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5

Geometric Stability Generalized

5.1 TYPE AMALGAMATION

Definition 5.1.1. Let M be a structure.

1. An amalgamation problem (for types) of length n is given by the
following data:

(i) A base set, A;

(ii) Types pi(xi) over A for 1 ≤ i ≤ n;

(iii) Types rij(xi, xj) over A for 1 ≤ i < j ≤ n;

subject to the conditions:

(iv) rij contains pi(xi)∪ pj(xj);

(v) rij(xi, xj) implies the independence of xi from xj.

2. A solution to such an amalgamation problem is a type r of an inde-
pendent n-tuple x1, . . . , xn such that the restrictions of r coincide
with the given types.

Definition 5.1.2. A structure M has the type amalgamation property
if whenever (pi; rij) is an amalgamation problem defined over an alge-
braically closed base set in Meq, then the amalgamation problem has
a solution.

Our goal here is to prove that Lie coordinatized structures have the
type amalgamation property. By absorbing the base set A into the lan-
guage we may suppose it coincides with acl (∅) and we will do so when-
ever it is notationally convenient. Our usual notation for an amalgama-
tion problem will be either (pi; rij) or just (rij), assuming the length n
is known. Occasionally we will take note of generalized amalgamation
problems where other restrictions are placed on the desired type r.
We build up to the general result via a series of special cases, beginning

with types in a single geometry. The general result does not follow
directly from the case of a single geometry, but reflects more specific
properties of the geometries, as is seen in the proof of Lemma 5.1.13.
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Lemma 5.1.3. Let J be a Lie geometry, and (pi; rij) an amalgamation
problem of length n in which the pi are types of sequences of elements
of J over acl (∅). Then the amalgamation problem has a solution.

We will leave the details to the reader, but we make a few remarks.
This statement essentially comes down to the fact that inner products
and quadratic forms can be prescribed arbitrarily on a basis, subject to
the restrictions associated with the various types of inner product.
It may be more instructive to take note of some counterexamples to

plausible strengthenings of this property. We give two examples where
the solution sought is not unique, and one example of an amalgamation
property incorporating a bit more data which fails to have a solution.

Example 5.1.4. Let (V, V ∗) be a polar geometry, and A an affine space
over V ∗. Consider independent triples (a1, a2, a3) with a1 ∈ V and
a2, a3 ∈ A. The relevant types rij are then determined but the type of
the triple depends on the value of (a1, a2 − a3), which is arbitrary.

Example 5.1.5. In a projective space V̂ associated with a unitary ge-
ometry V over a field K of order q2, consider the 2-type r of a
pair x̂, ŷ of independent elements of V̂ for which (x, y) 6= 0 and
(x, x) = (y, y) = 0. This defines a complete type over acl(∅). We
consider the amalgamation problem of length 3 with all rij equal to r.
For an independent triple (x̂, ŷ, ẑ) whose restrictions realize the type
r, the quantity (x, y)(y, z)(z, x)/(y, x)(z, y)(x, z) is a projective invari-
ant taking on q + 1 possible values α/ασ (α ∈ K∗, σ an involutory
automorphism of K).

Example 5.1.6. We will give a generalized amalgamation problem of
length 4, determined by a compatible family of 3-types rijk over acl (∅)
of independent triples, which has no solution. Let V be a symplec-
tic space, A affine over V , and consider the type of a quadruple
x1, x2, x3, x4 with x1 ∈ V and the remaining xi affine. Let the types
r1ij all contain the requirement: (x1, xi−xj) = 1. These requirements
are incompatible.

Lemma 5.1.7. Let M be a structure, and suppose that every amalga-
mation problem of length 3 in M over an algebraically closed subset
has a solution. Then every amalgamation problem in M has a solu-
tion.

Proof. This is a straightforward induction. Collapse the last two vari-
ables xn−1xn to one variable yn and define a new amalgamation prob-
lem (r′ij) of length n − 1. The only point requiring attention is the
choice of the types r′i,n−1, which are 3-types when written in terms of
the xi. These are taken to be solutions to the amalgamation problem
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(ri,n−1, ri,n, rn−1,n) of length 3.

In the next lemma we find it convenient to deal with a variant form
of amalgamation problem incorporating some additional information.

Lemma 5.1.8. Let M be a weakly Lie coordinatized structure, and J a
geometry of M. Suppose that (pi; r1,i, r2,...,n) is a generalized amal-
gamation problem over acl(∅) in which p1 is the type of some element
of J and r2,...,n is the type of an independent (n − 1)-tuple, with the
types r extending the corresponding types p appropriately. Then this
generalized amalgamation problem has a solution.

Proof. We fix a realization (c2, . . . , cn) of r2,...,n, we set Ci = acl(ci)∩J ,
and we choose ci1ci satisfying r1i for 2 ≤ i ≤ n. We define an auxil-
iary generalized amalgamation problem in J by setting r′1i = tp(ci1Ci),
r′2,...,n = tp(C2, . . . , Cn). By inspection of the geometries, this type of
problem has a solution r′. We may choose c′1 so that c′1C2 . . . Cn realizes
the type r′. As any ci-definable subset of J is Ci-definable, we find that
tp(c′1ci) = tp(c1ci) and the sequence c1, c2, . . . , cn is independent.

Roughly speaking our goal is now to treat the general amalgamation
problem of length 3 by reduction to the case in which the type p1 has
rank 1. More specifically we deal with the following notion.

Definition 5.1.9. Let M be a weakly Lie coordinatized structure and J
one of its geometries.

A semigeometric 1-type relative to J is the type over acl(∅) of some
pair (a, b) with a ∈ J and b algebraic over a. The multiplicity of
such a type is the multiplicity of b over a.

Lemma 5.1.10. Let M be a weakly Lie coordinatized structure and sup-
pose that every amalgamation problem (pi; rij) of length 3 with p1
semigeometric has a solution. Then every amalgamation problem of
length 3 has a solution.

Proof. If we can solve amalgamation problems with p1 semigeometric,
then by compactness we can solve amalgamation problems in which p1 is
a type in infinitely many variables, representing the full algebraic closure
in Meq of an element of a geometry of M.
We now argue by induction on the rank of p1, which we may take to be

at least 1. Let c1 realize p1 and let a1 ∈ acl (c1) belong to a coordinatizing
geometry J of M. Let A be acl(a1) in Meq and p′1 = tp(A).
Take c2, c3 independent and such that c1ci realizes the type r1i for

i = 2, 3. Let r′1i = tp(Aci/ acl(∅)) and r′23 = r23. Then (r′ij) gives an
amalgamation problem of length 3 of the type referred to at the outset.
Let r′ be a solution to this problem. We may suppose that Ac2c3 satisfies
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r′.
Now we will work over A with p′′i = tp(ci/A) for i = 1, 2, 3 and

r′′ij = tp(cicj/A). By the choice of r′ this is an amalgamation problem,
and the rank of p′1 is less than the rank of p1, so we conclude by induction.

Before treating the general amalgamation problem of length 3 with
p1 semigeometric, we will deal with the case in which r12 = r13 up to a
change of variable. We begin with some technical considerations.

Definition 5.1.11. Let M be a structure, E a definable binary relation,
D a definable set, and a, b elements of M.

1. E is a generic equivalence relation on D if it is generically symmet-
ric and transitive: for any independent triple a, b, c in its domain,
E(a, b) and E(b, c) imply E(b, a) and E(a, c).

2. An indiscernible sequence I is 2-independent if acl(a)∩ acl(b) =
acl (∅) for a, b ∈ I distinct.

3. E2(x, y) is the smallest equivalence relation containing all pairs be-
longing to infinite 2-independent indiscernible sequences.

Lemma 5.1.12. Let M be ℵ0-categorical of finite rank, and E a generic
equivalence relation defined on the locus of a complete type p over
acl (∅). Then

1. E agrees with a definable equivalence relation E∗ on independent
pairs from p.

2. If every pair of elements belonging to an infinite 2-independent in-
discernible sequence belongs to E, then any pair of independent
realizations of p belongs to E.

Proof. Ad 1. Define E∗(x, y) by “p(x) and p(y) hold and either x = y
or there is a z which realizes p and is independent from x, y such that
E(x, z) and E(y, z) both hold.” This is easily seen to agree with E on
independent pairs, and is reflexive and symmetric. We check transitivity.
Assume E∗(a, b) and E∗(b, c) hold, specifically

E(a, d1), E(b, d1), E(b, d2), E(c, d2)

with d1 independent from a, b and d2 independent from b, c; we may
assume, in fact, that d2 is independent from a, b, c, d1. Then a, d1, d2
and b, d1, d2 are independent triples and thus E(d1, d2) and E(a, d2)
hold. Thus E∗(a, c) holds.
Ad 2. In view of the preceding and the hypotheses, we may assume

that E is a definable equivalence relation containing E2. It suffices now
to show that any two elements of M with the same type over acl(∅) are
E2-equivalent. We show in fact that M/E2 is finite, and hence is part
of acl (∅) in Meq, yielding the claim.
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Suppose toward a contradiction that M/E2 is infinite. We will choose
realizations ai of p inductively, distinct modulo E2, so that

acl(an)∩
⋃

i<n

acl (ai)) = acl(∅).

Then we may suppose that the sequence I = (ai) is also indiscernible,
and we have a blatant contradiction to the definition of E2.
For the choice of an given ai (i < n) we first choose a new E2-class

C outside acl(∅) independent from a1, . . . , an−1 and then choose a ∈ C
independent from a1, . . . , an−1 over C.

Lemma 5.1.13. Let M be a weakly Lie coordinatized structure. Let
(pi; rij) be an amalgamation problem of length 3 over acl(∅) with p1
semigeometric and with r12 = r13 up to a change of variable; in par-
ticular p2 = p3. Then the amalgamation problem has a solution.

Proof. As a matter of notation, take p1 = p1(xy), pi = pi(zi) for i = 2, 3.
Let J be the geometry in which the first coordinates of realizations of
p1 are found, and let C be the set defined by p2 or p3. We make a
preliminary adjustment to ensure that for c ∈ C we have

(∗) r12(xy, c) isolates a type over acl(c).

We may replace c by some c′ ∈ acl (c) such that c ∈ dcl (c′) and r12(xy, c
′)

isolates a type r′12 over acl(c) = acl(c′); the condition “c ∈ dcl(c′)”
means that c′ can be thought of as being an extension cc′′ of c. We then
replace the given amalgamation problem by a problem (r′ij) in which
r′23(z

′
1z

′
2) is any complete type over acl(∅) extending r23(z′1z′2)∪ p′(z1)∪ p′(z2)

where p′ is the type of c′ and the connection between the variables zi
and z′i reflects the relation c ∈ dcl(c′); one may even suppose that zi is
an initial segment of z′i. After these adjustments (∗) holds.
Now for a ∈ J satisfying p1, c, c

′ ∈ C we consider the set B(a, c) =
{y : r12(ay, c)} and the sets J(c) = {a ∈ J : B(a, c) 6= ∅}, J(c, c′) =
{a ∈ J : B(a, c) = B(a, c′) 6= ∅}. In particular J(c, c′) ⊆ J(c)∩ J(c′).
We define a relation E on C as follows: E(c, c′) if and only if J(c, c′) is
infinite. Using our understanding of J we will show that E is a generic
equivalence relation extending E2, and hence by the preceding lemma
that E(c2, c3) holds for any independent pair c2, c3 in C, in particular
for a realization of r23. This then allows us to solve the amalgamation
problem directly.
We now check that E contains all pairs belonging to an infinite 2-

independent indiscernible sequence I. Let µ be the multiplicity of the
semigeometric type p1 and let I ′ be a subset of I of cardinality 2µ. By
Lemma 5.1.8 we can find an element a independent from I ′ such that
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B(a, c) 6= ∅ for c ∈ I ′. As this gives us 2µ nonempty subsets B(a, c)
of {b : p1(a, b)}, two of them must coincide, and then by indiscernibil-
ity, any two of them must coincide. As there are infinitely many such
elements a, E(c, c′) holds for pairs in I.
It remains to be seen that E is a generic equivalence relation. We take

c, c′, c′′ independent with E(c, c′) and E(c′, c′′) holding. Thus J(c, c′)
and J(c′, c′′) are infinite subsets of J(c′), and we claim that J(c, c′′) is
also infinite; in fact we claim that the intersection J(c, c′)∩J(c′, c′′) is
itself infinite. This involves specific features of the geometry J . We
consider two representative cases: an affine space, and a linear space
with a quadratic form.
Let A be an affine space corresponding to a linear model V , with V ∗

the definable dual. Let Wc denote the minimal acl(c)-definable subspace
of V of finite codimension. Then J(c) contains all but finitely many el-
ements of some coset of Wc in A. Similarly, J(c, c′) contains all but
finitely many elements of some coset of the minimal acl (c, c′)-definable
subspace Wc,c′ of finite codimension. Now Wc,c′ +Wc′,c′′ ≤ Wc′ is defin-
able over both acl (c, c′) and acl(c′, c′′), and as c, c′, c′′ are independent,
this space is definable over acl (c′). Thus the sum equals Wc′ , which
means that any two cosets of Wc,c′ and Wc′,c′′ will intersect; the inter-
section is then infinite, being a coset of Wc,c′ ∩Wc′,c′′ . This completes
the proof in the affine case.
If J is linear and carries a quadratic form then the argument is similar,

but the sets involved contain almost all elements of a subset of the spaces
Wc, Wc,c′ on which the quadratic form Q takes on a specific value. This
set will be infinite on any subspace of J of finite codimension.

Lemma 5.1.14. Let M be weakly Lie coordinatized. Let (pi; rij) be an
amalgamation problem of length 3 over acl(∅) with p1 semigeometric.
Then the problem has a solution.

Proof. We proceed by induction on the multiplicity µ of p1.
Take realizations a1b1ci of r1i for i = 2, 3. If the multiplicity of bi

over a1ci is µ for i = 2, 3 then we may use Lemma 5.1.8 to choose a1c2c3
appropriately, and then add b1.
Accordingly, we may assume

The multiplicity of b1 over a1c2 is less than µ.

In this case the basic idea is to absorb the parameter c2 into the
base of the type and continue by induction. We first expand c2 to
an algebraically closed set C2 and adjust the amalgamation problem
accordingly. We will keep the notation as before apart from writing C2

for c2. The types involved now have infinitely many variables but this
can be handled using the compactness theorem.
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Let C2c3 realize r23 and suppose a1b1c3 realizes r13 with a1b1 inde-
pendent from from C2c3. Take C′

2 with a1b1C
′
2 realizing r12 and C′

2

independent from a1b1C2c3. We will use C′
2 as the basis of a new amal-

gamation problem.
Let r′13 = tp(a1b1/C

′
2), r

′
23 = tp(C2c3/C

′
2). To complete the speci-

fication of our auxiliary amalgamation problem, we will require a type
r′12(xy, z) over C′

2 implying the independence of xy from z and com-
patible with tp(a1b1/C

′
2), tp(C2/C

′
2), and r12(xy, z). If we construe the

desired r′12 as a type in the variables xy, z, z′, with z′ replacing C′
2, then

this is itself an amalgamation problem involving the types r12(xy, z),
r12(xy, z

′), and tp(C2, C
′
2). This case is covered by the preceding lemma.

Thus we have a new amalgamation problem (r′ij) defined over C′
2, con-

taining the original problem. As the multiplicity of the initial 1-type
p′1 = tp(a1b1/C

′
2) is less than µ, we conclude by induction.

Proposition 5.1.15. Let M be weakly Lie coordinatized. Then M has
the type amalgamation property.

The following corollary shows that the Shelah degree is bounded by
the rank.

Corollary 5.1.16. Let M be a weakly Lie coordinatized structure, or
more generally an ℵ0-categorical structure of finite rank with the type
amalgamation property. Let I be an independent set, p(x) a complete
type over acl (∅), and ϕa(a, x) (a ∈ I) a collection of formulas for
which ϕa&p is consistent of rank rk p. Then

∧

I ϕa&p is consistent of
rank rk p.

Proof. We may assume first that I is finite and then that |I| = 2, as
the statement is iterable. So we consider ϕ1(a1, a3)&ϕ2(a2, a3)&p(a3),
with a1, a2 independent. This can be converted into an amalgamation
problem of the type covered by the preceding proposition.

We now concern ourselves with the number of types of various sorts
existing over finite sets of a given order.

Lemma 5.1.17. Let M be a weakly Lie coordinatized structure, and
ϕ(x, y) an unstable formula. Then for each n there is a set I of size
n over which there are 2n distinct ϕ-types. In particular ϕ has the
independence property.

Proof. The instability of ϕ means that there is an infinite sequence I
of parameters (ai, bi) such that ϕ(ai, bj) will hold if and only if i < j.
We may take I to be indiscernible. I is independent over a finite set B
and we may take it to be indiscernible over B, which we absorb into the
language. Let p = tp(bi/ acl(∅). The formulas ϕ(ai, x) and ¬ϕ(ai, x)
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are consistent with p and of maximal rank, so the same applies to their
various conjunctions by the preceding corollary.

Lemma 5.1.18. Let M be Lie coordinatized with finitely many sorts,
and J a 0-definable geometry of M. Then for X ⊆ M finite, and
b ∈ M , we have the following estimate, uniformly:

| acl(Xb)∩J | = O(| acl (X)∩J |).

Proof. Let J(X) = acl(X)∩J , J(Xb) = acl(Xb)∩J . It suffices to
show that dim(J(Xb)/J(X) = rk b. As J is stably embedded with weak
elimination of imaginaries, a basis B for J(Xb) modulo J(X) will be
independent from X over J(X). Thus dim(J(Xb)/J(X)) = rk(B/X) ≤
rk(b/X) ≤ rk b.

Lemma 5.1.19. Let M be a Lie coordinatized structure with finitely
many sorts, J a b-definable Lie geometry. Then for X varying over
algebraically closed subsets of M we have

| acl(Xb)∩J | = O(|X |).

Proof. All cases are controlled by the projective case, so we assume that
J is projective. Let J ′ be a canonical projective geometry nonorthogonal
to J , with defining parameter b′ ∈ dcl(b).
If b′ ∈ acl (X), then acl(Xb′)∩J ′ ⊆ X and otherwise, acl(Xb′)∩J ′ =

∅, so in any case | acl(Xb′)∩J ′| ≤ |X |. Thus by the previous lemma

| acl (Xb)∩J | ≤ |J ′ ∩ acl (Xb)| = O(| acl (b′X)∩J ′|) = O(|X |)

Proposition 5.1.20. Let M be Lie coordinatizable, D ⊆ M 0-definable
of rank k. Then the number of types of elements of D over an alge-
braically closed set of order n in M is O(nk).

Proof. Suppose first that D = J is a coordinatizing geometry of M. For
algebraically closed X the types under consideration are determined by
their restrictions to X ∩J . Thus we may assume M = J in this case.
The statement is then clear by inspection. For example, in the presence
of a quadratic form, the behavior of the the form on an extension of a
subspace by a single point is determined by its value on the additional
point and an induced linear function defined on the subspace. If the
geometry is affine the situation remains much the same.
We turn to the general case. We may assume that D is the locus

of a single type. Take c ∈ D of rank k and b ∈ acl(c) of rank k − 1
supporting a coordinate geometry Jb, with a ∈ Jb such that c ∈ acl (ba).
LetD′, D′′, andD′′′ be the loci of the types of b, ba, and bac respectively.
Inductively, the number of types of elements of D′ over an algebraically



TYPE AMALGAMATION 101

closed subset X of order n is O(nk−1). By Lemma 5.1.19 for b ∈ D′

we have | acl(Xb)∩J | = O(|X |) and thus the number of types in J
over acl (Xb) is also O(|X |). Thus the number of types in D′′ over X is
O(nk). As D′′′ is a finite cover of D′′ the number of types of elements
in D′′′ is also O(nk) and as the types of elements of D lift to types of
elements of D′′′ this bound applies to D′′′.

Definition 5.1.21. For D a definable set let s(D,n) denote the mini-
mum number of types of elements of D existing over a subset of D of
order n.

Observe, for example, that in one of the standard geometries this will
be O(n), with the optimal subset being as close to a subspace as possible.
The following corollary depends on estimates for the sizes of envelopes

to be given shortly.

Corollary 5.1.22. Let M be Lie coordinatized with finitely many sorts,
D a 0-definable subset of M. Then s(D,n) is polynomially bounded.

Proof. We show in Proposition 5.2.2 below that the size of D in an
envelope E is given by a polynomial function of certain quantities qd,
q being approximately the size of the base field and d varying over the
dimensions of E. Varying just one of these dimensions, we can find
envelopes in which the size of D is asymptotically a constant times qd

for some d. Thus for m large we can find envelopes E in which the size
of D is comparable to m; that is, m ≤ |D| ≤ (q + ǫ)m. Thus taking X
to be a subset of D∩E of order m and applying the previous result, we
get the desired bound.

We mention two problems. The first relates to the amalgamation of
types.

Problem 1. Find independent elements a1, a2, a3 such that there is no
B independent from a1a2a3 for which:

tp(a1a2/B)∪ tp(a1a3/B)∪ tp(a2a3/B) determines tp(a1a2a3/B).

Problem 2. Are types over envelopes uniformly definable?
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5.2 THE SIZES OF ENVELOPES

We deal here with the computation of the size of an envelope as a func-
tion of its dimensions, and also with the sizes of the automorphism
groups. We wish to express the sizes of envelopes as polynomial func-
tions of the relevant data, and to do so it will be convenient to work
with square roots of the sizes of the associated fields.

Notation 5.2.1. Let M be Lie coordinatized and p a canonical projec-
tive geometry. For an envelope E we let dE(p) be the corresponding
dimension (or cardinality in the degenerate case) and we let d∗E(p) =
(−√

q)dE(p), where q is the size of the base field; in the degenerate

case we set d∗(p) =
√

d(p). When E is understood we write d(p) and
d∗(p).

Proposition 5.2.2. Let E be a family of envelopes for the Lie coordi-
natized structure M such that for each dimension p corresponding to
an orthogonal space, the signature and the parity of the dimension
is constant on the family. Then there is a polynomial ρ in several
variables such that for every E in E, |E| = ρ(d∗(E)), where d∗(E) is
the vector (d∗E(p)). The total degree of ρ is 2 rk(M) and all leading
coefficients are positive. If M is the locus of a single type (with the
coordinatization in Meq), then ρ is a product of polynomials in one
variable.

Proof. We show that for any definable setDa ofM, there is a polynomial
of the type described giving the cardinality of Da in any E ∈ E which
contains the parameter a. We may suppose that Da is the locus of a
single type over a. We will proceed by induction on rk (Da).
Take d ∈ Da and c ∈ acl(ad) lying in an a-definable geometry J ,

which we may take to be degenerate, linear, or affine, with associated
canonical projective p. Let D′

ac be the set of realizations of tp(d/ac).
Then we may take ρDa

= ρJρ
′
Dac

/Mult(c/ad). This reduces to the case
D = J .
If J is affine or quadratic, add a parameter to reduce to a basic linear

geometry J . Then the dimension of J in E is dE(p) minus a constant
depending on the type of a. Thus it suffices to find a polynomial giving
the number of realizations of a type in J in terms of d∗E(p) or equivalently
in terms of the corresponding expression (±√

q)dimJ . The essential point
is to compute the sizes of sets defined by equations Q(x) = α with Q a
quadratic or unitary form. Let n(d, α) be this cardinality as a function
of the dimension and α, depending also the type of the geometry. These
are straightforward computations. We give details.
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In the orthogonal case we can break up the space as the orthogonal
sum of a 2i-dimensional spaceH with a standard form Q(ᾱ, β̄) =

∑

αiβi

and a complement of dimension j ≤ 2. So on H we have n(2i, 0) =
(qi − 1)qi−1 + qi and n(2i, α) = (q2i − n(2i, 0))/(q − 1) for α 6= 0. Thus
on the whole space

n(2i+ j, α) = n(2i, 0)n(j, α) + [(q2i − n(2i, 0)/(q − 1)](qj − n(j, α))

where the parameter n is computed with respect to the corresponding
induced form. This simplifies to

n(2i+ j, α) = qin(i, α) + qj−1(q2i − qi)

and for small i n(i, α) is treated as a constant, corresponding to the
particular form used.
In the unitary case n(d, α) is independent of α for α nonzero and

thus it suffices to compute n(d, 0). Using an orthonormal basis and
proceeding inductively one gets n(d, 0) = qd−1(

√
q + 1)− n(d− 1, 0)

√
q

and then n(d, 0) = qd/
√
q + (−√

q)d−1(1 −√
q).

Remarks 5.2.3. If we are working with graphs, for example, the num-
ber of edges is given by a polynomial. The polynomials ρ can be de-
termined given a sufficiently large envelope in which the subenvelopes
are known.

We now discuss the chief factors of automorphism group of an enve-
lope, which are the successive quotients in a maximal chain of normal
subgroups of this group.

Lemma 5.2.4. Let G be the automorphism group of the envelope E(d)
in a Lie coordinatized structure M. Then the number of chief factors
of G is bounded, independently of d, and each chief factor is of one of
the following kinds:

1. abelian;
2. Hρ(d), where H is a fixed finite group and ρ is one of the functions

described in the preceding proposition;
3. Kρ(d), with ρ(d) as in the preceding proposition and K a classical

group PSL(di, qi), PSp(di, qi), PΩ
±(di, qi), PSU (di, qi), or Alt(di)

as appropriate to the ith dimension.

Proof. Once the dimensions are sufficiently large, the socle of the au-
tomorphism group of one layer of the coordinate tree over the previous
layer is of the form (3) or abelian, unless the geometry is finite (in M),
with the number of factors corresponding to the size of a definable set
modulo an equivalence relation. The remainder of the automorphism
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group at that layer is solvable. If the layer consists of copies of a fi-
nite geometry, consider a chief factor H/K with H,K Aut(E)-invariant
subgroups acting trivially on the previous layer. Let A be the automor-
phism group of the finite geometry involved, and let L be the part of E
lying in the previous level of the coordinate tree, so that H,K lie in AL.
If H/K is nonabelian then it is a product of a certain number of copies
of a single isomorphism type of finite simple group S. The number of
factors is the order of L modulo the equivalence relation: a ∼ b if the
projection of H/K onto Aa×Ab is a diagonal subgroup isomorphic to S.
This relation is Aut(E)-invariant and hence definable. Thus the number
ρ of factors involved is equal to the size of a definable set in an envelope
(a definable quotient of L).

Corollary 5.2.5. Let M be a Lie coordinatized structure. Then for
the dimension function d large enough, Aut(E(d)) determines d up
to a permutation of the coordinates and up to orientation in the odd-
dimensional orthogonal case.

Proof. Let f be a bound on the size of the chief factors of the second
type above. Let d be large enough that the chief factors of the third
type are all of order greater than f . Then these chief factors can be
recovered from the automorphism group unambiguously and the data d
can be read off.

Lemma 5.2.6. Let M be a Lie coordinatized structure and D a defin-
able subset. Then the following are equivalent:

1. rk(D) < rk(M).
2. limE→M |D[E]|/|E|) = 0.

Here the limit is taken over envelopes whose dimensions all go to
infinity, and D[E] means D taken in E, which for large enough E is
D∩E. The convergence is exponentially rapid if all geometries are
nondegenerate.

Proof. We compare the polynomials ρD, ρE giving the sizes of D and
E.
If the ranks are equal, then both polynomials have positive leading

coefficients and total degree 2 rk(M). For each dimension di, ρD, ρE in-
volve the parameter d∗i = αdi

i for an appropriate αi (read this expression
as di in the degenerate case). Let the dimensions di be taken momen-
tarily as arbitrary real numbers going jointly to infinity along the curve
d∗1 = d∗2 = . . ., so that the polynomials ρD, ρE reduce to one variable
polynomials converging to a positive γ. After a slight perturbation we
may suppose that d1, d2, . . . are rational, that ρD/ρE approaches γ, and
that the terms of total degree less than 2 rk(M) make a negligible con-
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tribution. After rescaling by a common denominator, the “dimensions”
are integers, the ratio of the highest order parts of ρD and ρE goes to
γ, and the lower-order terms are even more negligible. Thus we have a
sequence of dimension assignments tending jointly to infinity on which
the quotient ρD/ρE will not go to zero.
Now assume that rk(D) < rk (M). We may take D, E to be realiza-

tions of single types, so that ρD and ρE factor as products of polynomials
in one variable ρD,i, ρE,i. The ratios ρD,i/ρE,i are bounded, as otherwise
varying only the one relevant dimension we would get a proper subset
with more elements than the whole set E. On the other hand at least
one of the ρD,i has degree less than the degree of ρE,i so the limit goes
to 0 (rapidly, if the geometry is nondegenerate).

We now prove a finitary Löwenheim–Skolem principle.

Lemma 5.2.7. Let M be Lie coordinatized. For any subset X of M
there is an envelope E of M containing X, in which each dimension
is at most 2 rk(X) ≤ 2 rk(M) · |X |.

Proof. Let J1, . . . , Jn be the acl(∅)-definable dimensions, andEi = acl(X)∩Ji.
The dimension of Ei is at most rk(X). If the geometry Ji carries a form
then increase Ei to a nondegenerate subspace, of dimension at most
2 rk(X). Let M′ be a maximal algebraically closed subset of M con-
taining X , and such that M ′ ∩Ji = Ei. Then M′ is Lie coordinatized
and has smaller rank, unless these geometries are finite, in which case
iteration of the process will eventually lower the rank or the height of
the coordinatizing tree. By induction on rank we may suppose that in
M′ there is an envelope E with the desired properties. This will then
be an envelope in M, with the desired properties.

Remark 5.2.8. The existence of indiscernible sets of order n in all
large finite structures with a fixed number of 5-types is proved in [CL].
In particular, an infinite quasifinite structure contains an infinite set
of indiscernibles. Conversely, from the latter result it follows that there
is a constant c such that for large n, a pseudofinite structure with at
least cn elements contains a sequence of indiscernibles of length n.
This follows from the last lemma using the bounds on the sizes of
envelopes, since the ranks involved can be bounded in terms of the
number of 4-types. It is possible that an explicit bound of this kind
can also be extracted by tracing through the arguments in [CL].

Problem 3. Do the abelian chief factors of automorphism groups of
envelopes have orders pσ(d,d

∗) with σ a polynomial similar to ρ—in
particular, a product of polynomials in one variable (i.e., depending
on one dimension)?
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One can treat the case of affine covers by dualization, reducing to finite
covers. Then by results in [EH] the problem reduces to the following:
if J is a definable combinatorial geometry on a definable set D of a Lie
structure M, which is subordinate to algebraic closure, show that the
dimension of J in an envelope of M is given by a polynomial in d, d∗.
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5.3 NONMULTIDIMENSIONAL EXPANSIONS

We show here that Lie coordinatizable structures have “nonmultidimen-
sional” expansions, lifting [HrTC, §3] to the present context. As in that
earlier case, the difficulty lies in the interaction of orthogonal geometries,
which means that the outer automorphism groups may be related even
if the simple parts of the groups are not.

Definition 5.3.1. A Lie coordinatized structure is said to be nonmulti-
dimensional if it has only finitely many dimensions, or equivalently
(and more explicitly) if all canonical projectives are definable over
acl(∅).

Proposition 5.3.2. Every Lie coordinatized structure can be expanded
to a nonmultidimensional Lie coordinatized structure.

Proof. We use a locally transitive coordinatizing tree, meaning that the
type of a point at a given level depends only on the level. We also allow
the introduction of a finite number of additional sorts, each carrying a
single basic geometry.
Let Mi be the coordinatizing tree up to level i together with the ele-

ments of the special sorts, and let ∆ be the set of indices i for which the
geometries Ja associated to points at level i are orthogonal to Mi. We
proceed by induction on Mi, the case ∆ = ∅ being the nonmultidimen-
sional case. So we take ∆ nonempty.
Now let n ∈ ∆ be maximal. Let Tn be the set of elements lying at

level n in the coordinatizing tree. For a ∈ Tn let Pa′ be the canonical
projective geometry associated with Pa and let q be the type of a′. Let
Va′ be the corresponding linear geometry. If these linear geometries are
not actually present in the structure, we may attach them freely to the
canonical projectives. (In the degenerate case, the geometry is consid-
ered to be both linear and projective.) The isomorphism type of Va′ is
independent of a′, but there will not be any system of identifications
present between the various Va′ .
Suppose for definiteness that Va′ is of orthogonal type in odd char-

acteristic, with base field Ka′ , and bilinear form Ba′ : Va′ × Va′ → La′ ,
a 1-dimensional Ka′-space. Fix a copy K of the base field, and a 1-
dimensional space L over K. Fix a 2-dimensional space U◦ over K and
a nondegenerate bilinear form ( )◦ : U◦ × U◦ → L which takes the value
0 at some nonzero point. The pair (U◦, ( )◦) is unique up to an isomor-
phism fixing K and L.
Now let U1, Q1 be an infinite dimensional nondegenerate orthogonal

space over the prime field F ≤ K and set U = U1 ⊗ U◦ as a K-space.
The forms (, )◦ and (, )1 induce a bilinear form (, ) on U satisfying (a1 ⊗
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a◦, b1 ⊗ b◦) = (a1, b1)1 · (a◦, b◦)◦. This makes sense by the universal
property of tensor products. Let Γ be the family {a ⊗ U◦ : a ∈ U1}.
Then

(1) Any automorphism h of (K,L) extends to
an automorphism of U fixing Γ pointwise.

The uniqueness of U◦ signifies that h extends to U◦. To extend to U fix
U1 pointwise. Then Γ is fixed pointwise.
Add U as a new sort. For b satisfying q pick isomorphisms hb : U → Vb,

and let Γb = hb[Γ]. Let M′ be M expanded by the sort U and a family
of maps fb : Γ → Γb for b satisfying q. fb is to be coded by a ternary
relation on q×U ×⋃

b Vb. hb is not part of the structure but the sets Γ
and Γb can be recovered from fb in (M′)eq. We claim that M′ remains
4-quasifinite and that ∆ is reduced by 1.
By a normal subset of Meq we mean a union of 0-definable sets.

The restriction of a normal subset to a finite number of sorts is then
0-definable. We consider normal subsets S satisfying the additional con-
dition:

For b satisfying q, Vb is orthogonal to S.

This means that any basic geometry corresponding to Vb (with acl (b)
fixed) is orthogonal to S. Let Q be a maximal normal subset of this
type containing Tn. Then Q contains the locus of q and is algebraically
closed. We claim that Q is also stably embedded in M, since for any
projective or affine geometry in Q, if the dual exists in M, then it is
contained in Q.
We claim now:

(2) For any automorphisms α of Q and β of U ,
the map α∪ β is induced by an automorphism of M′.

LetQ1 = Q∪
⋃

b Vb. ThenQ1, likeQ, is stably embedded inM. We first
extend α∪β to Q1. For b satisfying q, α induces maps Kb → Kσb and
Lb to Lσb. By (1) these maps are induced by a linear isomorphism θb :
Vb → Vσb compatible with fσbβf

−1
b . Using the orthogonality condition,

α∪β ∪⋃

b θb is elementary and extends to an automorphism of M′.
It remains to be seen that apart from the introduction of U , the rest of

the coordinatization of M is unaffected; specifically, if Jc is a canonical
projective geometry of M orthogonal to the geometries Vb, then

Jc has no extra structure as a subset of M′;
If Jc is stably embedded in M, then it remains
stably embedded in M′

We may assume that Jc is stably embedded in M. If Jc is contained in
Q this follows from (2), and otherwise any automorphism of Jc fixing
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acl (c) extends to an automorphism of M fixing Q1 pointwise. This is
then elementary in N ′.
This completes the orthogonal case in odd characteristic. The linear,

symplectic, and unitary cases are similar, with the auxiliary space U◦ 1-
dimensional in the unitary case. In the orthogonal case in characteristic
2, the orthogonal geometry is an enrichment of a symplectic geometry
and we may suppose that the pure symplectic space occurs as well, and
that the quadratic form used occurs also as a point in an associated
quadratic geometry. Then we can switch to the symplectic case. Simi-
larly, in the case of a polar geometry (V, V ∗) reduce the scalars to the
prime field and introduce linear isomorphisms ιV : V → V ∗. This can
be done without destroying outer automorphisms and brings us back to
the symplectic case.

Proposition 5.3.3. For M quasifinite the following are equivalent:

1. M is stable.
2. M is ℵ0-stable.
3. M does not interpret a polar space.

Proof. We must show that (3) implies (2). So assume (3). In particu-
lar none of the canonical geometries for M involve bilinear forms. The
geometries occurring are therefore all strongly minimal and stably em-
bedded. Morley rank is subadditive in the ℵ0-categorical setting, for
stably embedded definable subsets (cf. [HrTC]), so using the coordina-
tization, M has finite Morley rank.

Remarks 5.3.4

As the class of stable polar spaces is the class of finite polar spaces,
which is not an elementary class, the notion of a stable quasifinite struc-
ture in a given language is not an elementary notion. On the other
hand, for a fixed finite language L, the class of stable homogeneous L-
structures is elementary [CL]. This can be seen fairly directly as follows.
By a result of Macpherson [Mp1] in a finitely homogeneous structure,
no infinite group is interpretable. In particular for finitely homogeneous
structures, quasifiniteness and stability are equivalent. But for finitely
homogeneous structures quasifiniteness is elementary.
Although we work outside the stable context, we still require the anal-

ysis of [CL] for primitive groups with nonabelian socle, which enters via
[KLM].



110 GEOMETRIC STABILITY GENERALIZED

5.4 CANONICAL BASES

We do not have a theory of canonical bases as such, but the following
result serves as a partial substitute.

Proposition 5.4.1. Let M be ℵ0-categorical of finite rank. Suppose
that a1, a2, a3 is a triple of elements which are independent over a1,
over a2, and over a3. Then a1, a2, a3 are independent over the inter-
section of acl(ai), i = 1, 2, 3, in Meq.

We begin with a few lemmas.

Lemma 5.4.2. Let M be ℵ0-categorical of finite rank and let R be a
0-definable symmetric binary relation satisfying

Whenever R(a, b), R(b, c) hold with a, c independent over b,
then R(a, c) holds and b, c are independent over a.

Then there is a 0-definable equivalence relation E such that

R(a, b) implies the following:
E(a, b) holds and a, b are independent over a/E = b/E.

Proof. We define E(a, b) as follows: For some c independent from a over
b and from b over a, R(a, c) and R(b, c) holds.
We check first that R implies E. If R(a, b) holds, choose c independent

from a over b such that R(c, b) holds. Then by (∗) R(a, c) holds and c
is independent from b over a. Thus E holds. The domain of E is the
same as the domain of R and E is clearly reflexive and symmetric on
this domain. We now check transitivity.
Suppose E(a1, a2) and E(a2, a3) hold and let a12, a23 be witnesses.

Thus we have R(ai, aij); R(aj , aij); and aij is independent from ai over
aj and from aj over ai. As a12 is independent from a1 over a2, we
may take it independent from a1a2a3 over a2; and similarly for a23.
Furthermore, we may take a12, a23 independent over a1, a2, a3 and hence
over a2. From R(a2, a12) and R(a2, a23) we then deduce R(a12, a23).
Pick c independent from a1a2a3a23 over a12 such that R(a12, c) holds.

We claim then:

(1) R(ai, c) holds for all i, and
c is independent from aij over ai and over aj .

First, since c is independent from a23 over a12 we get R(a23, c) and c is
independent from a12 over a23; the latter implies that c is independent
from a1a2a3a12 over a23. So c is independent from a1 or a2 over c1, and
from a2 or a3 over c2. By another application of (∗) the relation (1)
follows.
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Now using (1) we get c independent from a1a2a3a12a23 over each ai
and, in particular, c is independent from a3 over a1 and from a1 over
a3; so E(a1, a3) is witnessed by c. Thus E is transitive.
Finally, we must show that if R(a, b) holds and c = a/E = b/E,

then a, b are independent over c. Let a′ realize the type of a over c
with a′ independent from a over c. We will show then that a and b are
independent over a′ and thus a and b are independent over c.
As E(a, a′) holds, there is d satisfying

R(a, d), R(a′, d), and d is independent
from a over a′ and from a′ over a.

We will take a′, d independent from b over a. In particular we have a′

independent from b over ad, and b independent from d over a; the latter,
with (∗), gives b independent from a over d and then combined with
the former, we get aa′ independent from b over d, hence a independent
from b over a′d. As a is independent from d over c we get finally a
independent from b over a′.

Definition 5.4.3. Let a1, . . . , an be a sequence of elements in a struc-
ture of finite rank.

1. The sequence is said to be 1-locally independent if it is independent
over any of its elements.

2. We set δ(a1, . . . , an) =
∑

i rk ai − rk(a1 . . . an).

Lemma 5.4.4. Let M be a structure of finite rank, a = a1, . . . , an a
sequence of elements. Then the sequence a is 1-locally independent if
and only if:

The quantity δ = δ(aiaj) is independent of i, j (distinct);

and δ(a) = (n− 1)δ.

Proof. We have in general for any fixed index k, writing
∑′

for a sum
excluding the index k:

δ(a) =
∑

i

rk(ai)− (rk(a/ak) + rk(ak))

=
∑

i

′

rk(ai)− rk(a/ak)

≥
∑′

rk(ai)−
∑′

rk(ai/ak) =
∑′

δ(ai, ak)

with equality if and only if a is independent over ak. Thus if δ = δ(ai, aj)
is constant and δ(a) = (n− 1)δ, then we have equality regardless of the
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choice of k and the sequence is 1-locally independent, while, conversely,
if the sequence is 1-locally independent, then δ(a) =

∑′ δ(aiak) for
any k and it suffices to check that the δ(aiaj) are independent of i, j.
But the restriction of a to any three terms ai, ai′ , ai′′ remains 1-locally
independent, and applying our equation to a sequence of length 3 with
k = i′ or k = i′′ yields δ(i, i′) = δ(i, i′′), from which it follows that δ is
constant.

Lemma 5.4.5. Let M be a structure of finite rank.

1. Suppose that a = a1, a2, a3, a4 is a sequence with a1, a2, a3, and
a2, a3, a4 1-locally independent. If a1 and a4 are independent over
a2a3, then a is 1-locally independent.

2. If a = a1a2b1b2c1c2 is a sequence whose first four and last four
terms are 1-locally independent, and a1a2 is independent from c1c2
over b1b2, then a is 1-locally independent.

Proof. Ad 1. We have δ(aiaj) = δ constant with the possible exception
of the pair a1, a4, and repeating the calculation of the previous lemma
over a2a3 rather than ak, using rk(a1a2a3a4/a2a3) = rk(a1/a2a3) +
rk(a4/a2a3), we get δ(a) = 3δ. Thus it remains only to be checked that
δ(a1a4) = δ. We may show easily that a is independent over a2 or over
a3, starting from the independence of a1a2a3 from a4 over a2a3. Thus

rk a2 − δ = rk(a2/a1) ≥ rk (a2/a1a4) ≥ rk(a2/a1a3a4)

= rk(a2/a3) = rk (a2)− δ

and, in particular, we have the equation rk(a2/a1a4) = rk (a2)− δ. Now

rk(a) = rk (a1a4) + rk(a2/a1a4) + rk(a3/a1a2a4)
= rk (a1a4) + (rk(a2)− δ) + rk(a3)− δ

and thus

3δ =
∑

rk(ai)− rk(a) = δ(a1a4) + 2δ

and δ(a1a4) = δ.
Ad 2. It is straightforward that a is independent over b1 or over b2

and by symmetry it will be sufficient to prove that a is independent over
a1.
We have by assumption c1c2 independent from a1a2b1b2 over b1b2 and

thus c1 is independent from a1a2b1b2 over b1b2c2, but also c1 is assumed
independent from b1b2c2 over c2, and thus

c1 is independent from a1a2b1b2c2 over c2.
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In particular, c1c2 is independent from a1b1b2 over a1c2. By Case 1
a1b1b2c2 is 1-locally independent and is, in particular, independent over
a1, so from the previous relation we derive the independence of c1c2
from b1b2 over a1. Combining this with the independence of c1c2 from
a1a2b1b2 over b1b2, we find that c1c2 is independent from a1a2b1b2 over
a1. Now c1 is independent from c2 over b1b2 and c1c2 is independent
from a1 over b1b2 so c1 is independent from c2 over a1b1b2, and hence,
by transitivity, over a1. Thus a1a2b1b2 is independent over a1, c1c2 is
independent from a1a2b1b2 over a1, and c1 is independent from c2 over
a1. Thus a is independent over a1.

Proof of Proposition 5.4.1. We have a1, a2, a3 1-locally independent. Let
X be the set of pairs x = (x1, x2) such that each coordinate x1 or x2 real-
izes the type of one of the three elements ai, and define a relation R onX
by: R(x, y) if and only if x1, x2, y1, y2 is a 1-locally independent quadru-
ple. We will apply Lemma 5.4.2 to R. Note first that if R(x, y) and
R(y, z) hold with x and z independent over y then the 6-tuple (x, y, z)
satisfies the conditions of case 2 of the previous lemma, and thus the
six coordinates form a 1-locally independent sequence. Thus Lemma 1
applies and there is a 0-definable equivalence relation E such that

R(x, y) implies: E(x, y), and x, y are independent over x/E.

Now consider the 1-locally independent triple (a1, a2, a3). We ex-
tend it by two further elements a4, a5 satisfying the following condi-
tions: tp(ai/a2a3) = tp(a1/a2a3), for i = 4, 5; a4 independent from a1
over a2a3; and a5 is independent from a1, a4 over a2, a3. We claim that
any 4-tuple from a1, a2, a3, a4, a5 is 1-locally independent. This follows
from Lemma 5.4.5, part (1), for a1a2a3a4, a1a2a3a5, or a2a3a4a5. In
the remaining two cases, a1a2a4a5 and a1a3a4a5, we need to check that
a5 is independent from a4 over a1a2 or a1a3. But a5 is independent
from a4 over a1a2a3 and from a1a2a3 over a2 or a3. Thus all of these
4-tuples are 1-locally independent, and hence any two disjoint pairs are
E-equivalent; and by transitivity any two pairs are E-equivalent. Let e
be the common E-class of these pairs. Then a1a2 is independent from
a3a4 over e and a1a3 is independent from a2a4 over e. In particular,
working over e we have a3 independent from a1a2, and a1 independent
from a2, and thus a1a2a3 is an independent set over e. It remains only
to be checked that e is algebraic over each ai. Certainly e ∈ acl (a1a2)
and acl (a3a4), and as these pairs are independent over any ai, we have
e ∈ acl (ai) for all i.
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5.5 MODULARITY

Definition 5.5.1. Let M be ℵ0-categorical of finite rank. M is modu-
lar if whenever A1, A2 are algebraically closed sets in Meq, they are
independent over their intersection.

By convention acl will always be taken to operate in Meq. This point
may be reemphasized occasionally.
Modularity, as defined here, is called “local modularity” in the lit-

erature dealing with the case of finite Morley rank, where the term
“modular” is applied only to strongly minimal sets D which in addition
to the stated property have “geometric elimination of imaginaries”: for
a ∈ Deq, there is A ⊆ D with acl(e) = acl (A).
As a matter of notation we will use the symbol ⊥ for independence, a

symbol which is more often used for model theoretic orthogonality; but
the latter concept does not really call for any special notation in our
present development.

Lemma 5.5.2. Let M be ℵ0-categorical of finite rank. Then M is mod-
ular if and only if the lattice of algebraically closed subsets of Meq

satisfies the modular law:

a ∧ (b ∨ c) = b ∨ (a ∧ c) for b ≤ a.

Proof. Suppose M is modular, and A,B,C are algebraically closed sub-
sets of Meq with B ⊆ A. Our claim is

A∩(acl (BC)) = acl(B ∪(A∩C))

the modular law. From modularity applied to A,C, as B ⊆ A we
deduce easily that A ⊥ BC over B ∪(A∩C). Thus A∩ acl (BC) =
acl(B ∪(A∩C)).
In the converse direction, assume the modular law in Meq, but A,B

are algebraically closed and dependent over their intersection. Mini-
mize rk(A/B) and, subject to this constraint, rk(A). We may suppose
A∩B = acl(∅), as the modular law holds in the corresponding sublattice
(i.e., above A∩B). We adopt the notation 0 = acl (∅) for the present.
After these reductions, we claim that A is a lattice atom: a minimal
nontrivial algebraically closed set.
Suppose 0 < A′ ≤ A with A′ algebraically closed. As A′ > A∩B,

rk(A′/B) is positive and rk(A/A′B) < rk(A/B), so by minimality

A ⊥ A′B over A∩ acl(A′B).

If A∩ acl (AB′) is independent from B over A∩ acl(AB′)∩B = 0, then
A ⊥ B over 0, a contradiction. Thus Amay be replaced by A∩ acl (A′B),
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and by the minimality of rk A we find A ⊆ acl (A′B). By the modular
law

A = A∩ acl(A′B) = acl (A′ ∪(A∩B)) = A′

as claimed.
Now consider a conjugate B′ of B over A independent from B over

A. Note that

acl (AB)∩B′ = 0

since acl(AB)∩B′ ⊆ A∩B′ = 0. If the triple A,B,B′ is 1-locally inde-
pendent, then it is independent over the intersection 0 by Proposition
5.4.1, a contradiction. If it is not 1-locally independent, then either A,B
are dependent over B′, or A,B′ are dependent over B, and in any case
rk(A/BB′) < rk(A/B). Thus by the minimality of rk(A/B), we have
independence of A from BB′ over A◦ = A∩ acl(BB′). As A is an atom,
we have either A◦ = 0, contradicting the choice of A, or A ⊆ acl(BB′).
In the latter case, applying the modular law to acl(A,B), B, and B′

we get A ⊆ acl (AB)∩ acl(BB′) = acl (B, acl(AB)∩B′) = B, which is
absurd.

Proposition 5.5.3. Let M be ℵ0-categorical of finite rank. Then the
following are equivalent.

1. M is modular.

2. For all finite A1, A2 in M, A1 and A2 are independent over the inter-
section of their algebraic closures.

3. For all finite A1, A2 in M, there is a finite C independent from A1, A2

such that A1, A2 are independent over the intersection of the algebraic
closures of A1 ∪C and A2 ∪C.

4. The lattice of algebraically closed subset of Meq is a modular lattice.

Proof. The equivalence of (1) and (2) is clear and the equivalence of
(1) and (4) is the previous lemma, so we concern ourselves with the
implication “(3) implies (2).” We actually show that each instance of
(3) implies the corresponding instance of (2).
Let A1, A2 be the algebraic closures of two finite subsets of Meq. We

must work with sets generated by subsets of M rather than Meq, so
take A∗

1, A
∗
2 finite subsets of M such that Ai ⊆ acl A∗

i and, in addition,

(3.1) A∗
1 ⊥ A2 over A1

(3.2) A∗
2 ⊥ A∗

1 over A2
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This ensures acl (A∗
1)∩ acl(A∗

2) = acl(A1)∩ acl (A2) by applying first
(3.2) and then (3.1). Accordingly, the problem is reduced to the follow-
ing:

A∗
1 ⊥ A∗

2 over acl(A∗
1)∩ acl (A∗

2).

By (3), we have a finite set C independent from A∗
1A

∗
2 for which

A∗
1 ⊥ A∗

2 over acl (A∗
1 ∪C)∩ acl (A∗

2 ∪C).

Let A = acl(A∗
1 ∪C)∩ acl(A∗

2 ∪C) and take A∗
3 conjugate to A∗

1 over
acl(A∗

2 ∪C), and independent from A∗
1 over A∗

2C. Then A∗
3 is indepen-

dent from A∗
1A

∗
2 over A since

rk(A∗
3/A

∗
1A

∗
2A) ≤ rk(A∗

3/A
∗
1A

∗
2C) = rk(A∗

3/A
∗
2C)

= rk(A∗
3/A

∗
2A) = rk(A∗

3/A)

As A∗
3 is independent from A∗

1A
∗
2 over A and A∗

1, A
∗
2 are independent

over A, A∗
3, A

∗
1, A

∗
2 is an independent triple over A. As A∗

1 and A∗
3 are

conjugate over acl (A∗
2C), they are conjugate over A, and thus A ⊆

acl(A∗
3C). Thus C ⊆ A ⊆ acl(A∗

iC) for all i. For any permutation
i, j, k of 1, 2, 3, we have: A∗

i ⊥ A∗
j over AA∗

k, hence A∗
i ⊥ A∗

j over CA∗
k,

and thus A∗
i ⊥ A∗

J over A∗
k. By Proposition 5.4.1 the triple A∗

1, A
∗
2, A

∗
3

is independent over the intersection of their algebraic closures, and in
particular A∗

1, A
∗
2 are independent over the intersection of their algebraic

closures.

Proposition 5.5.4 (Fundamental Rank Inequality, cf. [CHL])
Let M be ℵ0-categorical, of finite rank, modular, and with the type
amalgamation property (cf. §5.1). Let D,D′ be 0-definable sets with
D′ parametrizing a family of definable subsets Db of D of constant
rank r for b ∈ D′. Suppose that E is a 0-definable equivalence relation
on D′ such that for inequivalent b, b′ ∈ D′ we have

rk(Db)∩ rk(Db′) < r.

Then rk(D′/E) + r ≤ rk D.

Proof. We may assume that both D and D′ each realize a unique type
over the empty set. Take b ∈ D′ and a ∈ Db with rk(a/b) = r. Let
C = acl (a)∩ acl (b). Thus a ⊥ b over C by modularity, and rk (a/C) =
rk(a/b) = r. We will show

(∗) b/E ∈ C.

Thus rk(D′/E) ≤ rk C = rk(aC)− rk (a/C) = rk (a)− r as claimed. So
we turn to (∗).
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Let b′/E be a conjugate of b/E over C distinct from b/E, with b′

independent from b over C. We seek an element b′′ of D′ satisfying

tp(b′′b/C) = tp(b′b/C); tp(b′′, a/C) = tp(b, a/C)

with a, b, b′′ independent over C. This amounts to an amalgamation
problem for three compatible 2-types: tp(ba/C), tp(b′b/C), tp(ba/C).
By the type amalgamation property, this can be done.
In particular, a ∈ Db ∩Db′′ and thus rk(a/bb′′) < r; but rk(a/bb′′) =

rk(a/C) = r, a contradiction. Thus there is no such conjugate b′ and
b ∈ dcl (C) = C.

Corollary 5.5.5. With the hypotheses above, M interprets no Lachlan
pseudoplane.

Remark 5.5.6. This refers to a combinatorial geometry (P,L; I) of
points and lines such that each point is incident with infinitely many
lines, two points are incident with only finitely many lines, and dually.
The relevance of these structures to the behavior of ℵ0-categorical sta-
ble structures was shown in [LaPP], and the corollary settles a question
raised in [KLM].

Proof. If (P,L; I) is such a pseudoplane, then after dualizing if neces-
sary we may take n = rk(L) ≥ rk P . We apply the fundamental rank
inequality with D = P , Dl is the set of points incident with the line l as
l varies over a subset D′ of L of rank n on which r = rk Dl is constant,
with E the equality relation. By the axioms for pseudoplanes, the pre-
vious proposition applies and yields rk D′ + r ≤ rk P ≤ rk L = rk D′

and thus r = 0, a contradiction.

We give a more precise version of the fundamental rank inequality.

Proposition 5.5.7. Let D, D′ be the loci of single types over the empty
set, and Db a uniformly b-definable family of rank r subsets of D
parametrized by D′. Then there is a finite cover : D′′ → D′ and an
equivalence relation E on D′′ such that

1. rk(D′′/E) = rk D − r;

2. For b, b′ E-equivalent in D′′, we have rk(Db̄ ∩Db̄′) = r.

Proof. We work with a, b, c as in the proof of Proposition 5.5.4, but with
c finite rather than algebraically closed: so we require c ∈ acl(a)∩ acl(b)
finite, a ⊥ b over c. Let D′′ be the locus of bc over the empty set, with
b1c1 = b1, and with E(b1c1, b2c2) if and only if c1 = c2 and the types of
b1 over acl(c1) and of b2 over acl(c2) coincide. Then the amalgamation
argument yields (2), and rk(D′′)/E = rk(c) = rk(a)−rk(a/c) = rk(D)−
rk(a/b) = rk D − r.
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5.6 LOCAL CHARACTERIZATION OF MODULARITY

We show in this section that Lie coordinatized structures are modular
by reducing the global property of modularity to local properties of the
coordinatizing structures.

Definition 5.6.1. Let M be a structure.

1. A definable subset D of M is modular if for every finite subset A of M,
the structure with universe D and relations the A-definable relations of
M restricted to D, is modular.

2. Let F be a collection of definable subsets of M. Then M is eventually
coordinatized by F if for any a ∈ M and finite B ⊆ M , with a /∈ acl (B),
there is B′ ⊇ B independent from a over B and a B′-definable member
D of F for which D∩ acl (aB′) contains an element not algebraic over
B′.

Lemma 5.6.2. If M is eventually coordinatized by a family of modu-
lar definable sets, then it is eventually coordinatized by a family of
modular definable sets of rank 1.

Proof. Replace each modular definable set by its definable subsets of
rank 1. If a ∈ M and B is a finite set, take B′ ⊇ B independent from
a over B and take D definable and modular such that D∩ acl(aB′)
contains an element b not algebraic over B′.
Take B1 ⊇ B′ such that rk (b/B1) = 1. We may suppose that B1

is independent from a over B. Let B2 = acl (bB′)∩ acl (B1). Then
B′ ⊆ B2, B2 is independent from a over B, and by modularity of D, b
is independent from B1 over B2, so rk (b/B2) = 1. Let b′ be finite, with
B′ ⊆ b′ ⊆ B2, such that rk(b/b′) = 1, and let D′

b be the locus of tp(b/b
′).

Then D′
b ⊆ D is rank 1, and is modular since D is. Furthermore,

b ∈ Db′ ∩ acl (ab′) \ acl (b′), and b′ is independent from a over B.

Proposition 5.6.3. Let M be ℵ0-categorical of finite rank. If M is
eventually coordinatized by modular definable sets, then M is modular.

Proof. By the preceding lemma we may take the coordinatization to be
in terms of rank 1 modular sets.
Suppose M is not modular. Then there are elements a, b and a set

E such that acl(a,E)∩ acl(b, E) = E, with a and b dependent over E.
Take a, b, E with rk (a/E) + rk(b/E) minimal. Then as noted in the
proof of Proposition 5.5.3, for any E′ ⊇ E, independent from a, b over
E, a and b remain dependent over acl (a,E′)∩ acl (b, E′). Thus after
applying the eventual coordinatization we may assume in addition that
acl(a,E) and acl(b, E) contain elements a1, b1 of rank 1 over E, lying
in rank 1 modular definable sets D1, D2 respectively, defined over E.
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For the argument below some further expansion of E may be necessary.
Specifically, we will assume that E satisfies the following condition:

1. If it is possible to expand E to E′ independent from ab over E so that
acl (a,E′) contains an element a2 of rank 1 over E′ independent from a1
over E, then the same occurs already over the base E; and similarly for
b.

We will also want to assume the following condition for a finite number
of elements a′ ∈ acl(a) of rank 1 over E, to be determined below:

2. If there exists E′ as described in (1) and a′′ ∈ D1 with acl(a′, E′) =
acl (a′′, E′), then there is a∗ ∈ D1 for which acl (a′, E) = acl (a∗, E); and
similarly for b.

After these preliminaries we may add constants and take E = acl(∅).
We will write 0 = acl (∅) = E. We will show now that a ⊆ acl(a1b) and
b ⊆ acl (b1a).
We have acl(a)∩ acl(b) = 0, and a, b are dependent. Furthermore,

a1 ∈ acl(a) has rank 1 and acl(a1)∩ acl(b) = 0, so a1 and b are indepen-
dent. As rk(a/a1) < rk a, by minimality we have a and b independent
over A = acl(a)∩ acl(a1, b). Since a and b are not independent, A and b
are not independent. But A ⊆ acl(a) and hence by minimality of total
rank (applied to a finite subset of A, and b) we get rk(A) = rk a, so
a ⊆ A. Thus a ⊆ acl(a1b); similarly b ⊆ acl (b1, a).
Now we claim there is a2 with

a2 ∈ acl(a); rk(a2) = 1; a2 ⊥ a1

Take b′, b′1 conjugates of b, b1 over a, and independent from b, b1 over a.
Thus a ⊆ acl(a1b

′), and b′1 is independent from a, b. As b depends on
a and b1 does not, we have rk b > rk b1 and hence we may choose E′

containing b′1, independent from a, b, b′ over b′1, and some b′2 ∈ acl (b′, E′),
so that rk(b′2/E

′) = 1. Now E′ is independent from a, b′ and b′2 ∈
acl (b′, E′) ⊆ acl acl (a, b′1, E

′) = acl(a,E′), with a1 independent from b′2
over E′, so the same holds for some conjugate of E′ independent from
a, b, and then by condition (1) the same holds over 0 for some a2 in place
of b′2.
Now a2 ∈ acl(a1b) and thus a1a2 depends on b, but a1a2 ∈ acl (a),

so by minimality a = acl(a1a2). Similarly, we get b = acl(b1b2) with
b2 of rank 1. Here no ai ∈ acl (b) and no bi ∈ acl(a), but any one of
a1, a2, b1, b2 is algebraic over the remainder, and a1 ∈ D1. Consider the
base set F = {a2, b2}. Then F is independent from b1 and D1 contains
an element x = a1 such that acl (x, F ) = acl(b1, F ). Taking a conjugate
E′ of F over b1 free from a, b, (2) applies and yields an element of D1

that may replace b1. In the same fashion we may assume b2 ∈ D1,
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and then after reversing the argument, that a2 ∈ D1. Then the pair
(a1a2, b1b2) violates modularity in D1.

Corollary 5.6.4. If M is Lie coordinatized then M is modular.

Proof. The embedded linear and projective geometries are seen to be
modular using the last criterion in Proposition 5.5.3, as arbitrary pa-
rameters from M may be replaced by parameters in the geometry. Thus
it suffices to show that these geometries eventually coordinatize M.
Let a ∈ M , B a finite subset of M , and a /∈ acl(B). One may find

c ∈ acl (a,B) − acl(B) lying in a B-definable coordinatizing projective
or affine geometry J . If the geometry is affine, then expand B to B′ =
B ∪{c◦}, adding a generic point of J , and replace c by c − c◦ in the
corresponding linear geometry.
Thus the previous proposition applies.

Definition 5.6.5. Let a, b be elements of a structure of finite rank.
Then b is filtered over a if there is a sequence b = b1, . . . , bn with
rk (bi/ab1 . . . bi−1) = 1 and acl(ab) = acl (ab).

The following was essentially invoked above, and will be applied again
subsequently.

Lemma 5.6.6. Let M be ℵ0-categorical of finite rank and modular.
Then for any a, b in M′, b is filtered over a in M′eq.

Proof. Adding constants we may work over the empty set in place of
a. We use induction on n = rk(b) and we may suppose n ≥ 1. We
take b′ ∈ M′eq with rk(b/b′) = 1. In particular, b is filtered over b′ by
b itself, and hence by the previous lemma is independent from b′ over
B = acl (b)∩ acl(b′). Thus rk (b/B) = rk(b/b′) = 1 and rk(B) = n − 1,
so by induction after replacing B by a finite set b′′ we have a filtration
for b′ to which we may append b.
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5.7 REDUCTS OF MODULAR STRUCTURES

In this section we prove the following theorem on reducts of modular
structures:

Proposition 5.7.1. Let M be ℵ0-categorical of finite rank, and modu-
lar. Then every structure M′ interpretable in M inherits these prop-
erties.

As we will to some extent have both M and M′ in view throughout
the analysis, we adopt the convention that when not otherwise specified,
model theoretic notions like rank and algebraic closure that depend on
the ambient model will be taken to refer to M′. In any case M′ inherits
the ℵ0-categoricity and finite rank. The latter point would however be
dubious in general for other notions of rank such as S1-rank. Further-
more, we cannot assume that the notions of independence in M and M′

stand in any close relationship.
The main case is that of reducts. In fact, as we can add some param-

eters and work in Meq, we may suppose that M′ has as its universe a
0-definable subset ofM, and that the structure present onM′ is a reduct
of the full structure induced from M. We will refer to this situation as
a reduct in (not “of”) M.

Lemma 5.7.2. Let M be ℵ0-categorical, M′ a reduct, and a a finite
sequence which is algebraically independent in the naive sense: none
of its entries is algebraic in M′ over the remainder. Then there is a
realization b of the type of a in M′, which is algebraically independent
in M.

Proof. Let b be a realization of the specified type with aclM(b) as large
as possible. If b contains an entry b which is algebraic over the remain-
der in M, b′, note that in M′ b /∈ acl(b′) and hence there is another
realization of the type consisting of b′ extended by some c /∈ aclM(b′).
But then | aclM(b)| = | aclM(b′b)| < | aclM(b′c)|, a contradiction.

Lemma 5.7.3. Let M be ℵ0-categorical of finite rank and modular, M′

a reduct in M, and a, b elements of M′ with rk(b/a) = 1. Then a is
independent from b over acl(a)∩ acl (b).

We emphasize that our convention applies here, to the effect that the
notions used are those of M′ rather than M.

Proof. We will proceed by induction on the rank of a. We may suppose
that a and b are algebraically independent, since if a ∈ acl (b) our claim
becomes trivial. By the preceding lemma we may even suppose that
they are algebraically independent in M.
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Now in M let I = (c1, c2, . . .) be an infinite M-independent and
M-indiscernible sequence over a, with tpM(ci/a) = tpM(b/a). We
claim that the sequence I is M′-independent over a. For example,
rk(cn+1/ac1, . . . , cn) = 1 since rk(cn+1/a) = 1 and cn+1 is not alge-
braic over ac1, . . . , cn in M, hence certainly not in M′.
The quantity rk(a/c1 . . . ci) as a function of i is eventually constant,

say from i = m onward. Let d = (c1, . . . , cm) and d′ = (cm+1, . . . , c2m).
rk(a/d) = rk (a/d′) = rk(a/dd′), the latter equality by the choice of m.
Thus in M′ we have a ⊥ d over d′, a ⊥ d′ over d, and also d ⊥ d′ over
a as checked above. By Proposition 5.4.1, which is applicable to M′,
the triple a, d, d′ is independent over A = acl (a)∩ acl (d)∩ acl(d′). In
particular a, c1 are independent over A.
We now apply the modularity of M. Let A∗ = aclM(a)∩ aclM(c1).

Since a /∈ aclM(b), also a /∈ aclM(c1) and thus a /∈ A∗. By modu-
larity a ⊥M c1 over A∗ and by indiscernibility a ⊥M ck over A∗. As
ac1 . . . ci−1 is M-independent from ci over a, we find that a, c1, c2, . . .
are M-independent over A∗. Hence a /∈ aclM(c1, c2, . . .) and in M′ we
have a /∈ acl (d), a /∈ A, and rk(A) < rk (a). Thus by induction A ⊥ c1
over A′ = A∩ acl(c1), and hence A ⊥ c1 over A′. Since tp(ac1) = tp(ab)
we have a, b independent over acl(a)∩ acl (b).

Lemma 5.7.4. Let M be ℵ0-categorical of finite rank, and modular,
and let M′ be a reduct in M. Then every rank 1 subset D of M′ is
modular.

Proof. After absorbing an arbitrary finite set of parameters into the
language our claim is that if a, b are two algebraically independent
sequences in D with acl(a)∩ acl (b) = acl(∅) in M′eq, then a and b are
independent. This claim reduces inductively (after further absorption
of parameters) to the case in which a and b have length 2. In this case
if they are not independent, we have rk(b/a) = 1, and this case was
handled in the previous lemma.

Proof of Proposition 5.7.1. It suffices to show that M′ is eventually co-
ordinatized by its rank 1 subsets, since these are modular; we then apply
Proposition 5.6.3.
So take a /∈ acl(B) with B finite. Let n = rk(a/B). We may find

a′, c with a′ ∈ acl (aBc) − acl(Bc) and rk(a/a′Bc) = n− 1 (cf. Lemma
2.2.3). As rk(aa′/Bc) = rk(a/Bc) this yields

rk(a/Bc) = (n− 1) + rk(a′/Bc) ≥ rk(a/B)

and thus a and c are independent over B and a′ has rank 1 over Bc.
This shows that M′ is eventually coordinatized by rank 1 subsets.


