5

Geometric Stability Generalized

5.1 TYPE AMALGAMATION

Definition 5.1.1. Let \mathcal{M} be a structure.

1. An amalgamation problem (for types) of length n is given by the following data:
(i) A base set, A;
(ii) Types $p_{i}\left(x_{i}\right)$ over A for $1 \leq i \leq n$;
(iii) Types $r_{i j}\left(x_{i}, x_{j}\right)$ over A for $1 \leq i<j \leq n$;
subject to the conditions:
(iv) $r_{i j}$ contains $p_{i}\left(x_{i}\right) \cup p_{j}\left(x_{j}\right)$;
(v) $r_{i j}\left(x_{i}, x_{j}\right)$ implies the independence of x_{i} from x_{j}.
2. A solution to such an amalgamation problem is a type r of an independent n-tuple x_{1}, \ldots, x_{n} such that the restrictions of r coincide with the given types.

Definition 5.1.2. A structure \mathcal{M} has the type amalgamation property if whenever $\left(p_{i} ; r_{i j}\right)$ is an amalgamation problem defined over an algebraically closed base set in $\mathcal{M}^{\mathrm{eq}}$, then the amalgamation problem has a solution.

Our goal here is to prove that Lie coordinatized structures have the type amalgamation property. By absorbing the base set A into the language we may suppose it coincides with $\operatorname{acl}(\emptyset)$ and we will do so whenever it is notationally convenient. Our usual notation for an amalgamation problem will be either $\left(p_{i} ; r_{i j}\right)$ or just $\left(r_{i j}\right)$, assuming the length n is known. Occasionally we will take note of generalized amalgamation problems where other restrictions are placed on the desired type r.

We build up to the general result via a series of special cases, beginning with types in a single geometry. The general result does not follow directly from the case of a single geometry, but reflects more specific properties of the geometries, as is seen in the proof of Lemma 5.1.13.

Lemma 5.1.3. Let J be a Lie geometry, and $\left(p_{i} ; r_{i j}\right)$ an amalgamation problem of length n in which the p_{i} are types of sequences of elements of J over acl (\emptyset). Then the amalgamation problem has a solution.

We will leave the details to the reader, but we make a few remarks. This statement essentially comes down to the fact that inner products and quadratic forms can be prescribed arbitrarily on a basis, subject to the restrictions associated with the various types of inner product.

It may be more instructive to take note of some counterexamples to plausible strengthenings of this property. We give two examples where the solution sought is not unique, and one example of an amalgamation property incorporating a bit more data which fails to have a solution.

Example 5.1.4. Let $\left(V, V^{*}\right)$ be a polar geometry, and A an affine space over V^{*}. Consider independent triples $\left(a_{1}, a_{2}, a_{3}\right)$ with $a_{1} \in V$ and $a_{2}, a_{3} \in A$. The relevant types $r_{i j}$ are then determined but the type of the triple depends on the value of $\left(a_{1}, a_{2}-a_{3}\right)$, which is arbitrary.

Example 5.1.5. In a projective space \hat{V} associated with a unitary geometry V over a field K of order q^{2}, consider the 2-type r of a pair \hat{x}, \hat{y} of independent elements of \hat{V} for which $(x, y) \neq 0$ and $(x, x)=(y, y)=0$. This defines a complete type over $\operatorname{acl}(\emptyset)$. We consider the amalgamation problem of length 3 with all $r_{i j}$ equal to r. For an independent triple $(\hat{x}, \hat{y}, \hat{z})$ whose restrictions realize the type r, the quantity $(x, y)(y, z)(z, x) /(y, x)(z, y)(x, z)$ is a projective invariant taking on $q+1$ possible values $\alpha / \alpha^{\sigma}\left(\alpha \in K^{*}, \sigma\right.$ an involutory automorphism of K).

Example 5.1.6. We will give a generalized amalgamation problem of length 4, determined by a compatible family of 3-types $r_{i j k}$ over acl (\emptyset) of independent triples, which has no solution. Let V be a symplectic space, A affine over V, and consider the type of a quadruple $x_{1}, x_{2}, x_{3}, x_{4}$ with $x_{1} \in V$ and the remaining x_{i} affine. Let the types $r_{1 i j}$ all contain the requirement: $\left(x_{1}, x_{i}-x_{j}\right)=1$. These requirements are incompatible.

Lemma 5.1.7. Let \mathcal{M} be a structure, and suppose that every amalgamation problem of length 3 in \mathcal{M} over an algebraically closed subset has a solution. Then every amalgamation problem in \mathcal{M} has a solution.

Proof. This is a straightforward induction. Collapse the last two variables $x_{n-1} x_{n}$ to one variable y_{n} and define a new amalgamation problem $\left(r_{i j}^{\prime}\right)$ of length $n-1$. The only point requiring attention is the choice of the types $r_{i, n-1}^{\prime}$, which are 3-types when written in terms of the x_{i}. These are taken to be solutions to the amalgamation problem
$\left(r_{i, n-1}, r_{i, n}, r_{n-1, n}\right)$ of length 3.
In the next lemma we find it convenient to deal with a variant form of amalgamation problem incorporating some additional information.

Lemma 5.1.8. Let \mathcal{M} be a weakly Lie coordinatized structure, and J a geometry of \mathcal{M}. Suppose that $\left(p_{i} ; r_{1, i}, r_{2, \ldots, n}\right)$ is a generalized amalgamation problem over acl (\emptyset) in which p_{1} is the type of some element of J and $r_{2, \ldots, n}$ is the type of an independent $(n-1)$-tuple, with the types r extending the corresponding types p appropriately. Then this generalized amalgamation problem has a solution.

Proof. We fix a realization $\left(c_{2}, \ldots, c_{n}\right)$ of $r_{2, \ldots, n}$, we set $C_{i}=\operatorname{acl}\left(c_{i}\right) \cap J$, and we choose $c_{1}^{i} c_{i}$ satisfying $r_{1 i}$ for $2 \leq i \leq n$. We define an auxiliary generalized amalgamation problem in J by setting $r_{1 i}^{\prime}=\operatorname{tp}\left(c_{1}^{i} C_{i}\right)$, $r_{2, \ldots, n}^{\prime}=\operatorname{tp}\left(C_{2}, \ldots, C_{n}\right)$. By inspection of the geometries, this type of problem has a solution r^{\prime}. We may choose c_{1}^{\prime} so that $c_{1}^{\prime} C_{2} \ldots C_{n}$ realizes the type r^{\prime}. As any c_{i}-definable subset of J is C_{i}-definable, we find that $\operatorname{tp}\left(c_{1}^{\prime} c_{i}\right)=\operatorname{tp}\left(c_{1} c_{i}\right)$ and the sequence $c_{1}, c_{2}, \ldots, c_{n}$ is independent.

Roughly speaking our goal is now to treat the general amalgamation problem of length 3 by reduction to the case in which the type p_{1} has rank 1. More specifically we deal with the following notion.

Definition 5.1.9. Let \mathcal{M} be a weakly Lie coordinatized structure and J one of its geometries.

A semigeometric 1-type relative to J is the type over acl (\emptyset) of some pair (a, b) with $a \in J$ and b algebraic over a. The multiplicity of such a type is the multiplicity of b over a.

Lemma 5.1.10. Let \mathcal{M} be a weakly Lie coordinatized structure and suppose that every amalgamation problem $\left(p_{i} ; r_{i j}\right)$ of length 3 with p_{1} semigeometric has a solution. Then every amalgamation problem of length 3 has a solution.

Proof. If we can solve amalgamation problems with p_{1} semigeometric, then by compactness we can solve amalgamation problems in which p_{1} is a type in infinitely many variables, representing the full algebraic closure in $\mathcal{M}^{\text {eq }}$ of an element of a geometry of \mathcal{M}.

We now argue by induction on the rank of p_{1}, which we may take to be at least 1 . Let c_{1} realize p_{1} and let $a_{1} \in \operatorname{acl}\left(c_{1}\right)$ belong to a coordinatizing geometry J of \mathcal{M}. Let A be $\operatorname{acl}\left(a_{1}\right)$ in $\mathcal{M}^{\mathrm{eq}}$ and $p_{1}^{\prime}=\operatorname{tp}(A)$.

Take c_{2}, c_{3} independent and such that $c_{1} c_{i}$ realizes the type $r_{1 i}$ for $i=2,3$. Let $r_{1 i}^{\prime}=\operatorname{tp}\left(A c_{i} / \operatorname{acl}(\emptyset)\right)$ and $r_{23}^{\prime}=r_{23}$. Then $\left(r_{i j}^{\prime}\right)$ gives an amalgamation problem of length 3 of the type referred to at the outset. Let r^{\prime} be a solution to this problem. We may suppose that $A c_{2} c_{3}$ satisfies
r^{\prime}.
Now we will work over A with $p_{i}^{\prime \prime}=t p\left(c_{i} / A\right)$ for $i=1,2,3$ and $r_{i j}^{\prime \prime}=t p\left(c_{i} c_{j} / A\right)$. By the choice of r^{\prime} this is an amalgamation problem, and the rank of p_{1}^{\prime} is less than the rank of p_{1}, so we conclude by induction.

Before treating the general amalgamation problem of length 3 with p_{1} semigeometric, we will deal with the case in which $r_{12}=r_{13}$ up to a change of variable. We begin with some technical considerations.

Definition 5.1.11. Let \mathcal{M} be a structure, E a definable binary relation, D a definable set, and a, b elements of \mathcal{M}.

1. E is a generic equivalence relation on D if it is generically symmetric and transitive: for any independent triple a, b, c in its domain, $E(a, b)$ and $E(b, c)$ imply $E(b, a)$ and $E(a, c)$.
2. An indiscernible sequence I is 2-independent if $\operatorname{acl}(a) \cap \operatorname{acl}(b)=$ $\operatorname{acl}(\emptyset)$ for $a, b \in I$ distinct.
3. $E_{2}(x, y)$ is the smallest equivalence relation containing all pairs belonging to infinite 2 -independent indiscernible sequences.

Lemma 5.1.12. Let \mathcal{M} be \aleph_{0}-categorical of finite rank, and E a generic equivalence relation defined on the locus of a complete type p over $\operatorname{acl}(\emptyset)$. Then

1. E agrees with a definable equivalence relation E^{*} on independent pairs from p.
2. If every pair of elements belonging to an infinite 2-independent indiscernible sequence belongs to E, then any pair of independent realizations of p belongs to E.

Proof. Ad 1. Define $E^{*}(x, y)$ by " $p(x)$ and $p(y)$ hold and either $x=y$ or there is a z which realizes p and is independent from x, y such that $E(x, z)$ and $E(y, z)$ both hold." This is easily seen to agree with E on independent pairs, and is reflexive and symmetric. We check transitivity.

Assume $E^{*}(a, b)$ and $E^{*}(b, c)$ hold, specifically

$$
E\left(a, d_{1}\right), E\left(b, d_{1}\right), E\left(b, d_{2}\right), E\left(c, d_{2}\right)
$$

with d_{1} independent from a, b and d_{2} independent from b, c; we may assume, in fact, that d_{2} is independent from a, b, c, d_{1}. Then a, d_{1}, d_{2} and b, d_{1}, d_{2} are independent triples and thus $E\left(d_{1}, d_{2}\right)$ and $E\left(a, d_{2}\right)$ hold. Thus $E^{*}(a, c)$ holds.

Ad 2. In view of the preceding and the hypotheses, we may assume that E is a definable equivalence relation containing E_{2}. It suffices now to show that any two elements of \mathcal{M} with the same type over $\operatorname{acl}(\emptyset)$ are E_{2}-equivalent. We show in fact that M / E_{2} is finite, and hence is part of $\operatorname{acl}(\emptyset)$ in $\mathcal{M}^{\text {eq }}$, yielding the claim.

Suppose toward a contradiction that M / E_{2} is infinite. We will choose realizations a_{i} of p inductively, distinct modulo E_{2}, so that

$$
\left.\operatorname{acl}\left(a_{n}\right) \cap \bigcup_{i<n} \operatorname{acl}\left(a_{i}\right)\right)=\operatorname{acl}(\emptyset)
$$

Then we may suppose that the sequence $I=\left(a_{i}\right)$ is also indiscernible, and we have a blatant contradiction to the definition of E_{2}.

For the choice of a_{n} given $a_{i}(i<n)$ we first choose a new E_{2}-class C outside $\operatorname{acl}(\emptyset)$ independent from a_{1}, \ldots, a_{n-1} and then choose $a \in C$ independent from a_{1}, \ldots, a_{n-1} over C.

Lemma 5.1.13. Let \mathcal{M} be a weakly Lie coordinatized structure. Let $\left(p_{i} ; r_{i j}\right)$ be an amalgamation problem of length 3 over acl (\emptyset) with p_{1} semigeometric and with $r_{12}=r_{13}$ up to a change of variable; in particular $p_{2}=p_{3}$. Then the amalgamation problem has a solution.
Proof. As a matter of notation, take $p_{1}=p_{1}(x y), p_{i}=p_{i}\left(z_{i}\right)$ for $i=2,3$. Let J be the geometry in which the first coordinates of realizations of p_{1} are found, and let C be the set defined by p_{2} or p_{3}. We make a preliminary adjustment to ensure that for $c \in C$ we have

$$
\begin{equation*}
r_{12}(x y, c) \text { isolates a type over } \operatorname{acl}(c) . \tag{*}
\end{equation*}
$$

We may replace c by some $c^{\prime} \in \operatorname{acl}(c)$ such that $c \in d c l\left(c^{\prime}\right)$ and $r_{12}\left(x y, c^{\prime}\right)$ isolates a type r_{12}^{\prime} over $\operatorname{acl}(c)=\operatorname{acl}\left(c^{\prime}\right)$; the condition " $c \in d \operatorname{cl}\left(c^{\prime}\right)$ " means that c^{\prime} can be thought of as being an extension $c c^{\prime \prime}$ of c. We then replace the given amalgamation problem by a problem $\left(r_{i j}^{\prime}\right)$ in which $r_{23}^{\prime}\left(z_{1}^{\prime} z_{2}^{\prime}\right)$ is any complete type over $\operatorname{acl}(\emptyset)$ extending $r_{23}\left(z_{1}^{\prime} z_{2}^{\prime}\right) \cup p^{\prime}\left(z_{1}\right) \cup p^{\prime}\left(z_{2}\right)$ where p^{\prime} is the type of c^{\prime} and the connection between the variables z_{i} and z_{i}^{\prime} reflects the relation $c \in d c l\left(c^{\prime}\right)$; one may even suppose that z_{i} is an initial segment of z_{i}^{\prime}. After these adjustments $(*)$ holds.

Now for $a \in J$ satisfying $p_{1}, c, c^{\prime} \in C$ we consider the set $B(a, c)=$ $\left\{y: r_{12}(a y, c)\right\}$ and the sets $J(c)=\{a \in J: B(a, c) \neq \emptyset\}, J\left(c, c^{\prime}\right)=$ $\left\{a \in J: B(a, c)=B\left(a, c^{\prime}\right) \neq \emptyset\right\}$. In particular $J\left(c, c^{\prime}\right) \subseteq J(c) \cap J\left(c^{\prime}\right)$. We define a relation E on C as follows: $E\left(c, c^{\prime}\right)$ if and only if $J\left(c, c^{\prime}\right)$ is infinite. Using our understanding of J we will show that E is a generic equivalence relation extending E_{2}, and hence by the preceding lemma that $E\left(c_{2}, c_{3}\right)$ holds for any independent pair c_{2}, c_{3} in C, in particular for a realization of r_{23}. This then allows us to solve the amalgamation problem directly.

We now check that E contains all pairs belonging to an infinite 2independent indiscernible sequence I. Let μ be the multiplicity of the semigeometric type p_{1} and let I^{\prime} be a subset of I of cardinality 2^{μ}. By Lemma 5.1.8 we can find an element a independent from I^{\prime} such that
$B(a, c) \neq \emptyset$ for $c \in I^{\prime}$. As this gives us 2^{μ} nonempty subsets $B(a, c)$ of $\left\{b: p_{1}(a, b)\right\}$, two of them must coincide, and then by indiscernibility, any two of them must coincide. As there are infinitely many such elements $a, E\left(c, c^{\prime}\right)$ holds for pairs in I.

It remains to be seen that E is a generic equivalence relation. We take $c, c^{\prime}, c^{\prime \prime}$ independent with $E\left(c, c^{\prime}\right)$ and $E\left(c^{\prime}, c^{\prime \prime}\right)$ holding. Thus $J\left(c, c^{\prime}\right)$ and $J\left(c^{\prime}, c^{\prime \prime}\right)$ are infinite subsets of $J\left(c^{\prime}\right)$, and we claim that $J\left(c, c^{\prime \prime}\right)$ is also infinite; in fact we claim that the intersection $J\left(c, c^{\prime}\right) \cap J\left(c^{\prime}, c^{\prime \prime}\right)$ is itself infinite. This involves specific features of the geometry J. We consider two representative cases: an affine space, and a linear space with a quadratic form.

Let A be an affine space corresponding to a linear model V, with V^{*} the definable dual. Let W_{c} denote the minimal $a c l(c)$-definable subspace of V of finite codimension. Then $J(c)$ contains all but finitely many elements of some coset of W_{c} in A. Similarly, $J\left(c, c^{\prime}\right)$ contains all but finitely many elements of some coset of the minimal $\operatorname{acl}\left(c, c^{\prime}\right)$-definable subspace $W_{c, c^{\prime}}$ of finite codimension. Now $W_{c, c^{\prime}}+W_{c^{\prime}, c^{\prime \prime}} \leq W_{c^{\prime}}$ is definable over both $\operatorname{acl}\left(c, c^{\prime}\right)$ and $\operatorname{acl}\left(c^{\prime}, c^{\prime \prime}\right)$, and as $c, c^{\prime}, c^{\prime \prime}$ are independent, this space is definable over $\operatorname{acl}\left(c^{\prime}\right)$. Thus the sum equals $W_{c^{\prime}}$, which means that any two cosets of $W_{c, c^{\prime}}$ and $W_{c^{\prime}, c^{\prime \prime}}$ will intersect; the intersection is then infinite, being a coset of $W_{c, c^{\prime}} \cap W_{c^{\prime}, c^{\prime \prime}}$. This completes the proof in the affine case.

If J is linear and carries a quadratic form then the argument is similar, but the sets involved contain almost all elements of a subset of the spaces $W_{c}, W_{c, c^{\prime}}$ on which the quadratic form Q takes on a specific value. This set will be infinite on any subspace of J of finite codimension.

Lemma 5.1.14. Let \mathcal{M} be weakly Lie coordinatized. Let $\left(p_{i} ; r_{i j}\right)$ be an amalgamation problem of length 3 over acl (\emptyset) with p_{1} semigeometric. Then the problem has a solution.

Proof. We proceed by induction on the multiplicity μ of p_{1}.
Take realizations $a_{1} b_{1} c_{i}$ of $r_{1 i}$ for $i=2,3$. If the multiplicity of b_{i} over $a_{1} c_{i}$ is μ for $i=2,3$ then we may use Lemma 5.1.8 to choose $a_{1} c_{2} c_{3}$ appropriately, and then add b_{1}.

Accordingly, we may assume

$$
\text { The multiplicity of } b_{1} \text { over } a_{1} c_{2} \text { is less than } \mu \text {. }
$$

In this case the basic idea is to absorb the parameter c_{2} into the base of the type and continue by induction. We first expand c_{2} to an algebraically closed set C_{2} and adjust the amalgamation problem accordingly. We will keep the notation as before apart from writing C_{2} for c_{2}. The types involved now have infinitely many variables but this can be handled using the compactness theorem.

Let $C_{2} c_{3}$ realize r_{23} and suppose $a_{1} b_{1} c_{3}$ realizes r_{13} with $a_{1} b_{1}$ independent from from $C_{2} c_{3}$. Take C_{2}^{\prime} with $a_{1} b_{1} C_{2}^{\prime}$ realizing r_{12} and C_{2}^{\prime} independent from $a_{1} b_{1} C_{2} c_{3}$. We will use C_{2}^{\prime} as the basis of a new amalgamation problem.

Let $r_{13}^{\prime}=\operatorname{tp}\left(a_{1} b_{1} / C_{2}^{\prime}\right), r_{23}^{\prime}=\operatorname{tp}\left(C_{2} c_{3} / C_{2}^{\prime}\right)$. To complete the specification of our auxiliary amalgamation problem, we will require a type $r_{12}^{\prime}(x y, z)$ over C_{2}^{\prime} implying the independence of $x y$ from z and compatible with $\operatorname{tp}\left(a_{1} b_{1} / C_{2}^{\prime}\right), \operatorname{tp}\left(C_{2} / C_{2}^{\prime}\right)$, and $r_{12}(x y, z)$. If we construe the desired r_{12}^{\prime} as a type in the variables $x y, z, z^{\prime}$, with z^{\prime} replacing C_{2}^{\prime}, then this is itself an amalgamation problem involving the types $r_{12}(x y, z)$, $r_{12}\left(x y, z^{\prime}\right)$, and $t p\left(C_{2}, C_{2}^{\prime}\right)$. This case is covered by the preceding lemma. Thus we have a new amalgamation problem $\left(r_{i j}^{\prime}\right)$ defined over C_{2}^{\prime}, containing the original problem. As the multiplicity of the initial 1-type $p_{1}^{\prime}=\operatorname{tp}\left(a_{1} b_{1} / C_{2}^{\prime}\right)$ is less than μ, we conclude by induction.

Proposition 5.1.15. Let \mathcal{M} be weakly Lie coordinatized. Then \mathcal{M} has the type amalgamation property.

The following corollary shows that the Shelah degree is bounded by the rank.

Corollary 5.1.16. Let \mathcal{M} be a weakly Lie coordinatized structure, or more generally an \aleph_{0}-categorical structure of finite rank with the type amalgamation property. Let I be an independent set, $p(x)$ a complete type over $\operatorname{acl}(\emptyset)$, and $\varphi_{a}(a, x)(a \in I)$ a collection of formulas for which $\varphi_{a} \& p$ is consistent of rank rk p. Then $\bigwedge_{I} \varphi_{a} \& p$ is consistent of rank rk p.

Proof. We may assume first that I is finite and then that $|I|=2$, as the statement is iterable. So we consider $\varphi_{1}\left(a_{1}, a_{3}\right) \& \varphi_{2}\left(a_{2}, a_{3}\right) \& p\left(a_{3}\right)$, with a_{1}, a_{2} independent. This can be converted into an amalgamation problem of the type covered by the preceding proposition.

We now concern ourselves with the number of types of various sorts existing over finite sets of a given order.

Lemma 5.1.17. Let \mathcal{M} be a weakly Lie coordinatized structure, and $\varphi(x, y)$ an unstable formula. Then for each n there is a set I of size n over which there are 2^{n} distinct φ-types. In particular φ has the independence property.

Proof. The instability of φ means that there is an infinite sequence I of parameters $\left(a_{i}, b_{i}\right)$ such that $\varphi\left(a_{i}, b_{j}\right)$ will hold if and only if $i<j$. We may take I to be indiscernible. I is independent over a finite set B and we may take it to be indiscernible over B, which we absorb into the language. Let $p=\operatorname{tp}\left(b_{i} / \operatorname{acl}(\emptyset)\right.$. The formulas $\varphi\left(a_{i}, x\right)$ and $\neg \varphi\left(a_{i}, x\right)$
are consistent with p and of maximal rank, so the same applies to their various conjunctions by the preceding corollary.

Lemma 5.1.18. Let \mathcal{M} be Lie coordinatized with finitely many sorts, and J a 0-definable geometry of \mathcal{M}. Then for $X \subseteq M$ finite, and $b \in M$, we have the following estimate, uniformly:

$$
|\operatorname{acl}(X b) \cap J|=O(|\operatorname{acl}(X) \cap J|)
$$

Proof. Let $J(X)=\operatorname{acl}(X) \cap J, J(X b)=a c l(X b) \cap J$. It suffices to show that $\operatorname{dim}(J(X b) / J(X)=r k b$. As J is stably embedded with weak elimination of imaginaries, a basis B for $J(X b)$ modulo $J(X)$ will be independent from X over $J(X)$. Thus $\operatorname{dim}(J(X b) / J(X))=r k(B / X) \leq$ $r k(b / X) \leq r k b$.

Lemma 5.1.19. Let \mathcal{M} be a Lie coordinatized structure with finitely many sorts, J a b-definable Lie geometry. Then for X varying over algebraically closed subsets of \mathcal{M} we have

$$
|\operatorname{acl}(X b) \cap J|=O(|X|)
$$

Proof. All cases are controlled by the projective case, so we assume that J is projective. Let J^{\prime} be a canonical projective geometry nonorthogonal to J, with defining parameter $b^{\prime} \in d c l(b)$.

If $b^{\prime} \in \operatorname{acl}(X)$, then $\operatorname{acl}\left(X b^{\prime}\right) \cap J^{\prime} \subseteq X$ and otherwise, $\operatorname{acl}\left(X b^{\prime}\right) \cap J^{\prime}=$ \emptyset, so in any case $\left|\operatorname{acl}\left(X b^{\prime}\right) \cap J^{\prime}\right| \leq|X|$. Thus by the previous lemma

$$
|\operatorname{acl}(X b) \cap J| \leq\left|J^{\prime} \cap \operatorname{acl}(X b)\right|=O\left(\left|\operatorname{acl}\left(b^{\prime} X\right) \cap J^{\prime}\right|\right)=O(|X|)
$$

Proposition 5.1.20. Let \mathcal{M} be Lie coordinatizable, $D \subseteq \mathcal{M} 0$-definable of rank k. Then the number of types of elements of D over an algebraically closed set of order n in \mathcal{M} is $O\left(n^{k}\right)$.
Proof. Suppose first that $D=J$ is a coordinatizing geometry of \mathcal{M}. For algebraically closed X the types under consideration are determined by their restrictions to $X \cap J$. Thus we may assume $\mathcal{M}=J$ in this case. The statement is then clear by inspection. For example, in the presence of a quadratic form, the behavior of the the form on an extension of a subspace by a single point is determined by its value on the additional point and an induced linear function defined on the subspace. If the geometry is affine the situation remains much the same.

We turn to the general case. We may assume that D is the locus of a single type. Take $c \in D$ of rank k and $b \in \operatorname{acl}(c)$ of rank $k-1$ supporting a coordinate geometry J_{b}, with $a \in J_{b}$ such that $c \in a c l(b a)$. Let $D^{\prime}, D^{\prime \prime}$, and $D^{\prime \prime \prime}$ be the loci of the types of $b, b a$, and bac respectively. Inductively, the number of types of elements of D^{\prime} over an algebraically
closed subset X of order n is $O\left(n^{k-1}\right)$. By Lemma 5.1 .19 for $b \in D^{\prime}$ we have $|\operatorname{acl}(X b) \cap J|=O(|X|)$ and thus the number of types in J over $\operatorname{acl}(X b)$ is also $O(|X|)$. Thus the number of types in $D^{\prime \prime}$ over X is $O\left(n^{k}\right)$. As $D^{\prime \prime \prime}$ is a finite cover of $D^{\prime \prime}$ the number of types of elements in $D^{\prime \prime \prime}$ is also $O\left(n^{k}\right)$ and as the types of elements of D lift to types of elements of $D^{\prime \prime \prime}$ this bound applies to $D^{\prime \prime \prime}$.

Definition 5.1.21. For D a definable set let $s(D, n)$ denote the minimum number of types of elements of D existing over a subset of D of order n.

Observe, for example, that in one of the standard geometries this will be $O(n)$, with the optimal subset being as close to a subspace as possible.

The following corollary depends on estimates for the sizes of envelopes to be given shortly.
Corollary 5.1.22. Let \mathcal{M} be Lie coordinatized with finitely many sorts, D a 0-definable subset of \mathcal{M}. Then $s(D, n)$ is polynomially bounded.

Proof. We show in Proposition 5.2.2 below that the size of D in an envelope E is given by a polynomial function of certain quantities q^{d}, q being approximately the size of the base field and d varying over the dimensions of E. Varying just one of these dimensions, we can find envelopes in which the size of D is asymptotically a constant times q^{d} for some d. Thus for m large we can find envelopes E in which the size of D is comparable to m; that is, $m \leq|D| \leq(q+\epsilon) m$. Thus taking X to be a subset of $D \cap E$ of order m and applying the previous result, we get the desired bound.

We mention two problems. The first relates to the amalgamation of types.

Problem 1. Find independent elements a_{1}, a_{2}, a_{3} such that there is no B independent from $a_{1} a_{2} a_{3}$ for which:

$$
\operatorname{tp}\left(a_{1} a_{2} / B\right) \cup \operatorname{tp}\left(a_{1} a_{3} / B\right) \cup t p\left(a_{2} a_{3} / B\right) \text { determines } \operatorname{tp}\left(a_{1} a_{2} a_{3} / B\right)
$$

Problem 2. Are types over envelopes uniformly definable?

5.2 THE SIZES OF ENVELOPES

We deal here with the computation of the size of an envelope as a function of its dimensions, and also with the sizes of the automorphism groups. We wish to express the sizes of envelopes as polynomial functions of the relevant data, and to do so it will be convenient to work with square roots of the sizes of the associated fields.

Notation 5.2.1. Let \mathcal{M} be Lie coordinatized and pa canonical projective geometry. For an envelope E we let $d_{E}(p)$ be the corresponding dimension (or cardinality in the degenerate case) and we let $d_{E}^{*}(p)=$ $(-\sqrt{q})^{d_{E}(p)}$, where q is the size of the base field; in the degenerate case we set $d^{*}(p)=\sqrt{d(p)}$. When E is understood we write $d(p)$ and $d^{*}(p)$.

Proposition 5.2.2. Let \mathcal{E} be a family of envelopes for the Lie coordinatized structure \mathcal{M} such that for each dimension p corresponding to an orthogonal space, the signature and the parity of the dimension is constant on the family. Then there is a polynomial ρ in several variables such that for every E in $\mathcal{E},|E|=\rho\left(d^{*}(E)\right)$, where $d^{*}(E)$ is the vector $\left(d_{E}^{*}(p)\right)$. The total degree of ρ is $2 \operatorname{rk}(\mathcal{M})$ and all leading coefficients are positive. If \mathcal{M} is the locus of a single type (with the coordinatization in $\mathcal{M}^{\text {eq }}$), then ρ is a product of polynomials in one variable.

Proof. We show that for any definable set D_{a} of \mathcal{M}, there is a polynomial of the type described giving the cardinality of D_{a} in any $E \in \mathcal{E}$ which contains the parameter a. We may suppose that D_{a} is the locus of a single type over a. We will proceed by induction on $\operatorname{rk}\left(D_{a}\right)$.

Take $d \in D_{a}$ and $c \in \operatorname{acl}(a d)$ lying in an a-definable geometry J, which we may take to be degenerate, linear, or affine, with associated canonical projective p. Let $D_{a c}^{\prime}$ be the set of realizations of $t p(d / a c)$. Then we may take $\rho_{D_{a}}=\rho_{J} \rho_{D_{a c}}^{\prime} / \operatorname{Mult}(c / a d)$. This reduces to the case $D=J$.

If J is affine or quadratic, add a parameter to reduce to a basic linear geometry J. Then the dimension of J in E is $d_{E}(p)$ minus a constant depending on the type of a. Thus it suffices to find a polynomial giving the number of realizations of a type in J in terms of $d_{E}^{*}(p)$ or equivalently in terms of the corresponding expression $(\pm \sqrt{q})^{\operatorname{dim} J}$. The essential point is to compute the sizes of sets defined by equations $Q(x)=\alpha$ with Q a quadratic or unitary form. Let $n(d, \alpha)$ be this cardinality as a function of the dimension and α, depending also the type of the geometry. These are straightforward computations. We give details.

In the orthogonal case we can break up the space as the orthogonal sum of a $2 i$-dimensional space H with a standard form $Q(\bar{\alpha}, \bar{\beta})=\sum \alpha_{i} \beta_{i}$ and a complement of dimension $j \leq 2$. So on H we have $n(2 i, 0)=$ $\left(q^{i}-1\right) q^{i-1}+q^{i}$ and $n(2 i, \alpha)=\left(q^{2 i}-n(2 i, 0)\right) /(q-1)$ for $\alpha \neq 0$. Thus on the whole space

$$
n(2 i+j, \alpha)=n(2 i, 0) n(j, \alpha)+\left[\left(q^{2 i}-n(2 i, 0) /(q-1)\right]\left(q^{j}-n(j, \alpha)\right)\right.
$$

where the parameter n is computed with respect to the corresponding induced form. This simplifies to

$$
n(2 i+j, \alpha)=q^{i} n(i, \alpha)+q^{j-1}\left(q^{2 i}-q^{i}\right)
$$

and for small $i n(i, \alpha)$ is treated as a constant, corresponding to the particular form used.

In the unitary case $n(d, \alpha)$ is independent of α for α nonzero and thus it suffices to compute $n(d, 0)$. Using an orthonormal basis and proceeding inductively one gets $n(d, 0)=q^{d-1}(\sqrt{q}+1)-n(d-1,0) \sqrt{q}$ and then $n(d, 0)=q^{d} / \sqrt{q}+(-\sqrt{q})^{d-1}(1-\sqrt{q})$.
Remarks 5.2.3. If we are working with graphs, for example, the number of edges is given by a polynomial. The polynomials ρ can be determined given a sufficiently large envelope in which the subenvelopes are known.

We now discuss the chief factors of automorphism group of an envelope, which are the successive quotients in a maximal chain of normal subgroups of this group.

Lemma 5.2.4. Let G be the automorphism group of the envelope $E(d)$ in a Lie coordinatized structure \mathcal{M}. Then the number of chief factors of G is bounded, independently of d, and each chief factor is of one of the following kinds:

1. abelian;
2. $H^{\rho(d)}$, where H is a fixed finite group and ρ is one of the functions described in the preceding proposition;
3. $K^{\rho(d)}$, with $\rho(d)$ as in the preceding proposition and K a classical group $\operatorname{PSL}\left(d_{i}, q_{i}\right), \operatorname{PSp}\left(d_{i}, q_{i}\right), \operatorname{P} \Omega^{ \pm}\left(d_{i}, q_{i}\right), \operatorname{PSU}\left(d_{i}, q_{i}\right)$, or $\operatorname{Alt}\left(d_{i}\right)$ as appropriate to the ith dimension.

Proof. Once the dimensions are sufficiently large, the socle of the automorphism group of one layer of the coordinate tree over the previous layer is of the form (3) or abelian, unless the geometry is finite (in \mathcal{M}), with the number of factors corresponding to the size of a definable set modulo an equivalence relation. The remainder of the automorphism
group at that layer is solvable. If the layer consists of copies of a finite geometry, consider a chief factor H / K with H, K Aut (E)-invariant subgroups acting trivially on the previous layer. Let A be the automorphism group of the finite geometry involved, and let L be the part of E lying in the previous level of the coordinate tree, so that H, K lie in A^{L}. If H / K is nonabelian then it is a product of a certain number of copies of a single isomorphism type of finite simple group S. The number of factors is the order of L modulo the equivalence relation: $a \sim b$ if the projection of H / K onto $A_{a} \times A_{b}$ is a diagonal subgroup isomorphic to S. This relation is $\operatorname{Aut}(E)$-invariant and hence definable. Thus the number ρ of factors involved is equal to the size of a definable set in an envelope (a definable quotient of L).
Corollary 5.2.5. Let \mathcal{M} be a Lie coordinatized structure. Then for the dimension function d large enough, Aut $(E(d))$ determines d up to a permutation of the coordinates and up to orientation in the odddimensional orthogonal case.

Proof. Let f be a bound on the size of the chief factors of the second type above. Let d be large enough that the chief factors of the third type are all of order greater than f. Then these chief factors can be recovered from the automorphism group unambiguously and the data d can be read off.

Lemma 5.2.6. Let \mathcal{M} be a Lie coordinatized structure and D a definable subset. Then the following are equivalent:

1. $r k(D)<r k(\mathcal{M})$.
2. $\left.\lim _{E \rightarrow \mathcal{M}}|D[E]| /|E|\right)=0$.

Here the limit is taken over envelopes whose dimensions all go to infinity, and $D[E]$ means D taken in E, which for large enough E is $D \cap E$. The convergence is exponentially rapid if all geometries are nondegenerate.

Proof. We compare the polynomials ρ_{D}, ρ_{E} giving the sizes of D and E.

If the ranks are equal, then both polynomials have positive leading coefficients and total degree $2 r k(\mathcal{M})$. For each dimension $d_{i}, \rho_{D}, \rho_{E}$ involve the parameter $d_{i}^{*}=\alpha_{i}^{d_{i}}$ for an appropriate α_{i} (read this expression as d_{i} in the degenerate case). Let the dimensions d_{i} be taken momentarily as arbitrary real numbers going jointly to infinity along the curve $d_{1}^{*}=d_{2}^{*}=\ldots$, so that the polynomials ρ_{D}, ρ_{E} reduce to one variable polynomials converging to a positive γ. After a slight perturbation we may suppose that d_{1}, d_{2}, \ldots are rational, that ρ_{D} / ρ_{E} approaches γ, and that the terms of total degree less than $2 \operatorname{rk}(\mathcal{M})$ make a negligible con-
tribution. After rescaling by a common denominator, the "dimensions" are integers, the ratio of the highest order parts of ρ_{D} and ρ_{E} goes to γ, and the lower-order terms are even more negligible. Thus we have a sequence of dimension assignments tending jointly to infinity on which the quotient ρ_{D} / ρ_{E} will not go to zero.

Now assume that $r k(D)<r k(\mathcal{M})$. We may take D, E to be realizations of single types, so that ρ_{D} and ρ_{E} factor as products of polynomials in one variable $\rho_{D, i}, \rho_{E, i}$. The ratios $\rho_{D, i} / \rho_{E, i}$ are bounded, as otherwise varying only the one relevant dimension we would get a proper subset with more elements than the whole set E. On the other hand at least one of the $\rho_{D, i}$ has degree less than the degree of $\rho_{E, i}$ so the limit goes to 0 (rapidly, if the geometry is nondegenerate).

We now prove a finitary Löwenheim-Skolem principle.
Lemma 5.2.7. Let \mathcal{M} be Lie coordinatized. For any subset X of \mathcal{M} there is an envelope E of \mathcal{M} containing X, in which each dimension is at most $2 \operatorname{rk}(X) \leq 2 \operatorname{rk}(\mathcal{M}) \cdot|X|$.

Proof. Let J_{1}, \ldots, J_{n} be the $\operatorname{acl}(\emptyset)$-definable dimensions, and $E_{i}=\operatorname{acl}(X) \cap J_{i}$. The dimension of E_{i} is at most $r k(X)$. If the geometry J_{i} carries a form then increase E_{i} to a nondegenerate subspace, of dimension at most $2 r k(X)$. Let \mathcal{M}^{\prime} be a maximal algebraically closed subset of \mathcal{M} containing X, and such that $M^{\prime} \cap J_{i}=E_{i}$. Then \mathcal{M}^{\prime} is Lie coordinatized and has smaller rank, unless these geometries are finite, in which case iteration of the process will eventually lower the rank or the height of the coordinatizing tree. By induction on rank we may suppose that in \mathcal{M}^{\prime} there is an envelope E with the desired properties. This will then be an envelope in \mathcal{M}, with the desired properties.

Remark 5.2.8. The existence of indiscernible sets of order n in all large finite structures with a fixed number of 5-types is proved in [CL]. In particular, an infinite quasifinite structure contains an infinite set of indiscernibles. Conversely, from the latter result it follows that there is a constant c such that for large n, a pseudofinite structure with at least c^{n} elements contains a sequence of indiscernibles of length n. This follows from the last lemma using the bounds on the sizes of envelopes, since the ranks involved can be bounded in terms of the number of 4-types. It is possible that an explicit bound of this kind can also be extracted by tracing through the arguments in [CL].

Problem 3. Do the abelian chief factors of automorphism groups of envelopes have orders $p^{\sigma\left(d, d^{*}\right)}$ with σ a polynomial similar to ρ-in particular, a product of polynomials in one variable (i.e., depending on one dimension)?

One can treat the case of affine covers by dualization, reducing to finite covers. Then by results in $[\mathrm{EH}]$ the problem reduces to the following: if J is a definable combinatorial geometry on a definable set D of a Lie structure \mathcal{M}, which is subordinate to algebraic closure, show that the dimension of J in an envelope of \mathcal{M} is given by a polynomial in d, d^{*}.

5.3 NONMULTIDIMENSIONAL EXPANSIONS

We show here that Lie coordinatizable structures have "nonmultidimensional" expansions, lifting [HrTC, §3] to the present context. As in that earlier case, the difficulty lies in the interaction of orthogonal geometries, which means that the outer automorphism groups may be related even if the simple parts of the groups are not.

Definition 5.3.1. A Lie coordinatized structure is said to be nonmultidimensional if it has only finitely many dimensions, or equivalently (and more explicitly) if all canonical projectives are definable over acl($($).

Proposition 5.3.2. Every Lie coordinatized structure can be expanded to a nonmultidimensional Lie coordinatized structure.

Proof. We use a locally transitive coordinatizing tree, meaning that the type of a point at a given level depends only on the level. We also allow the introduction of a finite number of additional sorts, each carrying a single basic geometry.
Let M_{i} be the coordinatizing tree up to level i together with the elements of the special sorts, and let Δ be the set of indices i for which the geometries J_{a} associated to points at level i are orthogonal to M_{i}. We proceed by induction on M_{i}, the case $\Delta=\emptyset$ being the nonmultidimensional case. So we take Δ nonempty.
Now let $n \in \Delta$ be maximal. Let T_{n} be the set of elements lying at level n in the coordinatizing tree. For $a \in T_{n}$ let $P_{a^{\prime}}$ be the canonical projective geometry associated with P_{a} and let q be the type of a^{\prime}. Let $V_{a^{\prime}}$ be the corresponding linear geometry. If these linear geometries are not actually present in the structure, we may attach them freely to the canonical projectives. (In the degenerate case, the geometry is considered to be both linear and projective.) The isomorphism type of $V_{a^{\prime}}$ is independent of a^{\prime}, but there will not be any system of identifications present between the various $V_{a^{\prime}}$.
Suppose for definiteness that $V_{a^{\prime}}$ is of orthogonal type in odd characteristic, with base field $K_{a^{\prime}}$, and bilinear form $B_{a^{\prime}}: V_{a^{\prime}} \times V_{a^{\prime}} \rightarrow L_{a^{\prime}}$, a 1-dimensional $K_{a^{\prime}}$-space. Fix a copy K of the base field, and a 1 dimensional space L over K. Fix a 2 -dimensional space U_{\circ} over K and a nondegenerate bilinear form ($)_{\circ}: U_{0} \times U_{0} \rightarrow L$ which takes the value 0 at some nonzero point. The pair $\left(U_{\mathrm{o}},()_{\circ}\right)$ is unique up to an isomorphism fixing K and L.
Now let U_{1}, Q_{1} be an infinite dimensional nondegenerate orthogonal space over the prime field $F \leq K$ and set $U=U_{1} \otimes U_{\circ}$ as a K-space. The forms (, $)_{\circ}$ and $(,)_{1}$ induce a bilinear form (,) on U satisfying $\left(a_{1} \otimes\right.$
$\left.a_{\circ}, b_{1} \otimes b_{\circ}\right)=\left(a_{1}, b_{1}\right)_{1} \cdot\left(a_{\circ}, b_{\circ}\right)_{\circ}$. This makes sense by the universal property of tensor products. Let Γ be the family $\left\{a \otimes U_{\circ}: a \in U_{1}\right\}$. Then

Any automorphism h of (K, L) extends to an automorphism of U fixing Γ pointwise.

The uniqueness of U_{0} signifies that h extends to U_{0}. To extend to U fix U_{1} pointwise. Then Γ is fixed pointwise.

Add U as a new sort. For b satisfying q pick isomorphisms $h_{b}: U \rightarrow V_{b}$, and let $\Gamma_{b}=h_{b}[\Gamma]$. Let \mathcal{M}^{\prime} be \mathcal{M} expanded by the sort U and a family of maps $f_{b}: \Gamma \rightarrow \Gamma_{b}$ for b satisfying q. f_{b} is to be coded by a ternary relation on $q \times U \times \bigcup_{b} V_{b}$. h_{b} is not part of the structure but the sets Γ and Γ_{b} can be recovered from f_{b} in $\left(\mathcal{M}^{\prime}\right)^{\text {eq }}$. We claim that \mathcal{M}^{\prime} remains 4 -quasifinite and that Δ is reduced by 1 .

By a normal subset of $\mathcal{M}^{\text {eq }}$ we mean a union of 0-definable sets. The restriction of a normal subset to a finite number of sorts is then 0 -definable. We consider normal subsets S satisfying the additional condition:

$$
\text { For } b \text { satisfying } q, V_{b} \text { is orthogonal to } S \text {. }
$$

This means that any basic geometry corresponding to V_{b} (with $\operatorname{acl}(b)$ fixed) is orthogonal to S. Let Q be a maximal normal subset of this type containing T_{n}. Then Q contains the locus of q and is algebraically closed. We claim that Q is also stably embedded in \mathcal{M}, since for any projective or affine geometry in Q, if the dual exists in \mathcal{M}, then it is contained in Q.

We claim now:
For any automorphisms α of Q and β of U,
the map $\alpha \cup \beta$ is induced by an automorphism of \mathcal{M}^{\prime}.
Let $Q_{1}=Q \cup \bigcup_{b} V_{b}$. Then Q_{1}, like Q, is stably embedded in \mathcal{M}. We first extend $\alpha \cup \beta$ to Q_{1}. For b satisfying q, α induces maps $K_{b} \rightarrow K_{\sigma b}$ and L_{b} to $L_{\sigma b}$. By (1) these maps are induced by a linear isomorphism θ_{b} : $V_{b} \rightarrow V_{\sigma b}$ compatible with $f_{\sigma b} \beta f_{b}^{-1}$. Using the orthogonality condition, $\alpha \cup \beta \cup \bigcup_{b} \theta_{b}$ is elementary and extends to an automorphism of \mathcal{M}^{\prime}.

It remains to be seen that apart from the introduction of U, the rest of the coordinatization of \mathcal{M} is unaffected; specifically, if J_{c} is a canonical projective geometry of \mathcal{M} orthogonal to the geometries V_{b}, then
J_{c} has no extra structure as a subset of \mathcal{M}^{\prime};
If J_{c} is stably embedded in \mathcal{M}, then it remains stably embedded in \mathcal{M}^{\prime}

We may assume that J_{c} is stably embedded in \mathcal{M}. If J_{c} is contained in Q this follows from (2), and otherwise any automorphism of J_{c} fixing
$\operatorname{acl}(c)$ extends to an automorphism of \mathcal{M} fixing Q_{1} pointwise. This is then elementary in \mathcal{N}^{\prime}.

This completes the orthogonal case in odd characteristic. The linear, symplectic, and unitary cases are similar, with the auxiliary space $U_{\circ} 1$ dimensional in the unitary case. In the orthogonal case in characteristic 2 , the orthogonal geometry is an enrichment of a symplectic geometry and we may suppose that the pure symplectic space occurs as well, and that the quadratic form used occurs also as a point in an associated quadratic geometry. Then we can switch to the symplectic case. Similarly, in the case of a polar geometry $\left(V, V^{*}\right)$ reduce the scalars to the prime field and introduce linear isomorphisms $\iota_{V}: V \rightarrow V^{*}$. This can be done without destroying outer automorphisms and brings us back to the symplectic case.
Proposition 5.3.3. For \mathcal{M} quasifinite the following are equivalent:

1. \mathcal{M} is stable.
2. \mathcal{M} is \aleph_{0}-stable.
3. \mathcal{M} does not interpret a polar space.

Proof. We must show that (3) implies (2). So assume (3). In particular none of the canonical geometries for \mathcal{M} involve bilinear forms. The geometries occurring are therefore all strongly minimal and stably embedded. Morley rank is subadditive in the \aleph_{0}-categorical setting, for stably embedded definable subsets (cf. [HrTC]), so using the coordinatization, \mathcal{M} has finite Morley rank.

Remarks 5.3.4

As the class of stable polar spaces is the class of finite polar spaces, which is not an elementary class, the notion of a stable quasifinite structure in a given language is not an elementary notion. On the other hand, for a fixed finite language L, the class of stable homogeneous L structures is elementary [CL]. This can be seen fairly directly as follows. By a result of Macpherson [Mp1] in a finitely homogeneous structure, no infinite group is interpretable. In particular for finitely homogeneous structures, quasifiniteness and stability are equivalent. But for finitely homogeneous structures quasifiniteness is elementary.

Although we work outside the stable context, we still require the analysis of [CL] for primitive groups with nonabelian socle, which enters via [KLM].

5.4 CANONICAL BASES

We do not have a theory of canonical bases as such, but the following result serves as a partial substitute.

Proposition 5.4.1. Let \mathcal{M} be \aleph_{0}-categorical of finite rank. Suppose that a_{1}, a_{2}, a_{3} is a triple of elements which are independent over a_{1}, over a_{2}, and over a_{3}. Then a_{1}, a_{2}, a_{3} are independent over the intersection of $\operatorname{acl}\left(a_{i}\right), i=1,2,3$, in $\mathcal{M}^{\text {eq }}$.
We begin with a few lemmas.
Lemma 5.4.2. Let \mathcal{M} be \aleph_{0}-categorical of finite rank and let R be a O-definable symmetric binary relation satisfying

Whenever $R(a, b), R(b, c)$ hold with a, c independent over b, then $R(a, c)$ holds and b, c are independent over a.

Then there is a 0-definable equivalence relation E such that

$$
\begin{aligned}
& R(a, b) \text { implies the following: } \\
& E(a, b) \text { holds and } a, b \text { are independent over } a / E=b / E .
\end{aligned}
$$

Proof. We define $E(a, b)$ as follows: For some c independent from a over b and from b over $a, R(a, c)$ and $R(b, c)$ holds.

We check first that R implies E. If $R(a, b)$ holds, choose c independent from a over b such that $R(c, b)$ holds. Then by $(*) R(a, c)$ holds and c is independent from b over a. Thus E holds. The domain of E is the same as the domain of R and E is clearly reflexive and symmetric on this domain. We now check transitivity.

Suppose $E\left(a_{1}, a_{2}\right)$ and $E\left(a_{2}, a_{3}\right)$ hold and let a_{12}, a_{23} be witnesses. Thus we have $R\left(a_{i}, a_{i j}\right) ; R\left(a_{j}, a_{i j}\right)$; and $a_{i j}$ is independent from a_{i} over a_{j} and from a_{j} over a_{i}. As a_{12} is independent from a_{1} over a_{2}, we may take it independent from $a_{1} a_{2} a_{3}$ over a_{2}; and similarly for a_{23}. Furthermore, we may take a_{12}, a_{23} independent over a_{1}, a_{2}, a_{3} and hence over a_{2}. From $R\left(a_{2}, a_{12}\right)$ and $R\left(a_{2}, a_{23}\right)$ we then deduce $R\left(a_{12}, a_{23}\right)$.

Pick c independent from $a_{1} a_{2} a_{3} a_{23}$ over a_{12} such that $R\left(a_{12}, c\right)$ holds. We claim then:

$$
\begin{align*}
& R\left(a_{i}, c\right) \text { holds for all } i, \text { and } \tag{1}\\
& c \text { is independent from } a_{i j} \text { over } a_{i} \text { and over } a_{j} .
\end{align*}
$$

First, since c is independent from a_{23} over a_{12} we get $R\left(a_{23}, c\right)$ and c is independent from a_{12} over a_{23}; the latter implies that c is independent from $a_{1} a_{2} a_{3} a_{12}$ over a_{23}. So c is independent from a_{1} or a_{2} over c_{1}, and from a_{2} or a_{3} over c_{2}. By another application of $(*)$ the relation (1) follows.

Now using (1) we get c independent from $a_{1} a_{2} a_{3} a_{12} a_{23}$ over each a_{i} and, in particular, c is independent from a_{3} over a_{1} and from a_{1} over a_{3}; so $E\left(a_{1}, a_{3}\right)$ is witnessed by c. Thus E is transitive.

Finally, we must show that if $R(a, b)$ holds and $c=a / E=b / E$, then a, b are independent over c. Let a^{\prime} realize the type of a over c with a^{\prime} independent from a over c. We will show then that a and b are independent over a^{\prime} and thus a and b are independent over c.

As $E\left(a, a^{\prime}\right)$ holds, there is d satisfying
$R(a, d), R\left(a^{\prime}, d\right)$, and d is independent from a over a^{\prime} and from a^{\prime} over a.

We will take a^{\prime}, d independent from b over a. In particular we have a^{\prime} independent from b over $a d$, and b independent from d over a; the latter, with $(*)$, gives b independent from a over d and then combined with the former, we get $a a^{\prime}$ independent from b over d, hence a independent from b over $a^{\prime} d$. As a is independent from d over c we get finally a independent from b over a^{\prime}.

Definition 5.4.3. Let a_{1}, \ldots, a_{n} be a sequence of elements in a structure of finite rank.

1. The sequence is said to be 1-locally independent if it is independent over any of its elements.
2. We set $\delta\left(a_{1}, \ldots, a_{n}\right)=\sum_{i} r k a_{i}-r k\left(a_{1} \ldots a_{n}\right)$.

Lemma 5.4.4. Let \mathcal{M} be a structure of finite rank, $\mathbf{a}=a_{1}, \ldots, a_{n} a$ sequence of elements. Then the sequence \mathbf{a} is 1-locally independent if and only if:

$$
\begin{gathered}
\text { The quantity } \delta=\delta\left(a_{i} a_{j}\right) \text { is independent of } i, j \text { (distinct); } \\
\text { and } \delta(\mathbf{a})=(n-1) \delta .
\end{gathered}
$$

Proof. We have in general for any fixed index k, writing \sum^{\prime} for a sum excluding the index k :

$$
\begin{aligned}
\delta(\mathbf{a}) & =\sum_{i} r k\left(a_{i}\right)-\left(r k\left(\mathbf{a} / a_{k}\right)+r k\left(a_{k}\right)\right) \\
& =\sum_{i}^{\prime} r k\left(a_{i}\right)-r k\left(\mathbf{a} / a_{k}\right) \\
& \geq \sum^{\prime} r k\left(a_{i}\right)-\sum^{\prime} r k\left(a_{i} / a_{k}\right)=\sum^{\prime} \delta\left(a_{i}, a_{k}\right)
\end{aligned}
$$

with equality if and only if \mathbf{a} is independent over a_{k}. Thus if $\delta=\delta\left(a_{i}, a_{j}\right)$ is constant and $\delta(\mathbf{a})=(n-1) \delta$, then we have equality regardless of the
choice of k and the sequence is 1 -locally independent, while, conversely, if the sequence is 1-locally independent, then $\delta(\mathbf{a})=\sum^{\prime} \delta\left(a_{i} a_{k}\right)$ for any k and it suffices to check that the $\delta\left(a_{i} a_{j}\right)$ are independent of i, j. But the restriction of \mathbf{a} to any three terms $a_{i}, a_{i^{\prime}}, a_{i^{\prime \prime}}$ remains 1-locally independent, and applying our equation to a sequence of length 3 with $k=i^{\prime}$ or $k=i^{\prime \prime}$ yields $\delta\left(i, i^{\prime}\right)=\delta\left(i, i^{\prime \prime}\right)$, from which it follows that δ is constant.

Lemma 5.4.5. Let \mathcal{M} be a structure of finite rank.

1. Suppose that $\mathbf{a}=a_{1}, a_{2}, a_{3}, a_{4}$ is a sequence with a_{1}, a_{2}, a_{3}, and a_{2}, a_{3}, a_{4} 1-locally independent. If a_{1} and a_{4} are independent over $a_{2} a_{3}$, then \mathbf{a} is 1-locally independent.
2. If $\mathbf{a}=a_{1} a_{2} b_{1} b_{2} c_{1} c_{2}$ is a sequence whose first four and last four terms are 1-locally independent, and $a_{1} a_{2}$ is independent from $c_{1} c_{2}$ over $b_{1} b_{2}$, then \mathbf{a} is 1-locally independent.
Proof. Ad 1. We have $\delta\left(a_{i} a_{j}\right)=\delta$ constant with the possible exception of the pair a_{1}, a_{4}, and repeating the calculation of the previous lemma over $a_{2} a_{3}$ rather than a_{k}, using $r k\left(a_{1} a_{2} a_{3} a_{4} / a_{2} a_{3}\right)=r k\left(a_{1} / a_{2} a_{3}\right)+$ $r k\left(a_{4} / a_{2} a_{3}\right)$, we get $\delta(\mathbf{a})=3 \delta$. Thus it remains only to be checked that $\delta\left(a_{1} a_{4}\right)=\delta$. We may show easily that \mathbf{a} is independent over a_{2} or over a_{3}, starting from the independence of $a_{1} a_{2} a_{3}$ from a_{4} over $a_{2} a_{3}$. Thus

$$
\begin{aligned}
r k a_{2}-\delta & =r k\left(a_{2} / a_{1}\right) \geq r k\left(a_{2} / a_{1} a_{4}\right) \geq r k\left(a_{2} / a_{1} a_{3} a_{4}\right) \\
& =r k\left(a_{2} / a_{3}\right)=r k\left(a_{2}\right)-\delta
\end{aligned}
$$

and, in particular, we have the equation $r k\left(a_{2} / a_{1} a_{4}\right)=r k\left(a_{2}\right)-\delta$. Now

$$
\begin{aligned}
r k(\mathbf{a}) & =r k\left(a_{1} a_{4}\right)+r k\left(a_{2} / a_{1} a_{4}\right)+\operatorname{rk}\left(a_{3} / a_{1} a_{2} a_{4}\right) \\
& =r k\left(a_{1} a_{4}\right)+\left(r k\left(a_{2}\right)-\delta\right)+\operatorname{rk}\left(a_{3}\right)-\delta
\end{aligned}
$$

and thus

$$
3 \delta=\sum r k\left(a_{i}\right)-r k(\mathbf{a})=\delta\left(a_{1} a_{4}\right)+2 \delta
$$

and $\delta\left(a_{1} a_{4}\right)=\delta$.
Ad 2. It is straightforward that \mathbf{a} is independent over b_{1} or over b_{2} and by symmetry it will be sufficient to prove that \mathbf{a} is independent over a_{1}.

We have by assumption $c_{1} c_{2}$ independent from $a_{1} a_{2} b_{1} b_{2}$ over $b_{1} b_{2}$ and thus c_{1} is independent from $a_{1} a_{2} b_{1} b_{2}$ over $b_{1} b_{2} c_{2}$, but also c_{1} is assumed independent from $b_{1} b_{2} c_{2}$ over c_{2}, and thus

$$
c_{1} \text { is independent from } a_{1} a_{2} b_{1} b_{2} c_{2} \text { over } c_{2} .
$$

In particular, $c_{1} c_{2}$ is independent from $a_{1} b_{1} b_{2}$ over $a_{1} c_{2}$. By Case 1 $a_{1} b_{1} b_{2} c_{2}$ is 1-locally independent and is, in particular, independent over a_{1}, so from the previous relation we derive the independence of $c_{1} c_{2}$ from $b_{1} b_{2}$ over a_{1}. Combining this with the independence of $c_{1} c_{2}$ from $a_{1} a_{2} b_{1} b_{2}$ over $b_{1} b_{2}$, we find that $c_{1} c_{2}$ is independent from $a_{1} a_{2} b_{1} b_{2}$ over a_{1}. Now c_{1} is independent from c_{2} over $b_{1} b_{2}$ and $c_{1} c_{2}$ is independent from a_{1} over $b_{1} b_{2}$ so c_{1} is independent from c_{2} over $a_{1} b_{1} b_{2}$, and hence, by transitivity, over a_{1}. Thus $a_{1} a_{2} b_{1} b_{2}$ is independent over $a_{1}, c_{1} c_{2}$ is independent from $a_{1} a_{2} b_{1} b_{2}$ over a_{1}, and c_{1} is independent from c_{2} over a_{1}. Thus a is independent over a_{1}.
Proof of Proposition 5.4.1. We have $a_{1}, a_{2}, a_{3} 1$-locally independent. Let X be the set of pairs $x=\left(x_{1}, x_{2}\right)$ such that each coordinate x_{1} or x_{2} realizes the type of one of the three elements a_{i}, and define a relation R on X by: $R(x, y)$ if and only if $x_{1}, x_{2}, y_{1}, y_{2}$ is a 1-locally independent quadruple. We will apply Lemma 5.4 .2 to R. Note first that if $R(x, y)$ and $R(y, z)$ hold with x and z independent over y then the 6 -tuple (x, y, z) satisfies the conditions of case 2 of the previous lemma, and thus the six coordinates form a 1-locally independent sequence. Thus Lemma 1 applies and there is a 0 -definable equivalence relation E such that

$$
R(x, y) \text { implies: } E(x, y), \text { and } x, y \text { are independent over } x / E .
$$

Now consider the 1-locally independent triple $\left(a_{1}, a_{2}, a_{3}\right)$. We extend it by two further elements a_{4}, a_{5} satisfying the following conditions: $\operatorname{tp}\left(a_{i} / a_{2} a_{3}\right)=\operatorname{tp}\left(a_{1} / a_{2} a_{3}\right)$, for $i=4,5 ; a_{4}$ independent from a_{1} over $a_{2} a_{3}$; and a_{5} is independent from a_{1}, a_{4} over a_{2}, a_{3}. We claim that any 4 -tuple from $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ is 1-locally independent. This follows from Lemma 5.4.5, part (1), for $a_{1} a_{2} a_{3} a_{4}, a_{1} a_{2} a_{3} a_{5}$, or $a_{2} a_{3} a_{4} a_{5}$. In the remaining two cases, $a_{1} a_{2} a_{4} a_{5}$ and $a_{1} a_{3} a_{4} a_{5}$, we need to check that a_{5} is independent from a_{4} over $a_{1} a_{2}$ or $a_{1} a_{3}$. But a_{5} is independent from a_{4} over $a_{1} a_{2} a_{3}$ and from $a_{1} a_{2} a_{3}$ over a_{2} or a_{3}. Thus all of these 4 -tuples are 1-locally independent, and hence any two disjoint pairs are E-equivalent; and by transitivity any two pairs are E-equivalent. Let e be the common E-class of these pairs. Then $a_{1} a_{2}$ is independent from $a_{3} a_{4}$ over e and $a_{1} a_{3}$ is independent from $a_{2} a_{4}$ over e. In particular, working over e we have a_{3} independent from $a_{1} a_{2}$, and a_{1} independent from a_{2}, and thus $a_{1} a_{2} a_{3}$ is an independent set over e. It remains only to be checked that e is algebraic over each a_{i}. Certainly $e \in \operatorname{acl}\left(a_{1} a_{2}\right)$ and $\operatorname{acl}\left(a_{3} a_{4}\right)$, and as these pairs are independent over any a_{i}, we have $e \in \operatorname{acl}\left(a_{i}\right)$ for all i.

5.5 MODULARITY

Definition 5.5.1. Let \mathcal{M} be \aleph_{0}-categorical of finite rank. \mathcal{M} is modular if whenever A_{1}, A_{2} are algebraically closed sets in $\mathcal{M}^{\mathrm{eq}}$, they are independent over their intersection.

By convention acl will always be taken to operate in $\mathcal{M}^{\text {eq }}$. This point may be reemphasized occasionally.

Modularity, as defined here, is called "local modularity" in the literature dealing with the case of finite Morley rank, where the term "modular" is applied only to strongly minimal sets D which in addition to the stated property have "geometric elimination of imaginaries": for $a \in D^{\text {eq }}$, there is $A \subseteq D$ with $\operatorname{acl}(e)=\operatorname{acl}(A)$.

As a matter of notation we will use the symbol \perp for independence, a symbol which is more often used for model theoretic orthogonality; but the latter concept does not really call for any special notation in our present development.

Lemma 5.5.2. Let \mathcal{M} be \aleph_{0}-categorical of finite rank. Then \mathcal{M} is modular if and only if the lattice of algebraically closed subsets of $\mathcal{M}^{\mathrm{eq}}$ satisfies the modular law:

$$
a \wedge(b \vee c)=b \vee(a \wedge c) \text { for } b \leq a
$$

Proof. Suppose \mathcal{M} is modular, and A, B, C are algebraically closed subsets of $\mathcal{M}^{\text {eq }}$ with $B \subseteq A$. Our claim is

$$
A \cap(\operatorname{acl}(B C))=\operatorname{acl}(B \cup(A \cap C))
$$

the modular law. From modularity applied to A, C, as $B \subseteq A$ we deduce easily that $A \perp B C$ over $B \cup(A \cap C)$. Thus $A \cap \operatorname{acl}(B C)=$ $\operatorname{acl}(B \cup(A \cap C))$.

In the converse direction, assume the modular law in $\mathcal{M}^{\text {eq }}$, but A, B are algebraically closed and dependent over their intersection. Minimize $r k(A / B)$ and, subject to this constraint, $r k(A)$. We may suppose $A \cap B=\operatorname{acl}(\emptyset)$, as the modular law holds in the corresponding sublattice (i.e., above $A \cap B)$. We adopt the notation $0=\operatorname{acl}(\emptyset)$ for the present. After these reductions, we claim that A is a lattice atom: a minimal nontrivial algebraically closed set.

Suppose $0<A^{\prime} \leq A$ with A^{\prime} algebraically closed. As $A^{\prime}>A \cap B$, $r k\left(A^{\prime} / B\right)$ is positive and $r k\left(A / A^{\prime} B\right)<r k(A / B)$, so by minimality

$$
A \perp A^{\prime} B \text { over } A \cap \operatorname{acl}\left(A^{\prime} B\right)
$$

If $A \cap \operatorname{acl}\left(A B^{\prime}\right)$ is independent from B over $A \cap \operatorname{acl}\left(A B^{\prime}\right) \cap B=0$, then $A \perp B$ over 0 , a contradiction. Thus A may be replaced by $A \cap \operatorname{acl}\left(A^{\prime} B\right)$,
and by the minimality of $r k A$ we find $A \subseteq \operatorname{acl}\left(A^{\prime} B\right)$. By the modular law

$$
A=A \cap \operatorname{acl}\left(A^{\prime} B\right)=\operatorname{acl}\left(A^{\prime} \cup(A \cap B)\right)=A^{\prime}
$$

as claimed.
Now consider a conjugate B^{\prime} of B over A independent from B over A. Note that

$$
\operatorname{acl}(A B) \cap B^{\prime}=0
$$

since $\operatorname{acl}(A B) \cap B^{\prime} \subseteq A \cap B^{\prime}=0$. If the triple A, B, B^{\prime} is 1-locally independent, then it is independent over the intersection 0 by Proposition 5.4.1, a contradiction. If it is not 1-locally independent, then either A, B are dependent over B^{\prime}, or A, B^{\prime} are dependent over B, and in any case $r k\left(A / B B^{\prime}\right)<r k(A / B)$. Thus by the minimality of $r k(A / B)$, we have independence of A from $B B^{\prime}$ over $A_{\circ}=A \cap \operatorname{acl}\left(B B^{\prime}\right)$. As A is an atom, we have either $A_{\circ}=0$, contradicting the choice of A, or $A \subseteq \operatorname{acl}\left(B B^{\prime}\right)$. In the latter case, applying the modular law to $\operatorname{acl}(A, B), B$, and B^{\prime} we get $A \subseteq \operatorname{acl}(A B) \cap \operatorname{acl}\left(B B^{\prime}\right)=\operatorname{acl}\left(B, \operatorname{acl}(A B) \cap B^{\prime}\right)=B$, which is absurd.

Proposition 5.5.3. Let \mathcal{M} be \aleph_{0}-categorical of finite rank. Then the following are equivalent.

1. \mathcal{M} is modular.
2. For all finite A_{1}, A_{2} in \mathcal{M}, A_{1} and A_{2} are independent over the intersection of their algebraic closures.
3. For all finite A_{1}, A_{2} in \mathcal{M}, there is a finite C independent from A_{1}, A_{2} such that A_{1}, A_{2} are independent over the intersection of the algebraic closures of $A_{1} \cup C$ and $A_{2} \cup C$.
4. The lattice of algebraically closed subset of $\mathcal{M}^{\mathrm{eq}}$ is a modular lattice.

Proof. The equivalence of (1) and (2) is clear and the equivalence of (1) and (4) is the previous lemma, so we concern ourselves with the implication "(3) implies (2)." We actually show that each instance of (3) implies the corresponding instance of (2).

Let A_{1}, A_{2} be the algebraic closures of two finite subsets of $\mathcal{M}^{\text {eq }}$. We must work with sets generated by subsets of \mathcal{M} rather than $\mathcal{M}^{\text {eq }}$, so take A_{1}^{*}, A_{2}^{*} finite subsets of \mathcal{M} such that $A_{i} \subseteq a c l A_{i}^{*}$ and, in addition,

$$
\begin{equation*}
A_{1}^{*} \perp A_{2} \text { over } A_{1} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
A_{2}^{*} \perp A_{1}^{*} \text { over } A_{2} \tag{3.2}
\end{equation*}
$$

This ensures $\operatorname{acl}\left(A_{1}^{*}\right) \cap \operatorname{acl}\left(A_{2}^{*}\right)=\operatorname{acl}\left(A_{1}\right) \cap \operatorname{acl}\left(A_{2}\right)$ by applying first (3.2) and then (3.1). Accordingly, the problem is reduced to the following:

$$
A_{1}^{*} \perp A_{2}^{*} \text { over } \operatorname{acl}\left(A_{1}^{*}\right) \cap \operatorname{acl}\left(A_{2}^{*}\right) .
$$

By (3), we have a finite set C independent from $A_{1}^{*} A_{2}^{*}$ for which

$$
A_{1}^{*} \perp A_{2}^{*} \text { over } \operatorname{acl}\left(A_{1}^{*} \cup C\right) \cap \operatorname{acl}\left(A_{2}^{*} \cup C\right)
$$

Let $A=\operatorname{acl}\left(A_{1}^{*} \cup C\right) \cap \operatorname{acl}\left(A_{2}^{*} \cup C\right)$ and take A_{3}^{*} conjugate to A_{1}^{*} over $\operatorname{acl}\left(A_{2}^{*} \cup C\right)$, and independent from A_{1}^{*} over $A_{2}^{*} C$. Then A_{3}^{*} is independent from $A_{1}^{*} A_{2}^{*}$ over A since

$$
\begin{aligned}
& r k\left(A_{3}^{*} / A_{1}^{*} A_{2}^{*} A\right) \leq r k\left(A_{3}^{*} / A_{1}^{*} A_{2}^{*} C\right) \\
&=r \operatorname{rk}\left(A_{3}^{*} / A_{2}^{*} C\right) \\
&=r k\left(A_{3}^{*} / A_{2}^{*} A\right)
\end{aligned}
$$

As A_{3}^{*} is independent from $A_{1}^{*} A_{2}^{*}$ over A and A_{1}^{*}, A_{2}^{*} are independent over $A, A_{3}^{*}, A_{1}^{*}, A_{2}^{*}$ is an independent triple over A. As A_{1}^{*} and A_{3}^{*} are conjugate over $\operatorname{acl}\left(A_{2}^{*} C\right)$, they are conjugate over A, and thus $A \subseteq$ $\operatorname{acl}\left(A_{3}^{*} C\right)$. Thus $C \subseteq A \subseteq \operatorname{acl}\left(A_{i}^{*} C\right)$ for all i. For any permutation i, j, k of $1,2,3$, we have: $A_{i}^{*} \perp A_{j}^{*}$ over $A A_{k}^{*}$, hence $A_{i}^{*} \perp A_{j}^{*}$ over $C A_{k}^{*}$, and thus $A_{i}^{*} \perp A_{J}^{*}$ over A_{k}^{*}. By Proposition 5.4.1 the triple $A_{1}^{*}, A_{2}^{*}, A_{3}^{*}$ is independent over the intersection of their algebraic closures, and in particular A_{1}^{*}, A_{2}^{*} are independent over the intersection of their algebraic closures.
Proposition 5.5.4 (Fundamental Rank Inequality, cf. [CHL])
Let \mathcal{M} be \aleph_{0}-categorical, of finite rank, modular, and with the type amalgamation property (cf. §5.1). Let D, D^{\prime} be 0 -definable sets with D^{\prime} parametrizing a family of definable subsets D_{b} of D of constant rank r for $b \in D^{\prime}$. Suppose that E is a 0 -definable equivalence relation on D^{\prime} such that for inequivalent $b, b^{\prime} \in D^{\prime}$ we have

$$
r k\left(D_{b}\right) \cap r k\left(D_{b^{\prime}}\right)<r .
$$

Then $r k\left(D^{\prime} / E\right)+r \leq r k D$.
Proof. We may assume that both D and D^{\prime} each realize a unique type over the empty set. Take $b \in D^{\prime}$ and $a \in D_{b}$ with $r k(a / b)=r$. Let $C=\operatorname{acl}(a) \cap \operatorname{acl}(b)$. Thus $a \perp b$ over C by modularity, and $r k(a / C)=$ $r k(a / b)=r$. We will show

$$
\begin{equation*}
b / E \in C \tag{*}
\end{equation*}
$$

Thus $r k\left(D^{\prime} / E\right) \leq r k C=r k(a C)-r k(a / C)=r k(a)-r$ as claimed. So we turn to $(*)$.

Let b^{\prime} / E be a conjugate of b / E over C distinct from b / E, with b^{\prime} independent from b over C. We seek an element $b^{\prime \prime}$ of D^{\prime} satisfying

$$
t p\left(b^{\prime \prime} b / C\right)=t p\left(b^{\prime} b / C\right) ; \operatorname{tp}\left(b^{\prime \prime}, a / C\right)=t p(b, a / C)
$$

with $a, b, b^{\prime \prime}$ independent over C. This amounts to an amalgamation problem for three compatible 2-types: $t p(b a / C), \operatorname{tp}\left(b^{\prime} b / C\right), t p(b a / C)$. By the type amalgamation property, this can be done.

In particular, $a \in D_{b} \cap D_{b^{\prime \prime}}$ and thus $r k\left(a / b b^{\prime \prime}\right)<r$; but $r k\left(a / b b^{\prime \prime}\right)=$ $r k(a / C)=r$, a contradiction. Thus there is no such conjugate b^{\prime} and $b \in \operatorname{dcl}(C)=C$.

Corollary 5.5.5. With the hypotheses above, \mathcal{M} interprets no Lachlan pseudoplane.

Remark 5.5.6. This refers to a combinatorial geometry $(P, L ; I)$ of points and lines such that each point is incident with infinitely many lines, two points are incident with only finitely many lines, and dually. The relevance of these structures to the behavior of \aleph_{0}-categorical stable structures was shown in [LaPP], and the corollary settles a question raised in [KLM].

Proof. If $(P, L ; I)$ is such a pseudoplane, then after dualizing if necessary we may take $n=r k(L) \geq r k P$. We apply the fundamental rank inequality with $D=P, D_{l}$ is the set of points incident with the line l as l varies over a subset D^{\prime} of L of rank n on which $r=r k D_{l}$ is constant, with E the equality relation. By the axioms for pseudoplanes, the previous proposition applies and yields $r k D^{\prime}+r \leq r k P \leq r k L=r k D^{\prime}$ and thus $r=0$, a contradiction.

We give a more precise version of the fundamental rank inequality.
Proposition 5.5.7. Let D, D^{\prime} be the loci of single types over the empty set, and D_{b} a uniformly b-definable family of rank r subsets of D parametrized by D^{\prime}. Then there is a finite cover ${ }^{-}: D^{\prime \prime} \rightarrow D^{\prime}$ and an equivalence relation E on $D^{\prime \prime}$ such that

1. $r k\left(D^{\prime \prime} / E\right)=r k D-r$;
2. For $b, b^{\prime} E$-equivalent in $D^{\prime \prime}$, we have $r k\left(D_{\bar{b}} \cap D_{\overline{b^{\prime}}}\right)=r$.

Proof. We work with a, b, c as in the proof of Proposition 5.5.4, but with c finite rather than algebraically closed: so we require $c \in \operatorname{acl}(a) \cap \operatorname{acl}(b)$ finite, $a \perp b$ over c. Let $D^{\prime \prime}$ be the locus of $b c$ over the empty set, with $\overline{b_{1} c_{1}}=b_{1}$, and with $E\left(b_{1} c_{1}, b_{2} c_{2}\right)$ if and only if $c_{1}=c_{2}$ and the types of b_{1} over $\operatorname{acl}\left(c_{1}\right)$ and of b_{2} over $\operatorname{acl}\left(c_{2}\right)$ coincide. Then the amalgamation argument yields (2), and $r k\left(D^{\prime \prime}\right) / E=r k(c)=r k(a)-r k(a / c)=r k(D)-$ $r k(a / b)=r k D-r$.

5.6 LOCAL CHARACTERIZATION OF MODULARITY

We show in this section that Lie coordinatized structures are modular by reducing the global property of modularity to local properties of the coordinatizing structures.

Definition 5.6.1. Let \mathcal{M} be a structure.

1. A definable subset D of \mathcal{M} is modular if for every finite subset A of \mathcal{M}, the structure with universe D and relations the A-definable relations of \mathcal{M} restricted to D, is modular.
2. Let \mathcal{F} be a collection of definable subsets of \mathcal{M}. Then \mathcal{M} is eventually coordinatized by \mathcal{F} if for any $a \in M$ and finite $B \subseteq M$, with $a \notin \operatorname{acl}(B)$, there is $B^{\prime} \supseteq B$ independent from a over B and a B^{\prime}-definable member D of \mathcal{F} for which $D \cap \operatorname{acl}\left(a B^{\prime}\right)$ contains an element not algebraic over B^{\prime}.

Lemma 5.6.2. If \mathcal{M} is eventually coordinatized by a family of modular definable sets, then it is eventually coordinatized by a family of modular definable sets of rank 1.

Proof. Replace each modular definable set by its definable subsets of rank 1. If $a \in M$ and B is a finite set, take $B^{\prime} \supseteq B$ independent from a over B and take D definable and modular such that $D \cap \operatorname{acl}\left(a B^{\prime}\right)$ contains an element b not algebraic over B^{\prime}.

Take $B_{1} \supseteq B^{\prime}$ such that $r k\left(b / B_{1}\right)=1$. We may suppose that B_{1} is independent from a over B. Let $B_{2}=\operatorname{acl}\left(b B^{\prime}\right) \cap \operatorname{acl}\left(B_{1}\right)$. Then $B^{\prime} \subseteq B_{2}, B_{2}$ is independent from a over B, and by modularity of D, b is independent from B_{1} over B_{2}, so $r k\left(b / B_{2}\right)=1$. Let b^{\prime} be finite, with $B^{\prime} \subseteq b^{\prime} \subseteq B_{2}$, such that $r k\left(b / b^{\prime}\right)=1$, and let D_{b}^{\prime} be the locus of $t p\left(b / b^{\prime}\right)$. Then $D_{b}^{\prime} \subseteq D$ is rank 1 , and is modular since D is. Furthermore, $b \in D_{b^{\prime}} \cap \operatorname{acl}\left(a b^{\prime}\right) \backslash \operatorname{acl}\left(b^{\prime}\right)$, and b^{\prime} is independent from a over B.

Proposition 5.6.3. Let \mathcal{M} be \aleph_{0}-categorical of finite rank. If \mathcal{M} is eventually coordinatized by modular definable sets, then \mathcal{M} is modular.

Proof. By the preceding lemma we may take the coordinatization to be in terms of rank 1 modular sets.

Suppose \mathcal{M} is not modular. Then there are elements a, b and a set E such that $\operatorname{acl}(a, E) \cap \operatorname{acl}(b, E)=E$, with a and b dependent over E. Take a, b, E with $r k(a / E)+r k(b / E)$ minimal. Then as noted in the proof of Proposition 5.5.3, for any $E^{\prime} \supseteq E$, independent from a, b over E, a and b remain dependent over $\operatorname{acl}\left(a, E^{\prime}\right) \cap \operatorname{acl}\left(b, E^{\prime}\right)$. Thus after applying the eventual coordinatization we may assume in addition that $\operatorname{acl}(a, E)$ and $\operatorname{acl}(b, E)$ contain elements a_{1}, b_{1} of rank 1 over E, lying in rank 1 modular definable sets D_{1}, D_{2} respectively, defined over E.

For the argument below some further expansion of E may be necessary. Specifically, we will assume that E satisfies the following condition:

1. If it is possible to expand E to E^{\prime} independent from $a b$ over E so that $\operatorname{acl}\left(a, E^{\prime}\right)$ contains an element a_{2} of rank 1 over E^{\prime} independent from a_{1} over E, then the same occurs already over the base E; and similarly for b.

We will also want to assume the following condition for a finite number of elements $a^{\prime} \in \operatorname{acl}(a)$ of rank 1 over E, to be determined below:
2. If there exists E^{\prime} as described in (1) and $a^{\prime \prime} \in D_{1}$ with $\operatorname{acl}\left(a^{\prime}, E^{\prime}\right)=$ $\operatorname{acl}\left(a^{\prime \prime}, E^{\prime}\right)$, then there is $a^{*} \in D_{1}$ for which $\operatorname{acl}\left(a^{\prime}, E\right)=\operatorname{acl}\left(a^{*}, E\right)$; and similarly for b.

After these preliminaries we may add constants and take $E=\operatorname{acl}(\emptyset)$. We will write $0=\operatorname{acl}(\emptyset)=E$. We will show now that $a \subseteq \operatorname{acl}\left(a_{1} b\right)$ and $b \subseteq \operatorname{acl}\left(b_{1} a\right)$.

We have $\operatorname{acl}(a) \cap \operatorname{acl}(b)=0$, and a, b are dependent. Furthermore, $a_{1} \in \operatorname{acl}(a)$ has rank 1 and $\operatorname{acl}\left(a_{1}\right) \cap \operatorname{acl}(b)=0$, so a_{1} and b are independent. As $r k\left(a / a_{1}\right)<r k a$, by minimality we have a and b independent over $A=\operatorname{acl}(a) \cap \operatorname{acl}\left(a_{1}, b\right)$. Since a and b are not independent, A and b are not independent. But $A \subseteq \operatorname{acl}(a)$ and hence by minimality of total rank (applied to a finite subset of A, and b) we get $r k(A)=r k a$, so $a \subseteq A$. Thus $a \subseteq \operatorname{acl}\left(a_{1} b\right)$; similarly $b \subseteq \operatorname{acl}\left(b_{1}, a\right)$.

Now we claim there is a_{2} with

$$
a_{2} \in \operatorname{acl}(a) ; \quad r k\left(a_{2}\right)=1 ; \quad a_{2} \perp a_{1}
$$

Take $b^{\prime}, b_{1}^{\prime}$ conjugates of b, b_{1} over a, and independent from b, b_{1} over a. Thus $a \subseteq \operatorname{acl}\left(a_{1} b^{\prime}\right)$, and b_{1}^{\prime} is independent from a, b. As b depends on a and b_{1} does not, we have $r k b>r k b_{1}$ and hence we may choose E^{\prime} containing b_{1}^{\prime}, independent from a, b, b^{\prime} over b_{1}^{\prime}, and some $b_{2}^{\prime} \in \operatorname{acl}\left(b^{\prime}, E^{\prime}\right)$, so that $r k\left(b_{2}^{\prime} / E^{\prime}\right)=1$. Now E^{\prime} is independent from a, b^{\prime} and $b_{2}^{\prime} \in$ $\operatorname{acl}\left(b^{\prime}, E^{\prime}\right) \subseteq \operatorname{acl} \operatorname{acl}\left(a, b_{1}^{\prime}, E^{\prime}\right)=\operatorname{acl}\left(a, E^{\prime}\right)$, with a_{1} independent from b_{2}^{\prime} over E^{\prime}, so the same holds for some conjugate of E^{\prime} independent from a, b, and then by condition (1) the same holds over 0 for some a_{2} in place of b_{2}^{\prime}.

Now $a_{2} \in \operatorname{acl}\left(a_{1} b\right)$ and thus $a_{1} a_{2}$ depends on b, but $a_{1} a_{2} \in \operatorname{acl}(a)$, so by minimality $a=\operatorname{acl}\left(a_{1} a_{2}\right)$. Similarly, we get $b=\operatorname{acl}\left(b_{1} b_{2}\right)$ with b_{2} of rank 1. Here no $a_{i} \in \operatorname{acl}(b)$ and no $b_{i} \in \operatorname{acl}(a)$, but any one of $a_{1}, a_{2}, b_{1}, b_{2}$ is algebraic over the remainder, and $a_{1} \in D_{1}$. Consider the base set $F=\left\{a_{2}, b_{2}\right\}$. Then F is independent from b_{1} and D_{1} contains an element $x=a_{1}$ such that $\operatorname{acl}(x, F)=\operatorname{acl}\left(b_{1}, F\right)$. Taking a conjugate E^{\prime} of F over b_{1} free from $a, b,(2)$ applies and yields an element of D_{1} that may replace b_{1}. In the same fashion we may assume $b_{2} \in D_{1}$,
and then after reversing the argument, that $a_{2} \in D_{1}$. Then the pair $\left(a_{1} a_{2}, b_{1} b_{2}\right)$ violates modularity in D_{1}.

Corollary 5.6.4. If \mathcal{M} is Lie coordinatized then \mathcal{M} is modular.
Proof. The embedded linear and projective geometries are seen to be modular using the last criterion in Proposition 5.5.3, as arbitrary parameters from \mathcal{M} may be replaced by parameters in the geometry. Thus it suffices to show that these geometries eventually coordinatize \mathcal{M}.

Let $a \in M, B$ a finite subset of M, and $a \notin \operatorname{acl}(B)$. One may find $c \in \operatorname{acl}(a, B)-\operatorname{acl}(B)$ lying in a B-definable coordinatizing projective or affine geometry J. If the geometry is affine, then expand B to $B^{\prime}=$ $B \cup\left\{c_{\circ}\right\}$, adding a generic point of J, and replace c by $c-c_{\circ}$ in the corresponding linear geometry.

Thus the previous proposition applies.
Definition 5.6.5. Let a, b be elements of a structure of finite rank. Then b is filtered over a if there is a sequence $\mathbf{b}=b_{1}, \ldots, b_{n}$ with $r k\left(b_{i} / a b_{1} \ldots b_{i-1}\right)=1$ and $\operatorname{acl}(a \mathbf{b})=\operatorname{acl}(a b)$.

The following was essentially invoked above, and will be applied again subsequently.

Lemma 5.6.6. Let \mathcal{M} be \aleph_{0}-categorical of finite rank and modular. Then for any a, b in \mathcal{M}^{\prime}, b is filtered over a in $\mathcal{M}^{\prime \mathrm{eq}}$.
Proof. Adding constants we may work over the empty set in place of a. We use induction on $n=r k(b)$ and we may suppose $n \geq 1$. We take $b^{\prime} \in \mathcal{M}^{\prime \text { eq }}$ with $r k\left(b / b^{\prime}\right)=1$. In particular, b is filtered over b^{\prime} by b itself, and hence by the previous lemma is independent from b^{\prime} over $B=\operatorname{acl}(b) \cap \operatorname{acl}\left(b^{\prime}\right)$. Thus $r k(b / B)=r k\left(b / b^{\prime}\right)=1$ and $r k(B)=n-1$, so by induction after replacing B by a finite set $b^{\prime \prime}$ we have a filtration for b^{\prime} to which we may append b.

5.7 REDUCTS OF MODULAR STRUCTURES

In this section we prove the following theorem on reducts of modular structures:

Proposition 5.7.1. Let \mathcal{M} be \aleph_{0}-categorical of finite rank, and modular. Then every structure \mathcal{M}^{\prime} interpretable in \mathcal{M} inherits these properties.

As we will to some extent have both \mathcal{M} and \mathcal{M}^{\prime} in view throughout the analysis, we adopt the convention that when not otherwise specified, model theoretic notions like rank and algebraic closure that depend on the ambient model will be taken to refer to \mathcal{M}^{\prime}. In any case \mathcal{M}^{\prime} inherits the \aleph_{0}-categoricity and finite rank. The latter point would however be dubious in general for other notions of rank such as S_{1}-rank. Furthermore, we cannot assume that the notions of independence in \mathcal{M} and \mathcal{M}^{\prime} stand in any close relationship.

The main case is that of reducts. In fact, as we can add some parameters and work in $\mathcal{M}^{\text {eq }}$, we may suppose that \mathcal{M}^{\prime} has as its universe a 0 -definable subset of \mathcal{M}, and that the structure present on \mathcal{M}^{\prime} is a reduct of the full structure induced from \mathcal{M}. We will refer to this situation as a reduct in (not "of") \mathcal{M}.

Lemma 5.7.2. Let \mathcal{M} be \aleph_{0}-categorical, \mathcal{M}^{\prime} a reduct, and a a finite sequence which is algebraically independent in the naive sense: none of its entries is algebraic in \mathcal{M}^{\prime} over the remainder. Then there is a realization b of the type of \mathbf{a} in \mathcal{M}^{\prime}, which is algebraically independent in \mathcal{M}.

Proof. Let \mathbf{b} be a realization of the specified type with $a c l_{\mathcal{M}}(\mathbf{b})$ as large as possible. If \mathbf{b} contains an entry b which is algebraic over the remainder in $\mathcal{M}, \mathbf{b}^{\prime}$, note that in $\mathcal{M}^{\prime} b \notin \operatorname{acl}\left(\mathbf{b}^{\prime}\right)$ and hence there is another realization of the type consisting of \mathbf{b}^{\prime} extended by some $c \notin \operatorname{acl} l_{\mathcal{M}}\left(\mathbf{b}^{\prime}\right)$. But then $\left|a c l_{\mathcal{M}}(\mathbf{b})\right|=\left|a c l_{\mathcal{M}}\left(\mathbf{b}^{\prime} b\right)\right|<\left|a c l_{\mathcal{M}}\left(\mathbf{b}^{\prime} c\right)\right|$, a contradiction.

Lemma 5.7.3. Let \mathcal{M} be \aleph_{0}-categorical of finite rank and modular, \mathcal{M}^{\prime} a reduct in \mathcal{M}, and a, b elements of \mathcal{M}^{\prime} with $r k(b / a)=1$. Then a is independent from b over $\operatorname{acl}(a) \cap \operatorname{acl}(b)$.

We emphasize that our convention applies here, to the effect that the notions used are those of \mathcal{M}^{\prime} rather than \mathcal{M}.

Proof. We will proceed by induction on the rank of a. We may suppose that a and b are algebraically independent, since if $a \in \operatorname{acl}(b)$ our claim becomes trivial. By the preceding lemma we may even suppose that they are algebraically independent in \mathcal{M}.

Now in \mathcal{M} let $I=\left(c_{1}, c_{2}, \ldots\right)$ be an infinite \mathcal{M}-independent and \mathcal{M}-indiscernible sequence over a, with $t p_{\mathcal{M}}\left(c_{i} / a\right)=t p_{\mathcal{M}}(b / a)$. We claim that the sequence I is \mathcal{M}^{\prime}-independent over a. For example, $r k\left(c_{n+1} / a c_{1}, \ldots, c_{n}\right)=1$ since $r k\left(c_{n+1} / a\right)=1$ and c_{n+1} is not algebraic over $a c_{1}, \ldots, c_{n}$ in \mathcal{M}, hence certainly not in \mathcal{M}^{\prime}.

The quantity $r k\left(a / c_{1} \ldots c_{i}\right)$ as a function of i is eventually constant, say from $i=m$ onward. Let $d=\left(c_{1}, \ldots, c_{m}\right)$ and $d^{\prime}=\left(c_{m+1}, \ldots, c_{2 m}\right)$. $r k(a / d)=r k\left(a / d^{\prime}\right)=r k\left(a / d d^{\prime}\right)$, the latter equality by the choice of m. Thus in \mathcal{M}^{\prime} we have $a \perp d$ over $d^{\prime}, a \perp d^{\prime}$ over d, and also $d \perp d^{\prime}$ over a as checked above. By Proposition 5.4.1, which is applicable to \mathcal{M}^{\prime}, the triple a, d, d^{\prime} is independent over $A=\operatorname{acl}(a) \cap \operatorname{acl}(d) \cap \operatorname{acl}\left(d^{\prime}\right)$. In particular a, c_{1} are independent over A.

We now apply the modularity of \mathcal{M}. Let $A^{*}=a c l_{\mathcal{M}}(a) \cap a c l_{\mathcal{M}}\left(c_{1}\right)$. Since $a \notin a c l_{\mathcal{M}}(b)$, also $a \notin \operatorname{acl}_{\mathcal{M}}\left(c_{1}\right)$ and thus $a \notin A^{*}$. By modularity $a \perp_{\mathcal{M}} c_{1}$ over A^{*} and by indiscernibility $a \perp_{\mathcal{M}} c_{k}$ over A^{*}. As $a c_{1} \ldots c_{i-1}$ is \mathcal{M}-independent from c_{i} over a, we find that a, c_{1}, c_{2}, \ldots are \mathcal{M}-independent over A^{*}. Hence $a \notin \operatorname{acl}_{\mathcal{M}}\left(c_{1}, c_{2}, \ldots\right)$ and in \mathcal{M}^{\prime} we have $a \notin \operatorname{acl}(d), a \notin A$, and $r k(A)<r k(a)$. Thus by induction $A \perp c_{1}$ over $A^{\prime}=A \cap \operatorname{acl}\left(c_{1}\right)$, and hence $A \perp c_{1}$ over A^{\prime}. Since $\operatorname{tp}\left(a c_{1}\right)=t p(a b)$ we have a, b independent over $\operatorname{acl}(a) \cap \operatorname{acl}(b)$.

Lemma 5.7.4. Let \mathcal{M} be \aleph_{0}-categorical of finite rank, and modular, and let \mathcal{M}^{\prime} be a reduct in \mathcal{M}. Then every rank 1 subset D of \mathcal{M}^{\prime} is modular.
Proof. After absorbing an arbitrary finite set of parameters into the language our claim is that if \mathbf{a}, \mathbf{b} are two algebraically independent sequences in D with $\operatorname{acl}(\mathbf{a}) \cap \operatorname{acl}(\mathbf{b})=\operatorname{acl}(\emptyset)$ in $\mathcal{M}^{\prime \mathrm{eq}}$, then \mathbf{a} and \mathbf{b} are independent. This claim reduces inductively (after further absorption of parameters) to the case in which \mathbf{a} and \mathbf{b} have length 2 . In this case if they are not independent, we have $r k(\mathbf{b} / \mathbf{a})=1$, and this case was handled in the previous lemma.

Proof of Proposition 5.7.1. It suffices to show that \mathcal{M}^{\prime} is eventually coordinatized by its rank 1 subsets, since these are modular; we then apply Proposition 5.6.3.

So take $a \notin \operatorname{acl}(B)$ with B finite. Let $n=r k(a / B)$. We may find a^{\prime}, c with $a^{\prime} \in \operatorname{acl}(a B c)-\operatorname{acl}(B c)$ and $r k\left(a / a^{\prime} B c\right)=n-1(c f$. Lemma 2.2.3). As $r k\left(a a^{\prime} / B c\right)=r k(a / B c)$ this yields

$$
r k(a / B c)=(n-1)+r k\left(a^{\prime} / B c\right) \geq r k(a / B)
$$

and thus a and c are independent over B and a^{\prime} has rank 1 over $B c$. This shows that \mathcal{M}^{\prime} is eventually coordinatized by rank 1 subsets.

