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Finiteness Theorems

4.1 GEOMETRICAL FINITENESS

As Ahlbrandt and Ziegler showed, the key combinatorial property of
coordinatizing geometries depends on Higman’s lemma, itself a special
case of the Kruskal tree lemma. This was given an additional degree of
flexibility in [HrTC], adequate to our present purposes, once we verify
that the geometries we are using possess the following property. The
proof is very much the same as in the pure linear case.

Definition 4.1.1. A countable structure M is geometrically finite with
respect to an ordering < of type ω, if for each n the following holds:

For any sequence of n-tuples ai (i = 1, 2, . . .) in M
there is an order-preserving elementary embedding
α : M → M taking ai to aj for some i < j.

Lemma 4.1.2. Suppose that M is ℵ0-categorical and geometrically fi-
nite with respect to the ordering <. Let a be a finite sequence of
elements of M, and suppose that for each i = 1, 2, . . . there are given
k finite initial segments Si1, . . . , Sik of (M;<). Then there is an au-
tomorphism α of M, a finite initial segment S of M, and a pair i < i′

such that

1. a ⊆ S; Sij ⊆ S for j = 1, . . . , k.
2. α↾S is order preserving.
3. α fixes a.
4. α[Sij ] ⊆ Si′j for j = 1, . . . , k.
5. α(maxSij) = maxSi′j for j = 1, . . . , k.

Proof. Set bij = maxSij for all i, j and apply geometrical finiteness to
the sequences (a,bi) with bi = (bi1, . . . , bik). The result is an order-
preserving elementary map β : M → M fixing a and carrying some bi

to bi′ with i < i′. Restrict β to a large initial segment S of M, and
then extend the restriction to an automorphism of M.

In proving the geometrical finiteness of a geometry we first deal with
linear models. We work with the following orderings.
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Definition 4.1.3. The standard orderings of basic linear (or degener-
ate) geometries are defined as follows.

1. Any ordering of a pure set in order type ω is standard.
2. If X is an ordered basis for a vector space V and <K is an order-

ing on the base field, with 0 as the first element, then the induced
ordering on V is derived from the reverse lexicographic ordering on
words in the alphabet K as follows. To any vector v we assign the
word consisting of the sequence of its coordinates, truncated after
the last nonzero coordinate. A standard ordering of the pure vector
space V is any ordering induced by such a pair (X,<K), where the
order type of X is ω.

3. If V is a vector space carrying a nondegenerate symplectic or hermi-
tian form, or a nondegenerate quadratic form Q with an associated
symmetric form, then an ordered basis X for V will be consid-
ered standard if it has the form (e1, f1, e2, f2, . . .) where in all cases
(ei, ei) = (fi, fi) = 0, (ei, fi) = 1, the subspaces Hi = (ei, fi) are
pairwise orthogonal, and in the presence of a quadratic form Q we
require furthermore that Q(ei) = Q(fi) = 0.
In this case an ordering on V is considered standard if it is induced
by a pair (X,<K) where X is a standard ordered basis.

4. A standard ordering of the linear polar geometry (V,W ) is defined
as in the previous case, using the appropriate version of a standard
basis for V ∪W ; here the ei form a basis for V , and the fi form a
basis for W .

We remark that given any standard ordering on a vector space derived
from an ordered basis X , the subspaces generated by initial segments
of X will be initial segments of V with respect to the induced ordering.
We note also that we include the polar case here because it does not
reduce to the pure projective case, but we exclude the quadratic case
for notational convenience since its underlying set is not a vector space;
however, this is a triviality, since after fixing a point of the quadratic
geometry it can be treated as an orthogonal geometry.
We review the combinatorial lemma on which geometrical finiteness

depends.

Definition 4.1.4. Let Σ be a finite set.

1. A word in the alphabet Σ is a finite sequence of elements of Σ.
Σ∗ =

⋃
n≥0 Σ

n is the set of all words in the alphabet Σ.
2. The embeddability ordering on Σ∗ is the partial ordering defined

as follows: w ≤ w′ if there is an order-preserving embedding of w
into w′.
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3. A partially ordered set (X,<) is well quasi-ordered if it has no
decreasing sequences and no infinite antichains; by Ramsey’s theo-
rem, an equivalent condition is that any infinite sequence of distinct
elements of X contains an infinite strictly increasing subsequence.

Fact 4.1.5 (Higman’s Lemma [Hi]). If Σ is a finite alphabet, then
the partially ordered set (Σ, <), under the embeddability ordering, is
well quasi-ordered. Thus for any infinite sequence of words w(i) ∈ Σ∗,
there is a pair i, j with i < j such that w(i) embeds in w(j).

We note that this fact is proved more generally in a relative form, for
words in any alphabet which is well quasi-ordered, with an appropriately
modified embeddability relation. Only the finite case is used here.

Lemma 4.1.6. The countably infinite versions of the linear and degen-
erate geometries—a pure set, a pure vector space, a symplectic, her-
mitian, or orthogonal space, or a polar pair—are geometrically finite
with respect to their standard orderings.

Proof. It will suffice to treat the cases of nondegenerate symplectic, her-
mitian, or orthogonal spaces, where the notation is uniform. The other
nondegenerate cases are simple variations.
We fix a standard ordering < on V with respect to a standard basis

X = (e1, f1, . . .) for V and an ordering of K with 0 as initial element.
Let Hi = 〈ei, fi〉; this is a nondegenerate plane of the same type as V .
With n fixed we consider n-tuples a(i) = (vi1, . . . , vin) from V . For

each i, expanding relative to the basis X , think of a(i) as a matrix with
n semi-infinite rows, and entries in K. Let b(i) = (wi1, . . . , wimi

) be the
corresponding matrix in reduced row echelon form, and letMi be the n×
mi matrix over K connecting the two forms by: a(i) =Mib

(i). Without
loss of generality, the numbers mi = m and the matrices Mi = M are
independent of i, and we may also suppose that the maps b(i) → b(i′)

defined by wij 7→ wi′j are all isometries with respect to whatever forms
are present.
Now we will make the reduction to Higman’s lemma, encoding the

sequences b(i) by a word in an appropriate alphabet. We expand each
vector wij as

∑
r hijr where hijr ∈ Hr. As the Hr are all isometric we

will identify them all with a single plane H = 〈e, f〉 and consider hijr
to be an element of H . We say that r is the leading index for wij if r
is maximal such that hijr 6= 0; we say that the leading index r for wij

is of type e if hijr ∈ 〈e〉, and of type f otherwise. We associate to b(i) a
sequence w(i) = (hi1, hi2, . . . , hir) with r the maximal leading index of
the wij in such a way that his encodes the following sequence of data
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for 1 ≤ j ≤ m:

The value of hijs ∈ H ; Whether s is the leading index of wij (yes/no).

Clearly this information can be expressed by a finite alphabet.
By Higman’s lemma we have a pair i < i′ such that w(i) embeds in

w(i′). We will now write out exactly what this means. Let l, l′ be the
lengths of w(i) and w(i′) respectively. There is an increasing function
ι : {1, . . . , l} → {1, . . . , l′} such that

(1) hi′ι(s) = his for s ≤ l.

or more explicitly, in terms of the data encoded, for s ≤ l we have:

(1.1) hi′jι(s) = hijs for j ≤ m

(1.2) If s is the leading index for wij ,
then ι(s) is the leading index for wi′j .

Set yj =
∑

{hi′js : s /∈ im ι}. The leading index of yj is less than the
leading index of wi′j , by (1.2).
We now associate with ι a linear map β, which is defined on the span

of e1, f1, . . . , el, fl, as follows:

(2.1) β(es) = eι(s) unless
s is the leading index of some wij and is of type e for it.

(2.2) β(fs) = fι(s) unless
s is the leading index of some wij and is of type f for it.

(2.3) β(hijs)= hi′jι(s) + yj if
s is the leading index of wij .

By the initial reduction to row echelon form, a given index s can occur
at most once as the leading index of a given type (e or f) for one of
the wij . If s is the leading index for wij and is of type e for it, then
(2.3) and linearity determine β(es), while if, on the other hand, s has
type f for wij , then (2.3), linearity, and the value of β(es) determine
β(fs). So (2.1–2.3) determine some linear function β. For any r let
H ′

r =
⊕

{Hs : s < ι(r), s /∈ im ι}. Then β has the following properties:

(3.1) β(hijr) ∈ hi′jι(r) +H ′
r

(3.2) β(wij) = wi′j

From (3.1) it follows that β is order preserving: if u1, u2 have their
last difference in the rth component, then β(u1) and β(u2) will differ
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last in their ι(r)th component, and in the same manner. By (3.2) and
the relations a(i) =Mib

(i), we find β(vij) = vi′j .
It remains to check that β is an isometry. We make use of a basis

X1 ∪X2 for 〈e1, f1, . . . , el, fl〉 of the following form: X1 consists of all
wij for j ≤ m; X2 consists of the er and the fr for which r is not a
leading index of corresponding type for any of the wij . Then by (3.2) β
is an isometry on 〈X1〉, and β is also an isometry on 〈X2〉. So we need
only check that β preserves inner products between X1 and X2 (even in
the orthogonal case, this now suffices). In view of the orthogonality of
the spaces Hs, the relation (3.1), and the definition of β, this follows.

Corollary 4.1.7. The basic geometries are geometrically finite.

Proof. Let J be the geometry, and V the corresponding linear model,
equipped with a standard ordering.
If J is projective order it as follows: a < b if the first representative u

for a in V precedes the first representative v of b in V .
If J is affine, then call one element 0, place it first, and order the

remainder of J as in V . Similarly, if J is of quadratic type pick one
element q of the space Q of quadratic forms on V compatible with the
symplectic structure, place it first, and then identify (V,Q) with the
orthogonal space (V ; q); order it as two copies of a standard orthogonal
space.
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4.2 SECTIONS

We will establish the notation used in proving that Lie coordinatized
structures have finite languages and quasifinite axiomatizations. A par-
ticular coordinatization is fixed throughout. The coordinatizing tree, to-
gether with some relevant data, will be called the skeleton of the model.
It will be convenient to coordinatize using semiprojectives in place of

projectives from this point on.

Definition 4.2.1
1. A skeletal type consists of the following data:

a parameter h (the height of a tree);
an assignment τ associating to each i with 1 ≤ i ≤ h the type of
a basic semiprojective or affine-with-dual Lie geometry, or a finite
structure;
a partial function σ from {1, . . . , h} to {1, . . . , h}. Here σ satisfies
the following conditions:

(i) the domain and range of σ are disjoint and their union is
contained in the set of indices i for which τ(i) is not a finite
structure;

(ii) σ(i) < i;

(iii) the domain of σ contains the set of indices i for which τ(i) is
a basic affine-with-dual Lie geometry.

A level i for which τ(i) is a semiprojective type geometry and i is
not in the domain of σ is said to be a level of new type.

2. The skeletal language Lsk and skeletal theory Tsk associated with a
given skeletal type (not shown in the notation) are defined as follows.
Lsk contains symbols ≤ and Pi (0 ≤ i ≤ h) which are asserted by Tsk

to constitute a tree ordering of height h with levels given by the unary
predicates P0, . . . , Ph; P0 consists of the root alone. There should also
be predecessor functions for the tree order, so that a substructure will
be a subtree.
Lsk contains several additional symbols. In the first place, it con-

tains languages suitable to the description of structures of the types
specified by the τ-component of the skeletal type. Tsk asserts, using
these symbols, that the tree successors of a given point at level i − 1
form a structure of the type specified by τ(i), that is, either a specific
finite structure or an infinite dimensional basic geometry of specified
type. It will be convenient to write Pi(a) for the successors of a point
a at level i − 1; so Tsk controls the type of each Pi(a).
Finally, and crucially, the σ-component of the skeletal type fur-

nishes nonorthogonality information. Lsk contains function symbols
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in several variables fij whenever j = σ(i) representing a parametrized
family of functions fija, where a varies over the points at level i− 1,
providing a bijection between the projectivization of Pi(a) and a local-
ization of the projectivization of Pj(a

′) relative to some finite subset,
where a′ is the element lying below a at height j − 1.

It is not quite necessary to fix the skeletal data, as long as the various
variables involved, such as the sizes of the finite structures, are kept
bounded. However, we can analyze more general situations of this type
by dealing with each possible refinement to full skeletal data.

Definition 4.2.2. Let the skeletal data (h, τ , σ) be fixed, hence also
the skeletal language Lsk and the skeletal theory Tsk. Let L be an
expansion of Lsk.

1. A skeleton with given skeletal data is a model for Tsk.
2. A skeletal expansion is a structure for the language L whose reduct

to Lsk is a model of Tsk. It has true dimensions if not only the
type of the geometry, but its isomorphism type, is determined by
the atomic type of its controlling parameter.

3. A fully proper model for the language L is a skeletal expansion
which satisfies

(i) The Lsk-reduct of each layer Pi(a) with i in the range of σ
(that is, the pure geometry) is fully embedded in M.

(ii) If a′ ≤ a in the tree lie at level i−1 and j−1 respectively, with
i, j in the range of σ, then Pi(a

′) and Pj(a) are orthogonal

(iii) The dual affine part of an affine-with-dual geometry is the full
definable affine dual.

Lemma 4.2.3. The class of fully proper L-structures relative to a given
skeletal theory is an elementary class.

Proof. The point that requires care is the axiomatization of stable em-
beddedness of a given geometry J in M, since in order to state in first-
order terms the definability of the relativization of a formula ϕ to J
using parameters of J , it is necessary to give an a priori bound on the
number of parameters needed in J .
So let Db = {x ∈ J : ϕ(x, b)} be an M-definable subset of J with pa-

rameters b (containing defining parameters for J). If this is J-definable,
it is definable using parameters in J ∩ acl (b), by weak elimination of
imaginaries. This is a finite dimensional subspace of J of dimension at
most rk(b), and rk(b) is at most the height h times the number of entries
in the sequence b.

We now deal at length with skeletons and expansions of skeletons.
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View Lsk and Tsk as fixed for the present.

Definition 4.2.4. Let M be a countable skeletal expansion.
An Ahlbrandt–Ziegler enumeration (more specifically, a breadth-first
Ahlbrandt–Ziegler enumeration) is an enumeration of M derived from
some data of the following type, according to the recipe following. The
data will be

1. A standard enumeration of the projectivization of each one of the
semiprojective layers at level i where i is a level of new type;

2. An enumeration of each of the finite structures found in the coor-
dinate tree;

3. A set Ci(a) of at most |K| elements (K is the base field) in each of
the components Pi(a) of the ith layer, whenever Pi(a) is not finite,
chosen so that

if Pi(a) is semiprojective, then Ci(a) is the set of semiprojec-
tive points above some point of the projectivization of Pi(a)
(in the sense explained below); if Pi(a) is affine then Ci(a)
enumerates an affine line in Pi(a).

Relative to these data, we order M as follows. Enumerate succes-
sive layers of the tree; the order in which the ith layer is enumerated
is determined first by the enumeration of the previous layer, and for
a fixed element a of layer i− 1, either

• the enumeration of Pi(a) is given as part of the data, using one of
the clauses (1, 2), or

• in the event that j = σ(i) is defined, the enumeration of Pi(a) is
determined by the enumeration of Pj(a

′) where a′ lies below a at
level j − 1, as follows. We have by hypothesis a specific identi-
fication of the projectivization Pa of Pi(a) with a localization Pa′

of Pj(a
′). If Pi(a) is semiprojective then enumerate the points of

Ci(a) first; then over these points there is a definable function from
the projectivization onto Pi(a), so an ordering of the rest of Pi(a)
is determined by an ordering on the corresponding localization of
Pj(a

′) where j = σ(i) and a′ lies below a at level j − 1. Such
an ordering on the localization of Pj(a

′) can be induced from the
ordering of Pj(a

′) using first representatives, as in the original dis-
cussion of geometrical finiteness. If Pi(a) is affine-with-dual then
the dual part is enumerated first, following the enumeration of the
projective dual (which is part of the corresponding projective geom-
etry), and then the affine part is enumerated by taking the affine
line Ci(a) of (3) first, after which one follows the enumeration of
its projectivization as in the semiprojective case.
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Definition 4.2.5. Let M be a countable skeletal expansion.
A section of M is an initial segment of M with respect to an

Ahlbrandt–Ziegler enumeration. The height h of a section is the least
level not completely contained in the section. According to this defini-
tion the height of M itself should be considered to be undefined.

Definition 4.2.6. Let M be a countable skeletal expansion and U a
section of M of height h.
A support for U consists of the following data (B, a, C):

1. The sequence B = (B1, . . . , Bh), with Bi consisting of all points a
at level i for which a lies below some point of U at level h, and the
tree predecessor of a lies below some point at level h not in U ;

2. If i ≤ h is maximal such that Bi is nonempty: let a = (a0, a1, . . . , ai−1)
be the (unique) branch leading to Bi;

3. If Pi(ai−1) is finite let Ci(a) be the complete enumeration of Pi(ai−1);
if Pi(a) is semiprojective or if Bi meets the affine part, let Ci(a) be
the finite subset chosen originally in the construction of the order
from which U was derived; if Pi(a) is an affine-with-dual pair and
Bi is contained in the affine dual, let Ci(a) be an enumeration of
the points of Bi which lie over the last point of the projectiviza-
tion (the point being that the ordering of the projectivization does
not define a unique ordering of the affine dual, but knowing Ci(a)
and the projective ordering, the initial segment of the affine dual is
determined).

Note here that a section does not quite determine its support, since
the same section may be derivable from different orderings; this is just
an abuse of language, and in any case in practice supports are used to
determine sections, rather than the reverse.

Lemma 4.2.7. Let (B, a, C) be given with B = (B1, . . . , Bh) a sequence
of subsets of the first h+1 layers of a countable skeletal expansion M,
a = (a0, a1, . . . , ah′−1) the branch leading to Bh′ , where h′ is maximal
such that this is nonempty, and C = (C1, . . . , Ch′) a sequence of finite
enumerated subsets Ci of Pi(ai−1). Then whether (B, a, C) is a section
support or not is determined by its type in Lsk, and if this is so, then
the section U supported by it consists of everything of level less than
h together with everything of level h that lies above an element of one
of the sets Bi.
Furthermore, a and C are of bounded size, and allow B to be re-

covered from data of the form (B′
i;Bij)i newtype, where B

′
i is a finite

subset of Pi(a) for i of new type and Bij is a sequence of subsets of
B′

i.
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Proof. The last paragraph is really the key. In the case in which we
are in fact dealing with a section support, the Bij should be the initial
segments at level i gotten by projecting the Bj when h(j) = i (but in
the affine-with-dual case Bj is either a finite subset of the dual part, or
the whole dual component plus a finite subset of the affine part, and
in the present context one should throw away the affine dual part if it
is completely contained in Bj), and B

′
i should be their union (i.e., the

longest one).
To determine whether we actually have a section support, what we

must determine is whether a candidate sequence Bij of finite subsets
of a geometry does, in fact, constitute a sequence of initial segments of
that geometry with respect to some standard ordering.
An initial segment of a standard ordering on one of the projective

geometries contains an initial segment of the standard basis from which
the ordering was defined; conversely, if such a finite basis is found in
the set B′

i, isomorphic to an initial segment of a standard basis, and
making all Bij initial segments in the induced ordering (relative to some
ordering of the base field), then it can be completed to a standard basis
for the whole space, for which the given sets constitute initial segments.

Definition 4.2.8. A reduced section support is a sequence B of se-
quences Bi = (Bij) for i of new type and j = i or σ(j) = i, together
with auxiliary data (of bounded size) a, Ci(a) (a ∈ a) as in the pre-
vious lemma, and the maximal elements aij of the Bij in a standard
ordering of Bi. The Ci(a), a, and aij will be called the bounded part
of the section support.

Remarks 4.2.9

When the standard ordering on the projectivizations of the Pi(a) is fixed,
the Bij are determined by Bi and the bounded part, specifically the aij .
Sections are atomically Lsk-definable from their reduced section sup-

ports. We may speak also of sections and section supports in envelopes
of Lie coordinatized structures, as they can be described in terms of
their atomic Lsk types.
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4.3 FINITE LANGUAGE

Definition 4.3.1. Let M be a fully proper countable skeletal expansion.
Triples (E,X, a) with E an envelope for M, X ⊆ E, and a a finite

sequence of elements of E, will be partially ordered by the following
relation:

(E,X, a) ≤ (E′, X ′, a′) if and only if
there is an elementary map f : E → E′

for which f [X ] ⊆ X ′ and f(a) = a′.

The partial orderings of interest to us here will be restrictions of
this ordering to the sets Un and Sn of triples in which a has length n
and X is, respectively, a section U of E or a reduced section support
S for E.

Lemma 4.3.2. Let M be a proper countable skeletal expansion. Let
(a0, a1, . . . , ah) be a branch of the tree, and let αi be an automorphism
of the Pi(ai−1) for i of new type. Then the union of the αi is an
elementary map in M.

Proof. Full embedding and orthogonality. The orthogonality theory ap-
plies directly to the projectivizations, but the semiprojective geometries
are definable over them and have the same automorphism group.

Lemma 4.3.3. Let M be a proper countable skeletal expansion. The
partial orderings defined above on Un and Sn are well quasi-orderings.

Proof. The result for reduced section supports implies the result for
sections, so we focus on Sn. We can drop the envelope E from the
triple, since given (E,B, a) and (E′, B′, a′) with E a µ-envelope, E′ a µ′-
envelope, and µ(J) embedding in µ′(J) everywhere, and an elementary
map f with f [B] ⊆ B′ and f(a) = a′, there is an elementary map
E → E′ extending it, by (essentially) Lemma 3.2.4. We may thin the
original sequence so that the condition on comparability of µ and µ′

holds everywhere.
We treat the case of reduced section supports. This is done as in

[HrTC, Lemma 2.10], which, however, makes use of rather abstract no-
tation for part of the situation.
Increasing n slightly, we may suppose that the bounded part of the

reduced section support is encoded in a. Now take a sequence Sk =
(B(k), a(k)) of reduced section supports with auxiliary data. Adjusting
by automorphisms of the geometries, using the previous lemma, we may
suppose that the orderings used on the projective geometries of new
type are fixed standard orderings, so that the terms Bi (which initially
are sequences (Bij)) can be thought of as initial segments of these ge-
ometries. Moving up through the levels i which are of new type, and
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thinning the sequence Sk at each stage, we will construct the desired
elementary maps in stages. What we require at stage i is that the maps
be defined through the ith level, be order-preserving on each projective
geometry associated with a level of new type, and fix the data in a(k)

occurring up to the ith level. We require of the sequence Sk that the

type of a(k) over
⋃

j Pj(b
(k)
j−1) (with b

(k) the branch being followed by the

B
(k)
i ) be fixed. If this is the case at a given stage, it can be preserved

without difficulty up to the next new level i. At such a new level i, the
elementary maps will have to be chosen carefully to preserve the types
of a(k) over the union including the ith level.

Let Ak =
⋃

j<i Pj(b
(k)
j−1). The type of a(k) over Ak ∪Pi(b

(k)
i−1) is deter-

mined by its (known) type overAk and its type over ck = acl (a(k))∩Pi(b
(k)
i−1).

So we impose on our elementary maps the additional constraint that they
preserve the ck. Exactly this condition is allowed by geometrical finite-
ness, after thinning the sequence Sk (and applying Ramsey’s theorem):

for k < l we may carry B
(k)
i into B

(l)
i by an order-preserving elementary

map which carries ck to cl. Thinning down so that the types of the a(k)

over the ck correspond, this completes the ith stage.

Lemma 4.3.4. Let E be an envelope, U a section of E, and E′ an
envelope contained in E, with the support S of U contained in E′.
Then E′ ∩U is the section of E′ supported by S.

Proof. The statement is a bit misleading; the issue is not so much
whether S supports E′ ∩U , but rather whether S fulfills the definition
of section support relative to E′ in the first place. This is essentially
one of the points made in Lemma 4.2.7. In the present version, the
statement is that if B is an increasing sequence of initial segments of
a projective Lie geometry J , with respect to some standard ordering,
and lies in a subgeometry J ′ of J , then B is also a sequence of initial
segments of J ′ with respect to a standard order, the point being that an
initial segment of an appropriate standard basis can be extracted from
B and completed in J or J ′.

Lemma 4.3.5. Let M be a Lie coordinatized structure. Then there is
an integer k with the following properties:

1. For any envelope E, any section U of E, and any a ∈ E, if a ∈
acl (U) then for some subset C of U of size at most k, a is algebraic
over C and its multiplicity over U and over C coincide.

2. For any envelope E, any section support S in E, and any a ∈ E,
if a ∈ acl (S) then for some subset C of S of size at most k, a is
algebraic over C and its multiplicity over S and over C coincide.
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Proof. The contrary to (1) would yield as a counterexample a sequence
(Ek, Uk, ak) refuting the claim for each k. After passing to a subsequence
and applying Lemma 4.3.3 we get a single element a algebraic over an
increasing chain of sets Uki

but whose type over Uki
cannot be fixed by

ki elements. The multiplicity m of a over
⋃

i Uki
is of course the same

as its multiplicity over some finite set C contained in all Uki
from some

point on, and once ki > |C| we reach a contradiction.
The failure of (2) is refuted similarly.

Definition 4.3.6. The standard language for a Lie coordinatized struc-
ture will be the language L containing all 0-definable (k+1)-ary pred-
icates with k (minimal) furnished by the preceding lemma. Note that
k ≥ 2.

Proposition 4.3.7. Every Lie coordinatized structure M admits a fi-
nite language L. The standard language will do. The standard lan-
guage also satisfies the following homogeneity conditions:

1. Every section of any envelope of M is L-homogeneous: if E is an
envelope of M, U a section of E, and f : U → M an L-map, then
f is elementary.

2. Every section support of any envelope of M is L-homogeneous in
the same sense.

Proof. Let L be the standard language for M. Part (1) includes the
statement that the language L is adequate for M. We use semiprojec-
tives rather than projectives in the coordinatization.
Both (1) and (2) reduce to finite envelopes, using Lemma 4.3.4. We

can enumerate the envelope E so that any initial segment of E is a
section. Here we are viewing the envelope as a subset of a coordinatized
structure (in the construction of envelopes, we added some sorts ofMeq).
Whenever we encounter an affine point the whole dual-affine part is
already in the part enumerated. For (1) it suffices to show

(1′) For any section U of an envelope E of M, and a the next ele-
ment of E, the L-type of a over U determines its type over U .

In the algebraic case this holds by the choice of k. In the nonalgebraic
case the L-type of a over U ensures that a is nonalgebraic, again by the
choice of k. Let P be the component of the coordinatizing tree in which
a lies. We claim that

(∗) acl (U)∩P ⊆ U.

As a is not algebraic over U , P is neither finite nor a semiprojective
geometry “repeating” an earlier one. Thus it is either a semiprojective
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geometry of new type or an affine-with-dual pair. Consider the affine
case. Again by the nonalgebraicity assumption, U will contain no affine
point of P , while a is affine; as a is the next point of the enumeration, U
contains the full dual-affine part of P in E, and as E is itself algebraically
closed in M, the claim (∗) holds in this case. Suppose now that P is
semiprojective of new type, so orthogonal to all projective geometries
J ′ at lower levels. Then acl (U)∩P = acl(U ∩P )∩P . This reduces our
claim to the corresponding claim (∗) in a single geometry, where it is a
property of standard enumerations.
This gives (∗). Now in M as P is fully embedded, the type of

a over acl(U)∩P implies its type over U , and by (∗) acl (U)∩P is
U ∩P . To conclude, then, it suffices to observe that tpk(a/U ∩P ) proves
tp(a/U ∩P ), which holds since k ≥ 3 and P is a-definable (directly from
the tree language, in fact).
For (2) we may proceed similarly, extending f over an enumeration of

E.

Lemma 4.3.8. Let M be Lie coordinatized, L the standard language
for M. Then for any section U of any envelope E, the theory of U is
model complete.

Proof. We must show that any type in U is equivalent to an existential
type. We show by induction on the section U :

(∗) For any finite sequence c in U there is a finite sequence
c′ in U such that tpL(cc

′) implies tpM(c).

Granted this, if c is expanded first to contain a support for U , then the
type of c in M will determine its type in U , and our claim follows.
This statement passes through at limit stages, so we deal with the

case U = U1 ∪{a}. We may suppose c = c1a with c1 from U1. We need
first a finite set C such that tpL(a/C) determines tp(a/c1). This is a
consequence of (1′) from the previous proof. (C will grow with c1 in
general, when a is the first affine point.) We may suppose c1 ⊆ C.
It is useful at this stage to make the statement “tpL(a/C) determines

tp(a/c1)” more explicit. This is a statement belonging to the type of C;
another way of putting it is that the type of C and the L-type of a over
C determine the type of c1a.
We let C′ be chosen by applying (∗) inductively to C and U ′. We

claim that tpL(CaC
′) determines tpM(c1a). Given tpL(CaC

′), we first
recover tpM(C). Then we know that tpL(aC) determines tpM(c1a).
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4.4 QUASIFINITE AXIOMATIZABILITY

In this section we provide reasonably explicit axiomatizations of theo-
ries of Lie coordinatized structures, modulo certain information which
is determined only qualitatively by the geometrical finiteness of the co-
ordinatizing geometries.

Definition 4.4.1. Let M be Lie coordinatized and L a specified lan-
guage for M. A characteristic sentence for M is an L-sentence whose
countable models which are skeletal expansions with true dimensions
are exactly the envelopes of M and their isomorphic images.

Lemma 4.4.2. Let a skeletal type and corresponding skeletal language
Lsk be fixed. For any k there is a (uniformly computable) integer k∗

such that any 2k elements of a section U of a skeleton M for Lsk,
with support S, are contained in a subsection U ′ whose support S′ has
the same bounded part and satisfies |S′| ≤ k∗.

Proof. Note that the subsection will be taken with respect to a different
ordering.
This statement reduces to the same statement in a single projective

geometry. The existence of k∗ follows from the geometric finiteness. Its
computability follows from the decidability of the theory of the geometry.

Proposition 4.4.3. Let a skeletal type and corresponding skeletal lan-
guage Lsk be fixed, and let L be a finite language containing Lsk.
Then there is a recursive class Ξ of (potential) characteristic sen-
tences, which can be found uniformly in the data Lsk, L, with the
following properties:

1. If M is a skeletal expansion with true dimensions relative to Lsk,
and M |= ξ (some ξ ∈ Ξ), then every countable model of ξ with
true dimensions is isomorphic with an envelope of M.

2. Any Lie coordinatized structure with coordinatizing skeleton Msk

satisfies one of the sentences in Ξ.

In particular, every Lie coordinatized structure has a characteristic
sentence.

Proof. We form the set Ξ∗ of sextuples (ξ, k, k∗, k∗∗, L′,Σ) satisfying the
following six conditions, and then take Ξ to consist of the sentences ξ for
which some suitable k,k∗,k∗∗,L′,and Σ can be found; this will make Ξ
recursively enumerable but by a standard device any r.e. set of sentences
is equivalent to a recursive set: it suffices to replace each sentence ξ by
a logically equivalent one whose length is at least the time taken to
enumerate ξ.
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The conditions on (ξ, k, k∗, k∗∗, L′,Σ) are as follows:

(i) L′ is a list of formulas of L, each with at most k+ 1 free variables.
L′ is to be thought of as a new language, and the given formulas
will be called L′-atomic formulas. These formulas will include the
atomic formulas of L. Σ is a finite set of existential L′-formulas.

(ii) ξ implies the skeletal theory Tsk, apart from the clause asserting
infinite dimensionality of certain geometries.

(iii) ξ asserts that certain quantifier free L′-formulas in k + 1 free vari-
ables are algebraic in the last k variables, that is for each choice
of these k variables, the formula has only finitely many solutions
(with a specified bound). These formulas will be called explicitly
algebraic.

(iv) For any ∀∃ L′-sentence with k∗ universal quantifiers and k + 1
existential ones, ξ specifies the truth or falsity of the statement.

(v) For any section support S of size l ≤ k∗ whose atomic L′-type is r
(in l variables), and for any L′-formula ϕ in these l variables with
at most k + 1 quantifiers, ξ implies that either all realizations of r
satisfy ϕ, or all realizations of r satisfy ¬ϕ.

(vi) For any section U of a model M of ξ with support S of size at most
k∗, and any a ∈ M, ξ asserts that one of the following occurs (to
be elucidated more fully below):

(vi.a) There is a set B ⊆ U of order at most k for which the
quantifier-free L′-type of a over B is explicitly algebraic and
“implies its L′-type over U”;

(vi.b) a lies in an affine-with-dual geometry J whose dual affine part
D (if present) lies in U , and the geometric type of a over D
“implies its L′-type over U .”

(vi.c) a lies in a semiprojective geometry of new type J and the
geometric type of a over J ∩U “implies its L′-type over U .”

It remains to formalize condition (vi) more completely, and in so doing
to explain the role of the formulas in Σ. We are dealing with expressions
of the form “ξ states that tp∗(a/X) determines tp(a/U)” where the
second type is an atomic L′-type and the first type is some part of an
atomic L′-type.
To formalize (vi.a) we consider a formula α(x; y) expressing the atomic

L′-type of a over B, |B| ≤ k, with x standing for a and y for B, and we
consider any other formula β(x; y′) in l ≤ k variables. We are trying to
formalize (and to put into ξ) the statement (α =⇒ β), whenever this is
true. This is done as follows, elaborating on the model completeness:

(vi.a′) For any B′ ⊆ U with |B′| = l (enumerated as a sequence
of length l), and any section support S′ ⊆ S with |S′| ≤ k∗
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such that the section U ′ supported by S′ contains B ∪B′: if
β(a,B′) holds then there is an existential formula σ(z, y, y′)
in Σ where z corresponds to an enumeration of S′, true in U ′,
such that ξ implies that [σ(z, y, y′)&α(x, y)] =⇒ β(x, y′).

The existential quantifiers in σ will refer to the section supported by
z. We treat (vi.b) and (vi.c) similarly, e.g.:

(vi.b′) For any B′ ⊆ U with |B′| = l (enumerated as a sequence of
length l), and any section support S′ ⊆ S with |S′| ≤ k∗∗ such
that the section U ′ supported by S′ contains the affine dual
of the component of a and B′: if β(a,B′) holds then there
is an existential formula σ(z, y, y′) in Σ where z corresponds
to an enumeration of S′ and y enumerates some elements of
the affine dual part, that σ holds in U ′ and ξ implies that
[σ(z, y, y′)&α(x, y)] =⇒ β(x, y′).

We require of course that for every β involving k variables there should
be a suitable α for which the corresponding version of (vi) holds. This
can be viewed as a condition on k∗ and k∗∗, particularly when we wish
to verify point (2).
We claim that with this choice of ξ, (1,2) hold. We begin by comment-

ing on (2), which amounts to an elaboration of the proof of the existence
of a finite language. The parameter k is the one used to define a standard
language, and L′ is the standard language, given in terms of 0-definable
relations in the specified language L. Clause (iii) is natural in view of
the definition of k; given M, all the formulas of the given type which are
algebraic in M will be made explicitly algebraic. Point (v) reflects the
homogeneity of section supports. Finally, point (vi) reflects the control
of types over envelopes, and the model completeness of the theory of
the envelopes. Part (vi.a) is an accurate reflection of the role of k as a
bound for the base of algebraicity over an envelope. Point (vi.b) requires
further elucidation. We will have in general tpG(a/D) ⊢ tpL′(a/U) (“G”
for “geometric”). Now tpL′(a/U) consists of formulas β of the appropri-
ate form for (vi.b′). The formulas α(x, y) coming from tpG(a/D) may
require more than k variables. However, given M, there will be a bound
k1 for the number of variables needed, and a corresponding bound k∗∗

for the size of a section support needed to capture k1+k variables. Then
(vi.b′) expresses (vi.b).
We turn to (1): M is a proper L-structure relative to Lsk and M |=

ξ (some ξ ∈ Ξ). We claim that every countable model M′ of ξ is
isomorphic with an envelope of M (or with the restriction of an envelope
in an adequate expansion of M, to the sorts of M).
If M∗ is an ℵ1-saturated elementary extension of M then M is the

countable envelope for M∗ with all µ-invariants infinite dimensional. It
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suffices to show that M′ is isomorphic with an envelope in M∗.
We enumerateM′ so that each initial segment is a section of the skele-

ton, and we define a map F : M′ → M∗ by induction. An approximation
to F will be a pair (f, U) satisfying the following three conditions:

(a) U is a section of M′ with support S;
(b) f is an L′-embedding of U into M∗;
(c) If Jb is a semiprojective component of M′ of new type, with b ∈ U ,

Jb ⊆ U , then acl(f [U ])∩Jf(b) is f [Jb].

Condition (c) essentially rules out “accidents” in which as f is ex-
tended, some new value generates a coordinate in a geometry which has
already been dealt with. Since we have been rather more careful in the
axiomatization to specify what is algebraic than we have been to avoid
algebraicity, there is something to be concerned with.
If we are able to carry out the inductive step in which a single el-

ement is added to U , then the construction passes smoothly through
limit stages and produces a total (F,M′) satisfying the conditions (b, c)
with U = M′. By (c) the image of F will be algebraically closed in
each semiprojective component of new type coded by an element of the
image. It follows easily that F [M′] is algebraically closed in M∗. Also
if c ∈ M∗−F [M′] then there is c′ definable from c with the same prop-
erty, lying in a semiprojective component of new type, whose defining
parameter is in the image of F . Again (c) applies and leads to the maxi-
mality clause in the definition of envelope after passing to the canonical
projective associated with the given component (one of the sorts which
should be added to M in an adequate expansion).
The last point is that the isomorphism type of a coordinatizing com-

ponent of F [M′] with a given defining parameter b is constant over all
conjugates of b (in M∗) lying in the image. This follows since F is an
L-embedding.
So what remains to be checked is the extendability of an approxima-

tion (f, U) to the next element a of M′. Let J be the component of
M′ in which a lies. Then the L′-type of a is determined either by an
explicitly algebraic formula ψ, or a geometric type over part of U . We
extend f by letting f(a) be any realization of the corresponding type in
M∗. If a is explicitly algebraic then condition (v) implies that M∗, a
model of ξ will realize this type. If a is geometric, then M∗, being a Lie
coordinatized model in the first place, will realize the appropriate type,
using saturation. Let the extension be denoted (f ′, U ′). We claim that
the conditions (b, c) are preserved.
Condition (b) is controlled by properties (vi.a, vi.b) of ξ. Note here

that the auxiliary formulas in Σ are existential and hence are preserved
by embedding.



QUASIFINITE AXIOMATIZABILITY 89

The condition (c) is obviously preserved if a is algebraic over U or
more generally if acl f [U ′]∩Jfb = acl f [U ]∩Jfb. So we must consider
the case in which a is not algebraic over U but some element of Jfb not
in acl f [U ]∩Jfb becomes algebraic over f [Ua]. Let S be the support
of the section U , and let U∗ be the section of M∗ supported by f [S],
which contains Jfb in particular. Then fa is algebraic over U∗ and
hence is k-algebraic over some section of M∗ whose support fS′ ⊆ fS
is of size at most k∗. Accordingly ξ asserts some element a′ of the
geometry J containing a in M will be algebraic over the section U ′

supported by S′. In particular acl(U) meets J . On the other hand
a /∈ acl (U ′). Thus J is a new geometry and by orthogonality theory in
M∗, acl f [Ua]∩Jfb = acl f [U ]∩Jfb.
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4.5 ZIEGLER’S FINITENESS CONJECTURE

Proposition 4.5.1. Let a skeletal type and corresponding skeletal lan-
guage Lsk be fixed, and let L be a fixed finite language containing Lsk.
Then there are only finitely many Lie coordinatized structures in the
language L having a given skeleton Msk, up to isomorphism.

Proof. It suffices to combine Proposition 4.4.3 with the Compactness
Theorem. For this one must check that the class of Lie coordinatized
structures in the language L with the specified skeleton is an elemen-
tary class. Thus one must review the various conditions involved in Lie
coordinatization.
Note that the skeleton fixes the language of the individual geometries.

In particular, the notion of canonical embedding is first order, as is the
notion of orientability.
One must also express the condition of stable embedding for the ge-

ometries. We can use Lemma 2.3.3. Thus it suffices to bound the size of
acl(a)∩J uniformly. But | acl(a)∩ J | has dimension at most the height
of the skeleton times the length of a.
Thus compactness applies.

Definition 4.5.2. Let M be a structure.

1. A cover of M is a structure N and a map π : N → M such that
the equivalence relation Eπ given by “πx = πy” is 0-definable in
N , and the set of Eπ-invariant 0-definable relations on N coincides
with the set of pullbacks along π of the 0-definable relations in M.

2. Two covers π1 : N1 → M, π2 : N2 → M are equivalent if there is
a bijection ι : N1 ↔ N2 compatible with π1, π2 which carries the
0-definable relations of N1 onto those of N2.

3. If π : N → M is a cover, then Aut(N/M) is the group of au-
tomorphisms of N which act trivially on the quotient M. Thus
Aut(N/M) ≤

∏
a∈M AutN (Ca) where Ca = π−1(a) and AutN (Ca)

is the permutation group induced by the setwise stabilizer of Ca in
Aut N .

The problem of the theory of covers is to classify or at least restrict
the possible covers with given quotient and specified fiber; that is, typ-
ically the structures (Ca,AutN (Ca)) are specified in advance and are
essentially independent of a. Any automorphism group will be a closed
subgroup of the symmetric group (in the topology of pointwise conver-
gence with the discrete topology on the underlying set); by the finiteness
of language, in the Lie coordinatized case it is even k-closed for some fi-
nite k: any permutation which agrees on every set of k elements with an
automorphism is itself an automorphism. in the ℵ0-categorical context,



ZIEGLER’S FINITENESS CONJECTURE 91

furthermore, Aut N induces AutM; in particular, if the automorphism
group of the fibers is abelian, then Aut(N/M) is an Aut(M)-invariant
subgroup of the product.

Proposition 4.5.3. Let M be a fixed Lie coordinatized structure and
let J be a fixed geometry or a finite structure. Then there are only
finitely many covers π : N → M up to equivalence which have fiber J
and a given relative automorphism group Aut(N/M) ≤

∏
N/E Aut J .

Proof. We apply Proposition 4.5.1. The skeletonNsk of N is determined
by the given data and thus it suffices to find a single finite language L
adequate for all such covers N . Thus it suffices to bound the arity k of
L and the number of k-types occurring in N .
We deal first with the arity, using the language of permutation groups.

We must find a bound k so that Aut(N ) is a k-closed group, for all
suitable covers N . Aut(M) is k◦-closed for some k◦. If we restrict
attention to k ≥ k◦, then Aut(N ) is k-closed if and only if Aut(N/M)
is k-closed, as is easily checked. (Note that Aut N induces Aut M by
ℵ0-categoricity.)
Thus for k ≥ k◦ the choice of k is independent of the cover, as long

as the relative automorphism group is fixed in advance.
Now with k fixed, consider the number of k-types available in N . If

the fiber is finite of order m, then each k-type of M corresponds to at
most mk k-types of N , so we have the desired bound in this case.
If the fiber is a geometry, to bound the number of k-types we proceed

by induction, bounding the number of 1-types over a set A of size j
for j < k. The 1-type of an element a of the geometry Jb over A is
determined by its restriction to the algebraic closure of A in a limited
part of Jeq

b , e.g. in the affine case the linear version must also be taken.
It suffices therefore to bound the dimension of acl(a)∩ J for geometries
J associated to Jb. As rk (Aa/π[A]a) ≤ j, the space acl(π[A]a) has
codimension at most j in acl (Aa)∩ J and thus the desired bound for N
can be given in terms of the data for M.

Remarks 4.5.4

In cohomological terms, if Aut J is abelian this may be expressed by:

H1
c (Aut M, (

∏
M Aut J)/K) is finite

for K ≤
∏

M Aut J closed and (Aut M)-invariant. Cf. [HoPi].
For a more algebraic approach to this type of problem, due to David

Evans, see the paper [Ev].


