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Smooth Approximability

3.1 ENVELOPES

We defined standard systems of geometries at the end of the last sec-
tion. These provide a framework for the construction of Zilber/Lachlan
envelopes.

Definition 3.1.1. Let M be Lie coordinatized.

1. A regular expansion of M is the structure obtained by adjoining to
M finitely many sorts of Meq with the induced structure.
Note that a regular expansion of M is Lie coordinatizable but not
literally Lie coordinatized, since the additional sorts are disjoint
from the tree structure.
A regular expansion of M is adequate if it contains a copy of each
canonical projective which is nonorthogonal to a coordinatizing ge-
ometry of M.
The remainder of this definition should be applied only to adequate
regular expansions of Lie coordinatized structures (as will be seen
on inspection of the definition of envelopes, below).

2. An approximation to a geometry of a given type is a finite or count-
able dimensional geometry of the same type.
This includes, of course, a nondegeneracy condition on the bilinear
or quadratic forms involved, and in the case of a quadratic geome-
try, the quadratic part must be present (a symplectic space with Q
empty is not an approximate quadratic space), and ω in the finite
dimensional case must actually be the Witt defect.

3. A dimension function is a function µ defined on equivalence classes
of standard systems of geometries, with values isomorphism types
of approximations to canonical projective geometries of the given
type. (This is actually determined by a dimension, and the type.)
By the usual abuse of notation, we construe these functions as
functions whose domain consists of all standard systems.

4. If µ is a dimension function, then a µ-envelope is a subset E sat-
isfying the following three conditions:
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(i) E is algebraically closed in M (not Meq);

(ii) For c ∈ M−E, there is a standard system of geometries J with
domain A and an element b ∈ A∩E for which acl (E, c)∩ Jb
properly contains acl (E) ∩ Jb;

(iii) For J a standard system of geometries defined on A and b ∈
A ∩E, Jb ∩ E has the isomorphism type given by µ(J).

5. If µ is a dimension function and E is a µ-envelope we write dim J(E)
for µ(J) when E meets the domain of J , and otherwise we write
dim J(E) = −1; in the latter case the value µ(J) is irrelevant to
the structure of E.

Our goals are existence, finiteness, and homogeneity of envelopes.

Lemma 3.1.2. Let M be an adequate regular expansion of a Lie coordi-
natized structure. Suppose that E is algebraically closed, and satisfies
(iii) with respect to the standard system of geometries J . Suppose that
J ′ is an equivalent standard system of geometries and that J, J ′ are
in M (not just Meq). Then E satisfies (iii) with respect to J ′.

Proof. We note that as E ⊆ M it would not make a great deal of sense
to attempt to say something substantial about its intersection with a
geometry lying partly outside M.
Condition (iii) for J ′ means that if b′ ∈ E∩A′, where A′ is the domain

of J ′, then E ∩ J ′
b′ has the structure specified by µ(J ′) = µ(J). The

element b′ corresponds to an element b of E∩A, with A the domain of J ,
and there is a 0-definable bijection between E∩Jb and E∩J ′

b′ which is an
isomorphism of weak unoriented structures. This may involve twisting
by a field automorphism or switching the sides of a polar geometry, but
does not affect the isomorphism type. If we use canonical orientations,
it will preserve them.

Lemma 3.1.3 (Existence). Let M be an adequate regular expansion
of a Lie coordinatized structure.
1. Let E0 ⊆ M be algebraically closed in M and suppose that

for each standard system of geometries J with domain A and each
b ∈ E0 ∩ A, Jb ∩ E0 embeds into a structure of the isomorphism type
µ(J). Then E0 is contained in a µ-envelope.
2. In particular, for any µ, µ-envelopes exist.

Proof. Let J be a representative set of standard systems of geometries.
By the previous lemma it suffices to work with J . We may take E
containing E0 maximal algebraically closed such that

(∗) For J ∈ J with domain A, and b ∈ E ∩ A,
Jb ∩ E embeds into a structure of the type specified by µ(J).
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We need to check both (ii) and (iii) for E.
We begin with (ii). Suppose c ∈ M − E. Let E′ = acl (E ∪ {c}).

Then we have some J ∈ J with domain A, and some b ∈ E′ ∩ A, for
which Jb ∩ E′ does not embed into a structure of the type specified by
µ(J). If b ∈ A ∩ E then Jb ∩ E does embed in such a structure, and
(ii) follows. Now suppose that b /∈ A ∩ E. In this case we show that
Jb∩E = ∅ 6= Jb∩E′, so that (ii) holds also in this case. As E is definably
closed it is a subtree of M with respect to the coordinatizing tree. As
b is not definable over E, Jb is orthogonal to the geometries associated
with this tree. Thus by induction over this tree, acl (E) ∩ Jb = ∅.
We turn to (iii), and we need only concern ourselves here with J ∈ J .

Suppose that J has domain A, and b ∈ E∩A, and let B be an extension
of Jb ∩ E inside Jb of the desired isomorphism type µ(J). Our claim is
that B ⊆ E. Let E′ = acl (E ∪B). We will argue that E′ also has the
property (∗), so E′ = E.
If J ′ ∈ J has domain A′, and b′ ∈ A′, then unless J ′ = J and b′ = b,

the geometries Jb, Jb′ are orthogonal and Jb′∩E′ = Jb′∩E. On the other
hand, by Lemma 2.3.3 any element of Jeq

b algebraic over E is algebraic
over Jb∩E. This applies in particular to any E-definable formula ϕ(x, y)
such that for some elements b ∈ B, ϕ(x,b) isolates an algebraic type
over E ∪B in Jb. Thus Jb ∩ E′ = Jb ∩ acl ((E ∩ Jb) ∪B) = B.

Lemma 3.1.4 (Finiteness). Let M be an adequate regular expansion
of a Lie coordinatized structure. Suppose that for each standard system
of geometries J the dimension function µ is finite. Then every µ-
envelope E is finite.

Proof. E is algebraically closed in M and hence inherits a coordinatiz-
ing tree from M. It suffices, therefore, to check that for any a ∈ E,
its successors in the tree form a finite set. We may suppose the suc-
cessors are of the form E ∩ Pa with Pa an a-definable geometry in M,
nonorthogonal to some canonical projective geometry Jb with b ≤ a in
the tree. The size of Jb∩E is controlled by µ and there is an a-definable
bijection between the localization of Jb at acl (a)∩Jb and the projective
version of Pa, so this goes over to E as well. Thus E ∩ Pa is finite.



48 SMOOTH APPROXIMABILITY

3.2 HOMOGENEITY

Definition 3.2.1

1. Let (V,A) be an affine space (a linear space with a regular action)
defined over the set B. A is free over B if there is no projective
geometry J defined over B for which A ⊆ acl (B, J). An element a,
or its type over B, is said to be affinely isolated over B if a belongs
to the affine component A of an affine space (V,A) defined and free
over B.
Note: As a copy of V is definable over A in Aeq, it can and will be

suppressed in this context.
2. Let A and A be two affine spaces free over B. They are al-
most orthogonal if there is no pair a ∈ A, a′ ∈ A′ with acl (a,B) =
acl (a′, B).

Lemma 3.2.2 (Uniqueness of Parallel Lines)
Let (V,A), (V ′, A′) be almost orthogonal affine spaces defined and
free over the algebraically closed set B, with PV and PV ′ complete
1-types over B. Let J be a projective geometry defined over B, not of
quadratic type, and stably embedded in M. For a ∈ A, a′ ∈ A′, and
c ∈ J −B, the triple (a, a′, c) is algebraically independent over B.

Proof. We have (V,A), (V ′, A′), and J all defined over B. Our defini-
tions amount to the hypothesis that the elements (a, a′, c) are pairwise
independent over B, so if two of these geometries are orthogonal there is
nothing to prove. We suppose therefore that they are all nonorthogonal.
In particular, the projectivization PV of V can be identified with part
of J .
We consider the structure J∪A. For a ∈ A, A is definable over J∪{a}

and hence J ∪ A is stably embedded in M. As PV can be identified
with part of J , J ∪A carries a modular geometry over B.
Now suppose toward a contradiction that rk (aa′c/B) = 2. Take inde-

pendent conjugates a1, c1 of a, c over a′. Then rk (aca1c1/B) = 3. This
takes place in J ∪ A, so there is d ∈ (J ∪ A) − B algebraic over acB
and a1c1B, hence in acl (a′, B). Thus acl (dB) = acl (a′B) and either
d ∈ A, and A,A′ are not almost orthogonal, or d ∈ J , and A′ is not free
over B.

Lemma 3.2.3. Let M be Lie coordinatized. Let A be an affine space
defined and free over the algebraically closed set B. Let B ⊆ B′ =
acl (B′) with B′ finite, and let J be a canonical projective geometry
associated with A. Assume

1. J ∩B′ ⊆ B;



HOMOGENEITY 49

2. J ∩B is nondegenerate (if there is some form or polarity present);
3. If J is a quadratic geometry, then its quadratic part Q meets B.

Then A either meets B′, or is free over it.

Proof. We remark that if A does not meet B′, A need not remain a
geometry over B′, but will split into a finite number of affine pregeome-
tries over B′. We will call A free over B′ if this applies to each of the
associated geometries over B′.
The claim will be proved by induction with respect to the coordina-

tization of the algebraically closed set B′ relative to B, inherited from
M. Accordingly we may take B′ = acl (B, a′), where a′ comes from an
affine, quadratic, or projective geometry A′ defined over B.
Assume that A ∩ B′ = ∅ and some affine part A0 of A relative to B′

is contained in acl (B, a′, J ′) with J ′ = Jb′ projective and defined over
B′. As J ′ ⊆ acl (J, b′) the same applies with J ′ replaced by J , that is:
A0 ⊆ acl (B, a′, J), while A ∩ acl (B, J) = ∅. It follows that A′ and J
are nonorthogonal, and that A′∩ acl (B, J) = ∅. In view of (iii) we have
A′ affine, and easily free over B.
If A and A′ are not almost orthogonal over B, then B′ meets A.

Suppose therefore that A and A′ are almost orthogonal over B. Then
we will apply the previous lemma. Choose a ∈ A. As a ∈ acl (B, a′, J),
and the geometry of (A, J) is modular, there is c ∈ J ∩ acl (Baa′) with
a ∈ acl (Ba′c). Then c /∈ B, and in view of (iii) we may suppose c is
not in the quadratic part of J , if there is a quadratic part.
Let JB be the localization of J over B. By hypothesis (iii) this is not

a quadratic geometry. By hypothesis (ii) J is in the algebraic closure
of B ∪ JB; normally over B, J would break up into a number of pre-
geometries, at least one ((J ∩ B)⊥) sitting over the localization, while
some of the cosets would be affine pregeometries. However, since J ∩B
is nondegenerate, all elements of J lie in translations by elements of B
of (J ∩B)⊥. Of course, when forms are absent, the situation is trivial.
Replacing c momentarily by an element of JB having the same al-

gebraic closure over B, we may apply the previous lemma to a, a′, c,
reaching a contradiction.

Lemma 3.2.4. Let M be an adequate regular explansion of a Lie co-
ordinatized structure, let µ be a dimension function, and let E and
E′ be µ-envelopes. If A ⊆ E, A′ ⊆ E′ are finite, and f : A −→ A′

is elementary in M, then f extends to an elementary map from E
to E′. In particular, µ-envelopes are unique, and (taking E = E′)
homogeneous.

Proof. It suffices to treat the case in which E and E′ are finite, as
the existence and finiteness properties then suffice for a back-and-forth



50 SMOOTH APPROXIMABILITY

argument using finite envelopes. What we must show is that if A 6= E
then there is an extension of f to acl (A ∪ {b}) for some b ∈ E − A.
There are essentially two cases, depending on whether we are trying to
add a point to the domain coming from a canonical projective geometry,
or we are extending to the other points of the envelope. We may suppose
A and A′ are algebraically closed.
Case 1. There is a standard system of geometries J and an a ∈ A

for which Ja ∩ E is not contained in A.
Expand Ja to a basic projective geometry J◦

a∗ defined over a∗ =
acl (a). Let L and L′ be finite dimensional linear geometries cover-
ing J◦

a∗ ∩E and J◦
fa∗ ∩E′, respectively. Then L and L′ are isomorphic,

and their isomorphism type is characterized by its type, dimension, and
Witt defect (if applicable).
As f is elementary, it gives a partial isomorphism between some Ja∩E

and Jfa∩E
′, which lifts to an elementary map between the corresponding

parts of L and L′. Let f̂ be an extension of f by an isomorphism of L
with L′. The existence of such a compatible extension is trivial in the
absence of forms and given by Witt’s theorem [Wi] otherwise, with the
exception of the polar and quadratic cases. The polar case is quite
straightforward. In the quadratic case one first extends f so that its
domain meets Q, and then the problem reduces to the orthogonal case,
in other words to Witt’s theorem.
By weak elimination of imaginaries and stable embedding, since A =

aclA, we find that tp(A/L∩A) determines tp(A/L); similarly, tp(A′/L′∩
A′) determines tp(A′/L′). Implicit in this determination is knowledge

of the type of L or L′ over ∅. Since f̂ preserves the two relevant types,
it preserves tp(A/L) and is thus elementary.
Case 2. For any standard system of geometries J , and any a ∈ A,

Ja ∩ E ⊆ A.
It follows that the same applies to A′. We extend f to a minimal

element a in the coordinatization tree for E, not already in the domain.
So the tree predecessor b of a is in A, and a is not algebraic over b.
Accordingly a belongs to a geometry Jb which is nonorthogonal to a
canonical projective geometry. As we are not in Case 1, Jb is affine, and
free over A. If f is extended to acl (A) ∩Meq we may take Jb basic.
In E′ we have, correspondingly, Jfb affine and free over A′. However,

as E′ is an envelope, the maximality condition (clause (ii)) implies that
Jfb cannot be free over E

′. Lemma 3.2.3 applies in this situation, to the
affine space Jfb and the algebraically closed sets A′ and E′, in view of
the hypothesis for Case 2. Thus the conclusion is that Jfb meets E′.
We will next find an element a′ of Jfb ∩ E′ satisfying the condition

(a, λ) = (a′, fλ) for all λ ∈ J∗
b ∩ A (the affine dual).
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Here one should, strictly speaking, again extend f to the algebraic clo-
sure of A in Meq. We consider a stably embedded canonical projective
geometry P associated with Jb. Then P is b-definable and the projec-
tivization of the linear space Vb which acts regularly on Jb is definably
isomorphic to one of the sorts of the localization P/b of P at b. By our
case assumption P ∩E is as specified by µ and is, in particular, nonde-
generate. The same applies to P ′ ∩E′. Thus the action of the definable
linear dual of Vb′ is represented, in its action on Vb′ ∩E′, by elements of
A′ (or acl (A′)∩Meq, more precisely). As E′ meets the affine space Jb′ ,
the same applies to the affine dual. Again by the linear nondegeneracy
and the fact that E′ meets Jb′ , the specified values for (a′, fλ) can be
realized in E′ ∩ Jb′ . We extend f by f(a) = a′.
Now the type of A over (PVb, Jb, J

∗
b ) is determined by its type over its

algebraic closure in that geometry, and this applies in particular to the
type of A over a. So in order to see that f remains elementary, it suffices
to check that a and a′ have corresponding types over Aeq∩ (PVb, Jb, J

∗
b )

and its f -image; and this is what we have done.

Corollary 3.2.5. Let M be an adequate regular expansion of a Lie co-
ordinatized structure. Then a subset E of M is an envelope if and
only if the following conditions are satisfied:

(i) E is algebraically closed;
(ii) For any c ∈ M − E, there is a projective geometry J defined over

E, not quadratic, and an element c′ ∈ (J ∩ acl (Ec))− E;
(iii) If c1, c2 ∈ E are conjugate in M and D(c1), D(c2) are correspond-

ing conjugate definable geometries, then D(c1) ∩ E and D(c2) ∩ E
are isomorphic.

This does not depend on a particular coordinatization of M.
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3.3 FINITE STRUCTURES

In this part we summarize some useful facts applying to finite geometries
and their automorphism groups, notably the result of [KLM].

Definition 3.3.1. A simple Lie geometry L is either a weak linear ge-
ometry of any type other than polar or quadratic, the projectivization
of such a geometry, or the affine or quadratic part of a geometry; in
the latter case the “missing,” linear part is to be considered as encoded
into Leq.

These do not have the best properties model theoretically, and a polar
geometry cannot be recovered at all from a single simple Lie geometry,
but apart from this, at the level of Ceq there is little difference between
simple Lie geometries and the geometries considered previously.

Definition 3.3.2
1. A coordinatizing structure of type (e,K) and dimension d is a
structure C with a transitive automorphism group, carrying an equiv-
alence relation E with e < ∞ classes, such that each class carries the
structure of a simple Lie geometry over the finite field K, of dimen-
sion d. (One could include the type of the geometry as well in the type
of C.)
2. Let C be a coordinatizing structure of type (e,K) and dimension d,
and let τ be the type over the empty set of a finite algebraically closed
subset (not sequence) t of C. The Grassmannian Γ(C, τ) is the set of
realizations of the type τ in C, with the structure induced by C. It is
said to have type (e,K, τ) and dimension d.
3. Let C be a coordinatizing structure. C is proper if each equivalence
class of C as a geometry is canonically embedded in C, or equivalently
if the automorphism group induced on each class is dense in its auto-
morphism group as a geometry (in the finite dimensional case, dense
means equal). If C is finite dimensional, it is semi-proper if the auto-
morphism group of C induces a subgroup of the automorphism group
G of the geometry which contains G(∞).
4. A structure is primitive if it has no nontrivial 0-definable equiva-
lence relation.

Fact 3.3.3 [KLM]. For each k there is nk such that for any finite prim-
itive structure M of order at least nk, if M has at most k 5-types then
M is isomorphic to a semiproper Grassmannian of type (e,K, τ) with
e, |K|, |τ | ≤ k, where |τ | has the obvious meaning.

As noted in the introduction, D. Macpherson found [Mp2] that the
method of proof of [KLM] suffices to prove the same fact with 5 reduced
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to 4. The statement is quite false for 3.
The next set of facts is standard in content, though not normally

phrased precisely as follows.

Fact 3.3.4 [CaL].
1. Let k be an integer. There is a d = dk such that for any finite basic
simple projective Lie geometry L of dimension at least d we have

(i) The socle G of Aut (L), is simple and nonabelian, and Aut (L)/G
is solvable of class at most 2;

(ii) G and AutL have the same orbits on Lk;

(iii) The automorphism group of L as a weak geometry coincides
with AutG. with one exception: if L is a pure vector space
then the automorphism group of L is a subgroup of index 2 in
AutG, and the full group AutG is realized geometrically as
the automorphism group of the weak polar geometry (L,L∗).

2. If J1, J2 are nondegenerate basic projective geometries, not quadra-
tic, of large enough dimension, and their automorphism groups have
isomorphic socles, then they are isomorphic as weak geometries.

Here our policy of leaving the degenerate case to fend for itself may
be too lax; but the statement certainly applies also in the context of
Sym(n) and Aut (n).

Remarks 3.3.5

Note that the automorphism groups of the basic geometries are clas-
sical groups with no Galois action. In the first statement we ignore
4-dimensional symplectic groups over fields of characteristic 2 and 8-
dimensional orthogonal groups of positive Witt defect by taking d > 8.
The polar geometry implements a “graph automorphism,” of the gen-
eral linear group in any dimension. The graph automorphism of order 2
for Chevalley groups of type Dn is part of the geometric automorphism
group. G is usually equal to the commutator subgroup of AutL, with
exceptions in the orthogonal case (and a few small exceptions that can
be ignored here).

Fact 3.3.6. For any finite basic simple linear geometry V of dimension
at least 5, if G = (Aut V )(∞) acts on an affine space A over V so as
to induce its standard action on V , then either G fixes a point of A
or the characteristic is 2, G is the symplectic group operating on its
natural module V , and the action of G on A is definably equivalent to
its action on Q, the space of quadratic maps on V associated to the
given form.



54 SMOOTH APPROXIMABILITY

Proof. Taking any point a ∈ A as a base point, the function f(g) = ag−a
can be construed as a function from G to V , and is a 1-cocycle. Change
of base point gives a cohomologous cocycle. If this cocycle is trivial, it
means we may choose the base point so that this cocycle vanishes, and
a is a fixed point for the action of G.
Typically the first cohomology group for a (possibly twisted) Cheval-

ley group on its natural module vanishes; see the tables in [JP], for
example. Rather large counterexamples are associated with exceptional
Chevalley groups, but for the classical types (A −D, possibly twisted)
restricted to dimension greater than 4, the only counterexamples involv-
ing natural modules are 1-dimensional cohomology groups for symplectic
groups in characteristic 2 (listed twice in [JP], once as Cn and once as
Bn, since the natural module for the odd dimensional orthogonal groups
in even characteristic corresponds to a representation of this group as
the symplectic group in one lower dimension). This is the case in which
we have Q, or more exactly αQ for α ∈ K×. The latter can be thought
of most naturally as the space of quadratic forms inducing αβ, where β
is the given symplectic form on V , but can also be viewed as the space
Q with the action q 7→ q + λ2

v replaced by q 7→ q + λ2
α1/2v

.
Thus we can either consider A as isomorphic to Q, by an isomorphism

which is not the identity on V , or as definably equivalent to Q over V ,
holding V fixed and rescaling the regular action on A; our formulation
of the result reflects the second alternative.

Remark 3.3.7.

It seems advisable to remember that the “Q,” alternative in the preced-
ing statement is in fact αQ for some unique α ∈ K.

Fact 3.3.8 [CaK]. Let G be a subgroup of a classical group acting nat-
urally on a finite basic simple classical projective geometry P , and
suppose that G has the same action on P 3 as AutP . Then G con-
tains (AutP )(∞) (the iterated derived group).

This iterated derived group is at worst (AutP )(2) and is a simple
normal subgroup with solvable quotient.

Remark 3.3.9.

In this connection our general policy of leaving the degenerate case to
fend for itself is definitely too lax. A similar statement does apply also
in the context of Sym(n) and Aut (n), with 6-tuples in place of 3-tuples,
but one needs the classification of the finite simple groups to see this.
Fact 3.3.8 is phrased rather differently in [CaK], as the result is con-

siderably sharper in more than one respect. Here we ignore low di-
mensional examples and also invoke a significantly stronger transitivity
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hypothesis. A somewhat more complete statement of the result of [CaK]
goes as follows.

Fact 3.3.10 [[]cf. Theorem IV]CaK. Let G ≤ ΓL(n, q), n ≥ 3, and
suppose G is 2-transitive on the corresponding projective space. Then
either G ≥ SL(n, q) or G ≤ SL(4, 2).

Fact 3.3.11 [[]cf. Theorem IV]CaK. Let G ≤ H = ΓSp(n, q), ΓOǫ(n, q),
or ΓU(n, q) with n > 13 and suppose that G has the same orbits on
2-dimensional spaces as H. Then G ≥ H(∞).

Theorem IV of [CaK] varies from Fact 3.3.10 in the following respects.
The transitivity hypothesis is weaker, amounting to transitivity on pairs
consisting of two isotropic nonorthogonal lines. This allows three low
dimensional exceptions and two families defined over the field F2, where
G normalizes a classical subgroup with coefficients in F4, so that G has
more than one orbit on totally isotropic planes.

Lemma 3.3.12. Let H be a normal subgroup of a product

G = G1 × · · · ×Gn

such that H projects surjectively onto each product of the form Gi×Gj.
Then G/H is nilpotent of class at most n − 2. In particular, if G is
perfect then G = H.

Proof. Let σi for 1 ≤ i ≤ n− 1 be a sequence of elements of Gn and for
each i let σ∗

i ∈ G be an element of H which projects onto σi in the nth
coordinate, and 1 in the i-th coordinate. Then any iterated commutator
γ(σ∗

i ) in the elements σ∗
i will project onto γ(σi) in Gn, and 1 in the

other coordinates. It follows easily that any iterated commutator of
length n− 1 belongs to H , and our claim follows.

Remark 3.3.13. The proof of Fact 3.3.6 actually involves a great deal
of calculation, somewhat disguised by the fact that the reference [JP]
presents the final outcome in tabular form. A qualitative version of
this, sufficient for our purposes, can be obtained by postponing the
issue somewhat and making use of our later results. We will indicate
this approach.
View (A, V ) as a structure by endowing it with all invariant rela-

tions. Replacing the bound “5” by “sufficiently large,” we may take
V to have a nonstandard dimension. If we show that A has either
a 0-definable point, or quadratic structure, then the same follows for
sufficiently large finite dimensions.
The induced structure on V is that of a standard linear geometry.

Let V ′ be the structure induced on V by (V,A, a) with a a point of A.
Note that V ′ interprets the triple (V,A, a). One cannot expect V ′ to
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be stably embedded, in view of the characteristic 2 case, but we still
expect

(∗) V ′ is Lie coordinatized.

Given (∗), one deduces Fact 3.3.6 from the theorem on reducts and
the recognition lemmas: by Proposition 7.4.4 (V,A) is weakly Lie
coordinatized. By Lemma 6.2.11 V is part of a basic linear geometry
in this structure, and Proposition 7.1.7 recognizes A.
The theorem on reducts can also be used in the proof of (∗) itself.

Note that any two unstable linear geometries interpret each other,
provided only that the characteristics of the base fields are equal.
Once reducts are under control, one can expand the geometry to a
polar geometry over a field of size greater than 2. This has the effect
of reducing all cases of (∗) to the simplest case of Fact 3.3.6, namely
the general linear group, which can be handled by a direct argument.
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3.4 ORTHOGONALITY REVISITED

For simplicity we will work for some time in a nonstandard extension
of the set theoretic universe in which we have infinite integers. This
gives a rigorous basis for the treatment of sequences of finite structures
of increasing size in terms of one infinitely large structure of integral
cardinality. In this context it will be important to distinguish internal
and external objects, notably in connection with the languages used,
and the supply of automorphisms available.

Definition 3.4.1. Let M be an internally finite structure with internal
language L0 in a nonstandard extension of the universe of set theory.
Then M∗ is the structure with the same universe, in a language whose
atomic relation symbols consist of names for all the relations in finitely
many variables defined on M by L0-formulas.

Observe that M∗ is not an element of the nonstandard universe. If
M is a nonstandard finite model of a standard theory T in the lan-
guage L, then the corresponding language L0 (normally called L∗ in
this case) is the language corresponding to L in the nonstandard uni-
verse; this has more variables than L (xn for all integers n, standard
or nonstandard), and more importantly, consists of arbitrary internally
finite well-formed formulas in its language. This includes formulas with
infinitely many (but internally finitely many) free variables; these are
discarded in forming the language for M∗, so M∗ is a reduct of M
from the nonstandard language L∗, one which is in general richer than
the reduct of M to the standard language L. For a concrete example,
consider a discrete linear order of nonstandard finite length: among the
predicates of M∗ one has, for example, the distance predicates Dn(x, y)
in two variables, for every n up to the (nonstandard) size of the order.
Of course, in this case there are no nontrivial internal automorphisms of
M; in fact, there are no nontrivial automorphisms of M∗.

Lemma 3.4.2. Let M be an internally finite structure, and J a finite
disjoint union of basic 0-definable projective simple Lie geometries
with no additional structure. Let G be AutJ and let G1 be (Aut J)(∞)

(the iterated derived group), where both AutJ and Aut J (∞) are un-
derstood internally (the latter coinciding with the internal socle here),
and automorphisms are taken with respect to the geometric structure.
Let H be the group of automorphisms of J which are induced by in-
ternal automorphisms of M. Then J is canonically embedded in M∗

if and only if H contains G1.

Proof. Suppose first that J consists of a single projective geometry. J
is canonically embedded in M∗ if and only if for each finite n, G and
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H have the same orbits on n-tuples in J ; applying Fact 3.3.4, part 1(ii),
this means that G1 and H have the same orbits on n-tuples in J . This
certainly holds if H ⊇ G1. Conversely if H has the same orbits on J as
G, it contains G1 by Fact 3.3.8.
The argument is similar in the general case, but we must justify further

the claim that if H acts on n-tuples of J as does G, then it contains G1.
Arguing inductively, it suffices to show that the pointwise stabilizer of J1
inH acts onm-tuples from J2×· · ·×Jn as G1 does. Let B ⊆ J2×· · ·×Jn
have cardinality m, and let g ∈ G1. By the argument of the first part,
the action of the pointwise stabilizer HBg on J1 induces the action of g
on J1. Hence in its action on J2 × Jn, HJ1

has the same orbits on m-
tuples as G; by induction then HJ1

induces the action of G1 on J2 ×Jn.
It follows that H induces G1.

Lemma 3.4.3. Let M be an internally finite infinite structure. Let
J1, J2 be a pair of basic pure projective geometries (with no forms)
defined and orthogonal over the algebraically closed set A in the sense
that (J1, J2; J1 ∩ A, J2 ∩ A) is canonically embedded in M. Let J =
J1 ∪ J2, AJ = A ∩ J . Then the permutation group G induced on J
by the internal automorphism group of M contains Aut (J ;AJ)

(∞)

(which in this case is just the commutator subgroup of Aut (J ;AJ )).
All group theoretic notions are to be understood internally here.

Proof. For notational definiteness let us assume that A∩Ji is nonempty
for each i. In the linear model we have vector spaces Vi with PVi = Ji
and we will take Ui = acl (A) ∩ Vi, and decompose Vi = Ui ⊕Wi. Then
we may check

Aut (Ji;A ∩ Ji) ≃ Hom(Wi, Ui)⋊GL(Wi).

Our claim is that the group G contains the product of the two groups
Hom(Wi, Ui)⋊ SL(Wi) acting on J . We know that on the localizations
AutM induces PSL(W1) × PSL(W2) as these geometries are orthogo-
nal. Let H1 be the kernel of the natural map from G to AutJ2/(A∩J2).
Then H1 covers at least PSL(W1) and is normal in G. It follows that the

same applies to the perfect subgroup H
(∞)
1 . Now H

(∞)
1 projects trivially

into the second factor and may therefore be thought of as a normal sub-
group of Aut (J1;A∩J1) covering PSL(W1); any such subgroup contains
Hom(W1, A ∩ J1)⋊ SL(W1), by inspection.

Remark 3.4.4. We are working here with automorphisms of pointed
projective geometries, in which constants have been added. It is not
always possible to reduce their analysis to a localization. In a similar
vein, Lemma 3.4.2 may be proved for pointed pure projective geome-
tries as well, or for that matter for any pointed projective geometries,
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if we are willing to write out the stabilizers of various sets.

Definition 3.4.5. A collection of A-definable sets Si is said to be jointly
orthogonal over A in M if the disjoint union of the structures
(Si, acl (A) ∩ Si) is canonically embedded in M.

Lemma 3.4.6. Let Ji be defined over A in M, with weak elimination
of imaginaries, and let B ⊆ J =

⋃
i Ji. Then the Ji are jointly

orthogonal in M over A if and only if they are jointly orthogonal in
M over A ∪B.

Proof. If they are jointly orthogonal over A and R is a relation on J
definable from A ∪

⋃
i acl (AB) ∩ Ji, then R is the specialization of

a 0-definable relation S over J to parameters from
⋃

i acl (AB) ∩ Ji.
Accordingly S is a boolean combination of products of ( acl (A) ∩ Ji)-
definable relations on Ji, and after specialization the same applies to R
over AB.
Conversely, assuming orthogonality overA∪B, let R be A-definable on

J . This is definable by hypothesis in J , with respect to parameters from⋃
i acl (AB) ∩ Ji. Viewing R as an element of Jeq, let e = acl (R) ∩ J .

By weak elimination of imaginaries, R is e-definable and e ⊆ acl (A)∩J .

Lemma 3.4.7. Let M be an internally finite structure. Let Ji (i ∈ I) be
canonically embedded projective Lie geometries in M∗, defined over,
and orthogonal in pairs over, the set A in M∗. Then they are jointly
orthogonal over A in M∗.

Proof. Let Ai = acl (A) ∩ Ji. The assumption is that (Ji ∪ Jj ;Ai ∪
Aj) is canonically embedded in M∗. Extend A by finite subsets Bi of
Ji containing Ai so that Bi is a nondegenerate subspace containing a
quadratic point, if possible. In the pure projective case Bi = Ai. Replace
A by B = A∪

⋃
i Bi. Then Ai is replaced by Bi, the geometries continue

to be pairwise orthogonal, and it suffices to prove joint orthogonality over
AB. For this, by the choice of Bi, except in the pure projective case it
suffices to go to the (nondegenerate) localizations, which are definably
equivalent over Bi to the previous structures. Now we consider the
group H of permutations induced by AutM on

⋃
i(Ji;Bi). Write Gi

for Aut (Ji;Bi)
(∞). Applying Lemma 3.4.2 of §3.3 to H(∞), using the

pairwise orthogonality, we find H ⊇
∏

iGi. By Lemma 3.4.2 and the
remark following Lemma 3.4.3 (used in the more straightforward of the
two directions) our claim follows.

Lemma 3.4.8. Let M be an internally finite structure. Let J1, J2 be 0-
definable basic simple projective Lie geometries canonically embedded
in M∗. Then in M∗ we have one of the following:
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1. J1 and J2 are orthogonal.
2. There is a 0-definable bijection between J1 and J2.
3. J1 and J2 are of pure projective type—that is, with no forms—and

there is a 0-definable duality between them making the pair (J1, J2)
a polar space.

Proof. Let S be the internal permutation group induced on J = J1 ∪ J2
by internal automorphisms of M and let Gi be the internal automor-
phism group of the geometry Ji. Set S1 = S ∩ (G1 × G2)

(∞), again
working internally (as we will throughout). As S projects onto Gi,

S(∞) ⊆ S1 projects onto G
(∞)
i for i = 1, 2. As G

(∞)
i is simple, S(∞) is

either the full product or the graph of an isomorphism between G
(∞)
1

and G
(∞)
2 .

In the first case J1 and J2 are orthogonal by Lemma 3.4.2. In the
second case, by Fact 3.3.11, the geometries J1 and J2 are isomorphic as
weak geometries, and if we identify them by an isomorphism, thereby
identifying their automorphism groups, S1 is then the graph of an auto-
morphism. With the exception of the pure projective case, this automor-
phism is an inner automorphism with respect to the full automorphism
group of the geometry, by Fact 3.3.4, 1(iii); in the exceptional case it
may be the composition of an inner automorphism and a graph automor-
phism. If S1 is the graph of an inner automorphism corresponding to an
isomorphism h : J1 ≃ J2, then as S1 is normal in S, this isomorphism is
S-invariant, hence 0-definable. In the exceptional case S1 can be viewed
as an isomorphism of J∗

1 and J2; in particular, J∗
1 is interpretable in M,

and is 0-definably isomorphic with J2.

Lemma 3.4.9. Let M be an internally finite structure. Let A be a 0-
definable basic affine space, with corresponding linear and projective
geometries V and J . Suppose that J is canonically embedded in M∗.
Then one of the following holds in M∗:

1. A is canonically embedded in M∗.
2. There is a 0-definable point of A in M∗.
3. J is of quadratic type and there is a 0-definable bijection of A with

αQ for some unique α.

Proof. As usual all computations with automorphisms will be taken rel-
ative to the internal automorphism groups.
We argue first that V is canonically embedded in M∗. Let V1 be V

with all 0-definable relations from M. Then J is canonically embedded
in (J, V1), and stably embedded since V1 ⊆ acl (J). For a ∈ V , V1 ⊆
dcl (Ja), and hence (V1, a) = (V, a) as structures. By weak elimination
of imaginaries for V , it follows that V1 = V as structures.
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Now consider

U = {v ∈ V : Translation by v is an automorphism of A over V }.

For v in U let τv be the corresponding translation map on A. Then
for α ∈ AutM∗ we have ταv = τα−1v. Thus U is (AutM∗)-invariant,
and hence also 0-definable in M∗, since M is internally finite. But V is
canonically embedded in M∗, so U = V or U = (0).
If U = V then A is canonically embedded in M∗, since V is. Suppose

that U = (0). Every automorphism of V extends to M∗ and hence to
A; as U = (0), this extension is unique, and AutV acts on A. By Fact
3.3.6, we have either a fixed point or a bijection with αQ, as in possi-
bilities (2,3) above, fixed by (Aut V )(∞). Furthermore, the fixed point
or bijection, as the case may be, is unique, as otherwise this (Aut V )(∞)

would fix correspondingly either a point of V , or a nonidentity bijection
of αQ with itself. The first alternative is obviously impossible. In the
second case, if q ∈ αQ is moved by the bijection, say q 7→ q + αλ2

v,
then v is fixed by the corresponding orthogonal group, which is again a
contradiction. Thus the unique fixed point, or the unique bijection with
αQ, is fixed by AutM∗.
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3.5 LIE COORDINATIZATION

In this section we introduce the notion of a locally Lie coordinatized
structure, which is approximately a structure coordinatized in the man-
ner of [KLM] (in other words, without concern for stable embedding),
and we check that the internally finite structures associated with 4-
quasifinite structures are bi-interpretable with locally Lie coordinatized
structures, which is another way of phrasing the results of [KLM] (with
5 reduced to 4). Then to complete the proof of the equivalence of the first
five conditions given in Theorem 2, we show that 4-quasifinite locally Lie
coordinatized structures are Lie coordinatizable. See the discussion at
the end of the present section for a review of the situation up to this
point.

Definition 3.5.1. A structure M in some nonstandard set theoretic
universe is locally Lie coordinatized if it has nonstandard finite or-
der, has finitely many 1-types, carries a tree structure of finite height
whose unique root is 0-definable, and has a collection J of pairs (b, J)
with b ∈ M, J a b-definable component of a b-definable basic semi-
projective, linear, or affine geometry, J ⊆ M, satisfying the following
conditions:

1. If a is not the root, then there is b < a such that either a ∈ acl (b)
or there is a pair (b, Jb) ∈ J with a ∈ Jb.

2. If (b, J) ∈ J with J semiprojective or linear then J is canonically
embedded in M.

3. Affine spaces are preceded in the tree by their linear versions.

Lemma 3.5.2. Let Γ be an infinite dimensional proper Grassmannian
of type (e,K, τ), and a ∈ Γ. Then there are elements a0, . . . , an ∈
Γeq∩ acl (a) and Lie geometries Ji, possibly affine, with Ji 0-definable
and canonically embedded relative to the structure (Γ; a0, . . . , ai), such
that a0 ∈ acl (∅), ai+1 ∈ Ji, and a ∈ acl (a0, . . . , an).

Proof. The components J of the underlying coordinatizing structure C
can be recovered from equivalence relations on pairs from Γ. Let a0
consist of these components as elements of Γeq, together with enough el-
ements of acl (∅) in Ceq to make them all basic. We define ai inductively,
stopping when a ∈ acl (a0, . . . , ai). Given (a0, . . . , ai), with a not alge-
braic over them, pick a component J meeting acl (a) − acl (a0, . . . , ai)
and let a′ be a point of the intersection. Consider the localization
J̄ = J/(a0, . . . , ai). This is not in general the full quotient of J modulo
algebraic closure relative to (a0, . . . , ai), but just a part of that. The
remainder consists of various geometries which are either 0-definably
equivalent to the localization, or affine over it. In particular, we may
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take a′ to represent either an element of this localization or an element
of an affine geometry over the localization. More precisely, there is an el-
ement a′′ lying either in the localization J̄ , or in an affine geometry over
it, for which acl (a0, . . . , ai, a

′) = acl (a0, . . . , ai, a
′′). We set ai+1 = a′′

and correspondingly Ji = J̄ or an affine geometry over J̄ .
The localizations are canonically embedded in (Γ; a0, . . . , ai). In the

affine case Lemma 3.4.9 applies. If the affine space is actually a copy of
Q, then a′′ is taken in Q (which is part of the semiprojective model).

Lemma 3.5.3. Let M be a structure, k an integer, and let Ψ be a finite
set of first order formulas in four free variables. Suppose that for every
first order sentence ϕ true in M there is a finite model M′ satisfying

1. M′ |= ϕ.
2. M′ has at most k 4-types.
3. Every 0-definable 4-ary relation on M′ is defined by one of the

formulas in Ψ.

Then M is bi-interpretable with a locally Lie coordinatized structure
M′ which forms a finite cover of M: M′ has M as a 0-definable
quotient with finite fibers (see §4.5 for a formal discussion of covers).

Proof. These conditions imply that M itself has at most k 4-types, and
that every 4-ary relation on M is defined by one of the formulas in
Ψ. In particular, one can select a maximal chain E0 < . . . < Ed of 0-
definable equivalence relations on M and we may suppose that in all the
modelsM′ this chain remains a maximal chain of 0-definable equivalence
relations (making use, among other things, of condition (1)). We take
Ei < Ei+1 to mean that Ei+1 is coarser than Ei.
For i fixed, and a ∈ M, we consider the Ei+1-class C of a, and its quo-

tient C/Ei. It will suffice to prove that C/Ei is either finite or a proper
Grassmannian, as we can then coordinatize M by coordinatizing each
infinite section C/Ei, starting from the coarsest, using Lemma 3.5.2; of
course, if C/Ei is finite, then its elements are algebraic over C. When
projective geometries occur they can be replaced by semiprojective ones
in Meq.
If C/Ei is infinite, then by [KLM], specifically by Fact 3.3.3, above,

we may suppose that in the finite structures M′ approximating M in
the sense of clauses (1–3) above, the corresponding set C′/E′

i carries the
structure of a semiproper Grassmannian of fixed type. There are 4-place
relations Ri which encode the components of the coordinatizing struc-
ture underlying the Grassmannian, as well as the geometric structure on
this coordinatizing structure. Primarily, the Ri should be equivalence
relations on pairs, so as to encode the elements of the coordinatizing
structure; one can also encode, e.g., a ternary addition relation, with
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some care, by using four variables in the Grassmannian.
There is also a statement γ(R1, . . . , Rn) expressing the fact that C

′/Ei

is a Grassmannian of the given type for this coordinatizing structure.
Accordingly in view of our hypotheses, a formula of the same type will
apply to C/Ei, for some choice of the Ri, and C/Ei is the Grassmannian
of a coordinatizing structure.
To conclude we must check properness: that is, in C/Ei, we claim

that each 0-definable relation S is geometrically definable (i.e., defin-
able from the structure with which the Grassmannian inherits from the
coordinatizing structure) over acl (∅). For fixed S this will hold in suf-
ficiently large finite approximations M′ and by (1) this property passes
to M.

Corollary 3.5.4. IfM is strongly 4-quasifinite, then M is bi-interpretable
with a locally Lie coordinatized structure which forms a finite cover of
M.

Lemma 3.5.5. Let M be an internally finite structure and suppose that
M∗ has a finite number k of 4-types. Then M∗ is bi-interpretable with
a locally Lie coordinatized structure which forms a finite cover of M∗.

Proof. We apply the previous lemma. Let Ψ be a set of representatives
for the internally 0-definable formulas in 4 variables in M∗. Let ϕ be
a first order statement true in M∗. Let L ⊇ Ψ be a finite language
contained in the language of M∗ such that ϕ is a formula of L. We seek
a finite structure M′ for the language L such that

1. M′ |= ϕ.
2. M′ has at most k 4-types.
3. Every (AutM′)-invariant 4-ary relation on M′ is defined by one of

the symbols in L.

Note that properties (1–3) taken jointly constitute a standard prop-
erty of a finite language, and are satisfied (in the internal sense) in a
nonstandardly finite structure, hence also in some finite structure.

Lemma 3.5.6. Let J be a semiprojective or basic linear Lie geometry,
C ⊆ J finite, and suppose that (J ;C) (C treated as a set of constants)
is canonically embedded in the structure (M;A). Let C′ = aclM(A)∩
J . Then C′ is finite and (J ;C′) is canonically embedded in (M;A).

Proof. C′ ⊆ acl (C) in the sense of J , so C′ is finite.
Let R be an A-definable relation on J . Then R is C-definable and

thus R ∈ Jeq. It follows from weak elimination of imaginaries that R is
C′-definable.
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Lemma 3.5.7. Let M be internally finite, J a semiprojective or linear
geometry, B-definable, and C ⊆ J finite with (J/C) canonically em-
bedded in (M∗;B). Assume that C is nondegenerate if J involves a
form, and otherwise, if J is pure projective, then assume that in M∗

the definable dual of the linear model V is trivial. Then the group
G induced on J by the internal automorphism group of M over B
contains (Aut (J ;C))(∞).

Proof. In the nondegenerate case, dealing with J over C is equivalent to
dealing with J/C and Lemma 3.5.2 of §3.4 applies. In the pure projective
case (Aut (J ;C))(∞) has the form Hom(W,U) ⋊ SL(W ) relative to a
decomposition of the linear model V = W ⊕ U with U covering C, and
all we learn from looking at the localization is that G induces at least
SL(W ) on the localization; thus the subgroup of Hom(W,U) ⋊ SL(W )
induced by G is H ⋊ SL(W ) with H an SL(W )-invariant subgroup of
Hom(W,U). Then H will be Hom(W,U0) for some subspace U0 of U
and P (W ⊕ U0) is the unique minimal G(∞)-invariant subspace of J .
Thus this space is G-invariant. But as we are in the pure projective case
there can be no definable subspace of finite codimension, so U0 = U and
H = Hom(W,U)⋊ SL(W ).

Lemma 3.5.8. Let M be an internally finite locally Lie coordinatized
structure with respect to the coordinate systems in J and suppose that

1. Whenever Jb ∈ J is pure projective, with linear model V , the de-
finable dual V ∗ is (0).

2. Whenever Jb ∈ J is symplectic of characteristic 2, there are no
definable quadratic forms on Jb compatible with the given symplectic
form.

Then for any finite subset A of M closed downwards with respect
to the coordinatizing tree, we have

3. For b ∈ A, if Jb is nonaffine, then for some finite subset C ⊆ Jb,
the structure (J ;C) is canonically embedded in M∗ over A.

4. For J1, J2 ∈ J nonaffine, with defining parameters in A, if Ci =
aclM∗(A) ∩ Ji, then either (J1;C1) and (J2;C2) are orthogonal
over A, or else there is an A-definable bijection of J1/C1 with
J2/C2.

Proof. We prove (3, 4) simultaneously by induction on the size of A.
Let A, b be given. We prove (3). If A is the branch below b then (3)

holds by definition of local lie coordinatization. So we may suppose that
A contains elements not on the branch below b; let c ∈ A be maximal
among such elements, and B = A − {c}. Induction applies to B. In
particular (Jb;C0) is canonically embedded in M∗ over B, for some
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finite C0 ⊆ Jb. We may take C0 nondegenerate when a form is present.
Then the internal automorphism group of M∗ over B induces at least
(Aut (Jb;C0))

(∞) on Jb.
If c is algebraic overB, then its stabilizer in the internal automorphism

group of (M∗;B) has finite index, hence also covers (Aut (Jb;C0))
(∞).

Thus in this case (Jb;C0) is canonically embedded in M∗ over A.
Suppose therefore that c is not algebraic over B. Thus there is a

geometry J2 associated to a parameter d of B, with c ∈ J2. We will
write J1 for Jb. Let Ci = aclM∗(B) ∩ Ji. Then (Ji;Ci) is canonically
embedded in M∗ over B by Lemma 3.5.6, and (4) applies to this pair if
J2 is also nonaffine.

Case 1. J2 is nonaffine, and (J2;C2) is orthogonal to (J1;C1).
Then (J1, J2;C1C2) is canonically embedded in M∗ over B and hence

(J1;C1) is canonically embedded in M∗ over A.

Case 2. J2 is affine, with corresponding linear geometry V2, and the
projectivization P2 = P (V2/B) is orthogonal to J1/B over B.
As the orthogonality statement is preserved by adding parameters

from J1, and this does not affect the desired conclusion (3), we may
take C1 to be nondegenerate, or J1 to be pure projective. We now work
with the internal automorphism groups.
Let G be the automorphism group of (J1;B), H the automorphism

group of J2, and G(X) and H(X) the pointwise stabilizers. Then
G(P2) = G since the geometries are orthogonal and basic. ThusG/G(J2) ≃
H(P2, B)/H(P2, J1, B). On the right hand side we have a solvable group
and hence G(J2) contains G

(∞). Thus (J1;B) is canonically embedded
in (J1;BJ2) and in particular is canonically embedded over B∪{c} = A.

Case 3. J2 is nonaffine and is nonorthogonal to J1 over B.
Find J ′ = Jb′ with b′ ≤ b minimal such that J ′ and J1 are nonorthog-

onal. By the induction hypothesis (4) applied to the branch below b,
there s a b-definable bijection between J ′/b and J1, which must be an
isomorphism of weak geometries. Accordingly, we may replace J1 by J ′,
and if b′ < b conclude by induction. Thus we now assume J1 is orthog-
onal to every earlier geometry. In much the same way we may assume
that J2 is orthogonal to every earlier geometry.
As these geometries are nonorthogonal, they are now assumed or-

thogonal to every geometry associated with a parameter below b or d.
It follows that acl (bd) ∩ Ji = ∅ for i = 1, 2. The induction hypothe-
sis (4) applies to the union of the branches up to b and d, and gives a
bd-definable bijection between J1 and J2. Thus c ∈ dcl (Bc′) for some
c′ ∈ J1, and (3) follows.

Case 4. J2 is affine, with corresponding linear geometry V2; and the
projectivization P (V2/B) is nonorthogonal to J1 over B.
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We minimize parameters as in the previous case, taking J1 orthog-
onal to its predecessors, and taking P2 to be a (nonaffine) geometry
nonorthogonal to P (V2/B) and minimal below d. Then P2 and J1 can
be identified, as in the previous case, and we apply Lemma 3.5.8 to J2
and P2/B. There are then three possibilities.
If J2 has a 0-definable point in M∗, then dcl (A) = dcl (B, c′) for

some c′ ∈ V2 and we may replace c by c′ and return to the previous case.
If in M∗ we have a B-definable bijection of J2 with Q, then by hy-

pothesis (2) Q is also part of V2, and again we reduce to the previous
case.
Suppose finally that J2 is canonically embedded in M∗. Now P2/B is

geometrically definable over J2, so (P2/B, J2) is canonically embedded
in M∗. Furthermore, P2/B is canonically embedded in (P2/B, J2; c)
(one affine parameter). Thus P2/B is embedded in (M∗; c). As P2

and J1 are B-definably identified, we wish to show that P2 is itself
canonically embedded in (M∗; c). When P2 carries a form then P2

is geometrically definable from P2/B and additional parameters from
P2. When P2 is pure projective it follows from Lemma 3.5.7 that it is
canonically embedded in M∗.

This exhausts the cases and proves (3). We now consider (4): so
we have J1, J2 nonaffine, with defining parameters in A, and Ci =
aclM∗(A) ∩ Ji.
We apply Lemma 3.5.8 of §3.4. By hypothesis (1) if the geometries

involved are pure projective, the polar case cannot arise between them.
So either we have an A-definable bijection of J1/C1 with J2/C2, or these
localizations are orthogonal over A.
Suppose therefore that J1/C1 and J2/C2 are orthogonal over A. Our

claim is that then (J1;C1) and (J2;C2) are orthogonal over A. If J1 is
pure projective then Lemma 3.5.7 applies to give the orthogonality of
(J1;C1) and J2/C2. If J1 involves a form then consider G = Aut (J1;C1)
and the pointwise stabilizer G(J1/C1). The quotient G/G(J1/C1) is
solvable and as in Case 2 above it follows that (J1;C1) and J2/C2 are
orthogonal over A. In this case they remain orthogonal over a non-
degenerate extension C′

1 of C1 and (J1;C
′
1) is definably equivalent to

J1/C
′
1.

If J2 is pure projective the same argument gives us that (J1;C1) or
(J1;C

′
1), as the case may be, is orthogonal to (J2;C2). Otherwise, we

may suppose that both J1 and J2 involve forms, and that (J1;C
′
1) is

definably equivalent to J1/C1, so that repetition of the first argument
gives the orthogonality of (J1;C

′
1) and (J2;C2), using the solvability of

the relative automorphism group for (J2;C2) over J2/C2. By Lemma
3.5.6 the orthogonality holds over A.
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Lemma 3.5.9. Let M be an internally finite locally Lie coordinatized
structure. Then M∗ is Lie coordinatizable. If in addition M is
strongly 4-quasifinite then M is Lie coordinatizable.

Proof. We will apply the previous lemma. The first point is that with-
out loss of generality we may suppose that the coordinatizing family J
satisfies the following:

(i) whenever Jb ∈ J is pure projective, with linear model V , the de-
finable dual J∗ is (0);

(ii) whenever Jb ∈ J is symplectic of characteristic 2, there are no de-
finable quadratic forms on Jb compatible with the given symplectic
form.

In other words, if the definable dual J∗ is nontrivial, then J is part
of a polar geometry encoded in M which may be used in place of J ,
and if a symplectic space carries a nontrivial form (and is acted on by
the full symplectic group) then it may be replaced by the corresponding
quadratic geometry, interpreted in M.
So we have, in particular, the following conclusion from Lemma 3.5.8

for any finite subset A of M:

For b ∈ A, if Jb is nonaffine then for some finite subset C ⊆ Jb,
the structure (J ;C) is canonically embedded in M∗ over A]

Varying A, this implies that the nonaffine geometries are stably embed-
ded in M∗. By Lemma 3.5.8 of §3.4 the same is true for the affine
geometries. Thus after replacing the semiprojective geometries with
projective ones, M∗ is Lie coordinatized.
If in additionM is strongly 4-quasifinite, then the Lie coordinatization

can be defined using formulas in the language of M.

There has been a certain amount of vacillation between projective and
semiprojective geometries visible. The orthogonality theory is simpler
for projectives, and elimination of imaginaries holds for the semiprojec-
tives. Furthermore, they are bi-interpretable, so in a sense both theories
are available for either version.
We recall the statements of Theorems 2 and 2′ of §1.2.

Theorem 8 (1.2.2: Characterizations)
The following conditions on a model M are equivalent:

1. M is smoothly approximable.
2. M is weakly approximable.
3. M is strongly quasifinite.
4. M is strongly 4-quasifinite.
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5. M is Lie coordinatizable.
6. The theory of M has a model M∗ in a nonstandard universe whose

size is an infinite nonstandard integer, and for which the number
of internal n-types s∗n(M

∗) satisfies:

s∗n(M
∗) ≤ cn

2

for some finite c, and in which internal n-types and n-types coin-
cide. (Here n varies over standard natural numbers.)

Theorem 9 (1.2.2′: Reducts). The following conditions on a model
M are equivalent:

1. M has a smoothly approximable expansion.
2. M has a weakly approximable expansion.
3. M is quasifinite.
4. M is 4-quasifinite.
5. M is weakly Lie coordinatizable.
6. The theory of M has a model M∗ in a nonstandard universe whose

size is an infinite nonstandard integer, and for which the number
of internal n-types s∗n(M

∗) satisfies

s∗n(M
∗) ≤ cn

2

for some finite c. (Here n varies over standard natural numbers.)

We remarked in §2.1 that weak approximability implies strong quasi-
finiteness; thus the implications 1 =⇒ 2 =⇒ 3 =⇒ 4 in Theorem 2
all hold. Furthermore, by existence, finiteness, and homogeneity of
envelopes, Lie coordinatizability gives smooth approximation. In the
present section we showed that 4-quasifinite structures are Lie coordi-
natizable. Thus the equivalence of the first five conditions in Theorem 2
has been verified; the estimate needed for the sixth clause will be found
in §5.2. One can also verify the equivalence of the first five conditions
in Theorem 3 if one replaces “weakly Lie coordinatizable” by “reduct
of a Lie coordinatizable structure.” However, the proof that these two
conditions are equivalent is subtle and is the subject of Chapter 7.


