3, 3, n5) with n2 ≥ 4. If n5 = 3 the

configuration is allowed, so suppose n5 ≥ 4. Pruning the first block we find
|n5 − n2| ≥ 2 and now the configuration is allowed.

Case 3. n2 = n3 = n4 = 3
We may suppose n1 ≤ n5.
If n1 = 3 this is an allowed configuration, so we suppose n1 ≥ 4. Then

one of the variable length clauses V.4, 5 applies. �

So at this point we have the following.

Proposition 18. Theorem 1 holds for solid block paths of length at most 5.

Proof. This is vacuous for length 1, and the other possibilities are treated in
Fact 3 and Propositions 9, 14, 17. �

With this, the base of an inductive proof of Theorem 1 is complete, and
we may now treat the general case inductively.

2.7. The generic case.

Proposition 19. Let C be a solid block path of length ` ≥ 6 with all block
sizes ni ≥ 3. If C is a Rado constraint then up to reversal the type of C has
one of the following forms.
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(1) (3, 3, . . . , n, 3);
(2) (3, 3, . . . , 3, n);
(3) (3, 3, . . . , 3, 4, 4);

Proof. Let C be a counterexample of minimal length `. By Proposition 18
we have

` ≥ 6

Now Lemma 16 applies.
If ni ≥ 4 then ni±1 = 3, when defined.

We may suppose n1 ≤ n`.

Case 1. n1 < n`

In particular n` ≥ 4 and n`−1 = 3. We prune the initial block to get a
residue C ′ of length ` − 1 ≥ 5 with terminal block of size at least 4. The
possible types for C ′ are the following.

(1) (3, . . . , n`)
(2) (3, . . . , 4, 4)
(3) Length 5: (3, n3, 3, 3, n6) with n3, n6 ≥ 4 and |n3 − n6| ≥ 2
(4) Length 5: (3, 3, n, 3, n) with n ≥ 5

We list the corresponding possibilities for the type of C.
(1) (n1, 3, . . . , 3, n`) with n1 < n`, ` ≥ 6
(2) (3, . . . , 4, 4) (allowed)
(3) Length 6: (n1, 3, n3, 3, 3, n6), |n3 − n6| ≥ 2, n1 < n6, n3 ≥ 4
(4) Length 6: (n1, 3, 3, n, 3, n) with n1 < n, n ≥ 5

In type (1), if n1 ≥ 4 then the variable length clause V.5 applies, while if
n1 = 3 the configuration is allowed.

Type (2) is allowed.
In type (3), we have n3 6= n6. If n1 6= n3 and n1 ≥ 4 then clause 6.10 or

6.11 applies. If n1 = n3 then clause 6.12 applies. If n1 = 3 then clause 6.13
or 6.14 applies.

In type (4), clause 6.15 applies.

Case 2. n1 = n` ≥ 4

Then n2, n`−1 = 3.
We prune the block leaves of C and as the residue C ′ has length at least 4

and initial and terminal blocks of order 3, and no consecutive blocks of order
at least 4, applying Theorem 1 to the residue shows that up to reversal it
may be taken to have the following type.

(3`−4, n`−2, 3)

That is, the type of C is

(n1, 3
`−4, n`−2, 3, n1)

with n1 ≥ 4.
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If n`−2 = 3 then the variable length clause V.4 applies. So suppose
n`−2 ≥ 4.

Then we prune the reversed initial segment (B3, B2, B1). If ` ≥ 8 this
gives a contradiction. We consider the case ` = 6 or 7 separately.

If ` = 6 then clause 6.16, 17, or 18 applies.
If ` = 7, C is of type (n1, 3, 3, 3, n5, 3, n7), then the residue of the last

pruning has type (3, n5, 3, n1) with n1, n5 ≥ 4. So n1 = n5 and clause 7.2
applies.

Case 3. n1 = n` = 3

Now after pruning the leaf blocks we arrive at the following possible types
for C. In each case we have indicated the relevant clauses from Proposition
8, apart from the first case, which is an allowed configuration.

(1) (3, . . . , 3, n`−1, 3), n`−1 ≥ 3; (allowed)
(2) (3, . . . , 3, n`−2, 3, 3), n`−2 ≥ 4; variable length clause V.6
(3) Length 6: (3, n2, 3, 3, n4, 3) n4 ≥ n1 + 2 ≥ 6; clause 6.19
(4) Length 6: (3, 3, n3, 3, n3, 3) clause 6.20
(5) Length 6: (3, 3, 4, 3, n5, 3) clause 6.21
(6) Length 7: (3, 3, n3, 3, 3, n6, 3), |n3 − n6| ≥ 2 clause 7.3
(7) Length 7: (3, 3, 3, n, 3, n, 3), n ≥ 5 clause 7.4
This completes the analysis

�

Modulo the critical configurations listed in Proposition 8, this completes
the proof of Theorem 1. Length at most 5 is covered by Proposition 18, and
length at least 6 is covered by Proposition 19.



30 GREGORY CHERLIN AND SAHARON SHELAH

3. Critical Configurations of Length 3

Now we take up the proof of Proposition 8.
There is a standard method for proving that a constraint C is not a Rado

constraint, which was given a theoretical justification in [CSS99]: when the
key step in the usual construction fails, there is always a universal countable
C-free graph, and even one with oligomorphic automorphism group. However
we will not concern ourselves further with the general theory here. We will
however lay out the general form of the construction here, as it is typically
encountered in practice.

3.1. C-rigid graphs. If the reader is not familiar with this type of con-
struction it may be better to return to this general discussion later, with one
of the concrete cases discussed below in mind.

Definition 20. Let C be a constraint graph. Let G be a countable C-free
graph and A a fixed finite set of vertices in G.

1. Two extensions G1, G2 of G are C-incompatible over A if there is no
C-free graph G∗ for which there are isomorphisms

fi : Gi → G∗ (i = 1, 2)

with subgraphs of G∗, and with f1, f2 agreeing on A.
2. G is a C-skeleton if it contains a finite subset A such that there is an

uncountable family G of C-free graphs which are pairwise C-incompatible
over A.

Once we have found a C-skeleton we will be done.

Lemma 21. Let C be a constraint graph. If there is a C-skeleton, then there
is no countable weakly universal C-free graph.

Proof. If G∗ is a countable weakly universal C-free graph then we have an
uncountable family of embeddings fX : X → G∗ where X varies over the
associated family G of extensions of G.

As A is finite and G∗ is countable, there must be distinct X,X ′ ∈ G
for which the associated functions agree on A. But this contradicts our
definitions. �

The way one gets a C-skeleton is first to construct G so that some finite
set A “controls” an infinite subset Â in a manner we will make precise, and
then to make various extensions by attaching fragments of C to pairs of
vertices in Â in as independent a manner as possible.

The issue of control is formalized as follows.

Definition 22. Let C be a constraint graph, G a C-free graph, and A,B
two subsets of G. Then B is C-controlled by A in G if for any C-free graph
G∗ and any two embeddings f1, f2 : G → G∗ of G as a subgraph of G∗, if
f1, f2 agree on A then they agree on B.

G is C-rigid if it contains an infinite subset which is controlled by a finite
subset.
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C-rigidity is the fundamental issue, and the bulk of our argumentation
below will be aimed at the construction of C-rigid graphs G for a variety of
specific constraints C.

To reach the point where Lemma 21 applies, starting with G C-free and
C-rigid, with B the infinite subset controlled by a finite subset A, one shows
that one can attach additional graphs C0, C1 to certain pairs of vertices in
B in an essentially arbitrary way, so that the resulting extension is always
C-free, but any two such are C-incompatible over B (and hence over the
finite subset A).

In most cases we deal with here, C0 will be just a pair of vertices v1, v2
connected by an edge, and C1 will be the result of deleting an edge from some
complete graph. Then C0∪C1 will be a complete graph of some specified size,
taken to be some particular block of the constraint graph C whose insertion
would produce an embedding of all of C.

What we wish to take away from the discussion so far is the following.
The main goal of any of the following constructions is to pro-
duce a C-free graph G in which some finite set of vertices
C-controls some infinite set.

In very general terms, the way to get a C-rigid graph is by first form-
ing some particular homomorphic image C̄ of C in which two non-adjacent
vertices are identified, and then gluing together multiple copies of C̄ along
some “template” which may be thought of s a k-hypergraph, where k = |C̄|
(approximately, or a little larger to allow for embellishments).

It will be instructive to consider three examples of this type of construc-
tion, since this is where the main decisions are actually made. One has the
choice of C̄ and the choice of template to consider.

Example 1. Füredi-Komjáth [FK97a]
Here the result to be proved is that if C consists of a single incomplete

block, then C is not a Rado constraint.
What is noteworthy here is that the focus of attention is exclusively on

the template.
Indeed, the hypothesis on C tells us that there is a nontrivial homomorphic

image C̄ formed by identifying two non-adjacent vertices, and in this case it
does not matter which such homomorphic image is taken.

The main ingredient in the construction is the identification of a suitable
k-hypergraph with k = |C| = 2, such that hyperedges meet in at most one
point and the girth is large. These two conditions ensure that C will not
embed in the graph that comes from placing a copy of C on the vertices of
each hyperedge (with 2 additional vertices kept in reserve for a later part of
the argument). They do not ensure rigidity, so a third condition is imposed
on the hypergraph, and a little more care is taken with the precise placement
of the “duplicated” vertex of C̄.

In the Füredi-Komjáth construction, the whole vertex set plays the role
of the controlled part.
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Example 2. A solid block path of type (5, 5)
Here the constraint graph C consists of two complete graphs K5 with one

point in common, and C̄ will consist of two copies of K5 with two points in
common. Now the template has a particular form, and in fact there will be
considerable overlap between various copies of C̄, as shown here.

Here {ai, ui, ui+1, ui+2, ai+2} is a clique of order 5.
This is a very different pattern from the “almost disjoint” pattern of our

first example.
Here the important controlled set is the sequence (ui : i ∈ Z) running along

the middle, and the template is roughly a Z-template, as is more commonly
the case.

The rigidity argument is based on the impossibility of squeezing another
copy of K5 into this picture without creating a copy of C; another way
of looking at is that we have not made any unnecessary identifications of
vertices.

Here both the choice of C̄ and the general form of the template are trivial,
and everything comes down to choosing the right additional identifications
(overlaps).

We will make some further use of this construction below.

Example 3. Loop Constructions
Our third construction is the workhorse for the proof of Proposition 8,

and will be presented formally a little later.
This applies when we have a solid block path constraint C with at least

three blocks, and it applies more easily when there are more blocks (ideally,
it would be nice to have at least 6, but this will not generally be the case here,
so our proofs will involve a substantial amount of background noise—which
may indeed be why these are the critical cases).

In this case the choice of C̄ is largely standardized: we identify a vertex
in the initial block with a vertex in the terminal block. This gives us one
distinguished vertex v̄ in the quotient C̄. We need a second distinguished
vertex ū and for this we select some cut vertex of C (generally chosen with
care).
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The template is a Z-template, and we use something like an almost disjoint
construction. Namely, we may take copies Li of C̄ for i ∈ Z and identify v̄i
with ūi+1 to get a chain of loops Li.

If this turns out to be C-free then it is roughly what we are looking for.
More often than not in the cases that actually us concern us there will be
“unintended” embeddings of C into this chain of loops and they will be killed
by introducing some additional identifications (overlaps).

Generally speaking, by the time one has worked out exactly which addi-
tional identifications are needed, the proof of rigidity is fairly clear (at least,
once one has the full details as we give them below). It is the sequence
(ui : i ∈ Z) which is controlled by a finite set.

It is not so easy to say which cut vertex should play the role of ū here;
this depends on what sorts of unintended embeddings of C one gets, and
how they can be blocked.

We will develop a tabular representation of these constructions which gives
the essential data for the construction in a few lines, once we have seen a
few worked through.

Before taking up the loop constructions, we deal with a few cases that are
treated more in the manner of our second example.

3.2. Length 3, cases 1 and 2. We take up the first few solid block paths
listed in Proposition 8. There are none of length 1, and the case of two
blocks was handled in [CT07]. So the analysis begins with length 3. In this
case, loop constructions may already be appropriate, but some cases behave
more like the case of length 2. So we take up those exceptional cases first.

The solid block paths in question have type (5, 5, n3) with n3 ≥ 5 or
(6, 6, 6) (clauses 5.1,2).

Lemma 23 (5.1). Let C be a solid block path of type (5, 5, n) with n ≥ 5.
Then there is no countable weakly universal C-free graph.

Proof. Let G0 be the graph introduced in Example 2 above.
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The vertices are labeled ai, ui (i ∈ Z) and

Ki = {ai, ui, ui+1, ui+2, ai+2}
is a clique of order 5.

Then the graph G0 contains no block path of type (5, 5), and its maximal
cliques are just the Ki.

Now adjoin a set U of (n − 1) additional vertices forming a clique, and
adjacent to all vertices ai with

i ≡ 0, 1 (mod 4)

Let Ûi = U∪{ai} be the corresponding clique of order n, for i ≡ 0, 1 (mod 4).
Let G1 be the resulting graph.

We claim that G1 is C-free and C-rigid, but it will be more efficient to
complete our description of the construction by going through the extension
process that produces an uncountable family of C-free extensions first.

So for any ε ∈ 2Z (that is, ε : Z→ {0, 1}) we extend G1 to a graph Gε as
follows.

Let C0 be an edge, and let C1 be a clique of order 5 with one
edge deleted. For each i, attach a copy of Cε(i) to the pair
(u4i, u4(i+1)) (identified with the vertices on the deleted edge
of C1 when ε(i) = 1).

This completes the construction. Now we check the relevant properties.

Claim 1. The graphs Gε are C-free.

The passage from G1 to Gε adds no cliques of order 5, so it suffices to
consider G1. It is clear that an embedding of C into G1 would embed a block
path of type (5, 5) into G0, and G0 is (5, 5)-free.

This proves the claim.
Since we consider embeddings of graphs as (not necessarily induced) sub-

graphs of other graphs, it is useful to know in some cases that non-edges are
preserved.

Claim 2. LetG be a C-free graph containingG1. Then (ai, ai+1) is a nonedge
in G.

Otherwise, the set Q = {ai, ui, ui+1, ai+1, ui+2} is a clique of order 5 meet-
ing Ki+2 in the unique vertex ui+2, and then together with a clique Ûj with
j = i + 2 or i + 3, we embed C into G.

The main point in the proof of rigidity is the following.

Claim 3. Let G be a C-free graph containing G1 and let K be a clique of
order 5 containing ui and disjoint from U . Then K is one of Ki−1, Ki, or
Ki+1.

One just inspects the possibilities. But we give the details.
Let i−, i+ be respectively the least and greatest i such that ui ∈ K. Our

claim is that K = Ki− .
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Suppose first that there are j− < i−, j+ > i+ so that aj− , aj+ ∈ K, and
let j−, j+ be respectively minimal and maximal. If j− 6≡ 0, 1 (mod 4) we
embed C into G as (K,Kj−−2, Ûj−2) for a contradiction. So suppose j− ≡ 0

or 1 (mod 4), and similarly j+ ≡ 0 or 1 (mod 4). Then Ûj− and Ûj+ are
defined, and C embeds into (Ûj− ,K, Ûj+).

So we may suppose that there is no j < i− such that aj ∈ K. If
K ∩ Ki−−2 = {ui−} then we embed C into G as (K,Ki−−2, Û) where Û
is attached to Ki−−2.

SoK must contain another vertex ofKi−−2, which can only be ai− . By the
previous claim, it then follows that ai−±1 /∈ K. Now considering K ∩Ki−−1,
we see that ui−+1 ∈ K.

In particular, i+ > i− and we have similarly ai+ , ui+−1 ∈ K. As K has
order 5, we conclude that i− + 1 = i+ − 1 and K = Ki− , as claimed.

Claim 4. The graph G1 is C-rigid: the set {ui | i ∈ Z} is controlled by the
set {u−1, u0, u1}.

We suppose G∗ is C-free and G1 is embedded as a subgraph into G∗ by
the function f : G1 → G∗, with f(u−1), f(u0), f(u1) known. It suffices to
show that f(u2) is then known, and to proceed inductively.

In G1, the three cliques of order 5 disjoint from U and containing u1
are K0, K1, K2. By considering their intersections with {u−1, u0} we can
distinguish them. Then considering Ki ∩K1 we determine u2.

Since the images of these three cliques in G∗ are the only cliques of order
5 containing f(u1), we determine f(u2) the same way.

Now the graphs Gε come into play in the manner of Lemma 21.

Claim 5. G1 is a C-skeleton.

We know that the various extensions Gε of G1 are C-free, and it suffices to
show that they are pairwise C-incompatible over the finite set {u−1, u0, u1};
since this set controls {ui | i ∈ Z} we may work over the latter set.

So suppose ε 6= ε′ and f : Gε → G∗, f ′ : Gε′ → G∗ are embeddings as
subgraphs of a C-free graph G∗. We fix an index i so that ε(i) 6= ε′(i) We
may suppose that ε(i) = 1 and we may view f as the identify map, f ′ as
some other map which is the identity on {ui | i ∈ Z}.

InGε there is a copy of C1 (K5 with an edge deleted) attached to (u4i, u4(i+1))
and the missing edge is supplied by f ′[C0]. So writing K for the resulting
clique of order 5, we get an embedding of C into (K4i−2,K, Û4(i+1)), and a
contradiction.

This proves the claim, and now Lemma 21 applies. �

The next argument differs from the foregoing in the insertion of an addi-
tional stage of decoration by anti-edges. This guarantees that certain non-
edges in our original skeleton graph must remain non-edges in any larger
C-free graph, and will be a standard feature of our loop constructions as
well.
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Lemma 24 (3.2). Let C be a solid block path of type (6, 6, 6). Then there is
no countable weakly universal C-free graph.

Proof. We begin with the graph G0 considered in the previous proof. Recall
that the vertices of G0 are labeled ai and ui with i ∈ Z.

Let (v, P ) be a clique P of order 6 with a distinguished basepoint v. Let
(vij ,Kij) be disjoint copies of (v, P ) for i, j ∈ Z. We let G1 be the disjoint
sum of G0 and the cliques Kij , with additional edges joining the vertex vij
to the clique Ki in G0. We now have overlapping cliques K̂ij = Ki∪{vij} of
order 6. In particular we have many configurations (K̂ij ,Kij) of type (6, 6),
with vij the cut vertex.

Now we extend G1 further by the addition of anti-edges.
Let A be the graph derived from a clique of order 6 by removing one edge

e = (a, a′). We extend G1 to the graph G2 formed by freely attaching a copy
Ai of A to G0 with the pair (a, a′) identified with the vertices (ai, ai+1) in
G0.

This construction immunizes the nonedge (ai, ai+1) in the following sense.

Claim 1. If G is a C-free graph containing G2, then (ai, ai+1) is a nonedge
in G.

Otherwise, the induced graph onAi would be a clique, and then (Ai, K̂ij ,Kij)
would have type (6, 6, 6) for any j.

We will prove that G2 is a C-skeleton. So we now prepare an uncountable
family of extensions of G2. For ε ∈ 2Z, form the extension Gε by freely
adding either edges or anti-edges (copies of A) over the pairs (u6i, u6(i+1))
according to the value of ε(i).

The construction is complete, and we must verify various properties of the
graphs constructed.

Claim 2. The graphs Gε are C-free.

As the decoration by anti-edges is clearly harmless, and the decoration by
edges equally so, it suffices to check that our point of departure G1 is C-free.

The cliques of order 6 in G1 are those we have explicitly defined, namely
the Kij and the K̂ij . The claim follows.

Now we prepare for a rigidity argument.

Claim 3. Let G be a C-free graph containing G2, and K a clique of order 5
in G with the following properties.

• ai, ui ∈ K;
• aj , uj /∈ K for j < i;
• G contains infinitely many extensions of K to a block path of type

(6, 6), disjoint over K, with cut vertex outside K

Then K = Ki.
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We show first that

K ∩Ki−1 = {ui, ui+1}

Since ai ∈ K, we have ai±1 /∈ K. So by our assumptions K ∩ Ki−1 ⊆
{ui, ui+1}. If ui is a cut vertex in K ∪Ki−1 then we extend K to one of the
block paths of type (6, 6) and we extend Ki−1 to one of the K̂i−1,j so that
ui is a cut vertex of the union, and we get a copy of C, and a contradiction.
This proves the claim.

In particular K meets Ki+1. Take j maximal so that K meets Kj . Then
K ∩Kj ⊆ {aj , uj}.

Again, if |K ∩Kj | = 1 we extend to an embedding of C and get a contra-
diction. So

K ∩Kj = {aj , uj}

As ai ∈ K, the vertex ai+1 is not in K. So j > i + 1 Thus

K = {ai, ui, ui+1, uj , aj}

If j > i + 2 consider K ∩Kj−1 to reach a contradiction. So j = i + 2 and
K = Ki.

Claim 4. G2 is C-rigid, with {u−1, u0, u1} controlling {ui | i ∈ Z}.

This follows from the preceding claim just as in the previous argument.

Claim 5. The extensions Gε of G2 are pairwise C-incompatible over {ui | i ∈
Z}.

This is clear by the construction (compare the proof of the corresponding
claim in the previous lemma, where we wrote out the point explicitly).

Putting all of these claims together, we find that G2 is a C-skeleton, and
hence Lemma 21 applies. �

We take the previous two arguments as representative of the genre. Going
forward, we will introduce loop constructions, which give us a different sort of
graphG0 as a point of departure, after which we continue much as above with
some further elaborations: in addition to the use of anti-edges there is an
amalgamation process involved in most cases. And the actual construction of
G0 has some delicate features, and some choices of identifications (overlaps)
to be fine-tuned according to the type of the configuration C.

3.3. Loop constructions. We turn now to the typical instance of Propo-
sition 8. The first order of business is to describe in detail the general form
of the loop constructions alluded to above.

In very general terms, we proceed as follows.
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Definition 25 (Loop Construction). Suppose C is a solid block path of
length `, with Bi its i-th block and vi the cut vertex of Bi ∪Bi+1 for i < `.

The chain G0: Identify a vertex of B1 with a vertex of B2 to form a
loop C̄, and let G0 be a chain consisting of an infinite sequence of
such loops.

Identifications: Make some identifications among vertices in succes-
sive loops of G0 to form a quotient G1.

Rigidification: Freely amalgamate infinitely many copies of the G1

over a suitable base set to get our main graph G2.
Prophylaxis: Add some anti-edges as a prophylactic device, getting a

slight extension G3 of G2.
Extensions: Decorate the graph G3 in uncountably many pairwise

incompatible ways (Gε : ε ∈ 2Z).

Thus we have a 4-stage construction of a skeleton G3. We will need mainly
to check that G1 as constructed is C-free; when anything goes wrong, this is
the usual place for it—we must block unintended embeddings of C into the
graph G1. And one must take a little care with the passage from G2 to G3,
where we glue together multiple copies of the graph over a fixed base.

One might expect that one would have to pay equal attention to the issue
of rigidity, but the point is that if one makes only the minimal identifications
necessary to block unintended embeddings of C, rigidity generally follows.
And since we begin with no such identifications and only add them as they
are needed to block unintended copies of C, any slips will simply result in a
graph which is not quite C-free.

So as we work through the examples we will tend to focus mainly on the
construction of the graph G1. But the first few examples will be given in
some detail.

Now we begin again, with more precise notation. We are concerned with
the construction of G0 and G1, and we should warn the reader that our
description of G0 above reflects our intent, but turns out not to match our
final notation exactly. In any case what will matter is the graph G1, as a
point of departure for a construction which is quite standardized past that
point.

Definition 26. A loop L of length ` is a graph of the form
⋃
i∈Z/`ZBi where

Bi is a complete graph, |Bi ∩Bi±1| = 1, and Bi ∩Bj = ∅ for |i− j| ≥ 2.
The type of the loop is the sequence (n1, n2, . . . , n`) with ni = |Bi|. (We

index from 1 to retain compatibility with our path notation.)

(These should be called solid loops, but they are the only loops that in-
terest us here.)

For our purposes, a loop L should always be viewed as a homomorphic
image of a solid block path C of the same type, with two vertices v, v′ in the
first and last blocks, respectively, identified.
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Therefore we adopt the otherwise inappropriate terminology block for the
maximal cliques Bi, and cut vertex vi for the unique vertex in Bi ∩ Bi+1.
This terminology refers largely to the situation in the original solid block
path, except that v` is the vertex that is covered by two vertices of C.

In particular, we always view a loop as coming with a particular indexing,
and in particular the vertex v` will be treated as a marked vertex.

To make a chain of loops requires marking a second vertex, as follows.

Definition 27. Let L be a loop of length ` and type (n1, n2, . . . , n`). Let `′
be a fixed index with 1 ≤ `′ < `.

1. The marked loop (L, `′) is the loop L with two distinguished vertices
a = v`′ , b = v`. Its type will be denoted

(n1, n2, . . . , nell′ ;n`′ , . . . , n`)

(The only indication of the marking is the semicolon in position `′.)
2. A chain G0 of marked loops (L, `′) is defined as follows.
Let (Li | i ∈ Z) be a Z-indexed sequence of disjoint copies of L. Let ai, bi

be the vertices in Li corresponding to the marked vertices a, b.
Let G0 be the graph obtained from the disjoint union of all Li by identi-

fying bi with ai+1.

We illustrate with a chain of loops formed from a block path of length 7
divided between blocks 4 and 5; the indices of the blocks in one of the loops
are also shown.

We leave for later the description of the identification process that pro-
duces G1, and the associated notation. By the time we are done with that,
we will realize that it is more convenient to look at a chain of loops L which
are not derived from the original constraint C, but which instead gives a
subgraph of the desired graph G1. Then rather than identifying vertices we
can view the process as one of adding edges.

This will make it easier to think about the maximal cliques in G1, and
that will facilitate the verification that G1 is C-free.

But we should first consider a concrete example.

3.4. Length 3: cases 3 and 4. Our first application of a loop construction
will be the following. We give this proof in considerable detail; later proofs
along the same lines will involve very similar considerations.
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Lemma 28 (3.3). Let C be a solid block path of length 3 satisfying the
following conditions.

4 ≤n1 = n3 < n2

Then there is no countable universal C-free graph.

Before we begin the proof, we have some comments to make about the
notation we will adopt at the beginning. In the language of §3.3, we begin
with a chain of loops of type (n1, n2;n3) (where here n3 = n1) and make the
following identifications: one vertex in the first block of Li is identified with
one vertex in the second block of Li+1; one vertex in the third block of Li is
identified with one vertex in the second block of Li+1.

Since we need to avoid the cut vertices, we require n1 ≥ 3, n2 ≥ 4 for this
to make sense (and we require somewhat more eventually).

It would be a little awkward to draw a picture of the result, but the
following schematic diagram is adequate. Here we show the vertices which
arise from identifications separately. So the basis of the construction is a
chain of loops of type (n1 − 1, n2 − 2, n3 − 1), to which some vertices are
added. This may be shown schematically as follows.

We prefer a less symmetrical representation in which all the vertices occur
in the original chain of loops. So we place the two extra vertices back into
the second block of Li+1 and represent the construction as follows.

Thus our point of view becomes the following: starting with a chain of
loops of type (n1− 1, n2;n3− 1), we add some edges to extend the cliques of
order n1 − 1 and n3 − 1 to cliques of order n1 and n3, respectively, meeting
the next loop.

Thus we revise our original description of G0: rather than beginning with
a loop of type (n1, n2;n3), we begin with a loop of type (n1 − 1, n2;n3 − 1).
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One final word about the notation: we will refer to the (so-called) blocks
of the i-th loop Li systematically as (Pi, Qi, Ri), with similar notation for
longer loops. Thus in the case at hand, two vertices of Qi+1 (not cut vertices)
will be singled out for attention.

In addition we have the distinguished cut vertices (ai, ai+1) in Li (recall
bi = ai+1).

Proof of Lemma 28. Let G0 be a chain of loops Li = (Pi, Qi, Ri) of type
(n1 − 1, n2;n1 − 1). Select vertices ui,P , uiR ∈ Qi; this actually means we
take vertices in Qi \ (Pi ∪ Ri), but for the sake of brevity we will omit this
specification in the future. Form the extension G1 by adjoining edges to
make the following vertex sets be cliques.

P̂i = Pi ∪ {ui+1,P }

R̂i = Ri ∪ {ui+1,R}

Take a subset Xi ⊆ Qi \ Pi containing the vertices ai, ui,P , ui,R with
|Qi \Xi| = n1 − 2 (recall n2 > n1).

Let G2 be the free amalgam of infinitely many copies of G1 over the base

A =
⋃
i

Xi

Attach

• edges (ui,P , ui+1,P ) and (ui,R, ui+1,R);
• anti-edges (K\e) with K a clique of order n1 to all pairs (u, u′) such
that u ∈ Xi, u′ ∈ Xi+1, and (u, u′) is not any of the following.

(ai, ai+1), (ai, ui+1,R), (ui,P , ui+1,P ), (ui,R, ui+1,R)

to get a graph G3.
Then for ε : Z → {0, 1} extend G3 to Gε by adding edges and anti-edges

(K\e) at (a3i, a3(i+1)).
This concludes the construction. Now we have the usual claims to verify.

Claim 1. The nontrivial maximal cliques of Gε (i.e., those with at least 3
vertices) are of the following forms.

(a) The cliques of order n1 − 1 in an attached anti-edge;
(b) Copies of the cliques P̂i, Qi, or R̂i in a copy of G1 in G2;
(c) Copies of the triangles Ti = {ai, ai+1} ∪ (Pi ∩Qi) in a copy of G1 in G2.

In particular, the cliques of order at least n1 are contained in copies of the
cliques P̂i, Qi, or R̂i.
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This reduces quickly to the consideration of cliques in G2, and since these
lie in one of the copies of G1 used to form G2, it suffices to consider the
maximal cliques of G1, where there is in fact something to check.

If the clique K contains no vertex of the form ui,P or ui,R then we are
working in G0 where everything is clear; though as the loop has length 3
we have to take note of some cliques of order 3 that come from the loop
structure itself.

So it suffices to look at the neighbors of ui,P or ui,R in G1, i.e.

Qi ∪ Pi−1

Qi ∪Ri−1

The claim is then clear.
So for a claim of this type, the analysis reduces more or less immediately

to checking neighborhoods of the special vertices, as long as one keeps track
of the “unintended” triangles coming from the loop structure.

Claim 2. The graphs Gε are C-free.

If j : C ∼= C ′ = (P ′, Q′, R′) ⊆ Gε is an embedding as a subgraph, then the
clique Q′ must be a copy of some Qi and we may suppose Q′ = Qi ⊆ G1.

The cliques P ′, R′ cannot lie in a second copy of Qi, since |Qi\X| < n1−1.
Nor can P ′ or R′ be a copy of P̂i−1 or R̂i−1, in view of the overlap with Qi.
So the only candidates for P ′, R′ are the clique P̂i in G1 together with copies
of R̂i in G2. But these have the common vertex ai+1.

This proves the claim.
Now we work toward rigidity.

Claim 3. Let G3 ⊆ G with G C-free, and let K be a clique of order n1

containing ai and not ai−1, and free in G over a subset X with |X| = 3 and
X ∩Xi = {ai}. Then X = {ai, ui+1,R, ai+1}.

Here the condition of freeness means that there are infinitely many copies
of K in G with pairwise intersections equal to X.

We may suppose that

K ∩ P̂iQi ⊆ X ∩ (Xi ∪ {ui+1,P , ai+1}) = {ai} ∪ (X ∩ {ui+1,P , ai+1})

If this intersection reduces to {ai} then we get an embedding of C into G,
and a contradiction. So K contains at least one of ui+1,P and ai+1. Now
ai ∈ K and (ai, ui+1,P ) is not an edge, so we find

ai+1 ∈ X

Now we may suppose

K ∩ P̂i+1Qi+1 ⊆ X ∩ (Xi+1 ∪ {ui+2,P , ai+2})

As ai ∈ X and X is a clique, we find

X ∩Xi+1 ⊆ {ai+1, ui+1,R}
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So if we show that the vertices ui+2,P and ai+2 are not in X, then the
claim will follow.

Now X consists of ai, ai+1 and exactly one further vertex, so consideration
of K ∩ P̂i+1Qi+1 eliminates ui+2,P and ai+2.

At this point we have seen that

ai−1, ai, Xi determine the set {ui+1,R, ai+1}

If in addition we have identified the parameter ui,R ∈ Xi then we can distin-
guish the vertices ui+1,R and ai+1, and thus each is determined separately.

Claim 4. Let G3 ⊆ G with G C-free. If K is a clique of order n2 meeting
Xi and free over a subset X of order |Xi|, then X = Xi.

We may suppose that i is maximal so that K meets Xi.
We may also suppose that

K ∩ P̂iQi = X ∩ (Xi ∪ {ui+1,P , ai+1} = X ∩Xi)

If X 6= Xi we may take a clique K ′ of order n1 contained in K so that

|K ′ ∩ (X ∩Xi)| = 1

As K ′ ∩ P̂iQi = K ′ ∩ (X ∩Xi) we then have an embedding of C into G, and
a contradiction.

This proves the claim.

Claim 5 (Rigidity). If G is a C-free graph and f0, f1 are embeddings of G3

into G in such a way that the images of ai−1, ai, ui,R agree, then the images
of ai+1, Xi+1, and ui+1,R agree.

It follows that the set {a0, } ∪ X1 controls {ai | i ∈ Z}, and thus G3 is a
C-skeleton. So Lemma 21 applies. �

The next loop construction introduces one more feature. In addition to the
“local” identifications which are reflected in the choice of the special vertices
ui,P , ui,R in the preceding argument, we will have some global identifications
involving a fixed finite set of additional vertices, and these will be included
in the finite controlling set in the resulting C-skeleton.

Thus the next proof represents the complete set of ingredients in a general
loop construction.

Lemma 29 (3.4). Let C be a solid block path of length 3 satisfying the
following conditions.

5 ≤n2 < n1 = n3

Then there is no countable universal C-free graph.

Proof. We may give the construction in tabular form, as follows.
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Loop Construction

Graph Type Specification

G0 Chain (2, n2; 2)

G1 Clique Ext’n P̂i = Pi∪{ui+1,P }∪P ∗, R̂i = Ri∪{ui+1,R}∪R∗,
ui+1,P , ui+1,R ∈ Qi+1,
|P ∗| = |R∗| = n1 − 3

G2 Amalg’n X = P ∗ ∪R∗ ∪
⋃
iXi, Xi = {ai, ui,P , ui,R}

G3 Anti-edges Edges (ui,P , ui+1,P ), (ui,R, ui+1,R);
anti-edges (K\e) at (ui,R, ai+1),
(K ′\e) at (r, ui,P ), r ∈ R∗;
|K| = |Q|, |K ′| = |P |

Gε Ext’n Family Edges, anti-edges (K\e) at (a3i, a3(i+1))

This follows the general outline of the previous argument, but we will now
write out what it means in more detail.

• G0 is a chain of loops of type (2, n2; 2)
• G1 has some additional vertices P ∗, R∗ used along with suitable ui,P ,
uiR to complete the cliques P̂i, R̂i

• We amalgamate copies of G1 over the specified amalgamation base
X to get G2

• We add both edges and anti-edges. This allows us to use certain
parameters in Li to distinguish parameters in Li+1, after the resulting
graph G3 is embedded in a larger C-free graph
• The extensions Gε are obtained by adding an edge or anti-edge to
pairs of the form (a3i, a3(i+1)), according to the value of ε(i). This
part of the construction is generally invariable apart from the form
of the anti-edge.

Now we may deal with the usual claims that lead to the conclusion that
G3 is a C-skeleton, and hence C is not a Rado constraint.

Claim 1. The maximal cliques of order at least n2 in Gε are either copies of
Qi or are contained in cliques of the form P̂i, R̂i. or the anti-edges attached
to pairs (r, ui,P ) above.

In particular, the cliques of order n1 are the cliques P̂i and R̂i.

This is proved as before. In addition to neighborhoods of the special
vertices ui,P , ui,R one considers neighborhoods of the vertices in P ∗, R∗.

Claim 2. The graphs Gε are C-free.

If j : C ∼= C ′ = (P ′, Q′, R′) ⊆ Gε is an embedding as a subgraph, then
each of P ′ and R′ must be a copy of some clique P̂i or R̂i in some copy of
G1 in G2.
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As the copies of P̂i or R̂i intersect pairwise, while P ′ and R′ are disjoint,
we may suppose that P ′ = P̂i for some i and that R′ = R̂j for some j.

Now if Q′ meets P ∗ then Q′ ∩ P ′ = Q′ ∩ P ∗ and Q′ \ P ∗ is a clique of
order n2 − 1 which is contained in

⋃
i(P̂i \ P ∗). But the maximal cliques in⋃

i P̂i \ P ∗ have order 3 so n2 ≤ 4, a contradiction. So Q′ is disjoint from
P ∗, and similarly Q′ is disjoint from R∗.

Thus Q′ is not contained in any clique of the form P̂k or R̂k. If Q′ is
contained in one of the anti-edges of order n1 attached to a pair (r, uk,P )
with r ∈ R∗, then there is no clique of order n1 meeting Q′ in a single
vertex. Thus Q′ must be a copy of some Qk which meets P̂i and R̂j in a
single vertex. This forces i, j = k and hence P ′ meets Q′, a contradiction.

Claim 3. If G is a C-free graph containing G3 and K is a clique of G of order
n1 containing ai and R∗, but not ui,R, then K is R̂i.

We may suppose that

K ∩ (P̂iQi) = K ∩ (Xi ∪ {ui+1,P , ai+1})
Since K contains R∗ it does not contain any vertex of the form uj,P and
since ui,R /∈ K we find K ∩ (P̂iQi) ⊆ {ai, ai+1}. If K ∩ (P̂iQi) = {ai} then
we embed C in G, a contradiction. Thus we may suppose

ai+1 ∈ K

Again, we may suppose

K ∩ (P̂i+1Qi+1) ⊆ K ∩ (Xi+1 ∪ {ui+2,P })

and conclude that K ∩ (P̂i+1Qi+1) ⊆ {ai+1, ui+1,R, ai+2}. Now if ai+2 ∈ K
we have identified K completely and we then get an embedding of C into
G as (KQi+2P̂i+2). So ai+2 /∈ K and thus ui+1,R ∈ K. Again we have
identified K: it is R̂i.

Claim 4. In G3, the set R∗ ∪ {a0, ui,R} controls {ai | i ∈ N}.
The previous claim shows that R∗∪{ai, ui,R} controls {ai+1, ui,R} and we

conclude by induction.
So G3 is a C-skeleton, as required. �

This concludes our presentation of the loop construction method. We will
follow the same scheme in verifying the remaining clauses of Proposition 8.

3.5. Length 3: Cases 5, 6, 7. We continue to use loop constructions, with
the construction presented in tabular form. We will compress the notation
a little more.

Lemma 30 (3.5). Let C be a solid block path of length 3 and type (n1, n2, n3)
satisfying

n1 < n2 < n3

n1 ≥ 3, n2 ≥ 5
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Then there is no countable universal C-free graph.

Proof. We make the following loop construction.
Loop Construction

Graph Type Specification

G0 Chain (n1, 2, ; 2)

G1 Clique Ext’n R̂i = Ri ∪ {uQi+1,R} ∪R∗

G2 Amalg’n X ′ =
⋃
iXi, Qi −Xi| < n1 − 1

G3 Anti-edges Edges (ai, ui+2,R)
Anti-edges at (ui−1,R, ai+1), (ai, ai+2),
(ai, x) (x ∈ Xi+1 \ {ai+1, ui+1,R})
|K| = |P |

Gε Ext’n Family |K ′| = |Q|

For the general interpretation of this table see the previous example, in
the proof of Lemma 29. Since we have further compressed the notation, we
elucidate further.

In the description of G1 we have indicated the provenance of ui+1,R by a
superscript; but below we continue to refer to this vertex simply as ui+1,R,
as in the previous case.

Also, we have not specified the size of R∗, but one understands that the
clique R̂i should have order n3.

Turning to G3, the amalgamation base X should be R∗ ∪X ′ with X ′ =⋃
iXi. Here Xi ⊆ Qi, and furthermore ai, ui,R ∈ Xi.
Note that this specification is given in a highly compressed form. It is

always the case that the “special” vertices (in this case, those in R∗ and the
ui,r) should be in X. So here the set X ′ pins down some vertices beyond the
special vertices which are to be put in the base of the amalgamation.

The clause Xi ⊆ Qi was omitted, as it is suggested by the inequality given.
But when Xi is not contained in one of the blocks of the original loop, we
will have to specify its structure more explicitly.

For the construction of Gε, one needs to know what is used as an anti-
edge and where it is attached. Typically the anti-edge has the form (K\e)
with K a clique (a copy of one of the blocks of C) and the attachment is at
(a3i, a3(i+1)). In such cases one wants to know only the size of K. (We write
K ′ here to distinguish it from the anti-edges involved in G3.)

In other cases we will need to vary the points of attachment, or possibly
use a more complicated anti-edge, so in such cases we supply more explicit
information.

Now we can turn our attention to the relevant claims.
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Claim 1. The nontrivial maximal cliques come from the blocks of C, the
triangles of cut vertices in the loops, the cliques contained in attached anti-
edges, and the cliques R̃3i = R∗ ∪ {a3i, a3(i+1)} when the pair (a3i, a3(i+1))
is an edge.

By inspection.

Claim 2. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′) ⊆ Gε. Then R′ = R̂i for some i.
One excludes the possibility Q′ ∩ R′ ⊆ R∗ using the hypothesis n2 ≥ 5.

Then Q′ must be a copy of Qi, and we suppose Q′ = Qi.
The cut vertex u of P ′Q′ must be either ui,R or the cut vertex of PiQi.

As n1 ≥ 3 and P ′ ∩ R′ = ∅, we cannot have P ′ ⊆ R̂i−1. So P ′ must be Pi,
but then it meets R′.

Claim 3. Let G be a C-free graph containing G3, and K a clique of G of
order n3 containing R∗ and ai but disjoint from Xi \ {ai}. Then K = R̂i.

Write K = R∗ ∪K ′ with ai ∈ K ′ and |K ′| = 3.
We may suppose

K ∩ PiQi ⊆ K ∩ (Xi ∪ {ai+1}) = {ai, ai+1}

If |K ∩ PiQi| = 1 we embed C into G for a contradiction, so

ai+1 ∈ K ′

We may suppose

K ∩ Pi+1Qi+1 ⊆ K ′ ∩ (Xi+1 ∪ {ai+2})

If ai+2 ∈ K ′ we consider Pi+2Qi+2K for a contradiction, while if |K∩Xi+1| =
1 we consider Pi+1Qi+1K. So

|K ∩Xi+1| ≥ 2

As ai ∈ K the anti-edges force K ∩ Xi+1 = {ai+1, ui+1,R} and the claim
follows.

Claim 4. The set R∗ ∪ {a0, a1} controls the set {ai | i ∈ N} in G3.

By the previous claim. The setR∗∪{ai−1, ai} controls the set {ai+1, ui+1,R},
using the parameter ai−1 to distinguish ai+1 from ui+1,R.

So the claim holds follows by induction and then G3 is a C-skeleton, as
required. �
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Lemma 31 (3.6). Let C be a solid block path of length 3 and type (n1, n2, n3)
satisfying

n2 < n1 < n3

n2 ≥ 5

Then there is no countable universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (n1, n2; 2)

G1 Clique Ext’n R̂i = Ri ∪ {uQi+1,R} ∪R∗

G2 Amalg’n Special vertices

G3 Anti-edges Anti-edges at (ai, ui+1,R), |K| = n2

Gε Ext’n Family |K| = |Q|
We now omit the enumeration of maximal cliques, which is almost always

straightforward. But one must keep in mind the undesirable cliques coming
either from the loop structure or from R∗ together with an adjacent pair
(ai, aj).

Claim 1. The graphs Gε are C-free.

Suppose C ∼= (P ′, Q′, R′) ⊆ Gε. As n3 > n1, n2 we may suppose R′ = R̂i

for some i.
As |Q′ ∩ R′| = 1 and n2 ≥ 4 it follows easily that Q′ does not lie in a

clique containing R∗. So the cut vertex v of Q′R′ is not in R∗,
If v is ui+1,R, then Q′ must be a copy of the clique Qi+1. But we have

|Qi+1 ∩ R̂i| = 2.
So the cut vertex v is ai or ai+1.
As n2 > 3 we do not have to concern ourselves with triangles. So Q′ must

lie in a copy of one of the cliques Pi−1, Qi, Pi, or Qi+1. We may suppose
that this copy is actually the original clique in G0.

Qi+1 is excluded by overlap with R′. Suppose that Q′ is Qi. Consider the
cut vertex u of P ′Q′. If u = ui+1,R then P ′ is contained in R̂i−1. But P ′ is
disjoint from R′, hence from R∗ ∪ {ai}, and then |P ′| ≤ 2, a contradiction.
On the other hand if u 6= ui+1,R then P ′ is forced to be Pi, which meets R′.

Finally, if Q′ lies in Pi−1 or Pi, then P ′ is contained in Qi−1 or Qi; but
n1 > n2.

Claim 2. Let G be a C-free graph containing G3. If K is a clique of order
n3 in G containing R∗ ∪ {ai}, but not ai−1 or ui,R, then K = R̂i.

We take j maximal so that aj ∈ K. We may suppose

K ∩ PjQj ⊆ {aj , uj,R, aj+1}
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But aj+1 /∈ K, and if |K ∩ PjQj | = 1 we embed C in G, so we conclude

aj , uj,R ∈ K

Now ui,R /∈ K so j > i. Thus

K = {ai, aj , uj,R} ∪R∗

If j 6= i + 1 then a suitable copy of PiQi together with K embeds C in G.
Thus j = i + 1 and K = R̂i.

This proves the claim.
Now it follows easily that R∗ ∪ {a0, a1, u1,R} controls {ai | i ∈ N} and G3

is a C-skeleton. �

Lemma 32 (3,7). Let C be a solid block path of length 3 and type (n1, n2, n3)
satisfying

n1 <n3 < n2

n1 ≥ 3

Then there is no countable universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (n1, n2;n3 − 1)

G1 Clique Ext’n R̂i = Ri ∪ {uQi+1,R}

G2 Amalg’n Base
⋃
iXi, |Qi \Xi| < n3 − 1

G3 Anti-edges Edges (ui,R, ui+2,R)
Anti-edges at (ui,R, ai+2), |K| = |P |;
at ((ui,R, ui+1,R) and (ai, x) (x ∈ Xi+1 \
{ai+1, ui+1,R})
of type (QP\e)

Gε Ext’n Family |K| = |R|

Claim 1. The graphs Gε are C-free.

We suppose C ∼= (P ′, Q′, R′) ⊆ Gε. As n2 > n1, n3 we may suppose
Q′ = Qi for some i.

By the choice of Xi, R′ cannot lie in another copy of Qi in G3. As n3 > 3,
R′ must be a copy of either R̂i−1 or R̂i in G3.

In particular the cut vertex of P ′Q′ is not ai. By the choice of Xi P
′

cannot lie in a another copy of Qi so P ′ must be Pi, meeting R′ in ai+1 or
ui,R. This proves the claim.
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Claim 2. Let G be a C-free graph containing G3 and let (Q′, P ′) be a copy of
(Q,P ) in G which is free over a subset Y satisfying the following conditions.

ai ∈ Y \ P ′, ai−1 /∈ Y

|Y ∩Q′| = |Xi|, |Y ∩ P ′| = 2

Y ∩ P ′ ∩Q′ = ∅
Then Y ∩ Pi = {ui,R, ai+1}.

We show first that
Y ∩Qi = Xi

In the contrary case we can find a clique K of order n3 − 1 in a copy of Q
connected to ai, with K disjoint from PiQi, and embed C in G.

We now consider Y ∩ Pi.
Taking P ′Q′R̂i−1 in general position we find easily that

ui,R ∈ Y ∩ P ′

Arguing similarly for P ′Q′R̂i we find that Y meets {ui+1,R, ai+1}. But
(ui,R, ui+1,R) is a nonedge, so ui+1,R /∈ Y ∩P ′, and thus ai+1 ∈ Y ∩P ′. This
proves the claim.

Now it follows that {a0, a1} controls {ai | ∈ N} and G3 is a C-skeleton. �

This completes the treatment of all cases of length 3 in Proposition 8.
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4. Critical Configurations of Length 4

We take up the treatment of the length 4 cases of Proposition 8, using loop
constructions. We adopt the abbreviated notation developed in the previous
section.

Lemma 33 (4.1). Let C be a solid block path of length 4 satisfying

4 ≤ n1 = n2 = n4 < n3

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (n1 − 1;n1, n3, n1 − 2)

G1 Clique Ext’n uQi+1,P ; u
Q
i+1,S , v

P
i+1,S

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,P , ui+2,P ), (ui,S , ui+2,S)
Anti-edges at (ai, u) with u = ui+1,S or vi+1,S ,
and (ui,P , ai+2), (ui,S , ui+1,P ), (ui,S , ui+2,S)
|K| = |P |

Gε Ext’n Family |K| = |P |

Claim 1. Each graph Gε is C-free.

Suppose C ∼= C ′ ⊆ Gε, C ′ = (P ′, Q′, R′, S′). Then R′ is a copy of some
Ri in G2, and we may suppose R′ = Ri. Then Q′, S′ are Qi and Ŝi in some
order.

In view of the overlap between Qi or Ŝi and other copies of the same
cliques in G2, as well as the overlap with P̂i−1, Ŝi−1 and P̂i+1, Qi+1, the only
cliques available to represent P ′ are the copies of P̂i; but these meet both Q′

and S′.
This proves the claim.

Claim 2. Let G3 ⊆ G with G C-free, and suppose K is a clique of order n1

free over a set X satisfying the following conditions.

X ∩ {ai, ui,S , ui,P , vi,S} = {ai, ui,S}
|X| = 4

Then X = {ai, ui,S , ui+1,P , ai+1}.

We may suppose

K∩QiRiŜi ⊆ X∩{ai, ui,P , ui,S , ui+1,S , vi+1,S , ai+1} ⊆ {ai, ui+1,S , vi+1,S , ai+1}
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As ai ∈ X and X is a clique, the vertices ui+1,S and vi+1,S are not in X. If
the intersection reduces to ai we embed C in G, for a contradiction. So

ai+1 ∈ X

Similarly, considering X ∩Qi+1Ri+1Ŝi+1, X must contain one of the ver-
tices

ui+1,P , ui+1,S , ui+2,S , vi+2,S , ai+2

As ai, ai+1 ∈ X and X is a clique, we eliminate all but ui+1,P and ai+2. And
if ai+2 ∈ X then we have identified the four vertices of X and we switch to
Qi+2Ri+2Ŝi+2 for a final contradiction. So

ui+1,P ∈ X

and X has been identified as claimed.
This claim tells us that given the parameters

ai, ui,P , ui,S , vi,S

we can identify the pair {ui+1,P , ai+1}. If in addition i ≥ 1 then using the
parameter ui−1,P we can distinguish ui+1,P from ai+1.

Claim 3. Let G3 ⊆ G with G C-free, and suppose (Q′, R′, S′) is a solid block
path of type (n1, n3, n1) free in G over a subset X satisfying

X ∩R′ = ∅
X ∩Q′ = X ∩ {ai−1, ui−1,S , ui,P , vi,S , ai} = {ai, ui,P , vi,S}

ai+1 ∈ X ∩ S′

|X ∩ S′| = 3

Suppose further that for v ∈ (X ∩ S′) \ {ai+1}, the pair (ai, v) is a nonedge
in G. Then X ∩ S′ = {ui+1,S , vi+1,S , ai+1}.

We may suppose

Q′R′S′ ∩Qi+1 ⊆ X ∩ {ai+1, ui+1,P , ui+1,S}
= {ai+1} ∪ (X ∩ S′ ∩ {ui+1,P , ui+1,S})

This intersection cannot reduce to {ai+1}. As there is an edge (ai, ui+1,P ),
we cannot have ui+1,P ∈ X ∩ S′. So we find

ui+1,S ∈ X ∩ S′

Now we may suppose

Q′R′S′ ∩ P̂i+1 ⊆ {ai+1} ∪ (X ∩ S′ ∩ {vi+1,S , ui+2,P , ai+2})

Thus the third vertex in X ∩ S′ is one of

vi+1,S , ui+2,P , ai+2
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The case in which ai+2 ∈ X leads to a contradiction by considering P̂i+2.
And as X ∩ S′ is a clique, we cannot have vi+2,P ∈ X. So we find

ui+1,S ∈ X ∩ S′

and X ∩ S′ has been identified.
Now for i ≥ 1, beginning with the parameters

ai−1, ui−1,S , vi−1,P , vi−1,S , ui,S , ui,P , vi,S , ai

we use Claim 2 to identify the parameters ui+1,P and ai+1, and then use
Claim 3 to identify the set {ui+1,S , vi+1,S}.

The parameter vi−1,S will then serve to distinguish ui+1,S and vi+1,S .
Thus we may determine the images of all ai given the images of the first

few parameters of the specified form, and conclude that there is no countable
weakly universal C-free graph.

�

Lemma 34 (4.2). Let C be a solid block path of length 4 and type (n1, n2, n3, n4),
and suppose that

n1, n4 < n2, n3

Then there is no countable weakly universal C-free graph.

Proof. We may suppose n2 ≤ n3.
Some details that don’t fit neatly in the table are added as notes.

Loop Construction

Graph Type Specification

G0 Chain (n1, n2;n3, n4)

G1 Clique Ext’n No clique extensions

G2 Amalg’n Base
⋃
i(Xi ∪ Yi), Xi ⊆ Qi, Yi ⊆ Ri

(See below)

G3 Anti-edges Edges: Perfect matching between Xi ∪ Yi and
(Xi+2 ∪ Yi+2)
Anti-edges: its complement.
|K|: see below

Gε Ext’n Family Anti-edges (K ′\e); |K ′| = |Q| = min(|Q|, |R|)

Notes.
• Xi ⊆ Qi is minimal so that C does not embed in the free amalgam
of two copies of PiQi over Xi ∪ {ai+1}; Yi ⊆ Ri is chosen similarly.
• Anti-edges (K\e): minimal size such that at least one of the configu-
rations LiKLi+1 or LiL∗iK contains a copy of C, where Li is the i-th
loop and L∗i is another copy of Li in G2. (If u ∈ X ′i and y ∈ Y ′i+2, or
if n2 = n3, this means |K| = min(n1, n4). In all cases |K| = n1 or
n4.)
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Claim 1. The graphs Gε are C-free.

We consider a copy (P ′, Q′, R′, S′) of C in Gε. As there are some marginal
cases to worry about we separate out the cases n2 < n3 and n2 = n3.

Suppose first n2 < n3. Then we may suppose R′ = Ri for some i. We
may then suppose Q′ is Qi or Q′ embeds in another copy of Ri. In either
case the cut vertex of Q′R′ is ai.

Suppose Q′ is Qi. The attached anti-edges at vertices of Qi have order at
most n1. So P ′ does not embed in one of these, and must be Pi. Similarly
S′ is forced to be Si and then P ′ meets S′, a contradiction.

Suppose Q′ embeds into a second copy R∗i of Ri. Then P ′ does not embed
in the corresponding segment L∗i = R∗iS

∗
i , by choice of Yi. So P ′ must

embed in an antiedge (K\e) attached to a vertex of R∗i . As |K| ≤ n4, we
find n1 < n4. But then we could embed P ′Q′ in R∗iS

∗
i \ {ai+1}, which we

have already ruled out.
Now suppose n2 = n3. In this case we may suppose n1 ≤ n4. Then we

may suppose that R′ is Qi or Ri for some i; and if n1 = n4 we may choose
notation so that R′ is Ri.

Suppose first that R′ is Qi (so n1 < n4). Then Q′ embeds in a copy of Qi

or Ri, and the cut vertex of Q′R′ is ai. So S′ must embed in an attached
antiedge or in Pi. But as n1 < n4 both are impossible.

So now we suppose R′ = Ri. Then we may suppose that Q′ is either Qi

or another copy R∗i of Ri. In either case the cut vertex of Q′R′ is ai. The
attached anti-edges at vertices of Yi have order min(n1, n4), so S′ must be
Si.

If Q′ = Qi then P ′ is forced to be Pi, so meets S′, a contradiction. So we
suppose that Q′ is R∗i . Then P ′ cannot embed in an attached antiedge so
P ′ is contained in the corresponding block S∗i . But this is impossible by the
choice of Yi.

This proves the claim.

Claim 2. Let G2 ⊆ G with G C-free, and suppose that A is a solid block path
of type (n1, n2) with blocks (PA, QA), free in G over a subset X satisfying
the following.

X ∩ ({ai−1, ai} ∪Xi−1 ∪ Yi−1) = {ai}
X ∩ (PA ∩QA) = ∅

|X ∩QA| = |Xi|
|X ∩ PA| = 1

Suppose further the edges of G give a perfect matching between Xi−2 and
X ∩QA \ {ai}. Then X ∩QA = Xi and X ∩ PA = {ai+1}.

By the perfect matching condition we have X ∩ QA \ {ai} disjoint from
Yi. But we may suppose that

A ∩ (RiSi) ⊆ X ∩ (Yi ∪ {ai+1}) ⊆ {ai, ai+1}
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This forces ai+1 ∈ X, and then our condition on the edges forces

X ∩ PA = {ai+1}

Now if X∩QA 6= Xi, then the intersection X ′ = X∩Xi is a proper subset
of X + i containing ai, and therefore C embeds into the free amalgam of two
copies of PiQi over X ′ ∪ {ai+1}. But then A together with PiQi contains
such a copy of C, and we have a contradiction.

There is a similar claim allowing for the recognition of Yi. This gives
sufficient rigidity to complete the argument in standard fashion. �

Sometimes our loop constructions degenerate, when the loop is symmetric
around the distinguished cut vertex. Then we use only half the loop, since
the result after amalgamation is the same. The next case treated is one such
situation.

Lemma 35 (4.3). Let C be a solid block path of length 4 and type (n1, n2, n3, n4)
satisfying

n1 ≥ n4 > n2, n3

n2, n3 ≥ 3

Suppose there is a countable weakly universal C-free graph. Then

n1 ≥ n3 + n4 − 1

In particular, n1 > n4.

Proof. Set

n′2 = max(n2, n3)

We suppose

n1 < n4 + n3 − 1fournth

Loop Construction

Graph Type Specification

G0 Chain Linear chain of solid block paths of type (n1, n
′
2)

G1 Clique Ext’n None

G2 Amalg’n Special vertices ai, bi are
cut vertices of Qi−1Pi, PiQi

Base is
⋃
iXi; Xi ⊆ Pi, 2n1 − |Xi| = n3 + n4 − 2

G3 Anti-edges Edges (ai, Bi+3)
Anti-edges at (ai, u) (u ∈ Xi+3 \ {bi+3})
|K| = min(n2, n3)

Gε Ext’n Family Attach edges or anti-edges at (b2i, b2(i+1)), |K| =
min(n2, n3)
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Note that the existence of a suitable set Xi ⊆ Pi requires the condition

n1 ≤ n3 + n4 − 2

Claim 1. The graphs Gε are C-free

If C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε is an embedding then we may suppose
that P ′ is one of the cliques Pi of order n1 in G0. Then Q′ may be a copy of
one of the cliques Qi or Qi−1, or contained in another copy P ∗i of Pi.

If Q′ is contained in a copy P ∗i of Pi, then Q′ meets P ′ in ai or bi and
does not contain both. This then forces Q′R′S′ to be contained in P ′∗i \{bi}.
Hence

(n2 + n3 + n4 − 2) ≤ n1 − 1

which is not the case.
So Q′ is a copy of Qi or Qi−1, and we may suppose that Q′ coincides

with Qi or Qi−1; by symmetry we may even suppose that Q′ is Qi. If R′ is
contained in another copy of Qi then S′ is as well, which is a contradiction.
So R′ is contained in a copy of Pi+1 and we may suppose that R′ is contained
in Pi+1 itself.

Then S′ must be contained in some copy P ∗i+1 of Pi+1. So |R′S′| ≤
|Pi+1P

∗
i+1| or

n3 + n4 − 1 ≤ 2n1 − |Xi|
a contradiction.

Claim 2. Let G1 ⊆ G with G C-free. Let K be a clique of order n1 free over
a set X satisfying

X ∩ Pi 6= ∅
|X| = |Xi|

Then X = Xi.

We may take i to be maximal so that X meets Pi. Suppose first that X
contains some vertex of Pi other than bi.

We may suppose that

K ∩ PiQiPi+1 ⊆ X ∩XiXi+1 = X ∩Xi

If X∩Xi 6= Xi, and in particular |X∩Xi| < |Xi|, we embed PQR as P ′Q′R′
in Pi+1Qi+1Pi naturally so that R′ contains some vertex vi of X ∩Xi other
than bi, and |R′ ∩X ∩Xi is minimized. We may then embed S′ into K \X ′
over vi disjoint from R′ \ {vi} to get a copy of C in G, and a contradiction.

So we conclude in this case that Xi ⊆ X and therefore Xi = X.
In the remaining case we have

X ∩ Pi = {bi}
Similarly, if our claim does not hold and we take j minimal so that X

meets Pj , we conclude X ∩ Pj = {aj}. In particular j < i. In this case we
embed C into PjKQiPi+1 for a contradiction.
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Claim 3. Let G1 ⊆ G with G C-free. Let (Q′, P ′) be a block path of type
(n2, n1) free in G over a set X satisfying the following conditions.

X ∩Q′ ={bi} ∪Q′ ∩ P ′

|X ∩ P ′| = |Xi|

Then X ∩ P ′ = Xi+1.

As P ′ is free over X ∩ P ′ it suffices to show that P ′ meets Pi+1.
Suppose the contrary. We may suppose that

Q′P ′ ∩QiPi+1 ⊆ X ∩ {bi} ∪Xi+1 = {bi}
Then we have an embedding of C into Pi+1Qi+1Q

′P ′, and a contradiction.
Now given Xi and ai−3 we can determine bi, and then determine Xi+1.

This gives sufficient rigidity to complete the argument.
�

Lemma 36 (4.4). Let C be a solid block path of length 4 satisfying

n4 > n1 > n2 > n3 ≥ 3

n2 ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (2;n2, n3)

G1 Clique Ext’n uQi+1,P , P
∗; Ŝi = Pi+1 ∪ S∗

G2 Amalg’n Special vertices

G3 Anti-edges Edges at (ai, ai+3)
Anti-edges at (ai, ai+2) and (ai, ui+3,P )
|K| = |R|

Gε Ext’n Family |K| = |Q|, at (u6i,P , u6(i+1),P )

Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε. Then S′ is Si for some i, so
P ′ ∩ S∗ = ∅. Hence P ′ = Pj for some j.

If Q′ is contained in some clique of the form P̂k for some k, then as
|P ′ ∩ P ∗| ≤ |P ′ ∩Q′| = 1, we get |Q′| ≤ 1 + |P̂k \ P ∗| = 4, a contradiction.

Hence the clique Q′ does not meet P ∗ and is not contained in Pj±1. Fur-
thermore Q′ 6= Qj+1 so the vertex in P ′ ∩Q′ is not uj+1,P . So Q′ is a copy
of Qj , and we may suppose Q′ = Qj . Now as R′ ∩ P ′ = ∅, we do not have
R′ = Rj . There remains the possibility

R′ ∩Q′ = {uj,P }
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But in this case R′ ⊆ P̂j−1 and |R′| ≤ |R′ ∩ (Pj−1 \Qj)| + 1 ≤ 2, a contra-
diction.

This proves the claim.

Claim 2. Suppose that G3 ⊆ G with G C-free. Let K be a clique of order
n1 containing {ai} ∪ P ∗ and disjoint from {ui,P } ∪ S∗. Then K = P̂i.

Let j be maximal so that K meets QjRjŜj . We may suppose that

K ∩QjRjŜj ⊆ K ∩ ({aj , uj,P , aj+1, aj+2} ∪ S∗) = K ∩ {aj , uj,P }
As G is C-free it follows that K contains aj , uj,P and thus j > i and

K = {ai, aj , uj,P } ∪ P ∗

As (ai, ai+2) carries an antiedge we have j 6= i + 2.
We may suppose

K ∩QiRiŜi ⊆ K ∩ ({ai, ui,P , ai+1, ai+2} ∪ S∗) = K ∩ {ai, ai+1, ai+2}
and as G is C-free we conclude

j ≤ i + 2

Hence j = i + 1 and K = P̂i.
This claim shows that the images of ai, ui,P , and P ∗ determine the image

of the pair {ai+1, ui+1,P }. As these vertices can be distinguished over the
parameter ui−2,P , we have sufficient rigidity to show the nonexistence of a
countable weakly universal C-free graph. �

Lemma 37 (4.5). Let C be a solid block path of length 4 and type (n1, n2, n3, n4)
satisfying

n4 > n2 > n1 > n3 ≥ 3

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (n1, n2, n3; 2)

G1 Clique Ext’n uQi+1,S , S
∗

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ai, ui+2,S)
Anti-edgesat (ai, ai+2)
of type (R,Q, P ) (see below)

Gε Ext’n Family C0 again

Note
The antiedges here have the form (C0\e) with C0 a solid block path of type

(n3, n2, n1) and with the edge e deleted from the first block (not involving a
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cut vertex). In the table, it suffices to give the type of C0 with the block of
attachment listed first.

Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε is an embedding as a subgraph.
The clique S′ must be Ŝi for some i. Then Q′ can only be a copy of

one of cliques Qj for some j. We may suppose Q′ = Qj . Then P ′ = P̂j ,
so R′ = Rj . Hence j = i or i + 1. But these possibilities conflict with
|R′ ∩ S′| = 1, P ′ ∩ S′ = ∅. The claim follows.

Claim 2. Let G3 ⊆ G with G C-free. Suppose that K is a clique of order n4

containing S∗ ∪ {ai‖ but not ui,S . Then K = Ŝi+1.

We may suppose that K ∩PiQiRi ⊆ K ∩{ai, ui,S , ai+1} = K ∩{ai, ai+1}.
As G is C-free we find ai+1 ∈ K. Then considering Pi+1Qi+1Ri+1 and
Pi+2Qi+2Ri+2 similarly, we find ui+1,S ∈ K, K = Ŝi+1 as claimed.

We now know that the parameters ai and S∗ determine the pair {ai+1, ui+1,S}
and then the parameter ai−1 determines each vertex separately. This gives
sufficient rigidity to complete the argument.

�

Lemma 38 (4.6). Let C be a solid block path of length 4 and type (n1, n2, n3, n4)
satisfying

n2 ≥ n4 > n1 > n3 ≥ 3

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (n1 − 1;n2, n3)

G1 Clique Ext’n uRi+1,P

G2 Amalg’n |Qi \Xi| = n1 − 2

G3 Anti-edges Anti-edges at (ai, ai2), |K| = |P |
and at (ui,P , ai+2), |K ′| = |Q|

Gε Ext’n Family |K| = |P |

Claim 1. The graphs Gε are C-free.

Let C0 = (P,Q,R) be a solid block path of type (n1, n2, n3). We will show
that the Gε are C0-free.

Suppose C0
∼= C ′0 = (P ′, Q′, R′) ⊆ Gε is an embedding as a subgraph.

Then Q′ must be a copy of a clique Qi for some i ∈ N, and we may suppose

Q′ = Qi

The choice of the sets Xi excludes the possibility that P ′ could be con-
tained in another copy of Qi, so P ′ must be a copy of P̂i−1 or P̂i, and in



60 GREGORY CHERLIN AND SAHARON SHELAH

particular ai /∈ R′. Thus R′ must be Ri, which however meets both candi-
dates for P ′.

This proves the claim.

Claim 2. Let G3 ⊆ G with G C-free. Suppose that K is a clique of order n1

free in G over a subset X with the following properties.

ai ∈ X,ui,P /∈ X

|X| = 3

Then X = {ai, ui+1,P , ai+1}.

We may suppose that

K ∩QiRiQi+1 ⊆ X ∩ {ai, ui,P , ai+1} = X ∩ {ai, ai+1}
If the intersection reduces to {ai} then we get an embedding of C into G,
and a contradiction. So

ai+1 ∈ X

We may suppose

K ∩Qi+1Ri+1Qi+2 ⊆ X ∩ {ai+1, ui+1,P , ai+2}
Again, the intersection cannot reduce to {ai+1}. If ui+1,P ∈ X we are done.
And if ai+2 ∈ X we switch to KQi+2Ri+2Qi+3 for a contradiction.

Thus ai, ui,P determine the pair {ai+1, ui+1,P }. Using the parameter ui−1
we may also distinguish ai+1 and ui+1,P . Thus we may argue as usual that
there is no countable weakly universal C-free graph. �

Lemma 39 (4.7). Let C be a solid block path of type (5, n2, n3, 5) with

n3 < 5 < n2

Then there is no countable weakly universal C-free graph.

Reverse C here.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (4;n2, n4, 4)

G1 Clique Ext’n uSi+1,P , u
S
i+1,S

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,P , ui+2,P ), (ui,S , ui+2,S)
Anti-edges at all other (u, v) with u ∈
{ai, ui,P , ui,S} and v ∈ {ai, ui+2,P , ui+2,S}
and at (ai, uj,S) for j = i + 1, i + 2
|K| = |Q|

Gε Ext’n Family |K| = |Q|
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Claim 1. The graphs Gε are C-free.

Let C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε be an embedding as a subgraph. Then
R′ is a copy of some Ri and we may suppose R′ = Ri. Then Q′ and S′ can
only be Qi and Ŝi, in that order. This leaves only copies of P̂i−1 and Ŝi−1
to serve as P ′, and both have too much overlap with Q′.

Claim 2. Let G3 ⊆ G with G C-free. Suppose that K is a clique of order 5
free in G over a set X satisfying the following.

ai ∈ X, ai−1 /∈ X

|X| = 3

Then X = {ai, ui+1,P , ai+1}.
We may suppose that

K ∩QiRiŜi ⊆ X ∩ {ai, ui+1,S , ai+1}
If the intersection reduces to {ai} then we have an embedding of C into G,
and a contradiction.

As ai ∈ X and X is a clique, the vertex ui+1,S is not in X. Thus

ai+1 ∈ X

Now consider KQi+1Ri+1Ŝi+1 similarly. We conclude that the third vertex
in X is one of

ui+1,P , ui+1,S , ui+2,S , ai+2

Again as ai ∈ X and X is a clique, we eliminate ui+1,S and ui+2,S . If the
third vertex is ai+2 we pass to KQi+2Ri+2Ŝi+2 for a contradiction. So the
third vertex of X is ui+1,P , as claimed.

The claim shows that ai determines {ai+1, ui+1,P }. Then the parameter
ui−1,P allows the two vertices to be distinguished.

This gives sufficient rigidity to complete the proof. �

Lemma 40 (4.8). Let C be a solid block path of length 4 satisfying

n4 > n1 > n3 > n2 ≥ 3

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (n1 − 1, n2;n3, 2)

G1 Clique Ext’n uQi+1,P ; S
∗

G2 Amalg’n No amalgamation

G3 Anti-edges Edges (ui,P , ui+2,P )
Anti-edges at (ui,P , ai+2), |K| = |Q|

Gε Ext’n Family |K| = |Q|
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Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε.
Then S′ must contain S∗ and therefore P ′ must be a copy of some P̂i. We

may suppose
P ′ = P̂i

Notice that as n3 ≥ 4, it is not possible for R′ to meet S′ in a vertex of S∗.
This observation will be applied tacitly below (R′ functions here mainly as
a connecting link between Q′ and S′, so it is not discussed very explicitly).

If Q′ is contained in another copy P̂ ′i of P̂i, then as n3 > n2, R′ is contained
in P̂ ′i as well. So we cannot reach S′ in this case.

So Q′ is Qi or Q′ is contained in a copy of Ri+1, which we may take to be
Ri+1 itself.

If Q′ = Qi then S′ can only meet R′ in the cut vertex ci−1 of Ri−1Ŝi−1,
but then R′ ⊆ Si−1 and |R′| ≤ 2, a contradiction.

If Q′ is contained in Ri+1 then similarly R′ must be contained in Ŝi+1 and
we have a contradiction.

This proves the claim.

Claim 2. Let G3 ⊆ G with G C-free. Let (R′, S′) be a block path of type
(n3, n4) free in G over a subset X = {ai, v} ∪ S∗ where

X∩R′ ∩ S′ = ∅
X ∩R′ = {ai}

Then v = ai+1.

We may suppose that

R′S′ ∩ PiQi = X ∩ {ai, ui,P , ai+1} ∪ S∗

If the intersection reduces to {ai} then we have an embedding of C in G,
and a contradiction.

So it suffices to rule out the possibility

v = ui,P

Assuming v = ui,P , let S′′ = {ai, ui,P } ∪ S∗. Then this is a clique of order
n4. Then S′′RiSiPi contains a copy of C, and we have a contradiction.

This proves the claim. Thus the parameter ai+1 is determined by S∗ and
ai.

Claim 3. Let G3 ⊆ G with G C-free. Let (Q′, P ′) be a block path of type
(n2, n1) free in G over a set of the form X = {ai, v, ai+1}, with ai, v ∈ Q′ \P ′
and ai+1 ∈ P ′ \Q′. Suppose v /∈ S∗. Then v = ui,P .

We may suppose that

Q′P ′ ∩ Pi−1Ŝi ⊆ X ∩ ({ai, ui,P , ai+1} ∪ S∗) = X ∩ {ai, ai+1, ui,P }
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If the intersection is {ai, ai+1} then SiP
′Q′Pi−1 contains a copy of C and we

have a contradiction. The claim follows.
Now by a rigidity argument it follows that there is no countable weakly

universal C-free graph. �

Lemma 41 (4.9). Let C be a solid block path of length 4 satisfying

n1 = n3 = 4 < n4 < n2

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (3, n2, 4;n4 − 1)

G1 Clique Ext’n uSi+1,P ; u
R
i+1,S

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,P , ui+1,P ), (ui,S , ui+1,S)
Anti-edges at (ui,P , v)
for v ∈ {ai+1, ui,S , ui+1,S , ui+2,P , ai+2}
and (ui,S , ai+2)
|K| = |S|

Gε Ext’n Family |K| = |S|

Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ G is an embedding as a subgraph.
Then Q′ is a copy of some Qi and we may take Q′ = Qi. Then P ′, R′ are
P̂i, Ri in some order. The overlap with Ŝi±1 force Ŝ′ to be a copy of Ŝi, but
this meets P ′.

This proves the claim.

Claim 2. Suppose G3 ⊆ G with G C-free. Let K be a clique of order n4 free
over a subset X satisfying the following.

ai ∈ X

ai−1, ui−1,S /∈ X

|X| = 4

Then
X = {ai, ui,P , ui+1,S , ai+1}

We may suppose that

K ∩ P̂i−1Qi−1Ri−1 ⊆ X ∩ {ai−1, ui−1,S , ui,P , ai} = X ∩ {ui,P , ai}
If the intersection reduces to {ai} then we embed C in G, for a contradiction.
So

ui,P ∈ X
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We may suppose that

K ∩ P̂iQiRi ⊆ X ∩ {ai, ui,S , ui+1,P , ai+1}
If the intersection reduces to {ai} then we have an embedding of C into G,
and a contradiction. As there is no edge (ui−1,S , x) with x ∈ X, the vertex
ui,S is not in X. As ai ∈ K and K is a clique, the vertex ui+1,S is not in X.
So

ai+1 ∈ X

We may suppose that

K ∩ P̂i+1Qi+1Ri+1 ⊆ X ∩ {ai+1, ui+1,S , ui+2,P , ai+2}
The intersection cannot reduce to {ai+1}.

As ai ∈ K and K is a clique, the vertices ui+2,P , ai+2 are not in K. So

ui+1,S ∈ X

The claim follows.
Thus ai−1, ui−1,P , ui−1,S , ai determine the set {ui,P , ui+1,S , ai+1} and we

can distinguish the three vertices.
Now it follows as usual that there is no countable weakly universal C-free

graph.
�

Lemma 42 (4.10). Let C be a solid block path of length 4 satisfying

n2 = n4 > n1 = n3 = 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (3;n2, 4, 2)

G1 Clique Ext’n uQi+1,P ; Ŝi = Si ∪ {uPi+1,S} ∪Q∗i+1,
Q∗i = Qi \ ({ai, ui,P } ∪Ri)

G2 Amalg’n Base
⋃
i Ŝi

G3 Anti-edges Edges (ui,S , ui+2,S)
Anti-edges at
(u, v) for u ∈ Qi \ {ai}, v ∈ P̂i \ {ai}
(ai, v) for v ∈ (Qi+1 ∪ Ŝi) \ P̂i
(ui,S , ci+1) with ci the cut vertex of RiSi
(u, v): u ∈ Ŝi \Qi+1, v ∈ (Qi \ Ŝi) ∪ Ŝi+1

|K| = |R|
Gε Ext’n Family |K| = |R|

Claim 1. The graphs Gε are C-free.
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Suppose that C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ G is an embedding as a sub-
graph. Then Q′ is Qi or Ŝi for some i, and S′ is Qj or Ŝj . As Q′, S′ are
disjoint but connected by an edge we find that either j = i or R′ is a copy
of P̂k for some k.

Suppose first that R′ = P̂k. Then Q′, S′ must be Qk, Ŝk in some order,
and there is no possibility for P ′.

So j = i and R′ = Ri. If P ′ is contained in Qi+1 or Ŝi−1 then |P ′| ≤
1 + |P ′ \Q′| ≤ 3, a contradiction. But P ′ cannot be P̂i±1 or P̂i, so the claim
follows.

Claim 2. Suppose that G3 ⊆ G with G C-free. Let K be a clique of order
n2 containing Qi ∩ Li−1. Then K = Qi

We need to show that the cut vertex bi of QiRi is in K. We may suppose
that

K ∩RiŜiP̂i ⊆ K ∩ ({ai, ui+1,P , bi} ∪ Ŝi)

and in view of the anti-edges, as ai ∈ K and K contains Q∗i this reduces to
K ∩ {ai, bi}. As G is C-free, bi ∈ K.

Claim 3. Suppose that G3 ⊆ G with G C-free. Let K be a clique of order 4
containing the cut vertex bi of QiRi, disjoint from Li−1 ∪Qi \ {bi}, and free
over a set X of order 2. Suppose further that X contains no vertex adjacent
to ui−1,S . Then X = {bi, ci} with ci the cut vertex of RiSi.

We may suppose that

K ∩ LiLi+1 = X ∩ LiLi+1

If K meets Qi+1 then C embeds via KQi+1Ri+1Ŝi+1, a contradiction. As
(ui−1,S , ui+1,S) is an edge, X does not contain ui+1,S .

So
K ∩QiP̂iŜi ⊆ {bi, ci} ∪ (X ∩ Pi)

But Pi ⊆ Li−1 ∪Qi+1 so X ∩ Pi = ∅ and

K ∩QiP̂iŜi ⊆ {bi, ci}

Since G is C-free, ci ∈ X.

Claim 4. Let K be a clique of order n2 disjoint from Li−1∪Qi and containing
the cut vertex ci of RiSi. Then K = Ŝi.

As ci ∈ K, K ∩Qi+1 ⊆ Ŝi ∩Qi+1 = Q∗i+1 ∪ {ai+1}.
Suppose first that

K ∩Qi+1 = ∅
Then there is K ′ ⊆ K of order 4 so that K ′ ∩ Ŝi = {ci}. Then

K ′ ∩QiPiŜi = {ci}

and we embed C into G, a contradiction.
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Now suppose

K meets Qi+1 but is not equal to Q∗i+1 ∪ {ai+1}

Then there is K ′ ⊆ K of order 4 with

|K ′ ∩Qi+1| = 1

We may suppose

K ′ ∩Qi+1Ri+1Ŝi+1 ⊆ K ′ ∩Qi+1 ∪K ′ ∩ Ŝi+1

But K ∩ Ŝi+1 = ∅, so we embed C in G for a contradiction.
So finally we may assume

Q∗i ∪ {ai+1} ⊆ K

It suffices to show that

ui+1,S ∈ K

Now

K ∩ P̂i+1Ŝi+1Ri+1

must contain some vertex other than ai+1. As K ∩ Ŝi+1 = ∅ this vertex lies
either in P̂i+1 or Ri+1 \ Ŝi+1. But we may suppose K ∩ Ri+1 is contained
in the set {bi+1, ci+1} of cut vertices of Qi+1Ri+1Ŝi+1 and these have both
been ruled out. So apart from ui+1,S , the remaining possibilities in P̂i+1 are

ai+2, ui+2,P

and both lead to an embedding of C in G.
The claim follows.
The previous claims show that knowing the amalgamation base up through

ai determines Qi and Ŝi. In particular one can then recognize ai+1 and
continue inductively.

It then follows as usual that there is no countable weakly universal C-free
graph. �

Lemma 43 (4.11). Let C be a solid block path of length 4 satisfying

n1 = n3 = 4 < n2 < n4

Then there is no countable weakly universal C-free graph.

Proof.
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Loop Construction

Graph Type Specification

G0 Chain (3, n2; 3) (length 3)

G1 Clique Ext’n uQi+1,P ; u
Q
i+1,R; Ŝi = {ai, ai+2} ∪ S∗

G2 Amalg’n
⋃
iQ
∗
i , |Q \Q∗i | = 2

G3 Anti-edges Edges matching Q∗i \ {ai} with Q∗i+2 \ {ai+2}
Anti-edges at (u, v) with u ∈ Q∗i , v ∈ Q∗i+2 un-
matched
at (ai, u) with u ∈ Q∗i+1 \ {ai+2}
|K| = |R|

Gε Ext’n Family |K| = |R|

Claim 1. The graphs Gε are C-free.

Suppose that C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ G is an embedding as a sub-
graph. Then S′ must be a clique of the form {aj , ak} ∪ S∗ with j < k. It
follows easily that the configuration (P ′, Q′, R′) of type (4, n2, n) is disjoint
from S∗ and then by inspection we get a contradiction.

Claim 2. Suppose that G3 ⊆ G with G C-free. Let K be a clique of order
n2 free in G over a subset X with the following properties.

ai ∈ X

X ∩ S∗ = ∅
|X| = n2 − 2

Then X = Q∗i .

Let j be maximal so that aj ∈ X. We may suppose that

K ∩QjP̂jSj ⊆ X ∩ (Q∗i ∪ {uj+1,P , aj+1, aj+2} ∪ S∗)

= X ∩ (Q∗i ∪ {uj+1,P })
Since aj ∈ X and X is a clique, the vertex uj+1,P is not in X.

If X 6= Q∗j then there is K ′ ⊆ K of order 4 with K ′ ∩ Q∗j = {aj}. Then
K ′ ∩QjP̂jSj = {aj} we get an embedding of C into G, and a contradiction.

Therefore X = Q∗j , and thus j = i.

Claim 3. Suppose that G3 ⊆ G with G C-free. Let (Q′, P ′) be a block path
of type (n2, 4) free in G over a subset X with the following properties.

X ∩Q′ ∩ P ′ = ∅
X ∩Q′ = Q∗i

X ∩ S∗ = ∅
|X ∩ P ′| = 2
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Suppose further that there is no edge (ui−1,R, x) with x ∈ X ∩ P ′, and that
there is a unique edge (ai, x) with x ∈ X ∩ P ′. Then the unique neighbor of
ai in X ∩ P ′ is ai+1.

We may suppose that

(Q′P ′) ∩ (RiSi) ⊆ X ∩ {ai, ui+1,R, ai+1, ai+2} ∪ S∗

= {ai} ∪ (X ∩ P ′ ∩ {ui+1,R, ai+1, ai+2})
If the intersection reduces to {ai} then we have an embedding of C into G,
and a contradiction.

As (ui−1,R, ui+1,R) is an edge, the vertex ui+1,R is not in X ∩ P ′. So

ai+1 ∈ X ∩ P ′

On the other hand there is an edge (ai, x) with x ∈ X ∩ P ′, so ai+1 is in
X ∩ P ′.

This proves the claim.
Now our claims allow us to recover Q∗i from ai and S∗, and thus also the

identification of the individual vertices in Q∗i from Q∗i−2, and then to recover
ai+1.

It follows as usual that there is no countable weakly universal C-free graph.
�

Lemma 44 (4.12). Let C be a solid block path of length 4 and type (4, 4, 4, 4).
Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (2, 4; 4, 2)

G1 Clique Ext’n uQi+1,P , v
R
i+1,P , u

Q
i+1,S , v

R
i+1,S

G2 Amalg’n No amalgamation

G3 Anti-edges Edges: match Ui = {ui,P , ui,S , vi,P , vi,S} with
Ui+2

Anti-edges at other (u, v), u ∈ Ui, v ∈ Ui+2

and at non-edges of
PiQiRiSiPi+1Qi+1Pi+1Ri+1Si+1

|K| = 4

Gε Ext’n Family |K| = 4

Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε.
The construction is completely symmetrical, so we may suppose that P ′is

P̂i for some i. The overlap with the neighboring loops forces C to go into a
single loop, and this is clearly impossible.
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This proves the claim.

Claim 2. Suppose G3 ⊆ G with G C-free. Let K be a clique of order 4 in G
containing ai. Then K is a clique of G1.

Let us denote by bi the vertex in Pi ∩Qi, and by ci the vertex in Ri ∩ Si.
Suppose first that K contains the vertex bi. Then consider P̂iKP̂i−1Qi−1.

AsK is a clique containing ai, bi, the construction ofG3 forcesK∩P̂iP̂i−1Qi−1
to be contained in {ai, bi, ui,P }. If the intersection reduces to {ai, bi} then
we have an embedding of C into G, and a contradiction. So ui,P ∈ K, and
similarly ui,S ∈ K, and in this case K is identified as Qi.

If K contains bi−1, ci−1, or ci, then K may be identified similarly. So now
suppose that none of the these vertices lies in K.

Then K contains at most two of the neighbors of ai, and these lie in one
of the four cliques containing ai in G1. However the other two neighbors
in the set {ui,P , ui,S , vi,P , vi,S} also lie in a clique K ′ containing ai, and G1

contains an extension of KK ′ to an embedding of C into G. E.g., if K
contains Qi \ {bi}, then K ∩Ri = {ai} and KRiŜiP̂i gives an embedding of
C into G.

This proves the claim.
Now we may use our perfect matching to work out which clique is which,

and which vertex is which, inductively. It follows that there is no countable
weakly universal C-free graph. �

Lemma 45 (4.13). Let C be a solid block path of length 4 and type (n1, n2, n3, n4)
with all ni ≥ 3 and with

n1, n2, n3 = 4

n4 > 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (2, 4; 4, 2)

G1 Clique Ext’n uQi+1,P , v
R
i+1,P ; S

∗

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,P , ui+2,P ), (vi,P , vi+2,P )
Anti-edges at (ai, u) and (v, ai+1) with u ∈
{ui+1,P , vi+1,P }, v ∈ {ui,P , vi,P }
|K| = 4

Gε Ext’n Family |K| = 4

Claim 1. The graphs Gε are C-free.
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If C ∼= (P ′, Q′, R′, S′) ⊆ Gε then S′ is either a copy of Ŝi for some i, or
a copy of R∗i = {ai, ci} ∪ S∗ where ci is the cut vertex of RiSi. We may
suppose that S′ = Ŝi or R∗i .

Suppose first that S′ = Ŝi. Then R′ is either Ri or a copy of P̂i, Qi+1,
Ri+1. We may suppose that R′ is equal to one of these: Ri, P̂i, Qi+1, Ri+1;
and the final alternative Ri+1 is clearly untenable.

The possibility R′ = Ri or P̂i leads to Q′ = Qi and then a contradiction.
The possibility R′ = Qi+1 leads to Q′ = P̂i+1 and then a contradiction.

Now suppose that S′ = R∗i . Then we may suppose R′ is Qi or P̂i, and
arrive at essentially the same contradiction.

This proves the claim.

Claim 2. Suppose G is a C-free graph containing G3 and QP is a block path
of type (4, 4) in G free over a set X satisfying the following conditions.

X ∩Q = {ai, ui,P }
vi,P /∈ X

X ∩ S∗ = ∅
X ∩Q ∩ P = ∅
|X ∩Q| = 3

Then X ∩ P = {ui+1,P , vi+1,P , ai+1}.

We may suppose that

QP ∩RiŜi = X ∩ ({ai, vi,P , ai+1} ∪ S∗)

= X ∩ {ai, ai+1}

It follows that ai+1 ∈ X ∩ P .
Take j maximal so that aj ∈ X∩P . By consideringQPRjŜj we find vj,P ∈

X. By considering PQjP̂jŜj we find that X meets {uj,P , uj+1,P , vj+1,P }. As
|X ∩ P | = 3 we conclude that j = i + 1. As ai+1 ∈ X ∩ P we conclude that
ui+2,P , vi+2,P /∈ X, so X is as stated.

In view of the claim and the pattern of edges and anti-edges in G3, after
fixing some vertices the sequences (ai), ui,P and vi,P are uniquely determined.
By a rigidity argument, there is no countable weakly universal C-free graph.

�

Lemma 46 (4.14). Let C be a solid block path of length 4 satisfying

n4 > n1 > n2 = n3 = 4

Then there is no countable weakly universal C-free graph.

Proof.
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Loop Construction

Graph Type Specification

G0 Chain (2; 4, 4, 2)

G1 Clique Ext’n uQi+1,P , P
∗; S∗

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,P , ui+2,P )
Anti-edges at (ui,P , ai+2), |K| = 4

Gε Ext’n Family |K| = 4

Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε. Then S′ is a copy of Ŝj for some
j, and we may suppose S′ = Ŝj . Since P ′ ∩ S∗ = ∅, P ′ = P̂i for some i.
Hence R′ ∩ P ∗ = ∅. Therefore R′ is Rj or a copy of Qj+1, and in the latter
case we may assume R′ = Qj+1.

If R′ = Rj then Q′ = Qj . But then there is no suitable value for i.
Suppose R′ = Qj+1. The possibility Q′ = Rj+1 is out of the question.

We should consider also the possibility that Q′ meets R′ at uj+1,P . Now
|Q′ ∩ P ∗| ≤ 1 so this gives us |Q′| ≤ |Pj \ {aj+1}|+ 1 = 3, a contradiction.

The claim follows.

Claim 2. Suppose that G3 ⊆ G with G C-free. Let K be a clique of order
n1 in G with the following properties.

ai ∈ K,ui,P /∈ K

P ∗ ⊆ K

K ∩ S∗ = ∅

Then K = P̂i.

We may suppose that

K ∩QiRiŜi ⊆ K ∩ ({ai, ui,P , ai+1} ∪ S∗)

= K ∩ {ai, ai+1}

The intersection cannot reduce to {ai}, so

ai+1 ∈ K

Now consider KQi+1Ri+1Si+1 similarly to conclude that ui+1,P or ai+2 be-
longs to K. If ai+2 ∈ K pass to Qi+2Ri+2Si+2 for a contradiction.

The claim follows.
So from ai, ui,P and some fixed parameters we recover {ai+1, ui+1,P }, and

we distinguish these vertices using the parameter ui−1,P . By a rigidity ar-
gument there is no countable weakly universal C-free graph.

�



72 GREGORY CHERLIN AND SAHARON SHELAH

Lemma 47 (4.15). Let C be a block path of length 4 satisfying

n1 = n4 = 4

n2 ≥ 5

n3 = 3

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (3, n2, 3; 3)

G1 Clique Ext’n uRi+1,P , u
P
i+1,S

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,S , ui+2,S)
Anti-edges at (ai, ui+1,P ),
(ui,P , aj), (j = i + 1, i + 2),
(ui,S , aj , (j = i + 2, i + 3), (ui,S , ui+2,P )
|K| = 4

Gε Ext’n Family |K| = 4

Claim 1. The graphs Gε are C-free.

If C ∼= C ′ = (P ′, Q′, R′, S′) then we may suppose Q′ = Qi for some i, and
correspondingly P ′ = P̂i, R′ = Ri. There is then no plausible candidate for
S′.

Claim 2. Let G be a C-free graph containing G3, and K a clique of order 4
free over a set X of order 2, with ai ∈ X and no neighbor of ui−2,S in X.
Then X is {ai, ui,P }.

We may suppose that

K ∩ P̂iQiRi ⊆ X ∩ {ai, ui,P , ui,S , ai+1}

If the intersection reduces to {ai} then embed C via KRiQiP̂i; and if ai+1 ∈
X embed C via KP̂i+1Qi+1Ri+1. As ui,S is a neighbor of ui−2,S , this is ruled
out. So we are left with X = {ai, ui,P }.

Claim 3. Let G be a C-free graph containing G3, and K a clique of order 4
free over a set X of order 3, with ai ∈ X and ai−1, ui,P /∈ X, and no neighbor
of ui−2,S in X. Then X = {ai, ui+1,S , ai+1}.

We may suppose that

K ∩ P̂iQiRi ⊆ X ∩ {ai, ui,P , ui,S , ai+1}
= X ∩ {ai, ai+1}
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since ui,S is a neighbor of ui−2,S .
If the intersection reduces to {ai} then we embed C via KRiQiP̂i. So

ai+1 ∈ X

Then we consider X ∩ P̂i+1Qi+1Ri+1 and as ai ∈ K we find ui+1,P , ai+2 /∈ X
and ui+1,S ∈ X.

The last two claims give sufficient rigidity to show that there is no count-
able weakly universal C-free graph. �

Lemma 48 (4.16). Let C be a block path of length 4 satisfying

n1 = 4

n3 = 3

n2 ≥ n4 ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (3;n2, 3)

G1 Clique Ext’n uRi+1,P

G2 Amalg’n
⋃
i(Q
∗
i ∪ {ui,P }, |Qi \Q∗i | = 2

G3 Anti-edges Edges (ui,P , ui+2,P )
|K| = 4
Anti-edges at (ai, v) for v ∈ Q∗i+1\{ai+1} |K ′| = 3

Gε Ext’n Family |K| = 4

Claim 1. The graphs Gε are C-free.

We show that Gε contains no solid block path (P ′, Q′, R′) of type (4, n2, 3).
Here Q′ would have to be a copy of some Qi, and we may suppose Q′ = Qi.
Then P ′, R′ meet Q′ in ai and the vertex bi in Qi ∩Ri. This forces R′ to be
Ri. Then there is no plausible candidate for P ′.

Claim 2. Suppose that G3 ⊆ G with G C-free. Let K be a clique of order
n2 which is free in G over a subset X with the following properties.

ai ∈ X

|X| = |Q∗i |
Suppose there is no edge (ui−2,P , x) with x ∈ X. Then X = Q∗i .

Take j maximal so that K meets Q∗j . We may suppose that

K ∩QjRjQj+1 ⊆ X ∩ (Q∗j ∪ {uj,P } ∪Q∗j+1)

= X ∩Q∗j
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in view of the conditions on X and the choice of j.
If X = Q∗j then evidently j = i and the claim is proved.
if X 6= Q∗j then there is a clique K ′ ⊆ K of order 4 with |K ′ ∩ Q∗j | = 1,

and hence C embeds in K ′QjRjQj+1, a contradiction.
This proves the claim.

Claim 3. Suppose that G3 ⊆ G with G C-free. Let K be a clique of order 4
free in G over a set X with the following properties.

X ∩Q∗i = {ai}
|X| = 3

Suppose that X contains no neighbor of ui−2,P . Then ai+1 ∈ X.

We may suppose

K ∩QiRiQi+1 ⊆ X ∩ (Q∗i ∪ {ui,P } ∪Q∗i+1)

= X ∩ {ai, ai+1}
since X is a clique containing ai and Q∗i+1 contains no neighbor of ai other
than ai+1, and no neighbor of ui−2,P .

The intersection cannot reduce to {ai}, so ai+1 ∈ X.
Now the last claims show that from the parameter ai (essentially) we can

recover Q∗i , then ai+1, and hence also Q∗i+1. To conclude, we identify ui,P .

Claim 4. Suppose that G3 ⊆ G with G C-free. Let K be a clique of order 4
free in G over a subset X with the following properties.

X ∩Q∗i = {ai}
X ∩Q∗i+1 = ∅

|X| = 3

Then X = {ai, ui+1,P , ai+1}.

We may suppose that

K ∩QiRiQi+1 ⊆ X ∩ (Q∗i ∪ {ui,P } ∪Q∗i+1)

= X ∩ {ai, ui,P }
As the intersection cannot reduce to {ai}, the claim follows.

Now it follows that there is no countable universal C-free graph. �

Lemma 49 (4.17). Let C be a block path of length 4 satisfying

3 ≤ n1, n3 < n2 < n4

n1 6= n3

Then there is no countable weakly universal C-free graph.

Proof. Set

m = min(n1, n3)

n = max(n1, n3)
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Loop Construction

Graph Type Specification

G0 Chain (n− 1;n2,m)

G1 Clique Ext’n uRi+1,P ; Ŝi = {ai+1, ai+2} ∪ S∗

G2 Amalg’n Base
⋃
i(Q
∗
i ∪{ui,P }), |Qi \Qi| = n−2 if n = n1,

and Q∗i = {ai} otherwise
G3 Anti-edges Edges (ui,P , ui+2,P )

Anti-edges at (u, ui,P ) for u ∈ Q∗i \ {ai} and
(ai, ai+2)
|K| = m

Gε Ext’n Family |K ′| = n

Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε is an embedding as a subgraph.
Then S′ has the form

{aj , ak} ∪ S∗

with (aj , ak) an edge.
As Q′ ∩S∗ = ∅ we find that Q′ is a copy of some Qi, and we may suppose

Q′ = Qi. Then P ′, R′ meet Q′ in ai and the vertex bi ∈ Qi ∩Ri. The clique
meeting Q′ in bi must be Ri, of order m, and equal to P ′ or Q′. The other
clique K = P ′ or R′ meeting Q′ in ai must have order n.

We claim that K cannot be contained in another copy of Qi. If n1 = n
then the choice of Q∗i ensures this. If n1 = m then K = R′, and if K were
contained in a copy of Qi, then S′ would be forced into the same copy of Qi,
for a contradiction.

As P ′ ∩ R′ = ∅, K is not P̂i−1 or P̂i. As m < n K is not contained in
Ri−1. There is one more possibility to consider: P ′ = Ri and R′ meets S′ in
a vertex of S∗. In this case

|R′| ≤ 1 + |R′ \ S∗| ≤ 3

But n > 3 so this is impossible as well.
The claim is proved.
For the rest of the argument we need to distinguish the cases n1 = m,

n1 = n.

Claim 2. Suppose G3 ⊆ G with G C-free, and n1 = m. Let (Q′, R′) be a
solid block path of type (n2,m) free in G over a subset X with the following
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properties.

X ∩Q′ ∩R′ = ∅
X ∩ S∗ = ∅
X ∩Q′ = {ai}

ai−1 /∈ X

|X ∩R′| = 2

Suppose also that the elements of X∩R′ are neighbors of ai. Then X∩R′ =
{ui,P , ai+1}.

We may suppose that

Q′R′ ∩ P̂i−1Si−2 ⊆ X ∩ ({ai−1, ui,P , ai} ∪ S∗)

= X ∩ {ui,P , ai}
If the intersection reduces to {ai} then we have an embedding of C into G,
and a contradiction. So

ui,P ∈ X ∩R′

We may suppose that

Q′R′ ∩ P̂iSi ⊆ X ∩ ({ai, ui+1,P , ai+1, ai+2} ∪ S∗)

= {ai} ∪ (X ∩R′ ∩ {ui+1,P , ai+1, ai+2})
The intersection cannot reduce to {ai}. As ui,P ∈ X ∩R′ and X ∩R′ is a

clique, we cannot have ui+1,P or ai+2 in X ∩ R′. So ai+1 ∈ X ∩ R′ and the
claim is proved.

As we can then distinguish the vertices ui,P , ai+1 over the parameter
ui−1,P , it follows that there is no countable weakly universal C-free graph in
this case.

So in what follows we deal with the case n1 = n.

Claim 3. Suppose that G3 ⊆ G with G C-free, and that n1 = n. Let K be
a clique of order n2 free in G over a subset X with the following properties.

ai ∈ X

X ∩ S∗ = ∅
|X| = |Q∗i |

Then X = Q∗i .

Take j maximal with aj ∈ X. We may suppose that

K ∩QjRjSj ⊆ X ∩ (Q∗j ∪ {uj,P , aj+1, aj+2} ∪ S∗)

= X ∩ (Q∗j ∪ {uj,P })
If X 6= Q∗j then there is a clique K ′ ⊆ K of order n so that |K ′ ∩Qj | = 1.

As G is C-free, this forces uj,P ∈ K ′ and |X ∩Q∗j | = |Q∗j | − 1 > 1. As X is
a clique meeting Q∗j \ {aj}, the vertex uj,P is not in X. This contradiction
completes the proof of the claim.
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Claim 4. Suppose that G3 ⊆ G with G C-free, and that n1 = n. Let K be
a clique of order n free in G over a subset X with the following properties.

X ∩Q∗i = {ai}
ai−1 /∈ X

X ∩ S∗ = ∅
|X| = 2

Suppose that the unique vertex v ∈ X \ {ai} is not a neighbor of ui−2,P .
Then X = {ai, ai+1}.

We may suppose that

K ∩QiRiSi ⊆ X ∩ (Q∗i ∪ {ui,P , ai+1, ai+2} ∪ S∗)

= X ∩ {ai, ui,P , ai+1, ai+2}

The intersection cannot reduce to {ai} and ui,P is a neighbor of ui−2,P ,
so X must contain ai+1 or ai+2. As ai ∈ X and X is a clique, ai+2 /∈ X. So
ai+1 ∈ X and the claim is proved.

At this point, given ai we can identify Q∗i , and then ai+1.

Claim 5. Suppose that G3 ⊆ G with G C-free, and that n1 = n Suppose
that (Q′, R′) is a solid block path of type (n2,m) free in G over a subset X
with the following properties.

X ∩Q′ ∩R′ = ∅
X ∩Q′ = Q∗i

ai+1 ∈ X

|X ∩R′| = 2

Then X ∩R′ = {ui,P , ai+2 ].

It suffices to consider a suitably chosen copy of P̂i−1Q′R′Si.
From these claims, by a rigidity argument there is no countable weakly

universal C-free graph. �

Lemma 50 (4.18). Let C be a block path of length 4 satisfying

n1 = 3

n3 = 4 < n2 = n4

Then there is no countable weakly universal C-free graph.

Proof.
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Loop Construction

Graph Type Specification

G0 Chain (3, n2; 3)

G1 Clique Ext’n uPi+1,R; Ŝi = {ai+1} ∪ S∗

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,R, ui+2,R)
Anti-edges at (ui,R, ai+2)
of type (R,S)
and at (ui,R, ui+1,R), |K| = n2

Gε Ext’n Family |K ′| = 4

Claim 1. The graphs Gε are C-free.

Suppose that C ∼= C ′ = (P ′, Q′, R′, S”) ⊆ Gε is an embedding as a sub-
graph. Clearly Q′ cannot be a copy of one of the Si, so Q′ is a copy of some
Qi, and we may suppose that Q′ = Qi. Then the points of intersection of Q′

with P ′ and R′ are ai and the vertex bi in Qi ∩ P̂i, so P ′ must be P̂i and R′

meets Q′ in ai.
Evidently R′ is not contained in a copy of Si−1 or Pi−1, and overlap with

P ′ prevents R′ from being a copy of R̂i−1 or R̂i. If R′ is contained in a copy
of Qi, there is no candidate for S′. So all cases are eliminated and the claim
follows.

Claim 2. Suppose that G3 ⊆ G with G C-free. Let (Q′, P ′) be a solid
block path of type (n2, 3) which is free in G over a set X with the following
properties.

X ∩Q′ ∩ P ′ = ∅
X ∩Q′ = {ai}

ai−1 /∈ X

|X ∩ P ′| = 2

Then X ∩ P ′ = {ui,R, ai+1}.

We may suppose that

Q′P ′ ∩ R̂i−1Qi−1 ⊆ X ∩ {ai−1, ui,R, ai}
If the intersection reduces to {ai} then we have an embedding of C into

G, and a contradiction. So

ui,R ∈ X ∩R′

We may suppose that

Q′P ′ ∩ R̂iSi ⊆ X ∩ {ai, ui+1,R, ai+1}
= {ai} ∪ (X ∩R′ ∩ {ui+1,R, ai+1})
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If the intersection reduces to {ai} then we have an embedding of C into
G, and a contradiction. As X ∩ R′ is a clique containing ui,R, the vertex
ui+1,R is not in X ∩R′. So ai+1 ∈ X ∩R′ and the claim follows.

Now by a rigidity argument there is no countable weakly universal C-free
graph.

�

Lemma 51 (4.19). Let C be a block path of length 4 satisfying

n1 = 3

n3 = 4 < n4 < n2

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (3, n2; 4, n4)

G1 Clique Ext’n No clique extension

G2 Amalg’n Base
⋃
iQ
∗
i , |Q∗i | = max(1, n2 − (n4 + 1))

G3 Anti-edges No additional edges or anti-edes

Gε Ext’n Family |K| = 4

Claim 1. The graphs Gε are C-free.

Suppose that C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε is an embedding as a sub-
graph. Then Q′ is a copy of some Qi, and we may suppose Q′ = Qi. Then
P ′, R′ meet Q′ in ai and the vertex bi ∈ Qi ∩ Pi. So P ′ must be Pi and R′

meets Q′ in ai.
If R′ is contained in another copy Q# of Qi then so is S′ and we find

|R′S′| ≤ 1 + |Q#
i \Q

∗
i | = n4 + 2

This is a contradiction. Other possibilities for R′ are quickly eliminated.
The claim follows.
For the reconstruction of the sequence (ai) we follow the logic of the

preceding proof.
This suffices to show the nonexistence of a countable weakly universal

C-free graph. �

Lemma 52 (4.20). Let C be a block path of length 4 satisfying

n1 = 3

n3 = n4 = 4

n2 ≥ 5

Then there is no countable weakly universal C-free graph.
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Proof.

)

Loop Construction

Graph Type Specification

G0 Chain (3, n2; 4, 2)

G1 Clique Ext’n uQi+1,S , v
Q
i+1,S

G2 Amalg’n Base
⋃
Q∗i , |Q∗i | = max(3, n2 − 5)

G3 Anti-edges Edges (ui,S , ui+2,S) and (vi,S , vi+2,S)
Anti-edges at (u, v) for non-edges with u ∈ Q∗i ,
v ∈ Q∗j , j = i + 1, i + 2

|K| = 4
at (ai, ai+1), |K ′| = 4

Gε Ext’n Family |K ′| = 4

Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε is an embedding as a subgraph.
Then Q′ is a copy of some Qi and we may suppose Q′ = Qi. The possible
points of intersection of Q′ with P ′ and R′ are ai, ui,S , vi,S , and the cut
vertex bi ∈ Qi ∩ Pi.

The case in which the point of intersection is ui,S or vi,S can be ruled out,
as the clique K in question would be contained in a copy of Ŝi−1, leaving
|K| ≤ |Ŝi−1 \Qi|+ 1 = 2, a contradiction.

So P ′, R′ meet Q′ in ai and bi in some order. The clique meeting Q′ in bi
must be Pi, so P ′ = Pi and R′ meets Q′ in ai. We first consider the exotic
possibility that R′ is contained in a second copy Q#

i of Q′. This forces S′

into Q#
i as well and then |R′S′| ≤ 1 + |Q#

i \Qi| = 1 +n2− |Q∗i | ≤ 1 + 5 = 6,
a contradiction. Thus R′ is a copy of Ri, which we may suppose is Ri, and
then S′ must be Ŝi and we have a contradiction.

This proves the claim.

Claim 2. Suppose that G3 ⊆ G with G C-free, and that |Q∗i | = n2 − 5.
Let K be a clique of order n2 free in G over a subset X with the following
properties.

ai ∈ X

|X| = |Q∗i |
Then X = Q∗i .

We may suppose that

K ∩ (P̂iQi) ⊆ X ∩ (Q∗i ∪ {ai+1})
= X ∩Q∗i

since X is a clique containing ai.
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If X 6= Q∗i then we can find K ′ ⊆ K with |K ′| = 7 and |K ′ ∩ Qi| = 1.
This gives an embedding of C into G, and a contradiction.

Claim 3. Suppose that G3 ⊆ G with G C-free, and that |Q∗i | = 3. Let K be
a clique of order n2 which is free in G over a set X satisfying the following
conditions.

ai ∈ X

|X| = 3

Then either X = Q∗i = {ai, ui,S , vi,S} or X ∩Ri−1Ŝi−1 = {ai}.

We may suppose that

K ∩ (R̂i−1Ŝi−1 ∪RiŜi) ⊆ X ∩ ({ai−1} ∪Q∗i ∪Q∗i+1)

= X ∩Q∗i

since X is a clique containing ai.
Suppose X 6= Q∗i but the intersection contains ui,S or vi,S . Then we find

a clique P0 ⊆ Ŝi−1 of order 3 with |P0 ∩K| = 1, where the common vertex
is ui.S or V ′i . In this case extend by RiŜi to get an embedding of C.

This proves the claim.

Claim 4. Suppose that G3 ⊆ G with G C-free. Let (Q′, P ′) be a solid block
path of type (n2, n1) free in G over a subset X with the following properties.

X ∩Q′ ∩ P ′ = ∅
ai ∈ X ∩Q′

|X ∩Q′| = |Q∗i |
|X ∩ P ′| = 1

Then X ∩Q′ = Q∗i and X ∩ P ′ = {ai+1}.

As far as X ∩ Q′ is concerned, this is largely dealt with in the previous
two claims, but we need the extension by P ′ to ensure that ui,S or vi,S gets
into X ∩Q′.

A similar argument shows that the unique vertex v in X ∩P ′ lies in Q∗i+1.
If it is not ai+1 then we embed C into G using P ′Qi+1Ri+1Ŝi+1.

From these claims and the edge/antiedge structure on
⋃
iQ
∗
i we have

enough rigidity to show that there is no countable weakly universal C-free
graph. �

Lemma 53 (4.21). Let C be a solid block path of length 4 satisfying the
following.

n1 = n3 = 3

n4 > n2 ≥ 5

Then there is no countable weakly universal C-free graph.
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Proof.

Loop Construction

Graph Type Specification

G0 Chain (2, n2, 3; 3)

G1 Clique Ext’n uSi+1,P ; u
R
i+1,S , S

∗

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,P , ui+2,P ), (ui,S , ui+2,S)
Anti-edges at (u, v) with u ∈ {ai, ui,P , ui,S}, v ∈
{ai+2, ui+2,P , ui+2,S}, not an edge
of type C, i.e., C\e, e in P

Gε Ext’n Family |K| = 3

Claim 1. The graphs Gε are C-free.

Suppose C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε. Then S′ = Si for some i. Since
Q′ ∩ S∗ = ∅ and |Q′| ≥ 5, Q′ is a copy of some Qj ; we suppose Q′ = Qj .

If R′ meets S′ in the vertex v, then v has a neighbor in Q′. Hence v /∈ S∗,
and v = ai or ai+1. By symmetry we may suppose v = ai. There is no viable
candidate for R′ other than Ri, so i = j and then P ′ is forced to meet S′, a
contradiction.

If G3 ⊆ G with G C-free, then over the parameters in S∗, from the vertices
ai, ui,P , ui−1,P , uiS , ui−1,S we can determine ui+1,P and ai+1 by considering
cliques of order n4 containing {ai} ∪ S∗ and realizing an appropriate type
over the parameters. And then we may determine ui+1,P by considering solid
block paths of an appropriate type relative to the same parameters together
with ai+1 and ui+1,S .

It then follows by a rigidity argument that there is no countable weakly
universal C-free graph. �

Lemma 54 (4.22). Let C be a solid block path of length 4 satisfying the
following.

n1 = n3 = 3

n2 > n4 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.
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Loop Construction

Graph Type Specification

G0 Chain (2, n2, 3;n4 − 1)

G1 Clique Ext’n uSi+1,P ; u
R
i+1,S

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,S , ui+2,S)
Anti-edges at (u, v) with u ∈ {ai, ui,P , ui,S} and
v ∈ {ai+2, ui+2, ui+2,S}, not an edge
|K| = |S|

Gε Ext’n Family |K| = |S|

Claim 1. The graphs Gε are C-free.

Suppose that C ∼= C ′ = (P ′, Q′, R′, S′) ⊆ Gε is an embedding as a sub-
graph. Then Q′ is a copy of some Qi, and we may suppose that Q′ = Qi. So
P ′, R′ are P̂i, Ri in some order. By symmetry we may suppose that R′ = Ri.

Then the only candidates for S′ are copies of Ŝi−1 and Ŝi, and one meets
R′ in two vertices while the other meets P ′.

This proves the claim.
Now we may argue as usual that under an embedding of G3 into a C-free

graph G, the sequence (ai) is determined by a finite amount of data, and
thus there is no countable weakly universal C-free graph.

�

Lemma 55 (4.23). Let C be a solid block path of length 4 and type (3, 4, 4, n4)
with

n4 ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain (2; 4, 4, 2)

G1 Clique Ext’n uQi+1,P , P
∗; S∗

G2 Amalg’n Base (
⋃
iQi \Ri) ∪ S∗

G3 Anti-edges Edges (ui,P , ui+2,P ), (vi, vi+2)
where Qi \Ri = {ai, ui,P , vi}
Anti-edges at (ai, vi+1) and (u, ai+2), u ∈ Qi\Ri,
|K| = 4

Gε Ext’n Family |K| = 3

Claim 1. The graphs Gε are C-free.
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If C ∼= (P ′, Q′, R′S′) ⊆ Gε then S′ is either a copy of some Ŝi or of the
form {ai, aj} ∪ S∗ with (ai, aj) an edge.

It then follows that Q′, R′ are copies of some Qk, Rk in some order. In
order for P ′ to exist, the order must be R′Q′ = RkQk, and this forces S′ to
be a copy of Ŝk. So we may suppose S′R′Q′ = ŜkRkQk. Then one sees that
there is no suitable clique corresponding to P ′ (noting that any other copy
of Qk contains Qk \Rk).

Claim 2. Suppose G is a C-free graph containing G3 and K is a clique of
order 4 in G free over a set X satisfying the following.

ai ∈ X

X ∩ S∗ = ∅
|X| = 3

Then X = Qi \Ri.

Let j be maximal so that aj ∈ X. We may suppose that

K ∩QjRjŜj = X ∩ ((Qk \Rk) ∪ {aj+1} ∪ S∗)

= X ∩ (Qk \Rk)

If the intersection is not Qk \ Rk then there is a clique K ′ ⊆ K of order 3

meeting QjRjŜj only in aj , and C embeds in G. The claim follows.

Claim 3. Suppose G is a C-free graph containing G3 and K is a clique of
order 3 in G such that

K ∩Qi \Ri = {ai}
K ∩ S∗ = ∅

Then K = P̂i.

We may suppose that

K ∩QiRiŜi = K ∩ ((Qi \Ri) ∪ {ai+1} ∪ S∗)

= K ∩ {ai, ai+1}
As G is C-free we have

ai+1 ∈ K

It then follows easily that K meets Qi+1 in at least two points. As ai ∈ K

it follows that K ∩Qi+1 = {ai+1, ui+1,P } and K = P̂i.
From the preceding claims and the edge/antiedge structure in G3 it follows

that we can inductively determine the vertices ai and prove the nonexistence
of a countable weakly universal C-free graph by a rigidity argument. �

Lemma 56 (4.24). Let C be a solid block path of length 4 and type (3, 3, 4, n4)
with

n4 ≥ 5

Then there is no countable weakly universal C-free graph.
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Proof.

Loop Construction

Graph Type Specification

G0 Chain (2, 3; 3, 2)

G1 Clique Ext’n uRi+1,P ; S
∗

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,P , ui+2,P )
Anti-edges at (ui,P , ai+2), |K| = 3

Gε Ext’n Family |K| = 3

Claim 1. The graphs Gε are C-free.

Suppose C ∼= (P ′, Q′, R′, S′) ⊆ Gε. We may suppose S′ = Ŝi for some
i. Then R′ must be Ri or a copy of Ri+1, and the latter alternative is not
viable. So R′ = Ri.

Then Q′ must be a copy of Qi, and we may suppose Q′ = Qi, forcing
P ′ = P̂i, and a contradiction.

Claim 2. Let G be a C-free graph containing G3 and (Q′, P ′) ⊆ G a solid
block path of type (3, 3) free in G over a subset X satisfying the following.

ai ∈ P ′

X = {ai} ∪ (P ′ \Q′)
ui,P /∈ X

X ∩ S∗ = ∅

Then X = {ai, ui+1,P , ai+1}.

We may suppose that

Q′P ′ ∩RiŜi = X ∩ {ai, ui,P , ai+1} ∪ S∗

= X ∩ {ai, ai+1}
As the intersection cannot reduce to ai, we have

ai+1 ∈ X

Then we consider the intersection with Ri+1Ŝi+1 and conclude rapidly that
X = {ai, ui+1,P , ai+1}.

Now we easily recover the sequence (ai) from a finite set of parameters
and conclude by a rigidity argument. �

Lemma 57 (4.25). Let C be a solid block path of length 4 and type (4, 3, 4, n4)
with

n4 ≥ 5

Then there is no countable weakly universal C-free graph.
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Proof.

Loop Construction

Graph Type Specification

G0 Chain (2; 3, 4, 2)

G1 Clique Ext’n uQi+1,P , P
∗; S∗

G2 Amalg’n Special vertices

G3 Anti-edges Edges (ui,P , ui+2,P )
Anti-edges at (ai, cj) (j = i, i+ 1) with ci the cut
vertex of RiSi
|K| = 4

Gε Ext’n Family |K ′| = 3

Claim 1. The graphs Gε are C-free.

If C ∼= (P ′, Q′, R′, S′) ⊆ Gε then S′ must be Ŝi for some i. Then R′ is a
copy of Ri or P̂i+1, so we suppose R′ = Ri, P̂i, or P̂i+1.

If R′ = Ri then Q′ = Qi and there is no viable candidate for P ′.
If R′ = P̂i or P̂i+1 then P ′ must be a copy of some Rj . Then there

is no viable candidate for Q′; the main to consider would be R′ = P̂i+1

and P ′ = Ri+2, Q′ = Qi+2. But we also need to notice that our choice of
amalgamation base prevents the possibility that R′ = P̂i, Q′ = Qi, and P ′

is a copy of Ri disjoint from Ŝi.

Claim 2. Let G be a C-free graph containing G3 and K a clique of order 4
in G such that

ai ∈ K

P ∗ ⊆ K

ai−1 /∈ K

S∗ ∩K = ∅

Suppose that K \ P ∗ contains no neighbor of ui−2,P . Then K = P̂i.

We may suppose that

K ∩QiRiŜi ⊆ K ∩ {ai, ui,P } ∪ Ŝi

= K ∩ ({ai, ui,P , ai+1})
since (ai, ci) is an antiedge. This intersection cannot reduce to {ai}. As
(ui−2,P , ui,P ) is an edge, we find ai+1 ∈ K. Then considering Qi+1Ri+1Ŝi+1

we find K = P̂i.
The claim follows, and the pattern of edges and anti-edges in G3 allows us

to reconstruct the sequence (ui,P ) from a finite set of parameters. A rigidity
argument completes the proof. �
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5. Critical configurations of length 5

From this point on, in our loop constructions we generally give only the
construction G0, G1; that is, we omit the specification of an amalgamation
base and the decoration by edges and anti-edges involved in constructing
G3 and then the various Gε, unless something exceptional is involved. The
default includes: amalgamation over the set of special vertices; anti-edges of
type (K\e) for some suitable value of |K| (minimal so that K itself would
give an embedding of C); attachment of edges/anti-edges according to ε at
(a3i, a3(i+1)), as amply illustrated in the previous section.

The next two lemmas will cover clause 5.1 and a little more.

Lemma 58 (5.1 with n1 > n2). Let C be a solid block path of length 5,
satisfying the following.

n1 > n2 > n3 = 3

n4 = n2, n5 = n1

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n1 − 1, n2;n3, n2, n1 − 1)

G1: Clique Ext’n uQi+1,P , u
Q
i+1,R

We check that the graphs Gε are C-free.
Suppose j : C ∼= C ′ = (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then each of P ′, T ′ is a

copy of some P̂i or T̂i and P ′, T ′ are disjoint, so we may suppose P ′ = P̂i or
T̂i, T ′ = Pj or T̂j , with distinct indices. And we may suppose i < j, so that
the cut vertex of P ′Q′ should lie in Qj+1 ∪Rj+1. But this is impossible.

�

The next result covers clause 5.1 for the case n2 > n1, but in considerably
greater generality. The extra generality is not needed elsewhere: one may
set n3 = 3 and n2 = n4 here.

Lemma 59 (5.1 with n2 > n1). Let C be a solid block path of length 5 with
all block sizes ni ≥ 3, satisfying the following.

n4 ≥ n2 > n1, n3

n5 = n1

Then there is no countable weakly universal C-free graph.
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Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n1 − 1;n2, n3, n4, n1 − 1)

G1: Clique Ext’n uQi+1,P , u
!
i1,T

Q

We check that the graphs Gε are C-free.
Suppose C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then S′ is a copy of some Si or Qi

(with n2 = n4 in the second case) and so we may assume that Si is equal to
either Si or Qi.

If S′ = Si, then R′, T ′ are Ri, T̂i in some order, with n3 = n5 if the order
is reversed. In any case no clique of order n2 meets T̂i in a single vertex, so
R′ = Ri and then Q′ = Qi. There is no viable candidate for P ′.

There remains the case S′ = Qi, with n2 = n4. In this case if Q′ is a copy
of some Sj then we fall into the previous case treated, so we may suppose
Q′ is Qj for some j. Then by symmetry we may take i = j − 1 and R′ ⊆ P̂i.
But the inclusion must be proper so n3 < n1 and P ′ is not contained in Ri.
This leaves no viable candidate for P ′.

Thus the graphs Gε are C-free and the rest goes as usual. �

Lemma 60 (5.1). Let C be a solid block path of length 5 satisfying the
following.

n1 = n5, n2 = n4

n1, n2 > n3 = 3

n1 6= n2

Then there is no countable weakly universal C-free graph.

Proof.
If n1 > n2 then Lemma ?? applies. If n2 > n1 then Lemma 59 applies. �

Lemma 61 (5.2). Let C be a solid block path of length 5 satisfying the
following.

n5 > n1 > n2 > 3

n3 = n4 = 3

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2;n2, 3)

G1: Clique Ext’n uQi+1,P , P
∗; Si = {ai+1, ai+2, t (t fixed)

Ti = T fixed, t ∈ T
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We check that the graphs Gε are C-free.
Suppose C ∼= (P ′, Q′, R′, S′, T ′) ⊆ G. Then T ′ = T .
Then P ′ = P̂i for some i. The only cliques of order n2 meeting P ′ in a

single vertex are the copies of Qi. So we may suppose that Q′ = Qi.
Evidently R′ is not Ri. The only alternative is that R′ meets Q′ at ui,P .

But then R′ ⊆ P̂i−1 and hence R′ ⊆ Pi−1 with |R′ ∩ Qi| = 1, so |R′| ≤ 2,
which is impossible.

This proves the claim, and the rest follows as usual. �

Lemma 62 (5.3). Let C be a solid block path of length 5 satisfying the
following.

n5 > n2 > n1 > 3

n3 = n4 = 3

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n1 − 1;n2, 3)

G1: Clique Ext’n uRi+1,P , Si = {ai+1, ai+2, t}, Ti = T ; t ∈ T

We check that the graphs Gε are C-free.
If C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε, then T ′ = T . So Q′ must be a copy of

some Qi and we may suppose Q′ = Qi. The choice of Q∗i prevents P ′ from
being inside another copy of Qi, so P ′ must be a copy of Pi−1 or Pi. Then
R′ must be Ri, but this meets P ′.

�

Lemma 63 (5.4). Let C be a solid block path of length ` ≥ 4 with

n2 > 4

ni = 4 for i 6= 2

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, n2; 4, 4, 3)

G1: Clique Ext’n uQi+1,P , v
R
i−1,P ; u

Q
i+1,T

For the base of the amalgamation we take
⋃
i(Q
∗
i∪{vRi,P ) with |Qi\Q∗i | = 2.

We check that the graphs Gε are C-free.
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Suppose C ∼= (P ′, Q′, . . . , Z ′) ⊆ Gε. Then Q′ is a copy of some Qi, and
we may suppose Q′ = Qi.

The overlap prevents P ′ and R′ from being a copy of P̂i−1 or Ẑi−1. The
inclusion of Q∗i in the base prevents them from lying in another copy of Qi.
Thus P ′ and R′ are P̂i and a copy of Qi, in some order. If P ′ = P̂i and R′ is
a copy of Ri then C ′ is trapped in a single loop and we have a contradiction.
If the roles are reversed then in view of the overlap of P̂i with Qi+1 and Ri+1,
C ′ is still trapped in the same loop.

This proves the claim.
�

Lemma 64 (5.5). Let C be a block path of length 5 with all block sizes equal
to 4. Then there is no countable weakly universal C-free path.

Proof.
This is very similar to the preceding.

Loop Construction

Graph, Type Specification

G0: Chain (2, 4, 4; 4, 2)

G1: Clique Ext’n ui+1, P
R, vSi+1,P ; u

R
i+1,T , v

S
i+1,T

It is easy to check that Gε is C-free. It is clear from the construction that
any embedding of C into Gε would involve copies in G2 of a single loop of
G1, and further that without loss of generality the embedding would be into
a single loop, which is impossible.

�

Lemma 65 (5.6). Let C be a solid block path of length 5 and type (3, n2, 4, n4, 3)
with

n2, n4 ≥ 5

Then there is no countable weakly universal C-free graph.

Proof. We may suppose n2 ≥ n4.
Loop Construction

Graph, Type Specification

G0: Chain (3, n2, 4;n4, 3)

G1: Clique Ext’n No clique extension

If C ∼= C ′ ⊆ Gε, then we may suppose either that Q′ = Qi for some i, or
that n2 = n4 and Q′ = Si.

In the first case R′ = Ri and we may suppose S′ = Si, to reach a contra-
diction. In the second case S′ cannot be a second copy of Si, so must be a
copy of Qi, and we arrive at the first case by a change of notation. �
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Lemma 66 (5.7). Let C be a solid block path of length 5 and type (3, 4, 4, n4, 3)
with

n4 ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 4; 4, n4, 3)

G1: Clique Ext’n No clique extension

• Amalgamation base:
⋃
iR
∗
i , |R∗i | = 2

With this choice of amalgamation base, it is easy to see that the resulting
graphs are C-free. �

Lemma 67 (5.8). Let C be a solid block path of length 5 of type (3, 4, 4, 4, 3)
(switch to 44433). Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 4, 4; 4, 3)

G1: Clique Ext’n No clique extension

• Amalgamation Base:
⋃
R∗i , |Ri| = 2

With this choice of amalgamation base, it is easy to see that the resulting
graphs are C-free. �

Lemma 68 (5.9). Let C be a solid block path of length 5 of type (4, 4, 4, 3, 3).
Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 2, 4; 3, 2)

G1: Clique Ext’n uQi+1,P , v
R
i+1,P ; Q

∗; uRi+1,T

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then R′, S′, T ′ can only be

a copy of some RiŜiT̂i or its reversal. As the construction is symmetrical,
we may suppose R′S′T ′ is RiŜiT̂i. The construction rules out the natural
possibilities for Q′: a copy of P̂i−1 or Qi.

There remains the possibility that Q′ is contained in a copy of T̂i−1. We
suppose Q′ ⊆ T̂i−1. Then P ′ ⊆ Ŝi−1 and P ′ ∩ S∗ = ∅, a contradiction.
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�

Lemma 69 (5.10). Let C be a solid block path of length 5 and type (n, 4, 4, 3, n)
with n ≥ 5. Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 4, 4; 3, n− 1)

G1: Clique Ext’n P ∗; uQi+1,T , v
Q
i+1,T

For the amalgamation base we take P ∗∪
⋃
i Ti with |T \Ti| = min(5, n−3).

We check that Gε is C-free.
Suppose C ∼= C ′ ⊆ Gε.
We may suppose that P ′ is P̂i or T̂i.
If P = P̂i: then we may suppose that T ′ = T̂j for some j 6= i and there is

no plausible candidate.
P ′ = T̂i: the choice of amalgamation base ensures Q′, R′ are not contained

in another copy of T̂i. So we may suppose Q′ ⊆ P̂i.
It follows that T ′ is not a copy of any P̂j , so we may suppose T ′ = T̂j for

some j. It then follows easily that R′ is not contained in any P̂j (including
the case j = i).

So R′ = Qi, S′ ⊆ Ri. But then j = i−1 and |S′∩T ′| ≥ 2, a contradiction.
�

Lemma 70 (5.11, 6.5 ). Let C be a solid block path of of length 5 and type
(4, 4, 4, 3, 4). Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 4; 4, 3)

G1: Clique Ext’n uQi+1,P

We check that the graphs Gε are C-free, and even (4, 4, 4, 3)-free.
If C ′ = P ′Q′R′S′ ⊆ Gε has type (4, 4, 4, 3), then P ′Q′R′ must lie in

amalagmated copies of a single loop Li and without loss of generality, in a
single loop Li. So the claim is clear.

For the rigidity argument we must show that small deformations of this
construction would contain a solid block path of type (4, 4, 4, 3, 4, 4). These
embeddings will depend to an unusual degree on multiple loops.

We mention some key configurations. Schematically, the construction is
as shown.
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If we replace P̂iQi (freely) by another copy P̃ Q̃ which meets Qi+1 in just
one vertex, then we can embed C into Qi+1P̃ Q̃Pi−1Qi−1Ri−1.

On the other hand, if we replace P̂iQi by a copy P̃ Q̃ which does not meet
Qi+1 at all, we embed C into P̃ Q̃RiSiQi+1P̂i+1.

This is the basis of the rigidity argument. �

Lemma 71 (5.12). Let C be a solid block path of length 5 and type (4, 4, 4, 3, n)
with

n ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 4; 4, 3)

G1: Clique Ext’n uQi+1,P , v
R
i+1,P ; T̂i = {ai+1} ∪ T ∗

The extension process that gives Gε at the end involves attachments at
the pairs

(u3i, u3(i+1))

(If we were to add edges (ai, aj) we would run into difficulties with T ∗.) We
check that the graphs Gε are C-free.

Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. We may suppose T ′ = Ti for
some i. Then P ′Q′R′ is forced by the construction to lie in copies of a single
loop Lj , and to be a copy of P̂jQjRj or its reversal. In particular i 6= j, j + 1
and it is easy to see that there is no candidate for S′.

�

Lemma 72 (5.13). Let C be a solid block path of length 5 and type (3, 4, 4, 3, n)
with

n ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.
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Loop Construction

Graph, Type Specification

G0: Chain (3, 4)

G1: Clique Ext’n T̂i = {ai+1} ∪ T ∗

We can also start with a chain of loops of type (3, 4; 4, 3), but after the
free amalgamation step this gives us the same result.

We check that the resulting graphs Gε are C-free. So suppose C ∼= C ′ ⊆
Gε.

For n ≥ 5 everything is clear since T ′ must be one of the T̂i. So we consider
the cases n = 3 or 4. But in this case one may see easily that there is no
embedding of a solid block path of type (3, 4, 4, 3). �

Reverse C to have type 35+433.

Lemma 73 (5.14). Let C be a solid block path of length 5 and type (3, n2, 4, 3, 3)
with

n2 ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, n2, 4; 3, 2)

G1: Clique Ext’n uRi+1,P ; u
R
i+1,T

It is easy to check that the graphs Gε are C-free. �

Lemma 74 (5.15). Let C be a solid block path of length 5 and type (4, 4, 3, n4, 3)
with

n4 ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 4; 3, n4, 2)

G1: Clique Ext’n uRi+1,P ; u
Q
i+1,T

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then we may suppose that

R′ = Ri for some i, and in view of the symmetry of the construction, that
Q′ = Qi and S′ = Si. There are then no viable candidates for (Q′, P ′). �
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Lemma 75 (5.16). Let C be a solid block path of length 5 and type (4, 4, 3, 4, 3).
Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 3, 4; 4, 3)

G1: Clique Ext’n uRi+1,P , v
S
i+1,P

Everything is straightforward. �

Lemma 76 (5.17). Let C be a solid block path of length 5 and type (4, 4, 3, 3, n)
with 4 ≤ n ≤ 8. Then there is no countable weakly universal C-free graph.

Proof. Suppose first
• n ≥ 5

Then we use the following loop construction.
Loop Construction

Graph, Type Specification

G0: Chain (4, 3, 3; 3, n− 2)

G1: Clique Ext’n uQi+1,T , v
S
i+1,T

In the amalgamation base, in addition to the special vertices ai, ui,T , vi,T ,
we add the cut vertex ci between Si and Ti.

We check that the graphs Gε are C-free.
Suppose C ∼= C ′ ⊆ Gε. We may suppose T ′ = T̂i for some i.
Then S′ cannot lie in a copy of the next loop Li+1, and the option S′ ⊆ Pi

quickly yields a contradiction. The presence of the cut vertex ci in the
amalgamation base eliminates the possibility that S′ could lie in another
copy of T̂i. There remains the possibility

S′ = Si

.
There are then essentially two possibilities for R′: R′ ⊆ T̂i−1 and R′ = Ri.

Since |P ′Q′R′ \ S′| = 8, the first possibility would force n ≥ 10. Thus we
may suppose R′ = Ri.
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Then it is easy to see that the cut vertex of Q′R′ must be ui,T and thus
Q′ (and then P ′) lies in T̂i−1,T As |P ′Q′ \ R′| = 6 this forces n ≥ 9, a
contradiction.

Now suppose
• n = 4

We make a simplified loop construction based on block paths of length 2.
Loop Construction

Graph, Type Specification

G0: Chain (3, 4)

G1: Clique Ext’n No clique extension
It is easy to see that the resulting graphs are C-free. For the rigidity

argument we note that if the configuration PiQi is duplicated freely over the
base point ai, then we can find P ′iQ

′
i and P ′′i Q

′′
i with the vertices a′i+1, a

′′
i+1

corresponding to ai+1 identical.
Then the configuration P ′′i P

′
iQ
′
iQiPi gives an embedding of C. This is the

essential point in the proof that ai controls ai+1.
�

Lemma 77 (5.18). Let C be a solid block path of length 5 and type (n, 4, 3, 3, n)
with n ≥ 5. Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain n− 3, 4; 3; 3)

G1: Clique Ext’n uQi+1,P , v
Q
i+1,P , u

R
i+1,P

We check that Gε is C-free. Suppose C ∼= C ′ ⊆ Gε.
We may suppose P ′ = P̂i. Then Q′ is either Qi, or contained in another

copy P̃ of P̂i.
If Q′ = Qi, then we may suppose R′ is contained in the previous loop Li−1

and that T ′ ⊆ P̂i−2. But then S′ should be contained in a copy of Qi−1 or
Ri−1 and this is ruled out by the overlap.

If P̃ Q̃ is another copy of P̂iQi with Q′ ⊆ P̃ , then similarly T ′ should be
contained in a copy of P̂i−1 and there is no candidate for S′.

For the rigidity argument, the first case to consider is a copy P̃ Q̃ of P̂iQi

freely joined over ai. In this case C embeds as P̃ Q̃RiSiP̂i.
The other cases, in which P̃ Q̃ contains both ai and ai+1 but omits one of

the additional special vertices, will lead to an embedding involving a suitable
copy of P̂i+2. �

Lemma 78 (5.19). Let C be a solid block path of length 5 and type (4, 4, 3, 4, 4).
Then there is no countable weakly universal C-free graph.
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Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 4; 3)

G1: Clique Ext’n uQi+1,P

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then P ′, Q′ are copies of some

P̂i, Qi in some order, and we may suppose P ′Q′ is P̂iQi or QiP̂i. Similarly
we may suppose S′T ′ is P̂jQj or QjP̂j . Then j = i ± 2 and there is no
candidate for R′.

The rigidity argument involves consideration of both P̂iQiRiQi+1P̂i+1 and
QiP̂iRi+1Qi+2P̂i+2.

�

Lemma 79 (5.20). Let C be a solid block path of length 5 with all block sizes
ni ≥ 3 and with

n2 = n4 = 3

n1, n5 < n3

Then there is no countable weakly universal C-free graph.

Proof. We may suppose n1 ≤ n5, and the details vary depending on whether
n1 = n5 or n1 < n5.

Case 1. n1 = n5

Loop Construction

Graph, Type Specification

G0: Chain (n1 − 1, 3, n3, 3;n5 − 1)

G1: Clique Ext’n uQi+1,P ; u
S
i+1,T

Case 2. n1 < n5

Loop Construction

Graph, Type Specification

G0: Chain (n1, 3, n3, 3;n5 − 1)

G1: Clique Ext’n uSi+1,T

As n3 > ni for i 6= 3 it is easy to show that all Gε are C-free. �

Lemma 80 (5.21). Let C be a solid block path of length 5 with all block sizes
ni ≥ 3 and with

n2 = n4 = 3

n3 = n5 > n1 ≥ 4

Then there is no countable weakly universal C-free graph.



98 GREGORY CHERLIN AND SAHARON SHELAH

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n1, 3;n3, 3, n
′
3), n′3 = n3 − (n1 + 1)

G1: Clique Ext’n T̂i = Ti∪{uQi+1,T }∪R∗i+1, |Ri\R∗i | = n1 (ai ∈ R∗i )
We check that the Gε are C-free. If C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε then we

may suppose that (R′, S′, T ′) is either (Ri, Si, T̂i) or its reversal. Our main
concern is then the possibility that (P ′, Q′) might embed over ai or ai+1 in
T̂i−1 or Ri+1, and meet R∗i or R∗i+1 in just one vertex. This would then give

(n1 + 2) = |P ′Q′| ≤ 1 + (n3 − (n3 − n1)) = n1 + 1

The rest is as usual. �

Lemma 81 (5.22). Let C be a solid block path of length 5 and type (3, 3, 4, 3, 4).
Then there is no countable weakly universal C-free graph.

Proof. We deviate somewhat from our usual construction.
Loop Construction

Graph, Type Specification

G0: Chain (4, 2)

G1: Clique Ext’n uQi+1,P ; Ti = {ui+1,P ∪ T ∗i
Thus we begin with a chain of type (4, 2, 4, 2, . . . ) extended by edges to an

overlapping chain of type (4, 3, 4, 3, . . . ). We then attach complete graphs of
order 4 freely over the vertices ui,P lying in Qi.

We amalgamate over the special vertices; we must be careful about the
additional copies of QiP̂i which are produced by this.

One must check both the C-freeness and the rigidity.
For the C-freeness, suppose C ∼= C ′ ⊆ Gε. Then we may suppose T ′ is Qi

or Ti.
Case 1. T ′ = Qi

Then R′ cannot be a copy of Qi±1 in view of the overlap, so we may
suppose R′ = Ti, and then S′ = P̂i. There is then no option for Q′.
Case 2. T ′ = Ti

Now S′ can be taken to be either P̂i or a subset of Qi+1.
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If S′ is P̂i then R′ is Qi. Since P ′Q′ cannot be contained in Ti−1, Q′ must
be contained in another copy Q̃ of Qi, and then P ′ must be the corresponding
copy P̃ of P̂i, which however meets S′.

If S′ is a subset of Qi+1 containing ui+1,P , then there is no option for R′.
Now we consider the rigidity argument.

Claim 1. Let Q̃P̃ be a copy of QiP̂i which is free over a subset X satisfying
the following.

X ∩ Q̃ = {ai, ui,P } ⊆ Q̃ \ P̃

|X ∩ P̃ | = 2

Then X ∩ P̃ = {ai+1, ui+1,P }.

We show first that X meets {ai+1, ui+1,P }. We may suppose that

Q̃P̃ ∩QiP̂iTi = X ∩ {ai, ui,P , ai+1, ui+1,P }

So if X ∩ {ai+1, ui+1,P } = ∅ then we can embed C in P̃ Q̃QiP̂iTi.
Now we may suppose

Q̃P̃ ∩Qi+1P̂i+1Qi+2 = X ∩ {ai+1, ui+1,P , ai+2ui+2,P }

Now if |Q̃P̃∩Qi+1P̂i+1Qi+2| = 1 we get an embedding of C into Q̃P̃Qi+1P̂i+1Qi+2,
and otherwise we get an intersection of X ∩P with Qi+2 and we may repeat
the argument.

So we find X ∩Qi = {ai+1, ui+1,P }. �

Lemma 82 (5.23). Let C be a solid block path of length 5 with all block sizes
ni ≥ 3 and with

n2 = n4 = 3

n1 = n3 = n5 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n1 − 1, 3;n1, 2)

G1: Clique Ext’n uQi+1,P ; u
R
i+1,S ; T

∗

We check that the graphs Gε are C-free. If C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε

then it is clear that R′ is not a copy of any Ti, and in view of the symmetry
of the construction we may suppose R′ = Ri. Then easily P ′, T ′ must be
copies of P̂i and Ti, which intersect.

�

The next should be rewritten to reverse C.
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Lemma 83 (5.24). Let C be a solid block path of length 5 with all block sizes
ni ≥ 3 and with

n2 = n4 = 3

n3 = 4

n5 > n1 ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2343; 2)

G1: Clique Ext’n P ∗; uSi+1,T , T
∗

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then we may suppose that

T =′ T̂i for some i, and then P ′ contains P ∗ (but is not necessarily a copy of
P̂i). It follows that R′ is a copy of some Rj , and we may suppose R′ = Rj .

The possibilities are j = i or i + 1, and the latter is blocked by the
construction. So we take R′ = Ri, and Q′ = Qi. This quickly leads to a
contradiction. �

Lemma 84 (5.25). Let C be a solid block path of length 5 and type (4, 3, 4, 3, n)
with

n ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 4; 4, 2)

G1: Clique Ext’n uQi+1,P ; u
R
i+1,S ; T

∗

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then we may suppose that T ′

is T̂i for some i. Furthermore, the cut vertex os S′T ′ cannot be in T ∗, so it
is ai.

It follows that S′ must be a copy of Ŝi or Qi, with R′ the corresponding
copy of Ri or P̂i, and as the construction is symmetrical we may suppose
that R′ = Ri. Then we arrive quickly at a contradiction.

�
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Lemma 85 (5.26). Let C be a solid block path of length 5 and type (3, 3, 4, 3, n)
with

n ≥ 5

Then there is no countable weakly universal C-free graph.

Proof. We perform a loop construction much like the previous one.
Loop Construction

Graph, Type Specification

G0: Chain (3, 3, 4, 3; 2)

G1: Clique Ext’n uSi+1,T , T
∗

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then we may suppose that

T ′ = P̂i for some i. It follows that R′ is a copy of some Rj , and we may
suppose R′ = Rj .

The possibilities are j = i or i + 1, and the latter is blocked by the
construction. So we take R′ = Ri, and Q′ = Qi. This quickly leads to a
contradiction. �

Lemma 86 (5.27). Let C be a solid block path of length 5 with all block sizes
ni ≥ 3 and with

n2 = n4 = 3

n1 = n5 > n3 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 3, n3, 3; 2)

G1: Clique Ext’n uQi+1,P , P
∗; T ∗

We check that the graphsGε are C-free. Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆
Gε.

The cliques of order n1 in Gε are copies of the P̂i, the T̂i, and T ∗∪{ai, aj}
when (ai, aj) is an edge. So P ′, T ′ are P̂i and one of the cliques containing
T ∗ in some order, and by symmetry we may suppose

P ′ = P̂i

T ′ ⊇ T ∗

If follows that R′ is a copy of Rj for some j and we may suppose

R′ = Rj
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Then Q′, S′ are Qj , Sj in some order, and as |Q′ ∩ P̂i| = 1 we find Q′ = Qj ,
S′ = Sj , i = j. Now there is no suitable clique T ′.

One point that always deserves some attention is the incompatibility of
the graphs Gε as ε varies. In this case the claim is that if we adjoin a clique
of order n3 at (a3i, a3(i+1)) then C embeds in the resulting graph. The em-
bedding would involve cut vertices in P ∗, T ∗ and is thus of the “unexpected”
type.

Of course, if there were no such embedding we would simply have adjusted
the size of the antiedges correspondingly (to min(n1, n3 + 4)− 1). �

Lemma 87 (5.28). Let C be a solid block path of length 5 and type (3, n2, 3, n4, 3)
with

n4 > n2 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, n2; 3, n4, 2)

G1: Clique Ext’n uQi+1,T

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then we may suppose that

S′ = Si for some i. Thus R′ is Ri or T̂i. If R′ is T̂i there is no candidate for
Q′. If R′ is Ri then Q′ is a copy of Qi and there is no candidate for P ′.

�

Lemma 88 (5.29). Let C be a solid block path of type (3, n2, 3, n2, 3) with

n2 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, n2; 3, n2, 2)

G1: Clique Ext’n uQi+1,P ; u
Q
i+1,T

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. Then each of Q′, S′ is a copy

of one of the cliques Qi or Si, and clearly at least one must be a copy of
Qi. We may suppose therefore that Q′ = Qi. It is then easy to see that S′
cannot be a copy of Qi±1 or Si−1, and hence S′ = Si. We then arrive quickly
at a contradiction.

�
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6. Remaining critical cases

We deal with the remaining cases of Proposition 8, namely those of length
6 or 7, and those of variable length.

6.1. Length 6.
Lemma 89 (6.1). Let C be a solid block path of length 6 and type (3, 4, 4, 4, 3, 3).
Then there is no countable weakly universal C-free graph.
Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 4, 4; 4, 3)

G1: Clique Ext’n No clique extension
It is clear that the graphs Gε are C-free. �

Lemma 90 (6.2). Let C be a solid block path of length 6 and type (4, 4, 4, 3, 3, n),
with n ≥ 5. Then there is no countable weakly universal C-free graph.
Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 4, 4; 3, 3, 2)

G1: Clique Ext’n uRi+1,P , v
S
i+1,P ; T

∗

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. Then T ′ contains T ∗. It

follows that P ′Q′R′ may be taken to be P̂iQiRi for some i. The alternatives
fo S′ are then a copy of Si or a clique contained in some antiedge K. But
both alternatives lead quickly to a contradiction.

We remark that there are some “nonstandard” cliques of order n in this
construction but they don’t come up in the analysis. They could also be
avoided by an adjustment in Gε.

�

Reverse C here.
Lemma 91 (6.3). Let C be a solid block path of length 6 with all block sizes
ni ≥ 3 and with and type (4, 3, 3, 4, 4, 4). Then there is no countable weakly
universal C-free graph.
Proof. We perform a simplified loop construction based on a block path.

Loop Construction

Graph, Type Specification

G0: Chain Block path (3, 4)

G1: Clique Ext’n T ∗U∗
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Here Ti = {ai+1}∪T ∗ and Ui = U∗ is attached to T ∗. Attached anti-edges
have order 4.

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. Consider S′T ′U ′. We must

have U ′ = U∗ and S′ is a copy of some Pi, with the cut vertex of S′T ′ being
{ai+1}. We may suppose S′ is Pi, and then R′ will be Qi.

The only plausible candidate for Q′ is another copy of Qi, and then P ′ is
forced to meet S′. �

Lemma 92 (6.4). Let C be a solid block path of length 6 and type (4, 4, 4, 3, n, 3)
with all n ≥ 5. Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, n, 3; 4, 4, 3)

G1: Clique Ext’n uSi+1,PR; uRi+1,U

Everything is straightforward in this case. �

Lemma 93 (6.5). Let C be a solid block path of length 6 and type (4, 4, 4, 3, 4, 4)
with all n ≥ 5. Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (4, 4, 2)

G1: Clique Ext’n uRi1,P , v
R
i+1,P

It is clear the result of amalgamation is C-free. For the rigidity argument,
we note that if we attach a copy R̃Q̃P̃ ofRiQiP̂i freely over ai, then C embeds
in P̃ Q̃R̃RiQiP̂i, while if we we attach the copy freely over a set meeting Ri+1

but not containing all of ai, ui+1,P , vi+1,P then we extend through Ri+1 (or
else meet Ri+2 and continue similarly). �

Lemma 94 (6.6). Let C be a solid block path of length 6 and type (3, 4, 4, 3, 3, n)
with all ni ≥ 3. Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (4, 3)

G1: Clique Ext’n TiUi = {ai+1} ∪ T ∗i U
∗
i

The passage from G0 to G1 comes by attaching solid block paths of type
TU , i.e., (3, n6), with the base point of Ti identified with ai+1.
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The proof that the resulting graphs are C-free is straighforward, distin-
guishing the cases n ≤ 4 and n ≥ 5, and for the rigidity argument one ob-
serves that if a copy P ′Q′ of PiQi is freely attached over ai then P ′Q′QiPiTiUi
gives an embedding of C. �

Lemma 95 (6.7). Let C be a solid block path of length 6 and type (3, 4, 4, 3, n, 3)
with n ≥ 3. Then there is no countable weakly universal C-free graph.

Proof. We perform a simplified loop construction. This goes as follows if
n 6= 4.

Loop Construction

Graph, Type Specification

G0: Chain Block path (4, 3)

G1: Clique Ext’n TiUi = {ai+1} ∪ T ∗U∗

If n = 4, we we omit T ∗U∗.
It is easy to see that the graphs Gε are C-free; distinguishes the cases

n ≤ 4 and n ≥ 5. �

Lemma 96 (6.8). Let C be a solid block path of length 6 and type (4, 4, 3, 3, n, 3)
with

n ≥ 5

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 4; 3, 3, n, 3)

G1: Clique Ext’n uQi+1,P ; u
R
i+1,P

We check that the graphs Gε are C-free. Suppose C ∼= C ′ ⊆ Gε.
We may suppose that S′T ′U ′ is SiTiUi in some order, and that R′ is Ri

or Ri+1, or is contained in P̂i or Qi+1.
The natural case R′ = Ri leads quickly to a dead end. The case R′ ⊆ Ri+1

is even less tenable.
If R′ ⊆ P̂i then the cut vertex of R′Q′ is not ai+1, so Q′ is Qi and there

is no viable candidate for P ′.
If R′ ⊆ Qi+1, then P ′ = P̂i+1, and we again reach a dead end. �

Lemma 97 (6.??). Let C be a solid block path of length 6 and type (4, 4, 3, 3, 3, n)
with

n ≥ 5

Then there is no countable weakly universal C-free graph.
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Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 4, 3; 3, 3, 2)

G1: Clique Ext’n uRi+1,P , v
S
i+1,P ; U

∗

Here we need to avoid introducing edges at pairs (ai, aj), so the construc-
tion of the graphsGε will attach edges or anti-edges to pairs (u3i,P , u3(i+1),P ).

We check that the graphs Gε are C-free. Suppose C ∼= C ′ ⊆ Gε.
Then U ′ = Ûi for some i, and P ′Q′ is P̂jQj in some order, for some j 6= i.
One sees quickly that the cut vertex of T ′U ′ must lie in U∗, as otherwise

the only plausible alternative would be j = i−1, and as R′ cannot be a copy
of Ri there is no way to connect T ′ and P ′Q′.

So we suppose T ′ = Uk ∪ {u} for some u ∈ U∗ and some k. Then again
the only plausible possibility is j = k − 1, but the overlap with Si rules this
out. �

Requires reversal.

Lemma 98 (6.9). Let C be a solid block path of length 6 and type (4, 3, 4, 3, 4, 4).
Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 3; 4, 2)

G1: Clique Ext’n uQi+1,P ; u
R
i+1,S

We will be more explicit than usual, giving the details of the minor edges
and antiedges that play a role in the rigidity statement. The main point
here is to formulate the rigidity statement precisely, and then to exploit the
various near-embeddings of C into our graphs, which are unusually varied.

Claim 1. The graphs Gε are C-free.

Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. Then T ′, U ′ must be
copies of some P̂i, Ri+1 in some order. In view of the symmetry of the
construction we may take T ′ = Pi, U ′ = Ri+1. One then arrives quickly at
a contradiction.

The rigidity is also worth checking in some detail.
Note that the hypotheses of the following claim are satisfied when (S′, T ′)

is (Qi, Pi).

Claim 2. Let G be a C-free graph containing G3 and let (S′, T ′) be a solid
block path of type (3, 4) in G, free over a subset X satisfying the following
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conditions.

X ∩ S′ ∩ T ′ = ∅
X ∩ S′ = {ai, ui,P }

ui,S /∈ X

|X ∩ T ′| = 2

Suppose that no neighbor of ui,P or ui,S belongs to X ∩ T ′. Then X ∩ T ′ ∩
Qi+1P̂i+1 is either {ai+1, ui+1,P } or empty.

We may suppose that

S′T ′ ∩Qi+1P̂i+1Ri+2 = X ∩ {ai+1, ui+1,P , ui+2,P , ai+2, ui+2,S}

The hypotheses on X eliminate ui+2,P and ui+2,S . Suppose now that
ai+2 ∈ X.

Then we must have either X ∩ P̂i+1 = {ai+2} or X ∩ Ri+1 = {ai+2}.
This gives an embedding of C into G of the type of P̂iŜiRiS

′T ′P̂i+1 or
PiŜiRiS

′T ′Ri+1, and a contradiction.
So we may suppose.

S′T ′ ∩Qi+1P̂i+1Ri+2 = X ∩ {ai+1, ui+1,P }

Now our claim follows unless this intersection consists of the single vertex
ai+1 or ui+1,P . In this case we embed C as RiS

′T ′Qi+1P̂i+1Ri+2.

Claim 3. Let G be a C-free graph containing G3 and let (S′, T ′, U ′) be a
solid block path of type (3, 4, 4) in G, free over a subset X such that S′T ′

and X ∩ S′T ′ satisfy the conditions of the previous claim and in addition

|X ∩ U ′| = 2

T ′ ∩ U ′ ⊆ X

ui,S /∈ X

Suppose that the vertex in X ∩U ′ \T ′ is a neighbor of ui−1,S and the vertex
in X ∩ T ′ ∩ U ′ is not a neighbor of ui−1,P . Then

X ∩ T ′ = {ai+1, ui+1,P }
T ′ ∩ U ′ = {ai+1

Suppose first that X ∩Qi+1P̂i+1 is empty. We may suppose that

S′T ′U ′ ∩RiŜi = X ∩ {ai, ui,S , ui+1,S , ai+1}
= X ∩ {ai, ui+1,S , ai1}
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Now ai+1 is not in X ∩ T ′ and ai+1 is not a neighbor of ui−1,S , so ai+1 /∈ X.
On the other hand if S′T ′U ′ ∩RiŜi reduces to the vertex ai, then we embed
C into G as P̂iŜiRiS

′T ′U ′.
So in this case we conclude that T ′U ′ ∩ RiŜi = {ui+1,S . Then we embed

C into G as R′iQiP̂iŜiU
′T ′ where R′i is a copy of Ri which does not meet Ŝi.

So this rules out the case in which X∩Qi+1P̂i+1 is empty and we conclude

X ∩ T ′ = {ai+1, ui+1,P }
Our assumptions on X then imply that the cut vertex of T ′U ′ is ai+1.

The claim is proved.

Claim 4. Let G be a C-free graph containing G3 and let (S′, T ′) be a solid
block path of type (4, 3) in G which is free over a subset X satisfying the
following.

X ∩ P̂i−1 = {ai}
X ∩ S′ = {ai, ui,S}

X ∩ S′ ∩ T ′ = ∅ai+1 ∈ X

|X ∩ T ′| = 2

Suppose that the vertex in X ∩ U ′ \ {ai+1} is a neighbor of ui−1,S . Then
X ∩ T ′ = {ui+1,S , ai+1}.

We may suppose that

S′T ′ ∩Ri+1Ŝi+1P̂i+1 = X ∩ {ai+1, ui+1,S , ui+2,S , ai+2, ui+2,P }
and by our assumptions on X this intersection reduces to

X ∩ {ai+1, ui+1,S}
If ui+1,S /∈ X we embed C. So the claim follows.

Application of these claims gives sufficient rigidity to determined the se-
quence (ai, ui,P , ui,S) inductively.

�

Lemma 99 (6.??). Let C be a solid block path of length 6 and type (n1, 3, 3, 3, n5, 3)
with

n1 6= n5

n1, n5 ≥ 4

. Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 3, 3; 3, 2, 2)

G1: Clique Ext’n P ∗; T ∗; uSi+1,U



UNIVERSAL GRAPHS WITH A FORBIDDEN BLOCK PATH 109

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. We may suppose that

P ′ = P̂i and T ′ = T̂j for some i, j. We find that S′, U ′ are Sj , Ûj in some
order so i 6= j.

By inspection i = j + 1, but this is blocked by the overlap with Rj+1. �

Lemma 100 (6.10). Let C be a solid block path of length 6 and type (n1, 3, 3, n4, 3, n6)
with

n1 > n4, n6

n4, n6 ≥ 4

n4 6= n6

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 3, 3;n4, 3, n6)

G1: Clique Ext’n P ∗

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. We may suppose that P ′P̂i

for some i.
We claim that S′T ′U ′ is a copy of some SjTjUj . The choice of amalga-

mation base rules out the possibilities that S′ = Sj and T ′U ′ is contained
in another copy of Sj (when n4 > n6) or U ′ = Uj and S′T ′ is contained in
another copy of Uj (when n4 < n6).

In particular the cut vertex of R′S′ is aj . One then arrives quickly at a
contradiction. �

Lemma 101 (6.11). Let C be a solid block path of length 6 and type (n1, 3, n3, 3, 3, n6)
with

n3 > n6 > n1 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n1, 3, n3, 3, 3;n6 − 1)

G1: Clique Ext’n uTi+1,U

If C ∼= C ′ ⊆ Gε, then we may take R′ = Ri, P ′ = Pi, T ′ = Ti, and as
n6 > n1, 3 and Ti overlaps with Ûi−1, this forces U ′ to be a copy of Ûi, giving
a contradiction. �
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Lemma 102 (6.12). Let C be a solid block path of length 6 and type (n1, 3, n1, 3, 3, n6)
with

n6 > n1 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n1 − 1, 3;n1, 3, 3, 2)

G1: Clique Ext’n uQi+1,P ; U
∗

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. Then U ′ = Ûi for some i.
Suppose first that the cut vertex v of T ′U ′ is in U∗. Then T ′ is Uj ∪ {v}

for some j. Then there is no viable candidate for R′S′.
So T ′ must be contained in a copy of P̂i, Qi+1, Ri+1, or Ti. The cases P̂i

and Ri+1 are easily ruled out, so we suppose T ′ is Qi+1 or Ti.
If T ′ is Qi+1 then clearly S′ cannot be contained in a copy of P̂i and so

S′ is contained in a copy of P̂i+1. Now the overlap with Qi+2 quickly leads
to a contradiction.

If T ′ is Ti then R′S′ is RiSi+1. Clearly Q′ is not contained in another copy
of Ri, or in P̂i−1, so Q′ is a copy of Qi and then P ′ meets U ′, a contradiction.

�

Lemma 103 (6.13). Let C be a solid block path of length 6 and type (3, 3, n3, 3, 3, n6)
with

n1 > n4 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 3, n3; 3, 3, 2)

G1: Clique Ext’n uRi+1,P ; U
∗

For the amalgamation phase, amalgamate over the base
⋃
i(Ri \Qi)∪U∗.

We check that the graphs Gε are C-free.
Suppose that C ∼= C ′ ⊆ Gε. We may suppose that U ′ = Ûi for some i.
Then we may suppose that R′ is Rj for some j. The amalgamation base

ensures that one of Q′, S′ is a copy of Qj , and the other meets R′ at aj . It
is easy to see that Q′ cannot meet R′ at aj and so Q′ = Qj , ai ∈ S′. Now
one quickly arrives at a contradiction. �
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Lemma 104 (6.14). Let C be a solid block path of length 6 and type (3, 3, n3, 3, 3, n6)
with

n3 > n6 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 3, n3, 3, 3, ;n6 − 1)

G1: Clique Ext’n uUi+1,P ; u
T
i+1,U

Everything is straightforward. �

Lemma 105 (6.15). Let C be a solid block path of length 6 and type (n1, 3, 3, n, 3, n)
with

3 ≤ n1 < n

Then there is no countable weakly universal C-free graph.

Proof. If n1 ≥ 4 we proceed as follows.
Loop Construction

Graph, Type Specification

G0: Chain (n1, 3, 3;n, 3, n′) with n−n′ = min(n1 + 3, n− 3)

G1: Clique Ext’n uRi+1,U , U
∗

We check that Gε is C-free. If C ∼= C ′ ⊆ Gε, we may suppose that S′T ′U ′

is SiTiÛi in some order. Taking into account the overlap with Ri+1, the only
plausible alternative is that P ′Q′R′ lies in a copy of Ui±1, sharing the cut
vertex ai±1 with S′, so |PQR| = n1 + 4 ≤ n−|U∗| = n−n′, a contradiction.

For the case n1 = 3 we refer to Lemma ?? below. �

Lemma 106 (6.16). Let C be a solid block path of length 6 and type (n, 3, n3, 3, 3, n)
with

n3 > n ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n− 1, 3, n3, 3; 3, n− 1)

G1: Clique Ext’n uQi+1,P ; u
S
i+1,U

We check that the graphsGε are C-free. Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆
Gε. Then we may suppose that R′ = Ri for some i.
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So Q′, S′ are Qi and Si in some order. In particular P ′ cannot be a copy
of P̂i−1 or Ûi−1.

So P ′ is P̂i. Then T ′ cannot be another copy of Si, and there is no way
to complete the embedding. �

Lemma 107 (6.17). Let C be a solid block path of length 6 and type (n, 3, n3, 3, 3, n)
with all n > n3 ≥ 4. Then there is no countable weakly universal C-free
graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n− 2, 3, n3; 3)

G1: Clique Ext’n uRi+1,P , v
S
i+1,P

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. Then we may suppose

that P ′ = P̂i for some i. The candidates for R′ are Ri, a clique contained in
a copy of P̂i−1 or P̂i+1, or a copy of Qi+2. The last two possibilities are not
viable since Q′ would need to be a copy of Si+1.

If R′ = Ri then U ′ should be a copy of P̂i−3, but this is blocked by the
overlap with Ri−2 and Si−2. If R′ is contained in P̂i−1 then U ′ should be a
copy of P̂i−2 but this is blocked similarly.

This proves the claim.
�

Lemma 108 (6.18). Let C be a solid block path of length 6 and type (n, 3, n, 3, 3, n)
with all n ≥ 4. Then there is no countable weakly universal C-free graph.

Proof. We perform a simplified loop construction.
Loop Construction

Graph, Type Specification

G0: Chain Block path (3, n)

G1: Clique Ext’n No clique extensions
We use the amalgamation base

⋃
i(Pi \Qi).

The graphsGε are easily seen to be C−-free where C− is of type (n, 3, 3, n).
This depends on the choice of the amalgamation base.

We comment on the rigidity argument.

Claim 1. If G is a C-free graph containing G3 and P ′ is a clique of order n
containing ai, then P ′ contains P ∗i .

We indicate the main point. Assuming the contrary, we find a block path
(Q′′, P ′′) of type (3, 3) contained in a copy of QiPi so that P ′′∩P ′ = {ai+1}.
We must then extend to a copy of C. There are some additional points to
deal with along the way (e.g., G2 should have an antiedge at (ai, ai+2)).
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�

Lemma 109 (6.19). Let C be a solid block path of length 6 and type (3, n2, 3, 3, n5, 3)
with n5 ≥ n2 ≥ 4. Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2;n2, 3, 3, n5, 2)

G1: Clique Ext’n uQi+1,P ; u
Q
i+1,U

Amalgamation base:
⋃
i(Qi \Ri) ∪ {ci} with ci the cut vertex of RiSi.

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. We may suppose that

T ′ = Ti for some i. Then S′, U ′ are Si, T̂i in some order.
If S′ is Si then Q′ is Qi and the overlap with P̂i, Ûi, excludes most can-

didates for P ′. The amalgamation base prevents an embedding of P ′ into
another copy of Qi. So this case leads quickly to a contradiction.

If S′ is Ûi then the amalgamation base prevents R′ from being another
copy of Ûi. So the natural candidates for Q′ are copies of Qi or Qi+2. But
Qi+2 is blocked by the overlap with P̂i+1. And Q′ = Qi would force P ′ to
be a copy of Ri, and hence to meet Si, in view of the amalgamation base.

�

Lemma 110 (6.20, 6.15 with n1 = 3, and 7.4). Let C be a solid block path
of length 6 and type (3, 3, n, 3, n, 3) or (3, 3, 3, n, 3, n) with n ≥ 4. Then there
is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, n; 3, n− 1)

G1: Clique Ext’n uQi+1,P ; u
R
i+1,S ; TiUi = {ai+1} ∪ T ∗i U

∗
i

That is, we make the usual loop construction based on a loop of length 4
with overlaps, but attach a solid block path TiUi at ai+1 as well (this only
matters if n = 4, for the rigidity argument).
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The overlap ensures that an embedding C ∼= C ′ ⊆ Gε would take Q′R′S′

to a copy of QiRiŜi, in some order. Thus any solid block path of type
(3, 3, n, 3, n) would be of the type of UiTiSiRiQI and will not extend to an
embedding of C.

For the rigidity argument, if we attach a copy of Q̃PTU of QPTU freely
over ai, ui,P then ŨTPQRSTU has type (3, 3, 3, n, 3, n, 3, 3), which contains
the three possible forbidden configurations.

On the other hand, if we allow Q̃PTU exactly one point of intersection
with Qi+1, then Ui+1Ti+1P̂i+1Qi+1P̃QRi has type (3, 3, 3, n, 3, n, 3) which
also contains the forbidden configurations. �

Lemma 111 (6.21). Let C be a solid block path of length 6 and type (3, 3, 4, 3, n, 3)
with n ≥ 5. Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (3, 3, 4; 3, n, 2)

G1: Clique Ext’n ui+1,U :R

Everything is straighforward. �

6.2. Length 7.

Lemma 112 (7.1). Let C be a solid block path of length y and type (3, 4, 4, 3, 3, n, 3)
with n ≥ 3. Then there is no countable weakly universal C-free graph.

Proof. Similar to the proof of 6.7.
Loop Construction

Graph, Type Specification

G0: Chain (4, 3)

G1: Clique Ext’n Attach a solid block path TiU
∗V ∗ of type

(3, n6, 3) at ai+1

In the proof that the resulting graphs are C-free, distinguish the cases
n6 ≥ 5, n6 ≤ 4. �

Lemma 113 (7.2). Let C be a solid block path of length 7 and type (n, 3, 3, 3, n, 3, n)
with n ≥ 4. Then there is no countable weakly universal C-free graph.

Proof. We perform a loop construction of length 4.
Loop Construction

Graph, Type Specification

G0: Chain (3, 3; 3, n− 2)

G1: Clique Ext’n uQi+1,S , v
R
i+1,S
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The graphs Gε are C−-free, where C− has type (n, 3, 3, 3, n). We add a
few words about the rigidity argument.

Claim 1. Let G be a C-free graph containing G3 and S′ a clique of order n
free over a set X of order 3. Then for any i, subject to appropriate conditions
on edges and antiedges in G3, and corresponding conditions on X, we have
either ai+1, vi+1,S ∈ X, or X ∩Ri+1 = ∅.

Otherwise we may suppose |S′ ∩Ri+1| = 1 and we look for an embedding
of C into S′Ri+1Ŝi+1Ri+2Ŝi+2Ri+3Ŝi+3. We omit the details.

This claim becomes relevant when we consider rigidity for copies of RiŜi
containing ai, and more particularly copies R′S′R′′S′′ of RiŜiRi+1Ŝi+1. It
brings us down to the case in which S′∩Ri+1 = ∅, and similarly S′∩Qi+1 =

∅, which then allows us to assume S′ ∩ Ŝi = ∅. So one works toward an
embedding of C into R′′S′′R′S′QiPiŜi. �

Lemma 114 (7.??). Let C be a solid block path of length 7 and type (3, n2, 3, 3, 3, n6, 3)
with

n6 > n2 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (n2 − 1, 3; , 3, 3, 3, n6, 2); Li = (Q,R, S, T, U, V )

G1: Clique Ext’n uRi+1,Q; u
S
i+1,V

Note that we adjust the notation for the blocks to match that associated
with C.

We check that Gε is C0-free with C0 of type (n2, 3, 3, 3, n6, 3). So suppose
C0
∼= C ′0 ⊆ Gε.
We may suppose U ′ = Ui. Then T ′U ′V ′ is TiUiV̂i in some order. Neither

possibility leads very far: for example, if T ′ = V̂i and S′ is contained in Q̂i,
we would be looking toward Q′R′ = Q̂i−1Ri, which is blocked by overlap. �

Clause 7.4 was treated in Lemma 110.
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Lemma 115 (7.3). Let C be a solid block path of length 7 and type (3, 3, n3, 3, 3, n6, 3)
with

n3, n6 ≥ 4

n3 6= n6

Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, 3;n3, 3, 3, n6, 2)

G1: Clique Ext’n uRi+1,P ; u
R
i+1,V

For the proof that Gε is C-free, suppose C ∼= C ′ ⊆ Gε. We may take
R′S′T ′U ′ to be RiSiTiUi for some i. Overlap of Ri with P̂i−1 and V̂i−1 keeps
the configuration within the same loop and gives a contradiction. �

6.3. Variable length. We deal with the final set of critical configurations,
those of variable length.

Now our notation for the blocks of C becomes (P,Q, . . . , Y, Z).

Lemma 116 (V.1). Let C be a solid block path of length ` ≥ 4 with all block
sizes ni ≥ 3 and with

n1, n` > ni (1 < i < `)
n2 = 4

If ` = 4, suppose further that n1 6= n`. Then there is no countable weakly
universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain (2, n2;n3, . . . , n`−1, 2)

G1: Clique Ext’n P ∗; Z∗

We check that the graphs Gε are C-free.
Suppose C ∼= C ′ = (P ′, Q′, . . . , Z ′) ⊆ Gε. Then P ′ and Z ′ are copies of

some P̂i and Ẑj and we may suppose they coincide with P̂i, Ẑj in some order.

Case 1. P ′ = P̂i and T ′ = Ẑj.
As n2 = 4, the cut vertex of P ′Q′ is not in P ∗. Evidently Q′ cannot be

Qi+1, so we have two possibilities: Q′ = Qi or Q′ is a copy of Ri+1. In either
case we show that the embedding of C is trapped in the corresponding loop
Li or Li+1. This would be obvious, apart from the possibility that the cut
vertex of Y ′Z ′ might lie in Z∗, if n`−1 = 3.
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This becomes relevant only if Q′ embeds into Ri+1 and eventually X ′

embeds into Yi+1, Y ′ embeds into Zi+1. But then as |Q′| = 4 it follows that
all the block sizes through n`−1 are at least 4, and we reach a contradiction.
Case 2. P ′ = Ẑj and Z ′ = P̂i.

Then n1 = n`, and we now use the hypothesis ` ≥ 5. Indeed, a solid block
path of type (n1, 4, 3, n1) would allow an embedding with the cut vertex of
Y ′Z ′ in P ∗. But as ` ≥ 5 it is easy to see that Q′ cannot be a copy of Qj+1.
One concludes quickly that Q′ is Yj and in particular n`−1 = 4.

Thus this case is the same as the previous one, after a change in notation.
This concludes the verification that Gε is C-free �

Lemma 117 (V.2). Let C be a solid block path of length ` ≥ 4 and type
(3, 4, 4, 3`−3). Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph, Type Specification

G0: Chain Block path (4, 3)

G1: Clique Ext’n No clique extensions
After amalgamation this is the same as a loop construction beginning

with (3, 4; 4, 3). The result is C4-free where C4 has type (4, 3, 3, 4), but (for
the rigidity argument) if one attaches a copy of QiPI freely over ai then it
extends to type (3, 4, 4, 3, 3, . . . ) of any length. �

Lemma 118 (V.3). C be a solid block path of length ` ≥ 5 and type
(4, 4, 3`−3, 4). Then there is no countable weakly universal C-free graph.

Proof. For ` ≥ 6 we proceed as follows.

Loop Construction

Graph, Type Specification

G0: Chain (3, 2, 3; 3, . . . , 3)

G1: Clique Ext’n uSi+1,P ; Q
∗

For ` = 5 we adjust this by an additional overlap of P̂i with Ri+1: P̂i =
Pi ∪ {uSi+1,P , v

R
i+1,P }, where now |Pi| = 2.

Claim 1. Tthe graphs Gε are C-free.
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Suppose that C ∼= C ′ ⊆ Gε. Then we may suppose that P ′, Q′ are P̂i, Q̂i

in some order. Then U ′ will be a copy of P̂j for some j 6= i, and we may
suppose U ′ = P̂j .

Case 1. P ′Q′ = P̂iQi.
Either the cut vertex of Q′R′ is in Q∗, or R′ is Ri. We consider both

possibilities.
• R′ = Ri

The only plausible alternative would be that j = i − 2 and that R′ is
connected to Z ′ via a copy of Si−1. But the overlap prevents this.

• The cut vertex v of QR′ lies in Q∗.
This is a more plausible alternative. We may suppose R′ is Qk ∪ {v} for

some k 6= j. We consider the path from R′ = Qk ∪ {v} to Z ′ = P̂j .
This path cannot pass through Qk±1, so in view of the lengths of the

segments involved, we find j = k − 1. Again, the lengths of the segments
allow only the possibility S′ = Rk, meaning that ` = 5; but in this case we
have an additional overlap to prevent this.
Case 2. P ′Q′ = QiP̂i.

We consider the path from Q′ = P̂i to Z ′ = P̂j . The case j = i + 1 is
clearly ruled out, and hence j < i. The path from Q′ to Z ′ should then pass
through Sj+1, and this is ruled out by the overlap.

This proves the claim.

We add a few words about the rigidity argument in the case ` ≥ 6.
If R′Q′P ′ is another copy of RiQ̂iP̂i free over a simlar base then we first

try embedding C as P ′Q′R′Si . . . ZiP̂i. This forces P ′ to meet {ai, ui+1,P }.
If the intersection with Si+1 contains a unique vertex, then we use the em-
bedding Q′P ′Si+1 . . . Zi+1P̂i+1. The possibility that P ′ meets P̂i+1 is quickly
eliminated.

The case ` = 5 is similar. �

Lemma 119 (Var.4). Let C be a solid block path of length ` ≥ 7 and type
(n, 3`−2, n) with

n ≥ 4

Then there is no countable weakly universal C-free graph.

Proof. This construction is based on a loop of type (n, 3`−2), of length `− 1.
So we will denote the blocks by (P,Q, . . . , Y ).

Loop Construction

Graph, Type Specification

G0: Chain (n, 3`−3; 3)

G1: Clique Ext’n uYi+1,P
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We check that the graphs Gε are C-free. Suppose C ∼= C ′ ⊆ Gε.
We may suppose P ′ = P̂i, Z ′ = P̂j , with i < j. The path from P ′ to Z ′

cannot pass through Yi+1 and therefore may be supposed to pass through
Xi+1, . . . , Qi+1, P̂i+1. But as this would place Y ′ inside P̂i+1 and as ` ≥ 4
there is no option for Z ′.

We may say something about the rigidity argument. If a copy X̃ . . . P of
the segment Xi . . . P̂i is freely attached over ai, then (̃P . . .X)YiP̂i gives an
embedding of C. On the other hand if the segment (̃X . . . P ) meets Yi+1 in
a single vertex, then we embed C as P̃ Yi+1Yi+2 . . . Yi+`−2P̂i+`−2. �

Lemma 120 (V.5). Let C be a solid block path of length ` ≥ 5 and type
(n1, 3

`−2, n`) with

n` > n1 ≥ 4

Then there is no countable weakly universal C-free graph.

Proof. Set

k =b`/2c

As in the previous case, we use a chain of loops of length `− 1, denoting
the first and last blocks by Pi and Yi (eventually, P̂i and Ŷi) respectively.
But for the k-th or (k + 1)-st block of Li we use the more explicit notation
BI
k and Bi

k+1.

Loop Construction

Graph, Type Specification

G0: Chain (n1 − 1, n2, . . . , nk;nk+1, . . . , n`−1, 2)

G1: Clique Ext’n u
Bi+1

k
i+1,P , Ŷi = Yi ∪ {z}; z ∈ Z∗, |Z∗| = n`

We have some additional adjustments to make, but first we explain what
we have so far.

The basic loop construction is type (n1; 3`−2, 2) with overlap between P̂i
and Bk

i+1. We also take a clique Z∗ of order n` with basepoint z, and attach
it to each of the cliques Yi.

Li = (P̂i, Qi, . . . , B
i
k;B

i
k+1, . . . , Ŷi) (plus Z∗)
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Now the amalgamation base will be taken to be⋃
i

P ∗i ∪ Z

where |P̂i \ P ∗i | = min(n1 − 2, 2(`− 2− k)− 1).
In forming Gε, edges and antiedges are placed at (u3i,P , u3(i+1),P ) to avoid

creating additional cliques of order 3 joined to z. As ` ≥ 5, there are no edges
(ai, aj) in this graph.

Claim. The graphs Gε are C-free.

Suppose that C ∼= C ′ ⊆ Gε. We will use the notation C ′ = (B′1, . . . , B
′
`).

Then B′` must be Z, and B`−1 is a copy of some Ŷi, so we suppose B`−1 =

Ŷi. We may suppose B′1 = P̂j for some j 6= i.
Case 1. j < i

As 2k ≥ ` − 1, we must have j = i − 1. In view of the overlap, the path
from Ŷi to P̂i−1 cannot pass through Bi

k. So it passes through Bi
k+1 and

(`− 1)− k = `− 2, k = 1, a contradiction.
Case 2. j > i

The block path from Ŷi to P̂ ′j must be contained in a number of copies of
the segments (Bk, Bk−1, . . . , B1) embedded in various loops. In view of the
overlap between P̂i+1 and Bi+2

k , these all lie in the loop Li+1, so j = i + 1.
The segment Bi+1

k . . . P̂i+1 is too short, but there is a less obvious path
that continues through P̂i+1 into a second copy P̃ of P̂i+1.

This alternative is blocked by the choice of the amalgamation base: as
the path from Ŷi through Qi+1 contains k blocks, there must be (`− 2)− k

blocks of order 3 contained in P̂i+1 and meeting P̃ in {ai} or ui+1,P , hence

1[2(`− 2− k) ≤ 1 + |P̂i \ P ∗i | ≤ 1 + 2(`− 2− k)− 1

a contradiction. �

The general case.
Reverse C here.

Lemma 121 (Var.??). Let C be a solid block path of length 6 and type
(n1, 3, . . . , 3, n`) with

n` > n1 ≥ 4

ni = 3 for 1 < i < `
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Then there is no countable weakly universal C-free graph.

Proof. By Lemma ?? (applied to the reversal) it suffices to deal with the
case

` = 6

Loop Construction

Graph, Type Specification

G0: Chain (2, 3, 3; 3, 3, n` − 1)

G1: Clique Ext’n

G0 Chain of loops of type (2, 3, 3; 3, 3, n` − 1)

G1 Extend cliques P̂i = Pi ∪ P ∗, Ûi = Ui ∪ {ui+1,U},
ui,U ∈ Si, |P ∗| = n1 − 2

G2 Amalgamation base
⋃
i(Ûi \ Ti)

G3 Edges, antiedges as usual.

Gε Edges, antiedges (C−\e), C− of type (3, 3, 3, 3, n1)

at a3i, a3(i+1)

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′, U ′) ⊆ Gε. We may suppose that P ′

is P̂i for some i. Then we may also suposose that U ′ is Ûj for some j 6= i.
If the cut vertex v of P ′Q′ is in P ∗ then Q′ is either a copy of Pk for some

k 6= i or of the form {v, ak, ak′} with (ak, ak′) an edge, and then the cut
vertex of Q′R′ is may be taken to be ak. So j 6= k.

The possibility j < k is excluded by the overlap with Sj+1. If j > k then
we must have j = k + 1 and T ′ must be contained in a copy of Ûj . But the
amalgamation base blocks this.

A similar, though not identical, analysis applies if the cut vertex of P ′Q′
is ai+1. The remaining possibility is that Q′R′ is QiRi. This is immediately
blocked by the construction.

�

Reverse C here. Instance of V.6. Rewrite for general case?

Lemma 122 (V.6 for length 6). Let C be a solid block path of length 6
and type (3, 3, n, 3, 3, 3, 3) with n ≥ 4. Then there is no countable weakly
universal C-free graph.

Proof. We perform a loop construction as in the proof of Lemma ??.
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G0 Chain of loops of type (2, 3, n3, 3; 2)

G1 Extend cliques P̂i = Pi ∪ {ui+1,P }, T̂i = Ti ∪ {ui+1,T },
ui,P ∈ Qi, ui,T ∈ Si

G2 Amalgamation base {ai, ui,P , ui,T | i ∈ N}
G3 Edges, antiedges as usual.

Gε Edges, antiedges (K\e), |K| = 3 at a3i, a3(i+1)

As in the proof of Lemma ??. these graphs are C−-free where C− has
type (3, 3, 5, 3, 3). �

Length 5 case of V.6

Lemma 123 (V.6 for ` = 5). Let C be a solid block path of length 5 and
type (3, 3, 4, 3, 3). Then there is no countable weakly universal C-free graph.

Proof.

Loop Construction

Graph Type Specification

G0 Chain

G1 Clique Ext’n

G2 Amalg’n

G3 Anti-edges

Gε Ext’n Family

G0 Chain of loops of type (2, 3, 4; 3, 2)

G1 Extend cliques P̂i = Pi ∪ {ui+1,P }, T̂i = Ti ∪ {ui+1,T },
ui,P , ui,T ∈ Ri

G2 Amalgamation base {ai, ui,P , ui,T | i ∈ N}
G3 Edges, antiedges as usual.

Gε Edges, antiedges (K\e), |K| = 3 at a3i, a3(i+1)

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, R′, S′, T ′) ⊆ Gε. We may suppose that R′ = Ri

for some i, and find that the block path lies in copies of a single loop Li.
Taking note that the amalgamation base contains three vertices of Ri, we
see easily that this is impossible. �

Proof of Proposition 8. We have dealt with length 1–5 in §§3–5 and with
lengths 6 and 7, and variable length, in the present section. �

Proof of Theorem 1. As explained at the end of §2, Propositions 18 and 19
cover all cases, and follow from Proposition 8. �
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7. Block paths with trivial blocks

The main obstacle to a general treatment of general solid block paths,
where we now allow trivial blocks (i.e. single edges as blocks), is our fre-
quent use of the “overlapping” method of killing unwanted embeddings of
the constraint C into our basic construction.

Variations of these constructions will work reasonably well when one has a
sufficient number of nontrivial blocks, without requiring that every block be
nontrivial. However, the number of exceptional cases will rise correspond-
ingly.

Here we give some further analysis of the general case, showing mainly
that our analysis so far is directly relevant: any solid block path C for
which there is a countable weakly universal C-free graph must be made up
of constituents in our catalog, connected by paths. And we indicate some
additional constraints which suggest that the final classification is not so
very much more elaborate than the one we have given. As always, we set
aside, perhaps for another occasion, the question of the verification that
those solid block paths C left in the final catalog actually do belong there;
that is, that the corresponding algebraic closure operations are locally finite,
and thus there is a canonical countable weakly universal C-free graph with
oligomorphic automorphism group. This is probably difficult in most cases.
It is also quite possibly false in some instances; for example, the case of type
(n1, 3, 3, 3, n5) is doubtful.

Definition 124. Let C be a block path. A 3-component of C is a maximal
segment in which all blocks are nontrivial.

At this point it may be well to introduce, belatedly, a shorter way of
referring to constraints C which allow a countable weakly universal C-free
graph. We shall call them Rado constraints (though they come to us more
via Komjáth and Pach than from Rado).

We rephrase Theorem 2 as follows.

Proposition (Theorem 2). Let C be a solid block path and a Rado constraint.
Then the 3-Components of C are Rado constraints.

This was proved in §1.3.
This already gives us quite a bit of information. Now recall from Lemma

2 that a solid block path of type (2, n2, n3, 2) with n2, n3 ≥ 3 is not a Rado
constraint. A similar argument should show that no solid block path of type
(2, n2, . . . , n`−1, 2) with all ni ≥ 3 for 1 < i < ` is a Rado constraint. This is
hard to write down in a very general way so we would prove it by noting first
that we may suppose that the pruned block path of type (n2, . . . , n`−1) is a
Rado constraint, and then go through the catalog, dealing first with the case
n2 = 3, then with the cases in which there is an index i with ni = ni+1 = 3,
and then with the leftovers, one of which is Lemma 2. We have not checked
the details.

This of course suggests a more general conjecture.
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Conjecture 8. Let C be a solid block path which is a Rado constraint and
C0 an internal 3-component of C, i.e., one which does not contain a block
leaf. Then C consists of a single block.

As with the various “forbidden segment” results proved here, this would
require dealing with many critical configurations, and apparently would re-
quire quite detailed knowledge of the final form of the classification of all
block paths which are Rado constraints. So we view this as highly likely, but
also challenging.

This would then shift the focus onto the case of solid block paths with no
adjacent nontrivial blocks. Here one would like an explicit small bound on
the number of blocks which occur.

We mention one easy result in this direction.

Lemma 125. Let C be a solid block path of type (n, 2, ..., 2.n) and even
length ` with n ≥ 3 and ` ≥ 4n. Then C is not a Rado constraint.

We remark that for ` ≥ 6 if there is a countable weakly homogeneous
C-free graph, then its automorphism group is not oligormorphic. But the
transition from the skeleton G3 to Gε does not work in that case.

Proof. We perform a simplified loop construction. Set k = (`−2)/2. We are
assuming n ≤ (k + 1)/2.

G0 Chain of block paths of type (2, . . . 2, n) of length k

G1 No clique extensions

G2 Amalgamation base {ai | i ∈ N}
G3 No modifications

Gε Edges, antiedges (K\e), |K| = n at a6i, a6i+3

We check that the graphs Gε are C-free.
Suppose that C ∼= (P ′, Q′, . . . , Q′′, P ′′) ⊆ Gε. Then we may suppose that

P ′, P ′′ are Pi, Pj for some i < j.
If the image of C lies in G3 then j > i + 1 since k < `− 2, but hen since

2k + 1 > `− 2 this does not work either.
On the other hand, if C contains a unique path lying in an antiedge (K\e)

connecting a pair of vertices (i, i′) with ai′ lying between ai and P ′′ on C,
then clearly j = i′ ± 1 and the length of the path from ai to P ′′ is at most

k + 2(n− 1) ≤ (k − 2) + (k − 1) < 2k

so this is ruled out, and |j − i′| > 1 is clearly impossible.
Finally, if two paths lying in antiedges are involved, then we would require

some connection between vertices ai′ aj′ in G3 with |i′ − j′| ≥ 3, and this is
clearly impossible.

The rest goes as usual. �
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This is not a very strong restriction, but it illustrates what remains to us
when we cannot make use of “overlap” conditions to control the construc-
tion. The next case to consider would be type (n1, . . . , n`) with exactly
three indices i with ni > 2, no two adjacent (and without loss of generality,
n1, n` ≥ 3), and primarily under the assumption that n1, n2, n3 are distinct.

But a more substantial issue remains: the reduction of the general clas-
sification of Rado constraints to the case of slight extensions of block paths
(Conjecture 5). As the analysis should be inductive, it is useful to have an
explicit catalog of the target result, but this is only a point of departure for
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Appendix
Statement of Theorem 1,

Critical Cases,
Structure of the Proof

Glossary (?)

Statement of Theorem 1

Theorem (1). Let C be a finite block path with no trivial blocks. Suppose
that there is a weakly universal C-free graph. Let ` be the number of blocks
in C. Then C has one of the following types.

` Form

(general) (3`−1, n); or (3`−2, n, 3) or (3`−2, 4, 4)

2 (4, n) or (5, n) with n ≥ 6

3 (n1,m, n3) with m = 3 or 4

4 (n1, 3, 3, n4) with n4 ≥ n1 + 2

" (3, n, 3, n) with n > 4

" (3, 4, 4, 4)

" (3, 4, 3, n) (4, 4, 3, n) with n ≥ 4

5 (4, 4, 3, 3, n) with n ≥ 9

" (3, n2, 3, 3, n5) with n2, n5 ≥ 4 and |n2 − n5| ≥ 2

" (3, 3, n, 3, n) with n ≥ 5
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Index of Critical Cases

Proposition. Let C be a solid block path of length ` and type (n1, . . . , n`).
Under any of the following conditions, C is not a Rado constraint.

Length 2:

Conditions Code Conditions Code

(1) n1, n2 ≥ 6 6+6+ (2)
n1 = n2 = 5

55

Length 3

Conditions Code Conditions Code

(1) (5, 5, n),
n ≥ 5

55n,n>=5 (2) (6, 6, 6) 666

(3) (m,n,m),
4 ≤ m < n

mnm,4<=m<n (4) (m,n,m),
5 ≤ n < m

mnm,5<=n<m

(5) 3 ≤ n1 <
n2 < n3,
n1 ≥ 3, n2 ≥ 5

3<=n1<n2<n3,n2>=5 (6) 5 ≤ n2 <
n1 < n3

5<=n2<n1<n3

(7) 3 ≤ n1 <
n3 < n2

3<=n1<n3<n2
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Length 4:

Conditions Code Conditions Code

(1) n1 = n2 =
n4 < n3

4<=n1=n2=n4<n3 (2)
n1, n4 < n2, n3

SmallEnds

(3) n1 ≥ n4 >
n2, n3 ≥ 3,
n1 < n3+n4−1

n1n4>n2n3>=3,n1=n4approx

(4) n4 > n1 >
n2 > n3 ≥ 3

n4>n1>n2>n3>=3,n2>=5

(5) n4 > n2 >
n1 > n3 ≥ 3

n4>n2>n1>n3>=3 (6) n2 ≥ n4 >
n1 > n3 ≥ 3

n2>=n4>n1>n3>=3

(7) n3 < n1 =
n4 = 5 < n2

n3<n1=n4=5<n2 (8) n4 > n1 >
n3 > n2 ≥ 3

n4>n1>n3>n2>=3

(9) n1 = n3 =
4 < n4 < n2

n1=n3=4<n4<n2 (10)
n1 = n3 = 4 <
n2 = n4

n1=n3=4<n2=n4

(11)
n1 = n3 = 4 <
n2 < n4

n1=n3=4<n2<n4 (12) (4, 4, 4, 4) 4444

(13)
n1 = n2 =
n3 = 4 < n4

4445+ (14)
n4 > n1 >
n2 = n3 ≥ 4

n4>n1>n2=n3=4

(15) n2 ≥ 5,
n1 = n4 = 4,
n3 = 3

4n34,n>=5

(16)
n2 ≥ n4 ≥ 5,
n1 = 4, n3 = 3

n1=4,n3=3,n2>=n4>=5

(17) n1, n3 <
n2 < n4,
n1 6= n3

n1n3<n2<n4,n1-ne-n3

(18) n1 = 3,
n3 = 4 < n2 =
n4

n1=3,n3=4<n2=n4 (19) n1 = 3,
n3 = 4 < n4 <
n2

n1=3,n3=4<n4<n2

(20) n2 ≥ 5,
n1 = 3,
n3 = n4 = 4

n1=3,n2>=5,n3=n4=4 (21)
(3, n2, 3, n4),
n4 > n2 ≥ 5

3n3n’,n’>n>=5

(22)
(3, n2, 3, n4),
n2 > n4 ≥ 4

3n3n’,n>n’>=4 (23)
(3, 4, 4, n),
n ≥ 5

344n,n>=5

(24)
(3, 3, 4, n),
n ≥ 5

334n,n>=5 (25)
(4, 3, 4, n),
n ≥ 5

434n,n>=5
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Length 5:

Conditions Code

(1) (n1, n2, 3, n2, n1), n1 > n2 ≥ 4 nn’3n’n,nn’>=4,n-ne-n’

(2) n3 = n4 = 3, n5 > n1 > n2 > 3 n3=n4=3,n5>n1>n2>3

(3) n3 = n4 = 3, n5 > n2 > n1 > 3 n3=n4=3,n5>n2>n1>3

(4) (4, 4, 4, 5+, 4) 4445+4

(5) (4, 4, 4, 4, 4) 44444

(6) (3, n2, 4, n4, 3, n2, n4 ≥ 5 35+45+3

(7) (3, 4, 4, n4, 3), n4 ≥ 5 3445+3

(8) (3, 4, 4, 4, 3) 34443

(9) (4, 4, 4, 3, 3) 44433

(10) (n, 4, 4, 3, n), n ≥ 5 n443n,n>=5

(11) (4, 4, 4, 3, 4) 44434

(12) (4, 4, 4, 3, n), n ≥ 5 4443n,n>=5

(13) (3, 4, 4, 3, n5), n5 ≥ 5 3443n

(14) (3, n2, 4, 3, 3), n2 ≥ 5 35+433

(15) (4, 4, 3, n, 3), n ≥ 5 443n3,n>=5

(16) (4, 4, 3, 4, 3) 44343

(17) (4, 4, 3, 3, 5), n5 ≥ 4 4433n,4<=n<=8

(18) (n1, 4, 3, 3, n1), n1 ≥ 5 n433n,n>=5

(19) (4, 4, 3, 4, 4) 44344

(20) (n1, 3, n3, 3, n5), n1, n5 < n3 n3n’3n”,nn”<n’

(21) (n1, 3, n3, 3, n3), n3 > n1 ≥ 4 n3n’3n’,n’>n>=4

(22) (3, 3, 4, 3, 4) 33434

(23) (n, 3, n, 3, n) n ≥ 4 n3n3n,n>=4

(24) (n1, 3, 4, 3, n5), n5 > n1 ≥ 5 n343n’,n’>n>=5

(25) (4, 3, 4, 3, n), n ≥ 5 4343n,n>=5

(26) (3, 3, 4, 3, n), n ≥ 5 3343n,n>=5

(27) (n, 3, n3, 3, n), n > n3 ≥ 4 n3n’3n,n>n’>=4

(28) (3, n2, 3, n4, 3), n4 > n2 ≥ 4 3n3n’3,n’>n>=4

(29) (3, n, 3, n, 3), n ≥ 4 3n3n3,n>=4
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Length 6:

Conditions Code

(1) (3, 4, 4, 4, 3, 3) 344433

(2) (4, 4, 4, 3, 3, n), n ≥ 5 44433n,n>=5

(3) (4, 4, 4, 3, 4, 4) 444334

(4) (4, 4, 4, 3, n5, 4), n5 ≥ 5 44435+4

(5) (4, 4, 4, 3, 4, 4) 444344

(6) (3, 4, 4, 3, 3, n), n ≥ 3 34433n,n>=6

(7) (3, 4, 4, 3, n, 3), n ≥ 3 3443n3,n>=3

(8) (4, 4, 3, 3, n, 3), n ≥ 3 4433n3,n>=5

(9) (4, 4, 3, 4, 3, 4), n ≥ 3 434344

(10) (n1, 3, n3, 3, 3, n6),
n6 > n3, n1, and n1, n3 ≥ 4

n3n’33m,m>nn’>=4,n-ne-n’

(11) (n1, 3, n3, 3, 3, n6),
n3 > n6 > n1 ≥ 4

n3n’33m,n’>m>n>=4

(12) (n, 3, n, 3, 3, n6),
n6 > n ≥ 4

n3n33n’,n’>n>=4

(13) (3, 3, n3, 3, 3, n6),
n6 > n3 ≥ 4;

n3n33n’,n’>n>=4

(14) (3, 3, n3, 3, 3, n6),
n3 > n6 ≥ 4;

33n33n’,n>n’>=4

(15) (n1, 3, 3, n, 3, n),
3 ≤ n1 < n

m33n3n,m<n

(16) (n, 3, n3, 3, 3, n),
n3 > n ≥ 4

n3n’33n,n’>n>=4

(17) (n, 3, n3, 3, 3, n),
n > n3 ≥ 4

n3n’33n,n>n’>=4

(18) (n, 3, n, 3, 3, n), n ≥ 4 n3n33n,n>=4

(19) (3, n2, 3, 3, n5, 3),
n5 > n2 ≥ 4

3n33n’3,n’>n>=4

(20) (3, 3, n, 3, n, 3), n ≥ 4 33n3n3,n>=4

(21) (3, 3, 4, 3, n, 3), n ≥ 5 3343n3
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Length 7:

Conditions Code

(1) (3, 4, 4, 3, 3, n, 3), n ≥ 3 34433n3,n>=3

(2) (n, 3, 3, 3, n, 3, n), n ≥ 4 n333n3n,n>=4

(3) (3, 3, 3, n, 3, n, 3) 333n3n3

(4) (3, 3, n3, 3, 3, n6, 3),
n3 6= n6, n3 ≥ 4

33n33n’3,nn’>=4,n-ne-n’

Variable Length:

Conditions Code

(1) n` > n1 > ni (1 < i < `),
n2 = 4, ` ≥ 5

n1nl>ni,n2=4,l>=4ORn1-ne-nl

(2) (3, 4, 4, 3, 3, . . . , 3), ` ≥ 4 3443*,l>=4

(3) (4, 4, 3, 3, . . . , 3, 4) 443*4,l>=5

(4) (n, 3, · · · , 3, n), ` ≥ 5 n3*n,n>=4,l>=5

(5) (n1, 3, · · · , 3, n`),
n` > n1 ≥ 4, ` ≥ 6

n3*n’,n’>n>=4,l>=5

(6) (3, . . . , 3, n, 3, 3) 3*n33,n>=4,l>=5
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Proof structure

Forbidden (or nearly forbidden) segments

Length Type Ingredients Reference

2 5+5+ 4.1–8, 5.1–3 Lemmas 10, 12

4 4+4+4+4+ 4.9–14; 5.4–5, V.1 Lemma 13

3 4+4+4+ 5.6–12, 6.1–5 V.1 Lemma 15

2 4+4+ 5.1,13–19, 6.6–9, V.1–3, 7.1 Lemma 16

Length 1-5

Length Case Ingredients Reference

1 Vacuous

2 2.1–2 Fact 3

3 n1 = n3 n1 = n2: 3.1–2 Proposition 9

n1 6= n2: 3.3–4 "

" n1 < n3 3.1, 3.5–7 "

4 n1 = n4 4.2–3,15 Proposition 14

" n3 ≥ 5 4.8,16–25 "

5. n3 ≥ 4 5.20–27 Proposition 17

" n2 ≥ 4 5.28–29, "

" n2 = n3 = n4 = 3 V.4, V.5 "

General Case

Case Ingredients Reference

n1 < n` 6.10–15, V.4 Proposition 19

n1 = n` ≥ 4 6.16–18, 7.2, V.5 "

n1 = n` = 3 6.19–21, 7.3–4, V.6 "

Glossary (perhaps). Terms which might be referenced more explicitly in
the text.

• Loop construction
• Clique extension
• Amalgamation base
• Anti-edge (clique type or otherwise - always delete an edge from a
block leaf)
• C-skeleton
• C-control
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