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Effectivity

8.1 THE HOMOGENEOUS CASE

If L is a finite relational language let L∞, or more properly L∞,eq, be the
language augmented by the quantifier ∃∞ “there exist infinitely many”,
and expanded so as to apply to imaginary elements.
We consider the following effectivity problems.

Problems.

(A) Given a finite relational languageL and a sentence φ in the language
L∞, is there a stable homogeneous model (of type L) of φ?

(B) Given a finite relational language and a finite set of forbidden iso-
morphism types C, consisting of isomorphism types of finite L-
structures, is the corresponding class A(¬C) an amalgamation class
with stable generic structure? Here A(¬C) denotes the class of fi-
nite structures omitting the structures of type C.

A restricted version of Problem A was considered by Knight and Lach-
lan in [KL], and treated in the binary case. As there is an a priori bound
on the rank in this case the question is one of the consistency of a the-
ory in the extended language, hence a negative answer will have a finite
verification.
The idea of [KL] is to reduce the positive case to Problem B. If M is

a stable homogeneous model satisfying φ and C is the class of minimal
isomorphism types of structures omitted by M, then C is finite, as a
consequence of the quasifinite axiomatizability. Thus C is a finite object
witnessing the existence of M, and the problem is to recognize C.
If N bounds the sizes of the constraints in C then the quantifier ∃∞ is

equivalent to ∃N
∗

where N∗ is so large that every L-structure of size N∗

contains an indiscernible sequence of size N . This reduces the problem
to the first order case. As C determines a “quantifier elimination” proce-
dure – where the quotation marks reflect a bad conscience in cases where
there is in fact no associated homogeneous structure M – the question
of the truth of φ is decidable, modulo the fundamental question stated
as Problem B.
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The variant of Problem B in which we drop the stability requirement
is more general than Problem B and remains open. The problem of
amalgamation for relational structures reduces to the case of structures
A1, A2 extending a common substructure A◦ by a pair of new points
a1 ∈ A1 and a2 ∈ A2, but this problem remains open except in the
binary case, where a direct check produces a finite procedure.
We will give a solution to Problem B. Let M be the hypothetical

structure whose set of constraints C is specified. The rank of M is
bounded by the number of 2-types and can therefore be computed us-
ing quantifier elimination. An inconsistent outcome at this point simply
means that M does not exist. So assume the rank of the still hypo-
thetical structure M is determined as k. For any definable equivalence
relation E on M2 whose definition involves at most 2k parameters, we
decide similarly whether or not the quotient is finite, and if it is finite
we determine its size. Let µ bound the size of the finite quotients of
this type. Then for any formula φ(x, y;Z) one can bound the rank and
multiplicity of φ(x, y;B) as a function of tp(B). Do so for |B| ≤ 2k.
Let ρ be the arity of L.

Lemma 8.1.1. Let M be ℵ0-categorical and ℵ0-stable, and coordina-
tized by degenerate geometries. Then:

1 For a ∈ M, A ⊆ B ⊆ M , if rk (a/B) < rk (a/A) then for some b ∈ B,
rk (a/Ab) < rk (a/A).

2 For all a ∈ M, A ⊆ M there is A1 ⊆ A with rk (a/A1) = rk (a/A),
|A1| ≤ rkM.

Proof. Evidently it suffices to deal with the first point, and we may
suppose B − A is finite. We will proceed by induction on rk (B/A).
Clearly rk (B/A) > 0.
For b ∈ B, if b /∈ acl (A) then choose b′ ∈ acl (b) with rk (b′/A) = 1,

and otherwise b′ = b. Set B′ = {b′ : b ∈ B − acl (A)}. As the geome-
tries are degenerate, if rk (a/B′) < rk (a/A), then there is b ∈ B with
rk (a/Ab′) < rk (a/A) and this yields the claim. If rk (a/B′) = rk (a/A)
then rk (a/B) < rk (a/B′) and rk (B′/A) < rk (B/A), so induction ap-
plies, yielding:

rk (a/B′b) < rk (a/B′)

for some b ∈ B. Let b′1, . . . , b
′

n be a maximal subset of B′ which is
independent from b over A. We are assuming a is independent from
b′1, . . . , b

′

n over A, but not from b′1, . . . , b
′

n, b. By the degeneracy of the
geometries rk (a/Ab) < rkA, as desired.

Lemma 8.1.2. Let M be stable, finitely homogeneous, for a language
of arity ρ. Let a, b ∈ M, A1 ⊆ A ⊆ M, with rk (ab/A1) = rk (ab/A).
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There there is A2 ⊆ A containing A1, with |A2−A1| ≤ ρ·Mult (ab/A1),
so that Mult (ab/A2) = Mult (ab/A).

Proof. We proceed by induction on Mult (ab/A1). We may suppose that
Mult (ab/A) < Mult (ab/A1). Take two distinct types over A extending
tp(ab/A1) and a set C of size at most ρ over which they are distinct.
Working over A1C we conclude by induction.

Definition 8.1.3.1 We consider amalgamation problems of the form
(A; b1, b2) signifying that a finite relational language L is specified, A′ =
Ab1 and A′′ = Ab2 are specified finite L-structures agreeing on A, and
we seek an amalgam Ab1b2 which should omit some specified class of
forbidden structures C. We are looking for an amalgam in a stable ho-
mogeneous structure and it is assumed that the preliminary analysis of
k, µ, and so on, has been carried out in advance as described above.

2 The standard amalgamation procedure for amalgamation problems
(A; b1, b2) under the specified conditions is the following.

1.1 Find E1, E2 ⊆ A with |Ei| ≤ k and rk (bi/Ei) minimized. (For |Ei| of
this size, rk (bi/Ei) has been given a definite meaning.) Set A1 = E1∪E2.

1.2 For X ⊆ A containing A1, let A(X) be the set of amalgams of b1A1,
b2A1, and X over A1 which omit the specified forbidden structures and
satisfy:

(∗)X For Y ⊆ X with |Y | ≤ k, rk (b1b2/Y ) ≥ rk (b1b2/A)

These amalgams are not required to be compatible with biX.

1.3 Check whether |A(X)| ≤ µ for all X ⊆ A with A1 ⊆ X and |X −A1| ≤
ρ
(

µ
2

)

. If not the procedure fails (and halts) at this stage.

1.4 Check whether for all X ⊆ Y ⊆ A with A1 ⊆ X, |X−A1| ≤ 2k+ρ ·
(

µ
2

)

,
and |Y −X | ≤ 2ρ, each element of A(X) extends to an element of A(Y ).
If not, fail and halt.

1.5 At this point if the procedure has not failed then A(A) ≤ µ. Run through
the possibilities in A(A); if one extends Ab1 and Ab2, the procedure
succeeds.

Lemma 8.1.4. Let C be a finite set of constraints (forbidden structures)
for the finite relational language L of arity ρ, all of size at most N . Let
k, µ be the invariants associated to a hypothetical stable homogeneous
L-structure M with constraints C, that is the rank and a bound on
the sizes of finite quotients of M2 by equivalence relations definable
from 2k parameters, computed according to the canonical quantifier
elimination procedure from C.
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1 If there is in fact a stable homogeneous L-structure with finite substruc-
tures exactly those omitting C, then the standard amalgamation procedure
will succeed for any appropriate data (A; b1, b2).

2 If the standard amalgamation procedure fails for (A,Ab1, Ab2) then there
is A′ ⊆ A of order at most 2k+ ρ ·

(

µ
2

)

+µ ·max(ρ,N) for which it fails.

Proof. The first point has essentially been dealt with in the previous
lemmas, modulo the basic properties of independence. For the second, a
failure at stage 1.3 or 1.4 produces a corresponding subset of size at most
2k+ρ·

(

µ
2

)

+2ρ over which the procedure fails. If the procedure continues
successfully to the final step, then |A(X)| ≤ µ for any X containing
A1. Fix a subset A′ of A containing A1 such that any two possible
amalgams differ on A′b1b2, and |A(A′)| is as large as possible. We may
take |A′| ≤ 2k+ρ

(

µ
2

)

. For Y containingA′ with |Y −A′| ≤ ρ each element
of A(A′) extends uniquely to A(Y ). With step 1.4 this gives a unique
extension satisfying the definition of A(A) apart from the omission of
C. Those which omit the forbidden substructures are incompatible with
Ab1 or Ab2. Thus µ sets of size N or ρ suffice to eliminate all potential
solutions to the standard amalgamation procedure, over A′.

Proposition 8.1.5. Problem B is decidable; hence Problem A is decid-
able.

Proof. Compute the putative rank k and the invariant µ. Attempt the
standard amalgamation procedure for all (A; b1, b2) with |A| satisfying
the bound of the previous lemma. If this fails then the desired structure
does not exist. If it succeeds, then there is at least a homogeneous
structureM corresponding to the specified constraints. Furthermore the
quantifier elimination procedure used is correct for M, so in particular
its rank has been correctly computed and it is stable.
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8.2 EFFECTIVITY

We continue in the spirit of quasifinite axiomatizability and Ziegler’s
Conjecture, with attention to issues of effectivity. Recall the notion of
a skeletal type and skeletal language Lsk from §4.2. From the results in
§4.5 we may derive:

Lemma 8.2.1. With the language L and skeletal language Lsk fixed,
there is a finite set X0(L,Lsk) of pseudo-characteristic sentences such
that:

1 If M is a Lie coordinatized L-structure with full skeleton Msk, then
some pseudo-characteristic sentence χ is true in M.

2 With M, χ as in (1), every proper model of χ is isomorphic to an
envelope of M.

3 X0 is recursive as a function of L and Lsk.

The prefix pseudo is called for as no claim is made that all of these
formulas actually have models. This is the price to be paid, initially, for
requiring effectivity.

Proof. This is proved in Proposition 4.4.3 with a potentially infinite
set X0. The finiteness (without regard to effectivity) is in Proposition
4.5.1, by compactness. Paying attention to the effective (and explicit)
axiomatizability of the class of structures with the given full skeleton,
the effectivity follows from the same argument (via an unlimited search
until a proof of a suitable disjunction is found).

Evidently this is not satisfactory, and we wish to prune off the bogus
characteristic sentences, preferably carrying along some side information
about dimensions as well, as in the following definition.

Definition 8.2.2. Assume L and Lsk are given.

1 A skeletal specification ∆ for Lsk consists of a skeletal type augmented by
dimension specifications for each of the geometries of the forms: “= n”;
“≥ n”; or “= ∞”, where n stands for a specified finite number (≥ 0 is
acceptable, of course). The specification is complete if “≥ n” does not
occur.

2 If ∆ is a skeletal specification then X1(L,Lsk,∆) is the set of sentences
from X0(L,Lsk) that have a model M with full skeleton satisfying the
specification ∆.

3 If ∆ is a skeletal specification, then ∆∞ denotes its most general com-
pletion: each specification ≥ n is replaced by the specification = ∞.
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By definition, Lemma 8.2.1 holds in a sharper form for X1(L,Lsk,∆).
We claim further:

Proposition 8.2.3. X1 is effectively computable as a function of L,
Lsk, and ∆.

This requires substantial argument. We will use induction on the
height of the Lie coordinatization. The remainder of this section is de-
voted to that argument. In particular L, Lsk, and ∆ are given. However
we first make some reductions.
First reduction
We replace ∆ by ∆∞ (so that the characteristic sentences become

complete, modulo the underlying theory).
To justify this reduction, note that for any ∆, X0 \X1 is in any case

recursively enumerable since it consists of sentences which are inconsis-
tent with the base theory. The problem is to enumerate X1 effectively.
However each formula φ in X1(L,Lsk,∆) is derivable from another in
X(L,Lsk,∆

′) with ∆′ complete (working always modulo a background
theory). It suffices to handle all the ∆′ (uniformly), and as ∆′ = ∆′∞

the first reduction is accomplished.
Second reduction
We assume that M is non-multidimensional and has no “naked” vec-

tor spaces.
The point is that these are conservative extensions; if a characteristic

sentence holds in someM, then that structure can be expanded to a non-
multidimensional one in which, furthermore, every vector space comes
equipped with an isomorphism to its definable dual. Compare §5.3. If
we can recognize the characteristic sentences in this context, then we
can find one that implies the original one (and find the derivation as
well). This reduction changes the skeletal type, in an effective way.
Note that if we happen to be interested only in the stable category,

at this point the proof leaves that category in any case.
To take advantage of the nonmultidimensionality it is convenient to

relax the notion of skeleton, allowing the bottom level to consist of
finitely many orthogonal Lie geometries sitting side by side. At higher
levels we may restrict ourselves to finite covers and affine covers, with
the dual affine part present and covering a self-dual linear geometry lying
at the bottom.
As the first level presents no problems, we have only to deal with

the addition of subsequent levels, in other words with finite or affine
covers. The problem is the following. If M is the given (hypothetical)
structure, and M− is the structure obtained from M by stripping off
the top level, then assuming that we can effectively determine what the
possibilities for M− are, we must determine what the possibilities for
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M are. Actually the emphasis at the outset is on pseudo-characteristic
sentences, which while possibly contradictory have at least the virtue
of actually existing, rather than the more nebulous M and M− which
may not in fact exist. Still the criterion that a pseudo-characteristic
sentence χ be acceptable (relative to a given specification ∆) is that there
should be an associated χ− already known to be acceptable, and hence
associated with a structure M−, such that χ− “says” (or rather implies)
that M− has a covering of the appropriate type, with the property χ.
So we may concern ourselves here with a reduction of the properties of
a hypothetical M to those of a real M−.
The case of a finite cover
We haveM−, or equivalently a characteristic sentence χ− for it (which

is complete when supplemented by the appropriate background theory
including the relevant ∆− extracted from ∆). We have also a character-
istic sentence χ putatively describing a finite cover M of M−. Here the
details of the construction of these sentences, in the proof of quasifinite
axiomatizability, become important. The point is that χ gives a highly
overdetermined recipe for the explicit determination of all structure on
M, proceeding inductively along an Ahlbrandt-Ziegler enumeration; if
one begins with the structure M, one of course writes down the facts
in M, but to capture all possible χ is a matter of writing down all con-
ceivable recipes, most of which presumably have internal contradictions.
The problem is to detect these contradictions effectively by confronting
χ with M−.
Let K be a bound for the various numbers occurring in the proof

of Proposition 4.4.3, say K = 2k + max(k∗, k∗∗) + 1. Let d be the
Löwenheim-Skolem number associated with K in M−, i.e.: any K ele-
ments of M− lie in a d-dimensional envelope in M− (effectively com-
putable, by Lemma 5.2.7). Test χ by testing the satisfiability of χ in
a finite cover of such a d-dimensional envelope (by a search through all
possibilities). Here we should emphasize that χ is of the specific form
given in the proof of Proposition 4.4.3, so that if true in some M it
would pass to this particular envelope.
Conversely, if χ passes this test, we claim that the construction of M

according to χ succeeds. Running over an Ahlbrandt-Ziegler enumera-
tion of M−, at each stage we have covered certain elements of M− by
appropriate finite sets with additional structure, and have the task of
covering one more element a of M− by a finite set, and specifying its
atomic type over everything so far.
Look for a formula θ(x,y) where x refers to the elements of the fiber

being added, and y (of length at most k) refers to k previously con-
structed elements, with the following properties:

1 χ implies that such an x exists (more on this momentarily);
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2 the multiplicity of x over everything so far is minimized, according
to θ.

Let us consider (1) more carefully. We require previously constructed
elements z and a valid atomic formula ρ(y, z) so that:

χ =⇒ ∀y, z[ρ(y, z) =⇒ ∃xθ(x,y)]

We then hope:

3 For all y′, there are z′ so that χ together with the atomic type of
y,y′, z′ will imply the atomic type of x,y′.

4 After adding x as specified, the universal part of χ holds.

If any of these hopes are disappointed then the failure is witnessed
by at most K elements and hence is also visible in the envelope with
dimensions d.
One of the simplifying features in this case is that “everything is alge-

braic”. In the case of affine covers, the behavior of algebraic closure in
the hypothetical cover is one of the sticking points. For this the affine
dual is helpful.
The case of affine covers
We first shift the notation slightly. We may suppose that the dual-

affine part of the cover is absorbed into M−, since it is a finite cover of
a linear geometry in M− – just apply the previous case.
The following remark may be useful as motivation. Since the dual

affine part is present inM−, M is rigid overM−; that is, the extension is
canonical, but not definable. Questions of multiplicity do not arise, and
the question of existence of M is transformed into a different question:
does the canonical M have the posited property χ? It will suffice to
express this in M−.
We fix the following notation: V = V ∗ is the linear geometry in M−;

A∗ is an affine cover (with components A∗

t , each a finite cover of V ∗); A
is the affine cover, in M but not in M−, with components At dual to
A∗

t .
The elements a ∈ At will be identified with hyperplanes in A∗

t which
project bijectively onto V ∗. From this point of view the problem is one
of elimination of a second-order quantifier (for such hyperplanes) from
the language of M−.

Lemma 8.2.4. Let M0 be the reduct of M including all structure on
M− (which we take to include the affine duals A∗) as well as the
geometrical structure on A: affine space structure of At over V , and
duality with A∗

t . Then this is the full structure on M (all 0-definable
relations remain 0-definable).
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Proof. It suffices to show that if two tuples a, b have the same types in
the reduct then they have the same types. Take an envelope E contain-
ing them and view the affine elements in a, b as predicates (for hyper-
planes). These predicates are conjugate under the automorphism group
of E− (the top layer is stripped off) by assumption, and any such auto-
morphism extends to one of E. Thus a, b have the same type in the full
language.

Lemma 8.2.5. Let M− be a countable (or hyperfinite) Lie coordina-
tizable structure with distinguished sorts T, V, V ∗, A∗ with the usual
properties, e.g. A∗ is a T -parametrized family of affine dual covers of
V ∗ (or more generally V ∗

t ), possibly with additional parameters fixed.
Then there is a cover by an affine sort A =

⋃

T At compatible with
the affine duals A∗

t , in the geometric language of the previous lemma,
and its theory is uniquely determined.

Proof. For the existence, we may assume M− is non-multidimensional
(as we have been, in any case) and does not have quadratic geometries (it
suffices to adjoin some parameters). The issue of orientability falls away
and M can be thought of as nonstandard-finite. In this case existence
follows from the finite case: adjoin all internal linear sections for the
maps A∗

t −→ V ∗

t in a nonstandard universe, and this is locally Lie,
hence Lie.
For uniqueness of the theory, fix a formula, and shrink a given affine

expansion to a finite envelope large enough to test the truth of the
formula; at the finite level the expansion is completely canonical, so the
answer is determined.

Lemma 8.2.6. In the context of the previous lemma, the theory of the
affine expansion M can be computed from the theory of M−.

Proof. Follow the line of the previous argument. One needs to determine
the theory of a finite envelope Md. This is the canonical expansion of a
finite envelope M−

d . Its theory can be determined by inspection.
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8.3 DIMENSION QUANTIFIERS

In this section we consider enhancements of first order logic expressing
numerical properties of geometries in large finite (or nonstandard-finite)
structures. That some such expansion is necessary to carry through the
analysis of Lie coordinatization in a definable and effective way is made
clear by the following example given in [HBa].
Let V be a finite dimensional vector space over a finite field, and let

m,n be distinct nonnegative integers. Let V 3
m,n be a free cover of the

cartesian cube V 3 by finite sets of sizes m or n; the triple (v1, v2, v3)
will be covered by a set of size m if v3 = v1 + v2, and by a set of size n
otherwise. Let M(m,n) be the reduct of V 3

m,n in which the vector space
structure of V is forgotten. We can view this as having sorts V and V 3

in addition to the coveringM , with the covering map π : M −→ V 3 and
the projections from V 3 to V . The collectionM(m,n) should be thought
of as a uniform family of examples, but the recovery of the vector space
structure from the covering is nonuniform with respect to first order
logic. In the usual approach to effectivity one sorts out all the structures
under consideration into finitely many classes, each axiomatizable in
first order logic. We propose to follow much the same route here, after
augmenting the logic to allow us to decode numerical information of the
type used here: note that it is not necessary to know the value of m and
n, but only which is larger (or actually, with a little more care, that they
are different). This will be done using a dimension comparison quantifier

to be introduced shortly.
The specific quantifier introduced in [HBa] in its “most general form”

is actually too general, as we will now indicate. The simplest way to add
the desired numerical quantifier would be with a less than quantifier <.
Applied to two formulas φ, φ′ involving the variable x, and possibly other
free variables, the formula < x(φ;φ′) would represent the formula: the
cardinality of the set defined by φ is less than the cardinality of the set
defined by φ′; as usual, variables other than x which are free in φ or
φ′ remain free in the quantified expression. The problem with this is
that it encodes undecidable problems, namely any diophantine problem
over Z, into the basic properties of structures with a bounded number of
4-types (in fact, directly into a multi-sorted theory of pure equality). A
polynomial equation p(x) = 0 may be encoded as an equation p1(x) =
p2(x) with nonnegative coefficients, and after interpreting multiplication
as cartesian product and sum as disjoint union, the solvability of such
an equation is equivalent to the existence of a model M of the theory
of equality with a number of sorts equal to the number of variables
x, satisfying one additional sentence involving the cardinality quantifier
(which expresses the stated equality). We require a less expressive logic,
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for which we can determine effectively whether a Lie coordinatizable
structure with a specified number of 4-types exists, having any specified
property expressible in the logic.
Strictly speaking, we will make use of three enhancements of first

order logic: a finite set of fully embedded geometry quantifiers Gt, a
dimension comparison quantifer D<, and the standard quantifier ∃∞ –
there are infinitely many. The second has a natural model only in finite
structures, where the third encounters a frosty reception, so we will have
to pay some attention to weak (i.e., non-canonical) interpretations of the
logic as well. We will need completeness and compactness theorems for
various combinations of these notions, in a limited context (essentially
the context of Lie coordinatizable structures). Our specification of in-
tended interpretations below will be less useful from a technical point of
view than the axioms specified subsequently, determining the notion of
a “weak” interpretation.

Definition 8.3.1.1 A type t (of geometry) is one of the following: (i) set;
(ii) linear; (iii) orthogonal−; (iv) orthogonal+; (v) symplectic; (vi) uni-
tary. For each type t, the quantifier Gt has the syntax of an ordinary
quantifier: if φ is a formula, then Gtxφ is also a formula, with x bound
by Gt. The intended interpretation in a model M is that the subset of M
defined by φ(x) is a fully embedded geometry of type t. The distinction
between the two types of orthogonal geometry has a clear meaning only
in the finite case, but will be carried along formally in all cases (in other
words, the Witt defect is included in the type). As usual, variables other
than x which are free in φ remain free in Gtxφ, and have the effect of
auxiliary parameters.

2 The lesser dimension quantifier D< acts on pairs of formulas φ, φ′ to
produce a new formula Dx(φ < φ′). The intended meaning in a structure
M is that:

i φ and φ′ define fully embedded canonical projective geometries J, J ′ of
the same type; and

ii dim J < dim J ′.

Evidently (i) is already expressible using the Gt.

3 The quantifier ∃∞ is the usual quantifier “there exist infinitely many”.
It may also have nonstandard interpretations in finite models, essentially
of the form “there exist a lot”.

4 The logics LG, LD, LD∞ are obtained syntactically by augmenting first
order logic by, respectively: all the Gt; all the Gt, and D<; all the Gt,
D<, and ∃∞. In each case the logic is taken to be closed under iterated
applications of all the operations.
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Context. Our basic context will consist of a fixed finite language to-
gether with a specified bound k on the number of 4-types; the latter is
formalized by a theory which we denote B4(k); more exactly B4(L, k)
where L is the logic in use. (The richer the language, the more power-
ful this theory becomes.) In finite models with at most k 4-types, the
language LD has a canonical interpretation. We write C4(L, k) for the
class of finite L-structures with at most k 4-types.

Proposition 8.3.2 (Effective coordinatizability). There is a com-
putable function b(L, k) such that with the language L and the bound
k fixed, every M ∈ C4(L, k) has a Lie coordinatization via formulas
in LD of total length at most b = b(L, k).

Proof. Both the boundedness and the effectivity are at issue.
For the boundedness, we use a modified compactness argument. Sup-

pose toward a contradiction that Mn ∈ C4(L, k) has minimal coordina-
tization of total length at least n, for each n. Without loss of generality
these all involve the same skeleton (but the actual definitions of the
geometries vary erratically). Consider the first order structure M∗

n ob-
tained by adjoining predicates to Mn for all formulas in LD, as well as
predicates giving the appropriate coordinatization. (Note that as Mn is
finite, this does not affect definability in the individual structures, but
does change the collection of uniformly definable relations as n varies.)
Pass to an ultraproduct M∗

∞
. This is weakly Lie coordinatized. Let

M∞ be the reduct ofM∗

∞
to LD (or rather the first-order language used

to encode LD in the Mn). By the theorem on reducts this is also Lie
coordinatizable, definably. One would like to say that this “property”
is inherited by the Mn. By the proof of quasifinite axiomatizability,
there is a sentence which characterizes the envelopes in M∞, for models
whose dimensions are true (constant over geometries parametrized by
realizations of the same type). Use of LD-definable predicates ensures
that the Mn have true dimensions in this sense, and hence are envelopes.
In particular they are Lie coordinatizable uniformly, contradicting their
choice.
Now we turn to the effectivity of b(k). There is a set of formulas in

the language LD which is adequate for the Lie coordinatization of any
structure in our class. We wish to argue that this is a first order property
and is a consequence of an explicitly known theory, and then to conclude
via the completeness theorem.
As a base theory one may take a first order theory in which all LD

formulas occur as atomic predicates, and their definitions – to the extent
that they have definitions – are included as axioms. To a very large
extent the LD formulas do have first order definitions, since it is possible
to say in a first order way what the dimension is when it is finite. Thus
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we may include in the axioms: if a given dimension is finite (i.e., specified
explicitly) then it is formally less than another if and only if it is, in fact,
less than that other. These axioms leave open what happens when the
dimensions are infinite. (It is a good idea to require in general that “less
than” be transitive, but this is not yet relevant.)
Now for b ≥ b(k), there is a finite disjunction of potential Lie coor-

dinatizations, and a corresponding collection of characteristic sentences
(in the sense of the previous section) for which in fact one of the coor-
dinatizations works within every structure of our class, and one of the
corresponding characteristic sentences is valid. This is a first order sen-
tence. Furthermore, whenever the appropriate characteristic sentence
is valid, the corresponding Lie coordinatization is in fact a valid Lie
coordinatization. This is the delicate point: to verify that a potential
Lie coordinatization is in fact valid, it is necessary to have complete
control over definability; for example, one must know that if no vector
space structure is specified on a set, then it has no definable vector space
structure. The characteristic sentences give this kind of control.
Accordingly, one can search for a provable first order sentence of the

desired form, and when it is found then one has found an effective bound
on b(k) (we are not concerned here with the minimum value of b(k)).

Now we will develop a completeness theorem for LD and use it to
produce more explicit results on effectivity.

Definition 8.3.3. TF4k is the following axiom system, whose models
are called weak models for LD.

1 Background axioms as in the preceding proof: predicates correspond to
all formulas of LD and the axioms force “formal less than” to mean “less
than” when at least one of the numbers is finite.

2 There are at most k pairwise contradictory formulas in 4 variables.

3 For the quantifiers Gt, assert that when they hold then the corresponding
geometry is embedded and stably embedded.

4 Some group of formulas of total length less than b(k) (from the preceding
lemma) forms a Lie coordinatization. Use the quantifiers Gt here.

5 Transitivity of the relation dim (J) < dim (J ′). (Supplementing (1)
above.)

6 If the definable set D is not a canonical Lie geometry, then some formula
of length at most b′(k) shows that it is not. Here b′(k) is also effective;
failure involves failure of primitivity, rank bigger than 1, or a richer
Lie structure than the one specified is definable. In all cases there is a
definable predicate that shows this. The bound b′(k) can be found in the
same way as b(k).
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Proposition 8.3.4. Let φ be a sentence in LD which is consistent with
the axioms given above. Then φ has a finite model with at most k
4-types.

Proof. Begin with a weak model, which will be Lie coordinatized. Note
that if it is finite then it already has all required properties as they are
expressed by the theory in this case. Otherwise, shrink it (i.e., take
an envelope), preserving the truth of φ by keeping infinite dimensions
large. Note that the formal less than relation on the infinite dimensions
determines a linear ordering of finite length and hence can be respected
by the shrinking process. (Note that the position in this sequence of a
given infinite dimension is part of the type of the associated parameter
to begin with.)

Corollary 8.3.5. TF4k is decidable, uniformly in k.

Proposition 8.3.6. Extend the logic by the quantifier ∃∞ to get LD,∞.
The theory remains decidable.

Proof. One must extend the axiom system to get a suitable notion of
weak model, then convert each weak model into one in which all sets
whose size is formally not infinite become sets which are in fact finite.
To avoid pathology (or paying more attention over the formalization)
one may suppose all structures contain at least two elements.
The axioms are as follows. We use the term “finite” here for “definable

and formally finite” rather than “of specified size”.

1 ∃∞ implies the existence of arbitrarily many (the conclusion is a first
order scheme).

2 If ∃∞x∃yφ(x, y) then: ∃y∃∞xφ(x, y) or ∃∞y∃xφ(x, y). In other words,
the image of an infinite set under a finite-to-one function is infinite.

3 A definable subset of a definable finite set is finite.

4 Given two embedded, stably embedded geometries, one of which is for-
mally infinite, and the other having dimension at least as large, then
the second geometry is also formally infinite. (This relates ∃∞ and the
dimension quantifier.)

Note that (2) implies that a finite union of finite sets is finite.
The problem now is to take a formula φ which has a weak model

and give it a model in which all sets asserted to be of finite size are in
fact of finite size. We may assume that φ specifies a coordinatization,
and using (2, 3) we may also assume that the only sets whose finitude
or infinitude are asserted are subsets of canonical projective geometries
(possibly degenerate), and in view of the nature of definability in such
geometries, we reduce further to the finitude or infinitude of the geom-
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etry itself. So the problem is to shrink geometries which are asserted
to be of finite size to ones which are finite, while leaving alone those
asserted to be infinite, and preserving both the order relationships (for
which (4) is clearly essential, and largely sufficient) and the other (es-
sentially first order) properties asserted by φ. Note that axiom (1) is not
required to “do” a great deal; but it guarantees that unmitigated sloth
is an adequate treatment of the infinite case.
In order for all of this to make sense, one thing is necessary: the

formally finite and the formally infinite canonical projective geometries
should be orthogonal (otherwise there is no appropriate dimension func-
tion to begin with). This is guaranteed by (2,3).
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8.4 RECAPITULATION AND FURTHER REMARKS

We return very briefly to the survey given in the Introduction. The
theory of envelopes was summarized in Theorem 1 and in terms of finite
structures in Theorem 6, the latter incorporating the numerical esti-
mates of §5.2 and some effectivity. The families referred to in Theorem
6 are determined by a specific type of Lie coordinatization in the lan-
guage LD as well as a definite characteristic sentence. Evidently the
truth of a sentence can be determined in polynomial time. Part (5) of
Theorem 6 is dealt with in §5.2 as far as sizes go, and the construction
is given by the characteristic sentence.
Theorem 2 gave six conditions equivalent to Lie coordinatizability.

The first five conditions were dealt with by the end of §3.5; this is dis-
cussed at the beginning of that section. In particular, to get from Lie
coordinatizability to smooth approximability one uses the theory of en-
velopes, notably §3.2. The converse direction was the subject of §3.5.
For the validity of the last condition, use Lemma 5.2.7 and the estimate
on the sizes of envelopes.
Theorem 3 is the theory of reducts, given in §7.5. Theorem 5 summa-

rizes the effectivity results of §§8.1-8.3. Theorem 7 has been dealt with
in §7.5.
We recall one problem mentioned in [HBa]: are envelopes “con-

structible” in time polynomial in the dimension function? As noted
there, the underlying sets are in fact too large to be constructed in
polynomial time, but the problem has a sensible interpretation: the un-
derlying set can be treated as known, and one can ask whether the basic
relations on it can be recognized in polynomial time (think for example
of the basic case in which the envelope is simply a geometry of specified
dimension). This problem has model theoretic content. The proof of
quasifinite axiomatizability is based on a 1-way version of “back-and-
forth” which may be called “carefully forth”. We do not know how to
give this proof in a “back-and-forth” format, and it seems that the poly-
nomial time problem involves difficulties of the type which have been
successfully eluded here.

8.4.1 The role of finite simple groups

In view of the special status of the classification of the finite simple
groups it seems useful both to clarify the dependence of the present
paper on that result, and to consider the possibilities for eliminating
that dependence, and arguing in the opposite direction.
The work carried out here can be viewed as a chapter within model

theory which is dependent in part on the classification of the finite simple
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groups for its motivation, but which in terms of its content is largely
independent of that classification both logically and methodologically.
For example, Theorem 7 as we have stated it is independent from

that classification. Similarly, the proof of Theorem 6 really involves Lie
coordinatizable structures, and as such does not involve the classification
of the finite simple groups, which is invoked at the end, via Theorem
2, to give the present statement of that result. As far as Theorem 2 is
concerned, we combine the primitive case from [KLM], which may be
taken here as a “black box”, with independent model theoretic methods.
The proof of [KLM] is however strongly dependent on the classifica-

tion of the finite simple groups. Theorem 7-Model Theory offers an array
of model theoretic properties which can be taken as defining a certain
portion of the theory provided by the classification of the finite simple
groups. No such model theoretic version is known for the whole classi-
fication, and for that matter we are not aware of any other comparable
portion of the classification that can be expressed in model theoretic
terms. Initially one might try to assume Theorem 2-Characterizations
(3) (i.e., 2 (6) with an arbitrary function), so that one has LC1 and LC2,
and ask whether one can prove LC3-LC9 directly and non-inductively.
The combinatorial flavor the properties (LC4-LC9) suggests that this
may not be an unreasonable endeavor.
This issue was raised in [HBa] and remains both open and of consider-

able interest. It was noted there that the results on sizes of definable sets
can be reversed to give a definition of rank and indpendence in purely
combinatorial terms, that is in terms of asymptotic sizes of sets. In par-
ticular the properties (LC4) and (LC5) then become cleanly combina-
torial. Property (LC4) becomes the statement that model-theoretically
independent subsets of a single type over an algebraically closed base are
statistically independent (giving unexpected support for the old term:
“independence theorem”). We give a direct proof of this below. This
proof is closely analogous to the proof of (LC4) from finite S1-rank given
in [HrS]], but it emerged only on following up a suggestion of L. Babai
regarding the similarity of the desired result with Szemeredi’s regularity
lemma, a similarity which will not be pursued here. The next challenge,
accordingly, would be a direct proof of (LC5).

In the following, we work with the extension of first order logic by car-
dinality quantifiers, allowing us to assert that one definable set is smaller
than another, and, via some definable encoding of disjoint unions, also
allowing comparisons of the form m|D| < n|D′|. This could be re-
cast more generally in a context where one has a definable probability
measure on the definable sets. Indeed in general the relations between
simplicity and the existence of such probability measures remains to be
clarified.
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Let M be a nonstandard member (e.g., an ultraproduct) of a family
of finite structures, where cardinality quantifiers receive their canoni-
cal interpretations in finite structures, and the corresponding nonstan-
dard interpretations in the ultraproduct. Call a definable set D small if
|D|/|M | is infinitesimal, where M is the underlying set of M.

Lemma 8.4.1. If D forks over ∅ then D is small.

Proof. We may suppose that D divides over ∅, that is D has an an arbi-
trarily large indiscernible set {Di} of conjugates which is k-inconsistent
for some fixed k. It follows by induction on k that D is small; more
exactly (for the sake of the induction) that |Di|/|

⋃

Di| goes to 0 as the
size r of the set of conjugates increases. If k = 1 then these sets are
empty, and for k > 1 we may consider for each i the (k− 1)-inconsistent
family {Di ∩Dj} for j 6= i. Then by induction |Di ∩Dj |/|Di| goes to 0
as r increases, so the cardinality of a union of length n of conjugates Di

is of the order of n|Di|, as long as
(

n
2

)

|Di ∩Dj |/|Di| is negligible.

Lemma 8.4.2. Suppose that M is a nonstandard member of a family
of finite structures that realize boundedly many 4-types. Let p1, p2, p3
be 1-types, and let p12, p13, p23 be 2-types projecting onto the corre-
sponding 1-types appropriately. Then there is a formula φ(x, y) such
that φ(a1, a2) holds if and only if {y : p13(a1, y)&p23(a2, y)} is small,
and this formula is stable, and is even an equation in the sense of
Srour [PS].

Proof. The set D = {y : p13(a1, y)&p23(a2, y)} is definable from two
parameters and can take on only a finite number of cardinalities in M
(as this holds, with a bound, in the family of finite structures associated
with M). Hence φ can be defined. Now we must show that if (ai, bi)
is an indiscernible sequence, and φ(ai, bj) holds for i < j, then φ(ai, bi)
holds for all i. Let Di = {y : p13(ai, y)&p23(bi, y)}. Then by assumption
|Di ∩Dj|/|M | is infinitesimal for i 6= j. As in the previous argument, if
|Di| is not small relative to |M | then |Di| is small relative to

⋃

Di and
hence also relative to |M |, a contradiction.

Proposition 8.4.3. With the hypotheses of the preceding lemma, sup-
pose that there is no finite 0-definable equivalence relation splitting
pi (i = 1, 2, or 3), and that pij is not small relative to M2 for
i, j = 1, 2; 1, 3; 2, 3. Let P123 be the set of triples (a1, a2, a3) ∈ M3

such that M |= pij(ai, aj) for each pair i, j = 1, 2; 1, 3; 2, 3. Then P123

is not small relative to M3, and in particular is nonempty.

Proof. We use similar notations Pi, Pij for the loci of the given types.
Compute the number of triples (a1, a2, a3) satisfying p13(a1, a3) and

p23(a2, a3) by first choosing a3 in |P3| ways, then choosing ai for i = 2, 3
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in |Pi3|/|P3| ways; this yields |P13||P23|/|P3|, which is not small relative
to |M3|. It follows that for some a1 satisfying p1, the number of a2
for which ¬φ(a1, a2) holds is not small relative to |M |, and hence the
formula ¬φ(a1, x) does not fork over ∅. Hence ¬φ(a1, a2) holds for some
pair (a1, a2) which is φ-independent in the sense of local stability theory.
Then by stability and our hypothesis on p1, p2, ¬φ(a1, a2) holds for all
such independent pairs. Similarly, we can choose φ-independent (a1, a2)
satisfying p12. So all solutions to p12 satisfy ¬φ, and the claim follows.

We have not touched on the other directions for further research which
were already mentioned in [HBa]. As far as the diagonal theory en-
visaged there is concerned, the completion, or near-completion, of the
foundations of geometric simplicity theory ought to be helpful in this
connection.
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