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Introduction

Work in progress—written with considerable optimism, but still under de-
velopment.

A connected graph is metrically homogeneous if it is homogeneous when
considered as a metric space in the graph metric. A catalog of the known
metrically homogeneous graphs is given in [Che13]. There is some evidence
to support the view that this catalog should give a complete classification,
or nearly so ([Che13, ACM13]).

In diameter at most 2, the metrically homogeneous graphs are simply the
homogeneous graphs, classified by Lachlan and Woodrow [LW80] by a sub-
tle inductive argument. A full classification of the metrically homogeneous
graphs of diameter 3 is given in [ACM13].

We are not ready to tackle the general case, though we believe the plan of
attack used in diameter 3 may be fundamentally sound, as far as it goes, in
general. The difficulty is that the implementation of every step of that plan
depends at present on concrete considerations.
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Our goal here is to extend the analysis to diameter 4. In the process
the general structure of the argument should become more visible, and this
produces a kind of general template that one could take as a starting point
in an attempt to devise a more general strategy.

Since the present article is a direct continuation of [ACM13], we continue
the numbering of the sections from that paper. But we insert a review of
some necessary facts from [ACM13].

General Theory. Our presentation makes use of the theory developed in
[Che13], with some further developments introduced in [ACM13].

Definition 1. Let Γ be a metrically homogeneous graph. Then Γ is of ex-
ceptional type if

(1) Γ1 is imprimitive; or
(2) For some pair of vertices at distance 2 in Γ, their set of common

neighbors contains no infinite independent set.
Otherwise, Γ is said to be of generic type.

The main point of this definition is that we are able to give an explicit
classification of the exceptional graphs, and that our analysis of the generic
case depends on completely different methods from the exceptional case.

The Aim. We have a general conjecture about the structure of metrically
homogeneous graphs. More precisely, we have a full classification of the
exceptional metrically homogeneous graphs, and we conjecture a uniform
description of the ones of generic type.

It is not necessary to review the classification of exceptional type here.
This was given originally in [Che11] and repeated in [Che13, ACM13].

But we require a detailed description of the known generic type met-
rically homogeneous graphs. These depend on five numerical parameters
(δ,K1,K2, C0, C1) and a finite set S of so-called δ-Henson constraints. In
addition the five numerical parameters satisfy various numerical constraints,
and for some particular values of the parameters the set S must be empty.
We call combinations of numerical parameters and δ-Henson constraints for
which the associated metrically homogeneous graph exists “admissible.”

Furthermore, in one special case (namely, when C1 = 2δ + 1 and C0 =
C1 + 1) there is a variation on the notion of δ-Henson constraint. This case
is called the “antipodal” case for reasons which will be explained later.

Once we have all this notation, we introduce the notations AδK1,K2,C0,C1,S
and ΓδK1,K2,C0,C1

for the amalgamation class or the metrically homogeneous
graph associated to a specific admissible choice of parameters, with the no-
tation Aδa,n or Γδa,n for the antipodal variation alluded to.

Then our goal is to prove that a metrically homogeneous graph of diameter
4 and generic type is one of the graphs Γ4

a,n or Γ4
K0,K1,C0,C1,S with admissible

parameters. The elaborate conditions which define admissibility in general
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can be substantially simplified in the case of small diameter, and the resulting
conjecture can be neatly displayed in tabular form.

In order to make sense of this, we must first explain how to define

δ, K1, K2, C0, C1, and S
for any metrically homogeneous graph Γ, then what the “canonical” graph
ΓδK1,K2,C0,C1,S is for a given set of parameters (bearing in mind that it only
exists under certain supplementary conditions on the parameters).

We need the following terminology: the type of a metric triangle (a, b, c)
is the triple of distances (d(a, b), d(b, c), d(a, c)), taken in any order; a (1, δ)-
space is a metric space in which all distances equal 1 or δ.

Definition 2. Let Γ be a metrically homogeneous graph (or more generally,
an integer-valued metric space).

(1) δ is the diameter of Γ.
(2) K0 is the least k such that Γ contains a triangle of type (1, k, k).
(3) K1 is the largest k such that Γ contains a triangle of type (1, k, k).
(4) C0 is the smallest even number such that Γ contains no triangle of

perimeter C0.
(5) C1 is the smallest odd number greater than 2δ such that Γ contains

no triangle of perimeter C1.
(6) S is the set of (1, δ) spaces S with the following properties;

(a) S does not embed isometrically into Γ;
(b) Every proper subspace of S does embed isometrically into Γ;
(c) S embeds isometrically in the graph ΓδK1,K2,C0,C1

which will be
defined below.

Now we turn to the reverse procedure, where we are given the parameters
and we look for the corresponding graph. Here we use the Fraïssé theory.
That is, we define a class of finite metric structures AδK1,K2,C0,C1,S , and in
the cases in which this class of structures has the amalgamation property, we
take ΓδK1,K2,C0,C1,S to be Fraïssé limit of this class; in other words, the unique
countable homogeneous metric structure Γ for which the set of finite metric
spaces isometrically embeddable in Γ coincides with the class AδK1,K2,C0,C1,S .
This will define ΓδK1,K2,C0,C1

as a metric space; to see it as a graph, take the
edge relation “d(x, y) = 2.”

So we now give an explicit definition of the class AδK1,K2,C0,C1,S .

Definition 3. Let δ,K1,K2, C0, C1 be positive integers, and S a set of (1, δ)-
subspaces.

1. AδK1,K2,C0,C1
is the class of all finite integer-valued metric spaces satis-

fying the following conditions.
(1) All distances are bounded by δ;
(2) Any triangle of odd perimeter p satisfies p ≥ 2K1 + 1.
(3) Any triangle of type (i, j, k) and odd perimeter p satisfies 2p ≤ 2K2+

2 min(i, j, k)
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(4) Any triangle of perimeter p satisfies p < Cε, where ε = 0 or 1 repre-
sents p (mod 2).

2. AδK1,K2,C0,C1,S is the subset of AδK1,K2,C0,C1
consisting of metric spaces

with no (1, δ)-subspaces isometric to an element of S.

This is only of interest if 1 ≤ K1 ≤ K2 ≤ δ (or K1 =∞ and K2 = 0, when
there are no triangles of odd perimeter), and furthermore C0, C1 > 2δ. But
there are other necessary conditions of a more subtle kind: we call a set of
parameters admissible if the class AδK1,K2,C0,C1,S is an amalgamation class,
and has associated parameters K1,K2, C0, C1,S.

We will need to give the precise conditions on the parameters eventually,
at least in the case δ = 4, in order to have a definite conjecture to aim
at. At this point, we note only that there are some extreme cases, and a
non-obvious dividing line.

The extreme cases are as follows.
• K1 = ∞, K2 = 0: there are no triangles of odd perimeter, and in
particular C1 = 2δ + 1. This is the bipartite case.
• C1 = 2δ + 1, C0 = 2δ + 2. Then for every vertex there is a unique
“antipodal” vertex v∗ at distance δ, and we have the law

d(u, v∗) = δ − d(u, v)

The involution v ↔ v∗ defines an automorphism of Γ. This is called
the antipodal case.

A variant of Smith’s Theorem (originally for distance transitive graphs)
says that in the metrically homogeneous case, in diameter at least 3, and
vertex degree at least 3, the only imprimitive graphs are the bipartite and
antipodal ones [Che13]. Note that these graphs do not fall on the exceptional
side of our classification. However we have previously classified the bipar-
tite metrically homogeneous graphs of finite diameter under the inductive
hypothesis that all graphs of smaller diameter are of known type.

So the extreme values of the Ki or Ci correspond respectively to the two
types of imprimitive graphs. Furthermore, since the bipartite graphs are
adequately classified under appropriate inductive assumptions, we restrict
attention in the future to the cases in which

K1 <∞

and we really have ordinary numerical parameters (the others are bounded
by 3δ + 2).

A close study of the conditions for admissibility reveals a dividing line
corresponding to the inequality

min(C0, C1) ≤ 2δ +K1

The antipodal graphs satisfy this condition in its most extreme form, and
one may view this class as consisting of graphs with very limited perimeters.
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The other class is simply the complement

min(C0, C1) > 2δ +K1

and these seem to be more free, more like the random graph.
We will refine this picture a little as we go along.

Plan of the analysis. The form of our conjecture suggests a natural se-
quence of steps in any proof, as follows.

One fixes a metrically homogeneous graph Γ of diameter δ and generic
type, under an appropriate inductive assumption.

Step 1: Show the parameters of Γ are admissible; let Γ∗ be the “canon-
ical” graph ΓδK1,K2,C0,C1,S with the same parameters (or Γδa,n in the
antipodal case);

Step 2: Show that the triangles and (1, δ)-spaces embedding in Γ are
those which embed in the target graph Γ∗;

Step 3: Show that any finite metric space embedding isometrically into
Γ∗ embeds into Γ.

It is helpful in practice, at the end of Step 1, to have the objective Γ∗

clearly in view, and to know something about the amalgamation procedure
associated with it.

The following terminology is useful.

Definition 4. Let Γ be a metrically homogeneous graph and A a finite met-
ric space. Then A is Γ-constrained if every triangle in A and every (1, δ)-
subspace of A embeds isometrically into Γ.

Overall, our strategy may be described as follows: show that the Γ-
constrained metric spaces embed into Γ. We have previously characterized
the amalgamation classes with this property in [Che13] and shown that they
are the ones of generic type. In fact, the proof of that result is essentially the
source of the original catalog. From that point of view it would not be strictly
necessary to know in advance that the parameters of Γ are admissible—that
would follow. But practically speaking, one needs first to show that the pa-
rameters are admissible, so that there is a definite target graph Γ∗ in view.
Then Step 2 says that the Γ-constrained graphs and the subgraphs of Γ are
the same. In particular, this class is closed under amalgamation with respect
to a known amalgamation procedure, and one may use that information in
Step 3.

We delay a precise description of the admissibility conditions to the be-
ginning of our analysis (§2).

Generally speaking, it is important to keep track of the relative sizes of
the parameters C0 and C1, so we introduce the notation

C = min(C0, C1) and C ′ = max(C0, C1)

The case in which
C1 = C0 + 1
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is common, perhaps even typical, and easier to handle, as the issue of parity
falls away and we have simply a bound on perimeter.

More general background material is included in [ACM13, §1]. The present
article is in essence a continuation of that one, aiming to apply the same
techniques in diameter 4 as were applied there in diameter 3. In the next
section we will simply list the information obtained in [ACM13] which will
be needed in the continuation, then take up our problem from the beginning,
in diameter 4.

Draft — to see how far the analysis goes, look at the table of contents.

1. Useful Facts

We review useful general principles found either in the general discussion
of metrically homogeneous graphs of known type [Che13] or in the more
specific discussion relating to the case of diameter 2 [ACM13].

The following is often used as a standard ingredient in amalgamation argu-
ments, as a way of verifying the embeddability of some basic configurations.

Fact 1.1 (Common Neighbors: [Che13, Lemma 6.8]). Let Γ be a connected
metrically homogeneous graph, not a tree. Let v1, v2 ∈ Γ with d(v1, v2) = 2.
Then

Γ1(v1) ∩ Γ2(v2) ∼= Γ1

The first result is a portion of Step 2 of the proof strategy outlined above.
Here we impose some mild conditions on the parameters. In practice they
should be known to be admissible by the time this result is wanted, which
is a sharper condition.

Fact 1.2 (Forbidden Triangles: [ACM13, §3]). Let Γ be a primitive metri-
cally homogeneous graph of generic type with associated parameters

δ, K1, K2, C, C ′, S
Suppose also

If C ′ > C + 1, then C ≥ 2δ +K2

If a triangle embeds isometrically in Γ, then it belongs to the class

AδK1,K2,C,C′

1.1. Local Structure. Given a metrically homogeneous graph Γ and an ar-
bitrarily selected base point v0 in Γ, we denote by Γi the metric space induced
by the metric on Γ restricted to the points at distance i from the base point.
This is again a homogeneous metric space and is frequently a metrically
homogeneous graph with respect to the usual edge relation “d(x, y) = 1.”

Fact 1.3 (Γi Connected).
1. [Che13, Proposition 6.1and Lemma 6.15]
Let Γ be a metrically homogeneous graph of diameter δ of generic type and

let 1 ≤ i ≤ δ. If Γi contains an edge, then Γi is connected.
2. [Che13, Lemmas 6.2, 6.14, 6.19]
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Let Γ be a connected metrically homogeneous graph of generic type, with

K1 ≤ 2

Then for all i < δ, Γi contains an edge.

Corollary 1.4 (Admissibility, K1 ≤ 2: [ACM13, §2]). Let Γ be a metrically
homogeneous graph of generic type, diameter δ, which is neither bipartite nor
antipodal. If K1 ≤ 2 then K2 ≥ δ − 1.

Fact 1.5 ([Che13]). Let Γ be a connected metrically homogeneous graph, not
a tree. Suppose that Γi contains an edge, and Γi is not primitive. Then Γ is
antipodal, δ is even, and i = δ/2.

A more technical result which plays a role in the proofs of the above and
is sometimes useful in its own right is the following.

Fact 1.6 ([Che13, Lemma 6.5]). Let Γ be a connected metrically homoge-
neous graph with Γ1

∼= I∞, and not a tree. Then for all i, Γi is connected
with respect to the relation

d(x, y) = 2

1.2. Small values of C.

Fact 1.7 (C = 2δ+1: [ACM13, §2]). Let Γ be an infinite primitive metrically
homogeneous graph of diameter δ. Then C ≥ 2δ + 2.

Fact 1.8 ([ACM13, §2]). Let Γ be an infinite primitive metrically homoge-
neous graph of diameter δ containing no triangle of type (2, δ, δ). Then Γδ
is an infinite complete graph. In particular

K1 = 1

K2 = δ

and Γ contains no triangle of perimeter greater than 2δ + 1. Furthermore,
any (1, δ)-space which does not contain a forbidden triangle is realized in Γ.

We also have the following general reduction of Step 1 of our program.

Fact 1.9 ([ACM13, §2]). Let Γ be an infinite primitive metrically homoge-
neous graph of generic type with associated parameters (δ,K1,K2, C, C

′,S).
If the numerical parameters (δ,K1,K2, C, C

′) are admissible, then the full
parameter sequence

δ, K1, K2, C, C ′, S
is admissible.

Finally, we note the following.

Lemma 1.10. In an antipodal metrically homogeneous graph, we have

K1 +K2 = δ

Indeed, triangles of type (1, i, i) and (1, δ − i, δ − i) correspond under the
antipodal pairing.
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1.3. More special cases.

Fact 1.11 (K1 = δ: [ACM13, §2]). Let Γ be an infinite primitive metrically
homogeneous graph of generic type, with diameter δ ≥ 3. If K1 = δ, then
Γδ is a primitive metrically homogeneous graph of diameter δ for which the
corresponding parameter Kδ,1 is also equal to δ. Furthermore we have

K2 = δ

C = 3δ + 1

C ′ = 3δ + 2

S = ∅

and in particular the parameters (K1,K2, C, C
′,S) are admissible.

Fact 1.12 (K2 = δ: [ACM13, §2]). Let Γ be an infinite primitive metrically
homogeneous graph of diameter δ, for which K2 = δ. Then Γ contains
triangles of type (i, δ, δ) for all i ≤ K1. Thus

C > 2δ +K1

1.4. Admissibility. While we need only the very simplified form of admis-
sibility that applies when the diameter is 4, we give the general notion to
supply some context.

Definition 1.13. Let (δ,K1,K2, C0, C1) be a sequence of natural numbers,
and let S be a set of finite (1, δ)-spaces. Write K = (K1,K2) and C =
(C0, C1) for brevity.

1. The sequence of parameters δ,K,C,S is acceptable if the following
conditions are satisfied.

• δ ≥ 2;
• 1 ≤ K1 ≤ K2 ≤ δ, or else K1 =∞ and K2 = 0;
• C0 is even and C1 is odd;
• 2δ + 1 ≤ C0, C1 ≤ 3δ + 2;
• S is irredundant (see below).

In particular if δ =∞ then C0, C1 =∞ and S consists of a set of cliques
(in fact, of just one clique).

2. An acceptable sequence of parameters is admissible if one of the follow-
ing sets of conditions is satisfied.

I K1 =∞:
• K2 = 0, C1 = 2δ + 1; this is the bipartite case

II K1 <∞ and C ≤ 2δ +K1:
• δ ≥ 3;
• C = 2K1 + 2K2 + 1;
• K1 +K2 ≥ δ;
• K1 + 2K2 ≤ 2δ − 1

IIA C ′ = C + 1 or
IIB C ′ > C + 1, K1 = K2, and 3K2 = 2δ − 1
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III K1 <∞ and C > 2δ +K1:
• If δ = 2 then K2 = 2 and S consists of a single clique or anti-
clique;
• K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ;
• If K1 + 2K2 = 2δ − 1 then C ≥ 2δ +K1 + 2;
• If C ′ > C + 1 then C ≥ 2δ +K2.
• If K1 = δ or C = 2δ + 2, then S is empty;

We need still to define irredundance of S, a point we have actually seen
earlier without the accompanying terminology. The set S is said to be irre-
dundant if no space in S contains an isometric copy of a forbidden triangle,
or of another space in S. In other words, S consists of minimal forbidden
(1, δ)-spaces, with the proviso that any forbidden triangles will be provided
by the numerical parameters.

2. Overview

2.1. Expectations. The exceptional metrically homogeneous graphs of fi-
nite diameter δ ≥ 4 are simply the n-cycles Cn with n = 2δ or n = 2δ + 1
[Che13].

Within the generic type metrically homogeneous graphs, we have men-
tioned the case division according as C ≤ 2δ + K1 or C > 2δ + K1. We
will refer to the first case as Atypical Generic, and the second as Typical
Generic. Since by definition C is always finite, the bipartite case (K1 =∞)
falls on the atypical side according to this definition; the antipodal case does
as well, and is the archetypal example for this class.

In the atypical generic case, leaving aside the bipartite case, we have
K1 + 2K2 ≤ 2δ− 1 and in particular 3K2 ≤ 2δ− 1, so with δ = 4 this means
K2 ≤ 2. On the other hand K1 +K2 ≥ δ so we arrive at

K1 = K2 = 2, C = 9 = 2δ + 1

and here there is only the antipodal case.
So we come to the typical generic case with C > 2δ + K1, or more con-

cretely
C ≥ 9 +K1

Then 3K2 ≥ 2δ so
K2 ≥ 3

We have a special constraint when K1 = 1, K2 = 3; since K1 + 2K2 = 2δ−1
we have C > 2δ +K1, i.e.

If K1 = 1 and K2 = 3 then C ≥ 11

By definition we have the range of values 2δ + 1 ≤ C < C ′ ≤ 3δ + 2, that
is

9 ≤ C < C ′ ≤ 14

where C,C ′ have opposite parity.
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We have one more condition in typical generic type when C ′ > C + 1,
namely C ≥ 2δ + K2. Now when K2 ≤ K1 + 1 this is vacuous, and when
K1 = 1, K2 = 3 it follows from the condition already mentioned that C ≥ 11.
So this condition is relevant only whenK2 = 4, in which case we are requiring
C ≥ 12 = 3δ. But then necessarily C ′ = 3δ + 1. So this condition becomes

If K2 = 4 then C ′ = C + 1

Now we may tabulate the possibilities as follows. While there are a number
of special cases, we will see that it is not hard to derive the same restrictions
for the parameters associated to an arbitrary metrically homogeneous graph
of generic type, thereby dealing with Step 1 of our general plan.

Exceptional
n-cycles C8, C9

Atypical Generic Type: C ≤ 2δ +K1

K1 Description Notation
∞ Bipartite Γ4

∞,0,9,C0,S

1 Antipodal Γ4
1,3,9 or Γ4

a,n (4 ≤ n <∞)

2 Antipodal Γ4
2,2,9 = Γ4

a,3

Typical Generic Type: K1 <∞, C > 2δ +K1

K2 K1 C,C ′ S
3 1 C ≥ 11, C ′ = C+1 or C+3

" 2 C ≥ 9 +K1, C ′ = C + 1 or
C + 3

" 3 C ≥ 9 +K1, C ′ = C + 1

4 1–4 C ≥ 9 +K1, C ′ = C + 1 If K1 = 4 or
C = 10: S = ∅

The conditions on S include irredundancy, which is not worth incorporat-
ing into the table. This means that when K1 > 1 none of the constraints in
S contains a clique of order 3; when K2 < δ then S consists of at most one
clique and one anticlique; and when Cε < 3δ (with ε the parity of δ) then
none of these constraints contains an anticlique of order 3.

In the Typical Generic case everything shown is of type Γ4
K1,K2,C,C′,S , so

we are just keeping track of the admissibility conditions here—and later we
will need to refer to this table to check that we have derived all appropriate
restrictions on these parameters for an example which is not necessarily of
known type.

2.2. Ambiguities. From a more abstract point of view, some of the cases
shown as distinct above are actually equivalent. The most useful notion for
our purposes is not isomorphism per se, but isomorphism up to a permutation
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of the language. Typically, if one permutes the distances in a metric space
one no longer has a metric space, but there are exceptions

Remark 2.1.
1. (14): Metrically homogeneous graphs of diameter 4 with parameters

K1 = 1, K2 = 3, C = 11, C ′ = 12

are equivalent to metrically homogeneous graphs of diameter 4 with

K1 = 2, K2 = 3, C = 11, C ′ = 14

by interchanging distance 1 and 4. This transformation may be applied to
the set S as well.

More generally, the class of metrically homogeneous graphs with

K1 ≤ 2, K2 = 3, C1 = 11, and C0 ≥ 12

is closed under this operation. The minimal and maximal known amalgama-
tion classes of this type have parameters (2, 3, 11, 14) and (1, 3, 11, 12) and
are invariant under this operation.

2. (1, 2, 4): Metrically homogeneous graphs of diameter 4 with K1 = 1,
K2 = 4, C = 10, C ′ = 11 are equivalent to metrically homogeneous graphs
of diameter 4 with K1 = K2 = 4, C = 13, C ′ = 14 under the permutation of
distances (124).

Here S = ∅.
3. (13): Antipodal graphs with K1 = K2 = 2 correspond to themselves if

we interchange distances 1 and 3.

Proof. In all or our classes we have certain permitted triangles—the geodesics
and the triangles of even perimeter up to 2δ = 8. We also have the forbidden
triples which do not satisfy the triangle inequality. This gives us the following
initial list of contraints.

Positive (1, 1, 2), (1, 2, 3) (1, 3, 4), (2, 2, 4), (2, 2, 2), (2, 3, 3)

Negative (1, 1, 3), (1, 1, 4), (1, 2, 4)

So we are only interested in permutations which do not carry constraints of
one type into constraints of the other type.

If we consider the preimage of the distance 1 under our permutation then
this analysis leads to the following possibilities:

1 7→ 1: identity
2 7→ 1: (142)

3 7→ 1: (13)

4 7→ 1: (14), (124)

If distance 1 is fixed: Consider the positive constraints (1, 1, 2), (1, 2, 3):
first distance 2 must be fixed, then distance 3.

If 2 7→ 1: The positive constraint (2, 2, 4) must go to (1, 1, 2), so 4 7→ 2.
The negative constraint (1, 2, 4) cannot go to (1, 2, 3), so 1 7→ 4.
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If 3 7→ 1: Considering the positive constraints (1, 2, 3) and (1, 3, 4) we
find 1 7→ 3. Then considering the negative constraint (1, 1, 4) shows that
distances 2, 4 are fixed.

If 4 7→ 1: Considering the negative constraint (1, 2, 4) shows that {1, 2}
must correspond to {2, 4}, leaving two possibilities.

For the rest, it suffices to consider the possible examples which correspond
under one of the permutations (142), (13), or (14), starting with the known
constraints on triangles on both sides, and referring to the known constraints
on the parameters.

�

2.3. Admissibility. As we have mentioned, the metrically homogeneous
graphs not of generic type have been classified in general, and the bipartite
ones have been classified modulo the full classification in diameter cδ/2c,
which certainly applies when δ = 4.

Since the imprimitive ones are necessarily bipartite or antipodal, this
leaves us with the following cases.

— Antipodal of generic type;
— Primitive of generic type.

In particular the parameter K1 must be finite.
The following lemma contains an extraneous case that will need to be

eliminated afterward.

Lemma 2.2. If Γ is a primitive metrically homogeneous graph of diameter
δ = 4, then one of the following holds.

• C > 2δ +K1;
• K1 = K2 = 3, C = 2δ + 3

Proof. We suppose
C ≤ 2δ +K1

As Γ is primitive, C ≥ 2δ + 2. By Lemma 1.8, we have C ≥ 2δ + 3.
Therefore K1 ≥ 3.

If K2 = 4 then we contradict Lemma 1.12. So K2 ≤ 3.
At this point we have K1 = K2 = 3 and C ≥ 2δ + 3, so C = 2δ + 3. �

Now we eliminate the last possibility.

Lemma 2.3. Let Γ be a primitive metrically homogeneous graph of diameter
δ. Suppose

K1 ≥ 3

K2 = δ − 1

Then there is a triangle of type (3, δ, δ) in Γ.

Proof. We consider the following amalgamation.
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As K1 > 2 and K2 < δ, the distance d(a1, a2) must be 3. So it suffices
to show the factors embed isometrically in Γ. This means that we require a
triangle of type (2, δ − 1, δ).

For this we consider the configuration a2a3bc where a2a3b is the desired
triangle (as shown) and

d(c, a2) = d(c, b) = 1

d(c, a3) = δ − 1

We view this as a 2-point amalgamation problem with the distance d(a2, b)
to be determined. As K1 > 1 the point c ensures that d(a2, b) = 2. The
factors of this amalgamation are triangles of types (1, δ−1, δ−1) and (1, δ−
1, δ). As K2 = δ − 1 the former embeds isometrically in Γ, and the latter is
a geodesic.

This concludes the construction.
�

Lemma 2.4. If Γ is a metrically homogeneous graph of diameter δ = 4 and
generic type, then the associated parameters (K1,K2, C, C

′,S) are admissi-
ble. In particular, either Γ is imprimitive or we have the following.

(1) K2 ≥ 3;
(2) C > 2δ +K1;
(3) If K1 = 1 and K2 = 3 then C ≥ 11;
(4) If C = 2δ + 2 then C ′ = C + 1.

Proof. In the bipartite case we have the full classification already, so we
suppose K1 is finite.

We next consider the case in which C = 2δ+ 1. By Lemma 1.7 we have Γ
imprimitive in this case, hence antipodal, so C ′ = C + 1 and K1 + K2 = δ.
It is easy to check the conditions for admissibility of (K1,K2, C, C

′) in this
case.

So going forward we assume

K1 <∞ and C ≥ 2δ + 2

Point (1) follows by Lemma 1.4.
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For point (2), by Lemma 2.2 the only possible exception has K1 = K2 = 3
and C = 2δ + 3. But then Lemma 2.3 gives a triangle of perimeter 2δ + 3,
for a contradiction

For point (3), we know C ≥ 2δ + 2 = 10, and in case C = 10 Lemma 1.8
gives K2 = δ.

Point (4) is general (Lemma 1.8).
For admissibility, we know that it suffices to check admissibility of (K1,K2, C, C

′),
and point (2) puts us in the typical case, for which the constraints are as
follows.

• K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ;
• If K1 + 2K2 = 2δ − 1 then C ≥ 2δ +K1 + 2;
• If C ′ > C + 1 then C ≥ 2δ +K2

Now points (1, 3) above cover the first two conditions.
We must check that when C ′ > C + 1, we have C ≥ 2δ + K2. We have

previously seen that C ′ = C + 1 when C ≤ 2δ + 2 (Lemmas 1.7 and 1.8).
So we may suppose C ≥ 2δ+ 3, and we need only consider the case K2 = 4,
C = 2δ + 3 = 11. The claim is that there is no triangle of type (4, 4, 4).

As K2 = 4 there is an edge in Γ4, and therefore Γ4 is connected by
Lemma 1.3. If there is a triangle of type (4, 4, 4) then the diameter of Γ4

is 4, and there is a triangle of type (4, 4, 3), giving a contradiction. Thus
C ′ = C + 1 = 12 in this case.

�

2.4. Realization of Triangles. The next stage of analysis is the following.

Proposition 2.5. Let Γ be a metrically homogeneous graph of generic type,
with associated parameters K1,K2, C, C

′. Then a triangle embeds isometri-
cally into Γ if and only if it belongs to

AδK1,K2,C,C′

We recall by Proposition 1.2 that any triangle which embeds isometrically
in Γ must belong to AδK1,K2,C,C′ . So only the converse is at issue, and as the
bipartite case is fully classified we may set that aside. So we assume without
further comment that K1 is finite.

Lemma 2.6. Let Γ be a metrically homogeneous graph of generic type of
diameter δ. Let i ≤ δ, with i < δ if Γ is antipodal. Then there is a triangle
of type (2, i, i) in Γ.

Proof. Lemma 1.6 gives a pair at distance 2 in Γi unless Γi reduces to a
single vertex, in which case i = δ and Γ is antipodal. �

Lemma 2.7. Let Γ be a metrically homogeneous graph of generic type of
diameter 4, with associated parameters K1,K2, C0, C1. Then any triangle of
even perimeter p < C0 embeds isometrically into Γ.
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Proof. Leaving aside geodesics, the minimum edge length is at least 2, and
if the type is (2, j, k) then j = k, so Lemma 2.6 applies.

So this leaves types (3, 3, 4) and (4, 4, 4) to be considered.
For type (4, 4, 4), we are supposing C > p = 12 and so some triangle of

perimeter 12 occurs in Γ. As the type of such a triangle must be (4, 4, 4),
this case is complete.

So we are left with the case of type

(3, 3, 4)

Suppose there is no triangle of this type in Γ. Then there is no pair of
vertices u, v with u ∈ Γ3, v ∈ Γ4, and d(u, v) = 3.

By Lemma 2.6 there is a pair of vertices v1, v2 in Γ4 at distance 2. Let u
be a neighbor of v2 with d(v1, u) = 3. Then we find u ∈ Γ4. In particular Γ4

contains pairs at distances 1, 2, 3.
By Lemma 1.3, Γ4 is connected. For u ∈ Γ3, let Iu = {v ∈ Γ4 | d(u, v) ≤

2}.
If Iu 6= Γ4 then take v1 ∈ Iu, v2 ∈ Γ4 \ Iu with d(v1, v2) = 1. Then clearly

d(u, v2) = 3 and we are done.
So we may suppose

d(u, v) ≤ 2 for u ∈ Γ3, v ∈ Γ4

Take v1, v2 in Γ4 with d(v1, v2) = 3 and u adjacent to v2 with d(v1, v2) =
4. Then u ∈ Γ4. Take u′ ∈ Γ3 adjacent to u. Then d(u′, v1) ≥ 3, a
contradiction.

�

Lemma 2.8. Let Γ be a primitive metrically homogeneous graph of generic
type and diameter 4 with associated parameters (δ,K1,K2, C, C

′,S). Then
any triangle of type (i, j, k) with odd perimeter p < C1 which satisfies the
following conditions embeds isometrically in Γ.

• p ≥ 2K1 + 1;
• p ≤ 2K2 + 2 min(i, j, k).

Proof. Let the triangle have type (i, j, k) with i ≤ j ≤ k.
Case 1. i = 1:

Leaving aside geodesics, if i = 1 then the triangle has type (1, j, j) with
K1 ≤ j ≤ K2, and if j = K1 orK2 then the type is realized in Γ by definition.
So we suppose

K1 < j < K2

In particular K1 ≤ 2, so by Lemma 1.4 we have triangles of type (1, i, i)
for all i < δ, and the claim follows.

Case 2. i = 2:
Then the triangle type is (2, j, j + 1) with K1 − 1 ≤ j ≤ K2.
In particular there is an edge in either Γj (if j ≥ K1) or in Γj+1 (if j < K2).

Let us write the pair {j, j+1} as {j1, j2}, where there is an edge in Γj2 . Then
Γj2 is connected, by Lemma 1.3.



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER FOUR 17

For u ∈ Γj1 let Iu be {v ∈ Γj2 | d(u, v) = 1}. If Iu 6= Γj2 then we may
take an adjacent pair of points v1, v2 in Γj2 with v1 ∈ Iu, v2 /∈ Iu, and then
d(u, v2) = 2 and we have a triangle of type (2, j1, j2).

So now suppose
Iu = Γj2

Then all distances between Γj1 and Γj2 are equal to 1, and hence Γj1 and
Γj2 have diameter at most 2. In particular neither j nor j + 1 is equal to 2,
so j = 3 and j + 1 = 4.

Take v1, v2 in Γ4 at maximal distance, and v3 adjacent to v2 with d(v1, v3) =
d(v1, v2) + 1. Then v3 ∈ Γj , v1 ∈ Γj+1, and d(v1, v3) > 1 a contradiction.

Case 3. i > 2.
Then i = 3 and the triangle type is (3, 3, 3) or (3, 4, 4).
In particular our assumption p < C1 (p odd) implies that there is a triangle

in Γ with the same perimeter p, and then the type is unique. �

2.5. The Antipodal Case with K1 > 1. We aim at an identification
theorem.

Proposition 2.9. Let Γ be an antipodal graph of generic type and diameter
4, with K1 > 1. Then Γ ∼= Γ4

2,2,9,10,∅.

Proof. We have
K1 = K2 = 2

In particular Γ2 contains an edge. By Lemma 1.3, Γ2 is connected. Also Γ2

has diameter 4 and is antipodal, with K1 > 1. Furthermore Γ2 is infinite
since Γ contains an infinite set of points at mutual distance 2.

It follows that Γ2 is also an antipodal graph and diameter 4 withK1 > 1.
It suffices to show that any finite configuration A which embeds isometri-

cally in Γ4
2,2,9,10,∅ embeds isometrically into Γ.

We suppose A os a counterexample with |A| minimal (where we allow Γ to
vary as well, within the class of antipodal graphs of generic type, diameter 4,
withK1 > 1). We view A as a graph with edge relation “d(x, y) = 1 or 3” and
we refer to the connected components of this graph as the (1, 3)-components
of A.

Claim 1. The distance 4 does not occur.

If d(u, u′) = 4 then u′ is the antipodal vertex to u, and it suffices to embed
the configuration with u′ omitted.

Claim 2. All (1, 3)-components of A are nontrivial.

Otherwise, we have a vertex a ∈ A with d(a, x) = 2 for x ∈ A \ {a}. Then
by minimality of |A| we have A \ {a} embedding isometrically in Γ2, and
hence A embeds isometrically in Γ.

Claim 3. In each (1, 3)-component only one of the two distance 1 or 3 occurs.
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Otherwise, there is are points u, v1, v2 in A with d(u, v1) = 1, d(u, v2) = 3.
Then view A as a 2-point amalgamation problem with d(v1, v2) to be deter-
mined. As d(u, v1) 6= d(u, v2) the two points cannot be identified, and the
only available distance is 2. By minimality the factors embed isometrically
in Γ, and therefore A does as well, which is a contradiction.

Claim 4. Each (1, 3)-component has order 2.

Otherwise there are vertices u, v1, v2 with d(u, v1) = d(u, v2) = 1 or 3.
Then replacing v2 by its antipodal pair we get d(u, v2) 6= d(u, v1) and we
contradict the previous claim.

So now the structure of A is clear: it is a union of pairs of points Ai =
{ai, bi} with d(ai, bi) = 1 or 3 and with all other distances equal to 2. There
are at least two such pairs.

Adjoin a point c adjacent to all ai and with d(c, bi) = 2 for all i. Write B =
{bi | all i} and view A ∪ {c} as the result of amalgamating all configurations

Bi = B ∪ {c, ai}

over the base B ∪ {c}, to determine the distances d(ai, aj) for all i, j. The
vertex c and the condition K1 > 1 guarantees that in the amalgam we have
d(ai, aj) = 2. Thus it suffices to check that the factors Bi all embed into
Γ. If not, then as |Bi| ≤ |A| (with equality only if |A| = 4), we may apply
Claim 2 to Bi and arrive at a contradiction.

�

2.6. The Antipodal Case with K1 = 1. We aim at the following identi-
fication theorem.

Proposition 2.10. Let Γ be an antipodal graph of generic type and diameter
4, with K1 = 1. Then Γ is isomorphic to one of the following.

• An antipodal graph of Henson type Γ4
a,n, with n ≥ 4; or

• The generic antipodal graph of diameter 4, Γ4
1,3,9,10,∅.

We make a formal definition of the parameter n.

Notation. For Γ a metrically homogeneous graph, let n = n(Γ) be the max-
imal clique size, or ∞.

Note that the condition K1 > 1 is the same as n(Γ) = 2.

Lemma 2.11. Let Γ be an antipodal graph of generic type and diameter 4,
with n = n(Γ). Then Γ2 is an antipodal graph of generic type and diameter
4, with n(Γ2) = n.

Proof. All that needs to be shown here is that a clique of order n embeds
isometrically into Γ2.

We distinguish two cases.
Case 1. n =∞
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Then Γ1 is a random graph, so for a ∈ Γ1, Γ2(a) contains a random graph.
This proves the claim in this case.
Case 2. n <∞

We perform an amalgamation construction.
Let A = A1 ∪ A2 be the union of two cliques of order n − 1, together

with edges forming a perfect matching between A1 and A2. Let a1, a2 be
additional vertices with a1 adjacent to all vertices of A, a2 adjacent to the
vertices of A2, and unspecified distances equal to 2.

View A ∪ {a1, a2} as a 2-point amalgamation problem determining the
distance d(a1, a2). As a1, a2 have common neighbors, this distance is at
most 2. If the distance were 1, then A2 ∪ {a1, a2} would be a clique of order
n+ 1, a contradiction.

So d(a1, a2) = 2 and A1∪{a1} is contained in Γ2(a2). So the claim follows
in this case, once we embed the factors A1 ∪A2 ∪ {ai} of the amalgamation
in Γ.

In the factor A1 ∪ A2 ∪ a1, we have A1 ∪ A2 contained in Γ1(a1). So it
suffices to embed A1 ∪ A2 isometrically in Γ1. But Γ1 is the Henson graph
Gn−1, so this is possible.

In the factor A1 ∪A2 ∪ {a2} we have cliques A1, A2 ∪ {a2} of orders n− 1
and n, and a perfect matching between A1 and A2.

Let e1, . . . , en−1 denote the edges of the perfect matching, and write ei =
(ui, vi) with ui ∈ A1. Adjoint points c1, . . . , cn−1 with ci adjacent to ui, vi,
and with unspecified distances equal to 2.

View the resulting configuration as a 2-point amalgamation with the dis-
tance d(u1, v1) to be determined. The point c1 forces this to be at most 2,
and distance 2 would put A2 ∪ {a2} into Γ2(u1), while distance 1 gives the
desired configuration.

So we examine the factors of this amalgamation, omitting u1 or v1. If
we omit v1 then there is no clique of order n and this embeds into Γ1. If
we omit u1 then we consider the configuration as a 2-point amalgamation
determining d(u2, v2), and continue in this vein until we come down finally
to the configuration

A2 ∪ {c1, . . . , cn−1, a2}

which is a clique of order n with n− 1 points ci having distinct neighbors in
A2.

Again we argue inductively that the configuration A2∪{c1, . . . , ck} embeds
isometrically into Γ for k ≤ n − 1. We consider the configuration A2 ∪
{c1, . . . , ck} as a 2-point amalgamation problem determining the distance
d(ck, vk), with the factor omitting ck given by induction, and the factor
omitting vk embedding in Γ1.

We are aiming at d(ck, vk) = 1. if d(ck, vk) = 2 then A2 is contained
in Γ2(ck). If d(ck, vk) = 3 then replace ck by the antipodal vertex c′k. We
cannot have d(ck, vk) = 4 since d(vk, a2) = 1 and d(ck, a2) = 2.

This completes the construction.
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�

Lemma 2.12. Let Γ be an antipodal graph of generic type and diameter 4,
with n = n(Γ). Let v1, v2 be a pair of adjacent vertices, and write Γ2(v1, v2)
for Γ2(v1) ∩ Γ2(v2). Then Γ2(v1, v2) is an antipodal graph of generic type
and diameter 4, with n(Γ2(v1, v2)) = n.

Proof.

Claim 1. Γ2(v1, v2) is nonempty.
This holds as K1 ≤ 2 by Lemma 1.4.

Claim 2. Γ2(v1, v2) contains a geodesic triangle of type (1, 1, 2).

We make an amalgamation argument.
Let u1, u2, , u3, v1, v2 be a configuration with

d(u1, u2) = d(u2, u3) = d(v1, v2) = 1

and other distances equal to 2. We need to embed this configuration isomet-
rically into Γ.

We adjoin vertices a1, a2 satisfying the following.

d(a1, u2) = 1 d(a2, u2) = 1

d(a1, v1) = 1 d(a2, v1) = 3

and unspecified distances equal to 2, i.e., the standard witnessing pair for
the condition “d(u2, v1) = 2.”

We view the configuration (u1, u2, u3, v1, v2, a1, a2) as a 2-point amalgama-
tion problem with d(u2, v1) to be determined. Since the distance d(u2, v1) =
2 is forced, it suffices to embed the factors

(u1, u2, u3, v2, a1, a2) and (u1, u3, v1, v2, a1, a2)

isometrically into Γ.
By Lemma 2.11, Γ2 satisfies the same hypotheses as Γ, and we can elim-

inate vertices lying at distance 2 from the others, in either factor. This
reduces the problem to the configurations

(u1u2u3a1a2) and (v1v2a1a2)

In each case the structure is a star, with center u2 or v1 respectively, and
with distances 1 or 3 on the edges of the star, with distance 2 elsewhere.

We may also replace a2 by its antipodal point whenever convenient, and
in this way replace the condition d(a2, v1) = 3 by d(a2, v1) = 1. In other
words, we may take these stars to be true stars, with respect to the edge
relation “d(x, y) = 1.”

So we then require an embedding of (u1u3a1a2) or (v2a1a2) into Γ1, and
this is possible.

Claim 3. Γ2(u1, v1) contains pairs at distances 1, 2, 3, and 4.

The claims so far cover distances 0, 1, and 2, and Γ2(u1, v1) is closed under
the antipodal pairing, so that gives 3 and 4 as well.
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Claim 4. Γ2(v1, v2) contains geodesic triangles of types (1, 2, 3) and (1, 3, 4).

Under the antipodal pairing this corresponds to types (1, 2, 1) and (1, 1, 0),
both of which we have.

Claim 5. Γ2(v1, v2) is a connected antipodal metrically homogeneous graph
of diameter 4.

As we have the geodesics of type (1, 1, 2), (1, 2, 3), and (1, 3, 4), and
Γ2(v1, v2) is metrically homogeneous, it is connected as a graph under the
edge relation “d(x, y) = 1,” and the metric is the graph metric. We have
already seen that the diameter is 4 and the antipodality is inherited from Γ.

Claim 6. Γ2(v1, v2) is of generic type.

In the contrary case Γ2(v1, v2) would be a cycle of girth 9.
It suffices to embed the configuration (v1, v2, u, u1, u2, u3) isometrically

into Γ, where (v1, v2) is an edge, (u, u1, u2, u3) is a star with center u and
distances d(u, ui) = 1, and unspecified distances are equal to 2.

Add the usual witnessing pair a1, a2 to ensure d(u, v1) = 2, taking unspec-
ified distances again equal to 2. View the resulting configuration as a 2-point
amalgamation problem determining the distance d(u, v1). In the factors, af-
ter removal of isolated points (at distance 2 from the remainder) and after
replacing a2 when necessary by its antipodal point, we come down to true
stars with distance 1 on each edge and distance 2 elsewhere. These embed
into Γ by considering Γ1.

Claim 7. n(Γ2(v1, v2)) = n

If n = ∞ the desired configuration is realized in Γ1, so we suppose n is
finite.

The configuration we require is A ∪ {v1, v2} where A is a clique of order
n and (v1, v2) is an edge, other distances being equal to 2.

We take u ∈ A and adjoin a witnessing pair a1, a2 to ensure d(u, v1) = 2,
again taking unspecified distances to be 2. It remains to check that the
factors embed isometrically into Γ.

The factor (A \ {u}) ∪ {v1, v2, a1, a2} embeds in Γ1 as it contains no n-
clique.

So this leaves the factor

A ∪ {v2, a1, a2}
Here by Lemma 2.11 we may delete the vertex v2, leaving A∪{a1, a2}. After
replacing a2 by its antipodal point we have a configuration in Γ1(a) which
embeds into Γ1, so we conclude. �

Proof of Proposition 2.10. We let n be minimal such that Γ omits a clique
of order n, if there is one, and n = ∞ otherewise. We write Γ4a,∞ for
Γ4
1,3,9,10,∅, to unify notation. We set Γ∗ = Γ4

n, so that our claim is

Γ ∼= Γ∗
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It suffices to show that any finite configuration A which embeds isometri-
cally into Γ∗ embeds isometrically into Γ.

If we have a pair of points v1, v2 at distance 4 in A then we may omit v2:
if A \ {v2} embeds in Γ, then so does A. So we suppose all distances are 1,
2, or 3.

Let GA be the graph on A with edge relation “d(x, y) = 1 or 3.” We call
the connected components of GA the (1, 3)-components of A.

We consider the subset A′ of points with at least two neighbors in GA. We
choose a hypothetical counterexample A as follows (here we vary not over A
but also Γ).

• Minimize |A′|; then
• Minimize the number of (1, 3)-connected components of A; then
• Minimize |A|.

Claim 1. There is no pair of points in A at distance 4.

By antipodality if d(v, v′) = 4 and A\{v} embeds isometrically in Γ, then
so does A.

Claim 2. Every (1, 3)-component contains a point of A′.

Otherwise, there is a (1, 3)-component A0 of order at most 2, and then by
minimality of A and Lemma 2.11 or 2.12, A \ A0 embeds isometrically into
Γ2(A0), and hence A embeds into Γ.

Claim 3. A′ is a (1, 3)-complete graph, that is, a clique in GA.

Suppose on the contrary that v1, v2 ∈ A′ with d(v1, v2) = 2.
Adjoin vertices a1, a2 with

d(a1, v1) = 1 d(a2, v1) = 1

d(a1, v2) = 1 d(a2, v2) = 3

and unspecified distances equal to 2.
View the resulting configuration as a 2-point amalgamation problem de-

termining the distance d(v1, v2). The points a1, a2 ensure that this distance
is 2. So it suffices to embed the factors of A ∪ {a1, a2} omitting v1 or v2
into Γ. Here the size of A′ decreases in each factor and we conclude by the
minimality of A.

Claim 4. Without loss of generality, A′ is a 1-clique (an ordinary clique
with mutual distance 1).

As A′ is a Γ-constrained (1, 3)-space, A′ consists of 1-cliques lying at
mutual distance 3, and (by the bound C = 9) there are at most two such
cliques. If there are two cliques, then by replacing vertices by antipodal
vertices we arrive at an equivalent configuration in which A′ is a single clique.

Going forward, therefore, we will make the assumption

A′ is a clique for the edge relation “d(x, y) = 1.”
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Claim 5. A consists of a single (1, 3)-connected component.

Each (1, 3)-component meets A′, and A′ is connected.

Claim 6. Without loss of generality, all distances in A are equal to 1 or
2, and the graph with the edge relation “d(x, y) = 1” is a clique with some
attached edges.

Suppose u ∈ A \ A′. Then there is a unique vertex u∗ at distance 1 or
3 from u, and after replacing u if necessary by its antipodal point, that
distance is 1. Furthermore, as A is (1, 3)-connected, u∗ must belong to A′.
This gives the desired structure.

Now to conclude the proof, we will show by induction on the parameter

k = |{u ∈ A′ |There is a neighbor of u outside A′}|

that A embeds isometrically in Γ.
If k ≤ 1 then there is a vertex u ∈ A at distance 1 from all vertices of A,

so it suffices to embed A \ {u} in Γ1. As this contains no n-clique, this is
possible.

So suppose
k ≥ 2

Now proceed by induction on the minimal degree of a vertex in A′ with
neighbors outside A′. Take a vertex u minimizing this parameter, a neighbor
v1 of u outside A′, and another vertex u1in A′ with a neighbor outside A′.

Adjoin the usual witnessing pair a1, a2 ensuring d(u1, v1) = 2, taking
unspecified distances equal to 2. It suffices to embed the factors omitting u1
or v1 isometrically into Γ.

The factor omitting u1 contains no n-clique so embeds into Γ1.
The factor omitting v1 embeds isometrically into Γ by induction: either

u no longer has neighbors outside A′, and the number of such vertices is
decreased, or else the minimal degree of such a vertex has been lowered.

This completes the proof.
�

3. Diameter 4: C = 10 or K1 = 4

Now we work toward the following.

Proposition 3.1. Let Γ be an infinite primitive metrically homogeneous
graph of diameter 4 with C = 10. Then Γ ∼= Γ4

1,4,10,11.

As noted earlier, after a permutation of the language this is equivalent to
the following.

Proposition 3.2. Let Γ be an infinite primitive metrically homogeneous
graph of diameter 4 with K1 = 4. Then Γ ∼= Γ4

4,4,13,14.
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3.1. Structure of Γ2 and Γ3. Our first goal is the following.

Lemma 3.3. Let Γ be an infinite primitive metrically homogeneous graph of
diameter 4 with C = 10. Then

• Γ2 is an infinite primitive metrically homogeneous graph of diameter
4 with associated parameters K̃1 = 1, K̃2 = 4, and C̃ = 10.
• Γ3

∼= Γ3
1,3,10,11

We work toward this in stages.

Lemma 3.4. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 4 with C = 10. Then Γ3 is an infinite primitive metrically
homogeneous graph of diameter 3 with associated parameters K̃1 = 1 and
K̃2 = 3.

Proof. By Lemma 1.8 we have

K1 = 1, K2 = 4, C ′ = C + 1, S = ∅
In particular Γ contains an infinite clique and so Γ1 is a random graph.

Claim 1. Γ3 is an infinite primitiive metrically homogeneous graph of di-
ameter 3, of generic type, with K̃1 = 1.

Γ3 has an edge and is therefore connected by Lemma 1.3. Thus Γ3 is a
metrically homogeneous graph.

Triangles of type (3, 3, 3), but not (3, 3, 4), occur in Γ, so the diameter of
Γ3 is 3.

If we take two vertices at distance 2 in Γ2, Γ4, then their common neighbors
form a copy of Γ1, a random graph, contained in Γ3, by Lemma 1.1. In
particular Γ3 is infinite with K̃1 = 1, and of generic type.

By Lemma ??, Γ3 is primitive.

Claim 2. For u ∈ Γ1, there are at least two points of Γ4 at distance 4 from
u.

Otherwise, u determines a unique point u′ ∈ Γ4 at distance 4. This gives
a function from Γ1 onto Γ4, and as Γ1 is primitive this function is either 1-1
or constant. As Γ4 is nontrivial, the function is 1− 1. Since Γ4 is complete,
it follows that the automorphism group of Γ1 acts 2-transitively on Γ1, a
contradiction.

Claim 3. K̃2 = 3

We need to find a triangle of type (3, 3, 1) in Γ3.
Begin with u ∈ Γ1 and v1, v2 ∈ Γ4 with

d(u, v1) = d(u, v2) = 4

Extend v1, v2 to a geodesic (v0, v1, v2, v3) with d(v0, v3) = 3.
As Γ4 is complete we find v0, v3 ∈ Γ3. As v0, v3 are adjacent to v1, v2

respectively, we find
d(u, v0), d(u, v3) ≥ 3



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER FOUR 25

As C = 10 and C ′ = 11 we find that (u, v0, v3) has type (3, 3, 3). Thus Γ3(v0)
contains a triangle of type (3, 3, 1) consisting of u, v3, and the base point.

�

Lemma 3.5. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 4 with C = 10. Then Γ3 is an infinite primitive metrically
homogeneous graph of diameter 3 with associated parameter C̃ = 10

Proof. By Lemma 3.4, Γ3 is infinite primitive metrically homogeneous of
diameter 3 with associated parameters

K̃1 = K1 = 1 and K̃2 = 3

As Γ3 has diameter 3 we also have C̃ ′ = C̃ + 1. In principle it would be
sufficient to show that there is a triangle of type (3, 3, 3) in Γ3, but from a
practical point of view it is convenient to deal separately—and first—with
type (3, 3, 2).

Claim. There is a triangle of type (3, 3, 2) in Γ3.

Take u1.u2 ∈ Γ3 with d(u1, u2) = 3. Take u adjacent to u2 with d(u1, u) =
4. As C = 10 we have u ∈ Γ2. Now u has a neighbor u3 in Γ3 at distance
2 from u2. Since d(u1.u) = 4 we have d(u1, u3) = 3. Thus (u1, u2, u3) is a
triangle of type (3, 3, 2) in Γ3. This proves the claim.,

Now we take up the problem of finding a triangle of type (3, 3, 3) in Γ3. We
use an explicit amalgamation argument. We are aiming at the configuration
(a1, a2, a3, a4) with d(ai, aj) = 3.

Adjoin b1 with

d(b1, a1) = 1 d(b1, a2) = 4

d(b1, ai) = 2 (i = 3, 4)

View this as a 2-point amalgamation problem in which the distance d(a1, a2)
is to be determined.

d(b1, a3) = d(b1, a4) = 2

The bound C = 10 gives d(a1, a2) ≤ 3 and the point b1 gives d(a1, a2) ≥ 3.
So it suffices to embed the factors of this configuration omitting a1 or a2
isometrically into Γ.
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I. The factor (a1a3a4b1):
We adjoin a point b2 with

d(b2, a4) = d(b2, b1) = 1

d(b2, a1) = 2

d(b2, a3) = 3

We view this as a 2-point amalgamation in which the distance d(a4, b1) is
to be determined.

d(b2, a1) = 2
d(b2, a3) = 3

The points a1 and b2 force d(a4, b1) = 2. So it suffices to embed the factors
omitting a4 or b1 isometrically into Γ.

The factor (a1a3a4b2) has the triangle (a1, a4, b2) of type (1, 2, 3) in Γ3(a3).
As Γ3 is connected of diameter 3, this factor embeds isometrically into Γ.

Now we consider the factor (a1a3b1b2). Taking b1 as base point, we require
a point a3 in Γ2 at distance 3 from two nonadjacent points of Γ1.

Fix a3 in Γ2 and take a in Γ2 at distance 4 from a3. Then there is a
4-cycle (acb1c

′) embedding isometrically in Γ. In particular c, c′ ∈ Γ1 are at
distance 2.

As c, c′ are adjacent to a we have d(a3, c), d(a3, c
′) ≥ 3. As a3 ∈ Γ2

and c, c′ ∈ Γ1, we have d(a3, c), d(a3, c
′) ≤ 3. Thus we have the desired

configuration in the form (b1a3cc
′).

The factor (a2a3a4b1):
We adjoin a vertex b3 with

d(b3, a2) = 3

d(b3, a3) ≤ 2

d(b3, a4) = 3

d(b3, b1) = 1

where the choice of d(b3, a3) will be settled later.
We treat the resulting configuration as a 2-point amalgamation problem

in which the distance d(b1, a4) is to be determined.



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER FOUR 27

d(b3, a3) = 1 or 2
d(b3, a2) = 3

So it suffices to check that for some choice of the distance d(b3, a3), the
factors of this amalgamation embed isometrically into Γ.

The configuration (a2a3a4b3):

This consists of a triangle of type (1, 3, 3) or (2, 3, 3) in Γ3(a4). Since
triangles of both types embed in Γ3, this configuration embeds isometrically
in Γ, for either value of d(a3, b3).

The configuration (a2a3b1b3):

We adjoin a point b4 with

d(b4, a3) = d(b4, b3) = 1

d(b4, a2) = 2

d(b4, b1) = 3
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and view the resulting configuration as a 2-point amalgamation problem
with the distance d(a3, b3) to be determined. Here we have the possibilities
d(a3, b3) = 1 or 2 but as we have already seen, either one suffices.

So it suffices to embed the factors (a2a3b1b4) and (a2b1b3b4) of this amal-
gamation isometrically in Γ.

In the factor (a2b1b4b4) the distance d(b1, b4) = 2 is determined uniquely
by the other two points, so this may be obtained by amalgamating two
triangles which embed into Γ.

This leaves only the factor (a2a3b1b4) to be dealt with.

If we think of this as a 2-point amalgamation problem with the distance
d(a2, b4) to be determined, then as C = 10 the value d(a2, b4) = 2 is forced.
Thus this results from the amalgamation of two triangles which embed in Γ.

�

Lemma 3.6. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 4 with C = 10. Then Γ2 is an infinite primitive metrically
homogeneous graph of diameter 4 with the same parameters K̃1 = K1 = 1,
K̃2 = K2 = 4, and C̃ = C = 10.

Proof. Clearly Γ2 contains an edge and has diameter 4. By Lemma 1.3, Γ2

is connected, and is therefore a metrically homogeneous graph of diameter
4. By Lemma ??, Γ2 is primitive. As Γ1 contains an infinite independent
set, Γ2 is infinite.

Thus Γ2 is an infinite primitive metrically homogeneous graph of diameter
4. We claim that the associated parameter C̃ is 10, and then Lemma 1.8
does the rest.

It will suffice to show that Γ2 contains a triangle of type (3, 3, 3). We
consider the confiburation (a1, a2, a3, b) with a1, a2, a3 the desired triangle
in Γ2(b). Observe that this configuration is Γ3-constrained and therefore
embeds in Γ3, by the classification in diameter 3. Thus this configuration
embeds in Γ. �

We return to consideration of Γ3.

Lemma 3.7. Let Γ be an infinite primitive metrically homogeneous graph of
diameter 4 with C = 10. Then Γ3 contains I(3)∞ , an infinite anticlique with
mutual distance 3.
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Proof. We show by induction on n that any infinite primitive metrically
homogeneous graph of diameter 4 with C = 10 contains an isometric copy
of I(3)n for each n. This is known already for n = 4, so take n > 4.

Let A = {a1, . . . , an} be the desired configuration. Adjoin a point b with

d(b, ai) =


1 i = 1

4 i = 2

2 otherwise

View the resulting configuration as a 2-point amalgamation problem in
which the distance d(a1, a2) is to be determined. We will set A0 = {ai | i >
2}.

As C = 10 and n > 2, the distance d(a1, a2) is at most 4, hence exactly
3. Thus it suffices to show that the factors of this amalgamation embed
isometrically in Γ.

The factor (A0a1b1):
We adjoin a point b2 with

d(b2, a1) = 1

d(b2, a3) = 4

d(b2, ai) = 2 (i > 3)
d(b2, b1) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, a3) to be determined. The points b1, b2 force this dis-
tance to be 3. Thus it suffices to embed the factors of this amalgamation
isometrically in Γ. Write A1 = {ai | i > 3}.

By induction hypothesis, I(3)n−2 embeds in Γ3. Therefore the factor (A1a1b1b2)
is Γ3-constrained, and hence embeds isometrically in Γ3, and therefore also
in Γ.

In the factor (A1a3b1b2), A1a3b2 lies in Γ2(b1), which is another infinite
primitive metrically homogeneous graph of diameter 4 with C = 10. So it
will suffice now to show that the configuration

(A1a3b2)
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embeds isometrically into Γ.

We adjoin a point b3 with

d(b3, ai) = 3 all i
d(b3, b2) = 1

View the resulting configuration as an amalgamation in which the dis-
tances between b2 and A1 are to be determined. The point a3 ensures these
distances are at most 2, and the point b3 ensures these distances are at
least 2. So it suffices to show that the factors of this amalgamation embed
isometrically into Γ.

These factors are a copy of I(3)n−1, which embeds by induction hypothesis,
and a geodesic triangle.

This completes the discussion of the factor (A0a1b1).

The factor (A0a2b1):
We adjoin a point b3 with

d(b3, a2) = d(b3, a3) = 3

d(b3, ai) = 2 (i > 3)
d(b3, b1) = 1

We view the resulting configuration as a 2-point amalgamation problem
with the distance d(a3, b1) to be determined.

d(a2, ai) = 3
d(b3, ai) = 2 (i > 3)

The points a2 and b3 force d(a3, b1) = 2. Thus it suffices to embed the
factors omitting a3 or b1 isometrically in Γ.

The factor omitting b1 consists of the configuration (A1a3b3) inside Γ3(a2).
By induction (A1a3b3) is Γ3-constrained and hence embeds isometrically into
Γ3. Thus this factor embeds isometrically into Γ.
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This leaves the factor (A1a2b1b3) to be considered.
We adjoin a point b4 with

d(b4, ai) = 2 (all i)
d(b4, b2) = 2

d(b4, b3) = 1

We view the resulting configuration as a 2-point amalgamation problem with
the distance d(a2, b3) to be determined.

d(b1, ai) = 2 (i > 3)
d(b4, ai) = 2 (i > 3)

The points b1, b4 ensure that d(a2, b3) = 2. So it suffices to show that the
factors (A1a2b1b4) and (A1b1b3b4) embed isometrically into Γ.

The factor (A1a2b1b4) consists of (A1a2b1) inside Γ2(b4). Since Γ2 satisfies
the same conditions as Γ, it suffices to show that the configuration (A1a2b1)
embeds into Γ. But this is isometric to the configuration (A1a3b2) treated
earlier.

The factor (A1b1b3b4) is Γ3-constrained, hence embeds isometrically in Γ3,
hence also in Γ.

This completes the proof. �

Lemma 3.8. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 4 with C = 10. Let A be a finite (1, 3)-space with at most one
nontrivial connected component. Then A embeds isometrically into Γ.

Proof. We proceed by induction on the number n of components, and then
on the size of a maximal component. The components of a (1, 3)-space are
cliques, separated by distance 3. Our assumption is that at least n − 1 of
these cliques consist of an isolated point.

If all components are trivial the result is covered by Lemma 3.7. So we
will assume that there is a nontrivial component A1 in A. If A = A1 then
the claim follows since Γ4 is an infinite clique. So we assume n ≥ 2 and pick
a point a2 ∈ A \A1.

Let us also treat separately the case of 2 components, that isA = A1∪{a2}.
Recall that Γ4 is a clique. Take u ∈ Γ4. Then Γ1(u) is a random graph
contained in Γ3 ∪ Γ4. Therefore Γ1(u) \ Γ4 contains an infinite clique in Γ3.
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Thus we have an embedding of A1 ∪ {a2} into Γ with a2 corresponding to
our chosen base point.

So now suppose
n ≥ 3

Fix another point a3 outside A1.
Now adjoin a point b1 with

d(b1, a) = 1 (a ∈ A1)
d(b1, a2) = 4

d(b1, x) = 2 otherwise

We treat the resulting configuration as an amalgamation problem in which
the distances between A1 and a2 are to be determined.

The point b1 ensures that these distances are at least 3, and as C = 10
the point a3 ensures that these distances are exactly 3. So it suffices to show
that the corresponding factors embed isometrically in Γ in each of the two
cases. Set A∗ = A \ (A1 ∪ {a2}).

The factor (A1A
∗b1):

We adjoin a vertex b2 with

d(b2, a3) = d(b2, b1) = 1

d(b2, x) = 2 otherwise

We view the resulting configuration as a 2-point amalgamation problem
in which the distance d(a3, b1) is to be determined. The point b2 forces this
distance to be at most 2 and the points of A1 force it to be at least 2. So it
suffices to show that the factors of this amalgamation embed isometrically
into Γ.

We claim that the factor (A \ {a2, a3}, b1b2) is Γ3-constrained and hence
embeds isometrically even into Γ3.

The maximal (1, 3)-spaces in the factor (A \ {a2, a3}, b1b2) are on the one
hand some cliques which contain b1 or b2 and on the other hand the space
A \ {a2, a3}. To embed these into Γ3 we adjoin and additional isolated point
an+1 and apply induction.

This leaves the factor (A \ {a2}, b2) for consideration.
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We adjoin a further point b3 with

d(b3, a) = 1 (a ∈ A1)
d(b3, a3) = 2

d(b3, b2) = 1

d(b3, x) = 3 otherwise

We view the resulting configuration as an amalgamation problem in which
the distances between b2 and A1 are to be determined, and are forced to be
equal to 2. So it suffices now to embed the factors of this amalgamation into
Γ.

The factor omitting b1 is a (1, 3)-space with a unique nontrivial compo-
nent, and a total of n− 1 components, so this embeds in Γ by induction.

The factor omittingA1 is is Γ3-constrained since its maximal (1, 3)-subspaces
are the clique {b1, b3} and some anticliques I(3)n−1.

The factor (a2A
∗b1):

Adjoin a vertex b3 with

d(b3, b1) = 1

d(b3, a) = 3 otherwise

View the resulting configuration as an amalgamation in which the dis-
tances between b1 and ai for i ≥ 3 are to be determined. The point a2
ensures that these distances are at most 2, and the point b3 ensures that
they are at least 2. So it suffices to show that the factors of this amalgama-
tion embed isometrically into Γ.

The factor (a2b1b3) is a geodesic triangle.
The factor {ai | i ≥ 2} ∪ {b3} is an anticlique I(3)n .
This concludes the analysis.

�

Proof of Lemma 3.3. We dealt with Γ2 in Lemma 3.6.
And we have shown so far that Γ3 has diameter 3, K1 = 1, K2 = 3,

C = 10, so by the classification in diameter 3 we have

Γ3
∼= Γ3

1,3,10,S̃
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for some set of (1, 3)-spaces S̃. It remains to be proved that

S̃ = ∅

In other words, we must embed an arbitrary (1, 3)-space A isometrically
into Γ.

Now the connected components of a (1, 3)-space are cliques. We will
proceed by induction on the sum of the orders of the nontrivial components
of A. The case in which there is at most one nontrivial component in A was
treated in Lemma 3.8, so we suppose that there are at least two such.

Let A1, A2 be two nontrivial components of A. Fix a1 ∈ A1 and a2 ∈ A2.
We may suppose that A has at least 3 components, as we may add trivial
components without altering our inductive parameters.

Adjoin a vertex b1 with

d(b1, a1) = 4

d(b1, a) = 3 (a ∈ A1 \ {a1})
d(b1, a2) = 1

d(b1, a) = 2 (a /∈ A1 ∪ {a2})

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, a2) to be determined.

As we assume A has at least 3 components, and C = 10, we have the
upper bound d(a1, a2) ≤ 3. The point b1 then forces d(a1, a2) = 3. So it
suffices to show that the factors of this amalgamation embed isometrically
into Γ.

The factor (A \ {a1}, b1):
As we omit a1, all distances are among 1, 2, 3. It will suffice to check that

this configuration is Γ3-constrained, as it then embeds isometrically into Γ3

and hence into Γ.
Write A′1 = A1 \ {a1}, A′ = A \ {a1}. The maximal (1, 3)-subspaces of

this configuration are
A′1 ∪ {a2, b1} and A′
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Let B′ be the extension of A′ by one more trivial component. Then our
induction hypothesis applies to B′, so B′ embeds isometrically into Γ. This
means that A′ embeds isometrically into Γ3.

If |A1| > 2 then induction also applies to A′1∪{a2, b1} and thus we conclude
that (A′b1) is Γ3-constrained, as required.

Otherwise, both A1 and A2 have order 2. Then A′1∪{a2, b1} has only one
nontrivial component.

The factor (A \ {a2}, b1):

Here A′1 = A1 \ {a1}, A′2 = A2 \ {a2}, A∗ = A \ (A1 ∪A2).
Adjoin a point b2 with

d(b2, b1) = 1

d(b2, a) = 3 (a ∈ A \ {a2})

View the resulting configuration as an amalgamation problem with the
distances between b1 and A \ A1 to be determined. As C = 10, the point
a1 ensures that these distances are at most 2, while the point b2 ensures
that they are at least 2. So it suffices to show that the factors (A1b1b2) and
(A1A

′
2A
∗b2) embed isometrically into Γ.

The factor (A1A
′
2A
∗b2) is a (1, 3)-space such that the sum of the orders

of the nontrivial components is smaller than the sum for A. So this embeds
isometrically in Γ by induction.

This leaves the factor (A1b1b2) for consideration.
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We adjoin a point b3 with

d(b3, a1) = 1

d(b3, x) = 2 otherwise

We view the resulting configuration as a 2-point amalgamation problem
with the distance d(a1, b2) to be determined. The points b1, b3 force this
distance to be 3. So it suffices to show that the factors embed isometrically
into Γ.

The factor omitting a1 has no distance greater than 3, so it suffices to
check that it is Γ3-constrained. The maximal (1, 3)-subspaces are (A1b2),
(A′1b1b2), and b1b3. Induction applies to these spaces.

In the factor omitting b2, we have (A1b1) contained in Γ2(b3). Since Γ2

satisfies the same conditions as Γ, it suffices to check that (A1b2) embeds in
Γ. Again, this follows by induction.

This completes the proof. �

3.2. Proof of Proposition 3.1. Our goal is to prove that any finite space
which embeds into Γ4

1,4,10,11 embeds into every infinite primitive metrically
homogeneous graph of diameter 4 with C = 10.

We first make some reductions.

Lemma 3.9. Suppose that there is an infinite primitive metrically homoge-
neous graph Γ of diameter 4 with C = 10, and a finite metric subspace A of
Γ4
1,4,10,11, such that A does not embed isometrically into Γ. Let A be chosen

to minimize the number of pairs u, v with d(u, v) = 4. Then A contains a
unique pair at distance 4.

Proof. If the distance 4 does not occur then by Lemma 3.3, A embeds iso-
metrically into Γ3, and hence into Γ.

So it remains to reduce all configurations involving at least two such pairs
to configurations involving fewer such pairs.

We note that the amalgamation strategy for the class A4
1,4,10,11 given in

[Che13] never introduces new pairs at distance 4 (in the notation of that
article, 2-point amalgamation problems are completed using either r− or
K1).

Claim 1. For each u ∈ A there is at most one v ∈ A with d(u, v)=4.

Suppose we have v1, v2 in A distinct with d(u, v1) = d(u, v2) = 4. Then
d(v1, v2) = 1.

Adjoin a vertex b with

d(b, v1) = 1

d(b, v2) = 2

Complete the configuration Ab to a Γ-constrained metric space without
introducing additional pairs at distance 4.
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Now viewAb as a 2-point amalgamation problem with the distance d(v1, v2)
to be determined. The vertex b prevents these vertices from being identified,
and then the vertex u forces their distance to be 1. Each factor of Ab has
fewer pairs at distance 4.

This proves the claim.

Claim 2. There are no pairs (u1, v1), (u2, v2) at distance 4 with

d(u1, u2) = 2

Supposing the contrary, we adjoin points b1, b2 with

d(b1, u1) = 1 d(b2, u1) = 1

d(b1, u2) = 1 d(b2, u2) = 3

Complete to a Γ-constrained configurationAb1b2 introducing no additional
pairs at distance 4. View this as a 2-point amalgamation problem with the
distance d(u1, u2) to be determined. The points b1, b2 ensure d(u1, u2) = 2.

The factors of this amalgamation have fewer pairs at distance 4.

Claim 3. There are no pairs (u1, v1), (u2, v2) at distance 4 with d(u1, u2) =
3.

Supposing the contrary, adjoin a vertex b with

d(b, u1) = 1

d(b, u2) = 2

Complete Ab toa Γ-constrained configuration with no additional pairs at
distance 4 and view the result as a 2-point amalgamation problem determin-
ing d(u1, u2), with b and the vi ensuring d(u1, u2) = 3. The factors involve
fewer pairs at distance 4.

Now to conclude, if there are two distinct pairs (u1, v1) and (u2, v2) at
distance 4, then they are disjoint, and d(u1, u2) = d(u1, v2) = 1, a contra-
diction.

Lemma 3.10. Suppose that there is an infinite primitive metrically homo-
geneous graph Γ of diameter 4 with C = 10, and a finite metric subspace A
of Γ4

1,4,10,11, such that A does not embed isometrically into Γ. Then A may
be chosen as follows.

• A contains a unique pair (u, v) with d(u, v) = 4;
• For every x 6= u, v we have d(u, x) = 1, d(v, x) = 3.

Proof. By Lemma 3.9 we may suppose that A contains a unique pair (u, v)
with d(u, v) = 4. Let us take such an A so as to minimize the number of
vertices x for which d(u, x) = 2 or d(v, x) = 2.

Claim 1. For x 6= u, v we have d(u, x) = 1, d(v, x) = 3, or vice versa.
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Suppose first that d(u,w) = 2 for some w 6= u, v. Then we adjoin points
b1, b2 with

d(b1, u) = 1 d(b2, u) = 1

d(b1, w) = 1 d(b2, w) = 3

d(b1, v) = 3 d(b2, v) = 3

We complete the configuration Ab1b2 to a Γ-constrained configuration with-
out adding any more pairs at distance 4. We view the resulting configuration
as a 2-point amalgamation problem with the distance d(u,w) to be deter-
mined, with the value d(u,w) = 2 forced by the points b1, b2. The factor
of this amalgamation omitting u has no pairs at distance 4 and the fac-
tor omitting w has fewer vertices x violating the conditions d(u, x) = 1,
d(v, x) = 3. So both factors embed isometrically in Γ and then so does A,
for a contradiction.

Similarly d(v, x) 6= 2 for x 6= u, v.
Thus d(u, x) and d(v, x) must be 1 or 3 for x 6= u, v, and the claim follows,

recalling C = 10.
Now write A = {u, v} ∪A1 ∪A3 where d(u, x) = i for x ∈ Ai (i = 1 or 3).

Take A so as to minimize |A3|.

Claim 2. A3 = ∅

Suppose A3 is nonempty. We have |A3| ≤ |A1| since otherwise by a simple
change of notation we can reduce |A3|. In particular A1 6= ∅. Fix w1 ∈ A1

and w3 ∈ A3.
Note that 2 ≤ d(w1, w3) ≤ 3.
Adjoin a point b with

d(b, u) = 1

d(b, v) = 3

d(b, w1) = 2

d(b, w3) = 2

�

To check that this is a metric space it suffices to inspect the triples the
point b together and involving either a pair at distance 4 (i.e., (u, v, b)) or
two pairs at distance 1 (i.e., (u,w1, b)).

Now complete the configuration Ab to a Γ-constrained configuration in-
volving no additional pairs at distance 4, and view the result as a 2-point
amalgamation problem with the distance d(u,w3) to be determined. The
points v and b force this distance to be 3. The factor omitting u contains
no pair at distance 4, and the factor omitting w3 has smaller |A3|. So we
conclude.

�
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Proof of Proposition 3.1. We have Γ with the parameters of Γ4
1,4,10,11 and

we claim that any Γ-constrained finite metric space A embeds into Γ. By
Lemma 3.10, it suffices to treat the case in which

• A contains a unique pair (u, v) with d(u, v) = 4;
• For every x 6= u, v we have d(u, x) = 1, d(v, x) = 3.

Let A∗ = A \ {u, v}. This is a metric space with distances among 1, 2.
Taking v as a base point in Γ, fix u ∈ Γ4. Then Γ1(u) is a random graph

contained in Γ3 ∪Γ4, while Γ1(u)∩Γ4 is a clique. It follows that every finite
graph embeds in Γ1(u)∩Γ3. So embedding A∗ isometrically into Γ1(u)∩Γ3,
we arrive at the required isometric embedding of A. �

4. Embedding Lemmas; Γ3

We have dealt with the cases C0 = 10 or K1 = 4 in the previous section.
In this section we begin the treatment of all remaining cases. While we
have not managed to avoid further consideration of the precise values of the
parameters (particularly K1), certain uniformities begin to appear. We will
see that a natural focus of attention is the structure of Γ3.

For the treatment of all other cases, the following point will be fundamen-
tal.

Fact 4.1 ([Che13]). Let Γ be a primitive metrically homogeneous graph of
generic type, and of known type, whose associated parameters satisfy the
following conditions.

C > 2δ + 2

K1 < δ

Then any associated amalgamation problem can be completed without intro-
ducing new pairs at distance 1 or δ.

This follows the proof of amalgamation given in [Che13] as Part I of the
Main Theorem. Note that two slightly different amalgamation procedures
were described there, one which sometimes uses the value K1 (which may be
equal to 1) in the absence of Henson constraints, and a more refined version
which varies at one point to avoid that extreme case.

We take note of the following consequence.

Lemma 4.2. Let Γ be a metrically homogeneous graph of diameter 4 which
is not of known type, and A the class of finite Γ-constrained metric spaces.
Then any amalgamation diagram in A can be completed without adding new
pairs at distance 1 or 4.

Proof. We know that the A coincides with AδK1,K2,C,C′,S for some admissible
set of parameters, so that this is an amalgamation class covered by the
procedure given in [Che13]. As we have already identified the metrically
homogeneous graphs of diameter 4 with C = 2δ + 2 or K1 = δ, Fact 4.1
applies. �
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More generally, in a systematic approach to identification, the first three
steps will be the following.

• Admissibility of parameters;
• Determination of forbidden triangles;
• Treatment of the cases C = 2δ + 2 or K1 = δ;
• Further analysis based on Fact 4.1.

We give the next part of the analysis in a general setting.

4.1. The Embedding Principle: Reductions. The Embedding Principle
for Γ states that any finite Γ-constrained metric space embeds isometrically
in Γ. This is equivalent to the conjecture that Γ is isomorphic to the graph
of known type with the same parameters.

Now we work toward an analysis of the structure of a suitably minimized
counterexample to the Embedding Principle.

Definition 4.3. Let Γ be a metrically homogeneous graph of diameter δ and
generic type, and A a finite Γ-constrained metric space. We denote by A(1, δ)
the graph on the vertex set A with edge relation

d(x, y) ∈ {1, δ}
In this context we speak of the (1, δ)-connected components of A and adapt
other graph theoretic terminology similarly.

Lemma 4.4. Let Γ be a metrically homogeneous graph of diameter δ ≥ 4
with admissible parameters (K1,K2, C, C

′,S), and suppose that Γ realizes
the same triangles as the corresponding space ΓδK1,K2,C,C′,S . Suppose that
C ≥ 2δ + 3 and that K1 < δ. Suppose that there is a finite Γ-constrained
metric space A which does not embed isometrically into Γ. let A′ = A′(1, δ)
be the subgraph of A(1, δ) induced on vertices of degree at least 2. Then

• If |A′| is minimized, then |A′| is a (1, δ)-space (equivalently, a (1, delta)-
clique).
• If the minimal A′ is nonempty and the number of nontrivial connected
components of A(1, δ) is also minimized (subject to the preceding),
then A(1, δ) has a unique nontrivial connected component.

Proof. This is a matter of checking that when the desired conditions are
not met, the configuration can be reduced to an amalgam of simpler Γ-
constrained configurations with a unique solution.

We suppose first that |A′| is minimized.

Claim 1. A′ is a (1, δ)-space.

Suppose on the contrary u, v ∈ A′ and d(u, v) = k 6= 1, δ. We adjoin the
usual witnesses b1, b2 with

d(b1, u) = 1 d(b2, u) = 1

d(b1, v) = k − 1 d(b2, v) = k + 1

d(b1, b2) = 2
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To complete the configuration Ab1b2 we amalgamate A and uvb1b2 to get a
Γ-constrained configuration, without introducing any new pairs at distance
1 or δ.

We view the resulting configuration as a 2-point amalgamation problem
with the distance d(u, v) to be determined. The witnesses ensure d(u, v) = k,
and it suffices to embed the factors F of this amalgamation isometrically
into Γ. As these factors omit u or v, it and as neither b1 nor b2 will be in
the corresponding subset F ′, this decreases the parameter |A′| and we may
conclude by minimality.

Now with |A′| minimized, and supposing A′ is nonempty, we take the
number of nontrivial connected (1, δ)-components of A to be minimized.

Claim 2. A contains a unique nontrivial (1, δ)-component.

The (1, δ)-space A′ is contained in a unique nontrivial (1, δ)-component
A1 of A.

Suppose that there is another nontrivial (1, δ)-component A2. Then A2

consists of a pairs of points at distance 1 or δ.
Fix u ∈ A1 and v ∈ A2, let k = d(u, v), and as usual adjoin witnessing

points b1, b2 with

d(b1, u) = 1 d(b2, u) = 1

d(b1, v) = k − 1 d(b2, v) = k + 1

d(b1, b2) = 2

forcing d(u, v) = k. Complete to a Γ-constrained configuration without ad-
joining additional pairs at distance 1 or δ. View the resulting configuration as
a 2-point amalgamation problem with the distance d(u, v) to be determined.

The factor omitting v has fewer (1, δ)-connected components, and the
same value of |A′|, so embeds isometrically in Γ by assumption.

In the factor omitting u, we either have a smaller value of |A′|, or we have
the same value, with the point v replacing the point u. In the first case the
factor embeds isometrically in Γ by assumption.

In the second case, we have a factor F with associated subset F ′ ⊆ (A′ \
{u}) ∪ {v} and therefore if |F ′| = |A′| we have

F ′ = (A′ \ {u}) ∪ {v}
But if |F ′| = |A′| is minimal, then F ′ is a (1, δ)-space. As v ∈ F ′ this forces

F ′ = {v}
Thus A′ = {u}. It follows that the (1, δ)-connected component of A contain-
ing u is a star and that F has fewer nontrivial (1, δ)-connected components
than A. Thus we find again that F embeds isometrically into Γ. �

Lemma 4.5. Let Γ be a metrically homogeneous graph of diameter δ ≥ 4
with admissible parameters (K1,K2, C, C

′,S) satisfying

C ≥ 2δ + 3 and K1 < δ
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Suppose that Γ realizes the same triangles as the corresponding graph

ΓδK1,K2,C,C′,S

Suppose that there is a finite Γ-constrained metric space A which does
not embed isometrically into Γ. Let A be taken with |A′| is minimized, and
suppose that A′ is nonempty. Denote by A′′ be the nontrivial (1, δ)-connected
component of A. Suppose further that the number of vertices v ∈ A′ joined
to a point of A′′ \A′ is minimized. Then this number is at most 1.

Proof. For the present, we use the term “adjacent” in the sense of “(1, δ)-
adjacent,” that is, at distance 1 or δ.

Fix a point u ∈ A′ and take A to minimize the number of vertices of A′′
not adjacent to u. If all vertices of A′′ are adjacent to u, we are done.

Suppose therefore that v ∈ A′′ is not adjacent to u. Then v ∈ A′′ \A′. Let
k = d(u, v). Adjoin witnesses b1, b2 to the relation d(u, v) = k as usual, with
d(b1, u) = d(b2, u) = 1, extending to a Γ-constrained configuration without
adding pairs at distance 1 or δ.

View the result as a 2-point amalgamation problem with d(u, v) to be
determined. It suffices to show that the factors embed isometrically in Γ.

The factor omitting v reduces the number of vertices non-adjacent to u.
It remains to consider the factor F omitting u. Then F ′ ⊆ (A′\{u})∪{v}.

If |F ′| < |A′| we conclude by minimality so we may suppose F ′ = (A′\{u})∪
{v}. But then |F ′| = |A′| is minimal so if F does not embed isometrically
into Γ, it follows that F ′ is a (1, δ)-space containing v. However v has at
most one neighbor in F ′. Thus |A′| = |F ′| = 2.

Let A′ = {u, v′} where v′ must be adjacent to v. If u has m neighbors
in A′′ \ A′ and v has n neighbors in A′′ \ A′, then in the factor F of Ab1b2
omitting u, F ′ = {v, v′} where v′ has n − 1 neighbors in F ′′ \ F ′ and v has
only one. Taking (F, v) in place of (A, u) we reduce the number of points in
F ′′ \ F ′ not adjacent to v to n− 1, and conclude by minimality. �

Lemma 4.6. Let Γ be a metrically homogeneous graph of diameter δ ≥ 4
with admissible parameters (K1,K2, C, C

′,S) satisfying

C ≥ 2δ + 3 and K1 < δ

Suppose that Γ realizes the same triangles as the corresponding graph

ΓδK1,K2,C,C′,S

Suppose that there is a finite Γ-constrained metric space A which does
not embed isometrically into Γ, and for which |A′| ≤ 1. If we take such
an A which minimizes the number of nontrivial (1, δ)-components, that that
number is 1.
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Proof. Suppose there are at least two nontrivial (1, δ)-components, A1, A2.
Take u ∈ A1, v ∈ A2, set k = d(u, v), and add the usual witnesses b1, b2 with

d(b1, u) = 1 d(b2, u) = 1

d(b1, v) = k − 1 d(b2, v) = k + 1

d(b1, b2) = 2

Furthermore, when A′ is nonempty, take u ∈ A′. Extend to a Γ-constrained
configuration without adding additional pairs at distance 1 or δ.

We view the resulting configuration as a 2-point amalgamation problem
with the distance d(u, v) to be determined. We claim that the factors F of
this amalgamation embed isometrically in Γ, by minimality: that is, we have
|F ′| ≤ 1 and the number of nontrivial components is reduced.

The only noteworthy point is that in case A′ = ∅ we may have |F ′| = 1.
But this does not affect the argument.

�

We summarize the discussion as follows.

Lemma 4.7. Let Γ be a metrically homogeneous graph of diameter δ ≥ 4
with admissible parameters (K1,K2, C, C

′,S) satisfying

C ≥ 2δ + 3 and K1 < δ

Suppose that Γ realizes the same triangles as the corresponding graph

ΓδK1,K2,C,C′,S

Suppose that there is a finite Γ-constrained metric space A which does not
embed isometrically into Γ. Then A may be taken to have a unique nontrivial
(1, δ)-connected component A0, satisfying one of the following.

• |A′| ≤ 1; so A0 is a single pair, or a star with center u ∈ A′; or
• |A′| ≥ 2 and there is a point of A′ which is (1, δ)-adjacent to all
points of A0.

In the second case, we may also suppose that any Γ-constrained configuration
B with |B′| < |A′| embeds isometrically into Γ.

Proof. We first take A to minimize A′.
If |A′| ≤ 1 we may apply Lemma 4.6 to replace A by a configuration of

the first kind. (Here we may possibly pass from a case with A′ empty to a
case with |A′| = 1.)

If |A′| ≥ 2 then we apply Lemma 4.5 to ensure that there is at most one
point of A′ joined to a point of A0 \A′. Every point of A0 \A′ has a unique
(1, δ)-neighbor, and that neighbor is in A′, since otherwise there would be
a second nontrivial (1, δ)-connected component, So u is (1, δ)-adjacent to
every point of A0 (and is the unique such point if A0 6= A′).

�
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Lemma 4.8. Let Γ be a metrically homogeneous graph of diameter δ ≥ 4
with admissible parameters (K1,K2, C, C

′,S) satisfying

C ≥ 2δ + 3 and K1 < δ

Suppose that Γ realizes the same triangles as the corresponding graph

ΓδK1,K2,C,C′,S

Suppose that there is a Γ-constrained configuration A which does not embed
isometrically into Γ, and which satisfies the following conditions.

• |A′| is minimal for all such configurations.
• There is a point u of A′ which is (1, δ)-adjacent to all points in
the (1, δ)-connected component A0 containing A′; in particular, A′
is nonempty.

If A is chosen to minimize |A \A0|, then A = A0.

Proof. Otherwise take v ∈ A \ A0 and set k = d(u, v). Adjoin points b1, b2
with

d(b1, u) = 1 d(b2, u) = 1

d(b1, v) = k − 1 d(b2, v) = k + 1

d(b1, b2) = 2

Extend to a Γ-constrained configuration with no new pairs at distance 1 or
δ. It suffices to show that the factors embed isometrically in Γ.

The factor F1 omitting u has |F ′1| < |A′1|, so embeds by hypothesis.
The factor F2 omitting v has fewer points outside the nontrivial (1, δ)-

connected component. �

One can reduce these configurations further, but it seems one will need
to consider the various subcases before long, in particular the cases K1 > 1,
K2 < δ, C ≤ 3δ.

4.2. Direct Sums. Now we return to the case of diameter 4. Our first
major goal is the following.

Lemma 4.9 ((2, 3)-Embedding Principle). Let Γ be a primitive metrically
homogeneous graph of diameter 4 and generic type with C > 10 and K1 < 4.
Then any Γ-constrained finite (2, 3)-space embeds isometrically into Γ.

Of course, the excluded cases in this statement were covered previously.
The following operation is very useful, and will occupy us for some time.

Definition 4.10. In the category of metric spaces of diameter δ, for r ≥ δ/2
the r-direct sum of two metric spaces A,B, denoted A ⊥(r) B, is the disjoint
union of A and B with d(a, b) = r for a ∈ A, b ∈ B.

As we work with integer valued metric spaces the “default” value of r is
bδ/2c: we write A ⊥ B in this case.
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Lemma 4.11. Let Γ be a metrically homogeneous graph of diameter δ, of
generic type and of known type. Suppose r ≥ δ/2 is an integer. Then the
following are equivalent.

• Γ is closed under r-direct sum
• K1 ≤ δ/2 ≤ K2 and C > 2r + δ

In particular for r = bδ/2c this reduces to

• K1 ≤ δ/2

Proof. Clearly closure under r-direct sum is equivalent to the condition

All triangles of type (r, r, k) embed isometrically into Γ

With k = 1 this gives K1 ≤ r ≤ K2, and with k = δ − 1 and δ this gives
C > 2r + δ.

Now we suppose K1 ≤ r ≤ K2, C > 2r+ δ, and we check that no triangle
of type (r, r, k) is forbidden.

The following three conditions on the perimeter p = 2r + k suffice.

• 2r + k ≥ 2K1 + 1—true by hypothesis;
• 2r + k ≤ 2K2 + 2 min(r, k)—since K2 ≥ r ≥ δ/2;
• 2r + k < C: by hypothesis.

For the final point, we always haveK2 ≥ δ/2 and C > 2δ, by admissibility.
�

We apply this lemma to metrically homogeneous graphs having the same
triangles as a known metrically homogeneous graph of generic type, in which
case the conclusion is that the Γ-constrained graphs are closed under direct
sum if and only if the parameter K1 is at most δ/2.

Since K2 ≥ 3 when δ = 4, we have the following conclusions in diameter
4:

• If K1 ≤ 2 then the Γ-constrained graphs are closed under the direct
sum with distance 2;
• If K1 ≤ 3 and C > 10 then the the Γ-constrained graphs are closed
under the direct sum with distance 3.

Of course we are already assuming K1 ≤ 3 and C > 10 so we will have
closure under ⊥(3) in all remaining cases of interest. However this relates
only to Γ-constrained configurations, so we need to turn this analysis into
something more concrete.

We begin with direct sum at distance 3.

Lemma 4.12. Let δ,K1,K2, C, C
′,S be an admissible choice of parameters

with δ = 4, K1 ≤ 3, C > 10. Let A and B be finite metric spaces which
embed isometrically into every metrically homogenous graph with the given
parameters. Then A ⊥(3) B embeds into every metrically homogeneous graph
with the given parameters.
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This easily reduces to the “base case” in which the metric spaces A and
B are the “generators” for the given class of metrically homogeneous graphs.
Namely, let G(K1,K2, C, C

′) be the following set of triangle types.
• (K1,K1, 1), (K2,K2, 1)
• (4, 4, C − 10) and (4, 4, C ′ − 10)

Let G(K1,K2, C, C
′,S) be the union of G(K1,K2, C, C

′) together with all
(1, 4)-spaces which are not forbidden by S.

The base case of the lemma is then as follows.

Lemma 4.13. Let δ,K1,K2, C, C
′,S be an admissible choice of parameters

with δ = 4, K1 ≤ 3, C > 10. Let A and B be finite metric spaces in
G∗(K1,K2, C, C

′,S). Then A ⊥(3) B embeds into every metrically homoge-
neous graph with the given parameters.

We must work toward this gradually.

4.3. An Inductive Framework.

Definition 4.14. Let Γ be a metrically homogeneous graph of finite diameter
δ.

1. E(Γ) be the family of all triangles and finite (1, δ)-spaces which embed
isometrically in Γ.

2. Γ � Γ′ if E(Γ) ⊆ E(Γ′).

The relation � is a quasiorder on the set of metrically homogeneous graphs
of specified diameter.

Lemma 4.15. For fixed δ, the relation ≺ is a well quasiorder (wqo)—there
are no strictly descending chains, and any infinite collection of such graphs
Γ contains a comparable pair.

Proof. Associate to each such graph Γ the a set M(Γ) of representatives for
the minimal forbidden triangles and (1, δ)-spaces for Γ. Then the quasiorder
� is equivalent to the following quasiorder on these sets:

M1 ≺M2 iff every element of M2 contains an isometric copy
of some element of M1

We encode each (1, δ) space by a sequence of integers representing the
sizes of the components. If two such sequences σ, σ′ are comparable in the
sense that there is a subsequence of σ′ of the same length as σ, whose terms
dominate the corresponding terms of σ, then there is an embedding of the
corresponding structures. By Higman’s Lemma, it follows that the set of
possible constraints ((1, δ)-spaces and triangles) is well quasiordered under
the isometric embedding relation. In particular the sets M(Γ) are always
fiinite.

By another application of Higman’s Lemma, if we view the sets M(Γ) as
sequences and strengthen the relation ≺ correspondingly, the sets M(Γ) are
wqo. This applies a fortiori to the definition as gi9ven. �
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The point is that we argue by induction over the order ≺. Since any
nonempty set of metrically homogeneous graphs of fixed diameter has mini-
mal elements with respect to this quasiorder, we have the following.

Lemma 4.16. Suppose there is a metrically homogeneous graph Γ of diame-
ter δ which is not of known type. Then there is such a graph with the property
that whenever Γ′ is another metrically homogeneous graph with E(Γ′) strictly
conteined in E(Γ), then Γ′ is of known type.

We apply this in particular to the graphs Γi when Γi contains an edge.
Either Γi is again a graph with the same parameters as Γ, or Γi is a known
graph.

Definition 4.17. A metrically homogeneous graph Γ of diameter δ is of
K∗-type if

• Γ is of generic type.
• Any metrically homogeneous Γ′ strictly below Γ in the quasiorder �
is of known type.

In order to show that every metrically homogeneous graph is of known
type, it suffices to prove that metrically homogeneous graphs of K∗-type are
of known type.

4.4. The Structure of Γ3. The base case for a treatment of 3-direct sums
is the analysis of Γ3. We undertake that here.

Let Γ be a primitive metrically homogeneous graph of diameter 4 of generic
type. For K1 ≤ i ≤ K2, Γi contains an edge and is therefore a primitive
metrically homogeneous graph by Lemma 1.5.

Lemma 4.18. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 of K∗-type with

C > 10

Then every point in Γ3 has a pair of neighbors v1, v2 in Γ4 with d(v1, v2) = 2.

Proof. Let u be a point of Γ3.
We show first that u has at least two neighbors in Γ4. Otherwise, we

define a function u 7→ u′ from Γ3 to Γ4 by d(u, u′) = 1. If v ∈ Γ4, then v has
neighbors u1, u2 at distance 2 in Γ3 by Lemma 1.1. Then u′1 = u′2 = v and
as Γ3 is connected with respect to the relation d(x, y) = 2, it follows that
u′ ∈ Γ4 is independent of u. Then |Γ4| = 1, a contradiction.

So if the lemma fails, then for u ∈ Γ3 the set Iu = {v ∈ Γ4 | d(u, v) = 1} is
a nontrivial complete graph. Hence for v1, v2 in Γ4 adjacent, there is some
u ∈ Γ3 adjacent to both.

Since C > 10 we may take v1, v2 ∈ Γ4 at distance 2, and then v at distance
1 from both. If v ∈ Γ3 then our claim follows, so suppose v ∈ Γ4. We may
fix u1, u2 ∈ Γ3 with ui adjacent to v, vi for i = 1, 2. Then u1 6= u2 and
d(u1, u2) ≤ 2.
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By Lemma 1.1 applied to vertices in Γ2 and Γ4, there is u ∈ Γ2 adjacent to
u1, u2. Then d(u, v1) = d(u, v2) = 2. Since u, v1, v2 are at mutual distance
2, there is a point w adjacent to all three. This forces w ∈ Γ3 and then
v1, v2 ∈ Iw, a contradiction. �

Lemma 4.19. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 of K∗-type with

K1 ≤ 3 and C > 10

Then Γ3 is a primitive metrically homogeneous graph with the same param-
eters.

Proof. As C > 10, Γ3 has diameter 4. As K1 ≤ 3, Γ3 contains an edge, thus
is a primitive metrically homogeneous graph. Also Γ3 is infinite and thus is
of generic type by our previous analysis.

Let us write as usual K̃1, K̃2, C̃, C̃ ′, S̃ for the parameters associated with
Γ3.

Claim 1. If Γ contains a clique of order n, then Γ3 contains a clique of
order n.

First, if Γ contains a clique of order n + 1, then Γ1 contains a clique of
order n. By Lemma 1.1, applied to a pair u, v at distance 2 in Γ2 and Γ4,
the graph Γ3 contains a copy of Γ1, and hence contains a clique of order n.

So now suppose that Γ contains no clique of order n+ 1. We perform an
amalgamation.

Let A be a clique of order n−1. For i = 1, 2, 3 let Abi be a clique of order
n with d(bi, bj) = 2. Let c be a point satisfying

d(c, a) = 3 (a ∈ Ab3)
d(c, b1) = 2

d(c, b2) = 4

View Ab1b2b3c as an amalgamation problem with the distances between c
and A to be determined. The points b1, b2 force d(c, a) = 3 for a ∈ A. So it
suffices to check that the factors b1b2b3c and Ab1b2b3 embed in Γ.

The factor b1b2b3c:
This consists of a pair of points b2, c at distance 4 and all other distances

equal to 2. So take b2 as the base point of Γ and c in Γ4. Take u adjacent
to c in Γ3 and v1, v2 adjacent to u in Γ2. Then v1, v2 are at distance 2 from
b2 and c, and at distance at most 2 from each other.

If d(v1, v2) = 2 we have the desired factor, and otherwise the configuration
(u, v1, v2) shows that K1 = 1 and thus Γ2 contains an edge. Therefore Γ2 is
connected of diameter 4. But b1b2b3c can be viewed as a geodesic triangle
(b2b3c) of type (2, 2, 4) inside Γ2(b1), so we have the desired embedding in
either case.

The factor Ab1b2b3:



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER FOUR 49

Take a ∈ A. With a as base point, we must embed (A \ {a})b1b2b3 in Γ1.
But Γ1 contains a clique of order n−1 and (A\{a})b1b2b3 contains no larger
clique, so this embeds in Γ1.

This proves our first claim. For cliques of order 3 this gives

If K1 = 1 then K̃1 = 1

Claim 2. If K1 = 2 then K̃1 = 2.

By assumption Γ contains triangles of type (1, 2, 2), but none of type
(1, 1, 1).

Our goal is the configuration a1a2bc with

d(a1, a2) = 1

d(ai, b) = 2

d(c, x) = 3 (all x)

We adjoin a point c′ with

d(c′, a1) = d(c′, b) = 1

d(c′, a2) = d(c′, c) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, b) to be determined. The points a2 and c′ ensure first that
a1, b remain distinct, and second that d(a1, b) = 2. So it suffices to embed
the factors (a1a2cc

′) and (a2bcc
′) isometrically into Γ.

The factor (a1a2cc
′):

View this as a 2-point amalgamation problem with the distance d(a2, c)
to be determined. The point c′ ensures that a2, c are not identified, and then
a1 ensures that the distance is 2.

The factor (a2bcc
′):

View this as a 2-point amalgamation problem with the distance d(c, c′) to
be determined. As a2bc′ is a triangle of type (2, 2, 1), if we have d(c, c′) = 3
in the amalgam then we have a triangle of type (2, 2, 1) in Γ3 and we are
done. The point a2 ensures that d(c, c′) ≥ 2, so the alternative is d(c, c′) = 2,
in which case we have the desired configuration.

This proves the claim.

Claim 3. If K1 = 3 then K̃1 = 3.

Notice first that as K3 ≤ K̃3, if K̃1 6= 3 then K̃1 = 4 and hence

Γ3
∼= Γ4

4,4,13,14

so that any configuration with no triangles of odd perimeter less than 9 will
embed into Γ3 and hence into Γ.
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We aim via an amalgamation argument at the configuration (a1a2b1b2)
with

d(a1, a2) = 1

d(x, y) = 3 otherwise

Adjoin a point c1 with

d(c, a1) = 2

d(c, b1) = 1

d(c, a2) = 3

d(c, b2) = 4

View this configuration as a 2-point amalgamation problem with the dis-
tance d(a1, b1) to be determined. The point c1 provides an upper bound
of 3 and also eliminates the possibility d(a1, b1) = 2 since K1 > 2. Then
a2 provides the lower bound d(a1, b1) ≥ 2 and thus the distance d(a1, bi)
must be 3. We must show that the factors (a1a2b2c1) and (a2b1b2c1) embed
isometrically into Γ.

The factor (a1a2b2c1):
Adjoin a point c2 with

d(c2, a1) = 2

d(c2, a2) = 1

d(c2, b2) = 3

d(c2, c1) = 4

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a2, c1) to be determined. The points a1, c2 determine this
distance uniquely, so it suffices to show that the factors (a1a2b2c2) and
(a1b2c1c2) embed isometrically into Γ.

The factor (a1a2b2c2) has no triangles of small odd perimeter, hence em-
beds isometrically into Γ3, hence into Γ.

The factor (a1b1c1c2) consists of a geodesic of type (1, 1, 2) in Γ3(b2), so
embeds isometrically into Γ.

The factor (a2b1b2c1):
This is a geodesic (b1b2c1) of type (1, 3, 4) in Γ3(a2), so embeds isometri-

cally in Γ.
This proves the claim, and so we may sum up as follows.

K̃1 = K1

in all cases.
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Claim 4. K̃2 = K2

Now 3 ≤ K̃2 ≤ K2, so we may suppose for the present that K2 = 4 and
our claim is that Γ3 contains a triangle of type (4, 4, 1). If this fails, we have
K̃2 = 3 and then as Γ is of K∗-type we find

Γ3
∼= Γ4

K1,3,C̃,C̃′,S̃

We aim at the configuration (a1, a2, a3, b) with

d(a1, a2) = 1

d(ai, a3) = 4 (i = 1, 2)
d(b, ai) = 3 (i = 1, 2, 3)

We extend this configuration by points c1, c2 with

d(c1, c2) = 4

d(c1, a1) = 2 d(c2.a1) = 3

d(c1, a2) = 1 d(c2, a2) = 4

d(c1, a3) = 3 d(c2.a3) = 3

d(c1, b) = 2 d(c2, b) = 3

We view this configuration as a 2-point amalgamation problem with the
distance d(a2, a3) to be determined. The point a1 ensures that this distance is
3 or 4, and then either (a1a2a3b) or (a2c1c2a3) is the desired configuration.
So it suffices to show that the factors (a1a2bc1c2) and (a1a3bc1c2) embed
isometrically into Γ.

The factor (a1a2bc1c2):
We view this as a 2-point amalgamation problem with the distance d(a1, c2)

to be determined. The point a2 ensures that this distance is at least 3. If it
is exactly 3 we have the desired configuration, and if it is 4 then (a1a2c2) is
a triangle of type (1, 4, 4) in Γ2(b) and we have our claim.

So it will suffice to embed the factors (a1a2bc1) and (a2b1c1c2) isometrically
in Γ.

The factor (a1a2bc1) embeds isometrically in Γ3, hence in Γ. There are
no pairs at distance 4 here, and the only triangle of odd perimeter involving
distance 1 is of type (1, 3, 3).

This leaves the factor (a2bc1c2) for consideration.
We adjoin a point c3 with

d(c3, b) = 1

d(c3, ci) = 2 (i = 1, 2)

We leave d(c3, a2) to be chosen below, among the values 2, 3, 4.
We view the resulting configuration as a 2-point amalgamation problem

with distance d(b, c1) to be determined. The points a2, c3 ensure that this
distance is 2 or 3. If it is 2 then we have the required configuration and if it
is 3 then (a2c1c2) is a triangle of type (1, 4, 4) in Γ2(b).



52 GREGORY CHERLIN

So it suffices to check that for some choice of d(c3, a2) we have both factors
of this amalgamation in Γ.

The factor a2c1c2c3 may be viewed as a 2-point amalgamation problem
with d(a2, c3) to be determined. The factors are triangles which embed
isometrically in Γ. In view of the point c2 the amalgam has d(a2, c3) ≥ 2.
We take whatever value results as the value of d(a2, c3) in our configuration,
so that the structure of the other factor (a2bc2c3) is now fully determined.

We claim that the factor (a2bc2c3) embeds isometrically into Γ3 and hence
into Γ. Let k = d(a2, c3). Then the triangle types occurring in this factor
are (1, 2, 3), (3, 3, 4), (k, 2, 4), and (k, 1, 3), where k > 1, by construction—
fortunately, as the value of k was inserted without checking the triangle
inequality.

All of the triangle types which may occur here embed into Γ3 as K1 ≤
3 ≤ K̃2. This concludes the treatment of the factor (a1a2bc1c2).

The factor (a1a3bc1c2):
We show this embeds isometrically into Γ3 and hence into Γ.
As there are no (1, 4)-spaces involved other than pairs, it suffices to check

that the triangles present embed isometrically. There are only two pairs
(a2, a3) and (c1, c2) at distance 4, so there are no triangles of perimeter
greater than 10. As K1 ≤ 3 and K̃2 ≥ 3 the only forbidden triangles of odd
perimeter less than 10 for Γ3 are (at worst) types (1, 1, 1), (1, 2, 2), (1, 4, 4).
There are no pairs at distance 1 in this factor.

So Claim 4 is proved.
The following claim depends on the hypothesis C > 10 (and is clearly

false otherwise).

Claim 5. C̃ > 10

We will show that a triangle of type (4, 4, 2) embeds isometrically in Γ3.
So we aim at the configuration (a1a2a3b) with the (a1, a2, a3) the specified
triangle, and d(a1, a2) = 2, and d(b, ai) = 3 for i = 1, 2, 3.

Assuming the contrary, Γ3 must be isomorphic to Γ3
1,4,10,11 by the mini-

mality of Γ.
Adjoin points c1, c2 with

d(ci, aj) = 3 (i = 1, 2; j = 1, 2)
d(ci, a3) = 1 (i = 1, 2)
d(c1, b) = 2, d(c2, b)=4
d(c1, c2) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a3, b) to be determined. The points c1, c2 ensure that this dis-
tance is 3. So it suffices to show that the factors (a1a2a3c1c2) and (a1a2bc1c2)
embed isometrically into Γ.

The factor (a1a2a3c1c2):
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Adjoin a point c3 with

d(c3, ai) = 2 (i = 1, 2)
d(c3, a3) = 2

d(c3, ci) = 1 (i = 1, 2)

View this configuration as an amalgamation problem with the distances
between ai and cj to be determined (i = 1, 2; j = 1, 2).

The points a3 and c3 ensure that all these distances equal 3. So it suffices
to check that the factors (a1a2a3c3) and (a3c1c2c3) embed isometrically into
Γ.

The factor (a3c1c2c3) is a (1, 2)-space and embeds into Γ3.
For the factor (a1a2a3c3), take a3 as basepoint. Then we require c3 ∈ Γ2

and a1, a2 ∈ Γ4 with a1, a2, c3 all at distance 2.
Take u ∈ Γ3 and v1, v2, v3 adjacent to u with v1 ∈ Γ2 and v2, v3 ∈ Γ3, and

d(v2, v3) = 2 (using the previous claim).
Then the configuration (v1, v2, v3) is as required.

The factor (a1a2bc1c2):
Here the largest distance occurring is 3 and hence this embeds into Γ3,

and therefore into Γ.
This proves the claim.

Claim 6. If there is a triangle of type (3, 4, 4) or (4, 4, 4) in Γ, then there is
a triangle of the same type in Γ3.

As always, we suppose this fails, and then by minimality of Γ the metrically
homogeneous graph Γ3 is of known type, with K̃1 = K1 ≤ 3 and K̃2 = K2 ≥
3.

For a time we will consider both cases simultaneously. Let (a1, a2, a3) be
a triangle of type (4, 4, k) with k = 3 or 4 and d(ai, a3) = 4 for i = 1, 2,
d(a1, a2) = k. We aim at the configuration (a1a2a3b) where d(ai, b) = 3, all
i.

Adjoint two points c1, c2 with

d(ci, aj) = 3 (i = 1, 2; j = 1, 2)
d(c1, a3) = 1 d(c2, a3) = 1

d(c1, b) = 2 d(c2, b) = 4

d(c1, c2) = 2

View the resulting configuration as a 2-point amalgamation with the dis-
tance d(a3, b) to be determined. The points c1, c2 ensure that d(a3, b) = 3.
So it suffices to show that the factors a1a2a3c1c2 and a1a2bc1c2 embed iso-
metrically in Γ. One checks first that the second factor is Γ3-constrained
and hence embeds isometrically in Γ3. Thus we may focus our attention on
the factor

(a1a2a3c1c2)
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Adjoin a point c3 with

d(c3, ai) = 2 (i = 2, 3)
d(c3, ci) = 1 (i = 1, 2)

We will chose d(c3, a1) later, subject to

d(c3, a1) = 1or 2

We view this configuration as an amalgamation problem with the distances
d(a2, ci) to be determined for i = 1, 2. The points a3, c3 ensure that these
distances are equal to 3. So it suffices to show that the two factors (a1a2a3c3)
and (a1a3c1c2c3) embed isometrically in Γ.

The factor (a1a3c1c2c3) embeds isometrically in Γ3, whether d(c3, a1) is
equal to 2 or 3. The only pair at distance 4 in this factor is (a1, a3), so all
perimeters are bounded by 10, and it suffices to check the triangles of odd
perimeter.

So we come down to the factor (a1a2a3c3), where the distance d(c3, a1)
still remains to be chosen.

We adjoin a point c4 with

d(c4, a1) = 1

d(c4, a2) = k − 1

d(c4, a3) = 3

d(c4, a4) = 2

View this configuration as a 2-point amalgamation problem with the dis-
tance d(a1, c3) to be determined. The points a3 and c4 ensure that this
distance will be 2 or 3, as required. So it suffices to show that the factors
(a1a2a3c4) and (a2a4c3c4) embed isometrically into Γ.

The factor (a2a3c3c4) embeds into Γ3, so we need only consider the factor

(a1a2a3c4)
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We adjoin a point c5 with

d(c5, a1) = k − 1

d(c5, a2) = 1

d(c5, a3) = 4

d(c5, c4) = k − 2

d(c5, a3) = 4
d(c5, c4) = k − 2

We view the resulting configuration as a 2-point amalgamation problem with
the distance d(a2, c4) to be determined. The points a1 and c5 ensure that
this distance is k − 1. So it suffices to show that the factors (a1a2a3c5) and
(a1a3c4c5) embed isometrically into Γ.

The factor (a1a2a3c5):

We view this as a 2-point amalgamation problem with the distance d(a3, c5)
to be determined. The point a2 ensures that this distance is at least 3.

If d(a3, c5) = 4: then we have the desired configuration.
If d(a3, c5) = 3: then we have a configuration isometric to (a1a2a3c4)

above, and we may conclude.
We must check that the two triangles occurring as factors in this amalga-

mation embed into Γ. These are of types (4, 4, k) and (1, k − 1, k), so both
occur.

That completes the treatment of this factor—but there is a minor sub-
tlety that may be worth pointing out here. In the event that Γ contains no
triangle of type (4, 4, 3) but does contain a triangle of type (4, 4, 4) then the
configuration we are aiming at is impossible, but then the argument simply
lands in the second alternative.
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The factor (a1a3c4c5):

We claim that this factor embeds isometrically into Γ3 and hence into Γ. For
this it suffices to check that there are no forbidden triangles.

Thus we conclude the treatment of the second factor, and the proof of the
claim.

We summarize the last three claims as follows.

Claim 7.
C̃ = C and C̃ ′ = C ′

Thus we have checked all the numerical parameters, and it remains to
consider the set S.

We dealt with the case of cliques in Claim 1. It is convenient to separate
off the case of anticliques of type I(4)n (mutual distance 4).

Claim 8. Suppose that Γ contains a (1, 4)-space A. Then so does Γ3.

We proceed by induction on |A|. So let A be a minimal counterexample.
Then by minimality of Γ, Γ3 is of known type.

If |A| ≤ 3 or A is a clique then this has been dealt with above. So we
suppose

|A| ≥ 4 and A is not a clique
Fix a1, a2 ∈ A with d(a1, a2) = 4. Adjoin points c1, c2 with the following

properties.

d(ci, a1) = 1 (i = 1, 2)
d(ci, a) = 2 if a ∈ A and d(a1, a) = 1 (i = 1, 2)
d(ci, a) = 3 if a ∈ A, d(a1, a) = 4, a 6= a2 (i = 1, 2)
d(c1, b) = 2 d(c2, b) = 4

d(c1, c2) = 2

We will determine d(ci, a2) in a moment. Note that the point a1 ensures
that d(ci, a2) ≥ 3 for i = 1, 2.

To determine the structure of Ac1c2 completely, we treat the diagram
Ac1c2 as an amalgamation problem with the distances d(ci, a2) to be de-
termined (i = 1, 2). It suffices to check that the factors of this amalga-
mation embed isometrically into Γ. These factors are A and A′c1c2 where
A′ = A \ {a2}.
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The factor A embeds isometrically by hypothesis. We claim that the factor
A′c1c2 is Γ3-constrained, and hence embeds in Γ3, and a fortiori in Γ. Now
A′ embeds in Γ, and |A′| < |A|, so by assumption A′ embeds in Γ3.

So it suffices to consider triangles and (1, 4)-subspaces of A′c1c2 which
contain at least one of the parameters c1, c2. The triangles have at most the
following types.

(1, 1, 2), (2, 2, 2), (2, 3, 3), (1, 1, 2), (1, 3, 4), (1, 2, 2), (2, 3, 4), (3, 3, 4)

The only doubtful case is (1, 2, 2), which arises only when A contains a clique
of order 3. In this case K1 = 1 and triangles of type (1, 2, 2) are permitted.

Thus we may perform our amalgamation to determine the structure of
Ac1c2, and our configuration is now completely determined.

We view the configuration as a 2-point amalgamation problem with the
distance d(a1, b) to be determined. The points c1, c2 ensure that this distance
will be 3. So it suffices to check that the factors Ac1c2 and A′bc1c2 embed
isometrically into Γ.

The factor Ac1c2 was just constructed via an amalgamation in Γ, so that
is no longer an issue. We claim that the factor A′bc1c2 is Γ3-constrained and
therefore embeds into Γ3, hence into Γ.

The factor A′c1c2 embeds in Γ. Furthermore all its (1, 4)-subspaces have
order smaller than |A|, since those containing one of the points ci have order
at most 3. Therefore A′c1c2 is also Γ3-constrained.

It remains to consider triangles and (1, 4)-spaces containing b.
Triangles in A′b containing b are of the types (1, 3, 3) or (3, 3, 4), both of

which embed in Γ3. Other triangles containing b are of the types

(2, 2, 4), (1, 2, 3), (1, 3, 4), (2, 2, 3), (2, 3, 4), (2, 3, 3), or (3, 3, 4)

None of these present any issues.
The only nontrivial (1, 4)-space containing b is the pair (c2, b).
So this factor is indeed Γ3 constrained.
With this the proof of the claim, and also of the lemma, is complete.

�

Now the analysis of Γ3 is nothing but the study of isometric embeddings
of configurations (a) ⊥(3) A with A either a triangle of interest, or a (1, 4)-
space.

We are concerned more generally with configurations of the form A ⊥(3) B
where A,B are triangles or (1, 4)-spaces. From that point of view the analysis
of Γ3 is a small but essential step.

5. Γ3(A): First Steps

We denote by Γ3(A) the intersection
⋂
a∈A Γ3(a). Similarly, if A is a

triangle of type (i, j, k) we may write Γ3(i, j, k) for Γ3(A).
In the cases remaining for study, we expect Γ3(A) to be a connected metri-

cally homogeneous graph with the same parameters as Γ. Our first substan-
tial goal is connectedness, but the present section is devoted to preparatory
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amalgamation arguments, some dealing with Γ3(A) when A has two points,
some simply dealing with small configurations.

5.1. Small Direct Sums. Our next objective is the following.

Lemma 5.1 (Edge Sums). Let Γ be a primitive metrically homogeneous
graph of diameter 4 of K∗-type with

K1 ≤ 3 and C > 10

Let A,B be two pairs of points, each at distance at most 4. Then the config-
uration A ⊥(3) B embeds isometrically into Γ.

We begin with a simple case.

Lemma 5.2. Let Γ be a primitive metrically homogeneous graph of diameter
4 of K∗-type with

K1 ≤ 3 and C > 10

Let A,B be two pairs of points, with the points of A at distance 3 and the
points of B at distance at most 4. Then the configuration A ⊥(3) B embeds
isometrically into Γ.

Proof. Write A ⊥(3) B as u ⊥(3) v ⊥(3) B and apply Lemma 4.19 twice. �

Now we pull out some special cases.

Lemma 5.3. Let Γ be a primitive metrically homogeneous graph of diameter
4 of K∗-type with

K1 ≤ 3 and C = 11

Let A,B be two pairs of points, with the points of A at distance 1 and the
points of B at distance 4. Then the configuration A ⊥(3) B embeds isomet-
rically into Γ.

Proof. We let A = {u1, v2} and B = {u2, v2}, and adjoin a point c with

d(c, u1) = 4 d(c, v1) = 4

d(c, u2) = 3 d(c, v2) = 1

View this configuration as a 2-point amalgamation problem with the distance
d(v1, v2) to be determined. The point c ensures d(v1, v2) ≥ 3, and the bound
C = 11 together with the point u2 ensures d(v1, v2) ≤ 3. So it suffices to
embed the factors (u1u2v1c) and (u1u2v2c) isometrically into Γ.

Each of these factors can be viewed as a geodesic of type (1, 3, 4) in Γ2,
hence embeds isometrically in Γ. �

Lemma 5.4. Let Γ be a primitive metrically homogeneous graph of diameter
4 of K∗-type with

K1 = 3

Let A,B be two pairs of points, with the points of A at distance 1 and the
points of B at distance k = 2 or 4. Then the configuration A ⊥(3) B embeds
isometrically into Γ.
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Proof. We write A = {u1, v1} and B = {u2, v2}, and adjoin a point c with

d(c, u1) = 2 d(c, v1) = 1

d(c, v2) = 2

We will determine d(c, u2) below, with the proviso d(c, u2) > 1.
We view this configuration as a 2-point amalgamation problem with the

distance d(v1, v2) to be determined. The point u1 ensures that this distance
is at least 2. The point c together with the condition K1 = 3 ensures that
the distance is not 2, and is at most 3. Thus d(v1, v2) must be 3. Therefore
it suffices to embed the factors of this amalgamation isometrically into Γ, for
some choice of the distance d(c, u2).

The factor u1u2v2c:
We treat this as an amalgamation problem with the distance d(c, u2) to be

determined. The point v2 shows that this distance is not 2, via the triangle
inequality if k = 4 and via the condition K1 = 3 if k = 2. The factors of this
amalgamation are triangles of types (3, 3, k) and (2, 2, 3). So this factor can
be constructed with the distance d(c2, u2) > 1.

The factor u1v1u2c:
If d(c, u2) = 3 then this represents a triangle of type (1, 1, 2) in Γ3(u2)

and there is no problem. So suppose d(c, u2) 6= 3.
Then we view this configuration as a 2-point amalgamation problem with

the distance d(c, u1) to be determined, and as K1 > 1 the point v1 forces the
distance to be 2, with the assistance of the point u2 which ensures that the
two points are not identified in the amalgam.

So it suffices to check that the factors of this amalgamation embed iso-
metrically into Γ. These are triangles of types (1, 3, 3) and (1, 3, d(c, u2)).
As d(c, u2) 6= 1 these factors embed isometrically into Γ.

�

Lemma 5.5. Let Γ be a primitive metrically homogeneous graph of diameter
4 of K∗-type with

K1 = 3

Let A,B be two pairs of points, each at distance 1. Then the configuration
A ⊥(3) B embeds isometrically into Γ.

Proof. We take A = {u1, v1} and B = {u2, v2}, and much as in the previous
argument adjoin a point c with

d(c, u1) = 3 d(c, v1) = 2

d(c, u2) = 2 d(c, v2) = 1

We view this as a 2-point amalgamation problem with the distance d(v1, v2)
to be determined. Again using the conditionK1 = 3 we see that this distance
is forced to be 3. So it suffices to embed the factors of this amalgamation
isometrically into Γ.
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The factor (u1u2v2c) represents a geodesic of type (1, 1, 2) in Γ2(u1), so
embeds isometrically into Γ.

The factor (u1v1u2c) may be interpreted by taking u2 to be the base point
for Γ. Then we need adjacent points u1, v1 in Γ3 and a point c in Γ2 with
d(c, u1) = 3, d(c, v1) = 2.

Fix u in Γ2 and let Iu = {v ∈ Γ3 | d(u, v) ≥ 3}. Then Iu is a proper subset
of Γ3 since there are adjacent points in Γ2, Γ3. As Γ3 is connected we can
find u1, v1 in Γ3, adjacent, with u1 ∈ Iu and v1 /∈ Iu. Then d(c, u1) = 3,
d(c, v1) = 2, as required. �

Now we treat a substantial case.

Lemma 5.6. Let Γ be a primitive metrically homogeneous graph of diameter
4 of K∗-type with

K1 ≤ 3 and C > 10

Let A,B be two pairs of points, with the points of A at distance 1 and the
points of B at distance at most 4. Then the configuration A ⊥(3) B embeds
isometrically into Γ.

Proof. Take A = {u1, v1}, B = {u2, v2}, and set

k = d(u2, v2)

We have dealt with the case k = 3 so we assume throughout that

k 6= 3

We have dealt with all remaining cases in which K1 = 3 in Lemmas 5.4
and 5.5. So we suppose

K1 ≤ 2

We also treated the case k = 4, C = 11 in Lemma 5.3, so we set this aside
as well.

If k = 4, assume C > 11

For u ∈ Γk let Iu = {v ∈ Γ3 | d(u, v) = 3}. If there is an adjacent pair in
Iu then we have the desired configuration. Suppose toward a contradiction
that there are no adjacent pairs in Iu.

Claim 1. For v ∈ Iu, there are adjacent vertices v1, v2 in Γ3 with

d(u, v1) = 2 and d(u, v2) = 4

Let I+u = {v ∈ Γ3 | d(u, v) ≥ 3}, I−u = {v ∈ Γ3 | d(u, v) ≤ 3}. Then I+u
and I−u are proper subsets of Γ3 since Γ contains triangles of types

(3, k, 2) and (3, k, 4)

When k = 4 this uses the hypothesis C > 11.
As Γ3 is connected it follows that there are adjacent v, v1 in Γ3 with v ∈ I+u

and v1 /∈ I+u . So d(u, v) = 3 and d(u, v1) = 2. We get the point v2 similarly.
This proves the claim. We may strengthen it as follows.
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Claim 2. Let v ∈ Iu and i = 2 or 4. Then there are distinct neighbors v1, v′1
of v with d(u, v1) = d(u, v′1) = i.

Suppose on the contrary that for some choice of i, each point v of Iu has
a unique neighbor v1 with d(u, v1) = i. Then every neighbor v2 of v other
than v1 satisfies d(u, v2) = i′ where i, i′ are 2, 4 in some order.

We claim that every neighbor w of v1 satisfies

w ∈ Iu and d(v, w) = 2

As w is adjacent to v1, d(u,w) 6= i′ and thus w is not adjacent to v. So
d(v, w) = 2.

Now we may take a second common neighbor v2 of v, w in Γ3, not equal
to v1. Then d(u, v2) = i′, d(u, v1) = i, so d(u,w) = 3.

Now by Lemma 5.2 there is a pair v1, v2 in Iu with d(v1, v2) = 3. Then
v′1 6= v′2. We now reach a contradiction by considering d(v′1, v

′
2).

As d(u, v′1) = d(u, v′2) = i, v′1 and v′2 are not adjacent. Let (v′1, w1, . . . , w2, v
′
2)

be a geodesic. Then w′1 = v′1, w′2 = v′2, so w1 6= w2. Furthermore w1, w2 ∈ Iu,
so w1, w2 are not adjacent. On the other hand d(v′1, v

′
2) ≤ 4 so we arrive at

d(w1, w2) = 2. But in this case, by homogeneity, w′1 = w′2 and we have a
contradiction.

This proves the claim.
Recall K1 ≤ 2. We treat the two possibilities separately.

Claim 3. The Lemma holds if K1 = 1.

We take v ∈ Iu and neighbors v1, v2 with d(u, v1) = 2, d(u, v2) = 4. Then
d(v1, v2) = 2.

We consider the configuration v1v2w1w2 where all vertices are adjacent
except for the pair v1, v2, which are at distance 2. We claim this embeds in
Γ3.

This configuration can be seen as a geodesic (v1, w1, v2) in Γ1(w1), so it
embeds in Γ3. (Recall that K̃1 = K1.)

Now by homogeneity we may assume that under this embedding v1, v2 are
the neighbors of v initially chosen. As w1, w2 are adjacent to v1 and v2, this
forces d(u,w1) = d(u,w2) = 3, with w1, w2 adjacent.

Claim 4. The lemma holds if K1 = 2.

We take v ∈ Iu and v1, v′1, v2, v′2 adjacent to v with

d(u, v1) = d(u, v′1) = 2 d(u, v2) = d(u, v′2) = 4

As K1 > 1, all distances between v1, v′1, v2, v′2 are equal to 2.
We claim that the configuration v1, v′1, v2, v′2 can be extended by adjacent

points w,w′ in Γ3 with w adjacent to v1, v2 and w′ adjacent to v′1, v′2, and
all other distances equal to 2.

It suffices to construct such a configuration in Γ3, or for that matter in Γ,
as these have the same properties.
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First view the configuration as an amalgamation problem with the dis-
tances between v1 or v2 and w′ to be determined. The point w ensures that
these distances are equal to 2, and the point v′1 or v′2 ensures that none of
these points will be identified. So it suffices to show that the factors of this
amalgamation embed in Γ.

The factor ww′v′1v′2 is simply a point with three neighbors (recalling K1 >
1). So we consider the factor

(v1v2v
′
1v
′
2w)

Adjoin a point c adjacent to v1, v2, v′1, v′2, with d(c, w) = 2, and view the
result as an amalgamation problem in which the distances between {v1, v2}
and {v′1, v′2} are to be determined. The point w prevents collapse and the
point c ensures that the distances are all equal to 2.

The factors of this diagram are a 4-cycle (cv1wv2), which certainly embeds
in Γ, and the factor (wc1v

′
1v
′
2) consisting of the geodesic (v′1v

′
2c) in Γ2(w), a

configuration which also occurs in Γ.
This proves the claim, and treats the last case of the lemma. �

So at this point we have treated all cases of the Edge Sum Lemma 5.1 in
which one of the two pairs is at distance 1 or 3.

Lemma 5.7. Let Γ be a primitive metrically homogeneous graph of diameter
4 of K∗-type with

K1 ≤ 3 and C > 10

Let A,B be two pairs of points, each at distance 2. Then the configuration
A ⊥(3) B embeds isometrically into Γ.

Proof. Take A = {u1, v1} and B = {u2, v2}.
Adjoin points c1, c2 with

d(c1, u1) = d(c1, v1) = 1 d(c2, u1) = d(c2, v1) = 1

d(c1, u2) = d(c1, v2) = 2 d(c2, u2) = d(c2, v2) = 4

d(c1, c2) = 2

Treat the resulting configuration as an amalgamation problem in which
the distances between A and B are to be determined. The points c1, c2
guarantee that these distances are equal to 3. So it suffices to show that the
factors (u1v1c1c2) and (u2v2c1c2) embed isometrically in Γ.

The factor (u1v1c1c2) may be viewed as a pair of points u1, u2 at distance
2, together with two common neighbors at distance 2. This is covered by
Fact 1.1.

The factor (u2v2c1c2) may be viewed as a geodesic (v2c1c2) of type (2, 2, 4)
in Γ2(u2). This configuration certainly embeds in Γ. �

Lemma 5.8. Let Γ be a primitive metrically homogeneous graph of diameter
4 of K∗-type with

K1 ≤ 3 and C > 10



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER FOUR 63

Let A,B be two pairs of points, with the points of A at distance 2 and the
points of B at distance 4. Then the configuration A ⊥(3) B embeds isomet-
rically into Γ.

Proof. Take A = {u1, v1} and B = {u2, v2}.
Adjoin points c1, c2 with

d(c1, u1) = d(c1, v1) = 1 d(c2, u1) = d(c2, u2) = 1

d(c1, u2) = d(c2, v2) = 2 d(c2, u2) = 2

d(c2, v2) = 4

d(c1, c2) = 2

Then view this as an amalgamation problem with the distances between
A and v2 to be determined. The points c1, c2 ensure that these distances are
equal to 3. So it suffices to embed the factors isometrically in Γ.

The factor (u1u2v1c1c2):
Taking u2 as base point, we require a pair of points in Γ2 at distance 2,

with a pair of common neighbors in Γ3, also at distance 2.
Fix c1, c2 in Γ2 with d(c1, c2) = 2. Take c3 in Γ3 adjacent to c1, c2, and c4

in Γ4 adjacent to c3. Then c1, c2, c3 is a triple of points mutually at distance
2.

We claim that there are (u1, v1) adjacent to c1, c2, c4 with d(u1, v1) = 2.
To see this, take v1, v2 first and apply Fact 1.1 to get suitable c1, c2, c4. Then
apply homogeneity,

Now as c1, c2 ∈ Γ2 and c4 ∈ Γ4, we have v1, v2 ∈ Γ3, as required.

The factor u1u2v2c1c2:
With v2 as base point, this represents a triple c1, c2, u2 with two points in

Γ4 and one point in Γ2.
Fix a point u in Γ2 and a neighbor v in Γ3. By Lemma 4.18 there is a

pair of points v1, v2 in Γ4 adjacent to v, with d(v1, v2) = 2. Then (u, v1, v2)
is a suitable triple.z �

Lemma 5.9. Let Γ be a primitive metrically homogeneous graph of diameter
4 of K∗-type with

K1 ≤ 3 and C > 10

Let A,B be two pairs of points, each at distance 4. Then the configuration
A ⊥(3) B embeds isometrically into Γ.

Proof. Take A = {u1, v1} and B = {u2, v2}.
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Adjoin a pair of points c1, c2 with

d(ci, u1) = 3 (i = 1, 2)

d(ci, v1) = 1 (i = 1, 2)

d(ci, u2) = 2 (i = 1, 2)

d(c1, v2) = 2 d(c2, v2) = 4

d(c1, c2) = 2

View the resulting configuration as a 2-point amalgamation in which the
distance d(v1, v2) is to be determined. The points c1, c2 ensure that this
distance is 3. So it suffices to check that the factors (u1u2v1c1c2) and
(u1u2v2c1c2) of this amalgamation embed isometrically into Γ.

The factor (u1u2v1c1c2):
Taking u1 as base point, we want u2, c1, c2 to be in Γ3, v1 ∈ Γ4, all at

distance 2, with v adjacent to c1, c2 and at distance 3 from u2.
As Γ contains a triangle of type (3, 4, 2), we may fix points u in Γ4, v ∈ Γ3

with d(u, v) = 2. As Γ3 is connected and there are points in Γ3 at distance
1 or 3 from u, it follows that there are neighbors v0, v1 of v in Γ3 with
d(u, v0) = 2 and d(u, v1) = 3. This forces d(v0, v1) = 2.

The points v0, v1 have a common neighbor w in Γ2. Then d(w, u) = 2. By
Fact 1.1, u and w have two common neighbors v2, v3 with d(v2, v3) = 2. Then
v2, v3 are in Γ3. Considering the points u and w, we see that the distances
d(v1, v2) and d(v1, v3) are also equal to 2. This is the required configuration.

The factor (u1u2v2c1c2):
Here taking u1 as base point, we require the configuration (u2v2c1c2) in

Γ3(u1). Since Γ3 and Γ satisfy the same hypotheses, it suffices to find the
configuration (u2v2c1c2) in Γ.

With v2 as base point, this means we require u2, c2 in Γ4 and c1 in Γ2

with u2, c1, c2 mutually at distance 2.
We first take u2, c2 in Γ4, then a common neighbor u in Γ3 (using Lemma

4.18). Then take c1 to be a neighbor of u in Γ2. This is the required
configuration.

�

Proof of Lemma 5.1. When one of the pairs of points lie at distance 1 or 3
this is covered by Lemmas 5.2 and 5.6.

The remaining cases are covered in Lemmas 5.7, 5.8, and 5.9.
�

5.2. The structure of Γ3(1, 1, 2): First steps. We begin the analysis of
Γ3(A) for A of order 2 or 3. The various cases become intertwined but we
will arrive in particular at the conclusion that Γ3(1, 1, 2) contains geodesics
of type (1, 1, 2) and (1, 2, 3).

We begin the study of Γ3(A) for various pairs and triples A.
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At this point we know that Γ3(u1, u2) is a homogeneous metric space in
which the distances occurring are precisely 1, 2, 3, 4.

Lemma 5.10. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗-type, with K1 = 1 and C > 10. Let u1, u2 be a pair of points
in Γ and let B be a (1, 2)-space whose cliques embed in Γ1. Suppose further

If d(u1, u2) = 4 then C > 11

Then B embeds in [Γ3(u1, u2)]1, by which we mean the graph Γ1 taken relative
to Γ3(u1, u2). In particular, if B is a clique embedding in Γ, or a triangle of
type (1, 1, 2), then B embeds in Γ3(u1, u2).

Proof. Set k = d(u1, u2).
For the first claim, treat u1 as a base point for γ and for u ∈ Γk let

Iu = {v ∈ Γ3 | d(u, v) = 3}.
Fix u ∈ Γk. There are points v2, v3, v4 in Γ3 with d(u, vi) = i for i = 2, 3, 4,

since Γ contains triangles of type (3, k, i) with i = 2, 3, 4; recall that if k = 4
then C > 11.

As Γ3 is connected, it follows easily that for v ∈ Iu there are v1, v2 adjacent
to v with d(u, v1) = 2, d(u, v2) = 4. As the parameters of Γ and Γ3 are
the same, the configuration B embeds in Γ3,1 = (Γ3)1. By Fact 1.1, the
configuration B embeds in the common neighbors of v1, v2 in Γ3. Then the
distances from u to points of B are forced to be 3.

This proves the first point.
For the second point, we view a clique of order n embedded in Γ as a

clique of order n−1 embedded in Γ1, and we view a geodesic of type (1, 1, 2)
as a pair of points at distance 2 in Γ. �

Lemma 5.11. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗-type, with K1 > 1 and C > 10. Let u1, u2 be a pair of points
in Γ. Assume further

If d(u1, u2) = 4 then C > 11

Then a triangle of type (1, 1, 2) embeds in Γ3(u1, u2).

Proof. We take u1 as the base point, and set k = d(u1, u2). Fix u ∈ Γk and
set Iu = {v ∈ Γ3 | d(u, v) = 3}. Suppose toward a contradiction that there is
no geodesic of type (1, 1, 2) in Γ3(u1, u).

By Lemma 5.6 there is a pair v, v1 in Γ3(u1, u) with v, v1 adjacent.
As C > 11 in the case k = 4, there are triangles of type (3, k, 2) and

(3, k, 4) in Γ. Thus there are points in Γ3 at distance 2 or 4 from u.
As Γ3 is connected it follows easily that for v ∈ Γ3(u1, u) there are v2, v3

adjacent to v in Γ3 with d(u, v2) = 2, d(u, v3) = 4.
By Fact 1.1, for v, v′ at distance 2 in Γ3 there are three distinct common

neighbors w1, w2, w3, mutually at distance 2. Therefore the there points
v1, v2, v3, which are mutually at distance 2, have two distinct common neigh-
bors v, v′. As d(u, v2) = 2 and d(u, v3) = 4 it follows that d(u, v′) = 3. Then
(v, v1, v

′) is a geodesic of type (1, 1, 2) in Γ3(u1, u2). �
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Lemma 5.12. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗-type, with K1 ≤ 3 and C = 11. Let u1, u2 be a pair of points
in Γ with d(u1, u2) = 4. If B is a geodesic of type (1, 1, 2) or (1, 2, 3), then
B embeds into Γ3(u1, u2).

Proof. Extend the configuration (u1u2) ⊥(3) B by a point c with

d(c, u1) = 3 d(c, u2) = 1

d(c, b) = 4 (b ∈ B)

View this configuration as an amalgamation problem with the distances be-
tween u2 and B to be determined. The point c ensures that these distances
are at least 3. The point u1 and the bound C = 11 ensures that these dis-
tances are not 4. So the result of the amalgamation is unique and it suffices
to check that the factors (u1u2c) and u1Bc embed isometrically into Γ.

The factor (u1u2c) is a geodesic of type (1, 3, 4).
The factor u1Bc can be viewed as Bc inside Γ3(u1). Since Γ3 satisfies the

same conditions as Γ, the problem is to embed Bc isometrically in Γ.
Now Bc represents a geodesic B of type (1, 1, 2) or (1, 2, 3) inside Γ4. Since

Γ4 is connected of diameter 3, this configuration embeds isometrically into
Γ. �

Lemma 5.13. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗-type, with K1 ≤ 3 and C > 10. Let u1, u2 be a pair of points
in Γ. Then a geodesic of type (1, 1, 2) embeds into Γ3(u1, u2).

Proof. If k < 4 or C > 11 then Lemma 5.10 or 5.11 applies.
If k = 4 and C = 11 then Lemma 5.12 applies. �

Lemma 5.14. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 with K1 ≤ 3 and C > 10. Let a1, a2, a3 be a triple of points in Γ
with

d(a1, a2) = 1 d(a2, a3) = 2 d(a1, a3) = 3

Then Γ contains points v2, v3, v4 with

d(vi, aj) = 3 (i = 2, 3, 4; j = 1, 3)
d(vi, a2) = i (i = 2, 3, 4)

Proof. The point v3 is afforded by Lemma 4.19.
Construction of a1a2a3v2:

Relative to v2 as base point, we require points a1, a3 in Γ3 at distance 3
and a point a2 in Γ2 with d(a2, a1) = 1, d(a2, a3) = 2.

Take a point u in Γ2. By Fact 1.1, u has two neighbors v1, v2 at distance
2 in Γ3. There is a point v3 ∈ Γ3 adjacent to v2 and at distance 3 from v1.
Then d(u, v3) = 2. Thus the configuration (u, v1, v3) is as required.

The construction of v4 is the same, taking u ∈ Γ4 at the outset. �
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Lemma 5.15. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 with K1 = 1 and C > 10. Let A be a geodesic of type (1, 2, 3) and let
B be a geodesic of type (1, 1, 2). Then A ⊥(3) B embeds isometrically in Γ.

Proof. By Lemma 5.14 we have points v2, v3, v4 in Γ3(a1, a3) at distances 2,
3, or 4 respectively from a1. Now Γ3(a1, a3) is connected, and in fact has
the same parameters as Γ, by Lemma ??.

Therefore it follows easily that we may take v2, v4 to be adjacent to v3. It
then follows that d(v2, v4) = 2. By Fact 1.1, the common neighbors of v2, v4
contain a an isometric copy of any (1, 2)-space without cliques of order 3,
since K1 = 1 and Γ3(a1, a3) has the same parameters as Γ.

In particular we may find a geodesic of type (1, 1, 2) in Γ3(a1, a2, a3). �

Lemma 5.16. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 with 1 < K1 ≤ 3 and C > 10. Let A be a geodesic of type (1, 2, 3) and
B a pair of points at distance 2. Then A ⊥(3) B embeds isometrically into
Γ.

Proof. Let A = (a1a2a3b) with d(a1, a2) = 1, d(a2, a3) = 2, d(a1, a3) = 3,
and B = {b1, b2}. Adjoin a point c with

d(c, a1) = 2

d(c, a2) = d(c, a3) = 1

d(c, b1) = d(c, b2) = 2

View this configuration as a 2-point amalgamation problem with the dis-
tance d(a2, a3) to be determined. The point c ensures that this distance is
2. So it suffices to show that the factors a1a2b1b2c and a1a3b1b2c embed
isometrically into Γ.

The factor (a1a2b1b2c):
We may view this as a 2-point amalgamation problem with the distance

d(a1, c) to be determined. The point a2 ensures that this distance is 2.
So it suffices to show that the subfactors (a1a2b1b2) and (a2b1b2c) embed
isometrically into Γ.

The subfactor (a1a2b1b2) is given by Lemma 5.1.
Relative to the base point a2, the subfactor (a2b1b2c) consists of three

points at mutual distance 2, with one in Γ1 and two in Γ3. Take a point
u ∈ Γ2, a neighbor in Γ1, and two neighbors in Γ3 at distance 2, to get this
configuration.

The factor (a1a3b1b2c):
Relative to the base point a1, we require a point c in Γ2 and a triangle

(v1, v2, v3) in Γ3 with

d(v1, v2) = 2 d(v1, v3) = d(v2, v3) = 3

d(c, v3) = 1 d(c, v1) = d(c, v2) = 2
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We first show that Γ3 contains a configuration v, v1, v2, v3 with v1, v2, v3
as above, v adjacent to v1 and v2, and d(v, v3) = 2.

As Γ3 satisfies the same conditions as Γ, it suffices to show that this
configuration embeds in Γ. Relative to v3 as base point, the configuration
(v1v2v) consists of a point in Γ2 with two neighbors at distance 2 in Γ3. This
is afforded by Fact 1.1.

Now take the configuration (vv1v2v3) to lie in Γ3 and take a common
neighbor c of v, v3 in Γ2. Then (cv1v2v3) is the desired configuration.

�

Lemma 5.17. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗-type with K1 ≤ 3 and C > 10. Let A be a geodesic of type
(1, 2, 3) and let B be a geodesic of type (1, 1, 2). Then A ⊥(3) B embeds
isometrically in Γ.

Proof. We deal with the case K1 = 1 in Lemma 5.15, so we will suppose

K1 > 1

Write A = {a1, a2, a3}, B = {b1, b2, b3} with
d(a1, a2) = 1 d(a2, a3) = 2 d(a1, a3) = 3

d(b1, b2) = 1 d(b2, b3) = 1 d(b1, b3) = 2

Adjoin a point c1 with

d(c1, a1) = 2 d(c1, a2) = d(c1, a3) = 1

d(c1, b2) = 2 d(c1, b1) = d(c1, b3) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a2, a3) to be determined. As K1 > 1 the point c1 ensures
that this distance is 2. So it suffices to show that the factors (a1a2Bc1) and
(a1a3Bc1) embed isometrically into Γ.

The factor (a1a2Bc1):
View this as a 2-point amalgamation problem with the distance d(a1, c1)

to be determined. The point a2 ensures that this distance is 2. So we may
reduce to the separate factors (a1a2B) and (a2Bc1).

The factor (a1a2B) is (a1a2) ⊥(3) B, which is covered by Lemma 5.13.
For the factor (a2Bc1), adjoin a point c2 with

d(c2, b2) = d(c2, c1) = 1

d(c2, a2) = d(c2, b1) = d(c2, b3) = 2

View this as a 2-point amalgamation problem with the distance between c1
and b2 to be determined. The points a2 and c2 ensure that this distance is
2. So it suffices to embed the factors (a2Bc2) and (a2b1b3c1c2) isometrically
into Γ.

View the factor (a2Bc2) as an amalgamation problem with the distances
between c2 and b1, b3 to be determined. The point b2 ensures that these
distances are equal to 2. So it suffices to embed the subfactors a2B and



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER FOUR 69

a2b2c2 isometrically into Γ. The former embeds by Lemma 4.19 and the
latter is a triangle of type (1, 2, 3).

View the factor (a2b1b3c1c2) as a 2-point amalgamation problem with the
distance d(a2, c2) to be determined. The point c1 ensures that this distance is
2. So it suffices to embed the subfactors a2b1b3c1 and b1b2c1c2 isometrically
into Γ.

The configuration a2b1b3c1 is (a2c1) ⊥(3) (b1b3), so embeds by Lemma 5.1.
Relative to the base point c1, the configuration b1b3c1c2 consists of three

points at mutual distance 2, with one in Γ1 and two in Γ3. Take a point u
in Γ2, a neighbor of u in Γ1, and two neighbors of u in Γ3, to obtain the
desired configuration.

The factor (a1a3Bc1):

d(c1, a1) = 2
d(c1, a3) = 1

Adjoin a point c2 with

d(c2, b2) = d(c2, c1) = 1

d(c2, a3) = d(c2, b1) = d(c2, b3) = 2

d(c2, a1) = 3

View this configuration as a 2-point amalgamation problem with the distance
between c1 and b2 to be determined. The point c2 ensures that this distance
is 2. So it suffices to show that the subfactors (a1a3Bc2) and (a1a3b1b3c1c2)
embed isometrically in Γ.

The subfactor (a1a3Bc2) may be viewed as an amalgamation problem in
which the distances between c2 and b1, b3 are to be determined.
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d(c2, a1) = 2
d(c2, a3) = 2

The point b2 ensures that these distances are equal to 2. So it suffices to
show that the configurations (a1a3B) and a1a3b2c2 embed isometrically into
Γ.

The configuration (a1a3B) = (a1a3) ⊥(3) B is covered by two applications
of Lemma 4.19.

The configuration (a1a3b1b3c1c2) may be viewed as a 2-point amalgama-
tion problem with the distance d(a3, c2) to be determined. The point c1
ensures that this distance is 2.

So we reduce to the configurations

(a1a3b1b3c1) and (a1b1b3c1c2)

The factor (a1a3b2c1c2) is afforded by Lemma 5.16.
The factor (a1b1b3c1c2) may be viewed as a 2-point amalgamation problem

with the distance d(a3, c2) to be determined.

d(c1, a1) = 2
d(c1, b1) = 3
d(c2, a3) = 2
d(c2, b3) = 2

We may view this as a 2-point amalgamation problem with the distance
d(a3, c2) to be determined. The point c1 ensures that this distance is 2. So
it suffices to embed the factors (a1a3b1b3c1) and (a1b1b3c1c2) isometrically
into Γ.

The factor (a1a3b1b3c1) is afforded by Lemma 5.16.
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For the factor (a1b1b3c1c2) we adjoin a point c3 with

d(c3, a1) = d(c3, c1) = 1

d(c3, b1) = d(c3, b3) = d(c3, c2) = 2

We view this configuration as a 2-point amalgamation problem with the
distance d(a1, c1) to be determined. The point c3 ensures that this distance
is 2. So it suffices to show that the factors (a1b1b3c2c3) and (b1b3c1c2c3)
embed isometrically into Γ.

Relative to the base point a1, the factor (a1b1b3c2c3) consists of four points
at mutual distance 2, with three of them in Γ3 and one in Γ1. Take a point
u in Γ2, a neighbor of u in Γ1, and three neighbors of u in Γ3 at mutual
distance 2, to produce the desired configuration.

Relative to the base point c1, the factor (b1b3c1c2c3) consists of four points
at mutual distance 2, with two of them in Γ1 and the other two in Γ3. We
take a point u in Γ2, two neighbors in Γ1 at distance 2, and two neighbors
in Γ3 at distance 2, to produce the desired configuration. �

Lemma 5.18. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 with K1 = 1, K2 = 4, and C > 10. Then there is a geodesic A of type
(1, 1, 2) in Γ4 and a point of Γ3 adjacent to all points of A.

Proof. As K2 = 4 and C > 10, Γ4 is connected of diameter at least 2.
Take v1, v2 ∈ Γ4 at distance 2. By Fact 1.1 the common neighbors of v1, v2

form a connected graph Γ2(v1, v2).
As Γ4 is connected, Γ2(v1, v2) meets Γ4. By Lemma 4.18, Γ2(v1, v2) meets

Γ3.
As Γ2(v1, v2) is connected, there is a pair of adjacent edges u, v in Γ2(v1, v2)

with u ∈ Γ3, v ∈ Γ4. Then (v1, v, v2, u) is the desired configuration. �

Lemma 5.19. Let Γ be a primitive metrically homogeneous graph of diame-
ter 4 with K1 = 1, K2 = 4, and C > 10. Let A be a geodesic of type (1, 1, 2).
Then Γ contains an isometric copy of A ⊥(3) A.
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Proof. Let A = {a1, a2, a3} with a2 the midpoint, and consider the extension
Au1u2 in which

d(u1, u2) = 2

d(u1, a) = 2 (a ∈ A)
d(u2, a) = 4 (a ∈ A)

If we can embed this configuration into Γ then it suffices to take a second
copy of A among the points adjacent to both u1 and u2.

Adjoin a point c1 with

d(c1, u1) = d(c1, u2) = 1

d(c1, a) = 3 (a ∈ A)

Consider the resulting configuration as a 2-point amalgamation problem with
the distance d(u1, u2) to be determined. The point c1 together with any point
of A ensures that this distance is 2. So it suffices to show that the factors
Au1c1 and Au2c1 embed isometrically into Γ.

The factor Au1c1:
Relative to the base point c1, this consists of a point in Γ1 at distance 2

from a copy of A in Γ3.
Start with a point u ∈ Γ2. Using Fact 1.1 we may find a copy A′ of A

in the neighbors of u in Γ3. Take a neighbor u1 of u in Γ1. Then u1 is at
distance 2 from the points of A′.

The factor Au2c1:
Relative to the base point u2, this consists of a point in Γ1 at distance 3

from a copy of A in Γ4.
Begin with a point u ∈ Γ3. By Lemma 5.18 there is a copy A′ of A in the

neighbors of u in Γ4. Take a point u2 ∈ Γ1 at distance 2 from u. Then A′u2
is the required configuration, over the base point. �

Lemma 5.20. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 with K2 = 3 and C > 10. Let A be a geodesic of type (1, 1, 2). Then
Γ contains an isometric copy of A ⊥(3) A.

Proof. Take two copies A = {a1, a2, a3} and B = {b1, b2, b3} of A, with a2
and b2 the midpoints.

Adjoin a point c with

d(c, a1) = d(c, a3) = 1 d(c, a2) = 2

d(c, b1) = d(c, b3) = 4 d(c, b2) = 3

View the resulting configuration as an amalgamation problem in which the
distances between a1, a3 and b1, b3 are to be determined. As K2 < 4, the
point c ensures that all these distances are equal to 3. So it suffices to show
that the factors Ab2c and Ba2c embed isometrically into Γ.



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER FOUR 73

The factor Ab2c:
Relative to the base point b2, this is a 4-cycle Ac embedding in Γ3. This

is straightforward.

The factor Ba2c:
We view this as a 2-point amalgamation problem with the distance d(c, b2)

to be determined. As K2 < 4, the point b1 ensures that this distance is 3.
So we may reduce to the subfactors

Ba2 and (a2b1b3c)

Now Ba2 is simply a copy of B in Γ3(a2), so this is known. We consider
the remaining configuration (a2b1b3c).

Relative to the base point c, this is a point in Γ2 at distance 3 from a pair
of points in Γ4 which are at distance 2.

As Γ contains triangles of type (2, 4, 2), (2, 4, 3), and (2, 4, 4), we may find
pairs of points in Γ2 and Γ4 at distance 2, 3, or 4.

Take a pair of points u, v at distance 3, with u ∈ Γ2 and v ∈ Γ4. As Γ4 is
connected we may easily find neighbors v1, v2 of v with

d(u, v1) = 2 d(u, v2) = 4

By Lemma 1.3, Γ4 is connected. By Fact 1.1, the common neighbors of
v1, v2 in Γ4 contain a pair of points at distance 2. Therefore we may find
a common neighbor v′ of v1, v2 in Γ4 at distance 2 from v. It follows that
d(u, v′) = 3 and we have the desired configuration. �

Lemma 5.21. Let Γ be a primitive metrically homogeneous graph of diame-
ter 4 and K∗-type with 1 < K1 ≤ 3 and C > 10. Let u1, u2 be a pair of points
at distance 1 in Γ. Then Γ3(u1, u2) is a connected metrically homogeneous
graph of diameter 4.

Proof. By Lemma 5.17, Γ3(u1, u2) contains geodesics of type (1, 1, 2) and
(1, 2, 3). So it remains to show that Γ3(u1, u2) contains a geodesic of type
(1, 3, 4).

Let u1, u2 be a pair of points at distance 1, and A = {a1, a2, a3} a geodesic
with

d(a1, a2) = 1 d(a2, a3) = 3 d(a1, a3) = 4
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Adjoin points c1, c2 with

d(c1, u1) = 2 d(c2, u1) = 4

d(c1, u2) = 3 d(c2, u2) = 3

d(c1, ai) = d(c2, ai) = i (i = 1, 2, 3)
d(c1, c2) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(u1, a1) to be determined. The points c1 and c2 ensure that
this distance is 3. So it suffices to show that the factors (u1u2a2a3c1c2) and
(u2Ac1c2) embed isometrically in Γ.

The factor (u1u2a2a3c1c2):
This can be viewed as (u1u2a2c1c2) inside Γ3(a3), and since Γ3 satisfies

the same conditions as Γ, we may restrict our attention to (u1, u2a2c1c2).
We adjoin a point c3 with

d(c3, a2) = d(c3, c1) = d(c3, c2) = 1

d(c3, u1) = d(c3, u2) = 3

The result can be viewed as an amalgamation of 3 factors in which all
distances among u1, u2, a2 are to be determined. The point c3, and the fact
that these three points are at different distances from u1, ensures that the
distances between them are equal to 2.

So it suffices to show that the factors (u1u2a2c3), (u1u2c1c3), and (u1u2c2c3)
all embed isometrically into Γ.

Relative to the base point c3 these factors consist of the two adjacent
points u1, u2 in Γ3, and a point in Γ1 with the pair of distances (2, 3), (3, 3),
or (3, 4) over them.

The usual argument using connectedness of Γ3 takes care of the points
with distances (2, 3) or (3, 4). This leaves (u1u2b2c3) = (u1u2) ⊥(3) (b2c3),
covered by Lemma 5.1.

The factor (u2Ac1c2):
This is (u2) ⊥(3) (Ac1c2) so we may restrict attention to

(Ac1c2)

Relative to the base point a1, this becomes three points at mutual distance
2 in Γ1, at distance 3 from a point in Γ4.

Beginning with a point u in Γ2, take three neighbors at mutual distance
2 in Γ1, using Fact 1.1, and one neighbor in Γ4 at distance 2 from u. This
gives the desired configuration. �

Lemma 5.22. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 with K1 ≤ 3 and C > 10. Let A be a geodesic of type (1, 1, 2). Then
Γ contains an isometric copy of A ⊥(3) A.
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Proof. All cases in which K = 1 are covered by Lemmas 5.20 and 5.19. So
we will suppose

K1 > 1

Let A = {a1, a2, a3} and B = {b1, b2, b3} be geodesics of type (1, 1, 2) with
midpoint a2, b2 respectively. Adjoin a point c1 with

d(c1, a1) = 1 d(c1, a2) = 2 d(c1, a3) = 3

d(c1, b1) = 3 d(c1, b2) = 2 d(c1, b3) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, a3) to be determined. The points a2 and c1 ensure that
this distance is 3. So it suffices to show that the factors (a1a2Bc1) and
(a2a3Bc1) embed isometrically into Γ.

The factor (a1a2Bc1):
View this as a 2-point amalgamation problem with the distance d(a2, c1)

to be determined. The point a1 ensures that this distance is 2. So it suffices
to show that the subfactors (a1a2B) and (a1Bc1) embed isometrically into
Γ.

The subfactor (a1a2B) is afforded by Lemma 5.13.
For the subfactor (a1Bc1), adjoin a point c2 with

d(c2, a1) = d(c2, b1) = d(c2, b3) = 2

d(c2, c1) = d(c2, b2) = 1

View the resulting configuration as a 2-point amalgamation problem with
the distance d(c1, b2) to be determined. The point c2 ensures that this dis-
tance is 2. So it suffices to show that the subfactors (a1Bc2) and (a1b1b3c1c2)
embed isometrically into Γ.

Relative to the base point a1, the configuration (a1Bc2) represents a geo-
desic of type (1, 1, 2) in Γ3 and a point in Γ2 adjacent to its midpoint. This
is easily obtained.

The configuration (a1b1b3c1c2) may be viewed as a 2-point amalgamation
problem with the distance d(a1, c2) to be determined. The point c1 ensures
that this distance is 2. So it suffices to show that the configurations (a1b1b3c1)
and (b1b3c1c2) embed isometrically into Γ.



76 GREGORY CHERLIN

The configuration (a1b1b3c1) = (a1c1) ⊥(3) (b1b3) is afforded by Lemma
5.1.

Relative to he base point c1, the configuration (b1b3c1c2) represents a
triple of points a mutual distance 2, with two in Γ3 and one in Γ1. For this,
begin with a point u in Γ2, and take a neighbor in Γ1, and two neighbors at
distance 2 in Γ3.

This completes the discussion of the first factor.

The factor (a2a3Bc1):

Claim 1. With c1, a2, a3 as specified, there are points v2, v3, v4 satisfying

d(vi, aj) = 3 (i = 2, 3, 4; j = 2, 3)
d(vi, c1) = i

The configuration a2a3c1v3 is (v3) ⊥(3) (a2a3c1) and is covered by Lemma
4.19.

For i = 2 or 4, relative to the base point vi the configuration (a2a3c1vi)
is a point c1 in Γ2 or Γ4, and a pair of adjacent points a2, a3 in Gamma3,
with d(c1, a2) = 2, d(c1, a3) = 3. Since Γ3 is connected it suffices to check
that the triangles (a2c1vi) and (a3c1vi) of types (2, 3, i) and (3, 3, i) embed
in Γ, which is clear.

This proves the claim.
Now we work relative to the points a2, a3. We fix u satisfying d(u, a2) = 2

and d(u, a3) = 3. There are points in Γ3(a2a3) at distance 2, 3, or 4 from
u. By Lemma 5.21 the graph Γ3(a2a3) is connected. It follows easily that if
v2 ∈ Γ3(a2, a3) lies at distance 2 from u, we can find v3, v4 in Γ3(a2, a3) with
v3 adjacent to v2 and v4, satisfying d(u, v3) = 3 and d(u, v4) = 4. Now take
v′3 in Γ3(a2, a3) adjacent to v2, v4 and distinct from v3. Then v3, v2, v′3 is a
geodesic of type (1, 1, 2) with midpoint v2, and (a2a3uv3v2v

′
3) is the desired

configuration.
�

We give an overview of the results proved in this subsection in tabular
form.



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER FOUR 77

Summary

Lemma Hyp. Conclusion

5.10 K1 = 1; If d = 4 then C > 11 Constrained (1,2) in Γ3(u1, v2)1

" " (1, 1, 1), (1, 1, 2) in Γ3(u1, u2)

5.11 K1 > 1; if d = 4 then C > 11 (1, 1, 2) in Γ3(u1, u2)

5.12 K1 ≤ 3, C = 11, d = 4 (1, 1, 2), (1, 2, 3) in Γ3(u1, u2)

5.13 K1 ≤ 3, K∗-type (1, 1, 2) in Γ3(u1, u2)

5.14 K1 ≤ 3 [3i3]over (1,2,3)

5.15 K1 = 1 (1,1,2)+(123)

5.16 1 < K1 ≤ 3 (d=2)+(123)

5.17 K1 ≤ 3, K∗-type (1,1,2)+(123)

5.18 K1 = 1, K2 = 4 (1,1,2) in Γ4 with v ∈ Γ3 adjacent

5.19 K1 = 1, K2 = 4 (1, 1, 2) + (112)

5.20 K2 = 3 (1, 1, 2) + (112)

5.21 d = 1, K∗-type Γ3(u1, u2) connected

5.22 K1 ≤ 3, K∗-type (1, 1, 2) + (112)

6. Γ3(A): Connectedness

6.1. Γ3(1, 1, 2): Connectedness.

Lemma 6.1. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗-type with K1 ≤ 3 and C > 10. Let A be a geodesic of type (1, 1, 2).
Then Γ3(A) is connected

Proof. It suffices to show that Γ3(A) contains geodesics of type (1, 1, 2),
(1, 2, 3), and (2, 2, 4), and Lemmas 5.22 and 5.17 cover the first two. So
we need to embed the configuration A ⊥(3) B isometrically in Γ, where
A = {a1, a2, a3} is a geodesic of type (1, 1, 2) with midpoint a2, and B =
{b1, b2, b3} is a geodesic of type (2, 2, 4) with midpoint b2.

Adjoin points c1, c2 with

d(c1, ai) = 1, 2, 1(i = 1, 2, 3) d(c2, ai) = 1, 2, 1 (i = 1, 2, 3)

d(c1, bi) = 2 (i = 1, 2, 3) d(c2, bi) = 4, 4, 2

d(c1, c2) = 2

View the resulting configuration as an amalgamation problem in which
the distances between a1, a3 and b1, b2 are to be determined. The points
c1, c2 ensure that these distances are equal to 3. So it suffices to show that
the factors Ab3c1c2 and a2Bc1c2 embed isometrically into Γ.
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The factor Ab3c1c2:
We adjoin a point c3 with

d(c3, b3) = d(c3, c1) = d(c3, c2) = 1

d(c3, a1) = d(c3, a3) = 2

d(c3, a2) = 3

View the resulting configuration as an amalgamation problem in which
the distances between b3 and c1, c2 are to be determined. The points a1, c3
ensure that these distances are equal to 2. So it suffices to show that the
subfactors Ab3c3 and Ac1c2c3 embed isometrically into Γ.

Relative to the base point b3, the configuration Ab3c3 consists of a copy
of the geodesic A in Γ3 together with a point of Γ1 with respective distances
2, 3, 2 from the points of A. This may be obtained as follows.

Claim 1. There is a triple u2, u3, u4 at mutual distance 2 with ui ∈ Γi for
i = 2, 3, 4.

We adjoin a point c in Γ3 at distance 1 from u2, u3, u4 and view the
resulting configuration as a 2-point amalgamation problem with the distance
d(u2, u4) to be determined. The point c ensures that this distance is 2. The
factors of this amalgamation consist of two adjacent points in Γ3 together
with one further point in Γ2 or Γ4 making a triangle of type (1, 1, 2). As
both distances 1 and 2 occur between Γ3 and either Γ2 or Γ4, and Γ3 is
connected, these configurations embed isometrically into Γ. This gives the
required configuration (u2, u3, u4).

Claim 2. There is a triple v1, v2, v3, a geodesic of type (1, 2, 3) with midpoint
v2 and vi ∈ Γi for i = 1, 2, 3.

Let a be the base point. Relative to the base point v3, the configuration
(av1v2v3) consists of two adjacent points in Γ3 and a point in Γ2 making a
triangle of type (1, 1, 2). As both distances 1 and 2 occur between Γ2 and
Γ3 and Γ3 is connected, this is easily achieved.

Now fix v1, v2, v3 as in the last claim. Extend v2, v3 to a triple v2, v3, v4
at mutual distance 2, with v4 ∈ Γ4. Now we claim that there are points
v, v′ adjacent to v2, v3, v4 with d(v, v′) = 2. To see this, begin with v, v′ at
distance 2 and apply Fact 1.1.

Now consider the configuration v1vv3v′. Here v1 ∈ Γ1, v, v3, v′ are in Γ3

forming a geodesic of type (1, 1, 2) with midpoint v3, and d(v1, v3) = 3. As
v, v′ are adjacent to v2 and v3, we find d(v1, v) = d(v1, v

′) = 2, as required.
Thus we have the configuration Ab3c3.
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The factor a2Bc1c2:

Adjoin a point c3 with

d(c3, b3) = d(c3, c1) = d(c3, c2) = 1

d(c3, b1) = d(c3, b2) = d(c3, a2) = 3

View the resulting configuration as the amalgamation of three factors with
base (a1b1b2c3), and with all distances among b3, c1, c2 to be determined. The
point c3 bounds these distances by 2. The points b1, b2 then ensure that the
distances are equal to 2.

So we must consider separately the factors

(1) a2Bc3; (2) a2b1b2c1c3; (3) a2b1b2c2c3
(1) The subfactor a2Bc3 is (a2) ⊥(3) Bc3, so it suffices to treat Bc3. We

adjoin a point c4 with

d(c4, b1) = d(c4, b2) = 1

d(c4, c3) = 2

d(c4, b3) = 3

We view the resulting configuration as an amalgamation problem in which
the distances between b1 and b2, c3 are to be determined. The point c4, b3
ensure that these distances are 2 and 3 respectively. So it suffices to show
that the configurations b1b3c4 and b2b3c3c4 embed isometrically into Γ.

The configuration b1b3c4 is a triangle of type (1, 3, 4). For the configuration
b2b3c3c4 adjoin a point c5 adjacent to c3, c4 and at distance 2 from b2, b3.
View b2b3c3c4c5 as a 2-point amalgamation with the distance d(c3, c4) to be
determined. The points b2, c5 ensure that this distance is 2. The two factors
are isomorphic, so we consider only b2b3c4c5: relative to the base point c4,
this represents a pair of vertices at distance 2 in Γ1, both at distance 2 from
a point of Γ3. This may be obtained by taking a point in Γ2 and suitable
neighbors in Γ1,Γ3.

(2) The subfactor (a2b1b2c1c3): adjoin a point c4 with

d(c4, b1) = d(c4, b2) = d(c4, c1) = 1

d(c4, c3) = 2

d(c4, a2) = 3
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View the resulting configuration as an amalgamation problem with the dis-
tances between b1, b2 and c1 to be determined. The points c3, c4 ensure that
these distances equal 2. So it suffices to show that the configurations

(a2b1b2c3c4) and (a2c1c3c4)

embed isometrically into Γ.
As (a2b1b2c3c4) = (a2) ⊥(3) (b1b2c3c4), this configuration reduces to

(b1, b2c3c4). Relative to the base point c3 this represents a point of Γ2 adja-
cent to a pair of points in Γ3 at distance 2, which is known.

And the configuration (a2c1c3c4) is the same (with base point a2).
(3) The subfactor (a2b1b2c2c3): adjoin a point c4 with

d(c4, b1) = d(c4, b2) = 1

d(c4, c3) = 2

d(c4, c2) = d(c4, a2) = 3

View the resulting configuration as an amalgamation problem with the
distances between b1 and c2, c3 to be determined. The points c2, c4 ensure
that these distances are 2 and 3 respectively. So it suffices to show that the
configurations (a2b1c2c4) and (a2b2c2c3c4) embed isometrically into Γ.

Relative to the base point a2, the configuration (a2b1c2c4) consists of a pair
of adjacent points in Γ3, and a point of Γ2 at distances 3, 4 from the given
points. As the distances 3, 4 occur between Γ2 and Γ3 and Γ3 is connected,
this is easily arranged.

This leaves the configuration

(a2b2c2c3c4)

for consideration. Adjoin a point c5 with

d(c5, b2) = d(c5, c2) = 1

d(c5, c3) = d(c5, c4) = 2

d(c5, a2) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(b2, c2) to be determined. The points c4, c5 ensure that this
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distance is 2. So it suffices to show that the configurations

(a2b2c3c4c5) and (b2c2c3c4c5)

embed isometrically into Γ.
The configuration (a2b + 2c3c4c5) is (a2) ⊥(3) (b2c3c4c5), hence reduces

to (b2c3c4c5). Relative to the base point c3, the latter consists of a pair of
adjacent points in Γ3 and a point in Γ2 at distances 1 and 2 from them.
Since the distances 1 and 2 occur between Γ2 and Γ3, and Γ3 is connected,
this is easily arranged.

Now consider the configuration

(b2c2c3c4c5)

Relative to the base point a2, this consists of a triple of points in Γ3 at mutual
distance 2 and a point in Γ2 at distance 2 from two of them at distance 3
from the third.

Take a point u ∈ Γ2, a neighbor v1 of u in Γ1, and three neighbors v2, v3, v4
of u in Γ3 at mutual distance 2. Then the points v1, v2, v3, v4 are at mutual
distance 2.

Claim 3. Given four points v1, v2, v3, v4 at mutual distance 2 in Γ there is
a point v satisfying

d(v, v1) = d(v, v2) = d(v, v3) = 1

d(v, v4) = 3

Relative to the base point v, we require a point in Γ3 and three points in
Γ1, so that all four points are at mutual distance 2. We being with the three
points in Γ3, take a common neighbor w in Γ2, and then a neighbor of w in
Γ1. This proves the claim.

Applying this to our four points v1, v2, v3, v4 we have v adjacent to v2, v3
and at distance 3 from v4, and v2, v3, v4 ∈ Γ3.

Furthermore as v is adjacent to v1 and v2, we have v ∈ Γ2. This is the
required configuration. �

6.2. Γ3(1, 2, 3): Connectedness. Now we turn to Γ3(1, 2, 3). We first deal
with some particular configurations.

Lemma 6.2. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗-type with K1 ≤ 3 and C > 10. Then the following configurations
embed isometrically in Γ.

(1) Ab: A a geodesic of type (1, 1, 2) in Γ3, b in Γj adjacent to the end-
points and at distance 2 from the midpoint; j = 2 or 4.
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(2) Ab: A a geodesic of type (1, 1, 2) in Γ3, b ∈ Γj at distance 3 from the
midpoint and distance 2 from the endpoints; j = 1, 2 or 4.

(3) Ab: A a geodesic of type (1, 1, 2) in Γ3, b a point in Γj at distance 2
from the midpoint and 3 from the ends; j = 2 or 4.

(4) Ab: A = {a1, a2, a3} a geodesic of type (1, 2, 3) in Γ3, b a point of Γ4

with distances d(b, ai) = 2, 1, 3 respectively.

(5) A point in Γ1 at distance 2 from two points in Γ3 at distance 4.
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(6) The configuration (a1a2b1b2) with

d(a1, a2) = d(b1, b2) = 1

d(ai, bj) =

2 (i = j)

3 (i 6= j)

(7) A point in Γ4 at distance 1 and 3 from a pair of points of Γ3 at
distance 2.

Proof. We write A = {a1, a2, a3} with a2 the midpoint.
(1):

Adjoin a point c in Γ3 at distance 2 from the endpoints a1, a3 and distance
3 from the midpoint a2, and adjacent to b. View the resulting configuration
as a 2-point amalgamation problem with the distance d(a2, b) to be deter-
mined. The points a1, c ensure that this distance is 2. So it suffices to show
that the factors Ac and (a1a3bc) embed isometrically into Γ.

The factor Ac is required in Γ3, but as Γ3 satisfies the same hypotheses as
Γ it suffices to embed it isometrically into Γ. Relative to the base point a2,
Ac represents a triple of points at mutual distance 2, with two of them in
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Γ1 and one in Γ3. This configuration may be constructed by taking a point
u in Γ2, and suitable neighbors of u.

The factor a1a3bc consists of a point b in Γj adjacent to three points of
Γ3 at mutual distance 2. This may be obtained by applying Fact 1.1 to a
suitable pair of points b, b′ at distance 2.

(2):
Suppose first that

j = 2 or 4

Adjoin a point c in Γj adjacent to b, a1, a3 and at distance 2 from a2. View
the resulting configuration as an amalgamation problem with the distances
between b and a1, a3 to be determined. The points a2, c ensure that these
distances are equal to 2. So it suffices to show that the factors Ac and (a2bc)
embed isometrically into Γ.

The factor Ac is covered by (1),
The factor (a2bc) consists of a point a2 in Γ3, an adjacent pair of points

b, c in Γj , with the distances 2, 3 between a2 and b, c. The distances 2, 3
occur since Γ contains triangles of types (3, 2, 2), (3, 2, 3), (3, 4, 2), (3, 4, 3).
As Γj is connected the desired configuration is easily obtained.

Now suppose
j = 1

Adjoin a point c as above, with c in Γ2 to reduce to the factors Ac (given
by (1)) and a2bc, where now b ∈ Γ1, c ∈ Γ2, a2 ∈ Γ3.

Include the base point v0 to get a configuration of order 4, and view
this relative to the base point a2. We then have a point c in Γ2 and two
adjacent points b, v0 in Γ3, with the distances from c to b, v0 equal to 1, 2.
Since the distances 1, 2 occur between Γ2 and Γ3, and Γ3 is connected, this
configuration may be obtained.

(3): Fix a point u in Γj .
The distances 2, 3, 4 occur between Γi and Γj as Γ contains triangles of

types (2, 3, 2), (3, 3, 2), (4, 3, 2). As Γ3 is connected we may easily find a
triple v2, v3, v4 with d(u, vi) = i and v3 adjacent to v2, v4. It follows that
d(v2, v4) = 2.

Take v′3 another common neighbor of v2, v4 in Γ3, at distance 2 from v3.
Then we must have d(u, v′3) = 3. The configuration (uv3v2v

′
3) is as required.

(4): Adjoin a point c in Γ3 with

d(c, b) = 1

d(c, a2) = d(c, a3) = 2

d(c, a1) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, b) to be determined. The points a2 and c ensure that this
distance is 2. So it suffices to show that the factors (Ac) and (a2a3bc) embed
isometrically into Γ.
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Now (Ac) is required in Γ3, but as Γ3 and Γ satisfy the same conditions
it suffices to embed (Ac) in Γ. Relative to the base point a1, the factor (Ac)
consists of a triple of points at mutual distance 2, with two in Γ3 and one
in Γ1. This may be obtained starting with a point in Γ2 by taking suitable
neighbors.

The factor (a2a3bc) is covered by (1).

(5): Let u1 be the base point, u2 in Γ1, and a1, a2 the points desired in Γ3.
Adjoin a point c1 with

d(c1, a2) = d(c1, u2) = 1

d(c1, u1) = 2

d(c1, a1) = 3

View the resulting configuration as a 2-point amalgamation problem in which
the distance d(u2, a2) is to be determined. The points a1, c1 ensure that this
distance is 2. So it suffices to show that the factors (a1a2u1c1) and (a1u1u2c1)
embed isometrically into Γ.

The factor (a1a2u1c1):
Adjoin a vertex c2 with

d(c2, c1) = 1

d(c2, a1) = d(c2, a2) = 2

d(c2, u1) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, c1) to be determined. The points a2, c2 ensure that this
distance is 3. So it suffices to check that the subfactors (a1a2u1c2) and
(a2u1c1c2) embed isometrically into Γ.

The subfactor (a1a2u1c2) = (a1a2c2) ⊥(3) (u1) reduces to the triangle
(a1a2c2) of type (2, 2, 4).

Relative to the base point u1, the subfactor (a2u1c1c2) consists of a point
in Γ2 adjacent to two points in Γ3 at distance 2.

The factor (a1u1u2c1):
Relative to the base point a1, this is a point of Γ2 adjacent to two points

of Γ3 at distance 2.
This completes the construction of configuration (5).

(6):
Adjoin a point c with

d(c, a2) = d(c, b2) = 1

d(c, a1) = d(c, b1) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a2, b2) to be determined. The points a1 and c ensure that this
distance is 2. The two factors (a1a2b1c) and (a1b1b2c) are isomorphic, so it
suffices to show that the former emeds isometrically into Γ.
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Relative to the base point b1, the factor (a1a2b1c) consists of a point in
Γ3 adjacent to two points in Γ2 at distance 2. So this embeds isometrically
into Γ.

(7):
Let u be the base point. Adjoin a point c with

d(c, b1) = d(c, b2) = 1

d(c, a) = d(c, u) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(u, b1) to be determined. The points a1 and c ensure that this
distance is 3. So it suffices to show that the factors (uab2c) and (ab1b2c)
embed isometrically into Γ.

Relative to the base point b2, the factor (uab2c) is Configuration (5) above.
The factor (ab1b2c) is a geodesic path of length 3.

�

We append something more straightforward which comes up often enough
to deserve explicit mention in its own right.

Lemma 6.3. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗-type with C > 10, and fix 1 ≤ i, j ≤ 4 with j = i± 2. Then there
is a triple of points at mutual distance 2 with two in Γi and 1 in Γj.

Proof. Take a vertex u in Γk where k is between i and j, and suitable neigh-
bors of u in Γi and Γj .

The main point is that u has two neighbors at distance 2 in Γi. This
follows from Lemma 1.1 if i < 4. If i = 4 and k = 3 this is given by Lemma
4.18. �

Lemma 6.4. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗-type with K1 ≤ 3 and C > 10. Let A be a geodesic of type (1, 2, 3).
Then A ⊥(3) A embeds isometrically in Γ.

Proof. Label the two copies of A as A = {a1, a2, a3} and B = {b1, b2, b3}
with midpoints a2, b2.
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Adjoin two points c1, c2 with

d(c1, ai) = 2, 1, 1 d(c2, ai) = 3, 4, 4

d(c1, bi) = 3, 2, 2 d(c2, bi) = 2, 1, 1

d(c1, c2) = 3

View the resulting configuration as an amalgamation problem in which
the distances between a2, a3 and b2, b3 are to be determined. The points
c1, c2 ensure that all these distances are equal to 3. So it suffices to show
that the factors

I. Ab1c1c2
II. a1Bc1c2

embed isometrically into Γ.

(I): Ab1c1c2

View this as a 2-point amalgamation problem with the distance a2, a3 to
be determined. The points a1, c1 ensure that this distance is 2. So it suffices
to embed the factors

(IA): (a1a2b1c1c2) and (IB): (a1a3b1c1c2)

isometrically into Γ.

(IA): The factor (a1a2b1c1c2):
Adjoin a point c3 with

d(c3, b1) = d(c3, c2) = 1

d(c3, a1) = d(c3, c1) = 2

d(c3, a2) = 3

View the resulting configuration as an amalgamation problem with the
distances between c2 and a1, c1 to be determined. The points a2, c3 ensure
that these distances are equal to 3. So it suffices to show that the subfactors

(1) (a1a2b1c1c3) and (2) (a2b1c2c3)

embed isometrically into Γ.
(1): (a1a2b1c1c3)
Relative to the base point b1, this consists of a point c3 in Γ1 and a geodesic

a1a2c1 of type (1, 1, 2) in Γ3 as in Lemma 6.2, part (2).
(2): (a2b1c2c3)
Relative to the base point a2, this consists of a pair of adjacent points

b1, c3 in Γ3, and a point c2 in Γ4 at distances 1, 2 from them. As these
distances occur and Γ3 is connected, this is easily obtained.



88 GREGORY CHERLIN

(IB): The factor (a1a3b1c1c2):
Adjoin a point c3 with

d(c3, a1) = d(c3, c1) = 1

d(c3, a3) = d(c3, b1) = d(c3, c2) = 2

View the resulting configuration as an amalgamation problem with the
distances between c1 and a1, c2 to be determined. The points a3, c3 ensure
that these distances will be respectively 2 and 3. So it suffices to show that
the subfactors

(1) (a1a3b1c2c3) and (2) (a3b1c1c3)

embed isometrically into Γ.

(1): (a1a3b1c2c3)
We adjoin a point c4 adjacent to b1, c2, c3, a distance 2 from a1, and

at distance 3 from a3. We view the resulting configuration as a 2-point
amalgamation problem with the distance d(c2, c3) to be determined. The
points a1, c4 ensure that this distance is 2. So it suffices to check that the
configurations

(1a) (a1a3b1c2c4) and (1b) (a1a3b1c3c4)

embed isometrically into Γ.
(1a)—(a1a3b1c2c4)
This is covered by Lemma 6.2, part (4).
(1b)—(a1a3b1c3c4)
This may be viewed as a 2-point amalgamation problem with the distance

d(b1, c3) to be determined. The points a1, c4 ensure that this distance is
2. So it suffices to prove that the configurations (a1a3b1c4) and (a1a3c3c4)
embed isometrically into Γ.

As (a1a3b1c4) = (a3) ⊥(3) (a1b1c4), this reduces to (a1b1c4), a geodesic of
type (1, 2, 3).

Relative to the base point a3, the configuration (a1a3b1c3) consists of a
point c3 in Γ2 adjacent to two points a1, c4 in Γ3 at distance 2. So this is
easily obtained.

(2): (a3b1c1c3)
Relative to the base point b1, this consists of a point c3 in Γ2, and a pair

of adjacent points a3, c1 in Γ3, with the distances from c3 to c1, a3 equal to
1 and 2 respectively. As Γ3 is connected this is easily obtained.

So this concludes the discussion of the factor (I) in our main amalgama-
tion.

(II): a1Bc1c2

This may be viewed as a 2-point amalgamation problem with the distance
d(b2, b3) to be determined. The points b1, c2 ensure that this distance is 2.
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So it suffices to show that the factors

(A) (a1b1b2c1c2) and (B) (a1b1b3c1c2)

embed isometrically into Γ.

(IIA): The factor (a1b1b2c1c2):
Relative to the base point a1, this consists of a point in Γ2 and a geodesic

in Γ3 of type (1, 1, 2), with the metric of Lemma 6.2, part (3).

(IIB): The factor (a1b1b3c1c2):
Adjoin a point c3 with

d(c3, b3) = d(c3, c1) = 1

d(c3, b1) = d(c3, c2) = 2

d(c3, a1) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(b3, c1) to be determined. The points c2, c3 ensure that this
distance is 2. So it suffices to show that the subfactors (a1b1b3c2c3) and
(a1b1c1c2c3) embed isometrically into Γ.

The factor (a1b1b3c2c3) is (a1) ⊥(3) (b1b3c2c3) and hence reduces to (b1b3c2c3).
Relative to the base point b1 this is a point of Γ3 adjacent toa pair of points
in Γ2 at distance 2, which we have.

For the factor (a1b1c1c2c3), adjoin a point c4 with

d(c4, b1) = d(c4, c2) = d(c4, c3) = 1

d(c4, c1) = 2

d(c4, a1) = 3

View the resulting configuration as an amalgamation problem with the
distances between c3 and b1, c2 to be determined. The points c1 and c4
ensure that these distances are equal to 2. So it suffices to show that the
configurations

(a1b1c1c2c4) and (a1c1c3c4)

embed isometrically into Γ.
Relative to the base point a1, the configuration (a1b1c1c2c4) consists of a

point c1 in Γ2 and a geodesic (b1, c4, c2) of type (1, 1, 2) with the metric of
Lemma 6.2, part (3).

Relative to the base point a1, the configuration (a1c1c3c4) consists of a
pair of adjacent points in Γ3 and a point in Γ2 at distances 1, 2 from the
given points. As Γ3 is connected, this is easily obtained.

This completes the construction of the second main factor, and the proof.
�

In an amalgamation aimed at constructing A ⊥(3) B in which both A and
B contain a pair of points at distance 2, one natural way to proceed is by
introducing “witnesses” c1, c2 to the distances between two such points in A
and two such points in B, where c1 provides paths of type (1, 2, 3?) from A
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to B and c2 provides paths of type (1, 4, 3?) from A to B; here the question
remark refers to the fact that the distances in question are to be forced equal
to 3 in the presence of both types of witness.

The next lemma concerns a factor which may occur in such constructions
when A is a geodesic of type (1, 2, 3).

Lemma 6.5. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗-type with K1 ≤ 3 and C > 10. Let A = {a1, a2, a3} be a geodesic
of type (1, 2, 3) in natural order, and let Abc1c2 be an extension with

d(b, ai) = 3 (i = 1, 2, 3)
d(c1, a1) = d(c2, a1) = 2

d(c1, ai) = d(c2, ai) = 1 (i = 2, 3)
d(ci, b) = 2 (i = 1, 2)

Proof. We may view this as a 2-point amalgamation problem with the dis-
tance d(a2, a3) to be determined. The points a1, c1 ensure that this distance
is 2. So it suffices to prove that the factors

(a1a2bc1c) and (a1a3bc1c2)

embed isometrically into Γ.

The factor (a1a2bc1c2):
Adjoin a point c3 with

d(c3, b1) = d(c3, c1) = d(c3, c2) = 1

d(c3, a2) = 2

d(c3, a1) = 3

View the resulting configuration as an amalgamation problem in which
the distances between a1, b1 and c1, c2 are to be determined. The points
a2, c3 ensure that all of these distances are equal to 2. So it suffices to show
that the subfactors (a1a2b1c3) and (a2c1c2c3) embed isometrically into Γ.

Relative to the base point a1, the subfactor (a1a2b1c3) consists of a point
in Γ2 at distances 2, 3 from two adjacent points in Γ3. This is obtained as
usual from the connectedness of Γ3.

Fact 1.1 affords the configuration (a2c1c2c3).
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The factor (a1a3bc1c2):
Adjoin a point c3 with

d(c3, a1) = d(c3, c1) = 1

d(c3, a3) = 2

d(c3, b1) = d(c3, c2) = 3

View the resulting configuration as an amalgamation problem in which
the distances between c1 and a1, c2 are to be determined. The points a3, c3
ensure that these distances are equal to 2. So it suffices to show that the
subfactors

(A) (a1a3b1c2c3) and (B) (a3b1c1c3)

embed isometrically into Γ.
(A): For the subfactor (a1a3b1c2c3), adjoin a point c4 with

d(c4, a3) = d(c4, c3) = 1

d(c4, a1) = d(c4, b1) = d(c4, c2) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a3, c3) to be determined. The points a1, c4 ensure that this
distance is 2. So it suffices to show that the configurations

(A1) (a1a3b1c2c4) and (A2) (a1b1c2c3c4)

embed isometrically into Γ.
(A1): For the configuration (a1a3b1c2c4), adjoin a point c5 with

d(c5, a1) = d(c5, c2) = d(c5, c4) = 1

d(c5, a3) = 2

d(c5, b1) = 3

View the resulting configuration as an amalgamation problem with the
distances between a1 and c2, c4 to be determined. The points a3, c5 ensure
that these distances are equal to 2. So it suffices to show that the configu-
rations

(a1a3b1c5) and (a3b1c2c4c5)

embed isometrically into Γ.
Now (a1a3b1c5) = (b1) ⊥(3) (a1a3c5) so this reduces to (a1a3c5), a triangle

of type (1, 2, 3).
Relative to the base point b1, the configuration (a3b1c2c4c5) consists of a

pair of points in Γ2 at distance 2, and a pair of points at distance 2 in Γ3,
the whole forming a complete bipartite graph on four points.

To construct this we first take three points u1, u2, u3 at mutual distance
2 with two in Γ2 and the third in Γ4 (taking suitable neighbors of a point in
Γ3), then take a pair of common neighbors v1, v2 to u1, u2, u3, at distance 2.
Then (u1u2v1v2) is the required configuration.
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To make the extension of u1, u2, u3 by v1, v2 it suffices to show that the
configuration (u1u2u3v1v2) embeds in Γ. This follows by applying Fact 1.1
to v1, v2.

So this concludes the discussion of configuration (A1).
(A2): Relative to the base point b1, the configuration (a1b1c2c3c4) consists

of a point in Γ2 and a geodesic of type (1, 1, 2) in Γ3, with the metric given
in Lemma 6.2, part (2). So this embeds isometrically into Γ.

(B): Relative to the base point b1, the subfactor

(a3b1c1c3)

consists of a point in Γ2 adjacent to two points of Γ3 at distance 2, so this
embeds isometrically into Γ. �

Now we give the companion factor to the previous one in the case corre-
sponding to the construction of (1, 2, 3) ⊥(3) (2, 2, 4).

Lemma 6.6. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗-type with K1 ≤ 3 and C > 10. Let B = {b1, b2, b3} be a geodesic
of type (2, 2, 4) in natural order, and let aBc1c2 be an extension with

d(a, bi) = 3 (i = 1, 2, 3)
d(c1, b1) = 2 d(c2, a1) = 2

d(c1, ai) = 2 (i = 2, 3) d(c2, ai) = 4 (i = 2, 3)
d(ci, a) = 2 (i = 1, 2)

Proof. Adjoin a point c3 with

d(c3, b1) = d(c3, c1) = d(c3, c2) = 1

d(c3, a) = d(c3, b2) = d(c3, b3) = 3

View the resulting configuration as an amalgamation of three configura-
tions in which all distances among b1, c1, c2 are to be determined. The points
b2, b3 ensure that these distances are at least 2, and the point c3 ensures that
these distances are at most 2. So it suffices to show that the three factors

(A) (aBc3), (B) (ab2b3c1c3), and (C) (ab2b3c2c3)

all embed isometrically into Γ.
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(A) The factor (aBc3):
This is (a) ⊥(3) (Bc3) and therefore reduces to (Bc3).
Add a point c4 to (Bc3) with

d(c4, bi) = 1 (i = 2, 3)
d(c4, c3) = 2

d(c4, b1) = 3

View the resulting configuration as an amalgamation problem in which
the distances between b3 and b2, c3 are to be determined. The points b1, c4
ensure that these distances are respectively 2 and 3.

So it suffices to show that the subfactors b1b2c3c4 and (b1b3c4) embed
isometrically into Γ. The latter is a triangle of type (1, 3, 4), so it suffices to
consider

(b1b2c3c4)

We add a point c5 with

d(c5, b1) = d(c5, b2) = 1

d(c5, c3) = d(c5, c4) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(b1, b2) to be determined. The points c5 and c3 or c4 ensure that
this distance is 1. So it suffices to show that the two subfactors (b1c3c4c5)
and (b2c3c4c5) embed isometrically into Γ, and as these are isomorphic it
suffices to consider (b1c3c4c5) alone.

Relative to the base point b1, the configuration (b1c3c4c5) consists of three
points at mutual distance 2, with two in Γ1 and one in Γ3. This may be
constructed by taking suitable neighbors of a point in Γ2.

(B) The factor (ab2b3c1c3):
Adjoin a point c4 with

d(c4, b2) = d(c4, b3) = d(c4, c1) = 1

d(c4, c3) = 2

d(c4, a) = 3

View the resulting configuration as an amalgamation problem in which the
distances between c1 and b2, b3 are to be determined. The points c3, c4 ensure
that these distances are equal to 2. So it suffices to show that the subfactors
(ab2b3c3c4) and (ac1c3c4) embed isometrically into Γ.

The subfactor (ab2b3c3c4) is (a) ⊥(3) (b2b3c3c4), so reduces to (b2b3c3c4).
Relative to the base point c3 this is a vertex of Γ2 adjacent to two vertices
of Γ3 at distance 2.

The subfactor (ac1c3c4) is isomorphic to (b2b3c3c4) just treated.
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(C) The factor (ab2b3c2c3):
Adjoin a point c4 with

d(c4, b2) = d(c4, b3) = 1

d(c4, c3) = 2

d(c4, c2) = d(c4, a) = 3

View the resulting configuration as an amalgamation problem in which the
distances between c3 and b2, b3 are to be determined. The points c2, c4 ensure
that these distances are equal to 3. So it suffices to show that the factors
(ab2b3c2c4) and (ac2c3c4) embed isometrically into Γ.

The factor (ab2b3c2c4):
Adjoin a point c5 with

d(c5, c2) = 1

d(c5, c4) = 2

d(c5, b2) = d(c5, b3) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a, c4) to be determined. The points b2 and c5 ensure that this
distance is 3. So it suffices to check that the subfactors

(1) (ab2b3c5) and (2) (ab2b3c4c5)

embed isometrically into Γ.
(1) The subfactor ab2b3c2c5: Adjoin a point c6 with

d(c6, a) = d(c6, c2) = 1

d(c6, b2) = d(c6, b3) = d(c6, c5) = 3

View the resulting configuration as a 2-point amalgamation with the distance
d(a, c2) to be determined. The points c5, c6 ensure that this distance is 2.
So it suffices to check that the configurations (ab2b3c5c6) and (b2b3c2c5c6)
embed isometrically into Γ.

The configuration (ab2b3c5c6) is (ac5c6) ⊥(3) (b2b3) and is afforded by
Lemma 5.17.

Relative to the base point c2, the configuration (b2b3c2c5c6) consists of a
pair of points in Γ1 at distance 2, and another pair in Γ4 at distance 2, with
all distances between them equal to 3. For this, just take adjacent points
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u2, u3 with u2 ∈ Γ2, u3 ∈ Γ3, and suitable neighbors of u2 in Γ1, and of u3
in Γ4.

This completes the discussion of subfactor (1).
(2) The subfactor (ab2b3c4c5)=(a) ⊥(3) (b2b3c4c5) reduces to (b2b3c4c5).

Relative to the base point c5, this is a vertex in Γ2 adjacent to two vertices
at distance 2 in Γ3.

So subfactor (2) occurs.

The factor (ac2c3c4):
Adjoin a point c5 adjacent to a, c2 and at distance 2 from c3, c4. View the

resulting configuration as a 2-point amalgamation problem with the distance
d(a, c2) to be determined. The points c3 and c5 ensure that this distance is
2. So it suffices to show that the subfactors (ac3c4c5) and (c2c3c4c5) embed
isometrically into Γ.

Relative to the base point a, the subfactor (ac3c4c5) consists of a point of
Γ1 at distance 2 from two points of Γ3 at distance 2. This is constructed by
taking suitable neighbors of a point in Γ2.

Relative to the base point c4, the subfactor (c2c3c4c5) consists of a point
in Γ3 adjacent to two points of Γ2 at distance 2. So this also occurs. �

Lemma 6.7. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗-type with K1 ≤ 3 and C > 10. Then Γ3(1, 2, 3) is connected.

Proof. It suffices to show that Γ3(1, 2, 3) contains geodesics of types (1, 1, 2),
(1, 2, 3), and (2, 2, 4), and the first two are covered by Lemmas 5.17 and 6.4.

So we take A = {a1, a2, a3} and B = {b1, b2, b3} geodesics of type (1, 2, 3)

and (2, 2, 4) respectively, and we must show that A ⊥(3) B embeds isometri-
cally into Γ.

We adjoin two points c1, c2 with

d(c1, a1) = 2 d(c2, a1) = 2

d(c1, ai) = 1 (i = 2, 3) d(c2, ai) = 1 (i = 2, 3)
d(c1, b1) = 2 d(c2, b1) = 2

d(c1, bi) = 2 (i = 2, 3) d(c2, bi) = 4 (i = 2, 3)
d(c1, c2) = 2

View the resulting configuration as an amalgamation problem in which
the distances between a2, a3 and b2, b3 are to be determined. The points
c1, c2 ensure that all these distances are equal to 3.

Lemmas 6.5 and 6.6 show that the two factors (Ab1c1c2) and (a1Bc1c2)
embed isometrically into Γ. �

6.3. Γ3(2, 2, 4): Connectedness. Now we turn to Γ3(2, 2, 4), with most of
the work already done above.

Lemma 6.8. Let Γ be a primitive metrically homogeneous graph of diameter
4 and generic type with K1 ≤ 3 and C > 10. Let A = (a1, a2, a3) be a geodesic
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of type (2, 2, 4), in natural order, and let Abc1c2 be an extension with

d(b, ai) = 3 (i = 1, 2, 3)
d(ci, a1) = 3 (i = 1, 2) d(ci, aj) = 1 (i = 1, 2; j = 2, 3)
d(ci, b) = 2 (i = 1, 2)

d(c1, c2) = 2

Then Abc1c2 embeds isometrically into Γ.

Proof. View the configuration as a 2-point amalgamation problem with the
distance d(a2, a3) to be determined. The points a1, c1 ensure that this dis-
tance is 2. So it suffices to prove that the factors (a1a2bc1c2) and (a1a3bc1c2)
embed isometrically into Γ.

The factor (a1a2bc1c2):
Adjoin a point c3 with

d(c3, a1) = d(c3, a2) = 1

d(c3, b1) = d(c3, c1) = d(c3, c2) = 2

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, a2) to be determined. The points c1, c3 ensure that this
distance is 2. So it suffices to prove that the subfactors (a1bc1c2c3) and
(a2bc1c2c3) embed isometrically into Γ.

Relative to the base point a1, the subfactor (a1bc1c2c3) consists of a point
in Γ1 at distance 2 from three points in Γ3 at mutual distance 2. This is
easily obtained by taking suitable neighbors of a point in Γ2.

Relative to the base point b, the subfactor (a2bc1c2c3) consists of a point
in Γ3 adjacent to three points in Γ2 at mutual distance 2, which is easily
obtained from Fact 1.1.

The factor (a1a3bc1c2):
Adjoin a point c3 with

d(c3, b) = d(c3, c1) = d(c3, c2) = 1

d(c3, a1) = d(c3, a3) = 2

View the resulting configuration as an amalgamation problem with the dis-
tances between a1, b and c1, c2 to be determined. The points a3 and c3 ensure
that the distances d(a1, ci) are equal to 3 and the distances d(b, ci) are equal
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to 2. So it suffices to show that the subfactors (a1a3bc3) and (a3c1c2c3)
embed isometrically into Γ.

Relative to the base point b, the subfactor (a1a3bc3) is a point in Γ1 at
distance 2 from a pair of points in Γ3 at distance 4. This is covered by
Lemma 6.2, part (5).

The subfactor (a3c1c2c3) is given by Fact 1.1.
�

Lemma 6.9. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 3 and C > 10. Then Γ3(2, 2, 4) is connected.

Proof. It suffices to show that Γ3(2, 2, 4) contains geodesics of types (1, 1, 2),
(1, 2, 3), and (2, 2, 4). The first two follow from Lemmas 6.1 and 6.7.

So it suffices to show that with A,B geodesics of type (2, 2, 4), the sum
A ⊥(3) B embeds isometrically into Γ.

We take A = (a1, a2, a3) and B = (b1, b2, b3) in natural order, and we
adjoin vertices c1, c2 with

d(c1, a1) = 3 d(c2, a1) = 3

d(c1, ai) = 1 (i = 2, 3) d(c2, ai) = 1 (i = 2, 3)d(c1, b1) = 3d(c2, b1) = 3

d(c1, bi) = 2 (i = 2, 3) d(c2, bi) = 4 (i = 2, 3)d(c1, c2) = 2

We view the resulting configuration as an amalgamation problem in which
the distances between a2, a3 and b2, b3 are to be determined. The points
c1, c2 ensure that these distances are equal to 3. So it suffices to show that
the factors Ab1c1c2 and a1Bc1c2 embed isometrically into Γ.

The factor (Ab1c1c2) is covered by Lemma 6.8.
The factor (a1Bc1c2) = (a1) ⊥(3) Bc1c2 reduces to (Bc1c2), which is

contained in the configuration given by Lemma 6.6. �

7. Γ2 when K1 ≤ 2

For the treatment of the case K1 ≤ 2 it will be convenient to prepare some
information about the structure of Γ2.

Lemma 7.1. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 2 and C > 10. Then Γ2 is a primitive infinite
metrically homogeneous graph of diameter 4.

Proof. Γ2 is primitive by Lemma 1.5 and the hypothesis K1 ≤ 2, that is, Γ2

contains an edge. The diameter is clearly 4.
As Γ contains an infinite set of points at mutual distance 2, so does Γ2.

In particular Γ2 is infinite. �

Lemma 7.2. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 2 and C > 10. If C̃ is the parameter corresponding
to C in Γ2, then

C̃ > 10
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Proof. As Γ2 is primitive, C ≥ 10. It suffices to show that a triangle of type
(2, 4, 4) embeds into Γ2.

Let B = (b1b2b3) be a triangle of type (2, 4, 4) with d(b1, b3) = 2. Let
aB be the configuration with B in Γ2(a). Relative to the base point b2, aB
consists of a three vertices at mutual distance 2, with two in Γ4 and one in
Γ2. This is a standard configuration. �

7.1. K̃1 = K1.

Lemma 7.3. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 3 and C > 10. Let A be a triple of points mutually
at distance 3. Then there is an isometric embedding of A into Γ with one
point in Γ1 and two points in Γ2.

Proof. Let A = (a1a2a3) where a1 is to go into Γ1, let u be the base point,
and adjoin a point c with

d(c, u) = d(c, a2) = 1

d(c, a1) = 2

d(c, a3) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(u, a2) to be determined. The points a3, c ensure that this
distance is 2. So it suffices to show that the factors (ua1a3c) and Ac embed
isometrically into Γ.

Relative to the base point a3, the factor (ua1a3c) consists of a point in Γ2

adjacent to two points in Γ3 at distance 2, which is available.
The factor (Ac) = (a3) ⊥(3) (a1a2c) with (a1a2c) a geodesic. �

Lemma 7.4. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 3 and C > 10. Let A be a a geodesic of type (2, 2, 4).
Then there is an isometric embedding of A into Γ with two points at distance
2 in Γ2 and the third point in Γ3.
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Proof. Let u be the base point, let A = (a1, a2, a3) in natural order (so a1, a2
are to go into Γ2), and adjoin a point c satisfying

d(c, u) = d(c, a1) = d(c, a2)

d(c, a3) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, a2) to be determined. Then the points a3 and c ensure
that this distance is 2. So it suffices to prove that the factors (ua1a3c) and
(ua2a3c) embed isometrically into Γ.

Relative to the base point a3, the two factors consist of a pair of adjacent
points in Γ3 with a point either in Γ2 or in Γ4 at distances 1 and 2 from
them. As Γ3 is connected and the distance 1 occurs between Γ3 and either
Γ2 or Γ4, these configurations are available. �

Lemma 7.5. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 2 and C > 10. Let B = (a1a2a3) be a geodesic of
type (1, 2, 3) in natural order and let a satisfy d(a, b) = 2 for b ∈ B. Then
the configuration aB embeds isometrically in Γ with a in Γ1 and B in Γ3.

Proof. Let u be the base point and adjoin a point c1 with

d(c1, a) = d(c1, b2) = d(c1, b3) = 1

d(c1, b1) = d(c1, u) = 2

View the resulting configuration as an amalgamation problem with three
factors, with the distances among the points a, b2, b3 to be determined. The
points u, b1 ensure that these distances are all at least 2, and then c1 ensures
that these distances are equal to 2. So it suffices to prove that the three
factors

(uab1c1), (ub1b2c1), (ub1b3c1)

embed isometrically into Γ.
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Relative to the base point b1 the factor (uab1c1) consists of a pair of
adjacent points in Γ2 with a point in Γ3 at distances 1 and 2. As Γ2 is
connected and the distances 1, 2 are represented, this is available.

Relative to the base point u the factor (ub1b2c1) consists of a pair of
adjacent points in Γ3 with a point in Γ2 at distances 1 and 2, which is
similarly available.

The third factor (ub1b3c1) is given by Lemma ??. �

Lemma 7.6. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 = 1 and C > 10. Let K̃1 be the corresponding
parameter for the graph Γ2. Then

K̃1 = 1

Proof. Let B = (b1, b2, b3) be a triangle of type (1, 1, 1). We must embed the
configuration aB into Γ, where d(a, b) = 2 for b ∈ B.

Adjoin points c1, c2 with

d(c1, a) = 1 d(c2, a)d = (c2, b2) = d(c2, a3) = 1

d(c2, b1) = d(c2, b2) = 2

d(c1, bi) = 3 (i = 1, 2, 3)
d(c1, c2) = 2

View the resulting configuration as an amalgamation problem in which the
distances between a and b2, b3 are to be determined. The points c1, c2 ensure
that these distances are equal to 2. So it suffices to show that the factors
(ab1c1c2) and (Bc1c2) embed isometrically into Γ.

The factor (ab1c1c2):
Relative to the base point b1, this consists of two adjacent points in Γ2

with a point in Γ3 at distances 1 and 2 from them. As K1 = 1 there is an
edge in Γ2 and thus Γ2 is a connected graph of diameter 4. So it suffices
to show that the distance 1 occurs between Γ2 and Γ3, which simply means
that Γ contains a geodesic of type (1, 2, 3).

The factor Bc1c2:
Adjoin a point c3 with

d(c3, b2) = d(c3) = 1

d(c3, b1) = d(c3, c2) = 2

d(c3, c1) = 4

View the resulting configuration as an amalgamation problem with the dis-
tances between c1 and b2, b3 to be determined. The points c2, c3 ensure that
these distances are equal to 3. So it suffices to show that the factors Bc2c3
and (b1c1c2c3) embed isometrically into Γ.

Relative to the base point b1, the factor Bc2c3 consists of a triangle free
graph b2b3c2c3 embedded in Γ1. As K1 = 1 and Γ is not exceptional, this
configuration is available.
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The factor (b1c1c2c3) is given by Lemma 7.4. �

Lemma 7.7. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 = 2 and C > 10. Let K̃1 be the corresponding
parameter for the graph Γ2. Then

K̃1 = 2

Proof. We consider the configuration aB = (a) ⊥(2) B with B = (b1, b2, c3) a
triangle of type (1, 2, 2), and d(b1, b3) = 1. We must embed aB isometrically
into Γ.

Adjoin a point c with

d(c, a) = d(c, b1) = d(c, b2) = 1

d(c, b3) = 2

View the resulting configuration as an amalgamation problem with the dis-
tances between b1 and a, b2 to be determined. Since K1 = 2 there are no
triangles in Γ, so the point c forces these distances to be equal to 2; note
that no identifications are possible.

So it suffices to show that the factors (ab2b3c) and (b1b3c) embed isomet-
rically into Γ. The first of these is a geodesic of type (1, 1, 2) in Γ2(b3), and
the second is a geodesic of type 2. So both of these are available. �

We may sum up as follows.

Lemma 7.8. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 2 and C > 10. Let K̃1 be the corresponding
parameter for the graph Γ2. Then

K̃1 = K1

7.2. K̃2 = K2.

Lemma 7.9. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 2 and C > 10. Let A = (a1a2a3) be a triangle of
type (122) with d(a2, a3) = 1. Then A embeds isometrically into Γ with a1
in Γ1 and a2, a3 in Γ3.

Proof. Adjoin a point c in Γ2 with

d(c, a1) = d(c, a3) = 1

d(c, a2) = 2
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View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, a3) to be determined. The base point and the point c
ensure that this distance is 2. So it suffices to check that the factors (a1a2c)
and (a2a3c) embed isometrically into Γ over the base point.

Taking u as the base point, view the factor (ua1a2c) relative to the base
point a3. It then consists of a pair of adjacent points in Γ2 with a point in
Γ3 at distance 1 and 2. As Γ2 contains an edge and is connected, and the
distance 1 is realized between Γ2 and Γ3, this is available.

The factor (a2a3c) consists of a pair of adjacent points in Γ3 with a point
in Γ2 at distance 1 and 2, and is available for similar reasons. �

Lemma 7.10. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗ type with K1 ≤ 2 and C > 10. Let K̃2 = K2(Γ2). Then
Then

K̃2 = K2

Proof. As Γ2 is primitive infinite of diameter 4 it satisfies K̃2 ≥ 3. So if
K2 = 3 the claim follows. Therefore we suppose K2 = 4, or in other words
there is a triangle of type (1, 4, 4) in Γ. Let B = (b1, b2, b3) be such a triangle
with d(b1, b3) = 1 and let a be a point at distance 2 from all b ∈ B. We must
embed the configuration aB isometrically into Γ.

Let c1 be a point with

d(c1, a) = d(c1, b2) = 1

d(c1, bi) = 3 (i = 1, 3)

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a, b2) to be determined. The points a1, c1 ensure that this
distance is 2. So it suffices to show that the factors (ab1b3c1) and Bc1
embed isometrically into Γ.

The factor (ab1b3c1) is afforded by Lemma 7.9.
For the factor Bc1, adjoin a point c2 with

d(c2, c1) = 1

d(c2, b2) = 2

d(c2, bi) = 3 (i = 1, 3)

View the resulting configuration as a 2-point amalgamation problem with
the distance d(c1, b3) to be determined. The points b2, c2 ensure that this
distance is 3. So it suffices to show that the subfactors Bc2 and (b1b2c1c2)
embed isometrically into Γ.

View the subfactor Bc2 as a 2-point amalgamation problem with the dis-
tance d(c2, b1) to be determined, with factors two triangles, of types (1, 4, 4)
and (2, 2, 4). The points b2, b3 ensure that this distance is either 2 or 3. If
it is 3 then we have the required subfactor, and it if is 2 then we have an
isometric copy of aB.

Relative to the base point b1, the subfactor (b1b2c1c2) consists of two
adjacent points in Γ3 and a point in Γ4 at distance 1 and 2 from them. As Γ3
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is connected and the distance 1 occurs between Γ3 and Γ4, this configuration
is available. �

7.3. C̃ = C and C̃ ′ = C ′.

Lemma 7.11. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗ type with K1 ≤ 3 and C > 10. Let A = (a1, a2, a3) be a
geodesic of type (1, 2, 3). Then there is an isometric embedding of A into Γ
with a1 in Γ4 and a2, a3 in Γ3.

Proof. Let u be the base point and adjoin a point c with

d(c, a2) = d(c, a3) = 1

d(c, a1) = d(c, u) = 2

View the resulting configuration as an amalgamation problem with the dis-
tances between the points a2 and u, a3 to be determined. The points a1, c1
ensure that these distances are 3 and 2 respectively. So it suffices to show
that the factors (ua1a3c1) and (a1a2c1) embed isometrically into Γ.

Relative to the base point a3, the factor (ua1a3c1) is the configuration
given in Lemma 6.2, part (5).

The factor (a1a2c1) is a geodesic of type (1, 1, 2). �

Lemma 7.12. Let Γ be a primitive metrically homogeneous graph of diame-
ter 4 and K∗ type with K1 ≤ 2 and C > 11. Let A = (a1, a2, a3) be a triangle
of type (3, 4, 4) with d(a1, a3) = 3. Then there is an isometric embedding of
A into Γ with a2 in Γ1 and a1, a3 in Γ3.

Proof. Let u be the base point. Adjoin a point c1 with

d(c1, a3) = 1

d(c1, u) = d(c1, a1) = 2

d(c1, a2) = 3

View the resulting configuration as a 2-point amalgamation problem with
the distance d(u, a3) to be determined. The points a2 and c1 ensure that
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this distance is 3. So it suffices to show that the configurations Ac1 and
(a1a2uc1) embed isometrically into Γ.

The factor Ac1:
Adjoin a point c2 with

d(c2, a2) = d(c2, c1) = 1

d(c2, a3) = 3

d(c2, a1) = 4

View the resulting configuration as a 2-point amalgamation problem with
the distance d(c1, a2) to be determined. The points a3, c2 ensure that this
distance is 3. So it suffices to show that the subfactors

Ac2 and (a1a3c1c2)

embed isometrically into Γ.
We view the subfactor Ac2 as a 2-point amalgamation problem with the

distance d(a1, c2) to be determined; here the factors are triangles of types
(1, 3, 4) and (3, 4, 4), which we have by hypothesis. The point a2 ensures that
this distance is 3 or 4. If the distance is 4 we have the desired subfactor. If
the distance is 3 then relative to the base point c2, we have the configuration
required for the lemma.

Relative to the base point a1, the subfactor (a1a3c1c2) is the configuration
of Lemma 7.11. �

Lemma 7.13. Let Γ be a primitive metrically homogeneous graph of diame-
ter 4 and K∗ type with K1 ≤ 2 and C > 11. Let C̃ = C(Γ2). Then C̃ > 11.

Proof. We require the configuration (a) ⊥(2) B with B = (b1, b2, b3) a trian-
gle of type (3, 4, 4) and d(b1, b3) = 3.

Adjoin a point c with

d(c, a) = d(c, b2) = 1

d(c, bi) = 3 (i = 1, 3)

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a, b2) to be determined. The points b1, c ensure that this
distance is 2. So it suffices to show that the factors (ab1b3c1) and Bc1
embed isometrically into Γ.

Relative to the base point a, the factor (ab1b3c1) is the configuration of
Lemma 7.3.

Relative to the base point c1, the factor Bc1 is the configuration of Lemma
7.11. �

Lemma 7.14. Let Γ be a primitive metrically homogeneous graph of diame-
ter 4 and K∗ type with K1 ≤ 3 and C > 11. Let A = (a1, a2, a3) be a geodesic
of type (1, 2, 3) in natural order. Then there is an isometric embedding of A
into Γ with a1, a3 in Γ4 and a2 in Γ3.
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Proof. Let u be the base point. Adjoin a point c with

d(c, a2) = d(c, a3) = 1

d(c, a2) = 2

d(c, u) = 4

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a2, a3) to be determined. The points a1, c ensure that this
distance is 2. So it suffices to show that the factors (ua1a2c) and (ua1a3c)
embed isometrically into Γ.

Relative to the base point u the factor (ua1a2c) consists a point in Γ3

adjacent to two points of Γ4 at distance 2, given by Lemma 4.18.
View the factor (ua1a3c) as a 2-point amalgamation problem with the

distance d(c, u) to be determined; the factors of this are triangles of types
(1, 2, 3) and (3, 4, 4), which we have by hypothesis. The point a3 ensures that
this distance is either 3 or 4. If the distance is 4 then we have the required
factor, while if it is 3 we have the configuration required for the lemma. �

Lemma 7.15. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗ type with K1 ≤ 2 and C > 10. Suppose that Γ contains a
triangle of type (4, 4, 4). Then Γ2 contains a triangle of type (4, 4, 4).

Proof. Let aB consist of a triangle B = (b1, b2, b3) of type (4, 4, 4) and a
point a with d(a, b) = 2 for b ∈ B. We must embed aB isometrically into Γ.

Adjoin points c1, c2, c3 with

d(ci, a) = d(ci, bi) = 1 (i = 1, 2, 3)
d(ci, bj) = 3 (i, j = 1, 2, 3 distinct)
d(ci, cj) = 2 (i, j = 1, 2, 3 distinct)

View the resulting configuration as an amalgamation problem in which
the distances between a and B are to be determined. The points ci ensure
that these distances are all bounded by 2 and then the structure of B ensures
that these distances are all equal to 2. Writing C = (c1c2c3), it suffices to
prove that the factors aC and BC embed isometrically into Γ.

The factor aC embeds into Γ since Γ1 contains an infinite set of points at
mutual distance 2. So we turn to the factor

BC
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View BC as an amalgamation problem with the distances between c1 and
b2, b3 to be determined. The points b1, c2, c3 ensure that these distances are
both equal to 3. So it suffices to show that the factors

Bc2c3 and b1C

embed isometrically into Γ.

The factor Bc2c3:
View this as a 2-point amalgamation problem with the distance d(c2, b3)

to be determined. The points b2, c3 ensure that this distance is 3. So it
suffices to show that the subfactors Bc3 and (b1b2c2c3) embed isometrically
into Γ.

The subfactor Bc3: first we view this as a 2-point amalgamation problem
with the distance d(b2, c3) to be determined. The point b3 ensures that
this distance is at least 3. If it is 3, we have the desired configuration. So
suppose that it is 4. Then the resulting configuration contains triangles of
type (3, 4, 4) and (1, 4, 4).

In this case, adjoin a point c4 with

d(c4, b2) = 1

d(c4, c3) = 2

d(c4, b3) = 3

d(c4, b1) = 4

View the resulting configuration as a 2-point amalgamation problem with
the distance d(b2, c3) to be determined. The points b3 and c4 ensure that
this distance is 3. So it suffices to check that the configurations Bc4 and
(b1b3c3c4) embed isometrically into Γ.

The configuration Bc4 may be viewed as a 2-point amalgamation problem
with the distance d(b1, c4) to be determined; the factors here are triangles of
types (4, 4, 4) and (1, 4, 4), which under our current assumptions are avail-
able. The point b2 ensures that this distance is at least 3. If this distance
is 3 then we have a configuration isometric to Bc3 and we may conclude. If
this distance is 4 then we have the required configuration Bc4.

This disposes of the configuration Bc3. We have also the configuration
(b1b3c3c4) to deal with. This is covered by Lemma 7.14, bearing in mind
that we currently suppose Γ contains a triangle of type (3, 4, 4).

The subfactor (b1b2c2c3): this is covered by Lemma 7.11.
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The factor b1C:
Relative to the base point b1, this is the configuration of Lemma 6.3.

�

We may summarize this subsection as follows.

Lemma 7.16. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗ type with K1 ≤ 2 and C > 10. Let C̃ε = Cε(Γ2) for ε = 0, 1.
Then

C̃ε = Cε

Proof. The value of C0 or C1 is determined by the presence or absence of
triangles of type (4, 4, 4) or (3, 4, 4) respectively. Thus Lemmas 7.13 and 7.15
settle the issue. �

7.4. Summary. The main results of this section that any triangle of a spec-
ified type which embeds in Γ also embeds in Γ2. These are tabulated below.

Type Lemma Type Lemma
(224) 7.2 (144) 7.10
(111) 7.6 (344) 7.13
(122) 7.7 (444) 7.15
All together we have proved the following.

Lemma 7.17. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗ type with K1 ≤ 2 and C > 10. Then Γ2 is a primitive metri-
cally homogeneous graph of diameter 4 with the same numerical parameters
K1,K2, C0, C1.

7.5. S̃ = S.

Lemma 7.18. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗ type with K1 ≤ 2 and C > 10. Suppose that Γ contains a
clique of order n. Then Γ2 contains a clique of order n.

Proof. As K1 ≤ 2 this holds if n ≤ 2, so suppose

n ≥ 3

By Lemma 1.1 Γ2 contains a copy of Γ1.
If Γ contains a clique of order n + 1 then Γ1 contains a clique of order n

and hence Γ2 contains a clique of order n. So we may suppose

Γ contains no clique of order n+ 1

Let A be a clique of order n and Ab an extension with d(a, b) = 2 for
a ∈ A. Fix a1 ∈ A. Let C be a clique of order n− 2 with

d(c, a1) = d(c, b) = 1 (c ∈ C)
d(c, a) = 2 (a ∈ A, a 6= a1)

View the resulting configuration as a 2-point amalgamation problem with
the distance d(a1, b) to be determined. The clique C forces this distance
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to be at most 2 and as there is no clique of order n + 1, C also forces the
distance to be greater than 1. Thus this distance must be 2. So it suffices
to show that the factors

AC and A′bC with A′ = A \ {a1}
embed isometrically into Γ.

The factor AC:
Relative to the base point a1, the factor AC is the graph A′C embedded

in Γ1. As A′C contains no clique of order n, it embeds in Γ1.

The factor A′bC:
This is a graph containing no clique of order n. So it embeds in Γ1 and a

fortiori into Γ. �
...
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8. Structure of Γ3(A)

For A a geodesic of type (1, 1, 2), (1, 2, 3), or (2, 2, 4), we know that Γ3(A)
is a connected metrically homogeneous graph. (The same then follows for A
of type (1, 3, 4) but it will not be necessary to consider this case.)

We need to show that this graph has the same parametersK1,K2, C0, C1,S
as Γ. Until that is proved, we will write K̃1, K̃2 and so on for the parameters
associated to whichever graph Γ̃, of the form Γ3(A), is under consideration.

We assume Γ to be of K∗ type throughout, so that if Γ3(A) does not have
the same parameters as Γ, then it is of known type.

Lemma 8.1. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 3 and C > 10. Let A be a geodesic triangle of type
(1, 1, 2), (1, 2, 3), or (2, 2, 4), and Γ̃ = Γ3(A). Then Γ̃ is of generic type and
the associated parameters K̃1, C̃ satisfy

K̃1 ≤ 3, C̃ > 10

In particular, Γ̃ is primitive.

Proof. Let B be an set of n points at distance 3, with n arbitrary. Then by
repeated use of Lemma 4.19, A ⊥(3) B embeds isometrically into Γ, so B
embeds into Γ3(A). Thus Γ3(A) is infinite and satisfies C̃ > 9, and is not
bipartite.

As Γ3(A) is infinite and has finite diameter greater than 3, the classifi-
cation of exceptional metrically homogeneous graphs says that Γ3(A) is of
generic type. As C̃ > 9, Γ3(A) is not of antipodal type. Thus Γ3(A) is
primitive.

Therefore it will suffice to prove that Γ3(A) contains triangles of types
(3, 3, 1) and (3, 3, 4).

Let B be a triangle of type (3, 3, i) with i ≤ 4. We will show that A ⊥(3) B

embeds isometrically into Γ. Write B = (b) ⊥(3) E with E a pair of points
at distance i. Then by Lemma 4.19 it suffices to show that A ⊥(3) E embeds
isometrically into Γ. But we know already that A ⊥(3) B′ embeds isometri-
cally into Γ with B′ a geodesic of type (1, 2, 3) or (2, 2, 4), and these geodesics
contain all possible types of pairs E. So the result follows. �

8.1. Preparation. This section is devoted to specific configurations needed
in the sequel, or thought to be needed.

Lemma 8.2. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 3 and C > 10. Then a geodesic of type (2, 2, 4)
may be embedded isometrically into Γ with one endpoint in Γ1 and the other
two points in Γ3.
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Proof. Let u be the base point. Adjoin a point c1 with

d(c1, u) = 1

d(c1, a) = d(c1, bi) = 2 (i = 1, 2)

View the resulting configuration as a 2-point amalgamation problem with
the distance d(u, b2) to be determined. The points a, c1 ensure that this
distance is 3. So it suffices to show that the factors uab1c1 and (a1b1b2c1)
embed isometrically into Γ.

The factor uab1c1:
Relative to the base point a2, this is a pair of vertices at distance 2 in Γ2

with a common neighbor in Γ3, which we have.

The factor (ab1b2c1):
This is contained in the configuration treated in Lemma 6.5. �

In the next lemma we continue the numbering from Lemma 6.2.

Lemma 8.3. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 ≤ 3 and C > 10. Then the following configurations
embed isometrically into Γ.

(8) A triangle of type (2, 3, 4), with the edge of length 3 in Γ3 and the
third point in Γ1.
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(9) geodesic of type (2, 2, 4), with one endpoint in Γ2 and the other two
points in Γ3.

(10) A geodesic of type (1, 2, 3), with the edge of length 3 in Γ2 and the
third point in Γ3.

Proof.
(8): Let u be the base point and adjoin a point c with

d(c, a) = d(c, b1) = 1

d(c, u) = 2

d(c, b2) = 3

View the resulting configuration as a 2-point amalgamation problem with the
distance d(a, b1) to be determined. The points u, c ensure that this distance
is 2. So it suffices to show that the factors (uab2c) and (ub1b − 2c) embed
isometrically into Γ.

Relative to the base point b2, the factor (uab2c) consists of a vertex of Γ4

adjacent to two vertices of Γ3 at distance 2. This is available.
The factor ub1b2c = (b2) ⊥(3) ub1c reduces to the geodesic ub1c.
(9):
Let u be the base point and adjoin a point c with

d(c, a) = d(c, b1) = 1

d(c, b2) = d(c, u) = 3

View the resulting configuration as a 2-point amalgamation problem with
d(a, b1) to be determined. The points b2, c ensure that this distance is 2. So
it suffices to show that the factors (uab2c) and (ub1b2c) embed isometrically
into Γ.

Relative to the base point c, the factor (uab2c) is the configuration (8).
The factor (ub1b2c) = u ⊥(3) b1b2c reduces to the geodesic (b1b2c).
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(10):
Adjoin a point c in Γ3 with

d(c, b1) = 1

d(c, a) = 2

d(c, b2) = 4

View the resulting configuration as a 2-point amalgamation problem with
the distance d(b1, b2) to be determined. The points a, c ensure that this
distance is 3. So it suffices to show that the factors (ab1c) and (ab2c) embed
isometrically into Γ (over the base point).

The factor (ab1c) consists of a point in Γ2 adjacent to two points of Γ3 at
distance 2. This is available.

The factor (ab2c) is (9). �

8.2. K̃1 = K1, K̃2 = K2. We take A to be a geodesic of type (1, 1, 2),
(1, 2, 3), or (2, 2, 4), and we aim to show that in Γ3(A) we have K̃1 = K1

and K̃2 = K2.

Lemma 8.4. Let Γ be a primitive metrically homogeneous graph of diameter
4 and K∗ type with K1 = 1 and C > 10. Let A be a geodesic triangle of type
(1, 1, 2), and Γ̃ = Γ(A). Then

K̃1 = 1

Proof. We let A = (a1, a2, a3) in natural order, B a geodesic of type (1, 1, 1).
Our goal is to embed A ⊥(2) B isometrically into Γ.

Let Ab1b2 be the extension of A by points b1, b2 satisfying

d(b1, a2) = d(b1, b2) = 2

d(b2, a2) = 4

d(bi, aj) = 3 (i = 1, 2; j = 1, 3)

Suppose that we can embed this configuration isometrically into Γ. Let
Γ′ = Γ3(a1, a3). Then we have vertices b1, b2 ∈ Γ′ at distance 2 and 4 from
a2, respectively.

By Lemma 5.21, Γ′ is a connected metrically homogeneous graph of diam-
eter 4, and by Lemma 4.19 Γ′ is infinite. It follows that Γ′ is of generic type.
By Lemma 1.1 the points b1, b2 have a geodesic C of type (1, 1, 2) among
their common neighbors in Γ′. Then C must lie in Γ3(A) and our claim will
follow.

So we now turn to the construction of Ab1b2. We adjoin a point c1 with

d(c1, a1) = d(c1, a3) = 1

d(c1, a2) = d(c1, b1) = d(c1, b2) = 2

We view the resulting configuration as an amalgamation problem with the
distances between b2 and a1, a3 to be determined. The points a2, c1 ensure
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that these distances are equal to 3. So it suffices to show that the factors
(Ab1c1) and (a2b1b2c1) embed isometrically into Γ.

The factor (Ab1c1):
Adjoin a point c2 with

d(c2, a1) = d(c2, a3) = 1

d(c2, a2) = d(c2, c1) = 2

d(c2, b1) = 4

View the resulting configuration as an amalgamation problem with the dis-
tances between b1 and a1, a3 to be determined. The points a2 and c2 ensure
that these distances are equal to 3. So it suffices to show that the factors
(Ac1c2) and (a2b1c1c2) embed isometrically into Γ.

Relative to the base point a1, the factor Ac1c2 is a graph without triangles
embedded into Γ1. So this is available.

The factor (a2b1c1c2) is contained in the configuration of Lemma 6.6.

The factor (Ab1c1):
Again, this is contained in the configuration of Lemma 6.6. �

...
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9. Direct Sums
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...
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9.1. The (2, 3)-Embedding Principle.

Lemma 9.1. Let Γ be a primitive metrically homogeneous graph of diameter
4 and generic type with K1 ≤ 3 and C > 10. Then any finite (2, 3)-space A
embeds isometrically into Γ.

Proof. For each pair u, v in A with d(u, v) = 2 attach witnesses b1 = b1(u, v)
and b2 = b2(u, v) with the following metric.

d(b1, u) = 1 d(b2, u) = 1

d(b1, v) = 1 d(b2, v) = 3

d(b1(u1, v1), b1(u2, v2)) = 2 if u1, v1 meets {u2, v2}
d(b1(u1, v1), b2(u2, v2)) = 2 if u2 ∈ {u1, v1}
d(b2(u1, v1), b2(u2, v2)) = 2 if u1 = u2d(bi, x) = 3 otherwise

Note that this gives a Γ-constrained configuration as triangles of type
(3, 3, 3) are allowed.

We may view our configuration as a 2-point amalgamation problem in
which one of pairs at distance 2 in A has its distance determined by the
corresponding witnesses, and pass to the corresponding factors. Passing to
another such pair in such a factor and continuing, we arrive eventually at
factors of the form A0∪B where A0 is a set of points in A which are pairwise
at distance 3, and B is the full set of witnesses adjoined at the outset.

At this stage, each b ∈ B is at distance 1 from at most one of the vertices
of A0. So set Ba = {b ∈ B | d(b, a) = 1} for a ∈ A0.

Now A0 ∪ B is the ⊥3-sum of all the sets {a} ∪ Ba, together with the
residue B \

⋃
aBa. By Lemma 4.12 it suffices to show that the factors Ba

and the residue B \
⋃
aBa embed isometrically into Γ.

Here Ba may be thought of as a base point together with a set of points
at mutual distance 2 in Γ1. So this embeds isometrically in Γ. The residue
breaks up into even simpler components: it is the 3-direct sum of sets of
points at mutual distance 2. �
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10. Temporary Documentation

In this section we tabulate some of the useful configurations that have
been dealt with. First we give a reserve of constructions that may not be
needed.

10.1. Workspace . . . Configurations that may not be needed, and for
which the proofs may not have been worked out either. (I.e., issues that
seemed to be on the main path but have not yet materialized.)

Lemma 10.1. Let Γ be a primitive metrically homogeneous graph of diam-
eter 4 and K∗ type with K1 ≤ 3 and C > 10. Let A = (a1, a2, a3) be a
geodesic of type (1, 1, 2) in natural order and bc1c2 a triangle of type (2, 2, 2)
with

d(ci, aj) = 1 (i = 1, 2; j = 1, 3)
d(ci, a2) = 2 (i = 1, 2)
d(b, ai) = 3 (i = 1, 2, 3)

Then Abc1c2 embeds isometrically into Γ.

Proof. Adjoin a point c3 with

d(c3, b) = d(c3, c1) = d(c3, c2) = 1

d(c3, a1) = d(c3, a2) = 2

d(c3, a2) = 3

View the resulting configuration as an amalgamation problem with the dis-
tances between a2, b and c1, c2 to be determined. The points a1, c3 ensure
that these distances are equal to 2. So it suffices to show that the subfactors

(Abc3) and (a1a2c1c2c3)

embed isometrically into Γ.
Relative to the base point b the subfactor (Abc3) consists of the configu-

ration of Lemma 6.2 part (2).
The configuration (a1a3c1c2c3) is obtained by applying Lemma 1.1 to the

points c1, c2. �

Lemma 10.2. Let Γ be a primitive metrically homogeneous graph of diame-
ter 4 and K∗ type with K1 ≤ 3 and C > 10. Let B = (b1, b2, b3) be a triangle
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of type (2, 4, 4) with d(b1, b2) = 2 and let ac1c2 be a triangle of type (2, 2, 2)
with

d(c1, bi) = 2 (i = 1, 2, 3) d(c2, bi) = 4 (i = 1, 2)
d(c2, b3) = 2

d(a, bi) = 3 (i = 1, 2, 3)

Then ac1c2B embeds isometrically into Γ.

Proof. Adjoin a point c3 with

d(c3, b1) = d(c3, b2) = d(c3, c1) = 1

d(c3, a) = d(c3, c2) = d(c3, b3) = 3

View the resulting configuration as an amalgamation problem in which the
distances between c1 and b1, b2 are to be determined.

Rest omitted as may not be needed and seems to involve some auxiliary
configurations we have not yet documented.

�

10.2. Table of General Configurations. Here the assumptions are C >
10 and K1 ≤ 3.

Lemma Configuration Lemma Configuration

6.2 (6) 6.3

6.2 (5) 6.2 (7)

7.3 7.4
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Lemma Configuration Lemma Configuration

8.2 8.3 (8)

8.3 (9) 8.3 (10)

7.11

Lemma Configuration Lemma Configuration

6.2 (1) 6.2 (2)

6.2 (3) 6.2 (4)
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Lemma Configuration Lemma Configuration

6.5 6.6

6.8 10.1

10.2

10.3. Table of Configurations, Special Cases. Here we make additional
assumptions.

K1 = 1

Lemma Configuration Lemma Configuration

K1 ≤ 2

Lemma Configuration Lemma Configuration

7.5 7.9

C > 11

Lemma Configuration Lemma Configuration

7.12 ??
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