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Abstract. We classify countable metrically homogeneous graphs
of diameter 3.
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1. Introduction and outline

A connected graph is metrically homogeneous if it is homogeneous when
considered as a metric space in the graph metric—that is, any isometry
between finite subspaces is induced by some isometry of the whole space
onto itself.1 This terminology applies also to disconnected graphs, if we allow
the distance ∞, in which case it means that each connected component is
metrically homogeneous in the strict sense, and the connected components
are isomorphic. In the present paper, all graphs considered are countable
(possibly finite).

We will give a full classification of the metrically homogeneous graphs of
diameter 3 here. In diameter at most 2, the metrically homogeneous graphs
are simply the connected homogeneous graphs, classified by Lachlan and
Woodrow [LW80] by a subtle inductive argument. The argument in diameter
3 is actually much more direct than the argument in diameter 2, apart from
the fact that the classification in diameter 2 is used in the treatment of the
diameter 3 case.

1This strong homogeneity condition was introduced by Urysohn and communicated in
a letter from Alexandrov to Hausdorff in 1924 [Hu08, Ury25].
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The problem of classifying allmetrically homogeneous graphs was raised in
passing by Larry Moss in [Mos92, §6] and more explicitly by Peter Cameron
in [Cam98], in the following striking formulation: “Not even the count-
able metrically homogeneous graphs have been determined.” The context
of [Cam98] is much broader: distance transitive graphs—in geometric termi-
nology, 2-point homogeneous graphs (cf. [Wa52, Tit55]). For distance tran-
sitive graphs, there is a rich theory in the finite case, relying heavily on the
classification of the finite simple groups. We will discuss the known metri-
cally homogeneous graphs below (§1.1). It is reasonable to ask at this point
whether all metrically homogeneous graphs are known. We prove that this
is true in the case of graphs of diameter 3.

We also prove a number of results in a form not limited to the case of
diameter 3, at the cost of some additional work. As to whether one can
get a full classification without restricting the diameter, this remains to be
seen. It is very likely that the methods used here can give further useful
information about the general case without fundamental alteration, but one
expects the resulting treatment would be substantially longer and noticeably
more technical, without settling the general problem. So we have made such
generalizations only when the cost was modest. The style of argument used
appears to have considerable potential for further development, particularly
in its later stages (§§5, 6) a point we return to in §7.5.

1.1. The known metrically homogeneous graphs. A catalog of the
known metrically homogeneous graphs is given in [Che11a]. There is some
decent evidence to support the view that this catalog should give a complete
classification, or nearly so. Much of that evidence is reviewed in [Che18],
with the present work cited as one of the relevant items. Another point that
would be helpful in building up the case for completeness of the catalog to
a more substantial level would be a full treatment of the “antipodal” case
(see Definition 2.7, §2.1). A continuation of the analysis through diameter 4
would be a major advance, as the possibilities envisioned by the catalog of
known metrically homogeneous graphs are not fully realized in diameter 3.

It is shown in [Che18] that if the proposed catalog is complete with respect
to metrically homogeneous graphs of finite diameter, then it is also complete
with respect to the case of infinite diameter. Of course, it is quite possible
that the catalog is broadly correct but is missing some exceptional examples
of small diameter, or of antipodal form, in which case that reduction to the
case of finite diameter would need to be revisited. But if the catalog is
complete, or nearly so, then a natural approach to the proof is to treat the
case of finite diameter inductively, and reduce the general case to that one.

Some material that might reasonably have appeared here made its way
into [Che18] instead, notably some of the discussion of Smith’s theorem and
the treatment of the antipodal case in diameter 3. That work was done
independently by the two groups of authors before they exchanged notes.



4 DANIELA AMATO, GREGORY CHERLIN, AND H. DUGALD MACPHERSON

1.2. General Theory. Our presentation makes use of the theory developed
in [Che18]. This is merely a matter of convenience, as in most cases what
the theory tells us is not hard to verify directly in diameter 3.

One point provided by the general theory is a useful way to draw the
distinction between various exceptional cases and the generic case. This
relies on the following terminology.

If Γ is a metrically homogeneous graph, we write Γi for the set of vertices
at distance i from a fixed based point, which may be considered either as a
metric space with the induced metric, or a graph with the induced edge rela-
tion. The isomorphism type of Γi is well determined, and it is homogeneous
when viewed as a metric space with the induced metric. In particular the
graph Γ1 is a homogeneous graph, since nonadjacent pairs are at distance 2.

Recall also that a graph Γ is imprimitive if it carries a nontrivial Aut(Γ)-
invariant equivalence relation.

Definition 1.1. Let Γ be a metrically homogeneous graph.
1. We say that Γ is of exceptional local type if Γ1 is
• imprimitive, or
• contains no infinite independent set.

2. We say that Γ is of generic type if Γ1 is primitive, and for any vertex
v in Γ2, the neighbors of v in Γ1 contain an infinite independent set.

The main point of this definition is that we are able to give an explicit
classification of the metrically homogeneous graphs of non-generic type, and
that our analysis in the case of generic type depends on completely different
methods from the non-generic case.

Since in a metrically homogeneous graph Γ of generic type the associated
graph Γ1 is primitive and contains an infinite independent subset, the classes
of metrically homogeneous graphs of exceptional local type and generic type
are disjoint. But this division leaves over a third, intermediate, class, as
follows.

• Γ1 is primitive and contains an infinite independent set, but for v ∈
Γ2, the set of neighbors of v in Γ1 contains no infinite independent
set.

If we apply the Lachlan/Woodrow classification of homogeneous graphs,
then our intermediate class may be characterized more simply as follows, as
we shall explain in §2.

• Γ1 is an infinite independent set.
• For v ∈ Γ2, the set of neighbors of v in Γ1 is finite.

This is clearly a very special case, and it turns out that in this case the graph
Γ must be a regular infinitely branching tree ([Che11a, Lemma 8.6]).

We will review the general theory in §2. An important part of this theory
concerns the local structure of Γ, by which we mean the structure of Γi for
i ≤ δ.
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Recall that Γi consists of the points at distance i from a given base point,
considered in the first place as a metric space with the induced metric. Then
Γi is an integer valued homogeneous metric space whose structure is indepen-
dent of the choice of base point. If Γi contains no edges (i.e., the distance
1 does not occur), then this space is not so useful in our present state of
knowledge. But if Γ is connected, and Γi contains an edge, then Γi with the
induced graph structure turns out to be a metrically homogeneous graph.
We will give more precise statements of this in §2.

1.3. The result. The classification that results from our analysis is as fol-
lows. The statement uses the notation of the catalog of [Che18], and we leave
its detailed explanation to §2. But modulo the general theory, we will need
to focus on group (2) below, and specifically group (2c), for which there are
essentially 5 possibilities, corresponding to the numerical parameters K1,K2

shown, subdivided further according to the parameter C into a total of 10
classes of examples. In addition to the numerical parameters K1,K2, C our
main theorem involves an auxiliary parameter S, which is a family of (1, 3)-
spaces, that is, spaces in which every distance is 1 or 3. In the chart below,
additional constraints on the members of S are given; these depend on the
values of the numerical parameters. The set S plays a secondary role in the
statement of our main theorem below, and also for much of our analysis, but
this parameter moves to center stage eventually in the course of §6. The roles
played by these parameters are described in §2.3 in a more general setting.

The division of group (2) into three cases comes from the general theory.
In general we write δ for the diameter of our metrically homogeneous graph.
Here we specialize to the case where δ = 3, but we write the cases (2b, 2c)
below in a form which remains relevant for larger values of δ. When δ = 3
the case (2b) is very marginal; for larger δ, that case allows a wider variety
of examples than we see here.

Recall that according to our conventions, a metrically homogeneous graph
of finite diameter is connected.

Theorem 1 (Classification Theorem, Diameter 3). Let Γ be a metrically
homogeneous graph of diameter δ = 3. Then Γ is one of the following.

(1) Finite:
(a) An n-cycle for n = 6 or 7;
(b) The antipodal double of C5 or of L[K3,3];
(c) The bipartite complement of a matching between finite sets.

(2) The graphs Γ3
K1,K2;C,C′;S with admissible parameters, as follows:

(a) If K1 =∞:
Then K2 = 0, C = 7, C ′ is 8 or 10, S is empty. With C ′ = 8
this is the bipartite complement of a matching between infinite
sets and with C ′ = 10 it is the generic bipartite graph.
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(b) If K1 <∞ and C ≤ 2δ +K1 (C ≤ K1 + 6):
Then K1 = 1, K2 = 2, C = 7, C ′ = 8, and S is empty. This is
the generic antipodal graph of diameter 3.

(c) If C > 2δ +K1 (C ≥ K1 + 7): Then C ′ = C + 1.
The various possibilities in this last case are shown in Table 1
below.

K1 K2 C S
1 2 9 or 10 cliques and anticliques
1 3 8, 9, or 10 If C = 8 then S is empty.
2 2 9, 10 anticliques
2 3 9, 10 anything not involving a 3-clique K3

3 3 10 empty

Table 1. δ = 3: Case (2c)

Here part (1) covers exceptional local type, and part (2) covers generic
type, in the sense of Definition 1.1; cf. §2.1. For the definition of antipodality
in our context, see Definition 2.7.

The third column of Table 1 is devoted to the set of Henson constraints S;
cf. §1.6. We remark that in our classification, the set S must necessarily be fi-
nite (see §2.3), and in particular there are only countably many isomorphism
types of metrically homogeneous graphs of diameter 3 (the classification con-
jecture for unrestricted diameter would imply, similarly, that there are only
countably many isomorphism types of metrically homogeneous graph).

For the proof, we first quote general theory to reduce to generic type, then
deal with imprimitive cases of generic type by special methods (§2). We
then devote our attention exclusively to primitive metrically homogeneous
graphs of generic type, beginning in §3.2. The first step is to recover the
parameters δ,K1,K2, C, C

′,S from the structure of the graph in a useful
way (Definition 3.1). The final step is to show that our graph Γ and the
“target” graph ΓδK1,K2,C,C′,S have the same finite metric subspaces. Between
these two steps there are two others.

• Show that the parameters satisfy various numerical conditions (ad-
missibility) which ensure that the “target” ΓδK1,K2,C,C′,S actually ex-
ists! (Proposition 3.19).
• Prove that Γ and ΓδK1,K2,C,C′,S have the same isometrically embedded
triangles.

This last point may seem like just one very special case of the more general
problem of determining the finite subspaces of Γ, but as the point of the nu-
merical parameters is to specify a set of forbidden triangles for ΓδK1,K2,C,C′,S ,
this really is part of the initial set-up.
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In §5 we will review the preliminary steps of our approach, and lay out
the plan of attack for the final analysis.

In our classification, we remark that the graphs falling under the cases
C = 8 or K1 = 3 occur in the appendix to [Che98] in a list of all primitive
homogeneous structures with three or four nontrivial 2-types, all of them
symmetric, not allowing “free” amalgamation, and which are determined by
a set of forbidden triangles. It turns out that a number of examples in
that list can be interpreted either as metrically homogeneous graphs (mostly
of diameter 4) or as generic expansions of metrically homogeneous graphs
of diameter 3 to a richer language. A number of examples still remain that
cannot be so interpreted, and it would be interesting to find a way to account
for them.

1.4. Terminological conventions and general assumptions. We take
note of a few points of language which may require elucidation.

Some common terms make sense in both the graph theoretic and metric
contexts, generally with different meanings.

In the metric setting, any three points constitute a triangle, with the
associated metric structure. The term clique is used in the graph theoretic
sense (the metric term would be simplex).

Paths in the metric sense are more general than paths in the graph theo-
retic sense. Given a sequence of points (a0, . . . , an) in a metric space one may
consider this as a labeled graph in two distinct senses, namely by labelling
the pairs (ai, ai+1) with their distances, or by labelling all pairs (ai, aj) with
their distances (i.e., taking the full induced metric structure). In the met-
ric setting, we are particularly interested in geodesic paths (or more briefly,
geodesics), in which the induced metric structure is the path metric from
the induced path structure. In particular we speak of geodesic triangles; this
means that the vertices can be arranged to form a geodesic path.

In a metrically homogeneous graph of diameter δ, all geodesics of length
δ are realized.

Of course, the underlying graph will generally contain some paths in the
graph theoretic sense which are not geodesics. However, any two points will
be connected by some path which is a geodesic. As noted in [Cam98], this
property characterizes the metric spaces associated with metrically homoge-
neous graphs, within the broader class of integer valued metric spaces.

We use the notation Kn for an n-clique, and, in particular, K3 denotes a
triangle in the graph theoretic sense. At the same time, we use the notations
K1,K2 for certain numerical parameters, as discussed above. The meaning
of these notations should be unambiguous, in context.

Finally, as the paper is about metrically homogeneous graphs of diameter
δ = 3, the condition δ = 3 is in force through much of the paper, starting
with §3.2. The first part of the paper prepares material based on very general
considerations, and most of it applies to the case δ ≥ 3. In particular, we
take up the discussion of generic type (Definition 1.1) in §2.3, which makes
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sense for any diameter δ ≥ 2, and we explain why the full classification
problem reduces to the case of generic type with δ ≥ 3. What we quote
from the general theory holds for any diameter δ ≥ 3, and will for the most
part be given in its general form before being specialized to the case δ = 3.
In particular, §3.1 provides some useful information in full generality, just
before the main part of the analysis gets underway.

We also work with the assumption δ = 3 in §2.5. Something can be said
at a greater level of generality, but the general analysis is incomplete and the
case δ = 3 can be handled efficiently on its own, so we take that approach
here. Thus, once we begin the substantive portion of the analysis in §3.2,
we will be supposing that δ = 3, and that the graph in question is primitive
and of generic type.

Information about the case δ ≤ 2 is also very useful, and indeed is funda-
mental to our approach, but this case is covered completely by the classifi-
cation theorem of Lachlan/Woodrow [LW80] (Fact 2.1, §2.1).

1.5. Homogeneity, Amalgamation, and Classification. In the study of
homogeneous structures, methods of remarkable generality and power have
been found for analyzing the topological and dynamical properties of the as-
sociated automorphism groups, cf. [KPT05, KeR07]. This assumes however
that one knows the homogeneous structures well, in the sense that one has
firm control of the associated amalgamation class of finite structures and
can work with it combinatorially. This theory calls on structural Ramsey
theory and descriptive set theory, notably the existence of ample generics;
from ad hoc beginnings, the combinatorial methods developed have evolved
into systematic theories, represented by [HuN18, HuN19, HeL00, Sol05].

With regard to classification problems for homogeneous structures in spec-
ified languages the situation is less clear. In the case of finite structures there
is a highly developed theory, which makes systematic use of the ideas of sta-
bility theory as well as the classification of the finite simple groups. This
theory applies in fact to the classification of stable homogeneous structures
for a finite relational language. This is discussed in [Lac87, Lac96, Che00],
and is extended in [ChH03].

More recently, the particular case of homogeneous structures for a lan-
guage consisting of a finite set of linear orders has been completely settled
by the application of ideas of the type associated with neo-stability theory
(NIP) in model theory [Sim18, BrS18]. This is a very interesting case in
which the application of direct amalgamation theoretic arguments is ade-
quate in the case of at most three linear orders, but when approached in
this fashion the natural analysis appears to blow up with the size the lan-
guage. It is also of interest that in the imprimitive case certain generalized
metric spaces (with values in a finite lattice) appear, and one of the points in
the classification is that these themselves must be homogeneous. Thus the
subject is not as distant from our present concerns as might first appear, as
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metrically homogeneous graphs may also be usefully viewed as generalized
metric spaces in the following way.

1.5.1. The "magic" semigroup. The theory of the known metrically homoge-
neous graphs has benefited from their relation to another type of generalized
metric space.

The appropriate general setting for this is the following.

Definition 1.2. A distance semigroup is a commutative semigroup D to-
gether with a partial order � which extends the “natural” order

a �nat b ⇐⇒ ∃x b = a+ x

If D is a distance semigroup then a D-valued metric space is a set A equipped
with a symmetric D-valued distance d(x, y) defined for x, y distinct, satisfying
the triangle inequality

d(x, y) ≤ d(x, z) + d(y, z)

for x, y, z distinct.

In the case studied by Braunfeld and Simon, D is a finite lattice and �
is the lattice order. The corresponding class turns out to be an amalga-
mation class if and only if the lattice is distributive, in which case one can
amalgamate using the shortest path construction, which is defined as follows.

Definition 1.3. Let D be a distance semigroup and A a D-labeled graph.
For a path P in A, the length of P , denoted ||P ||, is the sum of the labels on
P .

The shortest path metric d on A is defined as follows.

d(x, y) = inf(||P || |P a path from x to y)

For this definition to make sense, however, the indicated infima must exist.
In particular if the graph A in question is not connected, and x, y are chosen
to lie in distinct components, then the infimum is taken over the empty set,
and thus denotes the maximum element of D—so we require D to have a
unique maximum element.

Our goal here is to use distance semigroups to understand metrically ho-
mogeneous graphs and possibly other structures for symmetric binary lan-
guages. The usual way to treat the set [δ] = {1, . . . , δ} as a semigroup is via
truncated addition

x⊕δ y = min(x+ y, δ)

But what we really aim at is captured by the following definitions.

Definition 1.4. Let A be a class of edge-labeled graphs and let D be a dis-
tance metric semigroup on the set of labels.

A partial A-structure is a weak substructure of an A-structure. In the
cases of interest, the underlying graph structure on structures in A will be
complete (and every edge is labeled) and a partial A-structure is a subgraph
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(not necessarily induced) of an A-structure A in which each edge which is
present inherits its label from A.

To complete a partial A-structure means to embed it as an edge-labeled
subgraph into a structure in A (normally, on the same set of vertices).
D is compatible with A if every structure in A is D-metric.
Suppose that D is compatible with A.
• D gives an amalgamation method for A if for every amalgamation
diagram in A, the shortest path completion relative to D is well de-
fined and lies in A.
• D gives a completion method for partial A-structures if for every
partial A-structure A, the shortest path completion relative to D lies
in A.

What interests us here are amalgamation methods for strong amalgama-
tion classes (i.e., classes for which amalgamation can be carried out without
identification of points). If the class A in question is in fact a strong amal-
gamation class, then any completion procedure includes an amalgamation
method for the class.

In order for the distance semigroup structure on D to give an amalgama-
tion method for A, the shortest path completions required must exist, and
in particular the infima taken over the set of all lengths of paths between
a given pair of points must exist. This is not purely a condition on D: for
example, forbidden cycles in A can be read in various ways as pairs of path
lengths which will not occur simultaneously in any A-structure, and whose
infima are therefore not required.

We can now state a fundamental result.

Fact 1.5. Let Γ be a known primitive metrically homogeneous graph of
generic type. Suppose that Γ has diameter δ, auxiliary numerical param-
eters K1,K2, C, C

′, and Henson constrains S. Let A be the corresponding
amalgamation class of [δ]-labeled graphs and let M be fixed so that ΓM is a
connected graph of diameter δ.

Then there is a distance semigroup structure DM,C on [δ],� for which M
is the maximum element, which gives a completion method for the class A,
and, in particular, an amalgamation method for A.

The condition imposed on M here can be given explicitly as follows.

max(δ/2,K1) ≤M ≤ min(K2, (C − δ − 1)/2)

Namely, K1 ≤M ≤ K2 to allow distance 1 to occur in ΓM , and δ/2 ≤M ≤
(C − δ − 1)/2 to allow δ to occur.

Furthermore, the partial order on DM,C is the natural order derived from
the associated operation +M,C on [δ], which forM = δ is the usual truncated
addition. In general +M,C is defined as follows: a+M,C b is the value in the
interval

[|a− b|,min(a+ b, (C − 1)− (a+ b))]



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER THREE 11

which is closest to M (observe that this is either M or one of the two end-
points).

Now from what we have said so far it is not clear why DM,C should be a
semigroup, why Γ is DM,C-metric, why the shortest path completion is al-
ways defined when needed, or why, when it is defined, the completion is again
D-metric and in A. And the route to this at present remains roundabout. It
begins with the detailed computations used to establish the amalgamation
property in [Che18] and then the completion property of [ABW+17], fol-
lowed by the analysis in [HKK18, HKN2x]. A similar formulation to the one
we give here is found in [EHKL19], which uses the terminology of Stationary
Independence Relations, another way of discussing canonical amalgamation
procedures.

In principle, one would hope that this point of view would give a cleaner
proof of the amalgamation property for admissible sets of parameters in the
primitive case, but this has not yet been worked out in a self-contained
way. In particular the parameter C ′ is not actually used in the algebraic
construction, but the inequalities relating to this parameter necessarily play
a role in the proof.

In the case of imprimitive metrically homogeneous graphs of generic type
there is a very similar completion procedure but it cannot be expressed as
simply in purely algebraic terms (in particular, in the antipodal case, we no
longer have strong amalgamation).

In the context of the classification in the case δ = 3, this algebraic struc-
ture is too limited to contribute much to our understanding.2 But in general,
this point of view contributes something to an understanding of the roles of
the numerical parameters and the nature of the parameter constraints. In
particular the corresponding natural order structure on [δ] induces the usual
linear order on {1, . . . ,M} and the reverse of the usual order on {M, . . . , δ},
and the extremal values 1, δ appear as the two minimal elements of [δ]. If
the methods used in the present paper can be extended to larger diame-
ters, then the associated semigroup may become more prominent, and may
suggest useful ways of organizing the ideas, at least.

1.5.2. Partial structures and forbidden homomorphisms. Very recently an-
other approach has emerged which gives a satisfying explanation for the
form of the conjectured classification, though not, as yet, a proof.

The original goal of the classification in generic type, apart from the an-
tipodal case, is to show that the constraints on Γ consist of triangles and
(1, δ)-spaces (from which the general classification then follows using known
results, if the antipodal case can be handled separately). An alternative
point of view runs as follows, if one restricts attention to metrically ho-
mogeneous graphs for which the associated amalgamation class has strong
amalgamation.

2See however [ABW+17, Table 1]: typically M = 2 in this case, and distance 2 will
play a special role in our analysis.
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In this case, it is useful to focus on the partial substructure (reduct) Γ1,δ,
obtained from Γ by forgetting all distances other than 1 and δ. The struc-
ture Γ can be recovered definably from Γ1,δ, using the triangle inequality to
bound all other distances above and below using geodesic paths involving
only distance 1 and δ. The weak substructures of Γ1,δ obtained by remov-
ing additional edges and vertices can be characterized by a family F of
homomorphically forbidden (1, δ)-spaces (the homomorphic images of these
structures are forbidden substructures). In terms of Γ1,δ the classification
problem takes on the following form: show that F may be taken to consist
solely of cycles and complete graphs.

Hubička, Konečný, and Nešetřil have shown in work in preparation that
under reasonable hypotheses on the family F , the desired conclusion follows,
and that furthermore the precise classification in terms of numerical param-
eters then follows by a direct argument involving relationships among the
various cycles, more naturally than via direct amalgamation arguments.

The key to their analysis is the characterization of the relational com-
plexity of the original structure Γ in terms of the sizes of so-called minimal
separating cuts in the forbidden structures in F , worked out in general in
[HuN16]; here the relational complexity in question is 2, and this gives strong
information about the structures in F .

As mentioned, this analysis starts with the assumption of strong amal-
gamation as well as an additional condition on the family F , namely mini-
mality: that is, none of the structures in F contains a homomorphic image
of another structure in F . Minimality can easily be achieved if F is finite,
and for primitive metrically homogeneous graphs of known type it turns out,
after the fact, that F is finite. On the other hand, a typical case involving an
infinite set of constraints would be the generic bipartite graph of diameter
δ, in which odd cycles of arbitrary length must be omitted, and there is no
corresponding minimal family as the shorter cycles are homomorphic images
of the longer ones.

It seems reasonable to say that the analysis by Hubička, Konečný, and
Nešetřil provides some very good evidence that the classification conjecture
should be (largely) correct—the antipodal case departs from this model, as
it involves a different notion of Henson constraint, but one expects to handle
imprimitive cases separately.

It remains very unclear how to apply this point of view to prove classifi-
cation results at an appropriate level of generality. There are two questions
to be resolved.

• Can strong amalgamation be proved for primitive metrically homo-
geneous graphs of generic type; in particular, can this be done for
diameter 3 without first deriving the full classification?
• Can the reduction to cycles and Henson constraints be accomplished
without a minimality condition on the family F? (Note that the
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result is true also in the bipartite case even though the minimality
assumption on F is not achievable, as noted above.)

In particular, a test case for this method would be the classification of
primitive metrically homogeneous graphs of generic type and diameter 3
under the hypothesis of strong amalgamation. If this can be done relatively
efficiently, then one should consider whether the work in this paper can be
replaced by some more direct approach to a proof of strong amalgamation.

To conclude, we state the general model theoretic result which lies behind
the approach of Hubička, Konečný, and Nešetřil’s.

Theorem 2 (Hubička, Konečný, and Nešetřil, in preparation). Let U∗ be a
structure homogeneous in a binary language, L∗ its canonical language and
L ⊆ L∗ a sublanguage containing all unary relations of L∗. Denote by U the
L-reduct of U∗. Assume the following.

(1) All relations of U∗ are definable in U .
(2) U is the unique existentially complete universal structure for its age,

up to isomorphism.
(3) There exists a minimal family of finite connected L-structures F such

that the age of U equals Forbh(F) (forbidding homomorphisms from
structures in F).

Then U∗ is described by triangle constraints and L-Henson constraints (that
is, L∗-structures whose L-reducts are complete). Moreover, F consists of
irreducible structures (complete labeled graphs) and cycles.

In the application to metrically homogeneous graphs, U is the reduct to
the language {1, δ}, conditions (1,2) hold, and in the presence of strong
amalgamation a form of (3) holds, but without the minimality condition.

1.5.3. Combinatorial methods based on amalgamation. Classification tech-
niques based on combinatorial methods via the theory of amalgamation can
also be sophisticated and conceptual. The present paper does not require
the full range or sophistication of the existing techniques. In order to clarify
how our analysis does proceed, and what additional resources this approach
offers, we will first survey the general methodology and then discuss in more
detail how our arguments go here.

The methods based more or less directly on the theory of amalgamation
classes have the effect of efficiently reducing a classification problem of a
suitable type to a definite finite set of checkable lemmas, each of which is in
fact a special case of the result aimed at. One difficulty with this approach
is that the number of cases may be very large and in principle there is no
a priori bound on the length of the checking procedure, either. To be more
precise, the required lemmas are checkable if they are true; but the associated
decision problem (presented in more detail below) may be undecidable; this
problem, raised by Lachlan, is one of the central theoretical questions in the
subject.
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Classification methods based on the theory of amalgamation are of the
following four types, which are of varying degrees of sophistication and power.

• Direct amalgamation arguments;
• First reduction: Induction via auxiliary amalgamation classes [LW80,
Lac84];
• Second reduction: A Ramsey-theoretic lemma [Lac84];
• Third reduction: Change of category (expansion of language) [Lac84].

.
These methods sufficed for the classification of the homogeneous directed

graphs [Che98], and in the classification of the homogeneous ordered graphs
[Che18], which generalize both [Lac84] and [LW80] while adhering closely to
the method of [Lac84], where all four ingredients already occur. Generally
speaking, these methods are most easily applied when characterizing free
amalgamation classes, and one tends to dispose of the other cases first by
more ad hoc and elementary methods.

For example, there are uncountably many homogeneous directed graphs
associated with free amalgamation classes, but only countably many which
are not free. The latter have an exceptional character; after dealing with
these exceptional cases, the remaining uncountable family can be dealt with
uniformly in an inductive framework, by what amounts to a reduction to
finitely many cases (modulo some inductive parameters). This is lengthy,
and depends on several applications of Ramsey’s theorem, but it is quite
manageable.

Let us be more explicit about the nature of these four types of argument.

• Direct amalgamation

For A and B finite sets of finite structures we write∧
A =⇒

∨
B

if every amalgamation class containing the structures in A contains some
structure in B. Frequently B consists of the single structure B and then we
write the following. ∧

A =⇒ B

Such an assertion, when true, can always be verified in finitely many steps
by performing a suitable search, naturally organized as a search in a tree
of all possible results of all possible amalgamation problems. The resulting
arguments are called direct amalgamation arguments as they involve posing
appropriate amalgamation problems and considering the possible solutions.
Though the relevant search tree tends to be exponentially large, the shortest
path to the desired conclusion tends to be short, in practice. This is con-
venient, since the techniques used require several such direct amalgamation
lemmas to be verified along the way, as we will see in the body of the present
work, notably in §6.
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Still, the complexity of such direct amalgamation problems is not known.
Lachlan has conjectured that the associated decision problem is decidable
[Lac87], and has proposed another conjecture which in the binary case is
stronger: any amalgamation class is the intersection of finitely constrained
amalgamation classes; in particular, when such a direct implication fails, the
failure is witnessed by a finitely constrained class.

We are agnostic on this point. Conjectures in this area are not much con-
strained by evidence. When classification results have been obtained, while
the proofs may be long, the lists have been compact and comprehensible.
But it is worth bearing in mind that we may be considering just a few in-
stances of an undecidable problem. Other model theoretic problems such as
determining whether the joint embedding problem holds, or whether there
is a countable universal model, become undecidable at a comparable level of
generality [Bra19, Che11b].

As we have mentioned, the more sophisticated approaches available work
most easily when aiming to characterize free amalgamation classes; and this
is the point at which more straightforward methods tend to break down.
This applies to both the first and second reductions (induction over amal-
gamation classes, Ramsey-theoretic arguments), and in their absence, the
third reduction does not arise.

Any classification results in this subject are likely to make some use of
direct amalgamation arguments along the way—though as we now have a
body of general theory derived in this manner, valid for any diameter, some
of this material belongs to the foundations of the subject and will not need
to be revisited.

• Induction over amalgamation classes

This is a very powerful method, introduced in [LW80], and developed in
new directions in [Lac84]. Subsequent work has tended to use the latter
variant.

This type of induction is an elegant technique for proving that certain
amalgamation classes are very large. For example, if an amalgamation class
A of tournaments contains all tournaments of order 4, one wishes to prove
that this class must contain all tournaments: this is the final and major step
in the classification of countable homogeneous tournaments.

The idea in such cases is to define a subclass A∗ of A which is also an
amalgamation class, but which has stronger properties; for example, one may
wish to require that every extension of a structure in A∗ by a single vertex
must lie in A.

The original target theorem would imply that A∗, like A, itself contains
all tournaments. However it suffices to prove that A∗, like A, contains all
tournaments of order 4; then a trivial inductive argument proves the desired
result. So the question is this: how should we define A∗ so as to have both
of the following properties?

— Any extension of a structure in A∗ by a single vertex lies in A.
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— A∗ is an amalgamation class.

The following definition works: A∗ is the class of finite tournaments A such
that any expansion of A by a linearly ordered tournament belongs to the
class A. Now the statement that every tournament of order 4 belongs to A∗
decodes into the statement that any tournament which is an expansion of a
linearly ordered tournament by four vertices belongs to A.

The earlier argument of [LW80] in the context of graphs relies on the
symmetry of the language and involves a very different choice of A∗, but
with a similar mechanism in operation to complete the proof.

• The Ramsey-theoretic argument and a change of categories

Induction over amalgamation classes has replaced a problem about arbi-
trary tournaments by a problem about tournaments obtained from a linear
order by adding four vertices. These are still hard to handle.

In a second reduction, by a suitable mix of an argument based on Ram-
sey’s theorem and amalgamation, this class can be replaced by the class of
tournaments obtained by adding a single vertex to a linear stack of small
tournaments; then after moving to a suitable larger category the stack can
be reduced to a stack of height two, by an inductive argument. At this point,
in the case of tournaments, all structures in view have at most nine vertices
and one can arrange matters in this case to end very rapidly indeed. And one
is also ready to generalize to arbitrary homogeneous directed graphs along
similar lines, following the same general plan.

The difficulty that arises when one applies this set of techniques in the
context of homogeneous metric spaces is that the triangle inequality generally
eliminates the possibility of free amalgamation and thus poses obstacles to
the application of the Ramsey-theoretic approach. More precisely, when the
class A excludes certain forbidden substructures, the definition of A∗ has
to take this into account, and unless A is a free amalgamation class this
is likely to break the Ramsey-theoretic argument, unless one works with
a rather tightly controlled version of A∗; and if one takes that route, the
method proves less. However the tool remains a powerful one to have in
one’s repertoire even in such cases, and the information it is capable of
providing may be very helpful in the general case.

In the case of metrically homogeneous graphs, there are a number of points
to be settled before reaching the general case of the classification problem:
these include the bipartite case, and local analysis as in [Che18], which is
reviewed in 3.1. In a sense the case δ = 3 treated here also belongs to
this phase of preliminary analysis: if one hopes to make use of induction on
diameter, this would have to be the base of the induction, as the classification
in diameter at most 2 departs from the general pattern in some ways. It
would not have been shocking to find additional “sporadic” structures at this
stage; the fact that none appear is encouraging.
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All of this—the bipartite case, the local analysis in its present state, and
the analysis of the case of diameter 3—can be handled by direct amalgama-
tion arguments. The question for the future is whether other ingredients will
become more prominent at later stages.

It is curious and unexpected that while the classification of the homo-
geneous graphs (that is, the case δ = 2) requires the more sophisticated
methods we have described (either as given in [LW80] or in the alternative
approach derived from [Lac84]), in the case of diameter 3 we are able to
bootstrap from the diameter 2 case using considerably more direct methods.
But the diameter 2 case is invoked in the reduction of this problem to the
case of generic type.

How, in fact, does this analysis go?

1.6. Structure of the Proof (δ = 3). The general classification theory,
valid for any diameter δ, reduces the classification problem to generic type,
(Definition 1.1). For generic type there is a reasonably uniform description
of the expected classification in terms of five numerical parameters (one
of which is the diameter δ) and a family of side constraints called Henson
constraints. These are finite metric spaces of a specific form, typically (1, δ)-
spaces, that is spaces in which every distance is 1 or δ (with a variant in
the case of antipodal graphs which is not relevant in our case, δ = 3). In
particular, if all distances equal 1 these are forbidden cliques, and if all
distances equal δ we will call them anticliques.

For the case δ = 3, all possibilities are shown in Table 2, page 35. From a
practical point of view these should be grouped as follows.3

• Imprimitive: Bipartite and antipodal graphs (§2.5)
• Primitive, extremal (large K1 or small C): K1 = 3 or C = 8 (§5)
• Primitive, typical: K1 ≤ 2, C ≥ 9 (§6)

Imprimitive cases with δ = 3 are very special and can be handled easily by
direct arguments. In general one has a decent grasp of the imprimitive case,
which divides into the bipartite and antipodal cases. The bipartite case has
already been handled in full generality, in an inductive framework. It would
be very nice to have a similar analysis of the antipodal case in general, and
it would be very natural to single out this case (and the natural analog of
the second group as well) for special treatment before approaching the more
typical cases of the general problem.

Thus all of the real work in the present paper will come in the primitive
case. But between §2.5, dealing with the imprimitive cases, and §5, where
the first of the primitive cases is taken up, some extensive preparations are
required.

3The first two cases listed have natural generalizations to δ ≥ 3 and should probably
be treated as special cases in that context as well; the last case, “none of the above,” is
exceptionally well behaved for δ = 3 and does not provide a clear model for the general
case.
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1.6.1. Preparatory steps. Let Γ be a metrically homogeneous graph of diam-
eter 3 and generic type (and primitive, but this is a secondary issue at this
stage).

The first stages of our analysis proceed as follows.

(1) Associate appropriate parameters (δ,K1,K2, C, C
′,S) to the graph

Γ (Definition 3.1).
(2) Prove that these parameters are admissible, so that there is a unique

known metrically homogeneous graph Γ∗ of generic type with the
same parameters (Proposition 3.19).

(3) Prove that Γ embeds into Γ∗ (Corollary 4.3 and Remark 4.4).
(4) Prove that Γ∗ embeds into Γ (Propositions 5.3 and 6.2).

In §3.2 we explain how the various numerical parameters are defined, and
we show that for δ = 3 these parameters take on only the values anticipated
by our classification. One would very much like to carry through all of this
analysis in general. Indeed, some of the work makes no assumption on the
diameter (e.g., Corollary 3.18).

In the case of the known metrically homogeneous graphs, these numeri-
cal parameters determine precisely the triangles which embed into the given
metrically homogeneous graph. In §4 we check that for δ = 3 these parame-
ters fulfill their intended purpose, determining which triangles are realized,
in the expected manner. Again, some of the results obtained in this section
are not limited to the case δ = 3 (see §4.1). It will be seen that this analysis
completes steps (1–3) of our plan, and also touches on the simplest case of
(4), namely the embedding of triangles into Γ.

Throughout these preliminary developments one encounters a number of
facts proved by explicit amalgamation arguments—and one would encounter
more if we had not chosen to take advantage of a body of material where a
number of useful principles are already proved quite generally. The classifi-
cation results to be proved predict what facts of this type should be available
at each stage, and amalgamation arguments provide a natural and easy way
to check that these facts hold when needed.

But when we address the fourth point we will see less straightforward uses
of the direct amalgamation method later, where the focus is on the identi-
fication of an appropriate inductive framework for the main amalgamation
arguments (something the more sophisticated Ramsey-theoretic arguments
alluded to above are intended to accomplish more forcefully, when they ap-
ply).

So at this point in the analysis, we have identified the expected target of
our analysis, the known graph Γ∗ which is expected to be isomorphic to Γ,
and we have established the embedding in what may be expected to be the
easier direction, namely the embedding of Γ into Γ∗.

This brings us to our two main results of the present work, the embedding
theorem in the extremal cases (§5) and the embedding theorem in the typical
cases (§6).



METRICALLY HOMOGENEOUS GRAPHS OF DIAMETER THREE 19

1.6.2. A further reduction of the extremal cases. There is one more reduction
before we arrive at the heart of the matter, which applies only to the two
extremal cases considered in §5. The two extremal cases, C = 8 and K1 = 3,
are in a sense the next cases after the imprimitive ones, since C = 7 gives the
antipodal case, andK1 = 4 (orK1 =∞, since δ = 3) gives the bipartite case.
These two “almost imprimitive” cases are dual in a way that the antipodal
and bipartite cases are not. This is explained in §5.1: the two graphs we seek
to characterize are isomorphic up to a permutation of the language—that is,
up to a permutation of the set of distances [δ] = {1, . . . , δ}. Thus in the
treatment of the extremal case it suffices to deal with the case

K1 = 3

Metric spaces which remain metric after permuting the distances are an
oddity, but a known oddity in the context of distance regular graphs and
more generally in the theory of (finite) association schemes [BaB80, Gar80].
Rebecca Coulson has shown [Cou18] that there is a similar phenomenon in
the context of metrically homogeneous graphs: namely in every diameter δ
there is a pair of ostensibly very different metrically homogeneous graphs
which in fact become isomorphic after a permutation of the set of distances;
here one of the graphs has C = 2δ+2 and the other hasK1 = δ; furthermore,
there are no other such pairs (though there are some other instances of
metrically homogeneous graphs allowing a non-trivial permutation of the
distances, which however results in an isomorphic graph).

This fortunate duality cuts the number of extremal cases requiring con-
sideration in half, leaving just one special case rather than two. And by
Coulson’s result, the same holds for any value of δ: there are two extremal
cases which appear to be quite different but can be treated as one.

1.6.3. The embedding lemma: inductive framework. There are broad simi-
larities in the treatment of the extremal primitive case and the more typical
primitive cases. We will discuss the more typical case, but much of this
applies in some form also in the extremal case, with some simplifications.

In our treatment of the main embedding lemma (Proposition 5.3 for the
extremal case, and Proposition 6.2 for the typical case) the key point will
be to set up an appropriate inductive framework for the proof. Writing Γ∗

for the graph of known type with the same numerical parameters as Γ, the
embedding lemma states that any finite configuration embedding into Γ∗

also embeds into Γ, from which the conclusion Γ ∼= Γ∗ follows rapidly.
The main difficulty is to find numerical measures of complexity for finite

configurations which we are able to reduce systematically by appropriate
amalgamation constructions, even in cases where the factors of the amalgam
have more vertices than the target structure. This provides the inductive
framework which ultimately makes our analysis successful.

We will discuss this inductive framework as implemented in the case of the
typical (that is, non-extremal) primitive cases of generic type and diameter
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3. These cases are shown in Table 4, p. 66. Observe that no forbidden
triangle involves the distance 2. Our claim is that no minimal forbidden
configuration involves the distance 2, either; in other words, the minimal
forbidden configurations involve only the distances 1 and 3. Phrased as
an embedding lemma, this takes on the following form (Proposition 6.1):
if A is a finite [3]-valued metric space such that every triangle and every
{1, 3}-valued subspace embeds into our given metrically homogeneous graph
Γ, then we claim that A does as well. To conclude this outline, we will define
an appropriate measure of complexity for such configurations A, and then
sketch the main lines of the proof of the embedding theorem in terms of these
complexity measures.

We first consider the graph GA induced on A by taking as edge relation
“d(x, y) ∈ {1, 3}”; the trivial case is that in which GA is a clique (A is a
(1, 3)-space). The two associated parameters of interest are the following.4

µ = max(|K| |K ⊆ GA a clique)
ν = |{v ∈ GA | deg(v) ≥ 2}|

For the proof of the embedding theorem, we work inductively, and consider
a putative counterexample A which minimizes first µ, and then ν. The case
in which GA has a unique clique of maximal size is handled by a direct
amalgamation construction (introducing some auxiliary vertices to simplify
the situation with respect to our measure of complexity) in Lemma 6.3. Then
one can argue that in the minimal case one has ν ≤ 2 (Lemma 6.5). At this
point our choice of numerical parameters has paid off substantially in terms
of a reduction in complexity of the essential cases. But this still leaves much
to do.

Various direct arguments take care of the cases in which GA is a star or
ν = 0 (Lemmas 6.15, 6.18).5

After these preparations, in our inductive analysis we consider a finite
metric space A whose triangles and (1, 3)-subspaces embed into Γ, but which
is supposed not to embed into Γ, chosen so as to minimize, in succession,
the parameter µ, then ν, then the number of non-trivial components of GA
(which will be edges), and in last place, the cardinality of A.

At this point the configuration is tightly constrained. The graph Γ2 in-
herits all of the essential properties of Γ, so induction on |A| allows one to
suppose that every vertex of A has a neighbor in the graph GA,6 while by
the prior reductions there are either one or two vertices of degree at least 2
in GA, and if there are two then they lie on an edge.

4Cf. Definition 6.4 in a different notation.
5The treatment of the “base” case ν = 0 relies very directly on the assumption δ = 3.
6A typical reduction of the type which applies only with δ = 3, as it passes through

the subgraph Γ2.
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One then shows that GA is connected, and the resulting configurations
are handled by one additional induction involving direct amalgamation con-
structions. In this case, the auxiliary amalgamations tend to involve adding
two additional points to the original configuration to fix one distance via the
triangle inequality; here again one needs inductive measures of complexity
which can go down while the number of points involved actually increases.
Typical arguments of these kinds are seen in the final proof of Proposition
6.1.

The method used in the proof of the two forms of the embedding theorem
has considerable potential for further development, and one would expect
that in general the main case division would be the division between the
cases C ≤ 2δ + 2 (or the variant K1 = δ) and the rest. This topic will be
discussed in §7.5.

1.7. Prospects. The present article is intended as a trial run for more gen-
eral results. There is still no clear strategy for a complete classification by
direct amalgamation arguments (or even with the more sophisticated Lach-
lan/Woodrow and Lachlan approaches) but there are many ingredients ripe
for generalization, and certain less well-defined elements that have appeared
repeatedly.

In particular, there are useful results not tied to a bound on the diameter
δ, which hold in an inductive context [Che18, Chaps. 16, 17]: namely, the
reduction of the bipartite case to “prior” cases (when the diameter is finite,
this simply means to cases of smaller diameter), as well as the reduction
of the infinite diameter case to the finite diameter case (if the conjectured
classification is true in the finite diameter case). In such cases a suitable
induction can be found along lines similar to those we use here, though in
each instance it has been necessary to work out a particular variation on the
idea.

There is also a possibility that a variant of the classification conjecture
for metrically homogeneous graphs may actually hold more generally at the
level of homogeneous structures for a finite symmetric binary language with
trivial algebraic closure (corresponding to strong amalgamation classes).

We return to this topic in §7.

1.8. On Length, and Methodology.

1.8.1. A methodological question. The referee of this paper raised a natural
question, in the following terms.

. . . interesting insights were given mostly at the beginning
(with [§5.1] being an exception) and later on it really was
mostly mechanical work. On the other hand it seems to be
the spirit of the whole area and one wonders if there are really
no better methods.
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This is in a sense the question that lies behind work in this area, and on
reflection we felt that it deserved serious discussion here.7

In §1.5 we have discussed the current state of the methodology in this
area, notably the four elements of the combinatorial approach, as currently
understood (only some of which are exploited in the present paper), together
with alternative methods which have been applied to related problems. In
particular, the idea of treating metrically homogeneous graphs as generalized
metric spaces with values in a partially ordered semigroup may prove directly
relevant.

We also took note of Lachlan’s decidability conjecture in §1.5. This conjec-
ture raises another fundamental methodological question about classification
of homogeneous structures for finite relational languages in general; and our
approach requires all instances of Lachlan’s decision problem that we actu-
ally encounter to be resolved (sometimes in the negative, in which case one
has discovered a previously unknown structure, as occasionally happens in
practice).

In §1.6 we aimed to clarify the strategy followed in the technical core of the
proof of our main result, and to extract the main ideas behind the sequence
of technical lemmas. The main point is that at its core our approach requires
a suitable measure of the complexity of a finite structure, one which can be
forced to decrease in the course of a direct amalgamation argument even as
the number of points involved increases. This complexity measure controls
the structure of the final stages of the analysis, and if it is kept in view, then
the structure of the final arguments then emerges naturally.

In §1.7 we touched on the implications for the general problem of the clas-
sification of metrically homogeneous graphs. This last point is not a settled
question. We have developed an inductive scheme which allows the con-
jectured classification to be established by direct amalgamation arguments
in the case of diameter 3. The main difficulty in general, for this direct
approach, has been the absence of an analogous strategy for dealing with
primitive metrically homogeneous graphs of generic type in larger diame-
ter. Recently a re-examination of the treatment of diameter 3 has led to
the development of a plausible strategy along parallel lines appropriate to
the general case; see §7.5. Typically such a strategy reduces the proof of a
general classification result to a number of more isolated results, each itself a
consequence of the proposed classification, requiring their own direct treat-
ment (possibly with machine assistance at that stage, and possibly leading
to the identification of further “sporadic” cases).

We can summarize our views on the methodological question raised as
follows.

(A) If our methods can be generalized to arbitrary diameter, then the
length and the mechanical quality will no doubt be even greater,

7The introduction to our first draft ended with §1.4.
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but should be proportional to that seen in other combinatorial or
algebraic classification problems.

(B) The mechanical quality of the numerous specific lemmas required
(all of them instances of Lachlan’s decision problem) suggests an
opportunity for machine assisted proof.

(C) Whether or not these combinatorial methods can be brought to bear
in the general case, the question of alternative methodologies remains
very relevant, and the evidence on this point is mixed.

Under point (A), the other results we have in mind include the Classi-
fication of the Finite Simple Groups, the Strong Perfect Graph Theorem,
the Graph Minor Theorem, the 4-Color Theorem, and Kepler’s Conjecture
on sphere packing, all of which have inordinately long and combinatorially
complex proofs, some of them machine-assisted. These developments have
produced a vigorous discussion, sometimes contentious and often enlighten-
ing, with an ample literature in its own right.

One set of responses to the rise of a class of proofs challenging the usual
approaches to exposition, verification, transmission, and understanding by
virtue of their length or reliance on machine computation is found in the
collection of essays [Bun05]. See also [Avi17, Hal12, HAB+17, Kra11], and
the talk by Hales at the Newton Institute 2017 program on “Big Proof”
[Hal17].8

We will discuss these developments further in the remainder of this intro-
duction. Thus we now move beyond the context of metrically homogeneous
graphs to a much broader perspective. None of this is needed for the body
of the paper.

1.8.2. Intricate inductions and classification theorems. As mentioned above,
the last half century has seen the rise of very long and combinatorially com-
plex solutions of simply posed problems in algebra, combinatorics, and geom-
etry, sometimes machine-assisted in an essential way, notably the following.

(1) The 4-Color Theorem (announced 1976, published 1977);
(2) The Classification of the Finite Simple Groups (announced 1983,

completed 2004);
(3) The Graph Minor Theorem (Robertson-Seymour Theorem) (2004);
(4) The Strong Perfect Graph Theorem (announced 2002, published 2006);
(5) Kepler’s conjecture and other sphere packing problems (announced

1998, published 2005).
Here entries (2,4) are classification problems, while the proof for entry (3)

is based on a qualitative structure theorem of great generality. Entries (1,5)

8A program incorporating strongly positive views on automatic theorem verification
was launched by Voevodsky on very different grounds: he viewed computer assistance
as a solution to weaknesses of the usual approach, rather than a source of difficulties.
Perhaps ultimately the burden of refereeing will be shifted to the author via appropriate
mathematical software, as is often the case for mathematical typesetting.
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are combinatorial results of a different character, where machine assistance
plays a critical and controversial role. We will first discuss entries (2,3,4).

The Feit-Thompson theorem, at 255 pages, served in more innocent times
as an example of a general classification result (for the empty set) with
an extraordinarily long proof; the 25,000 journal pages of the proof of the
Classification of the Finite Simple Groups sparked a spirited debate of the
methodological issues between Atiyah and Gorenstein. This debate is neatly
summarized in the MathSciNet review (MR0818060) of [Gor86] in terms
which remain relevant today. That classification result in turn was applied
to permutation group theory and a very wide variety of other branches of
mathematics (including model theory), which then may be said to inherit the
methodological issue, sometimes compounding it by further analyses which
are quite long in their own right, or require machine assistance.

The Robertson-Seymour graph minor theorem is proved in over 500 pages,
spread over 20 articles published over two decades. This is an extremely
general finiteness theorem, giving among other things non-effective proofs of
polynomial time computability for many natural problems. Lovasz has said
[Lov06]

The proof . . . is based on a very general theorem about the
structure of large graphs: If a minor-closed class of graphs
does not contain all graphs, then every graph in it is glued
together in a tree-like fashion from graphs that can almost
be embedded in a fixed surface. . . . Roughly speaking, . . .
if a graph does not contain a certain minor, then it is 2-
dimensional.

Thus a major element of the proof is a family of very general structure theo-
rems of a qualitative type. We emphasize that a single, arbitrary, forbidden
minor is in question here, and that it is shown that the resulting class of
graphs is both severely limited and highly structured.

Another striking development with a similar character was the proof of
the strong perfect graph theorem by Chudnovsky, Robertson, Seymour, and
Thomas [CRST06]. The statement, the mathematical context, and the struc-
ture of the proof are all covered in [CRST03]. We cannot review this here,
but we can cite the same paper by Lovász for an indication of its relevance
(about which, Lovász says considerably more).

The excluded minor characterizations and the structure theo-
rems discussed above can serve as prototypical examples of a
paradigm that leads to many difficult but important results.
Perhaps most dramatic of these is the recent resolution of the
Strong Perfect Graph Conjecture by Chudnovsky, Robertson,
Seymour and Thomas [6]. Here again, the key to the proof
is a structure theory . . .
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1.8.3. Machine-assisted proofs. On the combinatorial side, machine-assisted
proofs came into the picture very early in a substantial way, sparking a more
vigorous reaction than sheer length ever did.

The first such case to receive attention was the proof of the Four Color
Theorem by Haken and Appel. The reviewer for Math Reviews, Frank Al-
laire, made the following remark.9

Their procedure is described by some 500 diagrams . . . . The
proof that it discharges every U-avoiding 5-connected pla-
nar triangulation involves several enumerations of subcases.
The weakest part of the proof lies in these enumerations per-
formed by the authors’ first computer program.

Robert Wilson wrote as follows in 2002 [Wil02].
This was the first major theorem whose proof involved a sub-
stantial amount of computer calculation, and as such it was
bound to cause controversy. It has stimulated a wide-ranging
debate over the past quarter of a century, . . .

A computer-assisted proof of Kepler’s conjecture on sphere packing was
found by Hales and Ferguson [HFL11]. This was originally published as a
series of six papers carefully refereed over eight years. At the end of this long
series of arguments one has arrived at the point of understanding how, in
principle, a computer might verify the result by a calculation, and why that
calculation should end in a reasonable amount of time. In the first chapter of
[HFL11] Jeffrey Lagarias explains how the proof goes, what issues were raised
by it, how they were dealt with at the time, and what some of the typical
reactions were, including the policy set by the Annals of Mathematics for
dealing with proofs of this type. Here we cannot go into any of the details,
but the interested reader should certainly look into at least §§3–7 of that
article (pp. 14-21).10

Such machine assisted methods were also viewed as promising in dimen-
sions 8 and 24 (where E8 and the Leech lattice reside). Very recently these
two cases have been handled by showing that a so-called “magic function”
required to apply the linear programming bound of Cohn and Elkies can
be constructed from quasi-modular forms, providing the kind of spectac-
ular connection and insight that many or most mathematicians live for
[Via17, CKM+17]. But there is no reason to expect anything similar in
dimension 3. This is an interesting example of a case in which complex com-
binatorial methods vie with very elegant conceptual methods, and it is not
at all clear a priori which approach is more likely to be effective in a given
setting.

9Joint reviews for entries MR0543797, MR0543796. MR0543795, MR0543793, and
MR0543792.

10Also noteworthy is an earlier proof proposed by W.-Y. Hsiang (cf. [Hsi95]), and the
subsequent fully formalized proof by Hales et al.; these topics are also covered by Lagarias.
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1.8.4. Challenges. Proofs of this type generally evolve over a very long period
of time, and so do the details of the underlying proof strategy, with the
outcome very much in doubt. And not everything of the sort which has
been tried has proved successful; one should not consider only those cases in
which the problematic strategy has proved successful (or, at least, has been
claimed).

Lagarias makes a remark (p. 12, op. cit.) concerning the method of local
inequalities used by Hales et al., which could as well be applied across the
board at the point where the proof remains under development.

There now arises a psychological difficulty, which is that the
“optimality” of the local density inequality is only certified
after the fact, when a proof is found. This means that one
must first do a very large amount of work, with the down-
side risk of eventually determining that the inequality is not
optimal.

Mutatis mutandis, similar remarks would apply to every proof of this type.
One anticipates that a failed program with a strong conceptual motivation
may very well deliver valuable insights even if its original goal is not achieved;
but the same is less likely to apply to more directly combinatorial or com-
putational approaches.

An interesting case currently under investigation, where the eventual out-
come remains highly uncertain, is the Erdős-Hajnal conjecture, concerning
the sizes of maximal cliques or anticliques (Ramsey theory) in graphs sup-
posed to omit some particular induced subgraph (the forbidden induced sub-
graph being arbitrary). There are remarkably few cases in which it is known
whether this conjecture is true or false; but for forbidden graphs up to order
5, the conjecture has been verified, making use along the way of the strong
perfect graph theorem.

According to this conjecture, for any specified graph H, the class C of H-
free graphs should be extremely limited, from the point of view of Ramsey
theory.11 It is natural to try to proceed as in the case of the Graph Minor
Theorem to derive the conjecture from structural information, a line which
has been actively explored in specific cases. We refer to [Chu13] for an
extensive discussion of this problem and, in particular, the reduction to the
case of prime graphs (having no non-trivial congruence) and the case in which
the forbidden graph is the “bull,” a particular graph on five vertices, where
the Strong Perfect Graph Theorem can be brought to bear.

The classification conjecture for metrically homogeneous graphs is in a
similar state: an explicit classification is conjectured and various reductions
and special cases have been dealt with. The reduction of the case of infinite
diameter to the case of finite diameter allows us to envision an analysis which
proceeds by induction on the diameter.

11Improved bounds (polynomial) in the statement of Ramsey’s theorem for graphs.
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A robust way of distinguishing the exceptional and generic cases a priori
has been found, and the exceptional cases have been handled in full gener-
ality, while the generic case has been handled in the bipartite case, under a
suitable inductive hypothesis, in all diameters. The generic case for diameter
3 will be dealt with mainly in §5 and §6; it completes the full classification
in diameter 3.

1.9. Acknowledgment. We thank Konečný and Hubička for discussions,
notably of §§1.5.1,1.5.2.

2. Preliminary results

2.1. Exceptional local type and generic type. We will first explain in
detail the parts of the classification in diameter 3 which do not need to be
addressed here, having been covered elsewhere without any limitation on
δ. First we present a general framework for the classification of metrically
homogeneous graphs.

The classification of homogeneous graphs by Lachlan and Woodrow may
be summarized as follows. This is the case δ ≤ 2 from the metrically homo-
geneous point of view, so all open questions concern the case δ ≥ 3.

Fact 2.1 (Summary of [LW80]). A homogeneous graph is either finite, im-
primitive, or of one of the following forms.

• Complete, or an independent set of vertices;
• A Henson graph Hn with n ≥ 3, or its complement;
• The random (homogeneous universal) graph G∞.

Here the Henson graph Hn is the unique homogeneous graph which is
universal subject to containing no n-clique [Hen71].

If Γ is a metrically homogeneous graph then Γ1 (as defined in the introduc-
tion) is a homogeneous graph. Certain cases clearly have a special character.
For example, if Γ1 is complete then Γ is a disjoint union of complete graphs.

We have divided the metrically homogeneous graphs into three broad
classes in the introduction, mainly according to the structure of Γ1. At the
extremes we have exceptional local type, and generic type, with a residual
class left in the middle.

This residual class is characterized, a priori, as follows.
• Γ1 is primitive and contains an infinite independent set, but for v ∈

Γ2, the set of neighbors of v in Γ1 contains no infinite independent
set.

By metric homogeneity, the structure of the set of common neighbors for a
pair of points at distance 2 is independent of the pair considered. Therefore,
if Γ1 is a Henson graph Hn with 3 ≤ n <∞, or a random graph, then such
a set always contains an infinite independent set.

So in this class, Γ1 cannot be a Henson graph or a random graph, yet is
primitive and contains an infinite independent set. In view of the classifica-
tion of homogeneous graphs, Γ1 must be an independent set, and for v ∈ Γ2
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the set of neighbors of v in Γ1 must be finite. As noted in the introduc-
tion, one can then argue that in the connected case Γ is a regular infinitely
branching tree [Che11a, Lemma 8.6].

Thus we have the following.

Fact 2.2 (cf. [Che11a]). Any metrically homogeneous graph falls into pre-
cisely one of the following categories.

• Exceptional local type;
• A regular tree with infinite branching;
• Generic type.

We are interested only in the finite diameter case here, so the second entry
falls away.

The classification of homogeneous graphs also gives a more useful way to
think about the definition of generic type.

Remark 2.3. Let Γ be a metrically homogeneous graph of generic type. Then
Γ1 is one of the following.

• An independent set;
• A Henson graph Hn with 3 ≤ n <∞;
• A random graph G∞.

Lemma 2.4. Let Γ be a metrically homogeneous graph of generic type, and
u, v two vertices at distance 2 in Γ. Then the graph Γ′ induced on the set of
their common neighbors is isomorphic to Γ1.

Proof. Since Γ′ is a homogeneous graph, it suffices to check that it embeds
into Γ1 and that Γ1 embeds into Γ′. If we take u to be the basepoint for
Γ then Γ′ ⊆ Γ1 and the first point is clear. So it suffices to show that Γ1

embeds into Γ′.
This is evident if Γ1 is an independent set, since Γ is of generic type. So we

may suppose that Γ1 is a random graph or a Henson graph Hn with n ≥ 3.
Now we may take as the basepoint u∗ a vertex in Γ′. Then u, v ∈ Γ1 and

(Γ′)1 = Γ′ ∩ Γ1.
If Γ1 is the random graph then since u, v ∈ Γ1, Γ′∩Γ1 is again the random

graph, and thus Γ1 embeds into Γ′.
Suppose finally that

Γ1 is a Henson graph Hn, the generic graph omitting an n-clique,
and n ≥ 3.

Then

(Γ′)1
∼= Hn−1

(for n = 3 this is just an infinite independent set).
In particular (Γ′)1 contains a clique of order n − 2 and an infinite inde-

pendent set. So Γ′ contains a clique of order n− 1, an infinite independent
set, as well as a path of order 3.
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If Γ′ is primitive, then by the classification of homogeneous graphs, this
is already enough to show that Hn embeds in Γ′. So we consider the case in
which Γ′ is imprimitive.

In this case, as Γ′ contains a path of order 3, it follows that Γ′ does not
contain K1 +K2 (a disjoint sum of an isolated vertex and a clique of order
2). But for n ≥ 4 this graph is already in (Γ′)1. So we suppose

n = 3; Γ′ is complete multipartite, with infinite parts.

Since Γ′ embeds in Γ1, which is triangle-free, Γ′ is complete bipartite, with
infinite parts.

We aim at a contradiction.
We now adjust our notation so that u = u∗ is viewed as basepoint and

v ∈ Γ2. For i ≥ 1 let Ai be the graph induced on

{x ∈ Γ1 | d(v, x) = i}

Then Ai is empty for i ≥ 4. But we will show by induction on i that Ai
is complete bipartite and non-empty for all i ≥ 1.

In the base case i = 1 and the statement is true by assumption. So suppose
i > 1 and the claim holds for j < i. Set

B =
⋃
j<i

Aj

As B has finite chromatic number, B 6= Γ1 (or more directly, if one selects
representatives of the parts of the Aj for j < i, then any vertex of Γ1 with no
edges to the representative vertices must lie outside B). As Γ1 is connected
there are b ∈ B, a ∈ Γ1 \ B so that (a, b) is an edge. This forces b ∈ Ai,
a ∈ Ai−1.

We now consider the structure (Ai−1, Ai), which is homogeneous as a
graph with unary predicates denoting the two parts. Furthermore there
are edges between the two parts, and therefore any vertex in one part has
a neighbor in the other part. Since Ai−1 is complete bipartite and Γ1 is
triangle free, the relation E(x, y) on Ai defined by

x, y have neighbors x′, y′ in Ai−1 in the same part
(i.e., not forming an edge)

is an equivalence relation with two parts, definable without parameters. Thus
Ai is either complete bipartite or the disjoint union of two cliques.
Case 1. There are b1, b2 at distance 2 in Ai−1 and a ∈ Ai a neighbor of b1
but not b2.

Then d(a, b2) = 2 and the set of common neighbors of a and b2 is complete
bipartite, with infinite parts. Let X be the set of common neighbors of a,
b2, and the basepoint u∗. Then X lies in Γ1 and by the triangle inequality
X ⊆ Ai−1 ∪ Ai. On the other hand X cannot meet either part of Ai−1 and
so X ⊆ Ai. Thus Ai contains an infinite independent subset and must be
complete bipartite. This completes the induction in this case.
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Case 2. Each vertex of Ai is adjacent to all vertices in one part of Ai−1.
Then the parts of Ai are independent sets. Hence Ai must either be

complete bipartite, or reduce to a single pair of vertices with no edge between
them.

In this last case we consider the dependence of Ai on the vertex v ∈ Γ2;
we write Ai = A(v). Each pair of vertices in Γ1 at distance 2 arises as A(v)
for some v ∈ Γ2. Between two disjoint pairs of points {a1, b1} and {a2, b2}
with d(a`, b`) = 2, there can be from 0 to 4 edges occurring. Thus in Γ2

there are at least five 2-types realized by distinct pairs of vertices, relative
to the basepoint of Γ. But the diameter of Γ2 is at most 4 and so this is a
contradiction.

Thus, by induction, the Ai are complete bipartite and nonempty, giving
a contradiction for i ≥ 4. �

2.2. Exceptional Local Type. An explicit classification of the metrically
homogeneous graphs of exceptional local type is given in [Che11a], and re-
viewed in [Che18]. Leaving aside those of infinite diameter, the list in diam-
eter δ ≥ 3 is as follows.

Fact 2.5 ([Che11a, Theorem 10]). A metrically homogeneous graph of ex-
ceptional local type and finite diameter δ ≥ 3 is finite.

More explicitly, it is one of the following
• An n-cycle, with n ≥ 6;
• An antipodal graph of diameter 3, with Γ1 finite:

– The bipartite complement of a perfect matching between two fi-
nite sets;

– The antipodal double of C5 or L[K3,3],

Specializing to diameter δ = 3, the relevant n-cycles have diameters n = 6
or 7.

Corollary 2.6. Let Γ be an infinite metrically homogeneous graph of finite
diameter. Then Γ is of generic type.

Proof. By Facts 2.2 and 2.5. �

We now explain the antipodal case, which appears again in group (2b) of
our Classification Theorem.

Definition 2.7. Let Γ be a graph of diameter δ ≥ 2. Then Γ is antipodal if
for each vertex v ∈ Γ there is a unique vertex v′ with d(v, v′) = δ.

This is not the standard definition from the theory of distance transitive
graphs, but rather a modification more suited to the context of metrically
homogeneous graphs, at least when the diameter is at least 3. This definition
is meaningful for δ ≤ 2, but less useful in that context. For δ = 2 the
antipodal graphs in our sense are complete multipartite graphs which happen
to have classes of size two.

The structure of antipodal graphs is quite special, as the following indi-
cates.
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Fact 2.8 ([Che11a, Theorem 11]). Let Γ be a metrically homogeneous an-
tipodal graph of diameter δ. Then the pairing v ↔ v′ defined by d(v, v′) = δ
defines a central involution in Aut(Γ). In particular Γi ∼= Γδ−i for 0 ≤ i ≤ δ.

Note that in diameter 3 we have

Γ1
∼= Γ2

with the pairing v ↔ v′ giving a canonical isomorphism.
The antipodal graphs of diameter 3 listed in Fact 2.5 are those of excep-

tional local type. In these graphs Γ1 is either a finite independent set, or
one of two exceptional finite primitive homogeneous graphs, of orders 5 and
9 respectively.

Below we will give the general classification of antipodal graphs of diam-
eter 3, which is similar (Lemma 2.17).

2.3. Generic Type. Having disposed of the non-generic types, as discussed
above, we can rephrase our main theorem more concretely as follows—where
we still have to explain the main notations.

Proposition 2.9 (Main Theorem, generic type). Let Γ be a metrically ho-
mogeneous graph of diameter 3 and generic type. Then Γ is a graph of the
form Γ3

K1,K2;C,C′;S with admissible parameters, as follows:
(a) If K1 =∞ (Γ is bipartite):

Then K2 = 0, C = 2δ+1 = 7, C ′ is 8 or 10, S is empty. With C ′ = 8
this is the bipartite complement of a matching between infinite sets
and with C ′ = 10 it is the generic bipartite graph.

(b) If K1 <∞ and C ≤ 2δ +K1 (Γ is antipodal, not bipartite):
Then K1 = 1, K2 = 2, C = 7, C ′ = 8, and S is empty. This is the
generic antipodal graph of diameter 3.

(c) C > 2δ +K1 (Γ is primitive):
Then C ′ = C + 1.
The various possibilities under this heading are as listed above in
Table 1.

For a full listing of all possibilities, see also Lemma 2.13 below.
In [Che11a] a class of metrically homogeneous graphs

ΓδK̄,C̄,S

defined by 5 numerical parameters δ,K1,K2, C0, C1, and one more geometric
parameter S was introduced. We set K̄ = (K1,K2) and C̄ = (C0, C1), where
C0 is even and C1 is odd. We also work with the notation C̄ = (C,C ′),
where C = min(C0, C1), C ′ = max(C0, C1); that is, we may write these
parameters in increasing order rather than according to their parity, and
vary the notation to suit this point of view.

Here δ denotes the diameter, while the parameters K̄, C̄ serve to define a
set of forbidden triangles T (δ, K̄, C̄). The parameter S consists of a set of
finite (1, δ)-metric spaces, that is, metric spaces in which all distances are
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equal to 1 or δ.12 Since δ > 2, this is a union of cliques with distinct cliques
at distance δ from each other.

As we remarked earlier, if the sets S are irredundant then they are finite.
We now elaborate on the combinatorial content of this remark. The elements
of S form an antichain by irredundancy: that is, no space in S embeds iso-
metrically in any other space in S. These isomorphism types are naturally
encoded by finite multi-sets of positive integers (clique sizes), and the em-
bedding relation corresponds to a natural relation between these multi-sets
which is well known, by a lemma of Higman, to be well-quasi-ordered [Hig52];
this term simply means, in this context, that there are no infinite antichains.

The notation Γδ
K̄,C̄,S stands for the so-called Fraïssé limit (if it exists) of

the following class Aδ
K̄,C̄,S .

Finite metric spaces M containing no isometric copy of a
forbidden triangle in T (δ, K̄, C̄), and no isometric copy of a
(1, δ)-space in S.

That is Γδ
K̄,C̄,S denotes a countable metrically homogeneous graph Γ with

the property that the class of finite metric spaces embedding isometrically
in Γ coincides with the class Aδ

K̄,C̄,S .
Such a metrically homogeneous graph, if it exists, is determined up to

isomorphism by the class Aδ
K̄,C̄,S , and hence by the data T (δ, K̄, C̄) and S.

Via the theory of Fraïssé, the existence of the graph Γδ
K̄,C̄,S is equivalent

to the amalgamation property for the class Aδ
K̄,C̄,S . This involves two sets of

constraints on the parameters (δ, K̄, C̄,S); a mild set of constraints which we
call acceptability, and a more severe set of constraints we call admissibility
[Che18].

Acceptability consists of the requirements which are imposed on the pa-
rameters by their definitions and elementary arguments; for example, we
cannot have C > 3δ + 1, since there are no triangles of perimeter 3δ + 1.
Subject to the acceptability constraints, admissibility consists of the sub-
stantive constraints on the parameters for the existence of Γδ

K̄,C̄,S , that is,
admissibility consists of a precise set of requirements on the parameters which
are equivalent to the condition

Aδ
K̄,C̄,S is an amalgamation class.

We will give the precise constraints on K̄ and C̄ in detail, below.
Now the general theory as developed in [Che18] is not of much help in

proving our result in diameter 3. It is of use in predicting the result, orga-
nizing the proof in its broad outlines, and explaining the result. The general
theory also provides existence proofs for the cases listed. We will also take
advantage of some information about Γ2 and Γ3 given by the general theory,
which saves us the trouble of some preliminary analysis.

The organization of the proof in general terms is as follows.

12For δ > 3 some further variations arise.
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Let Γ be a metrically homogeneous graph of diameter 3 and generic type,
and A the associated class of all finite metric spaces which embed isometri-
cally in Γ.

• Determine relevant (candidate) values of the parameters δ, K̄, C̄,S
for Γ.
• Show that the triangles occurring in A are the triangles occurring in
the class

AδK̄,C̄

(i.e., the class Aδ
K̄,C̄,∅).

• Show that A = Aδ
K̄,C̄,S , and apply uniqueness (Fraïssé theory).

Now the second step is a special case of the third, but it has the merit of
identifying one of the two sets of constraints defining our graph completely.
In particular, at this point we know what amalgamation strategy should be
appropriate for the class A. This last point motivates the main lines of the
analysis.

2.4. Acceptability, Admissibility, and Forbidden triangles. The con-
straints on the numerical parameters δ,K1,K2, C0, C1 needed to obtain an
amalgamation class are fairly complicated. In fact, they are too complicated
to be fully illustrated by examples for which we have δ = 3. We have given
the possibilities corresponding to the case δ = 3 explicitly in the statement
of the Classification Theorem, and we will repeat this at the end. But to
put this in context, we first consider the constraints in their general form.

Definition 2.10. Let (δ,K1,K2, C0, C1) be a sequence of natural numbers,
and let S be a set of finite (1, δ)-spaces. Write K̄ = (K1,K2) and C̄ =
(C0, C1) for brevity.

1. The sequence of parameters δ, K̄, C̄,S is acceptable if the following
conditions are satisfied.

• δ ≥ 2;
• 1 ≤ K1 ≤ K2 ≤ δ, or else K1 =∞ and K2 = 0;
• C0 is even and C1 is odd;
• 2δ + 1 ≤ C0, C1 ≤ 3δ + 2;
• S is irredundant (see below).

In particular if δ =∞ then C0, C1 =∞ and S consists of a set of cliques
(in fact, of just one clique).

2. An acceptable sequence of parameters is admissible if one of the follow-
ing sets of conditions is satisfied.

I K1 =∞:
• K2 = 0, C1 = 2δ + 1; this is the bipartite case.
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II K1 <∞ and C ≤ 2δ +K1:
• δ ≥ 3;
• C = 2K1 + 2K2 + 1;
• K1 +K2 ≥ δ;
• K1 + 2K2 ≤ 2δ − 1; and

IIA C ′ = C + 1, or
IIB C ′ > C + 1, K1 = K2, and 3K2 = 2δ − 1.

III K1 <∞ and C > 2δ +K1:
• If δ = 2 then K2 = 2 and S consists of a single clique or anti-
clique;
• K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ;
• If K1 + 2K2 = 2δ − 1 then C ≥ 2δ +K1 + 2;
• If C ′ > C + 1 then C ≥ 2δ +K2;
• If K1 = δ or C = 2δ + 2, then S is empty.

For the notion of irredundance, we need to specify the class T (δ, K̄, C̄)
of forbidden triangles associated with δ, K̄, C̄. Then the set S is said to
be irredundant if no space in S contains an isometric copy of a forbidden
triangle, or of another space in S. In other words, S consists of minimal
forbidden (1, δ)-spaces, with the proviso that any forbidden triangles will be
provided by the numerical parameters.

Finally, we give the definition of T (δ, K̄, C̄) explicitly. If T is a metric
triangle (a metric space with 3 points), then the type of T is the (unordered)
triple of distances i, j, k involved, and the perimeter is the sum

p = i+ j + k

We write the type as an ordered triple (i, j, k) but bear in mind that the
order here is irrelevant.

Definition 2.11. Let δ,K1,K2, C0, C1 be an acceptable sequence of parame-
ters (take S = ∅). Then a triangle of type (i, j, k) and perimeter p = i+j+k
belongs to T (δ, K̄, C̄) iff one of the following holds.

(1) p is odd and at least one of the following holds:
• p < 2K1 + 1, or
• p > 2K2 + 2 min(i, j, k), or
• p ≥ C1; or—

(2) p is even and p ≥ C0.

Thus the parameter K̄ = (K1,K2) controls the triangles of small odd
perimeter, while C̄ = (C0, C1) controls the triangles of large perimeter, ac-
cording to their parity. The condition on K2 is somewhat obscure, but for
i = 1 it is complementary to the first condition. And if the graph happens to
be antipodal then the condition on K1 works out to be equivalent to the sec-
ond condition with the value K2 = δ −K1. So we may say that K2 imposes
a kind of antipodal dual constraint relative to K1, regardless of whether the
graph in question is antipodal.

The point of admissibility, as we said at the outset, is the following.
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Fact 2.12 ([Che18]). The sequence of parameters δ,K1,K2, C0, C1,S is ad-
missible if and only if AδK1,K2,C0,C1,S is an amalgamation class.

Now, as promised, let us specialize the conditions for admissibility to the
context δ = 3. We have already given the result in the statement of the
Classification Theorem for δ = 3.

Lemma 2.13. Let δ,K1,K2, C0, C1,S be an admissible sequence of param-
eters with δ = 3. Then the possibilities are as shown in Table 2.

We note that the case C = 9 requires the spaces in S to decompose into
at most two cliques; this condition should be added as appropriate in the last
column, but has been omitted to reduce clutter. For example, in the first
primitive case listed, namely K1 = 1, K2 = 2, when C = 9 this will force S
to consist of cliques, and when C = 10 then S may contain both cliques and
anticliques.

Type Case K1 K2 C C ′ S
Bipartite (I) ∞ 0 7 8 or 10 empty
Antipodal (II) 1 2 7 C + 1 empty
Primitive (III) 1 2 9 or 10 C + 1 cliques and anticliques

" (III) 2 2 9 or 10 C + 1 anticliques
" (III) 1 3 8, 9, or 10 C + 1 If C = 8 then S is

empty.
" (III) 2 3 9 or 10 C + 1 anything not involving

K3

" (III) 3 3 10 C + 1 empty

Table 2. Admissible parameters for δ = 3

Proof. In the rightmost column, we find the constraints on the set S which
correspond to the values of the numerical parameters δ = 3, andK1,K2, C, C

′

as shown (i.e., the triangle constraints already imposed) as well as the rele-
vant clauses in the definition of admissibility applicable directly to S. That
is we must specify which (1, δ)-spaces can occur—irredundantly—as Henson
constraints, in each case.

There are three cases to consider:

(I) K1 =∞; (II) K1 <∞, C ≤ 2δ +K1; (III) K1 <∞, C > 2δ +K1.

The definition of admissibility varies according to the case considered.

(I) When K1 = ∞ the graph is bipartite and we immediately arrive at
the first line of the table, bearing in mind that δ is odd, so there are no
(1, δ)-spaces compatible with the numerical constraints with more than two
points.
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(II) When C ≤ 2δ +K1 the conditions

K1 + 2K2 ≤ 5, K2 ≥ K1, and K1 +K2 ≥ 3

give K1 = 1 and K2 = 2 and then the rest follows from the definition of
admissibility.

(III) This is the more typical case and it allows for several possibilities.
A clique is defined metrically as a set of points at mutual distance 1. An

anticlique is defined dually as a set of points at mutual distance δ (i.e., 3).
The constraint 3K2 ≥ 2δ becomes K2 ≥ 2. Then we see the five possi-

bilities with 2 ≤ K2 ≤ 3 and 1 ≤ K1 ≤ K2 listed. The corresponding lower
bound on C is 2δ + K1 + 1 except in the case K1 = 1, K2 = 2 where it is
2δ + K1 + 2. And the value C = 3δ + 1 = 10 imposes no constraint, since
all triangles have perimeter at most 3δ.

Now we have to consider the possibility that C ′ > C + 1 in case (III).
But if C ≥ 3δ then C ′ = C + 1 by acceptability, so this leaves only the case
C = 8 with K2 = 3, and then as C < 2δ+K2 we again have C ′ = C+1. �

In particular, we cannot see the point of having both C0 and C1 when we
look at the case of diameter 3: we just see the uniform bound on perimeter
given by C = min(C0, C1).

2.5. Imprimitive Cases. A metrically homogeneous graph is said to be
imprimitive if it carries a non-trivial automorphism-invariant equivalence
relation. The qualitative analysis of the imprimitive case comes under the
general heading of Smith’s theorem in the context of distance transitive
graphs, but it takes on a slightly different form here. This was presented in
detail in [Che11a]. The main point is the following.

Fact 2.14 ([Che11a, §7.1]). Let Γ be an imprimitive connected metrically
homogeneous graph of diameter at least 3 and vertex degree at least 3. Then
Γ is either bipartite or antipodal.

Part of the content of this result is the particular meaning of “antipodal”
in our context, which was discussed earlier.

In the case of diameter 3 we may proceed to identify the imprimitive
graphs of generic type as follows.

First we consider the bipartite case.

Lemma 2.15 (Bipartite case, cf. [Che11a, Proposition 9.1]). Let Γ be a
bipartite metrically homogeneous graph of diameter 3. Then Γ is one of the
following: the complement of a perfect matching, or a generic bipartite graph.

Proof. In this case Γ is homogeneous as a bipartite graph, since the relation
d(x, y) = 3 is simply the “non-edge” relation between the two sides. So Γ or
its complement must be one of the following (cf. [GGK96]).

• complete;
• perfect matching;
• generic bipartite.
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As Γ has diameter 3 and is connected and bipartite, the claim follows. �

Now we turn to the antipodal case, which is richer. This involves the
following construction.

Definition 2.16 (Antipodal Double). Let G be a graph. Let G′ be a second
copy of G, with a fixed isomorphism ι : G→ G′; we write v′ for ι(v).

The antipodal double of G is the graph Γ = G ∪ G′ ∪ {∗, ∗′}, with two
additional vertices ∗ and ∗′, and with edges given by

• (∗, v) (v ∈ G) or (∗′, v′) (v′ ∈ G′);
• (u, v), (u′, v′) (u, v ∈ G, d(u, v) = 1);
• (u, v′), (u′, v) (u, v ∈ G, d(u, v) = 2).

Thus in the antipodal double we have Γ1 = G, Γ2 = G′, and the antipodal
pairing gives an isomorphism (namely, ι) between Γ1 and Γ2.

Lemma 2.17 (Antipodal case, cf. [Che99, §1 (II,III)] or [Che11a, Theorem
15] ). Let Γ be an antipodal metrically homogeneous graph of diameter 3.
Then Γ is the antipodal double of one of the following graphs.

• an independent set In (n ≤ ∞);
• the pentagon (5-cycle) C5;
• the line graph L(K3,3) of the complete bipartite graph K3,3 (this is a
graph of order 9);
• the random graph G∞.

Proof. Let Γ be metrically homogeneous and antipodal of diameter 3. Fix
a basepoint v∗ for Γ, and set G = Γ1, G′ = Γ2. Then G is a homogeneous
graph, and the antipodal pairing gives an isomorphism between G and G′.
It is easy to see that the edge rule in Γ is the one we have described.

It remains only to see that homogeneity of Γ forces G to be as stated. In
fact, going forward, we will require only vertex transitivity of Γ.

Note that if G is complete, then Γ is disconnected and therefore cannot
be metrically homogeneous of finite diameter, so we set this case aside.

For v ∈ G, let G∗v be the graph derived from G by switching edges and
non-edges between the neighbors and non-neighbors of v. We claim

Γ1(v) ∼= G∗v

Let G1(v) be the set of neighbors of v in G, and G2(v) the set of non-
neighbors of v (excluding v). Consider the map from G∗v to Γ1(v) which
fixes G1(v), is the antipodal map on G2(v), and sends v to v∗. This gives an
isomorphism of G∗v with Γ1(v).

By vertex transitivity of Γ, we also have

Γ1(v) ∼= G

and thus

G∗v
∼= G
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It remains to go through all possibilities for G, and to see which ones
satisfy this condition.

The homogeneous graphs G come in complementary pairs. If Gc is the
complement of G, then (G∗v)

c = (Gc)∗v, so it suffices to consider one graph G
in each complementary pair.

When G is imprimitive, we may suppose it is a disjoint sum of at least
two non-trivial cliques. Then in G∗v, any neighbor of v becomes adjacent to
all vertices of G∗v, so G∗v is not isomorphic to G.

If G is a Henson graph Gn, then G2(v) contains a clique K ∼= Kn−1, and
switching edges and nonedges with G1(v) will extend K to a clique of order
n. So this case is eliminated, along with its complement.

The only cases remaining are those listed. �

For the homogeneity of antipodal graphs of these four types, the argument
is easily reversed. Alternatively, the first case is bipartite and the comple-
ment of a perfect matching, which is clearly homogeneous, all finite cases
are discussed in [Cam80], and for the last case it suffices to check that there
is a metrically homogeneous graph of diameter 3 and antipodal type with
Γ1 the random graph. The generic antipodal graph of diameter 3 has these
properties. In our notation, this is the graph

Γ3
1,3,7,8,∅

3. Admissibility

We aim at the classification of all metrically homogeneous graphs of di-
ameter 3, and as we have seen we may suppose that

Γ is of generic type.
Our overall plan is to assign some useful meaning to the parameters

K1,K2, C, C
′ before proving anything, and then gradually show that they

control the structure of our graph in the expected fashion. Our defini-
tion actually works with the very similar parameters K1,K2, C, C

′. Here
{C0, C1} = {C,C ′} but in this notation we take

• C < C ′;
• C0 is even and C1 is odd.

When studying this pair of parameters—as opposed to using them—their
parity is more relevant than their size. In particular, to define these param-
eters for metrically homogeneous graph, not necessarily of known type, one
determines C0 and C1, and then recovers C,C ′ from them.

Definition 3.1. Let Γ be a metrically homogeneous graph of diameter at
least 3 and of generic type.

(1) δ is the diameter of Γ, which we generally suppose is 3 (occasionally
working more generally).

(2) K1 is the least k such that Γ contains a triangle of type (1, k, k), and
K2 is the greatest such.
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(3) We take K1 =∞, K2 = 0 if no such triangles occur.
(4) C0 is the least even number greater than 2δ such that no triangle of

perimeter C0 is in Γ; and C1 is the least such odd number.
(5) C = min(C0, C1) and C ′ = max(C0, C1).
(6) S is the collection of minimal (1, δ)-spaces S such that

• S is forbidden, i.e. does not embed in Γ; and
• S is not a forbidden triangle relative to the specified numeri-
cal parameters (i.e., is not in T (δ, K̄, C̄)—Definition 2.11), and
does not contain a smaller forbidden (1, δ)-space.

While the restriction to generic type is not formally necessary, it is needed
if we aim to make any meaningful use of the definition.

The very first step in our analysis is to take note of some basic information
about Γ2 and Γ3 provided by the general theory, without restriction on the
diameter.

So we take this up next.

3.1. On the structure of Γi. Recall that Γi denotes the metric space struc-
ture induced on the vertices at distance i from a given base point. We also
view Γi as a graph with edge relation “d(x, y) = 1,” where the path metric
may not agree with the induced metric, though it will agree with the path
metric on any connected component, since this is both a metrically homo-
geneous graph and a homogeneous metric space under the induced metric,
with the metrics agreeing on distance 1 (cf. [Cam98, Proposition 5.1]). This
point of view is not at all useful if the graph Γi has no edges, and it is most
useful when the graph induced on Γi is connected.

Therefore, the following general result on the structure of Γi in the case
of generic type will provide a useful point of departure.

Fact 3.2 ([Che18, Theorem 1.29]). Let Γ be a countable metrically homoge-
neous graph of generic type and of diameter δ, and suppose i ≤ δ. Suppose
that Γi contains an edge. Then Γi is a countable metrically homogeneous
graph.

Furthermore, Γi is primitive and of generic type, apart from the following
two cases.

(1) i = δ;
K1 = 1; {C0, C1} = {2δ + 2, 2δ + 3};
Γδ is an infinite complete graph (hence not of generic type).

(2) δ = 2i;
Γ is antipodal (hence Γi is imprimitive, namely antipodal).

We restate this in the form relevant to the case δ = 3.

Fact 3.3 (Local Analysis). Let Γ be a countable connected metrically homo-
geneous graph of generic type and of diameter 3. Suppose i = 2 or 3, and Γi
contains an edge. Then Γi is a connected metrically homogeneous graph.

Furthermore, Γi is primitive and of generic type, apart from the following
case.
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• i = 3, Γ3 is an infinite complete graph, so K1 = 1, C0 = 8, C1 = 9.

There is a companion result guaranteeing the existence of edges in some
cases.

Fact 3.4 ([Che18, Proposition 1.30]). Let Γ be a connected metrically ho-
mogeneous graph of generic type with K1 ≤ 2. Then for 2 ≤ i ≤ δ − 1, Γi
contains an edge, unless i = δ − 1, K1 = 2, and Γ is antipodal.

Since K1 is defined as the smallest number k for which Γk contains an
edge, Fact 3.4 has no content if K1 = 2 and δ = 3. So for our purposes, the
statement reduces to the following.

If δ = 3 and K1 = 1, with Γ of generic type, then Γ2 contains
an edge.

Fact 3.5 ([Che18, Lemma 15.4]). Let Γ be a connected metrically homoge-
neous graph of generic type and diameter δ. Suppose i ≤ δ, and suppose also
that if i = δ then K1 > 1. Then the metric space Γi is connected with respect
to the edge relation defined by

d(x, y) = 2

Note that the metric on Γi is induced from Γ and may not have any
connection with the graph structure on Γi (e.g. i = 1, Γ triangle free, and
Γ1 is edgeless).

Another useful point which plays a role in some of the results just quoted,
and remains useful in its own right, is the following.

Fact 3.6 ([Che18, Lemma 15.5]). Let Γ be a connected metrically homo-
geneous graph of generic type. Suppose 1 ≤ i ≤ δ. Then for u ∈ Γi±1,
Γ1(u) ∩ Γi is infinite.

For i < δ this follows easily from the definition of generic type, applied to
a pair of vertices u+, u− from Γi±1. For i = δ it requires further analysis.

3.2. The Parameters of Γ. Now we begin to work toward the explicit
classification of the (countable) metrically homogeneous graphs satisfying

• δ = 3;
• Γ is of generic type;
• Γ is neither bipartite nor antipodal.

(On occasion, we will work at a greater level of generality.)
We recall the relevant content from Table 2 of Lemma 2.13, discarding the

first two lines, which concern the imprimitive case. Recall that when C = 9,
the last column of the table should be supplemented by the condition that
no space in S involves more than two cliques.

Given a primitive infinite metrically homogeneous graph Γ of diameter 3,
we proceed as follows.

(1) Extract suitable parameters δ,K1,K2, C0, C1,S as in Definition 3.1.
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Type Case K1 K2 C C ′ S
Primitive (III) 1 2 9 or 10 C + 1 cliques and

anticliques
" (III) 2 2 9 or 10 C + 1 anticliques
" (III) 1 3 8, 9, or 10 C + 1 If C = 8 then

S is empty.
" (III) 2 3 9 or 10 C + 1 anything not

involving a 3-clique
" (III) 3 3 10 C + 1 empty

Table 3. Admissible parameters for δ = 3, primitive case

(2) Show that these parameters control the forbidden triangles and (1, δ)-
spaces in precisely the expected manner.

(3) Show that the parameters are admissible.
(4) Show that the graph Γ is isomorphic with ΓδK1,K2,C0,C1,S .
We view admissibility not so much in terms of the general definition, but

in terms of the allowable parameter sequences, as listed in our table. That
is, K2 = 2 or 3, 1 ≤ K1 ≤ K2, C ′ = C + 1, and the possibilities for C have
been listed in each case. We will not be much concerned with S.

Fact 3.7 ([Che18, Lemma 13.15]). Let A be an amalgamation class of di-
ameter δ, and Γ the Fraïssé limit of A. Assume that some triangle of odd
perimeter occurs in A, and let p be the least odd number which is the perime-
ter of a triangle in A. Then the following hold.

(1) A p-cycle embeds isometrically in Γ.
(2) p ≤ 2δ + 1.
(3) p = 2K1 + 1.

So we have the following conditions by definition (see Definition 3.1).
• 1 ≤ K1 ≤ K2 ≤ δ;
• 2δ + 1 ≤ C ≤ 3δ + 1, C < C ′ ≤ 3δ + 2; and of course
• Cε ≡ ε (mod 2).

Therefore, referring to Table 3 above, in the primitive case admissibility
of the numerical parameters (for δ = 3) can be expressed by the following
additional conditions.

• K2 ≥ 2;
• C ′ = C + 1;
• C > 6 +K1;
• when K1 = 1 and K2 = 2, then C > 8.

The first point (K2 ≥ 2) is already contained in the general theory. Indeed,
Fact 3.4 includes the following.
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Lemma 3.8. Let Γ be a metrically homogeneous graph of generic type, diam-
eter δ, which is neither bipartite nor antipodal. If K1 ≤ 2, then K2 ≥ δ − 1.

Summing up, we have the following.

Lemma 3.9. Let Γ be a primitive metrically homogeneous graph of generic
type and diameter 3, with associated parameters K1,K2, C0, C1. Suppose the
following conditions hold.
(a) C 6= 7.
(b) If C = 8 then K1 = 1, K2 = 3, and C ′ = 9.
(c) If K1 = 3 then C = 10.
Then the parameters K1,K2, C, C

′ are as shown in Table 3.

Proof. The rows of Table 3 list the possible combinations of K1,K2 subject
to 1 ≤ K1 ≤ K2 ≤ 3 and Lemma 3.8.

By definition we have C ≥ 2δ + 1 = 7, C ≤ 3δ + 1 = 10. The cases
involving C ≤ 8 are covered by (a, b). When C ≥ 9, then C ′ = C + 1 and
the latter imposes no constraint on triangles.

Taking (c) into account we have the table, apart from the specification of
S in the last column. �

So the next step is to prove points (a–c).

3.3. Admissibility. In this section, we will not impose the condition δ = 3
until the end (Proposition 3.19). When δ = 3, the parameter K1 falls under
one of the two cases K1 ≤ 2 or K1 = δ; for large values of δ, this is a split
between very small values of K1 and a very large value of K1, and we treat
these cases accordingly.

Lemma 3.10. Let Γ be an infinite primitive metrically homogeneous graph
of diameter δ. Then C ≥ 2δ + 2.

Proof. We have to eliminate the possibility C = 2δ + 1.
Suppose toward a contradiction that C = 2δ + 1; that is, Γ contains no

triangle of perimeter 2δ + 1.
As Γ is primitive, it is not bipartite, so K1 is finite. In other words, Γ

contains a triangle of type (1, i, i) for some i.
Take a pair of vertices u, u′ at distance δ and consider a vertex v ∈ Γi(u)

at distance δ − i from u′.
By the choice of i, Γi(u) contains an edge. For any neighbor v1 of v in

Γi(u), we have
δ − i ≤ d(v1, u

′) ≤ δ − i+ 1

The triangle (u, u′, v1) will have perimeter δ+ i+d(u′, v1), so by our hypoth-
esis d(u′, v1) 6= δ − i+ 1. Thus d(u′, v1) = δ − i.

So if v ∈ Γi(u) satisfies d(v, u′) = δ − i, then the same applies to each
neighbor of v in Γi(u). By Fact 3.2, Γi(u) is connected, and hence

Γi(u) ⊆ Γδ−i(u
′)
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In particular Γδ−i(u
′) also contains an edge, so we may switch the param-

eters i and δ − i, and the points u, u′, to conclude

Γi(u) = Γδ−i(u
′)

Hence for u1, u2 ∈ Γδ, we have Γδ−i(u1) = Γδ−i(u2).
As Γ is primitive, it follows that Γδ degenerates to a single vertex, but

then Γ is antipodal, and we have a contradiction. �

Lemma 3.11. Let Γ be an infinite primitive metrically homogeneous graph
of diameter δ of generic type, containing no triangle of type (2, δ, δ). Then
Γδ is an infinite complete graph. In particular

K1 = 1

K2 = δ

and Γ contains no triangle of perimeter greater than 2δ + 1.

Proof. We show first that Γδ contains an edge.
If not, then Γδ contains no pairs at distance less than 3. In particular,

each u ∈ Γδ−1 has a unique neighbor u′ in Γδ. This contradicts Fact 3.6.
So by Fact 3.2, Γδ is connected. But there is no pair in Γδ at distance 2,

so Γδ is complete. Then again by Fact 3.2, Γδ is infinite.
In particular, Γ contains triangles of type (1, 1, 1) and (1, δ, δ), so K1 = 1

and K2 = δ.
Now if we have a triangle (a, b, c) in Γ, with d(a, b) = i, d(a, c) = j, take a

as a basepoint and take v, v′ ∈ Γδ with d(b, v) = δ− i, d(c, v′) = δ− j. Then
d(b, c) ≤ (δ − i) + 1 + (δ − j) = 2δ + 1− (i+ j)

and thus the perimeter is at most 2δ + 1. �

Lemma 3.12. Let Γ be an infinite primitive metrically homogeneous graph
of diameter δ, for which Γδ contains an edge. Then Γ contains triangles of
type (i, δ, δ) for all i ≤ K1. Thus

C > 2δ +K1

Proof. If K1 = 1, then the lemma is vacuous. So we suppose K1 > 1, and
thus Γ1 is an independent set.

By Fact 3.2, the metric space Γδ is a metrically homogeneous graph with
associated path metric, and is connected as a graph. So it suffices to show
that the diameter of Γδ is at least K1.

If the diameter of Γδ is less than K1, then Γδ contains no triangles of type
(1, i, i) for any i, and therefore Γδ is bipartite, by Fact 3.7 applied to the
amalgamation class corresponding to Γδ. By Fact 3.5, since K1 > 1, the
space Γδ is connected with respect to the relation d(x, y) = 2, and thus no
odd distances occur in Γδ, which is a contradiction. �

Lemma 3.13. Let Γ be an infinite primitive metrically homogeneous graph
of generic type. If C = 2δ + 2, then any (1, δ)-space which does not contain
a forbidden triangle is realized in Γ.
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Proof. By Lemma 3.11, Γ contains no triangle of perimeter greater than
2δ + 1, so a (1, δ)-space with no forbidden triangle consists of at most 2
cliques, at distance δ.

By Lemma 3.11, Γδ is an infinite complete graph. It follows that Γ1 con-
tains an infinite complete graph, and is therefore the random graph (Remark
2.3).

Claim 3.13.1. For u ∈ Γ1, the set Iu = Γδ(u) ∩ Γδ is infinite.

First, the set Iu is nonempty as Γ contains a triangle of type (1, δ, δ).
Suppose Iu is a singleton. Then this determines a function from Γ1 to

Γδ. As Γ1 is primitive, this is either a bijection, or constant. As Γ is not
antipodal, the latter possibility is ruled out. If we have a bijection, then
Aut(Γ1) must act doubly transitively on Γ1, which is not the case.

So if Iu is finite, the number k = |Iu| is at least 2. By metric homogeneity
any k-set in Γδ is Iu for some u ∈ Γ1. Therefore we have pairs u, u′ in Γ1

satisfying
|Iu ∩ Iu′ | = i

for all i < k. As there are only 2 nontrivial 2-types in Γ1, we find that k = 2.
Let a, b, c ∈ Γ1 be chosen so that Ia, Ib, Ic meet pairwise. Then (a, b, c) is

a clique of order 3. However it is possible for the intersection Ia ∩ Ib ∩ Ic to
be either empty or nonempty, violating metric homogeneity.

Thus Iu is infinite, and the claim is proved.
Now take vδ ∈ Γδ and set

A = Γ1 ∩ Γδ(vδ) = Γδ(vδ) \ {v∗} B = Γδ ∩ Γ1(vδ) = Γδ \ {vδ}

with v∗ the chosen basepoint. Then A and B are infinite cliques which are
definable from the pair (v∗, vδ).

The distances between vertices in A and B can be either δ or δ − 1, and
by our claim each vertex in A lies at distance δ from infinitely many vertices
in B. Taking d(x, y) = δ to define an edge relation, we find that (A,B) is a
homogeneous bipartite graph in which each vertex in A has infinitely many
neighbors in B. Hence (A,B) is either complete bipartite, the complement
of a perfect matching, or generic bipartite.

Thus the required configurations occur in (A,B), and the lemma follows.
�

Lemma 3.14. Let Γ be an infinite primitive metrically homogeneous graph
of generic type, with diameter δ ≥ 3. If K1 = δ, then Γδ is a primitive metri-
cally homogeneous graph of diameter δ for which the corresponding parameter
Kδ,1 is also equal to δ. Furthermore the parameters of Γ satisfy

K2 = δ C = 3δ + 1 C ′ = 3δ + 2

and in particular the parameters (K1,K2, C, C
′) are admissible.

Proof. That K2 = δ follows from the definitions.
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As K1 = δ, Γδ contains an edge. By Fact 3.2, Γδ is connected and metri-
cally homogeneous.

By Fact 3.5, Γδ is also connected with respect to the relation “d(x, y) = 2,”
and therefore is not multipartite.

By Fact 3.7, since the graph Γδ is not bipartite it contains some triangle
of type (1, i, i), for some i ≤ δ. As K1 = δ, we must have i = δ. Thus the
diameter of Γδ is δ, and the parameter Kδ,1 for Γδ is also δ.

As Γδ is connected, the metric space Γ contains triangles of type (i, δ, δ)
for all i ≤ δ. Hence C > 3δ, and then by definition C = 3δ + 1, C ′ = C + 1.

By Fact 3.2 and the above, Γδ is primitive. �

We need also to deal with the constraint set S.

Lemma 3.15. Let Γ be an infinite primitive metrically homogeneous graph
of generic type, with diameter δ ≥ 3. Suppose that K1 = δ, and S is a
(1, δ)-space consisting of two pairs of vertices, each pair at distance 1, with
the distance between them equal to δ. Then S embeds into Γ.

Proof. We attempt the amalgamation shown below. If both factors (a1cu1u2)
and (a2cu1u2) embed into Γ, then in the amalgam the only possible values
for the distance d(a1, a2) are δ− 1 and δ, and the value δ− 1 is excluded by
the parameter c. But then a1a2u1u2 is a copy of S.

d(c, u1) = 2,
d(c, u2) = δ

It remains to be shown that the two factors (a1cu1u2) and (a2cu1u2) both
embed into Γ.

Claim 3.15.1. The factor (a1cu1u2) embeds into Γ.

Take a1 as the basepoint of Γ, and u2 = u a vertex in Γδ. Let Iu be

{v ∈ Γ1 | d(u, v) = δ}

We need to show that |Iu| ≥ 2.
As K1 = δ, we have |Iu| ≥ 1. If |Iu| = 1, this gives a definable function

from Γδ onto Γ1. As Γδ is primitive (Lemma 3.14), this function is 1-1 or
constant. As Γ1 is nontrivial, the function is a bijection between Γδ and Γ1.
Hence Γδ realizes a unique nontrivial 2-type, a contradiction.

This proves the claim.
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Claim 3.15.2. The factor (a2cu1u2) embeds into Γ.

Taking u1 as the basepoint, and c ∈ Γ2, we need to find a pair of vertices
v, w in Γδ satisfying

d(c, v) = δ d(c, w) = δ − 1 d(v, w) = 1

Suppose this is not possible. Let Jc = {v ∈ Γδ | d(c, v) = δ}. Then Jc is
nonempty as Γδ contains a pair at distance 2. For v ∈ Jc, and w adjacent to
v, our assumption gives w ∈ Jc. As Γδ is connected, we find Γδ ⊆ Jc ⊆ Γδ(c).
By symmetry, Γδ = Γδ(c). As Γ is primitive, this gives a contradiction.

Thus the second factor also embeds into Γ. �

Lemma 3.16. Let Γ be an infinite primitive metrically homogeneous graph
of generic type, with diameter δ ≥ 3 and K1 = δ. Then

S = ∅

and in view of Lemma 3.14, the parameters (K1,K2, C, C
′,S) are admissible.

Proof. The constraints in S must be (1, δ)-spaces in which each connected
component has order at most 2. We show by induction on n that a (1, δ)-
space S consisting of n pairs of vertices at distance 1 embeds into Γ.

Fix a pair of adjacent vertices a, b in Γ and set

Γ̃ = Γδ(a) ∩ Γδ(b)

Then Γ̃ is homogeneous as a metric space.
It suffices to show that Γ̃ is a primitive metrically homogeneous graph of

diameter δ of generic type, with associated parameter K̃1 = δ. Then the
induction hypothesis applies to Γ̃ and gives the desired configuration in Γ.

We may suppose that b is the basepoint in Γ, so that Γδ(a) ⊆ Γδ ∪ Γδ−1

and Γ̃ is Γδ(a) ∩ Γδ.

Claim 3.16.1. Γ̃ is connected

Let A be a connected component of Γ̃.
We show first that the diameter of A in the induced metric is at least

2. Let u, v be an edge in A. As Γδ(a) is of generic type (Lemma 3.14),
there is an isometric copy of a 4-cycle of the form (u, v, u′, v′) in Γδ(a). As
Γδ−1 contains no edges, one of u′, v′ must lie in Γδ(a) ∩ Γδ = Γ̃, and in the
connected component A.

So the diameter d of A is at least 2. Now by metric homogeneity of Γ̃, any
pair of points at distance d or less lies in a single connected component of
Γ̃. Supposing Γ̃ is not connected, take v, w ∈ Γ̃ at minimal distance d′ > d
in Γ̃.

Take v1, v2 on a geodesic in Γδ(a) connecting v to w, with d(v, v1) =

d(v1, v2) = 1. If one of the vertices v1 or v2 lies in Γ̃, then it lies in the same
connected component of Γ̃ as v, and is within distance d of w, hence lies
also in the same component as w, for a contradiction. Therefore the vertices
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v1, v2 lie in Γδ(a) \Γδ ⊆ Γδ−1. So Γδ−1 contains the edge (v1, v2), which is a
contradiction to K1 = δ.

Thus Γ̃ is connected. Since Γ̃ is homogeneous in the induced metric and
connected, the induced metric agrees with the graph metric (cf. [Cam98,
Proposition 5.1]), so that Γ̃ is a metrically homogeneous graph.

Claim 3.16.2. The diameter of Γ̃ is δ.

We seek a (1, δ)-space (a, b, c, c′) in which the only edge is (a, b). Taking
c′ as base point, we need a triangle of type (δ, δ, 1) in Γδ. This is given by
Lemma 3.14.

Claim 3.16.3. Γ̃ is of generic type.

As Γ̃ has finite diameter, it is not a regular tree, so if it is not of generic
type then it is of exceptional local type, according to Fact 2.2.

As K1 = δ > 1, (Γ̃)1 is an independent set. According to the definition
of exceptional local type, in this case Γ̃ must be a locally finite graph. But
there are no infinite locally finite metrically homogeneous graphs of finite
diameter. This is proved in [Mph82], and is included in the statement of
Fact 2.5.

Claim 3.16.4. Γ̃ contains an infinite anticlique (a set of points at mutual
distance δ).

It suffices to show that there are arbitrary large anticliques (c1, . . . , ck)

in Γ̃. This can be proved by induction on k, viewing the configuration
(a, b, c1, . . . , ck) as having basepoint ck, and requiring an embedding of

(a, b, c1, . . . , ck−1)

into Γδ.

Claim 3.16.5. Γ̃ contains a triangle of type (δ, δ, 1). Thus K̃1 = δ.

If the triangle is (c, c1, c2) with d(c, c1) = d(c, c2) = δ and d(c1, c2) = 1,
the configuration (abcc1c2) may be considered from the point of view of
the basepoint c as requiring an embedding of (a, b, c1, c2) into Γδ, which is
afforded by Lemma 3.15.

Claim 3.16.6. Γ̃ is primitive.

The previous two claims show that Γ̃ is neither antipodal nor bipartite.
Thus all required properties pass to Γ̃ and we may argue inductively.

�

Thus we have the following.

Lemma 3.17. Let Γ be an infinite primitive metrically homogeneous graph
of generic type with associated parameters (δ,K1,K2, C, C

′,S), where δ ≥
3. If the parameters (δ,K1,K2, C, C

′) are admissible, then the parameters
(δ,K1,K2, C, C

′,S) are admissible.
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Proof. The definition of admissibility imposes no further conditions on S
(beyond irredundancy) unless

C > 2δ +K1

In this case, the conditions imposed are:
• If K1 = δ, then S is empty.
• If C = 2δ + 2, then S is empty.

If K1 < δ, we need only concern ourselves with the case C = 2δ + 2, and
then Lemma 3.13 applies.

If K1 = δ, then Lemma 3.16 applies. �

In particular we have the following.

Corollary 3.18. Let Γ be an infinite primitive metrically homogeneous graph
of generic type with associated parameters (δ,K1,K2, C, C

′,S). If

K1 ≤ 2 or K1 = δ

then the associated parameters (δ,K1,K2, C, C
′,S) satisfy the following con-

ditions.

K1 + 2K2 ≥ 2δ − 1(1)
3K2 ≥ 2δ(2)

If K1 + 2K2 = 2δ − 1 then C ≥ 2δ +K1 + 2(3)

In particular, if K1 = δ, or if K1 ≤ 2 and C ′ = C + 1, then the parameters
(δ,K1,K2, C, C

′,S) are admissible.

Proof. The definition of admissibility as a set of numerical constraints (or
rather as a menu of three sets of numerical constraints) on the parameters
is given in Definition 2.10. Under the hypothesis of primitivity one of the
three possibilities envisioned in the definition (K1 =∞) drops away, and the
main case division is between C ≤ 2δ +K1 and C > 2δ +K1.

Points (1–3) repeat conditions from clause (III) of Definition 2.10.
If K1 = δ, then these points are not very significant, but they are true.

Namely, Lemma 3.16 applies; in particular K2 = δ and points (1–3) are
clear. But the point of that lemma is that we have admissibility.

So we suppose
K1 ≤ 2

By Lemma 3.8, we have
K2 ≥ δ − 1

In particular, points (1, 2) are again clear.
By Lemma 3.10, we have

C ≥ 2δ + 2

For point (3), the hypothesis K1 + 2K2 = 2δ − 1 with K2 ≥ δ − 1 entails
K2 = δ− 1 and K1 = 1. But then K2 6= δ and Lemma 3.11 give C ≥ 2δ+ 3,
as required.

This disposes of points (1–3).
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The final point concerns admissibility under the assumption C ′ = C + 1.
By Lemma 3.17, it suffices to check admissibility of (δ,K1,K2, C, C

′),
First, we show

C > 2δ +K1.

Namely, as C ≥ 2δ + 2 and K1 ≤ 2, the inequality holds unless

C = 2δ + 2 K1 = 2

But this combination of parameters is incompatible with Lemma 3.11.
Thus, we find ourselves in case (III) of Definition 2.10. Then the defi-

nition of admissibility, given δ ≥ 3, reduces to points (1–3) above, and the
following.

If C ′ > C + 1 then C ≥ 2δ +K2.(4)

So if C ′ = C + 1 this condition falls away. �

Proposition 3.19. Let Γ be an infinite primitive metrically homogeneous
graph of diameter 3 and generic type, with associated parameters

δ = 3, K1, K2, C, C ′, S

Then C ′ = C + 1, and the parameters (δ,K1,K2, C, C
′,S) are admissible.

Proof. By Corollary 3.18 it suffices to check that C ′ = C + 1.
The case K1 = δ is handled by Lemma 3.14.
So suppose

K1 ≤ 2

If C ≥ 3δ then C ′ = C + 1 by definition.
By Lemma 3.10 we have C ≥ 2δ + 2 = 3δ − 1, so it suffices to treat the

case C = 2δ + 2. But in this case, by Lemma 3.11 we have C ′ = C + 1. �

In particular, under the conditions of Proposition 3.19, the same parame-
ters are associated with the graph ΓδK1,K2,C,C′,S . This result also shows that
for δ = 3 the parameter C ′ is superfluous, since it is determined by C, and
we are free to drop it from our notation.

Definition 3.20. Let Γ be a primitive metrically homogeneous graph of di-
ameter 3 and generic type, with associated parameters (δ,K1,K2, C, C

′,S).
We set Γ∗ = ΓδK1,K2,C,C′,S .

The remaining task is to show that Γ and Γ∗ are isomorphic. We will first
show that Γ embeds into Γ∗.
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4. Which triangles are forbidden?

In this section, we prove the following proposition.

Proposition 4.1. Let Γ be a primitive metrically homogeneous graph of
generic type with associated parameters (δ,K1,K2, C, C

′,S), where

δ = 3

Then the triangles which embed into Γ are precisely the triangles which belong
to the class AδK1,K2,C,C′

.

We recall that the triangles in AδK1,K2,C,C′
are the ones which do not

belong to the set T (K1,K2, C, C
′) specified in Definition 2.11.

In one direction, we will not require the hypothesis δ = 3.

4.1. Forbidden triangles (First embedding theorem). The first part of
Proposition 4.1 may be stated more generally as follows. Recall that we have
definitions of the parameters K1,K2, C, C

′,S which apply to any metrically
homogeneous graph of generic type (Definition 3.1). For δ = 3, we know
these parameters are admissible. In general, we do not know this—it is part
of the main conjecture.

Proposition 4.2. Let Γ be a primitive metrically homogeneous graph of
generic type with associated parameters (δ,K1,K2, C, C

′,S). Suppose also
the following condition is satisfied.

If C ′ > C + 1, then C ≥ 2δ +K2.

If a triangle embeds isometrically in Γ, then that triangle belongs to the class

AδK1,K2,C,C′

Corollary 4.3. Let Γ be a primitive metrically homogeneous graph of generic
type with associated parameters (δ,K1,K2, C, C

′,S). Suppose that the pa-
rameters are admissible, and also the following condition is satisfied.

If C ′ > C + 1, then C ≥ 2δ +K2.

Then Γ embeds into ΓδK1,K2,C,C′,S .

The point here is that Γ and ΓδK1,K2,C,C′,S also have the same Henson
constraints.

Remark 4.4. This applies in particular when δ = 3, by Proposition 3.19.

Lemma 4.5. Let Γ be a primitive metrically homogeneous graph of generic
type with associated parameters (δ,K1,K2, C, C

′,S). Suppose also

If C ′ > C + 1, then C ≥ 2δ +K2.

Suppose a triangle of perimeter p ≡ ε (mod 2) (ε = 0 or 1) embeds isomet-
rically in Γ. Then

p < Cε
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Proof. Let the triangle type (i, j, k) with i ≥ j ≥ k provide a counterexample,
with perimeter

p = i+ j + k

and suppose k is minimal. Then by hypothesis p ≥ Cε, and by definition we
have p 6= Cε. Since

p ≡ Cε (mod 2)

we have p ≥ Cε + 2.
If k = 1, then p ≤ 2δ + 1 < C by Lemma 3.10. So k > 1.
Let (a, b, c) be a triangle of type(i, j, k) in Γ, with

d(a, b) = i, d(a, c) = j, d(b, c) = k

Take c′ adjacent to c on a geodesic from b: d(b, c′) = k − 1, d(c′, c) = 1. Let
j′ = d(a, c′), and consider the triangle (a, b, c′) of type

(i, j′, k − 1)

The perimeter p′ = i + j′ + (k − 1) satisfies p′ ≥ p − 2 ≥ Cε so by the
minimality of k we cannot have p′ ≡ p (mod 2). Therefore j′ = j, p′ = p−1,
and the triangle (a, c, c′) has type (1, j, j). In particular j ≤ K2.

Now by minimality of k we have p′ < Cε′ with ε′ = 1−ε, and thus Cε+1 ≤
p′ < Cε′ , so C ′ = Cε′ > C + 1. Then by hypothesis Cε = C ≥ 2δ +K2. But
p = i+ j + k ≤ 2δ + j ≤ 2δ +K2 ≤ Cε, a contradiction. �

Lemma 4.6. Let Γ be a primitive metrically homogeneous graph of generic
type with associated parameters (δ,K1,K2, C, C

′,S). Suppose a triangle of
type (i, j, k) and odd perimeter p embeds isometrically into Γ. Then

(1) p ≥ 2K1 + 1;
(2) i+ j ≤ 2K2 + k.

Proof. The first claim follows by Fact 3.7. We deal with point (2).
Suppose that (a, b, c) is a triangle of type (i, j, k) with odd perimeter, and

with
i+ j > 2K2 + k

chosen so that k is minimal. We may suppose that

d(a, b) = i, d(a, c) = j, d(b, c) = k

Let c′ be adjacent to c on a geodesic from b to c, so d(b, c′) = k − 1 and
d(c′, c) = 1. Consider the triangle (a, b, c′) of type

(i, j′, k − 1)
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with j′ = d(a, c′).

If j′ = j ± 1 then the perimeter p′ = i+ j′+ k− 1 is again odd and hence
by minimality of k we have

i+ j′ ≤ 2K2 + (k − 1)

i+ j ≤ i+ (j′ + 1) ≤ 2K2 + k

and we have a contradiction.
So j′ = j and (a, c, c′) is of type (1, j, j). Hence j ≤ K2 and we have

i+ j ≤ (j + k) + j ≤ 2j + k ≤ 2K2 + k

again a contradiction. �

Proof of Proposition 4.2. We consider a triangle of type (i, j, k) and perime-
ter p = i+j+k embedding into Γ. The claim is that this triangle is not in the
set of forbidden triangles T (δ, (K1,K2), (C0, C1)). According to Definition
2.11, we must check the following conditions.

• If p is odd:

p < C1 p ≥ 2K1 + 1 p ≤ 2K2 + 2 min(i, j, k)

• If p is even:

p < C0

Lemma 4.5 has the same hypotheses on Γ as the proposition, and yields
the appropriate inequality p < Cε with p ≡ ε (mod 2).

Lemma 4.6 has fewer conditions on Γ, and applies in the case of odd
perimeter to yield the first pair of constraints, with the constraint corre-
sponding to K2 written in the form

i+ j < 2K2 + k

Permuting the entries i, j, k gives

p < 2K2 + 2 min(i, j, k)

which appears to be stronger than we require, but as p is odd, equality is
impossible, so this is just another way of expressing the condition required.

�
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We remark that the side condition used here (namely, if C ′ > C + 1
then C ≥ 2δ + K2) is something that one would aim eventually to prove if
C > 2δ +K1, and to dispense with if C ≤ 2δ +K1, but the result as stated
will cover our needs in case δ = 3.

4.2. Realized Triangles. Now we wish to prove a complementary result.

Proposition 4.7. Let Γ be a primitive metrically homogeneous graph of
generic type with associated parameters (δ,K1,K2, C, C

′,S), where

δ = 3

Then any triangle in AδK1,K2,C,C′
embeds isometrically in Γ.

We resort to completely ad hoc considerations.

Lemma 4.8. Let Γ be a primitive metrically homogeneous graph of generic
type with associated parameters (δ,K1,K2, C, C

′,S), where

δ = 3

Then any triangle of even perimeter p < C embeds in Γ.

Proof. As δ = 3 there are few cases, particularly after we set aside the
geodesics, of types (1, 1, 2) and (1, 2, 3).

If p ≤ 6 then the type is (2, 2, 2), and this embeds into Γ1 since Γ1 contains
an infinite independent set, hence embeds into Γ.

The only other possibility is p = 8, with C > 8. As C > 8, some triangle of
perimeter 8 is realized, and there is only one such type, namely (2, 3, 3). �

Lemma 4.9. Let Γ be a primitive metrically homogeneous graph of generic
type with associated parameters (δ,K1,K2, C, C

′,S), where

δ = 3

Then any triangle of type (i, j, k) with odd perimeter p < C whose perimeter
p satisfies both of the following inequalities embeds isometrically in Γ.

• p ≥ 2K1 + 1;
• p ≤ 2K2 + 2 min(i, j, k).

Proof. We suppose i ≤ j ≤ k, and consider all cases according to the value
of i.

Case 1: i = 1.
Then the triangle has type (1, j, j) and the inequalities on p mean that

K1 ≤ j ≤ K2.
If j = K1 or K2 then a triangle of type (1, j, j) embeds into Γ by the

definition of K1,K2 respectively.
In the remaining case K1 = 1, j = 2, and K2 = 3. By Fact 3.4, Γ2

contains an edge, so Γ contains a triangle of type (1, 2, 2).

Case 2: i > 1.
As the perimeter is odd, and δ = 3, the triangle type is (i, i, 3) with i ≥ 2,

and the perimeter is p = 2i + 3. The assumption C > p implies that some
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triangle T of this perimeter occurs in Γ. If this triangle T is not of the
required type (i, i, 3) then we must have i = 2 while T has type (1, 3, 3).
Thus a triangle of type (1, 3, 3) embeds into Γ.

So suppose toward a contradiction that Γ3 contains an edge, but there is
no triangle of type (2, 2, 3) in Γ. Fix u ∈ Γ2, and v ∈ Γ3 adjacent to u.
For any neighbor v′ of v in Γ3, we have d(u, v′) ≤ 2 and hence d(u, v′) = 1;
otherwise, the triangle formed by u, v′, and the base point has type (2, 2, 3).
But Γ3 is connected (Fact 3.2) and it follows that Γ3 is contained in Γ1(u).

On the other hand there is w ∈ Γ1 at distance 3 from a vertex of Γ3, and
w has a neighbor w′ in Γ2, at distance at least 2 from that same vertex,
which is a contradiction. �

Proof of Proposition 4.7. We consider a triangle of type (i, j, k) and perime-
ter p = i+ j + k which is in

AδK1,K2,C,C′

According to Definition 2.11, we have the following conditions.
• If p is odd:

p < C1 p ≥ 2K1 + 1 p ≤ 2K2 + 2 min(i, j, k)

• If p is even:

p < C0

Recall that C ′ = C+1 in all cases, as δ = 3 (Proposition 3.19 and Lemma
2.13).

Thus p < C, and then Lemma 4.8 applies when p is even, and Lemma 4.9
applies when p is odd. �

Proof of Proposition 4.1. Propositions 4.2 and 4.7 �

5. Identification of Γ: K1 = 3 or C = 8

We proceed to the final phase of the classification of the metrically homo-
geneous graphs of diameter 3.

So far, we have seen that it suffices to deal with metrically homogeneous
graphs Γ which are of generic type, and primitive, and that each such graph
Γ has associated parameters (δ,K1,K2, C, C

′,S) which are also associated
with a unique known metrically homogeneous graph of generic type, which
we call Γ∗ (Definition 3.20). The goal then is to prove the isomorphism
Γ ∼= Γ∗.

Furthermore we know, by Corollary 4.3 and Remark 4.4, that Γ embeds
into Γ∗. As both Γ and Γ∗ are homogeneous, to conclude it will suffice to
prove that any finite metric space A embedding isometrically into Γ∗ also
embeds into Γ.

So far, we have proved that the required embedding holds for triangles
(Proposition 4.7). This gives us a start toward an inductive proof of the
general case. However, as discussed in §1.6.3, this induction will not take
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place with respect to the order of the configuration A, but with respect to
more subtle measures of structure, with most of the subtlety occurring in §6.

It is now time to make a further subdivision of the remaining cases ac-
cording to “large” and “small” values of K1 or C. Here (as previously in the
present article) K1 is small if it is at most 2, and large if it is δ (i.e., 3).
Similarly, C is small if it is at most 2δ+ 2 (8), and is large if it is at least 3δ
(9).

The fact that this case division is exhaustive appears to be one of the
more helpful features of the case δ = 3.

We now divide the remainder of the analysis into two cases, as follows.
• The extremal cases: K1 large or C is small;
• The typical cases: K1 small and C is large.

The present section §5 is devoted to the two extremal cases, and the next
section §6 is devoted to a uniform treatment of the remaining typical cases

5.1. K1 = 3 vs. C = 8: exploiting ambiguity. Our main objective now
is the following.

Proposition 5.1. Let Γ be a primitive infinite metrically homogeneous graph
of diameter 3, with K1 = 3. Then

Γ ∼= Γ3
3,3,10,11

is the generic graph of this type. (S = ∅ and is therefore omitted from the
notation here.)

We show first that Proposition 5.1 will also dispose of the case C = 8. This
depends on an essential ambiguity: one cannot actually distinguish the space
corresponding to K1 = 3 from the space corresponding to C = 8, when these
are presented as labeled graphs (relational structures) whose labels may be
permuted. Similar phenomena occur for any δ ≥ 3, but only in very special
cases [Cou18].

Corollary 5.2. Let Γ be a primitive infinite metrically homogeneous graph
of diameter 3, with C = 8. Then

Γ ∼= Γ3
1,3,8,9

is the generic graph of this type.

Proof. As C = 8 and δ = 3 we have the following assumptions on triangle
types realized and omitted by Γ, bearing in mind that geodesics are realized
and that the triangle inequality is satisfied.

Realized Omitted
(1,1,2) (1,1,3)
(1,2,3) (2,3,3)
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Recall by admissibility (and specifically, by Lemma 3.11) that Γ also con-
tains triangles of type

(1, 3, 3)

Let ~Γ be the structure derived from Γ by cyclically permuting the rela-
tions, replacing the relations d(x, y) = 1, 2, 3 by d(x, y) = 2, 3, 1 respectively.
Any permutation of the language produces another infinite primitive homo-
geneous structure for the same language—though not, in general, a metric
space.

Then the known constraints on ~Γ are the following.

Realized Omitted
(2,2,3) (1,2,2)
(1,2,3) (1,1,3)
(1,1,2)

In particular we see from the omission of (1, 1, 3) that ~Γ is in fact a
metric space, and from the presence of all geodesics that it is a metrically
homogeneous graph. So we have the following.

Claim 5.2.1. The derived structure ~Γ is a primitive, infinite, metrically
homogeneous graph of diameter 3.

Writing ~K1 for the value of K1 associated to ~Γ, we claim
~K1 = 3

As triangles of type (1, 2, 2) do not occur, Fact 3.4 states that ~K1 ≥ 3. On
the other hand ~Γ is primitive, so ~K1 is finite (otherwise, ~Γ would be bipartite
by Fact 3.7). Therefore ~K1 = 3.

So ~Γ satisfies the conditions of Proposition 5.1, and is therefore uniquely
determined. It follows that Γ is also uniquely determined, and this suffices.

�

5.2. Plan of attack: The embedding property.
We now take up the proof of Proposition 5.1. By Corollary 2.6 the graph

Γ in question must be of generic type.

Notation. For the remainder of §5, let Γ denote an infinite primitive metri-
cally homogeneous graph of diameter 3 and generic type, with K1 = 3, except
where greater generality is explicitly stated.

Γ∗ is the associated known metrically homogeneous graph of generic type
with the same parameters, as in Definition 3.20.

By Lemmas 3.14 and 3.16) we have

Γ∗ = Γ3
3,3,10,11

Thus Proposition 5.1 may be written as follows.

Γ ∼= Γ∗
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Furthermore we have shown that Γ embeds isometrically into Γ∗ and so
by Fraïssé theory it suffices to show that any finite metric space embedding
into Γ∗ embeds into Γ. We may state this more explicitly in the following
terms.

Proposition 5.3. With Γ as stated, let A be a finite integer-valued metric
space of diameter at most 3. Suppose that A embeds into Γ∗: that is, Γ
contains no triangles of type (1, 1, 1) or (1, 2, 2). Then A embeds into Γ.

We will proceed in the proof by induction on the number of edges (at
distance 1) in A, and then on the cardinality |A|. We begin with the case
in which there is no such edge in A; and later we will also need to treat the
case in which there is exactly one such edge, before tackling the general case
by an inductive argument.

We have the option of switching our point of view whenever the condition
C = 2δ+2 is more convenient, which in fact will be the case at the beginning
of our analysis. Namely, if

←−
Γ is the structure obtained by replacing the

relations d(x, y) = 1, 2, 3 by d(x, y) = 3, 1, 2, respectively, then
←−
Γ is again a

metrically homogeneous graph, with C = 2δ + 2 and K1 = 1 (cf. Table 1).
We take advantage of this in the proof of the next lemma.

Lemma 5.4. With Γ as stated, Γ2 is a random graph.
In particular, if A is a finite metric space in which all distances are 2 or

3, then A embeds into Γ.

Here Γ2 involves the distances 2, 3, one of which should be viewed as the
edge relation. The two conclusions given are equivalent, but some variation
in phrasing will be useful when the lemma is applied.

Proof. Passing to the associated metrically homogeneous graph
←−
Γ with C =

2δ + 2, the claim becomes that
←−
Γ 1 is the universal homogeneous graph.

By Fact 3.3
←−
Γ 1 is a primitive metrically homogeneous graph of generic

type.
Furthermore

←−
Γ 3 is an infinite clique: it is a clique because in

←−
Γ we

have C = 2δ + 2 and C ′ = 2δ + 3, and it is infinite because
←−
Γ is infinite,

primitive, and ℵ0-categorical. Since
←−
Γ contains an infinite clique, so does←−

Γ 1. By Remark 2.3,
←−
Γ 1 is then a random graph.

The lemma follows. �

5.3. Minimizing edges. For the remainder of §5, we suppose the following.
Γ is an infinite primitive metrically homogeneous graph of
diameter 3, with K1 = 3.

We recall (Corollary 2.6) that Γ is then of generic type.
If A is a finite metric space, we write e(A) for the number of unordered

pairs u, v in A with d(u, v) = 1. We consider a hypothetical finite metric
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space A with distances 1, 2, 3 which omits triangles of type (1, 1, 1) and
(1, 2, 2), but nonetheless is not isometrically embedded in our graph Γ.

We have shown in Lemma 5.4 that necessarily

e(A) ≥ 1

We will deal subsequently with the case e(A) = 1. Now we reduce the general
case to this case.

Lemma 5.5 (Reduction to e(A) = 1). Let Γ be an infinite primitive metri-
cally homogeneous graph of diameter 3 with K1 = 3. Suppose that every finite
metric space A with distances among 1, 2, 3 and with the following properties
embeds isometrically into Γ.

(1) A contains no triangle of type (1, 2, 2).
(2) e(A) = 1.

Then every finite metric space A with distances among 1, 2, 3 which contains
no triangle of type (1, 1, 1) or (1, 2, 2) embeds isometrically into Γ.

Proof. We consider a counterexample A with e(A) minimal, and we minimize
|A|. We view A as a graph with the usual edges given by d(x, y) = 1, so that
e(A) is the number of edges.

By Lemma 5.4 and our hypothesis, we have

e(A) ≥ 2

Claim 5.5.1. Every vertex of A lies on at most one edge.

Suppose on the contrary that a ∈ A is adjacent to distinct a1, a2. Let
A0 = A \ {a, a1, a2}. Then d(a1, a2) = 2 and this is the unique possibility
(when amalgamating A0 ∪{a, a1} with A0 ∪{a, a2} over A0 ∪{a}), unless it
is possible to identify a1, a2.

To prevent the latter, adjoin c with d(c, a1) = 2 and d(c, x) = 3 otherwise.
Consider the following amalgamation.

This forces the configuration A, and the factors have fewer edges, hence
are in Γ by induction.

Thus the edges of A must be disjoint, as claimed.
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Claim 5.5.2. If A contains two distinct edges (a1, a2) and (b1, b2), then
d(ai, bj) = 3 for i, j = 1, 2.

By Claim 5.5.1 the edges are disjoint, and none of the distances d(ai, bj)
can equal 1. Our claim is that none of these distances can equal 2.

Suppose toward a contradiction that

d(a2, b1) = 2

Then d(a1, b1) = 3, since a1 lies on a unique edge and A contains no triangle
of type (1, 2, 2).

We may view this configuration as an amalgamation problem to determine
the distance d(a1, b1) by amalgamating over a base A0 ∪ {a2, b2}, but this
amalgamation problem has the alternate solution d(a1, b1) = 1. So we extend
the diagram by an additional vertex c blocking this possibility.

d(c, a2) = d(c, b2) = 3

A0 = A \ {a1, a2, b1, b2}

As Γ does not contain a triangle of type (1, 2, 2), this forces d(a1, b1) = 3.
Since the factors of this amalgamation have fewer edges, they embed into Γ.
It follows that A embeds into Γ, a contradiction.

This proves our second claim.

Now to prove the lemma, we fix two edges (a1, a2) and (b1, b2). These
must be disjoint, with d(ai, bj) = 3 for i, j = 1, 2. We consider the following
amalgamation, with A0 = A\{a1, a2, b1, b2}, and with two auxiliary vertices
c1, c2, preventing the options d(a1, b1) = 1 or 2.
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d(ci, a) = 3 (a ∈ A0)
d(ci, a2) = 3

d(c1, b2) = 2

d(c2, b2) = 3

d(c1, c2) = 3

Here A0 is present but not shown.
It suffices to check that the factors of this amalgamation embed into Γ

(again, A0 is present but not shown):

The factor omitting b1 has fewer edges than A, so induction applies.
The factor omitting a1 has the same number of edges as A, and the edges

are not disjoint, so Claim 1 applies. �

5.4. The case e(A) = 1.

Lemma 5.6. Let Γ be a metrically homogeneous graph of diameter 3 with
K1 = 3. Let A be a finite configuration containing a unique edge (a1, a2) and
no triangle of type (1, 2, 2).

(1) If A does not embed into Γ then there is at least one vertex b ∈ A
with d(a1, b) = 2.

(2) If in addition |A| is minimized, then there is exactly one vertex b ∈ A
with d(a1, b) = 2.

Proof.

Ad (1):
Suppose that there is no vertex b at distance 2 from a1; that is, all the

distances d(a1, b) with b ∈ A0 = A \ {a1, a2} are equal to 3.
Consider the following amalgamation over a2c1c2.
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d(c1, a2) = 2

d(c2, a2) = 3

This forces the configuration A, so it suffices to check that the factors
embed isometrically into Γ.

The factor omitting a1 has no edges and thus embeds into Γ.

The factor omitting A0 has the following form.

(1)

Over a1 as base point, this means we are taking a vertex v ∈ Γ2 and
looking for two vertices in Γ1 at distance 3 from v.

There is at least one such vertex, since the corresponding triangle is a
geodesic.

Suppose toward a contradiction that for each vertex v ∈ Γ2 there is a
unique vertex v′ in Γ1 at distance 3 from v. As Γ2 is primitive (Lemma 5.4),
and Γ1 is not a singleton, this gives a bijection between Γ2 and Γ1. Hence
all pairs in Γ2 should lie at the same distance. But two distances occur.

So at least one such vertex b exists.

Ad (2):

Now suppose that |A| is minimal. We must show that the vertex b is
unique. Suppose that d(a1, b1) = d(a1, b2) = 2 with b1, b2 distinct. Consider
the following amalgamation over {a1, c}∪A0, where A0 = A \ {a1, a2, b1, b2}.
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d(c, a1) = 3

d(c, b1) = 2

d(c, x) = 3 (x ∈ A0)

Note that d(a2, bi) = 3 for i = 1, 2, so this amalgamation forces a copy of
A into Γ.

Now the factor omitting a2 has no edges, and the factor omitting b1, b2
again has a unique edge, and is smaller, hence lies in Γ. Thus we reach a
contradiction, and the vertex b is unique. �

Now we take up the proof of Proposition 5.3, dealing by an amalgamation
argument with the crucial remaining case.

Proof of Proposition 5.3.
By assumption Γ is primitive metrically homogeneous of generic type with

K1 = K2 = δ = 3, C = 10, C ′ = 11. We consider a finite metric space A
with distances among 1, 2, 3, which contains no triangles of types (1, 1, 1) or
(1, 2, 2). Our claim is that A embeds isometrically into Γ.

By Lemma 5.5 we may suppose e(A) = 1. Subject to this constraint, we
take |A| minimal. Let (a1, a2) be the unique edge in A.

By Lemma 5.6, there is a unique vertex b1 in A with d(a1, b1) = 2, and
a unique vertex b2 in A with d(a2, b2) = 2. As there is no triangle of type
(1, 2, 2) in A, we have b1 6= b2.

Let A0 = A \ {a1, a2, b1, b2}.
Then A has the following structure.

d(b1, b2) = 2 or 3

Suppose first that |A| ≥ 5, and thus

A0 6= ∅
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Adjoin elements c1, c2 as follows.

d(ci, x) = 2 (x ∈ A0)

d(ci, bj) = 3 (i, j = 1, 2)

d(c1, a1), d(c2, a2) = 1

d(c1, a2), d(c2, a1) = 2

d(c1, c2) = 3

Amalgamate

A0 ∪ {b1, b2, c1, c2} with {a1, a2} ∪ {b1, b2, c1, c2} over {b1, b2, c1, c2}

For x ∈ A0 and i = 1, 2 the elements c1, c2 prevent d(ai, x) = 1 or 2, so in the
amalgam necessarily d(ai, x) = 3. Thus if the factors embed isometrically in
Γ, then A embeds isometrically in Γ.

The factor in this amalgamation omitting (a1, a2) contains no edges, and
hence embeds into Γ. It remains to consider the factor omitting A0.

The factor omitting A0 has the following form.

d(ci, bj) = 3 (i, j = 1, 2)

Furthermore, the distance d(a1, c2) is forced to be 2, so it suffices to treat
the two factors obtained by omitting c2 or a1 respectively.

These factors are as follows.
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In factor (I) the distance d(c1, a2) is forced to be 2, as otherwise (a1, a2, c1)
has type (1, 1, 1), and thus this reduces to two factors of order 4.

The factor of (I) omitting a2 has the unique edge (c1, a1), and no vertex
at distance 2 from c1. So Lemma 5.6 applies.

The factor of (I) omitting c1 corresponds to the case |A| = 4 and will be
dealt with below under that heading.

In factor (II) there is no vertex v with d(c2, v) = 2, so Lemma 5.6 applies.

Thus we come down to the case |A| = 4. Then the structure of A is as
follows.

Adjoin c with d(c, x) = 2, 3, 2 for x = a1, a2, b2 and with d(c, b1) = 2 or 3,
the last to be determined momentarily. Consider the following amalgamation
over a2b1c.

Here the vertices a2 and c ensure that d(a1, b2) = 3.
In this amalgamation, the factor omitting a1 has no edges. The factor

omitting b2 has the following form, with i = 2 or 3, to be determined.
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With a2 as base point, take a1 ∈ Γ1. We require two vertices v1, v2 in Γ3

with d(a1, v1) = d(a1, v2) = 2 (then the distance i = d(v1, v2) will necessarily
be 2 or 3).

If two such vertices v1, v2 cannot be found, then each a ∈ Γ1 determines
a unique a′ ∈ Γ3 by the condition d(a, a′) = 2. As Γ1 is primitive, this gives
a bijection

Γ1 ↔ Γ3

But Γ3 realizes three distinct distances, and this gives a contradiction to
homogeneity.

This completes the proof. �

Now Proposition 5.1 follows from Proposition 5.3, Corollary 4.3, and Re-
mark 4.4.

6. Identification of Γ: K1 ≤ 2 and C ≥ 9

6.1. Statement of the problem: The embedding property. If Γ is a
metrically homogeneous graph of diameter 3, then it has been identified as
a member of our catalog in the following exceptional cases.

(1) Γ is not of generic type, hence imprimitive (antipodal or bipartite)
or finite; or

(2) Γ is infinite and primitive, with K1 = 3 or C = 8.
In the remaining cases, which are the most typical ones, we have all of the

following conditions.
(1) Γ is infinite, primitive, of generic type;
(2) K1 = 1 or 2;
(3) K2 = 2 or 3;
(4) C = 9 or 10.

We will again show that the graph is in our catalog. We recall the table
of possibilities (Table 3), cut down to the remaining cases.

Our assumptions on the parameters can be expressed more succinctly as
follows: no forbidden triangle involves distance 2.

As in §5.2, in accordance with Definition 3.20 we set

Γ∗ = Γ3
K1,K2,C,C+1,S



66 DANIELA AMATO, GREGORY CHERLIN, AND H. DUGALD MACPHERSON

Type Case K1 K2 C C ′ S
Primitive (III) 1 3 9 or 10 C + 1

" (III) 1 2 9 or 10 C + 1 cliques and
anticliques

" (III) 2 3 9 or 10 C + 1 anything not
involving a clique of
order 3

" (III) 2 2 9 or 10 C + 1 anticliques
Table 4. K1 ≤ 2, C ≥ 9

Our goal is the following.

Proposition 6.1. Let Γ be an infinite primitive metrically homogeneous
graph of diameter 3 with parameters

K1,K2, C, C
′,S

Suppose that K1 ≤ 2 and C ≥ 9. Then

Γ ∼= Γ∗

Again, by Corollary 2.6 Γ must be of generic type. By our earlier work
the proposition reduces to the following.

Proposition 6.2. Let Γ be an infinite primitive metrically homogeneous
graph of diameter 3 with parameters

K1,K2, C, C
′,S

Suppose that K1 ≤ 2 and C ≥ 9. Then any finite metric space which embeds
isometrically in Γ∗ embeds in Γ.

Recall from Proposition 4.1 that the triangles embedding isometrically in
Γ are those embedding in Γ∗.

The choice of parameters K1,K2, C ensures that these forbidden triangles
are also (1, δ)-spaces, so that the minimal forbidden configurations for Γ∗

are just the forbidden (1, δ)-spaces.
Another way of phrasing Proposition 6.2, relevant to the proof, is the

following.

If all the forbidden triangles of Γ are (1, δ)-spaces, then the
minimal [3]-metric spaces not embedding in Γ are all (1, δ)-
spaces. In other words, the amalgamation class allows free
amalgamation with distance 2 used as the “default” value of
the distance.

The notion of free amalgamation suggests that this problem is one which
we should expect to treat by a uniform method. The proof strategy will
be inductive: we must introduce a suitable measure of complexity accord-
ing to which any forbidden configuration which is not a (1, δ)-space can be
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reduced to some “simpler” forbidden configuration—here “simpler” does not
necessarily mean smaller, but we should ensure that the reduction process
terminates.

This allows us to give an argument with a reasonable degree of uniformity
across the 8 cases corresponding to various specifications of the numerical
parameters K1,K2, C in our table, as well as the infinitely many possibilities
for S.

As noted following Proposition 3.19, since C determines C ′ = C + 1, we
may drop C ′ from our notation. In this section we will generally do so; and
where appropriate, we will also use the briefer notation Γ∗ introduced above.

6.2. A Uniqueness Case. We now treat an important case in an induc-
tive framework. All metric configurations under consideration here have
distances among 1, 2, 3. We will not repeat this point.

Lemma 6.3. Let Γ be an infinite primitive metrically homogeneous graph of
diameter 3 and generic type with K1 ≤ 2 and C ≥ 9. Let A be a (1, 3)-space
which embeds into Γ with |A| ≥ 3, and B ⊇ A finite. Suppose the following
two conditions are satisfied.

(1) Any (1, 3)-subspace of B other than A has order less than |A|, and
embeds isometrically in Γ.

(2) Any configuration whose (1, 3)-spaces embed into Γ, for which all of
the (1, 3)-spaces involved have order less than |A|, itself embeds into
Γ.

Then the configuration B embeds into Γ.

Proof. Note first that as a consequence of condition (1) and Proposition 4.7,
all triangles of B embed isometrically in Γ: namely, by Proposition 4.7 any
triangle in B which does not embed in Γ would lie in the set of forbidden
triangles associated with the parameters of Γ and would therefore be a (1, 3)-
space, in view of the conditions on K1 and C. But if the triangle is not A it
then falls under clause (1).

We prove the lemma by induction on |B|.
We may suppose that B 6= A. Fix b ∈ B \ A. Our hypothesis (1) on B

implies that we can choose distinct a1, a2 ∈ A for which

d(a1, b) = d(a2, b) = 2

as otherwise we have another (1, 3)-subspace of B of the same size as A. Let
B0 be B\{a1, a2, b}.

Adjoin additional points c1, c2 satisfying the following conditions.

d(c1, a1) = d(c2, a1) = 1

d(c1, b) = 1, d(c2, b) = 3

d(c1, x) = d(c2, x) = 2 (x ∈ B0)

d(c1, c2) = 2
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We leave the distances d(c1, a2) and d(c2, a2) to be determined in the course
of the construction. Observe that any triangle whose distances have been
determined so far occurs in Γ, since any triangle involving at least one pair
at distance 2 embeds in Γ.

Once suitable factors are constructed, we take A0 = B0 ∪ {a2, c1, c2} and
amalgamate A0 ∪ {a1} with A0 ∪ {b}. The points c1, c2 serve to ensure that
d(a1, b) = 2 in the result, and thus we get a copy of B. So it remains to
construct the two factors appropriately.

For the factor A0∪{a1}, we determine the structure of (a2, c1, c2) by taking
the amalgamation of B0∪{a1, a2} with B0∪{a1, c1, c2} over B0∪{a1}. Here,
the factor omitting c1, c2 is B \ {b}, which we suppose lies in Γ by induction
on |B|. The factor omitting a2 contains no (1, 3)-space of order |A| (recall
|A| ≥ 3), and all of its (1, 3)-subspaces occur in B, so by hypothesis they
embed in Γ, and this factor does as well. Thus the factor A0 ∪ {a1} will
embed in Γ if the distances d(a2, c1) and d(a2, c2) are chosen appropriately.

We now turn to the factor A0 ∪ {b}, whose structure is as shown.

The (1, 3)-spaces occurring here are either contained in (a2, b, c1, c2), and
hence of cardinality at most 2, or are contained in B0 ∪ {a2, b} = B \ {a1}
and hence have cardinality at most |A| − 1. Hence by hypothesis this factor
embeds into Γ.

This completes the construction. �

6.3. Inductive Parameters. Now we introduce some notions of complexity
for finite configurations A.

Definition 6.4.
(1) If G is a graph, let G′ denote the induced graph on the set of points

of G of degree at least 2.
(2) Let δ be fixed and finite, and let A be an integral metric space of

diameter at most δ.
(a) Let GA be the graph with vertex set A and edge relation given by

“d(x, y) = 1 or δ”.
(b) A′ is the metric structure induced by A on the points of (GA)′.
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(c) If GA is connected or complete, then we will say that A is (1, δ)-
connected or (1, δ)-complete, respectively.

(d) ||A|| = max(|A0| : A0 ⊆ A, A0 a (1, δ)-subspace).
These notions depend on δ, which we treat as fixed, as well as A,
which we treat as variable.

Lemma 6.5. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type with K1 ≤ 2 and C ≥ 9. Let A be a finite
configuration not embedding isometrically in Γ, but such that every triangle
or (1, 3)-space contained in A embeds isometrically into Γ. Suppose that A
is chosen to minimize ||A||, and subject to that, also minimizes |A′|. Then

(1) A′ is (1, 3)-complete.
(2) |A′| ≤ 2.

Proof.
Ad (1):

Suppose first that a1, a2 ∈ A′ are points with d(a1, a2) = 2. Consider the
following amalgamation with auxiliary points c1, c2, where A0 = A\{a1, a2}.

The factors F have ||F || ≤ ||A|| and |F ′| < |A′|, so we may conclude by
induction that they embed into Γ. Then the unique amalgam has d(a1, a2) =
2 and hence contains a copy of A, for a contradiction.

So A′ is (1, 3)-complete. In particular, there is a unique maximal (1, 3)-
connected component of A containing A′, and any other non-trivial (1, 3)-
connected component of A consists of a single pair of points at distance 1 or
3.

In particular, if |A′| ≥ 2 then ||A|| = |A′|.
Ad (2):

Suppose |A′| ≥ 3. Then A′ is the unique (1, 3)-subspace of A of order
greater than 2. We will apply Lemma 6.3 with (A,A′) in place of (B,A).

Let A∗ be any configuration whose (1, 3)-subspaces and triangles embed
into Γ, and whose (1, 3)-spaces are all of order less than |A′|. Then ||A∗|| <
||A|| and thus A∗ embeds into Γ.

Hence Lemma 6.3 applies. Therefore A embeds into Γ. This contradiction
shows that |A′| ≤ 2. �
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6.4. Structure of Γ2. For the present subsection, we denote the parameters
associated to Γ2 by K̃1, K̃2, C̃. Our aim is the following.

Proposition 6.6. Let Γ be an infinite primitive metrically homogeneous
graph of diameter 3 with K1 ≤ 2, K2 ≥ 2, and C ≥ 9. Then Γ2 is an infinite
primitive metrically homogeneous graph of diameter 3 and generic type with
associated parameters K̃1 ≤ 2, K̃2 ≥ 2, and C̃ ≥ 9.

As usual, we note that Γ is of generic type, and we include this point
explicitly as a hypothesis in the following lemmas.

Lemma 6.7. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type, with K1 ≤ 2, K2 ≥ 2, and C ≥ 9. Then Γ2

contains a triangle of type (1, 2, 2).

Proof. If K1 = 1 then Γ1 is a Henson or random graph, by the assumption
of genericity and Fact 2.1.

In this case, set

Γ̃ = Γ1

Taking u ∈ Γ1, we have Γ̃2(u) ⊆ Γ2(u), and Γ̃2(u) contains the required
triangle.

So now suppose
K1 = 2

Let (a, b, c) be a triangle of type (1, 2, 2) in Γ with d(a, b) = d(a, c) = 2.
Then a, b and a, c each have infinitely many common neighbors, as Γ is of
generic type.

Take u1, u2 distinct so that u1 is a common neighbor of a and b, and u2

is a common neighbor of a and c. Then

d(u1, u2) = 2

Take u a common neighbor of u1, u2, distinct from a, b, c.
Then a, b, u are neighbors of u1, and a, c, u are neighbors of u2.
So the triangle (a, b, c) of type (1, 2, 2) lies in Γ2(u), and by homogeneity

there is such a triangle in Γ2. �

Lemma 6.8. Let Γ be an infinite primitive metrically homogeneous graph of
diameter 3 and generic type with K1 ≤ 2, K2 ≥ 2, and C ≥ 9. Then Γ2 is
an infinite primitive metrically homogeneous graph of diameter 3, and thus
also of generic type, with associated parameters K̃1 ≤ 2, K̃2 ≥ 2, and one of
the following occurs.

• C̃ ≥ 9;
• K̃1 = 1, K̃2 = 3, C̃ = 8; in this case, K1 = 1 and K2 = 3 as well.

Proof. As K1 ≤ 2 ≤ K2 (or by the previous lemma) Γ2 contains an edge and
is therefore connected, metrically homogeneous, and primitive by Fact 3.2.
Γ2 has diameter 3 since Γ contains a triangle of type (2, 2, 3) (as Γ∗ does).

By Lemma 6.7, Γ2 contains a triangle of type (1, 2, 2), so K̃1 ≤ 2 ≤ K̃2.
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With these parameters, we then have either C̃ ≥ 9 or K̃1 = 1, K̃2 = 3,
and in the latter case, K1 = 1, K2 = 3. �

Thus the proof of Proposition 6.6 reduces to the elimination of the second
case envisioned. We may state the required result as follows.

Lemma 6.9. Let Γ be an infinite primitive metrically homogeneous graph of
diameter 3 and generic type with

K1 = 1, K2 = 3, and C ≥ 9

Then Γ2 contains a triangle of type (2, 3, 3).

The proof is an extensive amalgamation argument, which we break up
into more manageable pieces.

Lemma 6.10. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type with

K1 = 1, K2 = 3, and C ≥ 9

Suppose that Γ2 contains no triangle of type (2, 3, 3). Then Γ contains the
configuration (a, b1, b2, b3) in which

d(a, bi) = 1, 3, 3 for i = 1, 2, 3 respectively
d(bi, bj) = 2

Proof. Our target may be depicted as follows.

Config. (I)

For our first try, we use the following amalgamation.
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Here d(b1, b3) ≥ 2, so we either get the desired configuration or the alter-
native with d(b1, b3) = 3.

Config. (II)

In this case, we try a different approach. Adjoin a point c with

d(c, a) = 1

d(c, bi) = 1, 2, 3 for i = 1, 2, 3

Consider the following amalgamation.

d(c, b2) = 2

d(c, b3) = 3

The parameter c forces d(a, b1) ≤ 2. In the amalgam, as a, b2, b3 is a
triangle of type (2, 3, 3) and we suppose that Γ2(b1) contains no triangle of
type (2, 3, 3), we find

d(a, b1) = 1

which gives the desired configuration.
Therefore it suffices to check that the factors of this last amalgamation

problem embed isometrically into Γ.
The second factor (cb1b2b3) corresponds to a geodesic of length 3 in Γ2(b2),

hence embeds isometrically into Γ.
The first factor, acb2b3, is the Configuration (II) obtained above. �

Now we return to Lemma 6.9.

Proof of Lemma 6.9. Our target is an embedding of a triangle of type (2, 3, 3)
into Γ2, which we depict as follows.
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Adjoin points c1, c2 with d(c1, c2) = 2 and the following distances.

a1 a2 a3 a4

c1 2 1 1 2
c2 1 1 3 2

We treat the resulting configuration as a 2-point amalgamation problem
which determines the distance

d(a2, a3)

Then the auxiliary points c1, c2 force

d(a2, a3) = 2

and we get an embedding of the desired configuration into Γ.
It remains to be checked that the two factors of this amalgamation problem

embed isometrically into Γ:

(I) a1a2a4c1c2 and
(II) a1a3a4c1c2

Note first that there are few triangles of perimeter greater than 7 in the
configuration (a1a2a3a4c1c2). Such a triangle must contain a vertex lying on
two edges of length 3, which must be a3 or a4, so the only possibilities are
the triangles (a2, a3, a4) and (c2, a3, a4). In particular the configuration (I)
omitting a3 contains neither of these triangles, while the configuration (II)
contains the second one.

Since the factor (I) omitting a3 contains no triangles of perimeter greater
than 7 we may embed it into Γ by embedding it into Γ2. Namely, recall
by Lemma 6.8 and Corollary 5.2 that under our assumptions, Γ2

∼= Γ3
1,3,8,9;

otherwise, if C̃ is the parameter associated with Γ̃ = Γ2, we would have
C̃ ≥ 9 and hence a triangle of type (3, 3, 2) is already embedded into Γ2.

Thus if the desired triangle does not occur in Γ2, then Γ2 contains the
configuration (I) isometrically, and hence Γ does.
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So we now turn our attention to the construction of the factor (II) by a
suitable amalgamation.

Adjoin a point c3 to the configuration (a1a3a4c1c2) satisfying the following.

d(c3, x) = 1, 1, 2, 2, 2 for x = a1, a3, a4, c1, c2 respectively

View the resulting configuration (a1a3a4c1c2c3) as a 2-point amalgamation
problem with the distance d(a1, a3) to be determined.

Then the points c2, c3 force the distance d(a1, a3) to be 2. So it suffices
to show that the factors of this amalgamation, namely (a1a4c1c2c3) and
(a3a4c1c2c3), embed isometrically into Γ.

The factor (a1a4c1c2c3) involves no pairs at distance 3 and hence no trian-
gles of perimeter greater than 6, hence embeds isometrically in Γ2

∼= Γ3
1,3,8,9,

and a fortiori into Γ.
So we turn to the factor (a3a4c1c2c3). This has the following form.

d(c3, a4) = d(c3, c2) = 2

We take the following point of view here. With a3 as base point, we want
a pair in Γ1 and a pair in Γ3 with all distances between the pairs equal to
2. So let us now view this as a point a = a3, and two pairs A1 = {c1, c3},
A3 = {c2, a4}, satisfying

d(a, x) = i for x ∈ Ai
d(x, y) = 2 for x, y ∈ A1 ∪A3

Now adjoin a point c adjacent to all points in A1 ∪ A3 and at distance 2
from a. Then we may view aA1A3c as an amalgamation problem in which
the distances between A1 and A3 all remain to be determined. But the
parameter c gives the bound

d(x, y) ≤ 2

for all such distances, while the parameter a gives the bound

d(x, y) ≥ 2

Thus the result of this amalgamation is uniquely determined, and it suffices
to show that the factors (a3A1c) and (a3A3c) occur in Γ.
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(1) (2)
Factor (2) is available for a number of reasons—it embeds in Γ1 and in

Γ2—so we concern ourselves with factor (1).
We adjoin a point c′ with d(c′, x) = 1, 2, 2, 1 for x = a3, a4, c2, c respec-

tively. We then consider the following amalgamation.

d(c′, a4) = d(c′, c2) = 2

With the help of the point c′, we see that d(a3, c) must be 2. So it suffices
to embed the factors of this diagram isometrically into Γ.

The factors are as follows.

(3) (4)
Factor (3) was treated in Lemma 6.10, while factor (4) embeds isometri-

cally in Γ since Γ1 contains I2
3 .

This concludes the analysis. �

Proof of Proposition 6.6. Lemmas 6.8 and 6.9. �

6.5. The Parameters of Γ2. We continue the analysis of the previous sec-
tion. Again, we denote by K̃1, K̃2, and C̃ the parameters of Γ2.
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Our aim is the following.

Proposition 6.11. Let Γ be an infinite primitive metrically homogeneous
graph of diameter 3 and generic type with K1 ≤ 2, K2 ≥ 2, and C ≥
9. Suppose that every infinite primitive metrically homogeneous graph Γ̃ of
diameter 3 and generic type with associated parameters K̃1 ≤ 2, K̃2 ≥ 2,
C̃ ≥ 9, and S̃, and which realizes fewer triangle types than Γ, is of the form

Γ3
K̃1,K̃2,C̃,S̃

Then Γ2 is an infinite primitive metrically homogeneous graph of diameter
3 and generic type, with the same numerical parameters.

K̃1 = K1 K̃2 = K2 C̃ = C

We note that the only point of the inductive hypothesis on Γ here is to
identify Γ2 in the case that Γ2 itself realizes fewer triangle types than Γ.
And the conclusion of our lemma is that this never actually occurs (under
the stated hypotheses).

Lemma 6.12. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type with K1 ≤ 2, K2 ≥ 2, and C ≥ 9.

Suppose Γ contains a triangle of type (1, 1, 1) (so in fact K1 = 1). Then
Γ2 also contains a triangle of type (1, 1, 1).

Proof. If Γ contains a clique of order 4, then Γ1 is a random graph or Hen-
son graph containing a triangle, hence contains the desired configuration (a
vertex at distance 2 from a clique of order 3). So we may suppose that

Γ contains no clique of order 4.

We label the desired configuration (ab1b2b3) where (b1, b2, b3) is a triangle
of type (1, 1, 1) and d(a, bi) = 2 for i = 1, 2, 3.

We adjoin two auxiliary points c1, c2 with the following metric.

d(ci, x) =

{
1 x 6= bi

2 x = bi

We view the resulting configuration as a 2-point amalgamation problem
determining the distance d(a, b3). As all distances among a, b3, c1, c2 are 1
apart from d(a, b3), and there is no clique of order 4, this forces d(a, b3) = 2.
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It suffices therefore to check that both of the configurations (ab1b2c1c2)
and (b1b2b3c1c2) embed isometrically in Γ.

Now the factor (b1b2b3c1c2) can be viewed as a 4-cycle in Γ1(b3), so this
embeds in Γ. Therefore it suffices to consider the factor

(ab1b2c1c2)

We add a point c with

d(c, b2) = d(c, c1) = 1

d(c, a) = d(c, b1) = d(c, c2) = 2

View the resulting configuration as a 2-point amalgamation problem where
the distance d(b2, c1) is to be determined.

The point c gives d(b2, c1) ≤ 2.
If we have d(b2, c1) = 1, then we have the required configuration, while

otherwise we have a, c1, c2 a triangle of type (1, 1, 1) in Γ2(b2), and we con-
clude.

So we must show that the factors (ab1b2c2c) and (ab1c1c2c) embed isomet-
rically into Γ.

Now the factor (ab1b2c2c), omitting c1, contains no clique of order 3 and
therefore embeds into Γ1 (which is a Henson graph) and hence into Γ. So
we come down to the factor (ab1c1c2c).
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We may treat this in a similar fashion. We adjoin a vertex c′ with

d(c′, c) = d(c′, c1) = d(c′, a) = 1

d(c′, b1) = d(c′, c2) = 2

and treat this as an amalgamation problem determining d(c, c1), which is
either 1 (as desired) or 2 (which puts the triangle (a, c1, c2) into Γ2(c)).

Again, the factor omitting c1 contains no 3-clique and embeds in Γ1. So
we consider the factor (ab1c1c2c

′). This can be treated as an amalgamation
problem with d(c′, a) to be determined, and d(c′, a) ≤ 2.

In this amalgamation, the factor omitting a has no clique of order 3 and
hence embeds in Γ1, while the factor omitting c′ consists of a triangle of type
(2, 2, 1) in Γ1(c2). Thus the factors of this diagram embed in Γ.

The completion of this diagram gives either the desired factor, where
d(a, c′) = 1, or else gives a copy of the factor (ab1c1c2c), and either way
we may conclude.

This concludes the construction. �

Lemma 6.13. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type with K1 ≤ 2, K2 ≥ 2, and C ≥ 9. Suppose
that every infinite primitive metrically homogeneous graph of diameter 3 and
generic type which satisfies the same restrictions on its numerical parameters,
and which realizes fewer triangle types than Γ, is of the form

Γ3
K̃1,K̃2,C̃,S̃

for suitable parameters K̃1, K̃2, C̃, S̃. If Γ contains a triangle of type (3, 3, 1),
then Γ2 contains a triangle of type (3, 3, 1).

Proof. We will suppose that a triangle of type (3, 3, 1) does not occur in Γ2,
and then by assumption Γ2 is of the form

Γ3
K̃1,K̃2,C̃,S̃
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where K̃1, K̃2, C̃, S̃ are the parameters associated to Γ2. By Proposition 6.6
we have K̃1 ≤ 2 ≤ K̃2 and C̃ ≥ 9.

We choose notation so that the configuration in question is (ab1b2b3) with

d(b1, bi) = 3 (i = 2, 3)

d(b2, b3) = 1

d(a, bi) = 2 (i = 1, 2, 3)

We take points a1, a2, a3, c1, c2, c3 with

d(a1, a2) = d(c2, c3) = 3

d(c1, c2) = d(a2, a3) = 1

d(a1, ci) = 3 (i = 1, 2)

and all other distances equal to 2, apart from d(a1, a3), which is to be deter-
mined by completing the following amalgamation.

The point a2 forces d(a1, a3) ≥ 2. If d(a1, a3) = 2 then (a3a1c1c2) is
the desired configuration, and if d(a1, a3) = 3 then (c3a1a2a3) is the de-
sired configuration. So it suffices to show that the factors (a1a2c1c2c3) and
(a2a3c1c2c3) of this amalgamation embed isometrically into Γ.

The factor (a2a3c1c2c3):

All triangles in this configuration embed isometrically into Γ2, by inspec-
tion, in view of Proposition 6.6. So this configuration embeds into Γ2.
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The factor (a1a2c1c2c3):

We view this as a 2-point amalgamation problem in which the distance
d(c1, c3) is to be determined. The point c2 gives d(c1, c3) ≥ 2. If d(c1, c3) = 3
then the configuration (a2c1c2c3) gives a triangle of type (3, 3, 1) in Γ2(a2),
and we are done. If d(c1, c3) = 2 then we have the correct configuration
(a1a2c1c2c3).

But we must still check that the subfactors (a1a2c1c2) and (a1a2c2c3)
embed isometrically in Γ.

The triangles occurring in the factor (a1a2c2c3) all occur in Γ2—those
of type (3, 3, 2) embed since C̃ ≥ 9. Therefore this configuration embeds
isometrically into Γ2, and hence into Γ.

So we must consider only the subfactor

(a1a2c1c2)

We adjoin an additional point a with

d(a, a1) = 3 d(a, a2) = 1

d(a, c1) = to be determined d(a, c2) = 2
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We treat the resulting configuration as a 2-point amalgamation problem
with the distance d(a1, a2) to be determined. The point a ensures that
d(a1, a2) ≥ 2.

If d(a1, a2) = 2, then (a1, c1, c2) is a triangle of type (3, 3, 1) in Γ2(a2), a
contradiction. If d(a1, a2) = 3 then we have the desired configuration.

It remains to be shown that the subfactors (aa1c1c2) and (aa2c1c2) of this
last amalgamation embed isometrically in Γ, for some choice of the distance
d(a,c1).

Consider the subfactor (aa2c1c2) with any value of d(a, c1) in the range
1,2,3.

Here all triangles embed in Γ2, so the configuration embeds isometrically
in Γ2, and hence in Γ.

So we may determine the distance d(a, c1) while constructing the subfactor
(aa1c1c2), treating this configuration as a 2-point amalgamation problem
with factors (aa1c2) and (a1c1c2), which are triangles of types (3, 3, 2) and
(3, 3, 1), and so are realized in Γ.

This completes the construction of the factor (a1a2c1c2c3). �

Lemma 6.14. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type with K1 ≤ 2, K2 ≥ 2, and C ≥ 9. Suppose
that every infinite primitive metrically homogeneous graph of diameter 3 and
generic type which satisfies the same restrictions on its parameters and which
realizes fewer triangle types than Γ is of the form

Γ3
K̃1,K̃2,C̃,S̃

for suitable parameters K̃1, K̃2, C̃, S̃.
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If Γ contains a triangle of type (3, 3, 3), then Γ2 contains a triangle of type
(3, 3, 3).

Proof.
We assume the contrary.
Then by Proposition 6.6 Γ2 is of the form

Γ3
K̃1,K̃2,9

with K̃1 ≤ 2 ≤ K̃2.

Claim 6.14.1. Γ contains a configuration (a1b1b2b3) in which (b1, b2, b3) is
a triangle of type (3, 3, 3) and

d(a1, b1) = 1

d(a1, b2) = d(a1, b3) = 2

If not, consider the configuration (b1b2b3c1c2) in which (b1, b2, b3) is a
triangle of type (3, 3, 3),

d(ci, bi) = 3 (i = 1, 2)

and all other distances equal 2.

We will show first that this is realized in Γ.
We consider this configuration as a 2-point amalgamation problem in

which d(c1, b1) is to be determined. The values d(c1, b1) = 1 or 2 may
be ruled out: if d(c1, b1) = 1 then we have the desired configuration already,
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while if d(c1, b1) = 2 we have a triangle of type (3, 3, 3) in Γ2(c1), contrary
to our hypothesis. So this diagram forces d(c1, b1) = 3. It suffices to check
that the factors (b1b2b3c2) and (b2b3c1c2) occur in Γ.

We view (b1b2b3c2) as a 2-point amalgamation problem determining the
distance d(c2, b2), and again the values d(c2, b2) = 1 or 2 are ruled out, so
we get d(c2, b2) = 3. As this is an amalgam of two triangles in Γ, the result
is in Γ.

Now the configuration (b2b3c1c2) consists of the triangle (b2, b3, c2) of type
(3, 3, 2) in Γ2(c1), and as C̃ ≥ 9, this is realized in Γ.

Thus the specified configuration (b1b2b3c1c2) embeds into Γ.
Now consider the configuration (a1b2b3c1c2) in which b2, b3, c1, c2 are as in

(b1b2b3c1c2), d(a1, c1) = 3, and d(a1, x) = 2 otherwise.

All triangles here occur in Γ2, as K̃1 ≤ 2 ≤ K̃2 and C̃ = 9, so this is
present in Γ2.

Now amalgamate (b1b2b3c1c2) with (a1b2b3c1c2) over (b2b3c1c2) to deter-
mine d(a1, b1). As we assume Γ2(a1) does not contain (b1b2b3), we have
d(a1, b1) = 1 or 3.

If d(a1, b1) = 1 then we have the claimed configuration (a1b1b2b3). If
d(a1, b1) = 3 then we have a triangle (a1, b1, c1) of type (3, 3, 3) in Γ2(c2), a
contradiction.

This proves the claim.

Claim 6.14.2. Γ contains a configuration (a1a2b1b2b3) in which (b1, b2, b3)
is a triangle of type (3, 3, 3) and

d(ai, bi) = 1 for i = 1, 2

d(ai, bj) = 2 for i = 1, 2, j = 1, 2, 3, i 6= j
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We argue similarly. We adjoin a point c with

d(c, x) =

{
3 x = a2, b2

2 otherwise

Then we consider the configuration (b1b2b3a1a2c) as a 2-point amalgamation
problem determining the distance d(a2, b2).

The value d(a2, b2) = 1 is the desired configuration.
The value d(a2, b2) = 2 would put the triangle (b1, b2, b3) in Γ2(a2), a

contradiction.
The value d(a2, b2) = 3 would put the triangle (a2, b2, c) of type (3, 3, 3)

in Γ2(a1), a contradiction.
So it suffices to check that the configurations (a1b1b2b3c) and (a1a2b1b3c)

embed in Γ.
We can view the configuration (a1b1b2b3c) as an amalgamation problem

with d(b2, c) to be determined: the value d(b2, c) = 1 gives the claim itself,
the value d(b2, c) = 2 would put the triangle (b1, b2, b3) in Γ2(c), and the
value d(b2, c) = 3 is the one we aim at here.

The subfactors of this configuration are then (a1b1b3c) and (a1b1b2b3).
The latter is afforded by our first claim and the former is a geodesic in Γ2(c).

As for the second configuration (a1a2b1b3c), all triangles embed in Γ2, by
inspection, and thus the configuration embeds into Γ2, and hence into Γ.
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Claim 6.14.3. The configuration (b1b2b3a1a2) with (b1, b2, b3) a triangle of
type (3, 3, 3) and

d(ai, b1) = 1 i = 1, 2

d(ai, bj) = 2 i = 1, 2, j = 2, 3

embeds isometrically in Γ.

We adjoin a point c with

d(c, a2) = d(c, b2) = 1

d(c, x) = 2 (x 6= a2, b2)

and view the resulting configuration as a 2-point amalgamation problem
determining d(a2, b2). The points b1 and c force d(a2, b2) = 2, giving the
desired factor.

So it suffices to check that the configurations (a1a2b1b3c) and (a1b1b2b3c)
embed isometrically into Γ.

All triangles in the factor (a1a2b1b3c) embed in Γ2, so that factor embeds
isometrically in Γ2 and hence in Γ.

The factor (a1b1b2b3c) was dealt with under the previous claim.
This proves the claim.

Now we adjoin a point a3 to the last configuration with

d(a3, a1) = 1 d(a3, a2) = 3

d(a3, x) = 2 otherwise

We view the resulting configuration as a 2-point amalgamation problem
in which the distance d(a3, b1) is to be determined. The points a1, a2 force
d(a3, b1) = 2, but then the triangle (b1, b2, b3) lies in Γ2(a3), a contradiction.

So it suffices to embed the factors of this amalgamation into Γ. The factor
(a1a2b1b2b3) is the configuration discussed under the last claim.

In the other factor, (a1a2a3b2b3), all triangles involved embed into Γ2, so
this factor embeds isometrically into Γ2, and hence into Γ.

This concludes the proof. �

Proof of Proposition 6.11. We consider Γ̃ = Γ2 and its associated parameters
K̃1, K̃2, C̃. We must show these agree with the parameters of Γ.
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By Proposition 6.6, we have K1 ≤ 2 ≤ K2 and C̃ ≥ 9.
If K1 = 1 then K̃1 = 1 by Lemma 6.12, and otherwise K1 = K̃1 = 2.
If K2 = 3 then K̃2 = 3 by Lemma 6.13, and otherwise K2 = K̃2 = 2.
We have 9 ≤ C̃ ≤ C and if C > 9 then C̃ > 9 by Lemma 6.14, and

otherwise C = C̃ = 9.
Thus K1 = K̃1, K2 = K̃2, and C = C̃, in all cases. �

6.6. Recapitulation. We review what is known at this point. Our standing
assumption now is δ = 3. We suppose that Γ is a primitive metrically
homogeneous graph of generic type with associated parametersK1 ≤ 2 ≤ K2

and C ≥ 9, and with associated constraint set S as described in Table 3.
All other metrically homogeneous graphs of diameter 3 have already been
classified.

Our ultimate aim is to show that Γ is isomorphic to the associated graph

Γ∗ = Γ3
K1,K2,C,S

with the same parameters, including Henson constraints. (Recall that we
now omit the parameter C ′ = C + 1 from our notation.)

We have reformulated what remains to be proved as an embedding prob-
lem in Proposition 6.2: any finite structure which embeds into Γ∗ embeds
into Γ.

We have two main results so far, and a reduction of the embedding theorem
to a special case.

• Proposition 4.1: Γ contains exactly those triangles which embed into
Γ3
K1,K2,C,S .

• Proposition 6.11: Suppose (inductively) that any such graph Γ̃ which
realizes fewer triangles than Γ is isomorphic to the canonical metri-
cally homogeneous graph

Γ3
K̃1,K̃2,C̃,S̃

associated to its own parameters. Then taking Γ̃ = Γ2, this graph has
the same associated numerical parameters as Γ: that is, K̃1 = K1,
K̃2 = K2, C̃ = C.
• Lemma 6.5: If there is a counterexample A to the embedding theorem
then there is one such for which |A′| ≤ 2.

After some additional preparation, Proposition 6.2 will be proved in §6.8,
in an inductive framework allowing for the application of Proposition 6.11.

6.7. An Embedding Lemma. We now deal with isometric embedding of
configurations A in which the graph with edge relation “d(x, y) ∈ {1, 3}” is
a star. This will be used to dispose of all cases of the embedding theorem in
which |A′| ≤ 1, leaving the main case |A′| = 2 to be addressed at the end.

Lemma 6.15 ((1, 3)-Stars). Let Γ be an infinite primitive metrically homo-
geneous graph of diameter 3 and generic type with K1 ≤ 2 and C ≥ 9. Let
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A = {a} ∪B with {
d(a, x) ∈ {1, 3} (x ∈ B)

d(x, y) = 2 (x, y ∈ B)

Then A embeds in Γ.

Such a configuration A will be called a (1, 3)-star with center a.
We will use various explicit amalgamation arguments. We first deal with

a special case.

Lemma 6.16. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type with K1 ≤ 2 and C ≥ 9. Then the following
two configurations embed isometrically in Γ.

(I) The configuration (a1a2a3a4) in which (a2, a3, a4) is a geodesic path
of length 2 and a1 satisfies

d(a1, ai) = 3, 2, 2 for j = 2, 3, 4

and
(II) the configuration (a1a2b1b3) which carries the following metric.

d(ai, bj) = j

d(a1, a2) = d(b1, b3) = 2

Proof.

Ad (I):

In the diagrams below, we refine our practice of showing as “edges” all
pairs at distance 1 or 3 by employing dashed lines to represent the distance
3.

Thus our configuration may be depicted as follows.

We introduce a point c1 with d(c1, ai) = 2, 1, 2, 3 for i = 1, 2, 3, 4 re-
spectively. We view the resulting configuration as a 2-point amalgamation
determining the distance d(a2, a4) = 2.
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So it suffices to show that the factors (a1a2a3c1) and (a1a3a4c1) of this
amalgamation embed isometrically into Γ.

The configuration (a1a3a4c1) represents a geodesic triangle of diameter
3 (c1, a3, a4) sitting in Γ2(a1). The metrically homogeneous graph Γ2 has
diameter 3 by Proposition 6.6, so this configuration embeds isometrically in
Γ.

Thus it suffices to consider the configuration

(a1a2a3c1)

Here the points a1, a3, c1 all lie at distance 2. We adjoin a point c2 adjacent
to these three points, with d(c2, a2) = 2. We consider the resulting configu-
ration as an amalgamation problem over {a2, c2} determining the distances
d(a1, a3) = d(a1, c1) = 2.

So it suffices to check that the factors (a1a2c2) and (a2a3c1c2) of this
amalgamation embed isometrically into Γ.

The factor (a1a2c2) is a geodesic triangle, so embeds isometrically in Γ.
The factor (a2a3c1c2) is a 4-cycle, which embeds isometrically in Γ1.

Ad (II):
Our configuration may be depicted as follows.

(1)
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We adjoin a point c1 with

d(c1, b1) = d(c1, b3) = 1

d(c1, a1) = d(c1, a2) = 2

We view the resulting configuration as a 2-point amalgamation problem in
which d(b1, b3) is to be determined. Then the points a1, c1 force d(b1, b3) =
2. So it suffices to check that the factors (a1a2b1c1) and (a1a2b3c1) embed
isometrically in Γ.

The factor (a1a2b1c1) represents a triple (a1, a2, c1) at mutual distance 2
in Γ1(b1), so embeds isometrically in Γ.

We consider the configuration (a1a2b3c1).

Adjoin a point c2 with

d(c2, a2) = d(c2, c1) = 1

d(c2, a1) = d(c2, b3) = 2

View the resulting configuration as a 2-point amalgamation problem de-
termining the distance d(a2, c1) = 2. It suffices to check that the factors
(a1a2b3c2) and (a1b3c1c2) embed isometrically in Γ.

Now (a1b3c1c2) is the configuration (I) considered above. So it suffices to
deal with

(a1a2b3c2)

We adjoin a point c3 with

d(c3, a1) = 3

d(c3, a2) = 2

d(c3, b3) = d(c3, c2) = 1
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View the resulting configuration as a 2-point amalgamation problem de-
termining the distance d(b3, c2) = 2. It suffices to check that the factors
(a1a2b3c3) and (a1a2c2c3) embed into Γ.

The factor (a1a2c2c3) is isometric with the factor (I) considered above,
where the geodesic path of length 2 is (c3, c2, a2).

So we consider the factor
(a1a2b3c3)

We view this as a 2-point amalgamation problem with the distance d(a1, c3)
to be determined. Here d(a1, c3) ≥ 2.

If d(a1, c3) = 3 then we have the desired configuration. Otherwise, we
have d(a1, c3) = 2 and this gives a configuration isomorphic to the earlier
configuration (a1a2b3c1), and the subsequent analysis may be dispensed with.

�

Lemma 6.17. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type with K1 ≤ 2 and C ≥ 9. Let A = {a} ∪ B
with {

d(a, x) ∈ {1, 3} (x ∈ B)

d(x, y) = 2 (x, y ∈ B)

Suppose that there are at most two points x ∈ B with d(a, x) = 3. Then A
embeds in Γ.

Proof. Adjoin a point c adjacent to all points of B, with d(c, a) = 2. For
i = 1 or 3 set

Ai = {x ∈ B | d(a, x) = i}
View A ∪ {c} as an amalgam of A1 ∪ {a, c} with A3 ∪ {a, c} over the base
{a, c}. Then the points a, c force

d(x, y) = 2

for x ∈ A1, y ∈ A3. Thus it suffices to check that the two factors embed
isometrically into Γ.

Now the factor A1∪{a, c} embeds into Γ by the definition of generic type.
We consider the factor A3 ∪ {a, c}, with |A3| ≤ 2. We may suppose

|A3| = 2, and then this is the configuration (II) of Lemma 6.16. �

Now we can prove the embedding lemma for (1, 3)-stars.
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Proof of Lemma 6.15. We suppose A = {a} ∪ B, with all distances in B
equal to 2 and all distances between a and B equal to 1 or 3. We may
suppose |B| ≥ 3.

Let B′ = {b′ | b ∈ B} be a set of “duplicates” of the points in B. For
b′ ∈ B′, x ∈ A ∪B′, x 6= b′, we define

d(b′, x) =


1 x ∈ B \ {b}
3 x = b

2 x ∈ {a} ∪B′ \ {b′}

If we amalgamate all of the configurations {a} ∪ {b} ∪ B′ (b ∈ B) over
the base {a}∪B′, then the elements of B′ ensure that all distances in B are
equal to 2, and thus the desired configuration is forced. It suffices therefore
to check that the configurations

{a, b} ∪B′

all embed isometrically into Γ.
Let B∗ = {a} ∪ B′. Then the configurations in question have the form

{b} ∪B∗ where all distances in B∗ are equal to 2 and all distances between
b and B∗ are 1 or 3.

Letting B∗3 = {x ∈ B∗ | d(b, x) = 3}, we have B∗ ⊆ {a, b′}. So Lemma
6.17 applies to these configurations.

This completes the construction. �

6.8. Completion of the proof. Now we work in earnest toward the the
proof of Proposition 6.1.

We have Γ an infinite primitive metrically homogeneous graph of diameter
3 with parameters K1,K2, C,S, satisfying

K1 ≤ 2 and C ≥ 9

Our claim is that Γ ∼= Γ∗, or equivalently that the following Embedding
Principle holds.

Any finite Γ-constrained metric space A embeds isometrically
into Γ.

Here we use the following terminology: a finite metric space A is said to be
Γ-constrained if all triangles in A and all (1, 3)-subspaces of A embed into
Γ. We have shown that Γ-constraint is equivalent to Γ∗-constraint, which is
equivalent to embeddability in Γ∗.

We have proved various very special cases of this principle above. Now we
undertake a general inductive argument based on the parameters introduced
in §6.3.

First, we minimize the number of triangle types realized in an infinite
primitive metrically homogeneous graph Γ which affords some counterexam-
ple to the claim, and we keep the isomorphism type of Γ fixed throughout.
This means that we may operate under the following standing assumption.
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Any infinite primitive metrically homogeneous graph of diam-
eter 3 realizing fewer triangle types than Γ is of the form

Γ3
K̃1,K̃2,C̃,S̃

for some choice of admissible parameters K̃1, K̃2, C̃, S̃.
Then by Proposition 6.11, the parameters K̃1, K̃2, C̃ associated with Γ2

equal the parameters K1,K2, C associated with Γ. This is all we need to
retain about our standing assumption.

Now we consider a counterexample A to our embedding principle for Γ.
Recall from Definition 6.4 that A′ is the set of points x ∈ A for which

there are at least two other points y ∈ A with d(x, y) 6= 2. By 6.5, if there
is a counterexample to the Embedding Principle for Γ, then there is some
counterexample A for which |A′| ≤ 2. Notice that this then implies that A
contains no (1, 3)-space of order greater than 2, and therefore the condition
of Γ-constraint for A is solely a condition on the triangles in A.

We first consider the case |A′| = 0: the (1, 3)-edges are pairwise disjoint.

Lemma 6.18. Let Γ be an infinite primitive metrically homogeneous graph
of diameter 3 and generic type with parameters K1,K2, C,S. Suppose the
following.

• K1 ≤ 2 and C ≥ 9.
• The parameters K̃1, K̃2, C̃ associated with Γ2 agree with K1,K2, C.

Let A be a finite metric space with distances among 1, 2, 3, and suppose

A′ = ∅
Then A embeds isometrically into Γ.

Proof. Since A′ = ∅, no point of A is at distance 1 or 3 from more than one
other point of A. So we may write

A = A1 ∪A3 ∪B
where for i = 1 or 3 we let Ai be the set

{x ∈ A |There is some y ∈ A with d(x, y) = i}
Thus A1 is a union of pairs at distance 1, A3 is a union of pairs at distance
3, and all other distances are equal to 2.

We proceed by induction on |A|. If B 6= ∅, fix b ∈ B and let A∗ = A \{b}.
By hypothesis the metric space A∗ is also Γ2-constrained. We apply the
induction hypothesis to A∗ in Γ2 to embed A∗ isometrically in Γ2. But in
A, we have A∗ ⊆ Γ2(b), so this embeds A into Γ.

So we may suppose B = ∅ and
A = A1 ∪A3

is a union of pairs at distance 1 or 3, which are separated by distance 2. Let
us denote these pairs (ai, bi), with 1 ≤ i ≤ n, |A| = 2n. We may suppose
n ≥ 2.
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We adjoin additional points âi (1 ≤ i ≤ n) and a∗ with

d(âi, ai) = 3

d(âi, aj) = 1 i 6= j

d(a∗, ai) = 1

and with all other distances involving a∗ or âi equal to 2.
Set Âi = {â1, . . . , ân} ∪ {b1, . . . , bn} ∪ {ai, a∗}. We claim that the config-

urations Âi all embed into Γ.
This claim is proved inductively, where we replace the set {b1, . . . , bn} by

any subset of order k ≤ n and proceed by induction on k.
The points bj for j 6= i lie at distance 2 from all other points of Âi, so

by applying the induction hypothesis to Γ2 (invoking Proposition 6.11), we
reduce to the configuration

{â1, . . . , ân} ∪ {ai, bi, a∗}

This configuration is a (1, 3)-star with center ai, so Lemma 6.15 applies.
Since the configurations Âi all embed isometrically in Γ, we consider their

amalgam. The point a∗ ensures d(ai, aj) ≤ 2 while the points âi ensure
d(ai, aj) ≥ 2. Therefore the configuration A results. �

Now we may treat the general case.

Proof of Proposition 6.2. We may suppose inductively that every infinite
primitive metrically homogeneous graph Γ̃ of diameter 3 and generic type
with K̃1 ≤ 2, K̃2 ≥ 2, C̃ ≥ 9, and which realizes fewer triangle types than Γ
is of the form

Γ3
K̃1,K̃2,C̃,S̃

Note that the same conclusion also holds if the parameters of Γ̃ do not satisfy
the specified constraints, by our previous analysis.

We must embed an arbitrary finite Γ-constrained configuration A into Γ.
We suppose that A is a counterexample, taken so as to minimize, succes-

sively, the following.
(1) The cardinality ||A|| of the largest (1, 3)-space contained in A.
(2) The size of A′.
(3) The number of nontrivial (1, 3)-connected components of A.
(4) The size of A.

Claim 6.1.1.
1 ≤ |A′| ≤ 2

If |A′| = 2 then A′ is a pair of points at distance 1 or 3.

By Lemma 6.18, A′ is nonempty.
The rest of the claim follows from Lemma 6.5, in view of our assumptions

on A.
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In particular, there is a unique (1, 3)-connected component A0 of A con-
taining A′.

Claim 6.1.2. Every point of A lies at distance 1 or 3 from at least one other
point of A.

Otherwise, take a ∈ A at distance 2 from all points of A, and consider
A∗ = A \ {a}. By the minimality of |A|, the inductive assumption on Γ,
and Proposition 6.11, the configuration A∗ is Γ2-constrained, hence embeds
isometrically into Γ2 by induction. Thus A embeds isometrically into Γ.

So any (1, 3)-connected component of A other than A0 has order 2.

Claim 6.1.3. A0 is the only (1, 3)-connected component of A.

Suppose A1 is another (1, 3)-connected component (a (1, 3)-edge disjoint
from A0). Take a0 ∈ A′ ⊆ A0, and a1 ∈ A1.

Consider the following amalgamation, where

B0 = A0 \ {a0} B1 = A1 \ {a1} B2 = A \ (A0 ∪A1)

(so B1 is a singleton) and c1, c2 are additional points.

d(ci, x) = 2

(x 6= a0, a1)

The points c1, c2 ensure d(a0, a1) = 2 and thus it suffices to embed the
factors of this amalgamation isometrically into Γ.

The factor omitting a1:
This has fewer non-trivial (1, 3)-connected components, so embeds in Γ

by hypothesis.

The factor F omitting a0:
Suppose first that

|A′| = 1

That is, A0 is a (1, 3)-star with center a0.
Then |F ′| = 1, with a1 replacing a0 in the role of center. The number of

nontrivial (1, 3)-connected components is reduced by 1, so by our induction
hypothesis F embeds in Γ.
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Now suppose
|A′| = 2

Then A′ = {a0, b0} for some point b0 ∈ B0. The structure of the factor F
is then as follows, with B∗0 = B0 \ {b0}, B∗1 = B1 ∪ {c1, c2}.

c1, c2 ∈ B∗1

We form an amalgamation with two additional points c′1, c′2 as follows.

d(c′i, x) = 2

for x 6= a1, b0

The factors here both have |A′| = 1, so we conclude by induction.
This proves the claim in all cases.

The final analysis:
By Claims 2 and 3, A = A0 is (1, 3)-connected.
If |A′| = 1, then A is a (1, 3)-star, and this case is covered by Lemma 6.15.

So we suppose |A′| = 2, and fix notation as follows.

A′ = {a1, a2}

By Claim 1, this is a (1, 3)-edge.
Let us take A to minimize

min(deg(a1),deg(a2))

where here and below the degree of a point is taken in the sense of the graph
GA introduced earlier, that is, the number of points at distance 1 or 3. We
may suppose deg(a2) ≤ deg(a1).

For i = 1 or 2 let Bi be the set of (1, 3)-neighbors of ai in A \ A′. Fix
a ∈ B2.

The configuration consists of two stars with their centers joined by an
edge. We represent this schematically as follows.
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Form a configuration with two auxiliary points c1, c2 satisfying

d(c1, a1) = 1 d(c2, a1) = 1

d(c1, a) = 1 d(c2, a) = 3

d(ci, x) = 2 otherwise

View this configuration as an amalgamation diagram in which the distance
d(a1, a) is to be determined. The auxiliary points c1, c2 ensure d(a1, a) = 2.
Thus it suffices to embed the factors of this amalgamation diagram isomet-
rically into Γ.

The factor omitting a has smaller deg(a2).
The factor F omitting a1 has a1, a2 replaced by (at worst) a, a2, but again

deg(a2) is reduced. So either |F ′| < |A′|, or F ′ = {a, a2} with

min(deg(a), deg(a2)) < min(deg(a1),deg(a2))

By induction the factor F embeds isometrically in Γ. �

Now Proposition 6.1 follows from Proposition 6.2, Corollary 4.3, and Re-
mark 4.4.

With this, the classification of the infinite primitive metrically homoge-
neous graphs of diameter 3 is complete, and as the finite and imprimitive
cases are also classified, this proves the Classification Theorem for δ = 3.

7. Conclusion

Theorem 1 supports the conjecture that all metrically homogeneous graphs
are known, and are as described in [Che11a] (compare the discussion in §§1.1,
2.3).

Other supporting results are the following.
• The metrically homogeneous graphs which are not of generic type
are classified [Che11a, Thm. 10, Lemma 8.6].
• The 3-constrained metrically homogeneous graphs are classified
[Che18, Thm. 1.16].
• If the conjecture holds in finite diameter, then it also holds in infinite
diameter [Che18, Thm. 1.23].
• Under a suitable inductive hypothesis, the classification conjecture
holds for bipartite graphs [Che18, Thm. 1.27].
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The methods used to treat the reduction to finite diameter and the bipar-
tite case have some elements in common with methods used here, but the
form they take on here is more robust and more promising as a guide toward
further progress. Our current view of the natural road forward, in the light
of the present work, is given in some detail in §7.5.

A more theoretical source of support for the classification conjecture is
discussed in §1.5.2. That line of thinking actually supports a more ambitious
conjecture, broader in scope though technically not strictly comparable with
the classification conjecture for metrically homogeneous graphs, as we shall
see.

7.1. Broad conjectures. The line of thought described in §1.5.2 suggested
the following, which however turns out to be too strong.

Problem 1. Let Γ be a homogeneous structure in a finite binary symmetric
language and assume that algebraic closure is trivial on Γ (i.e., the associated
amalgamation class has strong amalgamation). Does it follow that the age of
Γ can be obtained from a 3-constrained amalgamation class A by imposing
Henson constraints?

To define Henson constraints at this level of generality, we suppose that
we have an amalgamation class A, and we fix a set S of 2-types such that
every amalgamation diagram can be completed without introducing 2-types
from S. In the case of graphs, the set S may be taken to consist either of
the type of an edge, or the type of a non-edge; then correspondingly we get
the constraints considered by Henson (cliques or independent sets). In the
metrically homogeneous case the set S will usually be {1, δ}.

The condition of finiteness of the language is certainly necessary. As an ex-
ample, take the homogeneous structure corresponding to the class of affinely
independent finite subsets of Euclidean spaces with rational distances.

The condition of symmetry is also necessary, as is shown by the example
of the generic local order.

However even this formulation is refuted by the semi-generic structure in
a symmetric binary language with one equivalence relation E and an edge
relation R with the property that between two pairs of points lying in distinct
E-classes, there are an even number of R-edges.

The analogous question remains open in the infinite primitive case.

Problem 2. Let Γ be a primitive infinite homogeneous structure in a finite
binary symmetric language. Does it follow that the age of Γ can be obtained
from a 3-constrained amalgamation class A by imposing Henson constraints?

So it remains possible that there is a complete and reasonably explicit
classification of primitive homogeneous structures for finite binary symmet-
ric languages. There is also an explicit classification conjecture for finite
primitive homogeneous structures in binary languages, but of a completely
different character.
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In the case of metrically homogeneous graphs it is useful to divide the
generic type case into primitive and imprimitive cases rather than according
to the behavior of algebraic closure, but it is possible that these issues are
related.

Conjecture 1. Let Γ be a homogeneous structure for a finite symmetric
binary language. Then

• Algebraic closure is unary; that is, it is determined by an equivalence
relation with finite classes. In particular:
• If Γ is primitive then algebraic closure is trivial.

7.2. Other special cases. Returning to the case of metrically homogeneous
graphs, the work to be done (along current lines) falls into the following areas.

• Special cases (as in the present paper);
• Local analysis (inductive tools);
• Inductive strategies.

There remains one natural special case which one would like to see treated
on its own: the antipodal case.

Indeed, prior results mentioned above allow us to limit our attention to
generic type graphs of finite diameter, and one would like to deal separately
with the imprimitive cases. As the bipartite case has already been treated
in an inductive setting, this brings us to the antipodal case.

Problem 3 (Antipodal case). Let δ ≥ 4 be finite. Assume the classification
of metrically homogeneous graphs of diameter less than δ is as conjectured.
Show that any antipodal graph of finite diameter δ has known type.

The known antipodal graphs of diameter δ ≥ 4 and generic type are
denoted

Γδa,n
These are, in an appropriate sense, the generic antipodal graphs omitting the
clique Kn; but in this setting the role of the “Henson constraints” is taken
on by a set of (1, δ − 1) spaces.

Indeed, any Kn-free antipodal graph must omit every other graph on n
vertices obtained from Kn by replacing some vertices by their antipodal
vertices. So we consider the family of metric spaces Kn1,n2 for n1 + n2 = n,
defined as follows. The vertex set of Kn1,n2 has the form A1 ∪ A2 with
|A1| = n1, |A2| = n2, and the metric d satisfies the following.

Ai ∼= Kni , i.e, d ≡ 1 on A1 or A2;
d(a, b) = δ − 1 for a ∈ A1, b ∈ A2.

Then Γδa,n is defined as the Fraïssé limit of the class of finite antipodal graphs
of diameter at most δ which omit all the configurationsKn1,n2 for n1+n2 = n.
The existence of Γa,n is proved in [Che11a, Theorem 14]. We may set n =∞,
or drop the n, to get the generic antipodal graph of diameter δ.
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The treatment of the antipodal case appears to involve significant chal-
lenges. Because of the antipodal pairing, the relevant embedding theorem
involves spaces in which the distance δ does not occur. If δ is odd one may
treat this as a problem in local analysis, aiming at the inductive determina-
tion of Γ δ−1

2
.

If δ is even it is less clear how to proceed. Local analysis may be useful
if K1 < δ/2; if K1 = δ/2 then the only obvious candidate for local analysis
is Γδ/2, which however should have the same numerical parameters (and, in
theory, be isomorphic to) the original graph Γ. So it would appear that this
problem is a large one.

We learned in the present paper that the cases C = 2δ+2 or K1 = δ could
be treated together and deserved special attention; as they are in some sense
the next cases after the antipodal and bipartite cases, it may be reasonable
to single them out as well for separate analysis.

7.3. Local Analysis. Much of the further development of the subject along
the present lines would involve a considerable extension of the local analysis.
In general, local analysis aims to prove that in a metrically homogeneous
graph Γ of generic type, the induced metric structures Γi have the numerical
parameters predicted by the classification (in terms of the numerical param-
eters associated with Γ). In general, they should still be determined by a
combination of constraints on triangles and Henson constraints (most of the
latter fall away when the diameter of Γi is less than δ).

When K1 ≤ i ≤ K2 and the diameter of Γi is less than δ, this would then
imply that Γi is the expected metrically homogeneous graph. It may be
desirable to extend the inductive framework to include all the spaces which
can arise as Γi. The metrically homogeneous graphs are integer valued metric
spaces containing geodesic paths of each length; the spaces Γi contain the
geodesics compatible with their set of distances, which however may not
contain the distance 1.

This richer form of local analysis does not yet exist.
Identification of Γ1, starting from Lachlan/Woodrow classification, was

very useful. However when K1 > 1 the structure of Γ1 is trivial and so in
defining “generic type” we were forced to look beyond Γ1. One possible target
for local analysis at a relatively early stage would be a detailed analysis of
the possibilities for Γ2.

Problem 4. Determine all possible structures for Γ2 when δ ≥ 4, and show
that the structure of Γ2 is determined as expected by the parameters of Γ.

As δ ≥ 4, Γ2 has diameter 4. There are three cases to consider.

(1) K1 ≤ 2: Γ2 is a metrically homogeneous graph of diameter 4.
These must be fully classified, and it must be shown that the numer-
ical parameters and Henson constraints are as predicted for Γ2 (in
particular, if δ > 4, the only Henson constraints should be cliques).
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(2) K1 = 3: Γ2 is a homogeneous metric space with distances 2, 3, 4
(making the triangle inequality vacuous).
This metric space should contain all triangles not excluded by a
perimeter bound in Γ, and no Henson constraints unless δ = 4 and
an anti-clique is forbidden.

(3) K1 > 3:
As the distance set in Γ2 is {2, 4}, Γ2 may be viewed as a connected
homogeneous graph containing K∞ (by the local theory and the as-
sumption that Γ is of generic type) and should be generic up to the
possible exclusion of an anti-clique (in the case δ = 4).

This requires both some local analysis which has not yet been given, and
the analog of our results for δ = 4; so it is a large problem with several
different aspects.

Another point of local analysis which plays a fundamental role in the
semigroup point of view is the following.

Problem 5. Let Γ be a primitive metrically homogeneous graph of generic
type.

• Show that for some i, the induced structure Γi contains an edge and
has diameter δ.
• Show that for any such i, if A,B are two finite structures embedding
in Γ then the direct sum A +i B (in which d(x, y) = i for x ∈ A,
y ∈ B) also embeds in Γ.

If Γi contains an edge and has diameter δ then the known results of local
analysis show that Γi realizes all distances in [δ], or in other words Γ contains
all direct sums A+i B with |A| = 1, |B| = 2.

7.4. General analysis: Admissibility and triangles. We took pains at
certain points to formulate results which apply to our problem in any diam-
eter.

The first point addressed was admissibility. Our treatment depends heav-
ily on local analysis. We proved in Corollary 3.18 that in the case of primi-
tive metrically homogeneous graphs of generic type with K1 ≤ 2 or K1 ≥ δ,
various inequalities associated with admissibility hold, which under the as-
sumption C ′ = C + 1 yield admissibility of the associated parameters. As a
step in the direction of a general proof of admissibility, it would be good to
complete the analysis of this case.

Problem 6. Let Γ be a primitive metrically homogeneous graph of generic
type with K1 ≤ 2 or K1 = δ. Show that the associated parameter sequence

(δ,K1,K2, C0, C1,S)

is admissible.

Under the stated restriction on K1, what remains to be proved under this
heading is the following.
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• If C ≤ 2δ +K1 and C ′ > C then K1 = K2 and 3K2 = 2δ − 1.
• If C > 2δ +K1 and C ′ > C + 1 then C ≥ 2δ +K2.

After completing the proof of admissibility for the case δ = 3 our next
step was to analyze the triangles embedding in our metrically homogeneous
graph. Half of this was carried out at a high level of generality.

Namely, assuming admissibility of parameters, and also that C ′ = C + 1
or C ′ ≥ 2δ+K2, we showed in Proposition 4.2 that any triangle embedding
into Γ is consistent with the associated numerical parameters (in other words,
embeds in the associated metrically homogeneous graph). The case omitted
here is that in which

K1 = K2 and C = 4K2 + 1 = 2δ +K2 − 1

This case arises first with δ = 5 and K1 = K2 = 3.
The converse to Proposition 4.2, that the triangles which are allowed by

the numerical parameters actually do embed into Γ, was handled only under
the assumption δ = 3 by entirely ad hoc considerations, in Proposition 4.7.

On the other hand, there is some further information available in general
about the realization of triangles. In [Che18] the following result is proved.

Fact 7.1 ([Che18, Lemma 15.19]). Let Γ be a metrically homogeneous graph
of generic type and diameter δ ≥ 3. Suppose that K1 ≤ 2. Then every
triangle of even perimeter at most 2δ embeds into Γ.

A weaker form of this result which holds without constraints on K1 is
found in [Cou18, Prop. 7].

The proof of Fact 7.1 passes through the following notion.

Definition 7.2. Let A be a class of finite integer valued metric spaces of
maximum diameter δ. Then A has the Interpolation Property if whenever
A contains triangles of types

(i− 1, j − 1, k) (i− 1, j + 1, k)

where

2 ≤ i ≤ δ 2 ≤ j < δ 1 ≤ k ≤ δ

then A contains a triangle of type (i, j, k).

This property holds for classes A associated with the known metrically
homogeneous graphs of generic type, and can be shown to hold generally for
metrically homogeneous graphs with K1 ≤ 2, and to imply the conclusion of
Fact 7.1.

So there is some relevant theory in place with regard to the realization of
triangles, which needs to be developed considerably farther, and appears to
call for more local analysis.
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7.5. Inductive Strategies. The most delicate part of the argument in the
present paper comes in the proof of the embedding theorems, Propositions
5.3 and 6.2. These two propositions together may be reformulated as follows,
using the notation of Definition 3.20, which itself depends on Proposition 3.19
(admissibility).

Proposition 7.3. Let Γ be a primitive metrically homogeneous graph of
generic type and diameter 3. Then any finite metric space which embeds
isometrically in Γ∗ embeds isometrically into Γ.

If we relax the restriction on the diameter then the natural formulation of
the result would be the following conjecture.

Conjecture 2. Let Γ be a metrically homogeneous graph of generic type and
finite diameter, for which the sequence of associated parameters

(δ,K1,K2, C, C
′,S)

is admissible. Then any finite metric space which embeds isometrically in Γ∗

embeds isometrically into Γ.

Remark 7.4. We do not include the assumption of primitivity in the state-
ment of Conjecture 2. In an inductive framework, the bipartite case has
already been treated. The antipodal case was quickly set aside in the present
paper, as it was treated very directly and rapidly at the outset. One would
anticipate that in larger diameter, the antipodal case would require much the
same methods as the primitive case.

Prior work reduces the case of infinite diameter to the case of finite diam-
eter.

This conjecture is of course a consequence of the classification conjecture
for metrically homogeneous graphs; conversely, an inductive strategy for a
proof of this conjecture would be a significant contribution toward a treat-
ment of the classification conjecture in general.

We would not actually envision a direct proof of this conjecture; it is
more natural to put it in an inductive setting, so that any metrically ho-
mogeneous graph simpler than Γ in any reasonable sense (for example, of
smaller diameter) would be assumed to be of known type.

While one must also treat the admissibility of the parameters, and the
embeddability of Γ into Γ∗, points which were handled easily but in an ad
hoc matter for the case of diameter 3, Conjecture 2 appears to be the most
challenging of the three points to be dealt with, and is certainly the one
which the present paper sheds the most light on. So this is what we will
discuss at present.

We may stratify the problem as follows.

Definition 7.5. Let Γ,Γ∗ be metric structures and d ≥ 1.
Then Ed(Γ∗,Γ) is the following embedding property.

Any finite metric substructure of Γ∗ of diameter at most d
embeds into Γ.
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Conjecture 2 reduces to the statement that Eδ(Γ∗,Γ) holds when Γ,Γ∗

satisfy the stated conditions.
In our proof of the embedding property for the case δ = 3 we focus almost

entirely on the case d = δ, but one may observe some use of the case d = δ−1
in the proof. We feel that the following more specialized conjecture receives
concrete support from the work we have done here.

Conjecture 3 (Embedding Bootstrap). Let Γ be metrically homogeneous of
generic type and finite diameter δ, with admissible associated parameters

δ,K1,K2, C, C
′,S

and let Γ∗ = ΓδK1,K2,C,C′,S . Set d = max(K1, δ/2). If Ed(Γ∗,Γ) holds, then
Eδ(Γ∗,Γ) holds.

What we envision here is a proof by induction on d with the specified
value of d as the base case, following the general approach used in the case
δ = 3, which can be viewed as a derivation of the embedding property for
d = δ from the case d = δ − 1. For d < δ such an argument would reduce
the problem to the case of (1, d)-spaces. As these are not Henson constraints
(other than in the case of antipodal graphs with d = δ− 1), one further step
in the argument would be needed to treat this case.

To see why the arguments we have used have this potential, one needs to
understand why we choose the value max(K1, δ/2) as the base case; and we
should also say something about how the base case is to be treated. So we
take up these points next.

In our treatment of the embedding property the main point is that dis-
tances between 1 and d can be witnessed by geodesic paths in ways that do
not add much complexity to the configuration, according to our way of mea-
suring complexity, and even contribute eventually to its simplification. Our
constructions were given explicitly, but in a more general setting one has to
consider an amalgamation problem of a fairly general type, in which a given
configuration is extended by a pair of geodesic paths, and then completed to
a [d]-metric space, without introducing any further pairs at distance 1 or d.
We state the relevant amalgamation lemma, a little more generally than is
required.

Here we rely on the ideas of §1.5.1 and in particular on Definition 1.4.

Lemma 7.6. Let Γ∗ be a known metrically homogeneous graph of generic
type and let A be a finite partial substructure of Γ∗, of diameter

k > max(δ/2,K1)

If Γ∗ is antipodal, assume that k < δ.
If C > 2δ + 2 or k < δ then A has a completion Â which embeds into Γ∗,

for which all added distances d(a, b) satisfy

1 < d(a, b) < k
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If C = 2δ + 2 and k = δ then we can impose the same condition

1 < d(a, b) < k

on the new distances, except where there is a point c at distance δ from both
a and b.

We only require this in the case in which A can be interpreted as an
amalgamation problem, but the most efficient proof uses the “shortest path
completion” method described in §1.5.1, where the “magic” parameter is set
equal to max(K1, δ/2).

As far as achieving the base case is concerned, this is most accessible when
we have the following condition.

K1 < δ/2

Then we can hope to apply local analysis to Γi with

i = b(δ − 1)/2c

as Γi will be a metrically homogeneous graph of diameter δ′ = δ − 1 or
δ − 2 in this case. We may suppose an inductive hypothesis applies, so
that Eδ′((Γi)∗,Γi) holds by induction. Then via local analysis one should
be able to derive Eδ′(Γ∗,Γ), though the relevant local analysis has not yet
been carried through. As δ′ ≥ K1, δ/2, we then have Ed(Γ∗,Γ) for d =
max(K1, bδ/2c), as desired.

When K1 ≥ δ/2, the base case for our inductive approach is the property
EK1(Γ∗,Γ). There are prospects for a separate inductive treatment of this
particular case along other lines, not involving a reduction to EK1−1(Γ∗,Γ).
In the diameter 3 case, this issue arises briefly in connection with the treat-
ment of the case K1 = 2, but not in a way that points toward a particular
inductive approach.

A long-standing unresolved issue is the treatment of the antipodal case
under an inductive hypothesis. Here one has good prospects for treating ad-
missibility and the “easy” direction of embedding, at which point the meth-
ods described here become applicable; then most cases fall on the easier side
(namely, K1 < δ/2). The exceptional case has δ even and K1 = δ/2, and so
one needs a direct proof of EK1(Γ∗,Γ) in this particular case, which may be
easier than the corresponding statement in general.

7.6. Strong Amalgamation. One may also head in a very different direc-
tion, namely one may look for a proof of the following.

Conjecture 4. Suppose that Γ is a metrically homogeneous graph of generic
type and finite diameter which does not have an ∅-definable equivalence rela-
tion with finite classes, and that Γ satisfies the inductive hypothesis

• Any metrically homogeneous graph of diameter strictly less than that
of Γ is of known type.

Then the associated amalgamation class has strong amalgamation.
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Rather than aiming at more concrete cases of the classification conjecture,
this aims to clarify the relationship of that conjecture with the ideas of §1.5.2.

In the analysis one may assume that Γ is of generic type. As in the case of
the classification conjecture itself, one encounters the problem that induction
does not apply to all structures of the type Γi, and hence it may be necessary
to broaden the statement so as to include them in the induction hypothesis.
It is not clear whether this problem is amenable to a more direct approach
than the full classification problem, but it is worth investigating.
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