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Reducts

7.1 RECOGNIZING GEOMETRIES

Our main objective in the present section is to characterize coordinatiz-
ing geometries as follows.

Proposition 7.1.1. Let M be ℵ0-categorical of finite rank, and let A,
A∗ be rank 1 groups equipped with vector space structures over a finite
field F , and a definable F -bilinear pairing into F , with everything
0-definably interpreted in M. Assume the following properties:

L1 Every M-definable F -linear map A −→ F is represented by some
element of A∗, and dually.

L2 Algebraic closure and linear dependence coincide on A and on A∗.
L3 A and A∗ have no nontrivial proper 0-definable subspaces.
L4 Every definable subset of A or of A∗ is a boolean combination of

0-definable subsets and cosets of definable subgroups.
L5 IfD is the locus of a complete type in A over acl (∅) and a′1, . . . , a

′
n ∈

A∗ are F -linearly independent, then there is an element d of D with
(d, a′i) prescribed arbitrarily.

Then the pair (A,A∗) is a linear Lie geometry, possibly weak, which
is stably embedded in M.

The proof will require a number of preliminary lemmas. We remark
that in view of hypothesis (L3), either one of the groups A,A∗ vanishes
(in which case we might as well assume A∗ = (0)), or the pairing is non-
degenerate on both sides. In the latter case the notation A∗ is justified
by hypothesis (L1).
We will continue to label the various hypotheses as in the statement

of Proposition 7.1.1.

Lemma 7.1.2. Let M be ℵ0-categorical of finite rank and let A, A∗

be rank 1 groups equipped with vector space structures over a finite
field F , and a definable F -bilinear pairing into F , with everything
0-definably interpreted in M. Assume:

L2 Algebraic closure and linear dependence coincide on A and on A∗.
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L3 A and A∗ have no nontrivial proper 0-definable subspaces.

Then either A and A∗ are algebraically independent, or there is a
0-definable bijection between their projectivizations P and P ∗.

Proof. This is the standard nonorthogonality result. We assume an al-
gebraic relation between A and A∗, specifically rk (a) = k, rk (a∗) = k∗,
rk (aa∗) < k + k∗ with a ∈ A and a∗ ∈ A∗. We will first find an el-
ement of A algebraic over a∗. Suppose a is not itself algebraic over
a∗. Then we take independent conjugates ai of a over acl (a∗) and find
rk (a1, . . . , an) < nk for n large. By the dimension law in projective
space there is then a ∈ A − (0) in acl (a1, . . . , ai) ∩ acl (ai+1, . . . , an)
and hence algebraic over a∗.
Switching sides, we may then find a∗ ∈ A∗ − (0) algebraic over a.

Then acl (a) = acl (a∗) and this gives a bijection between a subset of P
and a subset of P ∗. Furthermore the argument shows that the domain
and range of the bijection are algebraically closed, and thus correspond
to 0-definable subspaces of A and A∗. By hypothesis (L3) the bijection
is total.

Lemma 7.1.3. Let M be ℵ0-categorical of finite rank and let A, A∗

be rank 1 groups equipped with vector space structures over a finite
field F , and a definable F -bilinear pairing into F , with everything
0-definably interpreted in M. Assume:

L1 Every M-definable F -linear map A −→ F is represented by some ele-
ment of A∗, and dually.

L2 Algebraic closure and linear dependence coincide on A and on A∗.

Assume in addition that the projectivizations P, P ∗ of A and A∗

correspond by a 0-definable bijection. Then there is an identification
of A with A∗ according to which the given pairing A × A∗ −→ F is
symplectic, unitary, or orthogonal.

Proof. As P and P ∗ are definably isomorphic, there is a semilinear iso-
morphism of A with A∗, which gives rise to a self-pairing A×A −→ F
which is linear in the first variable and satisfies (x, αy) = ασ(x, y) with
an automorphism σ on the right. In particular the map λx : A −→ A
defined by (x, y)σ

−1

is F -linear and hence by hypothesis is given by a
unique element x∗: (y, x∗)σ = (x, y). As x∗ is definable from x, we have
x∗ = αx for some α = α(x) ∈ F possibly dependent on x.
We have

(y, (βx)∗)σ = (βx, y) = β(x, y) = β(y, x∗)σ = (βσ−1

(y, x∗))σ

= (y, βσ−2

x∗)σ
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and thus (βx)∗ = βσ−2

x∗. Now for x1, x2 linearly independent with

α(x1) = α(x2) = α◦ we have (x1 +βx2)
∗ = α◦(x1 +βσ−2

x2), and as the
latter is a scalar multiple of x1+βx2, we find that σ2 is the identity and
x∗ is a linear function of x. The same computation shows that for x1, x2

linearly independent, α(x1) = α(x2), and thus α(x) is independent of x;
so x∗ = αx for a fixed α:

(x, y) = α(y, x)σ

Applying this law twice, (x, y) = αασ(x, y) and

αασ = 1

If σ is the identity, then α = ±1 and the form (x, y) is either symmetric
or symplectic. In characteristic 2 we conclude only that it is symmetric,
but in this case the form (x, x) is the square of a linear functional and
vanishes on a subspace of codimension at most 1. If we exclude 0-
definable proper subspaces of finite codimension we may conclude that
in characteristic 2 the form is symplectic.
When σ is nontrivial we have in any case the norm of α equal to 1

and thus α = γσ/γ for some γ ∈ F . Then one checks that γ(x, y) is a
unitary form on A.

Definition 7.1.4. The geometric language for (A,A∗) consists of the
F -space structure, the pairing, an identification of A with A∗ as above,
if available, and all acl (∅)-definable subsets of A and A∗. Vector
space operations and the identification, if present, are taken as func-
tions, rather than being encoded by relations.

We are working over acl (∅) here. The identification between A and
A∗ depends in the unitary case on a parameter from the fixed field of
the automorphism, but is algebraic over acl (∅).

Lemma 7.1.5. Let M be ℵ0-categorical of finite rank and let A, A∗

be rank 1 groups equipped with vector space structures over a finite
field F , and a definable F -bilinear pairing into F , with everything
0-definably interpreted in M. Assume:

L1 Every M-definable F -linear map A −→ F is represented by some ele-
ment of A∗, and dually.

L2 Algebraic closure and linear dependence coincide on A and on A∗.

L3 A and A∗ have no nontrivial proper 0-definable subspaces.

L4 Every definable subset of A or of A∗ is a boolean combination of 0-
definable subsets and cosets of definable subgroups.
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L5 If D is the locus of a complete type in A over acl (∅) and a′1, . . . , a
′
n

are F -linearly independent, then there is an element d of D with (d, a′i)
prescribed arbitrarily.

Then the induced structure on (A,A∗) admits quantifier elimination
in the geometric language.

Proof. This may seem obvious; but condition (L4) is rather vague as to
the provenance of the parameters involved.
We show by induction on n that the quantifier-free type of a1, . . . , an

determines its full type. If A and A∗ are identified we work in A ex-
clusively. By hypothesis (L2) we may suppose the ai are algebraically
independent.
We will establish the following for any finite set C and any C-definable

subset D of A:

D is a boolean combination of 0-definable sets, a finite
subset of acl (C), and cosets of the form

Hα = {x ∈ A : (x, c) = α} with c ∈ A∗ algebraic over C.

Assuming the claim, let C be acl (a1, . . . , an−1) = dcl (a1, . . . , an−1).
By our induction hypothesis the type of C is known. By (∗) tp(an/C) is
determined by its atomic type over C and hence over a1, . . . , an−1 since
C is generated by functions over a1, . . . , an−1.
It remains to establish (∗). We may suppose that the set D is the

locus of a complete nonalgebraic type over acl (C) = dcl (C). Let D′

be the minimal acl (∅)-definable set containing D. We note first that
in hypothesis (L4) we may take the definable subgroups involved to
be subspaces of finite codimension. Indeed if B is an infinite definable
subgroup of A then it has finite index in A and the intersection of αB
for α ∈ F× is a definable subspace of finite codimension contained in
B. Thus modulo the ideal of finite sets, D is the intersection with
D′ of a boolean combination D1 of translates of definable subspaces of
finite codimension. There is a definable linear map θ from A to a finite
dimensional space Fn, and a subset X of Fn, such that D1 = θ−1[X ].
Minimize n. We may represent θ as (a∗1, . . . , a

∗
n) for some a∗i ∈ A∗. We

claim the a∗i lie in acl (C). We may in any case assume ai ∈ acl (C) for
i ≤ n◦ and the remaining ai are algebraically independent over acl (C).
If n◦ < n then let a′n◦+1, . . . , a

′
n be conjugate to a∗n◦+1, . . . , a

∗
n over C

and linearly independent from a∗1, . . . , a
∗
n. As n has been minimized we

can find α ∈ Fn◦ and β, β′ ∈ Fn−n◦ with (α, β) ∈ X , (α, β′) /∈ X .
Applying (L5), we may find infinitely many elements d ∈ D′ satisfying

(d, a∗i ) = αi; (d, a
∗
n◦+i) = βi; (d, a

′
n◦+i) = β′

i
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Off a finite set this yields d ∈ D and d /∈ D, a contradiction. Thus the
a∗i are algebraic over C. Finally, the finite set involved is the difference
of two sets defined over acl (C) and hence lies in acl (C).

Proof of Proposition 7.1.1:
In view of Lemma 7.1.5, to complete the analysis of (A,A∗), we must
determine the 0-definable subsets of A (and similarly, A∗) more or less
explicitly. Let P be the set of types of nonzero elements of A over
acl (∅). For a ∈ A set q(a) = tp(a/ acl (∅)). Note that these types
have rank 1 with the exception of tp(0/ acl (∅)). By the proof of the
previous lemma, if a and b are algebraically independent elements of A
then the type of a + b over acl (∅) is determined by: q(a), q(b), and
(a, b) ∈ F . (When there is no identification of A with A∗, let the form
(a, b) be identically 0 on A.) Thus q(a+b) = f(q(a), q(b), (a, b)) for some
function f : P × P × F −→ P .
Consider + : P 2 −→ P defined by p1 + p2 = f(p1, p2, 0). We claim

that + is an abelian group operation on P . This operation is clearly
commutative. For associativity, let p1, p2, p3 ∈ P . We may assume
they are all nonzero. By type amalgamation and the hypothesis (L5)
we can find a1, a2, a3 independent with the prescribed types and with
(ai, aj) = 0 for distinct i, j. Then p1 + p2 + p3 computed in either
possible way will give q(a+b+c). Finally we check cancellation. Suppose
p◦ + p1 = p◦ + p2. We may then choose independent a◦, a1, a2 realizing
the prescribed types, with (a◦, a1) = (a◦, a2) = 0. We have q(a◦ +
a1) = q(a◦ + a2) and (−a◦, a◦ + a1) = (−a◦, a◦ + a2) = −(a, a). Thus
q(a1) = f(q(−a), p◦ + p1,−(a, a)) = q(a2), as claimed.
Thus P is a finite abelian group. Let the zero element of P be denoted

p◦, and let D be the locus of this type in A.
We now dispose of the polar case, in which there is no identification

of A with A∗. Then q : A −→ P is generically a homomorphism and
hence extends to a homomorphism by sending 0 to 0. As A has no proper
0-definable subspace of finite codimension, it has no proper 0-definable
subgroup of finite index, and thus the homomorphism is trivial, and
A− (0) realizes a unique type over acl (∅). This completes the analysis
of the polar case.
For the remainder of the argument we may suppose that A and A∗

have been identified, or in other words that A carries a symmetric, sym-
plectic, or unitary form. If P consists of a single type then this form is
symplectic and the types are entirely known. We may assume therefore
that P contains more than one type. It is of course still possible that
the form is symplectic.
D is infinite, and is the locus of a type over acl (∅), and hence gen-

erates A. The group Stab (D) has rank 1 and hence coincides with
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A. Thus a generic element of A belongs to Stab ◦(D) and can there-
fore be written a + b with a, b ∈ D independent. As the type of a + b
for a, b ∈ D independent is determined by the value of (a, b), we get a
function f∗ : F −→ P .
For independent a, b, c ∈ D with (a, b) = 0 we have q(a+ b) = q(a) +

q(b) = p◦ and thus a + b ∈ D, and as (a + b, c) = (a, c) + (b, c) it
follows that f∗ is an additive homomorphism. We define a map ν :
F× −→ End (P ) by ν(α) · q(a) = q(αa). This is clearly a well defined
multiplicative homomorphism into End (P ). In particular p◦ is fixed by
ν[F×], and thusD is invariant under nonzero scalar multiplication. Thus
we may make the following computation with a, b ∈ D independent,
(a, b) = α:

(∗) f∗(ββσα) = q(βa+ βb) = ν(β)q(a + b) = ν(β)f∗(α)

Now let K be the kernel of f∗, and F◦ the fixed field of σ (which may
be all of F ). We will show that K = kerTr with Tr the trace from F
to F◦, which will allow us to identify P and F◦.
By (∗) K is invariant under multiplication by elements ββσ, that is

by norms or squares according as σ is nontrivial or trivial, and therefore
is an F◦-subspace of F in all cases. Furthermore K < F since P has
more than one element. Thus if σ is the identity and F◦ = F we have
only the possibility K = (0), which is the claim in this case. Suppose
now that σ is nontrivial so that F is a quadratic extension of F◦. As
q(x + y) = q(y + x) we get f∗(α) = f∗(ασ) so K contains the kernel
{α− ασ : α ∈ F} of the trace, which is of codimension 1 in F . Thus K
coincides with this kernel.
Accordingly we now identify P with F◦ and f∗ with the trace. The

formula (∗) then states that ν is the norm if σ is nontrivial, and the
squaring map otherwise. In particular there are |F◦| nontrivial types
over acl (∅). These types must therefore be determined by the function
(x, x), unless the form is symplectic.
Suppose finally that the form is symplectic; we still suppose that |P | =

|F◦|. Take x, y independent and orthogonal. Then (x − y, y) = 0 and
thus q(x) = q(x−y)+q(y) = q(x)+q(−y)+q(y), that is q(−y) = −q(y).
On the other hand by (∗) q(−y) = q(y) and thus the characteristic is
2. Our final objective is to show that q is a quadratic form, so that
A is an orthogonal space in characteristic 2. In any case (∗) says that
q(αx) = α2q(x) and it remains to study q(x+ y).
Take x1, x2, y1, y2 in D independent with xi orthogonal to yi for i =

1, 2, and let α = (x1, x2), β = (y1, y2). Let zi = xi + yi; then zi ∈ D
and q(z1 + z2) = (z1, z2) = α+ β + (x1, y2) + (x2, y1). Let x = x1 + x2,
y = y1 + y2. Then x, y are independent; q(x) = α and q(y) = β; and
(x, y) = (x1, y2)+ (x2, y1). As x+ y = z1+ z2 we have q(x+ y) = q(x)+
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q(y) + (x, y). This argument applies to x, y independent and nonzero.
When x, y are dependent they are linearly dependent and it follows easily
that this formula holds in general. Thus q is a quadratic form associated
to the given symplectic form. This determines the structure of A in this
last case.

Lemma 7.1.6. Let M be ℵ0-categorical of finite rank. Let A,A∗ be 0-
definably interpreted rank 1 vector spaces over a finite field F with a
definable F -bilinear pairing satisfying:

L1 Every M-definable F -linear map A −→ F is represented by some ele-
ment of A∗, and dually.

L2 Algebraic closure and linear dependence coincide on A and on A∗.

L3 A and A∗ have no nontrivial proper 0-definable subspaces.

Suppose that over acl (∅), A,A∗ are part of a linear Lie geometry
stably embedded in M. Then A,A∗ are part of a linear Lie geometry
stably embedded in M.

Proof. We have to show that if A carries a bilinear form or quadratic
form defined over acl (∅) then the set of scalar multiples of the form is
0-definable, and similarly if A,A∗ are part of a quadratic geometry in
characteristic 2.
Note that any acl (∅)-definable linear automorphism of A acts trivially

on the projective space PA, by (L2), and hence is given by a scalar
multiplication. As A∗ contains all definable linear forms on A, any two
nondegenerate bilinear forms differ by a definable automorphism of A,
hence differ by a scalar. In odd characteristic this disposes of all cases
since quadratic forms correspond to inner products.
Consider now the case of a symplectic space in characteristic 2, where

the form is known up to a scalar multiple. With the form fixed, the
set of quadratic forms compatible with it and definable over acl (∅)
corresponds to A∗ ∩ acl (∅). By (L3) this is (0). Thus if there are
quadratic forms definable over acl (∅), they are the scalar multiples of
a single form.
Suppose finally that there are no acl (∅)-definable quadratic forms but

that there is an acl (∅)-definable quadratic geometry. In this case the set
of acl (∅)-definable quadratic forms compatible with one of the bilinear
forms carries a regular action by A∗ and hence this is the standard
quadratic geometry over ∅, corresponding to a form known up to a scalar
multiple. Note that the pairing is known but the identification of A with
A∗ is only known up to a scalar multiple.

Proposition 7.1.7. Let M be ℵ0-categorical of finite rank. Let A,A∗

be 0-definably interpreted rank 1 vector spaces over a finite field F
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with a definable F -bilinear pairing satisfying:

L1 Every M-definable F -linear map A −→ F is represented by some ele-
ment of A∗, and dually.

L3 A and A∗ have no nontrivial proper 0-definable subspaces.

Let c ∈ M, with acl (c) ∩ (A,A∗) = dcl (c) ∩ (A,A∗) nondegen-
erate, and set (A′, A′∗) = [ acl (c) ∩ (A,A∗)]⊥. Assume that relative
to a possibly larger field F ′, in M′ = M with c added as a constant,
(L1,L3) hold for A′, A′∗ as well as:

L2 Algebraic closure (over c and linear dependence (over the extended scalar
field) coincide on A′ and on A′∗.

L4′ Every definable subset of A′ or of A′∗ is a boolean combination of c-
definable subsets and cosets of definable subgroups.

L5′ If D is the locus of a complete type in A′ over acl (c) and a′1, . . . , a
′
n

are F -linearly independent, then there is an element d of D with (d, a′i)
prescribed arbitrarily.

Then there is a 0-definable sort Q in M such that (A,A∗, Q) form
a weak linear Lie geometry, stably embedded in M.

Proof. We will work over acl (∅). We let Q be ∅ unless A carries an
acl (∅)-definable symplectic bilinear form in characteristic 2, in which
case we let Q be the set of all definable quadratic forms compatible
with one of these symplectic forms on A; each component of this set,
corresponding to a particular form, has a regular action by A∗ and in
particular is uniformly definable. Thus Q is 0-definable. We let J =
(A,A∗, Q) with all structure defined over acl (∅) and we claim that this
is stably embedded.
Let M′ be the expansion of M by the constant c, and J ′ the geometry

A′, A′∗ with the structure inherited from M′. By Proposition 7.1.1, J ′

is a stably embedded weak linear geometry. Let A◦ = acl (c)∩A. Then
A = A◦ ⊕ A′, and similarly for A∗, and Q. Thus J is contained in the
definable closure of J ′ in M′. Thus J inherits the following properties:

J is stably embedded in M; J has finite rank and is modular;
J has the type amalgamation property of Proposition 5.1.15

By Proposition 6.2.3, ifH is a parametrically definable subgroup of A×A
or A × A∗ in M, then H is commensurable with an acl (∅)-definable
subgroup.
Let F ′ be the ring of endomorphisms of A which are 0-definable in J .

By the third hypothesis F ′ is a field and it must restrict to a subfield of
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the field of scalars for J ′. We claim in fact that F ′ induces the scalars
of J ′. Let α be one of the scalar multiplications on J ′. The graph of α
is commensurable with an acl (∅)-definable subgroup H of A × A. By
the third condition H is the graph of a group isomorphism from A to
A. Let α ∈ F ′ be the element with graph H . As the graphs of α and α′

are commensurable acl (c)-definable automorphisms of A′, they agree
there.
The same sort of argument shows that an isomorphism A′ −→ A′∗

is induced by an acl (∅)-definable isomorphism on A of the same type.
The same applies to quadratic forms in odd characteristic since they
correspond to bilinear forms. In characteristic 2 one can in any case
extend quadratic forms to forms on A in acl (c), taking them to vanish
on acl (c) ∩ A.
Now let J− be J reduced to its geometric structure. The structure on

J ′ is known and is defined from this geometric structure by Proposition
7.1.1. As J is interpreted in J ′, every 0-definable relation in J is definable
in J− from parameters in acl (c). Let R be 0-definable in J , with
canonical parameter e ∈ J−, and definable in J− from the parameter
a. By weak elimination of imaginaries in J− we may take a ∈ acl (e)
in J−; but e ∈ acl (∅) in J , so a ∈ acl J(∅) ∩ J− which is trivial
by assumption. Thus R is 0-definable in J− and J = J− is a stably
embedded Lie geometry.
This argument took place over acl (∅) (and our last 0-definability

claim is blatantly false in general); to remove this, we use the preceding
lemma.

Remark 7.1.8. We are dealing in Proposition 7.1.1 with the rank 1
case of the analysis of settled groups with acl (∅)∩A = (0), acl (∅)∩
A∗ = (0). It would be interesting to tackle the general case. Two
special cases: analyze the case of prime exponent, or the case of rank
2.
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7.2 FORGETTING CONSTANTS

The following is a special case of Proposition 7.5.4 below, for which we
will give a proof by a method not depending on the classification of fi-
nite simple groups. The proof given here goes via smooth approximation
rather than coordinatization and involves [KLM], hence the classifica-
tion of the finite simple groups.

Proposition 7.2.1. Let M be a structure and Mc an expansion of M
by a constant c. If Mc is smoothly approximable by finite structures,
then there is an expansion M◦ of M by an algebraic constant which
is smoothly approximable.

The key example here is due to David Evans: one takes M to be
the reduct of a basic quadratic geometry in which the orientation is
forgotten, but the corresponding equivalence relation is remembered. In
a finite approximation the two classes are distinguished, so M is not
smoothly approximable by finite structures. The orientation itself is an
algebraic constant. It can be shown that this is the only sort of algebraic
constant which comes in to Proposition 7.2.1.

Definition 7.2.2. If M is Lie coordinatizable and E is an envelope in
M it is said to be equidimensional if all the isomorphism types of spec-
ified geometries of a given type are the same; that is the dimensions
and Witt defects are constant.

Lemma 7.2.3. Let N be smoothly approximable, c ∈ N , E a finite
subset of N containing c. Then

1 If E is an envelope of N , it is an envelope of Nc.

2 If E is an equidimensional envelope of Nc, it is an envelope of N , pro-
vided that:

1.1 The locus of c over ∅ is nonmultidimensional;

1.2 For any acl (∅)-definable canonical projective geometry Pb with canoni-
cal parameter b, tp(b) implies tp(b/c).

Proof. We use the criterion given in the corollary to Lemma 3.2.4. Of
the three conditions given there, only the last one is actually sensitive to
the presence of the parameter c. In N this may be phrased as follows:

If c1, c2 are conjugate in M and Dc1 , Dc2 are corresponding
conjugate definable sets, then Dc1 ∩E and Dc2 ∩ E

are conjugate by an elementary automorphism of E.

This condition is certainly inherited “upward”, giving the first point.
For the second, assuming conditions 1.1 and 1.2, and the conjugacy con-
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dition in Nc, it suffices to to show the conjugacy condition for canonical
projective geometries Dci . There are two cases.
Suppose first that ci /∈ acl (∅). Then Dci is orthogonal to tp(c/ci)

as the latter is analyzed by acl (∅)-definable geometries. Hence Dci

remains a projective geometry in Nc. It is also canonical: every proper
conjugate in Nc is in particular a conjugate in N , and hence orthogonal
to Dci. Thus the dimension of Dci in E is one of the specified dimensions
as an envelope in Nc; these are all assumed equal, so Dc1 and Dc2

have the same dimension and similarly, where applicable, the same Witt
defect.
Now suppose ci ∈ acl (∅). Then by 2.2 tp(c1/c) = tp(c2/c) and thus

they are conjugate in Ec, and the Dci ∩ E are conjugate.

We now deal with a special case of Proposition 7.2.1.

Lemma 7.2.4. Let M be a structure and Mc an expansion of M by a
constant c. Assume that the locus P of c in M is nonmultidimensional
in Mc and that for any acl (c)-definable canonical projective geometry
Jb, tp(b/c) implies tp(b/ acl (c). If Mc is smoothly approximable by
finite structures, then there is an expansion M◦ of M by an algebraic
constant which is smoothly approximable.

Proof. An envelope in Mc is determined by a k-tuple of dimensions
for some k. Let q be a 2-type realized in P . Define a binary relation
Rq between k-tuples of dimensions by: Rq(d, d

′) if and only if there is a
realization (c, c′) of q, and a finite subset E of M which is an envelope of
dimension d in Mc and is an envelope of dimension d′ in Mc′ . We claim
that Rq defines a partial function. If (c, c′) realizes q, then tp(c′/c) in
Mc determines tp(c′/c) in U and hence determines the corresponding
dimension d′. We will use function notation, writing fq(d) = d′.
We define an equivalence relation on P by: E(a, b) holds if there is a

finite subset C◦ of P such that for any finite subset C of P containing
C◦, any equidimensional envelope of MC is an envelope of Ma and Mb,
with the same dimensions. We claim:

If a, b, b′ ∈ P and tp(ab) = tp(ab′) then E(b, b′)

Given such a, b, b′ we let q = tp(ab) = tp(ab′) and C◦ = {a, b, b′}. If
C contains a, b, b′ and U is an equidimensional envelope of MC , then U
is an equidimensional envelope over a, b, or b′; and the dimension over
b or b′ is fq applied to the dimension over a.
Thus the relation E has finitely many equivalence classes. Let c◦ =

c/E ∈ acl (∅). We claim that M is smoothly approximable over c◦.
Let P be the increasing union of finite subsets Cn with C1 = {c} and

let Un be an n-equidimensional envelope in MCn
containing Un−1. Let



168 REDUCTS

L be the canonical language for M (consisting of complete types over
∅). Let F be a nonprincipal ultrafilter on ω and let the term “almost
all n” be understood with reference to this ultrafilter. Let L∗ be the set
of relations which are 0-definable in L(c) whose restrictions to Un are
L-definable for almost all n. We will show that L∗ = L(c◦) and that M
is smoothly approximable in the language L∗.
L∗ is a sublanguage of L(c) which contains L(c◦) since the proof that

E has finitely many classes also shows c◦ is definable in Un from some
point on. To see that M is smoothly approximable in the language L∗,
let k be fixed and let a,b be k-tuples with the same type in L∗. It
suffices to show that for almost all n, two such k-tuples in Un will be
conjugate in Un. If not, then for almost all n, there is a 0-definable
k-ary relation Rn on U which does agree on Un with any relation in
L∗. However it must agree with some c-definable relation restricted to
Un, and there are only finitely many such, so for almost all n Rn agrees
with the same c-definable relation on Un, which means it agrees with a
relation of L∗, a contradiction.
It remains to be shown that L∗ ⊆ L(c◦). Let P ′ be the equivalence

class of c with respect to E; this is a subset of P . We claim first:

P ′ realizes a unique L∗-type

Take c′ ∈ P ′. It suffices to show that for almost all n, and indeed for
all sufficiently large n, there is an automorphism of Un carrying c to c′.
For large n, Un contains c and c′ and is an equidimensional envelope
with the same dimensions relative to c and to c′. Thus Mc and Mc′

are isomorphic smoothly approximable models and Un over c or c′ is an
equidimensional envelope with respect to the same data in both cases;
by uniqueness of envelopes, (Un, c) ≃ (Un, c

′).
It follows that any automorphism σ of Mc◦ preserves L∗: as σ pre-

serves P ′, by the previous claim we may suppose that σ fixes c, and
hence L∗. Thus L∗ ⊆ L(c◦).

Lemma 7.2.5. Let M be smoothly approximable, and for a ∈ M let
a(1) = {a′ ∈ acl (a) : rk (a′) = 1}. Define E(a, b) by: a(1) = b(1).
Then:

1 If S is an acl (∅)-definable subset of M of rank n > 0, then each E-class
in S has rank less than n.

2 M/E is nonmultidimensional.

3 If c ∈ M and a and b are both independent from c, then a(1) = b(1) if
and only if the same relation holds in Mc.

Proof. The first point is the coordinatization theorem, i.e., without loss
of generality M is Lie coordinatized. The second point is clear as the
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0-definable closure of a(1) is a set of rank at most 1 over ∅.
For the final point, write a

(1)
c for a(1) computed over c. We wish to

show that each of a(1), a
(1)
c determines the other. As a(1) = {a′ ∈ a

(1)
c :

a′ is independent from c}, it suffices to deal with the reverse direction.
We claim:

a(1)c = acl (a(1), c)

In any case the right side is contained in the left. Conversely we must
show that if d ∈ acl (a, c) has rank at most 1 over c then d ∈ acl (a(1), c).
By modularity a and c, d are independent over a′ = acl (a) ∩ acl (c, d).
Thus a and d are independent over a′c and therefore d ∈ acl (a′c). But
rk (a′/c) ≤ 1 and a, c are independent, so rk (a′) ≤ 1. Thus a′ ∈ a(1)

and d ∈ acl (a(1), c).

Proof of Proposition 7.2.1:
We assume Mc is smoothly approximable and we seek c◦ ∈ acl (∅) with
Mc◦ smoothly approximable. We work over acl (∅), and we replace
c by a finite subset C of acl (c) such that for Pb an acl (c)-definable
canonical projective geometry, tp(b/C) implies tp(b/ acl (c)). We again
write c rather than C. After these adjustments, if the locus P of c is
nonmultidimensional, then Lemma 7.2.4 applies. We treat the general
case by induction on rk c.
If there is c1 ∈ acl (c) with c /∈ acl (c1) then after expanding c1 if

necessary to a slightly larger subset of acl (c1) we may take Mc1 to be
smoothly approximable, by induction, as rk (c/c1) < rk (c), and then
by a second application of induction, as rk (c1) < rk (c), we reduce to a
parameter in acl (∅). We assume therefore that there is no such element
c1.
We define a relation E on P by: E(a, b) if for some c ∈ P independent

from a, b: a
(1)
c = b

(1)
c , where a

(1)
c is a(1) computed over c, as in the

previous lemma. We claim that if c, c′ ∈ P are both independent from

ab and a
(1)
c = a

(1)
c , then the same applies over c′. Working with an

element c′′ independent from a, b, c, c′, we reduce to the case in which
c and c′ are independent over a, b, in other words the triple ab, c, c′

is independent. As Mc is smoothly approximable, and ab and c′ are

independent there, the previous lemma applies and yields a
(1)
c = b

(1)
c if

and only if a
(1)
c,c′ = b

(1)
c,c′; arguing similarly over c′, our claim follows. In

particular, E is a 0-definable equivalence relation.
Suppose toward a contradiction that is degenerate, i.e. E = P 2. Then

for c ∈ P fixed, the relation Ec(a, b) : a
(1)
c = b

(1)
c has a class of maximal

rank. This violates the first clause of the previous lemma. As we are
working over acl (∅), it follows that P/E is infinite. If c1 is c/E, then
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c1 ∈ acl (c) and rk (c/c1) < rk (c). Therefore by our initial assumption
c1 ∈ acl (∅), that is: E has finite classes.
Let P have rank n and let c1, . . . , c2n+1 ∈ P be independent. Let Ei

be the equivalence relation a
(1)
ci = b

(1)
ci , and E′ the intersection of the

Ei. For any a, b in P , there is an i for which ab is independent from ci
and thus E′ refines E, and has finite classes. Now P/E′ ↔

∏
i P/Ei,

{c1, . . . , c2n+1}-definably, and the quotients P/Ei are nonmultidimen-
sional. Hence P is nonmultidimensional in Mc1,...,c2n+1

. Therefore P is
also nonmultidimensional over M(c1), since any orthogonality over c1
would be preserved (after conjugation) over c1, . . . , c2n+1. As this case
is the base of our induction, we are done.
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7.3 DEGENERATE GEOMETRIES

Lemma 7.3.1. Let M be a structure and D 0-definable in M. Then
the following are equivalent:

(1) D is stable and stably embedded in M.

(2) There is no unstable formula φ(x, y) with φ(x, y) =⇒ (x ∈ D).

(3) There is no unstable formula φ(x1, . . . , xn, y) for which φ(x, y) =⇒ (xi ∈
D), all i.

Proof. The equivalence of (2) and (3) is [Sh] [II:2.13 (3,4), p. 36]. We
check the equivalence of (1) and (3).
Suppose first that (1) fails. If D is unstable then relativization to D

produces a suitable φ. If D is not stably embedded and φ(x, c) defines
a subset of D which is not D-definable, one can find a countable set
of parameters in D over which there are 2ℵ0 φ∗-types (φ∗ being φ with
the variables interchanged). Indeed, for any finite set A ⊆ D and any
φ∗-type p over A realized by a conjugate of c, there are conjugates of
c realizing contradictory φ-types over a larger finite subset of D; for
this, we may suppose that p is satisfied by c, and take a 1-type over
A in D which is split by φ(x, c); then we have φ(d1, c) and ¬φ(d2, c)
with d1 conjugate to d2 over A, and after identifying d1 with d2 we have
realizations c, c′ of contradictory φ-types by elements conjugate to c.
It follows that φ∗ is unstable [Sh] [II:2.2 (1,2), pp. 30-31].
Now suppose (1) holds. Let A be a countable subset of D and M∗ an

elementary extension of M. As D is stably embedded, any φ-type over
D realized in M∗ is definable with a parameter e in D[M∗], and since
D is stable tp(e/A) is definable. Thus the types over A are definable
and (3) follows [Sh] [II:2.2 (1,8), pp. 30-31].

Lemma 7.3.2. Let M be an ℵ0-categorical structure which does not
interpret a Lachlan pseudoplane. If a, b ∈ M with neither algebraic
over the other, then there is a conjugate b′ of b over a distinct from b
for which a /∈ acl (b, b′).

Proof. Write down a theory asserting that a1, a2, . . . are distinct solu-
tions to the conditions tp(xb) = tp(xb′) = tp(ab), with b 6= b′. Our
claim is that this theory is consistent.
Suppose that this theory is inconsistent. Then for some n, b is de-

finable from any n distinct conjugates a1, . . . , an of a over b, by the
conjunction of the formulas:

(∗) tp(ai, y) = tp(ab)

With n minimized (and at least 2) let a = {a1, . . . , an−1} be a set
(unordered) of conjugates of a over b chosen so that b /∈ acl (a). By
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assumption none of the ai is algebraic over b.
We claim:

(1) a /∈ acl (b);

(2) b /∈ acl (a);

(3) b is definable from any two distinct conjugates of a over b;

(4) a is definable from any two distinct conjugates of b over a.

Granted this, we have a Lachlan pseudoplane with points conjugate
to a, lines conjugate to b, and incidence relation given by tp(ab).
Now (1) is clear, (2) holds by the choice of a (and n), and for (3)

observe that any two conjugates of a over b will involve at least n distinct
conjugates of a over b. Finally for (4), if b and b′ have the same type
over a and a, a′ are distinct and have the same type over bb′, then b is
definable from aa′ in the manner of (∗) above, as is b′, so b = b′.

Definition 7.3.3. A subset D of a structure M is algebraically irre-
ducible if for b ∈ D we have: a ∈ acl (b)− acl (∅) implies [b ∈ acl (a)].

Lemma 7.3.4. Let M be ℵ0-categorical, let D be the locus of a 1-type
over ∅ in M, and suppose that D is algebraically irreducible and M
does not interpret a pseudoplane. If there is a definable strongly min-
imal subset Db of D with defining parameter b, then finitely many
conjugates of Db cover D.

Proof. Let Q be the locus of b over ∅. Define an equivalence relation
E(b, b′) on Q by: Db and Db′ differ by a finite set. By Lachlan’s nor-
malization lemma [LaPP] for each b ∈ Q there is a Db/E-definable set
agreeing with Db up to a finite set. Thus we may factor out E and
assume that distinct conjugates of Db have finite intersection. Then the
previous lemma applies to a ∈ Db− acl (b) and b, and as the conclusion
fails, we find that for such pairs a, b we have b ∈ acl (a). Now by the
algebraic irreducibility of D it follows that b ∈ acl (∅). This yields our
claim.

Lemma 7.3.5. Let M− be a reduct of the smoothly approximable struc-
ture M. Let D be a rank 1 0-definable set in M−, and suppose that
for any finite subset B of M− and any a1, a2 in D: acl (Ba1a2) =
acl (Ba1) ∪ acl (Ba2) where the algebraic closure is taken in D, and
in the sense of M−. Then D is stable and is stably embedded in M−.

Proof. Model theoretic notions are to be understood in M− except
where otherwise noted. The proof of (1) will proceed by induction on
the rank r of D in M. By Lemma 7.3.1 the class of stable and stably
embedded 0-definable subsets of M− is closed under finite unions. Thus
we may suppose that D realizes a single type over ∅.
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We show first

Any infinite subset of D which is definable in M− has rank r in M.

Suppose on the contraryD′ is of lower rank in M. Then by induction D′

is stable and is stably embedded in M relative to a defining parameter
forD′. FromM D′ inherits the following properties: it is ℵ0-categorical,
and does not interpret a pseudoplane. By Lachlan’s theorem [LaPP]
it is ℵ0-stable and in particular contains a definable strongly minimal
subset D′

b definable in M−. Then by the previous lemma finitely many
conjugates of D′

b in M− cover D and thus D is stable and stably em-
bedded in M−.
From this it follows that for any sequence a1, a2, . . . in D which is

algebraically independent in M−, there is a conjugate sequence which is
independent in M. Indeed choosing the conjugates inductively, at stage
n we have to realize the type of an over a1, . . . , an−1 in M− (or more
exactly a conjugate type) by an element independent from a1, . . . , an−1

in M. The locus of this type is an infinite set defined in M− and hence
of full rank r in M, so this is possible.
Now suppose we do not have D stable and stably embedded in M−,

or equivalently that we have an unstable formula φ(x, y) which implies
(x ∈ D). We then find a finite set B and types p, q over acl (B) such
that both p(x), q(y), φ(x, y) and p(x), q(y),¬φ(x, y) have solutions with
x, y independent over B. For this it suffices to take an indiscernible
sequence (ai, bi) such that φ(ai, bj) holds if and only if i < j, letting B
be an initial segment over which the sequence is independent.
Now fix realizations b−1, b1 of q independent over B and set B′ =

B∪{b−1, b1}. Let D
′ = {x ∈ D : φ(x, b1)&¬φ(x, b−1)}. As M

− inherits
the type amalgamation property fromM, by the corollary to Proposition
5.1.15 the set D′ is infinite. Let D′′ ⊆ D′ be the locus of a complete
nonalgebraic type over B′ in M−.
Now let a1, . . . , an be elements of D′′, pairwise algebraically indepen-

dent over B′. We will show that there are 2n φ-types over a1, . . . , an.
By our basic assumption on D the set A = {a1, . . . , an} is algebraically
independent over B′and after conjugation we may suppose that these
elements are independent in M over B′. For each i both φ(ai, y)&q(y)
and ¬φ(ai, y)&q(y) are consistent, with rank equal to rk (q), so by the
corollary to type amalgamation the same applies to any combination of
these properties as i varies. This produces the desired 2n types.
Now let k be the size of acl (B′a) ∩D in M− for a ∈ D′′. Then any

set of n elements of D′′ contains [n/k] pairwise independent elements
and hence allows 2[n/k] φ-types. This is greater than the bound allowed
by the corollary to Proposition 5.1.20. So we have a contradiction.
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Corollary 7.3.6. With the hypotheses and notation of Lemma 7.3.5, if
D carries no nontrivial 0-definable equivalence relation, then there is
no induced structure on D beyond the equality relation.

Proof. The additional hypothesis implies that acl (a) = a for a ∈ D and
hence acl (X) = X for x ⊆ D.
As we remarked in the previous proof, once we know D is stable,

we know that it is ℵ0-stable, and of Morley rank 1. By the Finite
Equivalence Relation Theorem, the Morley degree is 1, that is D is
strongly minimal. As acl is trivial on D, the claim follows.
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7.4 REDUCTS WITH GROUPS

Lemma 7.4.1. Let M− be a reduct of a Lie coordinatizable structure
M, A a locally definable abelian group of bounded exponent n in M−.
Then

1 For any definable subset S of A, the subgroup generated by S is definable.

2 If A is 0-definable in M− of exponent p then the dual A∗ and the pairing
A×A∗ −→ Fp are interpretable in M−. If A has no nontrivial proper
0-definable subgroups in M− then either A∗ is trivial or the pairing is a
perfect pairing.

3 If A is 0-definable and carries a 0-definable vector space structure over
a finite field K, then A∗ (the definable Fp-dual) allows a 0-definable
K-bilinear pairing µ : A×A∗ −→ K with Tr ◦ µ(a, f) = f(a).

Proof. These statements were proved in the Lie coordinatizable context
as Lemma 6.1.8, Proposition 6.3.2, and Lemma 6.3.4.
The first statement is inherited from M. The subgroup generated by

S is definable in M if and only if it is generated in a finite number of
steps, and this is equivalent to its definability in M−. Thus this first
property passes to reducts.
For the second statement we have a definable dual Â in M, which in

particular involves only finitely many sorts of M, and we are interested
in the subgroup A∗ of M−-definable elements. Let A∗

n be the subset of
M−-definable elements which are definable from at most n parameters.
This generates a 0-definable subgroup of Â and hence for large n is all
of A∗ in the sense of M−.
The proof of the third property is purely formal, given the second.

Lemma 7.4.2. Let M be a structure, and A a 0-definable abelian group
in M−. Let Hi (i = 1, . . . , n) be a finite set of subgroups of A, and
let D be a finite union of cosets of the Hi, such that:

(1) [Hi : Hi ∩Hj ] is infinite for i, j distinct;

(2) D contains a coset of each Hi and if Di is the union of the cosets of
Hi which are contained in D, there is no group T > Hi commensurable
with Hi for which Di is the union of cosets of T .

Then the groups Hi are acl (∅)-definable in (A;D).

Proof. This is an application of Beth’s definability theorem applied to
the set {H1, . . . , Hn}, which we claim is implicitly definable. Let ni be
the number of cosets of Hi contained in Di and let T be the theory of
(A,D) expanded by axioms φ for the Hi: they are subgroups with the
stated properties, for which Di is the union of exactly ni cosets. Suppose
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we have two models of the form (A,D, H̄) and (A,D, H̄ ′) with the same
(A,D). For each i, as some coset of Hi is covered by cosets of the H ′

j ,
by Neumann’s lemma we have [Hi : Hi ∩H ′

j ] < ∞ for some j. Similarly
for each j we can find a corresponding i; by the hypothesis on the Hi,
these two correspondences are reciprocal, and after rearrangement this
means that Hi is commensurable with H ′

i for all i. Then for each i Di is
the same set in both models and is a union of cosets of both Hi and H ′

i,
hence of Hi+H ′

i; if this group extends Hi or H
′
i properly, we contradict

(2); but (2) can be included in φ since there is a bound on the possible
index [Hi +H ′

i : Hi]. Thus Hi = H ′
i.

Lemma 7.4.3. Let M− be a reduct of a Lie coordinatizable structure
M, and A a 0-definable abelian group in M−. Suppose that A has no
definable subgroups in M− of M-rank strictly between 0 and rkM(A).
Then in M−, A has rank 1, and every infinite M−-definable subset
of A has full rank in M.

Proof. The first statement follows from the second.
Suppose the second statement fails, and D is M−-definable in A with

0 < rkM(D) < rkM(A). Let r = rkM(D) be minimal. By Lemma
6.2.5 in M, D is contained in a finite union of cosets Ci of subgroups Hi

of A definable in M with rkHi = r, and a set of rank less than r. Let
D be chosen to minimize the number n of distinct subgroups involved.
Then the indices [Hi : Hi ∩Hj ] are infinite for i, j distinct.
We show that n = 1. By Lemma 6.2.5 S1 = Stab (D ∩ C1) has rank

r and evidently S1 ≤ H1; but rkH1 = r, so [H1 : S1] < ∞. Let a be a
generic point of Stab ◦(D ∩C1). Then a ∈ H1 and a /∈ Hj for Hj 6= H1,
and furthermore [a+Cj ]∩Ck = ∅ for j, k distinct. Let D′ = D∩(D+a);
then rkD′ = r and up to a set of rank r D′ is contained in the union of
the Ci ∩ (Cj + a), which up to a set of rank less than r is the union of
the cosets Ci for Hi = H1. By the choice of D, the same applies to D
and all Hi = H coincide.
For a ∈ A the set D ∩ (D + a) is M−-definable and hence is of rank

r or finite. Thus S◦ = {a ∈ A : rk (D ∩ (D + a)) = r} is definable
in M−. Decompose D into loci of types Di over acl (∅) in M. Then
S◦ =

⋃
ij Sij with Sij = {a ∈ A : rk (Di ∩ (Dj + a)) = r}. By Lemma

6.2.5 each nonempty Sij is contained in a coset Cij of a subgroup Tij of
rank r, with Cij − Sij of rank less than r. As D is contained in a finite
union of cosets of H , also of rank r, H and the Tij are commensurable.
Thus for some subgroup T of finite index in H , S◦ is a union of sets Ak

contained in cosets of T and differing from these cosets by sets of rank
less than r. Take ak ∈ Ak for each k, and let Ykl = (Ak −ak)∩ (Al−al).
Then Ykl is generically closed under addition and inverse, and applying
Lemma 6.1.3, Ak − Al is a coset of a subgroup of T which differs from
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T by a set of smaller rank; so Ak − Al is a coset of T . From all of
this it follows that S◦ − S◦ is itself a finite union of cosets of T . As
the set S◦ − S◦ is definable in M−, the preceding lemma implies that
some subgroup commensurable with T is also definable in M−. This
contradicts our assumption on A.

Lemma 7.4.4. Let M− be a reduct of a Lie coordinatizable structure
M, and A a rank 1 0-definable abelian group of prime exponent p in
M−. Let A∗ be the dual in M− and let Â be the dual in M. Then

1 In M−, A∗ has rank at most 1.

2 If in M− we have acl (∅) ∩ A = (0), acl (∅) ∩ A∗ = (0), and A∗ 6= (0),
then A∗ = Â.

Proof. Ad 1. We apply the preceding lemma. Suppose A∗ has a definable
subgroup B in M− with B and A∗/B infinite. Let B⊥ be the annihilator
of B in A. Then A∗/B acts faithfully on B⊥, so B⊥ is infinite. Similarly
(A/B⊥, B) form a nondegenerate pair, so A/B⊥ is infinite. This is a
contradiction.
Ad 2. Let B be the annihilator in A of A∗. By hypothesis B < A and

hence B = (0). Thus in M we have two perfect pairings (A,A∗) and
(A, Â), and by the pseudofiniteness of M these dual groups coincide.

Lemma 7.4.5. Let M− be a reduct of a Lie coordinatizable structure
M, A a rank 1 0-definable abelian group of prime exponent p in M−,
and D an infinite 0-definable subset of A. Then for generic indepen-
dent a∗1, . . . , a

∗
n in A∗ there is d ∈ D with (d, a∗i ) prescribed arbitrarily.

Proof. By the last two lemmas every infinite M−-definable subset of A∗

has full rank and thus the sequence a∗1, . . . , a
∗
n is conjugate in M to a

generic independent sequence in A∗. Apply Lemma 6.4.1 in M.

Lemma 7.4.6. Let M be a Lie coordinatizable structure, A a definable
group abelian of rank r, and D a definable subset of A of rank r whose
complement is also of rank r. Then there is a coset C of a definable
subgroup of finite index in A, and an intersection D′ of finitely many
translates of D, so that

rk (D′) = r; rk (D′ ∩ C) < r.

Proof. We may assume that A is settled over the empty set and that D
is 0-definable. Let P be the locus of a 1-type over acl (∅). Then every
definable subset of P is the intersection of P with a boolean combination
of definable cosets of A of finite index, and of sets of rank less than
r = rk (P ) (Lemma 6.6.2).
We may find a generic element g ∈ A for which the rank of P \(D+g)

is r: take a ∈ A \ D generic, b ∈ P generic with a, b independent, and
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g = b − a. There is a coset C of a definable subgroup of finite index in
A, for which C ∩P is contained in P \ (D+ g) up to a set of lower rank,
or in other words (D+ g)∩C ∩P has rank less than r. Furthermore as
A is settled over acl (g), we may take C to be acl (g)-definable.
For each 1-type P over acl (∅) choose gP and CP as in the foregoing

paragraph so that
⋂

P (D+gP )∩
⋂

P CP has rank less than r. Taking the
gP independent over the empty set, both intersections

⋂
P (D+ gP ) and⋂

P CP will have rank r, and the latter is a coset of a definable subgroup
of A of finite index. This proves the claim.

Lemma 7.4.7. Let M be a Lie coordinatizable structure, A a definable
abelian group of rank r, and D a definable subset of A of rank r
whose complement is also of rank r. Then there is an intersection D′

of finitely many translates of D, which has rank r and is contained
in a proper subgroup of finite index in A. In particular, the subgroup
generated by D′ will be a proper subgroup of finite index in A, which
is definable in the structure (A,D).

Proof. We apply the previous lemma to find a definable subgroup H of
finite index in A, a coset C of H , and a finite intersection D′ of finitely
many translates of D, so that D′∩C has rank less than r. Take D′ such
an intersection so that the number of cosets of H which meet D′ in a
set of rank r is minimized, subject to the constraint that rkD′ = r. We
may suppose that D = D′: so if D meets D + g in a set of rank r, then
D and D + g meet the same cosets of H in a set of rank r.
Let X ⊆ A/H be the set of cosets which meet D in a set of rank r.

We may suppose H ∈ X .
We claim that X is a subgroup of A/H . We may take D and H to be

0-definable. Take C ∈ X and choose a representative g for C as follows.
Fix a 1-type over acl (∅) whose locus P is contained in D ∩H , and let
Q be the locus of a 1-type over acl (∅) which is contained in D ∩ C.
Take (a, b) ∈ P ×Q generic; then g = b − a is generic, and g +H = C.
Furthermore, (g + D) ∩ D ∩ Q contains (g + P ) ∩ Q (in particular, a)
and hence has full rank. Thus g +D also meets all the cosets in X in
sets of rank r, in other words X − g = X . Thus X is a group.
Let X = B/H with H ≤ B ≤ A. As C /∈ X , we have B < A. In

addition, by our construction D\B has rank less than r. Let S = D\B.
As rkS < r, for any r+1 independent generic elements h1, . . . , hr+1 in A
we will have

⋂
i(S+hi) = ∅; if c lies in the intersection and is independent

from hi, then rk (hi/c) = r, and c− hi ∈ S, a contradiction.
Thus if we replace D by the intersection D′ of its translates by r + 1

independent generic elements of B, we will retain rkD′ = r, while now
D′ ⊆ B.
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Proposition 7.4.8. Let M− be a reduct of a Lie coordinatizable struc-
ture M, A a rank 1 0-definable group in M−. If A∗ = (0) in M−

then A is strongly minimal and stably embedded in M−.

Proof. Supposing the contrary, there is a subset D of A which in M−

is definable (from parameters in M−), infinite, and with infinite com-
plement. By Lemma 7.4.3, both D and its complement have full rank
in A. By Lemma 7.4.7 there is a proper subgroup of finite index in A
which is definable in M−; so A∗ is nontrivial in M−.

Proposition 7.4.9. Let M− be a reduct of a Lie coordinatizable struc-
ture M, A a rank 1 0-definable group in M−. Suppose acl (∅)∩A =
(0), and acl (∅) ∩ A∗ = (0). Then there is a finite field F and an
acl (∅)-definable F -space structure on A for which algebraic closure
on A and F -linear span coincide.

Proof. We let F be the ring of acl (∅)-definable group endomorphisms
of A, which is a division ring and is finite by ℵ0-categoricity; thus it is
a finite field.
We show by induction on n that any n F -linearly independent ele-

ments of A are independent. Assuming the claim for n, suppose that
a ∈ acl (a1, . . . , an) with a1, . . . , an independent. We claim that a is a
linear combination of the ai. Taking a conjugate of a1, . . . , an in M− we
may suppose that the elements a1, . . . , an are independent of maximal
rank in M.
Consider the locus D of a1, . . . , an, a over acl (∅) in M, and let S =

Stab (D). By Lemma 6.2.5 rkS = rkD = n·rkM(A), andD is contained
in a coset of S. Let T be the projection of S onto the first n coordinates.
Then the projection of D is contained in a coset of T and thus rkT =
rkS. Therefore the kernel is finite, and T has finite index in An. We
claim:

Some subgroup S′ of An commensurable with S

is acl (∅)-definable in M−. (∗)

For any M−-definable subset X of An one sees easily by induction on n
that rkMX = rkX · rkMA. Accordingly Stab ◦(D) in the sense of M
is definable in M−. One then continues as in the final paragraph of the
proof of Lemma 7.4.3. Thus (∗) holds.
In M, S′ ∩ S is also acl (∅)-definable and induces an equivalence re-

lation on D with finitely many classes. As D is complete over acl (∅)
in M, it is contained in a single coset of S ∩ S′ and thus S ≤ S′ with
[S′ : S] < ∞. The kernel of the projection of S′ to the first n coordi-
nates is also finite, hence trivial by our hypotheses, and the image is of
finite index in An, hence the projection is surjective. It follows that S′
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represents a linear function s(x) =
∑

i αixi with coefficients in F . As D
lies in a coset of S, it lies in a coset of S′, and the function y − s(x) is
constant on D, hence in acl (∅) in M−, hence 0. Thus h(a) =

∑
i αiai.

Lemma 7.4.10. Let M be ℵ0-categorical and modular of finite rank,
M− a reduct of M with aclM(∅) = aclM−(∅). If X,Y are sets
which are independent in M then they are independent in M−.

Proof. If X,Y are dependent in M− then in M− by inherited modular-
ity there is a ∈ acl (X) ∩ acl (Y ) − acl (∅) and by our hypothesis this
holds also in M.

Proposition 7.4.11. Let M− be a reduct of a Lie coordinatizable struc-
ture M, A a rank 1 0-definable group in M−, with aclM(∅)∩(M−)eq =
dclM−(∅). If A is settled over ∅ in M then it is settled over ∅ in M−

and thus every definable subset in M− is a boolean combination of 0-
definable subsets, a finite set, and cosets of definable subgroups.

Proof. We must show in M− that for a independent from an alge-
braically closed set c,

tp(a) ∪ gtp (a/c ∩ A∗) =⇒∗ tp(a/c)

(all types are computed in M−). We will show in fact that for any c
there is a linearly independent k-tuple b ∈ A∗ for some k for which:

tpM−(a) ∪ gtp (a/b) =⇒ tpM−(a/c)

for any a ∈ A not algebraic over b, c. (∗)

After absorbing those parameters in b which are algebraic over c into
c, the rest are independent over c and are conjugate in M− to param-
eters independent in M over c. For a independent from c in M− with
gtp (a/c ∩ A∗) as specified, we can conjugate a over c to an indepen-
dent element in M, then by type amalgamation complete a, c to a,b, c
with the same 2-types tp(ab) and tp(bc) as in the original triple a,b, c
(that is, the version in which b is independent from c). This then de-
termines tp(a/c). Note that in the course of the argument a portion of
acl (c ∩ A∗) was absorbed into c.
We now begin the lengthy verification of (∗).
Let C be the locus of the type of c over ∅ in M− and let k be the

maximum dimension of aclM(c) ∩ A∗ for c ∈ C. Let Bk be the set of
linearly independent k-tuples in A∗. We introduce the notation cl c for
{a ∈ A : rkM(a/c) < rkM(A)}.
We define two relations E−, E on pairs from Bk × C as follows.

E−((b, c), (b′, c′)) holds if and only if (b, c) is independent from (b′, c′)
in M− and for a ∈ A − acl (b, b′, c, b′), gtp (a/b) = gtp (a/b′) implies
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tp(a/c) = tp(a/c′); E((b, c), (b′, c′)) holds if and only if (b, c) is inde-
pendent from (b′, c′) in M and for a ∈ A − cl (b, b′, c, b′), gtp (a/b) =
gtp (a/b′) implies tp(a/c) = tp(a/c′).
Then easily E holds if and only if E− holds and the pairs involved

are independent in M. Now we show that E is a generic equivalence
relation in the sense of §5.1. So take an independent triple x = (b, c);x′ =
(b′, c′);x′′ = (b′′, c′′) in M with E(x, x′) and E(x′, x′′). We must show
E(x, x′′).
Take a ∈ A − cl (b, b′′, c, c′′) with gtp (a/b) = gtp (a/b′′). We claim

tp(a/c) = tp(a/c′′). Let q = tp(a), r = gtp (a/b) = gtp (a/b′′). By
Lemma 6.4.1 q(x) ∪ r(x/b′) is consistent, of rank rk q. By the corol-
lary to type amalgamation (Proposition 5.1.15), so is q(x) ∪ r(x/b′) ∪
tpM(a/bb′′cc′′),
Take a′ ∈ A − clM(bb′b′′cc′c′′) realizing this type. From E(x, x′),

E(x′, x′′) we get in M−: tp(a′c) = tp(a′c′) = tp(a′c′′) and thus
tp(ac) = tp(ac′′).
Now we claim that E− is also a generic equivalence relation. Let

x, x′, x′′ be independent in M− with E−(x, x′) and E−(x′, x′′). We can
conjugate x, x′, x′′ in M− to an independent triple in M and reduce to
the case of E.
Accordingly by Lemma 5.1.12 there is a 0-definable equivalence rela-

tion E′ in M− that agrees with E− on independent pairs in Bk × C.
Then E′ also agrees with E on M-independent elements of Bk×C. The
domain of the relation E′ is D =:

{x ∈ Bk × C : There is x′ ∈ Bk × C independent from x

so that E−(x, x′)}

Note that in this definition we may take independence in the sense either
of M or of M− since these notions agree up to conjugation in M−.
We consider also the following set, which will turn out to coincide

with D:

D1 = {(b, c) ∈ Bk × C : For a ∈ A− cl (b, c),

tpM(a) ∪ gtp (a/b) determines tpM−(a/c)}

Note that if b includes a basis for acl (c) ∩ A∗ then as A is settled in
M, (b, c) ∈ D1. Thus D1 projects onto C. Furthermore E has finitely
many classes on D1 since for x ∈ D1, the class of x/E

′ is determined by
information in tpM(x′). (This is clear first for independent pairs x, x′

using the definition of E− and then for general pairs.)
We will show shortly that D = D1. First we check that D projects

onto C. Take c ∈ C, and b linearly independent containing a basis for
aclM(c) ∩ A∗. Take a conjugate (b′, c′) in M independent from (b, c)
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in M. Then easily E((b, c), (b′, c′)) and thus (b, c) ∈ D. By the same
argument D1 ⊆ D.
We will now show D ⊆ D1. Let x ∈ D, and x′ independent from x in

M, with E(x, x′). With x = (b, c) we must show that tpM(a)∪gtp (a/b)
determines tpM−(a/c) for a ∈ A− cl (x). Let a, a′ ∈ A− cl (x) satisfy
tpM(a) = tpM(a′) = q and gtp (a/b) = gtp (a′/b) = r(x/b). By
type amalgamation we may choose a, a′ so that the triple a; a′; bb′cc′ is
independent in M and a, a′ satisfy the same type over b′c′. This then
yields tpM−(a/c) = tpM−(a/c′) = tpM−(a′/c′) = tpM−(a′/c). Thus
(b, c) ∈ D1.
Finally we prove (∗). The relation E′ has finitely many classes on

D1 = D. As acl (∅) = dcl (∅) any such class D◦ is 0-definable in M−.
Let (b, c) ∈ D◦ and suppose that our claim fails for (b, c). Fix a, a′ ∈ A−
acl (b, c), with equal types in M− and with gtp (a/b) = gtp (a′/b) but
with tpM−(a/c) 6= tpM−(a′/c). Let σ be an automorphism carrying a
to a′. Then gtp (a/b) = gtp (a/σb) but tpM−(a/c) 6= tpM−(a/c′).
Take (b′, c′) conjugate to (b, c) over a in M− and independent from

a,b, c, σb, σc. Then

gtp (a/σb) = gtp (a/b) = gtp (a/b′)

and tpM−(a/c′) 6= tpM−(a/σc). As (σb, σc) and (b′c′) are indepen-
dent, this shows they are inequivalent with respect to E. However these
pairs are conjugate in M−, a contradiction.

Corollary 7.4.12. Let M− be a reduct of a Lie coordinatizable struc-
ture M, A a rank 1 0-definable group in M−. If A is settled over ∅ in
M then it is settled in M− over a finite set of M-algebraic constants.

Proof. By the preceding result A becomes settled over aclM(∅) and
hence over the collection of definable subsets of A which belong to
aclM(∅); there are finitely many such.
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7.5 REDUCTS

In the present section we show that reducts of Lie coordinatized struc-
tures are weakly Lie coordinatized; we may lose the orientation. We
must deal mainly with the primitive case (meaning there is no nontriv-
ial 0-definable equivalence relation).

Lemma 7.5.1. Let M be a structure realizing finitely many 3-types,
and a ∈ M. Let acl (a) be computed in Meq. Then the lattice of
algebraically closed subsets of acl (a) is finite.

Proof. Let Ea be the collection of a-definable equivalence relations on M
which have finitely many classes, Ca =

⋃
{M/E : E ∈ Ea}, and Ĉa the

collection of subsets of M which are unions of subsets of Ca. Viewing Ĉa
as a subset of Meq, we have Ĉa ⊆ acl (a), and it suffices to show that
for α ∈ acl (a) we have

(∗) α ∈ acl ( acl (α) ∩ Ĉa)

Let α ∈ acl (a) and let φ(x, a) be a formula which defines a finite
set A containing α. Let S = {b ∈ M : φ(α, b)}, which we view as
an element of Meq, and let AS = {β : ∀x ∈ S φ(β, x)}. Then easily
S ∈ dcl (α)∩ Ĉa, and as α ∈ AS ⊆ A, we have α ∈ acl (S). This proves
(∗) (and a little more).

Remark 7.5.2. When M is ℵ0-categorical, the foregoing lemma applies
to any element a of Meq. (For another approach, see the note at the
end of this section.)

Proposition 7.5.3. LetM be a weakly Lie coordinatized structure,M−

a reduct of M, and D a primitive, rank 1, definable subset of M−.
Then D is a Lie geometry forming part of a Lie geometry stably em-
bedded in M−; this geometry may be unoriented, and may be affine.

Proof. As D has rank 1, acl gives a combinatorial geometry on D; the
same holds over any finite set.
Suppose first that aclB gives a degenerate geometry over any finite

B, or in other words, that acl (A,B) =
⋃

a∈A acl (a,B) in D. In this
case, by Lemma 7.3.5, D is a trivial structure, and is stably embedded.
Now we deal with the nondegenerate case. Let {Di} be a set of rep-

resentatives for the primitive rank 1 acl (∅)-definable sets in Deq, up to
0-definable bijections, with D1 = D, and let D∞ =

⋃
i Di. We claim

that D∞, with acl , is a projective space (of infinite dimension) over a
field; the field will be finite by the previous lemma, applied as indicated
in the subsequent remark.
We show first that some line has more than two points. Take c1, c2, c3

in D and B a finite set so that c3 ∈ acl (c1c2B)−[ acl (c1B)∪ acl (c2B)].
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By modularity there is e ∈ acl (c1c2) ∩ acl (c3B) so that c1c2 and c3B
are independent over e. Then rk (e) = 1 and we may take e ∈ D∞. As
e ∈ acl (c1, c2)− [ acl (c1) ∪ acl (c2)], this suffices.
Now we show that coplanar lines meet. Take a1, a2, a3, a4 in D∞

pairwise algebraically independent with rk (a1a2a3a4) = 3. Take e ∈
acl (a1a2)∩ acl (a3a4) such that a1a2 and a3a4 are independent over e.
Then again rk e = 1 and e may be taken in D∞.
Thus D∞ is an infinite-dimensional projective geometry with finite

lines, and there is a vector space model, that is a map π : V − (0) −→
D∞ in which linear dependence in V corresponds to algebraic indepen-
dence in D∞. We do not claim that this vector space is interpreted
globally in the model.
Let Vi = π−1[Di], thought of as a new sort for each i. We enrich M−

by the Vi with the relevant structure, taking πi to be the restriction of π
to Vi, and restricting + and scalar multiplication to a family of relations
on the new sorts. The expanded structure will be called M−∗

; it can be
thought of also as a reductM∗− of an expansion of the original structure
M by the new sorts and relations. Here M∗ is a finite cover of M by
sets of order q − 1; any automorphism of M over acl (∅) extends to an
automorphism of M∗. Thus M∗ is weakly Lie coordinatizable.
By Lemma 7.4.1 V1 lies in a 0-definable rank 1 group A in M−∗

. We
may suppose that A has no 0-definable finite subgroups. Our claim is:

(∗) A is part of a stably embedded Lie geometry in M−∗
.

Assuming (∗), D forms part of an embedded Lie geometry J in M−;
the induced structure may be computed in M−∗

. Furthermore the ge-
ometry in M−∗

is algebraic over J ; A is algebraic over D and if for
example A∗ is nontrivial then it is algebraic over its projectivization,
which is in J . Thus J is stably embedded in M−∗ and a fortiori in M−:
for e ∈ M−∗

, tp(e/A) is definable by parameters a ∈ A, whose type
over J is algebraic and hence definable. Thus it suffices to prove (∗).
Suppose first that A has no 0-definable proper subgroup of finite index.

If A∗ = (0) in M−∗
then Proposition 7.4.8 applies. Otherwise, A∗

is the full definable linear dual to A, also in M∗, by Lemma 7.4.4.
A and A∗ are settled over some parameter c in M∗, hence in M−∗

settled over some parameter algebraic in c by the corollary to Proposition
7.4.11. After enlarging c further we may suppose acl (c) ∩ (A,A∗) also
carries a nondegenerate pairing and lies in dcl (c). By Lemma 7.4.5 and
Proposition 7.4.9, Proposition 7.1.7 applies.
Now suppose A does have a proper 0-definable subgroup of finite in-

dex; let B be the least such. Then by the preceding paragraph B is
part of a stably embedded Lie geometry (B,B∗, Q), some components
of which may be empty. A is generated by a complete type whose image
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in A/B must be a single point. Thus the dimension of A/B is 1. Then
(A,B,B∗, Q) may be viewed as an affine geometry, by Lemma 2.3.17(1),
with C = ∅.

Below we give another treatment of the degenerate case on somewhat
different lines.

Proposition 7.5.4. Let M− be a reduct of a Lie coordinatized struc-
ture. Then M− is weakly Lie coordinatized.

Proof. M− is ℵ0-categorical, has finite rank, is modular, and satisfies:

If a, b ∈ M−, a /∈ acl (b), then there is a′ ∈ acl (a) of rank 1 over b.

This is contained in Lemma 5.6.6. Thus for any a ∈ M we can find a
chain of “coordinates” a1, . . . , an of finite length with ai belonging to a
rank 1 primitive acl (ai−1)-definable set Di and an = a. By Proposition
7.5.3 Di is part of a stably embedded Lie geometry and after interposing
the algebraic parameters needed to define the Di we obtain a weak Lie
coordinatization.

We now return to the degenerate case, indicating a treatment based
on weaker hypotheses. We refer here to the preprint [HrS1], which
introduced the S1 rank on formulas as the least rank subject to:

(∗) S1(φ) > n iff there are (bi)i∈N indiscernible over a set of definition
for φ, and a formula φ′(x, y), such that

1 S1(φ&φ′(x, bi)) ≥ n for each i;

2 For some k: S1(φ
′(x, b1)& . . .&φ′(x, bk)) < n.

The independence theorem can be proved for theories of finite S1 rank
by an argument isomorphic to the one which will be given at the end of
§8.4.

Lemma 7.5.5. Let M be an ℵ0-categorical structure of finite rank with
amalgamation of types, not interpreting the generic bipartite graph,
and let M− be a reduct of M. Let D be a primitive rank one definable
subset in M− whose geometry is orthogonal to every primitive rank
1 set whose geometry is nondegenerate; in particular D is degenerate
over any finite set. Then D is stably embedded and trivial.

Proof. Any rank 1 subset of M− will inherit from M the property of
finite S1-rank, and hence satisfy the type amalgamation property by
[HrS1].
To see that D is stably embedded and trivial we will show that for

any finite B, D remains primitive over D − acl (B). For this we may
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use induction on rkB, and thus by analyzing B we may suppose that
B = {b} has rank 1. Let D′ be the locus of b over ∅, a rank 1 set. Let
E be a b-definable equivalence relation on D− acl (b). As D is degener-
ate this will not have finite classes, so it will have finitely many infinite
classes. Suppose a1, a2 ∈ D − acl (b) are distinct and equivalent, while
a′1, a

′
2 are inequivalent. Then b, a1, a2 are pairwise independent, as are

b, a′1, a
′
2, and hence independent. If a1, a2, and a′1 all have the same type

over acl (b) then amalgamating types over acl (b) we can find a∗1, a
∗
2, a

′
1
∗

realizing this type with tp(ba∗1a
∗
2) = tp(ba1a2) = tp(ba∗1a

′
1
∗
), and

tp(ba∗2a
∗
1
′) = tp(ba′1a

′
2). Then a∗1 is E-equivalent to a∗2 and a′1

∗ but
they are not E-equivalent to each other, a contradiction.
Thus D − acl (b) splits into at least two types over acl (b). In par-

ticular D carries a nontrivial equivalence relation definable from the set
acl (b) (or a part of it meeting finitely many sorts), viewed as a sin-
gle element of M−eq

. This being the case, we may replace D′ by a
primitive quotient, and the argument of the previous paragraph yields a
0-definable relation R(x, y) on D′ ×D so that R(b, y) splits D− acl (b)
for b ∈ D′. We view (D′, D) as a bipartite graph with edge relation R.
By our hypothesis D′ also carries a degenerate geometry.
As R(b, a) and ¬R(b, a) both occur with a /∈ acl (b), by amalgamation

of types any two finite subsets of D can be separated by an element of
D′, and similarly for D′ overD. Thus this is the generic bipartite graph,
a contradiction.

We now return to Theorem 6 of §1.

Theorem 10 (Theorem 1.6). The weakly Lie coordinatizable struc-
tures M are characterized by the following nine model theoretic prop-
erties.

LC1 ℵ0-categoricity.

LC2 Pseudofiniteness.

LC3 Finite rank.

LC4 Independent type amalgamation.

LC5 Modularity of Meq.

LC6 The finite basis property for definability in groups.

LC7 Lemma 6.4.1: we call this “general position of large 0-definable sets”.

LC8 M does not interpret the generic bipartite graph.

LC9 For every vector space V interpreted in M, the definable dual V ∗ (the
set of all definable linear maps on V ) is interpreted in M.

Proof. One has to check in the first place that these properties hold
in weakly Lie coordinatizable structures. These statements have been
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proved in various earlier sections. Note however that the properties
(LC6) and (LC7) were treated in the Lie coordinatizable context. As
noted at the outset in §6.3, any group interpreted in a weakly Lie coordi-
natizable structure is also interpreted in a Lie coordinatizable structure,
so these properties also apply in the weakly Lie coordinatizable context.
For the converse, note that we have listed here most of the properties

used in the analysis of reducts of Lie coordinatized structures, with the
notable exception of aspects of the theory of envelopes. We need to see
that the proof of Proposition 7.5.4 can be carried out in this context.
This proposition depends on Proposition 7.5.3 and Lemma 5.6.6; the

latter holds in our context, so we need only concern ourselves with
Proposition 7.5.3. The use of Lemma 7.3.5 in the proof of that propo-
sition does not fit into the present context, and it must be replaced
by Lemma 7.5.5, using hypothesis (LC9) to see that the orthogonality
condition in Lemma 7.5.5 will hold for any geometry D which is degen-
erate over every finite set. In a wider context, it is possible for a set to
act as a generic set of linear maps on a vector space, giving a bipartite
structure reminiscent of both the generic bipartite graph and the polar
geometry; in this case one would have a degenerate geometry nonorthog-
onal to a linear geometry, and in fact embedded in the definable dual
(which, however, would not itself be interpretable.) Condition (LC9)
and nonorthogonality imply that over some parameter set, acl (D) con-
tains an infinite definable group; we leave the details of this (involving
the definition of orthogonality as well as the nature of the definable sets
in a nondegenerate geometry) to the reader.
So it remains to verify that the rest of the proof of Proposition 7.5.3,

which makes use of a large body of machinery, is available in the context
of properties (LC1-LC9). The ingredients of Proposition 7.5.3, apart
from (LC1, LC3, LC5), are: a particular finite covering of M−; Lemmas
2.3.17 and 6.6.2; Propositions 6.6.1 and 7.1.7; the contents of §7.4.
Properties (LC1-LC5) are inherited directly by the cover. Properties

(LC6, LC7) can be deduced by showing that the groups interpreted
in the cover are also interpretable in M−. This is because each sort
(Vi) in the cover is interpretable in (part of) the underlying projective
geometry: fix two linearly independent vectors v1, v2 and associate with
any linearly independent v the pair 〈v − v1〉, 〈v − v2〉.
Lemma 2.3.17 simply holds, and Lemma 6.6.2 holds for the case

needed by (LC7). Proposition 6.6.1 is assumption (LC6) and Proposi-
tion 7.1.7 was proved under our assumptions. So it suffices to reexamine
§7.4. Lemma 7.4.1 may be replaced by Lemma 6.1.8 in the present con-
text. The remaining lemmas, down to Lemma 7.4.7, are available in our
context; note that Lemma 7.4.3 depends on lemmas in §§6.1-6.2 which
were proved under sufficiently general hypotheses. Then the proofs of
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Propositions 7.4.9 and 7.4.11 can be repeated. We do not need Propo-
sition 7.4.11 since we assume (LC6).

Note. [] The following alternative route to the finiteness statement
needed for the proof of Proposition 7.5.3 (Lemma 7.5.1 and the sub-
sequent remark) has its own interest:

Lemma 7.5.6. If M is saturated and a ∈ M, then every algebraically
closed subset of acl (a) is of the form acl (a)∩ acl (a′) for some con-
jugate a′ of a in M.

Proof. Let A ⊆ acl (a) be algebraically closed. We need to check the
consistency of the following theory, involving a new constant c and con-
stants for the elements of A:

tp(c/A) = tp(a/A); b /∈ acl (c) (for b ∈ acl (a) \A)

For this it suffices to check for each finite a-definable subset B of acl (a)
that there is an automorphism α of M fixing A such that

(∗) (B \A) ∩ (B \A)α = ∅

Let G = Aut (M)A, the pointwise stabilizer of A in Aut (M). For
b1, b2 ∈ B \ A, let G(b1, b2) = {α ∈ G : bα1 = b2}. This is a coset of
Gb1 , and if G is covered by G(b1, b2) as b1, b2 vary over B \ A, then by
Neumann’s Lemma one of the subgroups Gb (b ∈ B \A) has finite index
in G; but this means b ∈ acl (A) = A, a contradiction. Thus condition
(∗) can be met.


