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Two problems on homogeneous structures, revisited
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Abstract. We take up Peter Cameron’s problem of the classification of count-
ably infinite graphs which are homogeneous as metric spaces in the graph
metric [Cam98]. We give an explicit catalog of the known examples, together
with results supporting the conjecture that the catalog may be complete, or
nearly so.

We begin in Part I with a presentation of Fräıssé’s theory of amalgamation
classes and the classification of homogeneous structures, with emphasis on the
case of homogeneous metric spaces, from the discovery of the Urysohn space
to the connection with topological dynamics developed in [KPT05]. We then
turn to a discussion of the known metrically homogeneous graphs in Part
II. This includes a 5-parameter family of homogeneous metric spaces whose
connections with topological dynamics remain to be worked out. In the case
of diameter 4, we find a variety of examples buried in the tables at the end of
[Che98], which we decode and correlate with our catalog.

In the final Part we revisit an old chestnut from the theory of homoge-
neous structures, namely the problem of approximating the generic triangle
free graph by finite graphs. Little is known about this, but we rephrase the
problem more explicitly in terms of finite geometries. In that form it leads to
questions that seem appropriate for design theorists, as well as some questions
that involve structures small enough to be explored computationally. We also
show, following a suggestion of Peter Cameron, that while strongly regular
graphs provide some interesting examples, one must look beyond this class in
general for the desired approximations.

1. Introduction

The core of the present article is a presentation of the known metrically homo-
geneous graphs: these are the graphs which, when viewed as metric spaces in the
graph metric, are homogeneous metric spaces.

1.1. Homogeneous Metric Spaces, Fräıssé Theory, and Classification.
A metric space M is said to be homogeneous if every isometry between finite sub-
sets of M is induced by an isometry taking M onto itself. An interesting and early
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example is the Urysohn space U [Ury25, Ury27] found in the summer of 1924,
the last product of Urysohn’s short but intensely productive life. While the prob-
lem of Fréchet that prompted this construction concerned universality rather than
homogeneity, Urysohn took particular notice of this homogeneity property in his
initial letter to Hausdorff [Huš08], a point repeated in much the same terms in the
posthumous announcement [Ury25]. We will discuss this in §2.

From the point of view of Fräıssé’s later theory of amalgamation classes [Fra54],
the essential point in Urysohn’s construction is that finite metric spaces can be
amalgamated: if M1,M2 are finite metric spaces whose metrics agree on their
common part M0 = M1 ∩ M2, then there is a metric on M1 ∪ M2 extending the
given metrics; and more particularly, the same applies if we limit ourselves to metric
spaces with a rational valued metric.

Fräıssé’s theory facilitates the construction of infinite homogeneous structures
of all sorts, which are then universal in various categories, and the theory is often
used to that effect. This gives a construction of Rado’s universal graph [Rad64],
generalized by Henson to produce universal Kn-free graphs [Hen71], and uncount-
ably many quite similar homogeneous directed graphs [Hen72]. A variant of the
same construction also yields uncountably many homogeneous nilpotent groups and
commutative rings [CSW93]. More subtly, Fräıssé’s of amalgamation classes can
be used to classify homogeneous structures of various types: homogeneous graphs
[LW80], homogeneous directed graphs [Sch79, Lac84, Che88, Che98], the finite
and the imprimitive infinite graphs with two edge colors [Che99], the homogeneous
partial orders with a vertex coloring by countably many colors [TT08], and even
homogeneous permutations [Cam03].

There is a remarkable 3-way connection involving the theory of amalgama-
tion classes, structural Ramsey theory, and topological dynamics, developed in
[KPT05]. In this setting the Urysohn space appears as one of the natural exam-
ples, but more familiar combinatorial structures come in on an equal footing. The
Fräıssé theory, and its connection with topological dynamics, is the subject of §3.

In §4 we conclude Part I with a discussion of the use of Fräıssé’s theory to
obtain classifications of all the homogeneous structures in some limited classes.
Noteworthy here is the classification by Lachlan and Woodrow of the homogeneous
graphs [LW80], which plays an important role in Part II.

1.2. Metrically Homogeneous Graphs. Part II is devoted to a classifica-
tion problem for a particular class of homogeneous metric spaces singled out by
Peter Cameron, an ambitious generalization of the case of homogeneous graphs
treated by Lachlan and Woodrow. Every connected graph is a metric space in the
graph metric, and Peter Cameron raised the question of the classification of the
graphs for which the associated metric spaces are homogeneous [Cam98]. Such
graphs are referred to as metrically homogeneous or distance homogeneous. This
condition is much stronger than the condition of distance transitivity which is famil-
iar in finite graph theory; the complete classification of the finite distance transitive
graphs is much advanced and actively pursued. Cameron raised this issue in the
context of his “census” of the very rich variety of countably infinite distance tran-
sitive graphs, and we develop Cameron’s “census” into what may reasonably be
considered a “catalog.” The most striking feature of our catalog is a 4-parameter
family of metrically homogeneous graphs determined by constraints on triangles.
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For all of the known metrically homogeneous graphs, the next order of business
would be to explore the Ramsey theoretic properties of their associated metric
spaces, as well as the behavior of their automorphism groups in the setting of
topological dynamics, in the spirit of §3.

We believe that our catalog may be complete, though we are very far from
having a proof of that, or a clear strategy for one. But we will show that as far as
certain natural classes of extreme examples are concerned, this catalog is complete.
The catalog, and a statement of the main results about it, will be found in §5.

There are, a priori, three kinds of metrically homogeneous graphs which are
sufficiently exceptional to merit separate investigation.

First, there are those for which the graph induced on the neighbors of a given
vertex is exceptional. Here the distinction between the generic and exceptional
cases is furnished, very conveniently, by the Lachlan/Woodrow classification. When
a graph is metrically homogeneous, the induced graph on the neighborhood of any
vertex is homogeneous as a graph, and its isomorphism type is independent of
the vertex selected as base point. So this induced graph provides a convenient
invariant which falls under the Lachlan/Woodrow classification. Those induced
graphs which can occur within graphs in our known 4-parameter family are treated
as non-exceptional, while the others are considered as exceptional: according to the
Lachlan/Woodrow classification, these are the ones which do not contain an infinite
independent set, and the imprimitive ones.

Next, there are the imprimitive ones, which carry a nontrivial equivalence re-
lation invariant under the automorphism group.

A third class of metrically homogeneous graphs meriting separate considera-
tion may be described in terms of the minimal constraints on the graph, which are
the minimal finite integer-valued metric spaces which cannot be embedded isomet-
rically into the graph with the graph metric. There is a profusion of metrically
homogeneous graphs in which the minimal constraints all have order at most 3
(i.e., exactly 3, together with a possible bound on the diameter), and one would
expect their explicit classification to be an important step in the construction of
an appropriate catalog. Our catalog is complete in this third sense—it contains all
the metrically homogeneous graphs whose minimal constraints have order at most
3. This last point proved elusive.

In the construction of our catalog, we began by determining those in the first
class, that is the metrically homogeneous graphs whose neighborhood graphs are
exceptional in the sense indicated above. These turn out to be of familiar types,
namely the homogeneous graphs in the ordinary sense [LW80], the finite ones given
in [Cam80], and the natural completion of the class of tree-like graphs considered
in [Mph82].

Turning to the imprimitive case, we find that this cannot really be separated
from the “generic” case. With few exceptions, a primitive metrically homogeneous
graph is either bipartite or is of “antipodal” type, which in our context comes
down to the following, after some analysis: the graph has finite diameter δ, and an
“antipodality” relation d(x, y) = δ defines an involutory automorphism y = α(x)
of the graph. In the bipartite case there is a reduction to an associated graph on
each half of the bipartition. The antipodal case does not have a neat reduction: we
will discuss the usual “folding” operation applied in such cases, and show that it
does not preserve metric homogeneity. Our catalog predicts that the bipartite and
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antipodal graphs occur largely within the generic family by specializing some of the
numerical parameters to extreme values, with the proviso that the treatment of side
conditions of Henson’s type varies slightly in the antipodal case. We investigated
some special classes of bipartite graphs using the standard reduction and found
some examples that looked curious at the time but find their natural place in the
present catalog as metrically homogeneous graphs of generic type.

The class of graphs determined by constraints of order 3 appears to be the key
to the classification of the remaining metrically homogeneous graphs. Examples of
such graphs are found in [Cam98], and we took as our own starting point the class
of graphs Γδ

K,C,S defined as follows. We introduce the class Aδ
K,C,S of all finite

integer-valued metric spaces of diameter at most δ, in which there are no metric
triangles with odd perimeter less than 2K + 1, and there are no metric triangles
with perimeter at least C. Here we take 1 ≤ K ≤ δ or K = ∞, 2δ+1 ≤ C ≤ 3δ+1.
The extreme values of K correspond to no constraint or the bipartite case, while
the extreme values of C correspond to the antipodal case or no constraint. Finally,
S is a set of (1, δ)-spaces, that is, spaces in which only the distances 1 and δ occurs
(here δ ≥ 3), which we take as additional forbidden substructures. This is the
natural extension of Henson’s use of forbidden cliques to our setting. It turns out
that this misses a significant source of examples determined by constraints of order
3, and when we came belatedly to test the catalog on this point we were led finally
to a more complicated but similar family which will be denoted Γδ

K1,K2;C0,C1;S
in

which the parameters δ,K1, C0, C1 and the set S are much as in the previous case,
but the parameter K2 is a little more exotic: it forbids the occurrence of certain
triangles of odd perimeter P , but only those satisfying

P > 2K2 + d(a, b)

for some pair of vertices a, b. Of course the parameters δ,K1,K2, C0, C1 and the
set S must satisfy some auxiliary conditions to provide an amalgamation class. We
will lay out the precise conditions on the parameters in detail. We will observe also
that as far as the parameters δ,K1,K2, C0, C1 are concerned, our conditions are
expressible in Presburger arithmetic, and that this is to be expected, given that
the set of constraints involved is itself definable in Presburger arithmetic from the
5 given numerical parameters. We also deal with an antipodal variation in which
the set S of side constraints is modified.

We will present our catalog in §5. The main point is to state the conditions
on the auxiliary parameters in full. We will not give complete proofs of existence:
this comes down to the amalgamation property for the classes we associate with
admissible choices of the parameters. We take this up in §6, where we confine
ourselves largely to a presentation of the amalgamation method. The essential
point here is that one may determine amalgamations by determining one distance
at a time, and in that case the range of values available for that distance (subject
to the triangle inequality) is a non-empty interval. Then the various constraints
associated with our parameters and the set S may restrict the size and parity of the
desired distance further, and one must show that some suitable value remains in
all cases. We generally deal with the set S by avoiding the values 1 and δ entirely.
As the antipodal case is somewhat different from the rest, we give more detail in
that case.
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In §7 we discuss the imprimitive case, showing that with minor exceptions these
are bipartite or antipodal (and in the latter case, of a very restricted type). We
also classify the antipodal bipartite graphs of odd diameter.

For any metrically homogeneous bipartite graph Γ, there is an associated graph
BΓ on either half of the bipartition of Γ which is again metrically homogeneous.
If Γ is antipodal bipartite graph of odd diameter, our classification implies that
when BΓ is in our catalog, Γ is as well. When the diameter is even, the associated
graph BΓ is again antipodal, and not bipartite, so a self-contained analysis along
these lines is unlikely, and one should aim instead to show that when BΓ is in the
catalog, then Γ is as well. We did not look into that.

In §8 we turn to the proof that the exceptional metrically homogeneous graphs
(the ones for which the induced graph on the neighbors of a fixed vertex either
contains no infinite independent set, or is imprimitive) all lie in our catalog.

In §9 we look at another class of metrically homogeneous bipartite graphs, in
terms of the structure of the associated graph BΓ. It is natural to take up the case
in which BΓ is itself exceptional. We show in this case that Γ is in the catalog.
We note that there are some cases in which Γ falls under the “generic” case in our
catalog and BΓ is exceptional. These occur up through diameter 5, with BΓ a
homogeneous graph.

Lastly, we look back in §10 to some examples that can be found in tables in the
Appendix to [Che98] in a very different form. There we listed all amalgamation
classes corresponding to primitive infinite homogeneous structures with four orbits
on pairs of distinct elements, all self-paired (in other words, four nontrivial 2-types,
all of them symmetric). There are 27, and within that list one finds 17 which
can be interpreted as metric spaces, some in more than one way, corresponding to
20 metrically homogeneous graphs. So we decode that list and recast it in terms
which allow a direct comparison with our catalog, which does indeed contain all
of these examples. We remark that with most of these 27 examples understood as
metrically homogeneous graphs, one might take another look at finding a framework
that accounts for the remaining ones.

The net result of our explorations has been to turn up nothing new on the
sporadic side of the classification, but to broaden considerably our conception of
the generic case. Given the structure of the resulting catalog, the natural way to
think about a proof of its completeness is in the following terms, using the theory of
amalgamation classes (which we will review in Part I). Let us use the term “generic
type” for metrically homogeneous graphs which are not already in the catalog as
exceptions of one kind or another.

(1) Show that any amalgamation class of finite metric spaces associated with
a metrically homogeneous graph of generic type involves exactly the same
triangles (subspaces of order 3) as one of our generic classes determined
by triangle constraints.

(2) Show that any amalgamation class of finite metric spaces associated with
a metrically homogeneous graph of generic type whose triangle constraints
are the same as some catalogued graph of generic type, is in fact in the
catalog.

In practice a proof may involve an elaborate induction in which the two sides
of the issue become mixed together, but any step in the proof is likely to target
just one of the two issues. An equivalent statement of the first point would be that
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for any amalgamation class A of finite metric spaces associated with a metrically
homogeneous graph of generic type, the associated class A′ of finite metric spaces
A such that every triangle in A belongs to A is itself an amalgamation class. This
is inherently plausible, but not something which one would aim to prove by a direct
argument.

Our sense of these problems is that they are both difficult. We are also con-
vinced of the correctness of the classification as far as diameter 3; the work of Amato
and Macpherson [AMp10] covers the antipodal case and the case of triangle free
metrically homogeneous graphs (in our notation, K1 > 1). Identifying the compat-
ible combinations of constraints on triangles is easy in this case, and the number
of cases is reasonable. We have convinced ourselves that the full classification can
be completed in diameter 3 by direct methods, and that the outcome is consistent
with the catalog.

1.3. Is the generic triangle free graph pseudofinite? In Part III we turn
our attention to another problem suggested by the study of homogeneous structures.
In its general form, the problem is to find a testable criterion for a homogeneous
structure to be pseudofinite (that is, a model of the theory of all finite structures).
For example, the universal homogeneous triangle free graph will be pseudofinite if
and only if for each n we can find a finite triangle free graph with the following two
properties:

(i) any maximal independent set of vertices has order at least n; and
(ii) for any set A of n independent vertices, and any subset B of A, there is a

vertex adjacent to all vertices of B and to no vertices of A \B.

It is known that the universal homogeneous graph is pseudofinite, because the
associated problem on finite graphs is easily solved using random graphs. But this
problem remains open for the universal homogeneous triangle free graph—and the
more general problem is likely to remain in the shade till this particular instance is
settled, one way or another.

We will discuss what is known about this problem in the triangle free case for
extremely small values of n, namely n = 3 or 4. There is not a great deal known, but
it is worth noticing that the problem can be rephrased in terms of finite geometries,
and that some concrete problems emerge that design theorists may be able to make
something of. So here I aim less at “model theoretic methods in combinatorics,”
and more at the hope that combinatorial methods can shed more light on this
problem arising in model theory.

Some nice examples are known for the case n = 3, notably the Higman-Sims
graph (as observed by Simon Thomas), as well as an infinite family constructed by
Michael Albert, again with n = 3 [SWS93, p. 447]. We still have no example with
n = 4, but we will suggest that the case n = 3 is worth much closer scrutiny, and
raises problems that seem relatively accessible and which have a design-theoretic
flavor. We also point out a hierarchy of conditions between the cases n = 3 and
n = 4 which seems to us to represent a steep climb at each level. In the case
n = 3 we have many examples which are degenerate in a precise sense, and which
can be varied quite freely, while the other examples known are subgraphs of the
Higman-Sims graph.

Thus we have the following key problem.
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Problem 1. Is there a finite triangle free graph with the following properties,
which is not a subgraph of the Higman-Sims graph?

(i) any maximal independent set of vertices has order at least 3; and
(ii3,2) for any set A of 3 independent vertices, and any subset B of A, there are

at least two vertices adjacent to all vertices of B and to no vertices of
A \B.

This may be phrased equivalently in terms of finite combinatorial geometries
and the Higman-Sims geometry on 22 points, as we shall see. In §11 we give an
interpretation of the general problem of approximating the generic triangle free
graph by finite ones in terms of combinatorial geometries. In §12.1 we explore the
connection with strongly regular graphs. Following a suggestion made long ago
by Peter Cameron, we show that there is no strongly regular graph which meets
our conditions for n = 4. I don’t recall what value of n he had in mind, but my
impression is that the case n = 4 is something of a squeaker, and I found the
explicit formulas in [Big09] helpful. To bound the size of a strongly regular graph
satisfying our conditions for n = 3 seems to involve the central problems of the
field. But perhaps the experts can do something clever in that direction.

In §12.4, we show by elementary and direct analysis directly from the definitions
that any graph satisfying our conditions for n = 4 will have minimal degree at least
66. One might expect this lower bound to translate into an impressive lower bound
on the total number of vertices, but I don’t see that.

The case n = 3 without any assumption of strong regularity is taken up in
earnest in §13, in terms of geometries rather than graphs. Just as the Higman-Sims
graph on 100 vertices is more readily seen in terms of the Higman-Sims geometry
on 22 points (itself a 1-point extension of a projective plane over a field of order
4), one can describe nontrivial examples in terms of geometries on relatively few
points. In particular, the smallest geometry which does not fall into the class we
call “Albert Geometries” lives on a set of just 8 points. There is not much general
theory to be seen in the present state of knowledge, but there is one very basic
open question. In a combinatorial geometry we have a set of points and a set of
blocks, the blocks being sets of points. In each the known geometries associated
with the case n = 3, with very few exceptions, there is a block of order 2. The
main question is whether there is any geometry associated with the case n = 3 in
which the minimum block size is greater than 2, other than geometries embedding
into the Higman-Sims geometry.

In §13.2 we give a family of geometries satisfying our conditions for n = 3,
having a unique block of order 2, and with the next smallest block size arbitrarily
large. Getting rid of that last block of order 2 seems to put a wholly different
complexion on the matter. One would expect design theorists to be able to say
something substantial about this situation, one way or another.

Bonato has explored similar problems in the context of graphs and tournaments
[Bon09, Bon10]. Here one knows by probabilistic arguments that finite graphs
or tournaments with analogous properties exist, but in looking for the minimal
size one lands in somewhat similar territory, and again certain aspects of design
theory come into consideration, including strongly regular graphs, skew Hadamard
matrices, and Paley graphs or tournaments.
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The theory of homogeneous structures has many other aspects that we will not
touch upon, many connected with the study of the automorphism groups of homo-
geneous structures, e.g. the small index property and reconstruction of structures
from their automorphism groups [DNT86, HHLS93, KT01, Rub94, Tr92],
group theoretic issues [Tr85, Tr03, Tr09], and the classification of reducts of ho-
mogeneous structures [Tho91, Tho96], which is tied up with structural Ramsey
theory. We mention also the extensive and readable survey [Mph11] by Macpher-
son which covers a number of directions not touched on here.

There is also an elaborate theory due to Lachlan treating stable homogeneous
relational structures systematically as limits of finite structures, and by the same
token giving a very general analysis of the finite case [Lac86b].

The subject of homogeneity falls under the much broader heading of “oligomor-
phic permutation groups”, that is the study of infinite permutation groups having
only finitely many orbits on n-tuples for each n. As the underlying set is infinite,
this property has the flavor of a very strong transitivity condition, and leads to a
very rich theory [Cam90, Cam97].

1.4. Acknowledgment. This article has benefited enormously from a careful
reading by the referee, particularly in Part II. The first draft of Part II described
work in progress at the time; I learned a good deal from writing it, but not enough
to rewrite it immediately. The form of the catalog given here (specifically, the
classes Aδ

K1,K2;C0,C1;S
mentioned above) was still a couple of months off at that

point. Having a robust catalog of examples in Part II has certainly helped matters,
but the referee’s response to a variation of that first draft was also very helpful, as
I was finding my way to what should be a much clearer account than the original.
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Part I. Homogeneous Structures and Amalgamation Classes

2. Urysohn’s space

2.1. A little history. A special number of Topology and its Applications

(vol. 155) contains the proceedings of a conference on the Urysohn space (Beer-
Sheva, 2006). A detailed account of the circumstances surrounding the discovery
of that space, shortly before a swimming accident took Urysohn’s life off the coast
of Brittany, can be found in the first section of [Huš08], which we largely follow
here. There is also an account of Urysohn’s last days in [GK09], which provides
additional context.

Urysohn completed his habilitation in 1921, and his well known contributions
to topology were carried out in the brief interval between that habilitation and his
fatal accident on August 17th, 1924. Fréchet raised the question of the existence of
a universal complete separable metric space (one into which any other should em-
bed isometrically) in an article published in the American Journal of Mathematics
in 1925 with a date of submission given as August 21, 1924. Fréchet had commu-
nicated his question to Aleksandrov and Urysohn some time before that, and an
announcement of a solution is contained in a letter from Aleksandrov and Urysohn
to Hausdorff dated August 3, 1924, a letter to which Hausdorff replied in detail
on August 11. The letter from Aleksandrov and Urysohn is quoted in the original
German in [Huš08]. In that letter, the announcement of the construction of a
universal complete separable metric space is followed immediately by the remark:
“. . . and in addition [it] satisfies a quite powerful condition of homogeneity: the
latter being, that it is possible to map the whole space onto itself (isometrically)
so as to carry an arbitrary finite set M into an equally arbitrary set M1, congruent
to the set M .” The letter goes on to note that this pair of conditions, univer-
sality together with homogeneity, actually characterizes the space constructed up
to isometry. This comment on the property of homogeneity is highlighted in very
similar terms in the published announcement [Ury25].

Urysohn’s construction proceeds in two steps. He first constructs a space U0,
now called the rational Urysohn space, which is universal in the category of count-
able metric spaces with rational-valued metric. This space is constructed as a limit
of finite rational-valued metric spaces, and Urysohn takes its completion U as the
solution to Fréchet’s problem.

It is the rational Urysohn space which fits neatly into the general framework
later devised by Fräıssé [Fra54]. A countable structure is called homogeneous if
any isomorphism between finitely generated substructures is induced by an auto-
morphism of M . If we construe metric spaces as structures in which the metric
defines a weighted complete graph, with the metric giving the weights, then finitely
generated substructures are just finite subsets with the inherited metric, and iso-
morphism is isometry. Other examples of homogeneity arise naturally in algebra,
such as vector spaces (which may carry forms—symplectic, orthogonal, or unitary),
or algebraically closed fields. We will mainly be interested in relational systems,
that is combinatorial structures in which “f.g. substructure” simply means “finite
subset, with the induced structure.” But Fräıssé’s general theory, to which we turn
in the next section, does allow for the presence of functions.

2.2. Topological dynamics and the Urysohn space. The Urysohn space,
or rather its group of isometries, turns up in topological dynamics as an example of
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the phenomenon of extreme amenability. A topological group is said to be extremely
amenable if any continuous action on a compact space has a fixed point. The
isometry group of Urysohn space is shown to be extremely amenable in [Pes02],
and subsequently the general theory of [KPT05] showed that the isometry group
of the ordered rational Urysohn space (defined in the next section) is also extremely
amenable. The general theory of [KPT05] requires Fräıssé’s setup, but we quote
one of the main results in advance:

Theorem 1. [KPT05, Theorem 2] The extremely amenable closed subgroups
of the infinite symmetric group Sym∞ are exactly the groups of the form Aut(F ),
where F is the Fräıssé limit of a Fräıssé order class with the Ramsey property.

We turn now to the Fräıssé theory.

3. Fräıssé Classes and the Ramsey Property

3.1. Amalgamation Classes. It is not hard to show that any two countable
homogeneous structures of a given type will be isomorphic if and only if they have
the same isomorphism types of f.g. substructures. This uses a “back-and-forth”
construction, as in the usual proof that any two countable dense linear orders are
isomorphic, which is indeed a particular instance. In view of this uniqueness, it is
natural to look for a characterization of countable homogeneous structures directly
in terms of the associated class Sub(M) of f.g. structures embedding intoM . Fräıssé
identified the relevant properties:

I. Sub(M) is hereditary (closed downward, and under isomorphism): in
other words, if A is in the class, then any f.g. structure isomorphic with a
substructure of A is in the class;

II. There are only countably many isomorphism types represented in Sub(M);
III. Sub(M) has the joint embedding and amalgamation properties: if A1, A2

are f.g. substructures in the class, and A0 embeds into A1, A2 isomorphi-
cally via embeddings f1, f2, then there is a structure Â in the class with
embeddings A1, A2 → Â, completing the diagram

The joint embedding property is the case in which A0 is empty, which should be
treated as a distinct condition if one does not allow empty structures.

A key point is that amalgamation follows from homogeneity: taking A0 to be
a subset of A1, and embedded into A2, apply an automorphism of the ambient
structure to move the image of A0 in A2 back to A0, and A2 to some isomorphic
structure A′

2 containing A0; then the structure generated by A1 ∪ A2 will serve as
an amalgam.

Conversely, if A is a class of structures with properties (I − III), then there
is a countable homogeneous structure M , unique up to isomorphism, for which
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Sub(M) = A. This homogeneous structure M is called the Fräıssé limit of the
class A. Thus with A taken as the class of finite linear orders, the Fräıssé limit is
isomorphic to the rational order; with A the class of all finite graphs, the Fräıssé
limit is Rado’s universal graph [Rad64]; and with A the class of finite rational-
valued metric spaces, after checking amalgamation, we take the Fräıssé limit to get
the rational Urysohn space. The computation that checks amalgamation can be
found in Urysohn’s own construction, though not phrased as such.

So we see that Fräıssé’s theory is at least a ready source of “new” homogeneous
structures, and we now give a few more examples in the same vein. Starting with
the class of all partial orders, we obtain the “generic” countable partial order (to
call it merely “dense,” as in the linear case, would be to understate its properties).
Or starting with the class of finite triangle free graphs, we get the “generic” trian-
gle free graph, and similarly for any n the generic Kn-free graph will be obtained
[Hen71]. The amalgamation procedure here is simply graph theoretical union, and
the special role of the complete graphs here is due to their indecomposability with
respect to this amalgamation procedure: a complete graph which embeds into the
graph theoretical union of two graphs (with no additional edges permitted) must
embed into one of the two. The generalization to the case of directed graphs is
immediate: amalgamating via the graph theoretical union, the indecomposable di-
rected graphs are the tournaments. So we associate with any set of tournaments
T the Fräıssé class of finite directed graphs omitting T —i.e., with no directed sub-
graph isomorphic to one in T . The corresponding Fräıssé limits are the generic
T -free graphs considered by Henson [Hen72]. The richness of the construction is
confirmed by showing that 2ℵ0 directed graphs arise in this way, because of the ex-
istence of an infinite antichain in the class of finite tournaments, that is an infinite
set X of finite tournaments, which are pairwise incomparable under embedding, so
that each subset of X gives rise to a different Fräıssé limit. A suitable construc-
tion of such an antichain is given by Henson [Hen72]. A parallel construction in
the category of commutative rings provides, correspondingly, uncountably many
homogeneous commutative rings [CSW93].

The structure of the infinite antichains of finite tournaments has been inves-
tigated further, but has not been fully elucidated. Any such antichain lies over
one which is minimal in an appropriate sense, and after some close analysis by
Latka [Lat94, La03, La02] a general finiteness theorem emerged [ChL00] to the
effect that for any fixed k, there is a finite set of minimal antichains which will
serve as universal witnesses for any collection of finite tournaments determined
by k constraints (forbidden tournaments) which allows an infinite antichain. This
means that whenever such an antichain is present, one of the given antichains is
also present, up to a finite difference. But there is still no known a priori bound
for the number of antichains required, as a function of k. Even the question as to
whether the number of antichains needed is bounded by a computable function of
k remains open.

In the terminology of [KPT05], the notion of Fräıssé class is taken to incor-
porate a further condition of local finiteness, meaning that all f.g. structures are
finite. This may be viewed as a strengthening of condition (II). This convention
is in force, in particular, in the statement of Theorem 1, which we now elucidate
further.
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3.2. Order Classes. The Fräıssé classes that occur in the theorem of Kechris-
Pestov-Todorcevic above are order classes: this means that the structures consid-
ered are equipped with a distinguished relation < representing a linear order. Thus
in this theorem nothing is said about graphs, directed graphs, or metric spaces,
but rather their ordered counterparts: ordered graphs, ordered directed graphs,
ordered metric spaces. In particular the ordered rational Urysohn space is, by defi-
nition, the homogeneous ordered rational valued metric space delivered by Fräıssé’s
theory. As there is no connection between the order and the metric the necessary
amalgamation may be carried out separately in both categories.

In the most straightforward, and most common, applications of the Fräıssé
theory there is often some notion of “free amalgamation” in use. In the case of order
classes amalgamation cannot be entirely canonical, as some “symmetry breaking” is
inevitable. But there are also finite homogeneous structures—such as the pentagon
graph, or 5-cycle—for which the theory of amalgamation classes is not illuminating,
and the amalgamation procedure consists largely of the forced identification of
points.

When one passes from the construction of examples to their systematic classi-
fication, there is typically some separation between the determination of more or
less sporadic examples, and the remaining cases described naturally by the Fräıssé
theory. Such a classification has only been carried out in a few cases, and perhaps
a more nuanced picture will appear eventually. But this simple picture continues
to guide our expectations for the classification of metrically homogeneous graphs,
considered in the next Part, and so far everything we have seen is consistent with
that picture in this case.

Below we will say something more about how the theory of [KPT05] applies
in the absence of order, but first we complete the interpretation of Theorem 1 by
discussing the second key property required.

3.3. The Ramsey Property. The ordinary Ramsey theorem is expressed in
Hungarian notation by the symbolism:

∀k,m, n ∃N : N → (n)mk

meaning that for given k,m, n, there is N so that: for any coloring of increasing
m-tuples from A = {1, . . . , N} by k colors, there is a subset B of cardinality n
which is monochromatic with respect to the coloring.

Structural Ramsey theory deals with a locally finite hereditary class A of finite
structures of fixed type, which on specialization to the case of the class L of finite
linear orders will degenerate to the usual Ramsey theory. In general, given two
structures A,B in A, write

(

B
A

)

for the class of induced substructures of B isomor-

phic to A. This gives
(

N
n

)

an appropriate meaning if A = L, namely increasing
sequences of length n from an ordered set of size N .

We may then use the Hungarian notation

M → (B)Ak

to mean that whenever we have a coloring of of
(

M
A

)

by k colors, there is a copy of

B inside M which is monochromatic with respect to the induced coloring of
(

B
A

)

.
And the Ramsey property will be:

∀A,B ∈ A∀k ∃M ∈ A : M → (B)Ak



TWO PROBLEMS ON HOMOGENEOUS STRUCTURES, REVISITED 13

So the Ramsey property for L is the usual finite Ramsey theorem.
Ramsey theory for Fräıssé classes is a subtle matter, but a highly developed

one. In [HN05] it is shown that the Ramsey property implies the amalgamation
property, by a direct argument. What one would really like to classify are the Fräıssé
classes with the Ramsey property, but according to [HN05] the most promising
route toward that is via classification of amalgamation classes first, and then the
identification of the Ramsey classes.

For unordered graphs, the only instances of the Ramsey property that hold
are those for which the subgraphs being colored are complete graphs Kn, or their
complements [NR75b]. But the collection of finite ordered graphs does have the
Ramsey property [NR77a, NR77b, AH78].

To illustrate the need for an ordering, consider colorings of the graph A =
K1 +K2, a graph on 3 vertices with one edge, and let B = 2 · K2 be the disjoint
sum of two complete graphs of order 2. If we order B in any way, we may color the
copies of A in B by three colors according to the relative position of the isolated
vertex of A, with respect to the other two vertices, namely before, after, or between
them. Then B, with this coloring, cannot be monochromatic. Thus we can never
have a graph G satisfying G → (B)A3 , since given such a graph G we would first
order G, then define a coloring of copies of A in G as above, using this order, and
there could be no monochromatic copy of B.

The topological significance of the Ramsey property for the ordered rational
Urysohn space only emerged in [KPT05], and the appropriate structural Ramsey
theorem was proved “on demand” by Nešetr̆il [Neš07].

At this point, we have collected all the notions needed for Theorem 1. Before
we leave this subject, we note that the theory of [KPT05] also exhibits a direct
connection between topological dynamics and the more classical examples of the
Fräıssé theory (lacking a built-in order). The following is a fragment of Theorem 5
of [KPT05].

Theorem 2. Let G be the automorphism group of one of the following countable
structures M :

(1) The random graph;
(2) The generic Kn-free graph, n ≥ 2;
(3) The rational Urysohn space.

Let L be the space of all linear orderings of M , with its compact topology as a closed
subset of 2M×M . Then under the natural action of G on L, L is the universal
minimal compact flow for G.

The minimality here means that there is no proper closed invariant subspace;
and the universality means that this is the largest such minimal flow (projecting on
to any other). Again, Theorem 2 has an abstract formulation in terms of Fräıssé
theory [KPT05]. The following is a special case.

Theorem 3 ([KPT05, Theorem 4]). Let A be a (locally finite) Fräıssé class
and let A+ be the class of ordered structures (K,<) with K ∈ A. Suppose that
A+ is a Fräıssé class with the order property and the Ramsey property. Let M be
the Fräıssé limit of A, G = Aut(M), and L the space of linear orderings of M ,
equipped with the compact topology inherited by inclusion into 2M×M . Then under
the natural action of G on L, the space L is the universal minimal compact flow
for G.
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Here one has in mind the case in which amalgamation in A does not require
any identification of vertices (strong amalgamation); then A+ is certainly an amal-
gamation class. The order property is the following additional condition: given
A ∈ A, there is B ∈ A such that under any ordering on A, and any ordering on B,
there is some order preserving isomorphic embedding of A into B. This is again
a property which must be verified when needed, and is known in the cases cited.
To see an example where the order property does not hold, consider the class A of
finite equivalence relations. Any equivalence relation B may be ordered so that its
classes are intervals; thus the order property fails.

We turn next to the problem of classifying homogeneous structures of particular
types. Here again the Fräıssé theory provides the key.

4. Classification

The homogeneous structures of certain types have been completely classified,
notably homogeneous graphs [LW80], homogeneous tournaments [Lac84], homo-
geneous tournaments with a coloring by finitely many colors and homogeneous
directed graphs [Che88], homogeneous partial orders with a coloring by countably
many colors [TT08], and homogeneous permutations [Cam03]: this last is a less
familiar notion, that we will enlarge upon. There is also work on the classification
of homogeneous 3-hypergraphs [LT95, AL95], and on graphs with two colors of
edges [Lac86a, Che99], the latter covering only the finite and imprimitive cases:
this uncovers some sporadic examples, but the main problem remains untouched in
this class.

4.1. Homogeneous Permutations. Cameron observed that permutations
have a natural interpretation as structures, and that when one adopts that point
of view the model theoretic notion of embedding is the appropriate one. A finite
permutation may naturally be viewed as a finite structure consisting of two linear
orderings. This is equivalent to a pair of bijections between the structure and the
set {1, . . . , n}, n being the cardinality, and thus to a permutation. In this setting,
an embedding of one permutation into another is an occurrence in the second of a
permutation pattern corresponding to the first, so that this formalism meshes nicely
with the very active subject of permutations omitting specified patterns (“pattern
classes”).

By a direct analysis, Cameron showed that there are just 6 homogeneous per-
mutations, in this sense, up to isomorphism: the trivial permutation of order 1,
the identity permutation of Q or its reversal, the class corresponding to the lex-
icographic order on Q × Q, where the second order agrees with the first in one
coordinate and reverses the first in the other coordinate, and the generic permu-
tation (corresponding to the class of all finite permutations). The existence of the
generic permutation is immediate by the Fräıssé theory.

As amalgamations of linear orders are tightly constrained, the classification of
the amalgamation classes of permutations is quite direct. Cameron also observes
that it would be natural to generalize from structures with two linear orders to an
arbitrary finite number, but I do not know of any further progress on this interesting
question.

4.2. Homogeneous Graphs. This is the case that really launched the classi-
fication project. The classification of homogeneous graphs by Lachlan andWoodrow
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involves an ingenious inductive setup couched directly in terms of amalgamation
classes of finite graphs. We will need the results of that classification later, when
discussing metrically homogeneous graphs. Indeed, homogeneous graphs are just
the diameter two (or less) case of metrically homogeneous graphs. Furthermore, in
any metrically homogeneous graph, the graph induced on the neighbors of a point
is a homogeneous graph, and we will find it useful to consider the possibilities indi-
vidually, or more exactly to distinguish the “exceptional” and “generic” cases, and
to treat the exceptional ones on an ad hoc basis.

In our catalog of the homogeneous graphs we will use the following notation.
The graph Kn is a complete graph of order n, allowing n = ∞, which stands for
ℵ0 in this context. We write In for the complement of Kn, that is an independent
set of vertices of order n, and m ·Kn for the disjoint sum of m copies of Kn, again
allowing m and n to become infinite. Bearing in mind that the complement of a
homogeneous graph is again a homogeneous graph, we arrange the list as follows.

I. Degenerate cases, Kn or In; these are actually homogeneous structures
for a simpler language (containing just the equality symbol).

II. Imprimitive homogeneous graphs, m · Kn and their complements, where
m,n ≥ 2. The complement of m ·Kn is complete n-partite with parts of
constant size.

III. Primitive, nondegenerate, homogeneous finite graphs (highly exceptional):
the pentagon or 5-cycle C5, and a graph on 9 points which may be de-
scribed as the line graph of the complete bipartite graph K3,3, or the
graph theoretic square of K3. These graphs are isomorphic with their
complements.

IV. Primitive, nondegenerate, infinite homogeneous graphs, with which the
classification is primarily concerned: Henson’s generic graphs omitting
Kn, and their complements, generic omitting In, as well as the generic or
random graph Γ∞ (Rado’s graph) corresponding to the class of all finite
graphs. Rado’s graph is isomorphic with its complement.

In this setting there is no difficulty identifying the degenerate and imprimitive
examples, and little difficulty in identifying the remaining finite ones by an inductive
analysis. Since the class of homogeneous graphs is closed under complementation,
the whole classification comes down to the following result.

Theorem 4 ([LW80, Theorem 2′, paraphrased]). Let Γ be a homogeneous
non-degenerate primitive graph containing an infinite independent set, as well as
the complete graph Kn. Then Γ contains every finite graph not containing a copy
of Kn+1.

Let us see that this completes the classification in the infinite, primitive, nonde-
generate case. As the graph Γ under consideration is infinite, by Ramsey’s theorem
it contains either K∞ or I∞, and passing to the complement if necessary, we may
suppose the latter. So if Kn embeds in Γ and Kn+1 does not, then Theorem 4
says that Γ is the corresponding Henson graph, while if Kn embeds in Γ for all n,
Theorem 4 then says that it is the Rado graph.

The method of proof is by induction on the order N of the finite graph G which
we wish to embed in Γ. The difficulty is that on cursory inspection, Theorem 4
does not at all lend itself to such an inductive proof. Lachlan and Woodrow show
that as sometimes happens in such cases, a stronger statement may be proved
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by induction. Their strengthening is on the extravagant side, and involves some
additional technicalities, but it arises naturally from the failure of the first try at
an inductive argument. So let us first see what difficulties appear in a direct attack.

Let G be a graph of order N , not containing Kn+1, and let Γ be the homoge-
neous graph under consideration. We aim to show that G embeds in Γ, proceeding
by induction on N . Pick a vertex v of G. If v is isolated, or if v is adjacent to
the remaining vertices of G, we will need some special argument (even more so
later, once we strengthen our inductive claim). For example, if v is adjacent to the
remaining vertices of G, then we have an easy case: we identify v with any vertex
of Γ, we consider the graph Γ1 on the vertices adjacent to v in Γ, and after verifying
that Γ1 inherits all hypotheses on Γ (with n replaced by n − 1) we can conclude
directly by induction on n. If the vertex v is isolated, the argument will be less
immediate, but still quite manageable.

Turning now to the main case, when the vertex v has both a neighbor and
a non-neighbor in G, matters are considerably less simple. Let G0 be the graph
induced on the other vertices of G, and let a, b be vertices of G0 chosen with a
adjacent to v, and b not. At this point, we must build an amalgamation diagram
which forces a copy of G into Γ, and we hope to get the factors of the diagram by
induction on N , which of course does not quite work. It goes like this.

Let A be the graph obtained from G by deleting v and a, and let B be the
graph obtained from G by deleting v and b. Let H0 be the disjoint sum A+B of A
and B, and form two graphs H1 = H0∪{u} and H2 = H0∪{c}, with edge relations
as follows. The vertex u plays the role of v, and is therefore related to A and B as
v is in G. The vertex c plays a more ambiguous role, as a or b, and is related to A
as a is, and to B as b is.

Suppose for the moment that copies of H1, H2 occur in Γ. Then so does an
amalgam H1 ∪H2 over H0, and in that amalgam either u is joined to c, which may
then play the role of a, with the help of A, or else u is not joined to c, and then c
may play the role of b, with the help of B. In either case, a copy of G is forced into
Γ.

What may be said about the structure of H1 and H2? These are certainly too
large to be embedded into Γ by induction, but they have a simple structure: H2

is the free amalgam of A ∪ {a} with B ∪ {b} under the identification of a with b,
and H1 is constructed similarly, over u. Here each factor (e.g., A ∪ {a}, A ∪ {b} in
the case of H2) embeds into Γ by induction, but we need also the sum of the two
factors over a common vertex. This leads to the following definitions.

Definition 4.1.

(1) A pointed graph (G, v) is a graph G with a distinguished vertex v.
(2) The pointed sum of two pointed graphs (G, v) and (H,w) is the graph

obtained from the disjoint sum G+H by identifying the base points.
(3) Let A(n) be the set of finite graphs belonging to every amalgamation class

which contains Kn, I∞, the path of order 3, and its complement (the last
two eliminate imprimitive cases).

(4) Let A∗(n) be the set of finite graphs G such that for any vertex v of G, and
any pointed graph (H,w) with H ∈ A(n), the pointed sum (G, v)+(H,w)
belongs to A(n).
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Notice that A∗(n) is contained in A(n) for trivial reasons, simply taking for
(H,w) the pointed graph of order 1. Now we can state the desired strengthening
of Theorem 2′.

Theorem 5 ([LW80, Lemma 6]). For any n, if G is a finite graph omitting
Kn+1, then G belongs to A∗(n).

With this definition, the desired inductive proof actually goes through. Admit-
tedly the special cases encountered in our first run above become more substantial
the second time around. As a result, this version of the main theorem will be
preceded by 5 other preparatory lemmas required to support the final induction.
However the process of chasing one’s tail comes to an end at this point.

4.3. Homogeneous Tournaments. In Lachlan’s classification of the homo-
geneous tournaments [Lac84] two new ideas occur, which later turned out to be
sufficient to carry out the full classification of the homogeneous directed graphs
[Che98], with suitable orchestration. A byproduct of that later work was a more
efficient organization of the case of tournaments, given in [Che88]. The main idea
introduced at this stage was a certain use of Ramsey’s theorem that we will describe
in full. The second idea arises naturally at a later stage as one works through the
implications of the first; it involves an enlargement of the setting beyond tourna-
ments, where much as in the case of the Lachlan/Woodrow argument, the point
is to find an inductive framework large enough to carry through an argument that
leads somewhat beyond the initial context of homogeneous tournaments.

It turns out that there are only 5 homogeneous tournaments, four of them
of a special type which are easily classified, and the last one fully generic. The
whole difficulty comes in the characterization of this last tournament as the only
homogeneous tournament of general type, in fact the only one containing a specific
tournament of order 4 called [T1, C3]. In this notation, T1 is the tournament of
order 1, C3 is a 3-cycle, and [T1, C3] is the tournament consisting of a vertex (T1)
dominating a copy of C3. So the analog of Theorem 2′ of [LW80] is the following.

Theorem 6 ([Lac84]). Let T be a countable homogeneous tournament contain-
ing a tournament isomorphic with [T1, C3]. Then every finite tournament embeds
into T .

We now give the classification of the homogeneous tournaments explicitly, and
indicate the reduction of that classification to Theorem 6.

A local order is a tournament with the property that for any vertex v, the
tournaments induced on the sets v+ = {u : v → u} and v− = {u : u → v} are both
transitive (i.e., given by linear orders). Equivalently, these are the tournaments not
embedding [T1, C3] or its dual [C3, T1]. There is a simple structure theory for the
local orders, which we will not go into here. But the result is that there are exactly
four homogeneous local orders, two of them finite: the trivial one of order 1, and
the 3-cycle C3. The infinite homogeneous local orders are the rational order (Q, <)
and a very similar generic local order, which can be realized equally concretely.

Now a tournament T which does not contain a copy of [T1, C3] can easily be
shown to be of the form [S,L] where S is a local order whose vertices all dominate a
linear order L; here S or L may be empty. Indeed, if T is homogeneous, one of the
two must be empty, and in particular T is a local order. Thus if the homogeneous
tournament T contains a copy of [T1, C3] then it contains a copy of [C3, T1] as well,
and it remains only to prove Theorem 6.
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At this point, the following interesting technical notion comes into the picture.
If A is an amalgamation class, let A∗ be the set of finite tournaments T such that
every tournament T ∗ of the following form belongs to A: T ∗ = T ∪ L, L is linear,
and every pattern of edges between T and L is permitted. Theorem 6 is equivalent
to the following rococo variation.

Theorem 7. If A is an amalgamation class containing [T1, C3], then A∗ is an
amalgamation class containing [T1, C3].

That A∗ is an amalgamation class is simply an exercise in the definitions, but
worth working through to see why the definition of A∗ takes the particular form
that it does (because linear orders have strong amalgamation). The deduction of
Theorem 6 from Theorem 7 is also immediate, as we will now verify.

Assuming Theorem 7, we argue by induction on N = |A| that any finite tourna-
ment A belongs to any amalgamation class A containing [T1, C3]. Take any vertex
v of A and let A0 be the tournament induced on the remaining vertices. By in-
duction, A0 belongs to every amalgamation class containing [T1, C3]; in particular
A0 ∈ A∗. Since A is the extension of A0 by a single vertex, and since a single vertex
constitutes a linear tournament, then from A0 ∈ A∗ we derive A ∈ A, and we are
done.

Note the progress which has been made. In Theorem 6 we consider arbitrary
tournaments; in Theorem 7 we consider only linear extensions of [T1, C3]. Now a
further reduction comes in, and eventually the statement to be proved reduces to a
finite number of specific instances of Theorem 6 which can be proved individually.
But we have not yet encountered the leading idea of the argument, which comes in
at the next step.

4.4. The Ramsey Argument. We introduce another class closely connected
with A∗.

Definition 4.2.
1. For tournaments A,B we define the composition A[B] as usual as the tour-

nament derived from A by replacing each vertex of A by a copy of B, with edges
determined within each copy of B as in B, and between each copy of B, as in A.
The composition of two tournaments is a tournament.

2. If T is any tournament, a stack of copies of T is a composition L[T ] with L
linear.

3. If A is an amalgamation class of finite tournaments, let A∗∗ be the set of
tournaments T such that every tournament T ∗ of the following form belongs to A:
T ∗ = L[T ] ∪ {v} is an extension of some stack of copies of T by one more vertex.

The crucial point here is the following.

Fact 4.3. Let A be an amalgamation class of finite tournaments, and T a finite
tournament in A∗∗. Then T belongs to A∗.

We will not give the argument here. It is a direct application of the Ramsey
theorem, given explicitly in [Lac84] and again in [Che88, Che98]. The idea is
that one may amalgamate a large number of one point extensions of a long stack
of copies of T so that in any amalgam, the additional points contain a long linear
tournament, and one of the copies of T occurring in the stack will hook up with
that linear tournament in any previously prescribed fashion desired.

This leads to our third, and nearly final, version of the main theorem.
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Theorem 8. Let A be an amalgamation class of finite tournaments containing
[T1, C3]. Then C3 belongs to A∗∗.

Notice that a stack of copies of [T1, C3] embeds in a longer stack of copies of
C3, so that Theorem 8 immediately implies the same result for [T1, C3]. Since we
already saw that A∗∗ ⊆ A∗, Theorem 8 implies Theorem 7. In view of the very
simple structure of a stack of copies of T , we are almost ready to prove Theorem 8
by induction on the length of the stack. Unfortunately the additional vertex v oc-
curring in T ∗ = L[T ]∪{v} complicates matters, and leads to a further reformulation
of the statement.

At this point, it is convenient to return from the language of amalgamation
classes to the language of structures. So let the given amalgamation class corre-
spond to the homogeneous tournament T, and let T = L[C3] ∪ {v} be a 1-point
extension of a finite stack of 3-cycles. Theorem 8 says that T embeds into T. It
will be simpler to strengthen the statement slightly, as follows.

Let a be an arbitrary vertex in T, and consider

T1 = a+ = {v : a → v} and T2 = a− = {v : v → a}
separately. We claim that T embeds into T with L[C3] embedding into T1, and
with the vertex v going into T2. This now sets us up for an inductive argument in
which we consider a single 3-cycle C in T1, and the parts T′

1 and T′
2 defined relative

to C as follows: T′
1 consists of the vertices of T1 dominated by the three vertices

of C, and T′
2 consists of the vertices v′ of T2 which relate to C as the specified

vertex v does. What remains at this point is to clarify what we know, initially,
about T1 and T2, and to show that these properties are inherited by T′

1 and T′
2 (in

particular, T′
2 should be nonempty!). This then allows an inductive argument to

run smoothly.
At this point we have traded in the tournament T for a richer structure (T1,T2)

consisting of a tournament with a distinguished partition into two sets. The homo-
geneity of T will give us the homogeneity of (T1,T2) in its expanded language. Such
structures will be called 2-tournaments, and the particular class of 2-tournaments
arising here will be called ample tournaments. The main inductive step in the
proof of Theorem 8 will be the claim that an ample tournament (T1,T2) gives rise
to an ample tournament (T′

1,T
′
2) if we fix a 3-cycle in T1 and pass to the subsets

considered above.
We will not dwell on this last part. The main steps in the proof are the

reduction to Theorem 8, and then the realization that we should step beyond the
class of homogeneous tournaments to the class of homogeneous 2-tournaments, to
find a setting which is appropriately closed under the construction corresponding
to the inductive step of the argument. This then leaves us concerned only about
the base of the induction, which reduces to a small number of specific claims about
tournaments of order not exceeding 6. Once the problem is finitized, it can be
settled by explicit amalgamation arguments.

Lachlan’s Ramsey theoretic argument functions much the same way in the
context of directed graphs as it does for tournaments, and comes more into its own
there, as it is not a foregone conclusion that Ramsey’s theorem will necessarily
produce a linear order; but it will produce something, and modifying the definition
of A∗ to allow for this additional element of vagueness, things proceed much as
they did before.
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In [Che98] there is also a treatment of the case of homogeneous graphs using
the ideas of [Lac84] in place of the methods of [LW80]. This cannot be said to
be a simplification, having roughly the complexity of the original proof, but it is
a viable alternative, and the proof of the classification of homogeneous directed
graphs is more or less a combination of the ideas of the tournament classification
with the ideas which appear in a treatment of homogeneous graphs by this second
method.

This ends our general survey of the general theory of amalgamation classes and
its application to classification results. It is not clear how much further those ideas
can be taken. The proofs are long and ultimately computational even when the
final classifications have a reasonably simple form, and at this level of generality
one has good methods but no very general theory. In the finite case, one has an
excellent theory due to Lachlan making good use of model theoretic ideas. These
were Lachlan’s words in [Lac86b]:

The situation can be summarized as follows: Finite homogeneous
structures are well understood. Stable homogeneous structures turn
out to be just the unions of chains of finite ones. Thus, understand-
ing stable homogeneous structures goes hand in hand with under-
standing finite ones. Beyond this, some special cases have been
investigated successfully, but almost no general results have been
obtained.

That assessment stands today as far as the theory of homogeneous structures is
concerned. A generalization of the theory of finite homogeneous structures beyond
the homogeneous framework was also envisioned by Lachlan, and came to fruition,
based on a combination of permutation group theory and model theory [KLM89,
ChH03].

It seems to be impossible to say at this point how much farther one can go with
the methods of classification for homogeneous structures currently available. While
we have few general results, we also have no known limitations on the method. The
existence of 2ℵ0 homogeneous directed graph was once taken as such a limitation,
a point of view I shared till seeing the classification of homogeneous tournaments.
At that point, there was a tension between the existence of 2ℵ0 known examples of
homogeneous digraphs and the fact that there was no clear obstruction to the use
of Lachlan’s methods in this case. This conflict was resolved in favor of Lachlan’s
methods [Che98]. So we know less now than we thought we did originally. It still
seems doubtful to me that the methods of Lachlan andWoodrow can be pushed very
far beyond their current range, but on the other hand we have not actually found
any concrete evidence of their limitations, or indeed any homogeneous relational
structures that are not readily accounted for as either occurring in nature or coming
naturally from the Fräıssé theory.

We believe that the classification of the metrically homogeneous graphs will
provide another case in which some sporadic examples can be accounted for as
growing naturally out of one or another special phenomenon, and the remainder
fall neatly into the theory of amalgamation classes of “generic” type. The evidence
for this is admittedly thin—the catalog of known types reached its present form
after the first draft of the present paper was complete, and a coherent plan for
a proof of its completeness still does not exist. But the catalog strikes me as
satisfactorily robust now, and whenever one has a catalog with a clear division of
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exceptional and generic cases, one has some reason to expect the existing theory to
be adequate to a proof of its completeness, with the proviso that there is often a
striking disparity between the complexity of the catalog and the complexity of the
resulting proof.

With all this in mind—or out of mind, as the case may be—we will turn in
the next part to a catalog of the known metrically homogeneous graphs, and a full
discussion of those which are “non-generic” in one of a number of senses. As we
mentioned earlier, we will not give full existence proofs for the metrically homoge-
neous graphs in our catalog, though we will give some of the leading ideas and full
proofs in special cases. The main class we present depends on four numerical pa-
rameters satisfying some simple linear inequalities and parity constraints, in more
than one possible combination. We can account for those inequalities and parity
constraints on abstract grounds: they are connected heuristically with quantifier
elimination in Presburger arithmetic (§5.4).

In another direction, we think the generalization of Cameron’s classification of
homogeneous permutations to the case of structures equipped with k linear orders
(also called k-dimensional permutations [Wat07, §5.9]) is another attractive classi-
fication problem. Here one can easily make a catalog of the “natural” examples but
it is unclear whether one should expect that catalog to be complete. This problem
seems to us to have something to do with the existing theory of weakly o-minimal
structures. But we will not explore the matter here.

Part II. Metrically Homogeneous Graphs

5. Metrically homogeneous graphs: A catalog

5.1. The Classification Problem. Any connected graph may be considered
as a metric space under the graph metric, and if the associated metric space is
homogeneous then the graph is said to be metrically homogeneous1 [Cam98]).
Cameron asked whether this class of graphs can be completely classified, and gave
some examples of constructions via the Fräıssé theory of amalgamation classes.

We believe that such a classification can be given. As a first step, we will give
a catalog of all the known metrically homogeneous graphs, with the expectation
that this catalog is complete or nearly so. That catalog is the focus of the present
part. It consists of a few graphs of exceptional types, and two “generic” families
which are best understood in terms of the Fräıssé theory of amalgamation classes.

Since the main examples in the catalog are presented in terms of amalgamation
classes, it is necessary to check the amalgamation property for the classes we define.
This is not trivial, and as there are a number of distinct cases to consider, it will
not be covered in detail. The main point of §6 will be to lay out explicitly the
amalgamation procedure followed. We will leave for another occasion a detailed
proof that this procedure succeeds for all the classes considered. We will go into
more detail in the discussion of a variant appropriate to the so-called antipodal
case, as this is distinct perturbation of the general case.

The second order of business is to show that this catalog is reasonably complete.
This is largely a byproduct of the way the catalog was constructed. There are two
natural notions of “exceptional” metrically homogeneous graph. In addition, there

1A considerably weaker notion occurs in the geometry literature under the name metrically

homogeneous set
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is a natural Fräıssé style construction whose main ingredient is an amalgamation
class determined entirely by constraints on triangles. The most difficult point to
work through was the determination of this last class of examples. This caught us
by surprise; the analogous step in previous problems of this type has been straight-
forward. In the present case, the conditions on an amalgamation class determined
by constraints of order 3 depend on five numerical parameters (one of which is
the diameter δ, which we always have lurking in the background). We denote the
resulting classes by Aδ

K1,K2;C0,C1
where the numerical parameters K1,K2 are used

to specify which metric triangles of small odd perimeter are forbidden, and the
parameters C0, C1 are used to specify which triangles of large perimeter, even or
odd respectively, are forbidden. When we come to the details it will be seen that
the parameter K2 is used in a more subtle way than the other three parameters.
We more or less guessed the role of K1, C0, C1 at the outset, except that we ex-
pected C1 = C0 ± 1, and hence we worked with just two parameters, K = K1 and
C = min(C0, C1). The role of K2 came as a surprise and we took the first examples
found to be sporadic.

In the next subsection we will lay out our notions of “exceptional” metrically
homogeneous graph and “generic” metrically homogeneous graph explicitly, and
indicate the way the catalog was devised, before actually giving the catalog. One
of our two notions of “exceptional” metrically homogeneous graph (the imprimitive
case) turns out to lie mainly on the generic side in the catalog as it now stands.

Cameron made a number of fundamental observations on the classification
problem in [Cam98]. He noted that the Lachlan/Woodrow classification is the
diameter 2 case. He pointed out that Fräıssé constructions give graphs of any fixed
diameter whose associated metric spaces are analogous to the Urysohn space, but
with bounded integral distance, and that there is a bipartite variant of this con-
struction. He also noted related work by Komjáth, Mekler and Pach which turns
out to be very closely connected with the construction of graphs of generic type
[KMP88], specifically with the classes Aδ

K1,K2;C0,C1
. Cameron also observed that

one may forbid cliques in the manner of Henson. When this is generalized a little
more one gets the classes Aδ

K1,K2;C0,C1;S
where S is a set of side constraints slightly

more general than Henson’s cliques.
Also noteworthy in this regard is the classification by Macpherson of the infi-

nite, locally finite distance transitive graphs [Mph82], which occupies a privileged
position among the exceptional entries in the catalog (slightly generalized). The
finite case was dealt with in [Cam80],

Ongoing work by Amato and Macpherson [AMp10] sheds considerable light
on the case of diameter 3, and similar methods appear to suffice to confirm the
completeness of the catalog in diameter 3. In particular, with this small diameter
the potentially problematic antipodal case can be handled directly and is covered
in [AMp10]. The role of the generalized Henson constraints is very clear in that
work, and is the main focus of that article. In the form I have seen, that article
treats the antipodal and triangle free cases.

Some examples of metrically homogeneous graphs can be extracted from tables
given at the end of [Che98]. These tables present all the primitive metrically
homogeneous graphs of diameter 3 or 4 which can be defined by forbidding a set
of triangles, excluding those of diameter 3 in which none of the forbidden triangles
involve the distance 2 (where there is a notion of free amalgamation which seemed
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not very interesting). At the time I produced those tables, it never crossed my
mind that a significant number of them could be construed as metric spaces. But
the 27 examples originally listed with 4 nontrivial self-paired orbits on pairs (i.e.,
4 nontrivial symmetric 2-types) give rise to 20 distinct metric spaces, each derived
from a metrically homogeneous graph by taking distance 1 as the edge relation.
Some of the examples listed have no interpretation as metric spaces, while others
can be interpreted as metric spaces in two distinct ways. Some of these examples lie
outside the catalog based on the families Aδ

K,C,S but are consistent with the catalog
as it now stands, as indeed they must be, since we have proved the completeness
of our catalog in its present form for examples determined entirely by constraints
of order 3. We will tabulate the relevant examples and give a translation from the
notation of [Che98] to the notation of our catalog.

There are good methods, but there is no clear strategy, for an eventual proof
of completeness of the catalog. In Part I we have indicated some of the methods
which have been applied to similar problems, notably in the classification of the
homogeneous connected graphs by Lachlan and Woodrow. Since the homogeneous
connected graphs are the metrically homogeneous connected graphs of diameter at
most 2, the Lachlan/Woodrow classification appears as the point of departure for
Cameron’s problem. In the case of diameter 2 the fact that the triangle inequality
is vacuous is helpful when applying Lachlan’s method. With higher diameters the
emphasis shifts toward the use of the triangle inequality, but Lachlan’s Ramsey
argument (discussed in Part I) retains considerable power.

After presenting our notions of exceptional and generic type metrically homoge-
neous graphs, we will state the main facts known to us regarding the completeness
of the catalog, and then present the catalog itself. The remainder of this Part
will then deal with proofs of our results in the exceptional case, as well as some
discussion of the generic case, in considerably less detail.

Most of the metrically homogeneous graphs considered are taken to be con-
nected, a point occasionally mentioned. In an inductive analysis, disconnected
metrically homogeneous subgraphs may come into play. In such cases we focus
mainly but not exclusively on their connected components.

5.2. Exceptional Cases. Our basic strategy in designing the catalog pre-
sented below was to try to ensure that the following three types of connected
metrically homogeneous graph Γ were all adequately covered.

Exceptional: The induced graph on the neighbors of a fixed vertex of Γ is
exceptional (in a sense specified below).

Imprimitive: The graph Γ is imprimitive; that is, it carries a nontrivial
equivalence relation invariant under Aut(Γ).

3-constrained: The class of finite metric spaces which embed isometrically
into Γ can be specified in terms of forbidden substructures of order 3.

Let us take up these three possibilities separately. We will mention various
results about them along the way, but leave the precise statements to follow the
presentation of the catalog.

First, the class of connected metrically homogeneous graphs which we officially
declare to be “exceptional” is defined as follows. Let Γ be a metrically homogeneous
graph, and v ∈ Γ a fixed vertex. Let Γ1 = Γ1(v) be the graph induced on the
neighbors of v. Then Γ1 is a homogeneous graph, and its isomorphism type is
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independent of the choice of base vertex v. As Γ1 is homogeneous, it can be found
in the list of Lachlan/Woodrow presented in §4.2, which we should keep in mind
throughout.

The cases in which the induced graph Γ1 is an independent set, a Henson graph,
or the Rado graph are all associated with natural constructions of Fräıssé type and
do not belong on the exceptional side. We will put all other possibilities for Γ1 on
the exceptional side: these are the imprimitive or finite cases, and the complements
of the Henson graphs. More abstractly, they are the cases in which Γ1 is either
imprimitive or contains no infinite independent set. We give the classification of
the metrically homogeneous graphs Γ with Γ1 exceptional as Theorem 10. These
turn out to be of familiar types.

The second class of graphs we looked into were the imprimitive graphs. Here the
situation is at first quite close to what is known in the finite case for distance tran-
sitive graphs, where it goes under the name of Smith’s Theorem [AH06, Smi71],
though eventually the analysis diverges, losing some ground in the infinite case,
but with the much stronger hypothesis of metric homogeneity providing consider-
able compensation. It is easy to show, as in the finite case, that the imprimitive
metrically homogeneous graphs are either bipartite, or antipodal, or possibly both.
Here a graph is antipodal if its diameter δ is finite, and the relation d(x, y) = δ (or
0) defines an equivalence relation. For metrically homogeneous graphs it turns out
that with minor exceptions the equivalence classes in the antipodal case have order
2, and that the pairing defined by the relation d(x, y) = δ defines an involutory
automorphism.

This analysis is useful but does not lead to a complete classification for reasons
that will become quite clear in a moment. There is a general reduction from the
bipartite case to the nonbipartite (but possibly antipodal) case. One considers the
graph BΓ induced on one half of the bipartition by taking as the edge relation
d(x, y) = 2. This is then a metrically homogeneous graph in its own right, and we
may consider the case in which BΓ is exceptional. In fact, we give a complete clas-
sification of the bipartite metrically homogeneous graphs for which BΓ1 is not the
Rado graph as Theorem 13. We also characterize the antipodal bipartite metrically
homogeneous graphs of odd diameter in Theorem 12. It would also be reasonable at
this point to try to complete the reduction of the bipartite case to the nonbipartite
(possibly antipodal) case by proving the existence and uniqueness of Γ with BΓ
falling under the remaining cases; or, if necessary, at least to prove that result for
BΓ falling within the catalog of known examples.

The third class of metrically homogeneous graphs requiring special attention
leads us to a conjectured description of the graphs of generic type. Informally,
the graphs of generic type are those which come from amalgamation classes using
natural methods of amalgamation approximating some notion of free amalgamation.
In our case we are dealing with classes of metric spaces with an integer valued
metric, typically with a bound δ on the diameter, and for which any geodesic of
total length at most δ is allowed to occur. In that case, if the class A in question has
the amalgamation property, the associated homogeneous metric space carries the
graph structure given by the edge relation d(x, y) = 1, and the metric coincides with
the graph metric (a point made in [Cam98]). As the class A must be hereditary
(downward closed), it may be specified by giving a set of forbidden subspaces; that
is, we specify a collection C of finite metric spaces, and then let A be the class of
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finite metric spaces X such that no space in C embeds isometrically into X . We
single out for attention the case in which all constraints in C have order 3. We note
that the triangle inequality is already a set of constraints of this type. Furthermore,
imprimitivity is itself an example of a constraint given by a set of forbidden metric
triangles.

Our first idea was to consider the classes Aδ
K;C given by constraints of the

following type: there are no triangles of odd perimeter less than 2K+1, and no tri-
angles of perimeter C or more. Here the perimeter is the sum of the three distances
between pairs of points (and the term “triangle” refers to metric triangles, that is,
to metric spaces with three points). This idea is suggested by known examples in
the theory of universal graphs described by Komjáth, Mekler, and Pach [KMP88],
and a proof of the amalgamation property in such cases is straightforward. We may
combine this construction with the idea of omitting cliques as follows. With δ the
diameter, let a (1, δ)-space be any finite metric space in which only the distances 1
and δ occur. We will be concerned only with the case in which δ ≥ 3, in which case
such a space consists of equivalence classes which are cliques with respect to the
edge relation d(x, y) = 1, with distinct classes separated by the maximal distance δ.
It turns out that one may usually avoid both the minimal and the maximal values
of the distance in completing amalgamation diagrams, and thus we can generalize
the Henson construction to get amalgamation classes of the form AK;C;S with S a
set of (1, δ)-spaces. Here one must pay a little attention to the interaction of K, C,
and S to ensure that the amalgamation property holds.

As a test of our original catalog, we set out to prove that the pattern of triangles
occurring in any metrically homogeneous graph would be that of one of the classes
Aδ

K;C . Once we saw that this was false it was not immediately clear whether the

exceptions were sporadic. In the end the class with five parameters Aδ
K1,K2;C0,C1

emerged along with its Hensonian variations Aδ
K1,K2;C0,C1;S

, and a further antipo-
dal variant, by solving a much simpler problem: identify all amalgamation classes
determined by constraints of order 3. It still needs to be shown that the collection
of triangles not embedding in an arbitrary metrically homogeneous graph agrees
with the collection associated with some graph in our extended catalog. We would
view this as a significant step toward a proof of completeness of the catalog.

The case of imprimitive graphs has been analyzed to the point at which the
remaining cases should fall under the generic case, corresponding to extreme values
of the parameters: in the bipartite case we forbid all triangles of odd perimeter,
and in the antipodal case we forbid all triangles of perimeter greater than 2δ (as
we shall see). But the antipodal case involves another variation on the Henson
construction, so it appears separately in the catalog.

5.3. The Catalog.

Notation 5.1. If Γ is metrically homogeneous then for v ∈ Γ we denote by
Γi(v) the set of vertices at distance i from v, with the induced metric; this is a ho-
mogeneous metric space, but it does not necessarily come from a graph metric, and
in fact the distance 1 may not even be represented in Γi(v). Since the isomorphism
type of Γi(v) is independent of the choice of v, we often write Γi rather than Γi(v).

If the distance 1 is represented in Γi and Γi is connected, then the metric on
Γi is the graph metric (see [Cam98]).
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Our catalog uses specialized notations and constructions which will be ex-
plained in §5.4.

Catalog

I. δ ≤ 2 (Cf. §4.2)
(a) Finite primitive: C5, L[K3,3]
(b) Defective or imprimitive: m ·Kn, Km[Im].
(c) Infinite primitive, not defective: Gn, G

c
n, G∞.

II. δ ≥ 3, Γ1 finite or imprimitive.
(a) An n-gon with n ≥ 6.
(b) Antipodal double cover of one of the graphs C5, L[K3,3], or a finite

independent set.
(c) A tree-like graph Tr,s as described by Macpherson in [Mph82], where

2 ≤ r, s ≤ ∞, and if s = ∞ then r ≥ 3.
III. Γ1 infinite and primitive

(a) T2,∞, the infinitely branching regular tree.
(b) The generic antipodal graph omitting Kn: Γ

δ
a,n, where either δ ≥ 4,

or δ = 3 and n = 3 or ∞.
(c) The generic graph Γδ

K1,K2;C0,C1;S
associated with the class

Aδ
K1,K2;C0,C1;S

, for an admissible choice of parameters
K1,K2;C0, C1;S.

The next order of business is to explain the following notions referred to in the
catalog, after which we will state the main results relating to completeness of the
catalog.

(1) The treelike graphs Tr,s of [Mph82] (generalized to allow r or s to be
infinite);

(2) The antipodal double cover;
(3) The notation

Γδ
K1,K2;C0,C1;S

for graphs constructed via the Fräıssé theory from a suitable amalgama-
tion class, and the antipodal variations denoted by Γδ

a,n, as well as the
precise conditions for admissibility of the parameters.

5.4. Three Constructions.

Definition 5.2 (The treelike graphs Tr,s.). For 2 ≤ r, s ≤ ∞, we may construct
an r-tree of s-cliques Tr,s as follows. Take a tree T (r, s) partitioned into two sets of
vertices A,B, so that each vertex of A has r neighbors, all in B, and each vertex of
B has s neighbors, all in A. Consider the graph induced on A with edge relation
given by “d(u, v) = 2”. This is Tr,s (and the corresponding graph on B is Ts,r).

Lemma 5.3. For any r, s the tree T (r, s) is homogeneous as a metric space with
a fixed partition into two sets, and the graph Tr,s is metrically homogeneous.

Proof. For any finite subset A of a tree T , one can see that the metric struc-
ture on A induced by T determines the structure of the convex closure of A, the
smallest subtree of T containing A. Given that, a map between two finite subsets
of T (r, s) that respects the partition will extend first to the convex closures and
then to the whole of T (r, s).

This applies in particular to the two halves of T (r, s). �
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Now we turn to some “doubling” constructions.

Definition 5.4.

(1) The double cover Γ = 2 ∗ G of G is the graph on V (G) × Z2 with edges
given by (u, i) ∼ (v, j) iff

{

u ∼ v if i = j

u 6∼ v and u 6= v if i 6= j

(2) The antipodal double cover Γ = Ĝ of G is the double cover of the graph G∗

obtained from G by adding one additional vertex ∗ adjacent to all vertices
of G.

(3) Let Γ be a graph of diameter δ. The bipartite double cover of Γ is the graph
with vertex set V (Γ)× Z2 and edge relation ∼ given by (u, i) ∼ (v, j) iff:

d(u, v) = δ and i 6= j

Finally, we give the explicit definition of the classes Aδ
K1,K2;C0,C1

.

We will write Mδ for the class of all finite, integer valued metric spaces in which
all lengths are bounded by δ. A triangle is a metric space containing three points.
The type of a triangle is the triple (i, j, k) of distances realized in the triangle, taken
in any order. The perimeter of a triangle of type i, j, k is the sum i+ j + k.

Definition 5.5. For 1 ≤ K1 ≤ K2 ≤ δ (or K1 = ∞, K2 = 0) and for
2δ + 1 ≤ C0, C1 ≤ 3δ + 2, we define

(1) Aδ
K1,K2

is the subclass of Mδ with forbidden triangles of types (i, j, k)
with P = i+ j + k odd and either
(a) P < 2K1 + 1; or
(b) P > 2K2 +min(i, j, k)

(2) Bδ
C0,C1

is the subclass of Mδ with forbidden triangles of types (i, j, k)
where P = i+ j + k satisfies

P ≥ Cℓ, P ≡ ℓ mod 2

(3) Aδ
K1,K2;C0,C1

= Aδ
K1,K2

∩ Bδ
C0,C1

.

Definition 5.6. A choice of parameters δ,K1,K2, C0, C1,S is admissible if
the following conditions are satisfied, where we write C = min(C0, C1) and C′ =
max(C0, C1).

• δ ≥ 3
• Either 1 ≤ K1 ≤ K2 ≤ δ or K1 = ∞ and K2 = 0
• 2δ + 1 ≤ C < C′ ≤ 3δ + 2, with one of C,C′ even and the other odd.
• S is a set of finite (1, δ)-spaces of order at least 3, and one of the following
combinations of conditions holds:

(1) K1 = ∞:

K2 = 0, C1 = 2δ + 1, and

S is

{

empty if δ is odd, or C0 ≤ 3δ

a set of δ-cliques if δ is even, C0 = 3δ + 2

(2) K1 < ∞ and C ≤ 2δ +K1:

C = 2K1 + 2K2 + 1, K1 +K2 ≥ δ, and K1 + 2K2 ≤ 2δ − 1
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If C′ > C + 1 then K1 = K2 and 3K2 = 2δ − 1.
If K1 = 1 then S is empty.

(3) K1 < ∞, and C > 2δ +K1:

K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ.
If K1 + 2K2 = 2δ − 1 then C ≥ 2δ +K1 + 2.
If C′ > C + 1 then C ≥ 2δ +K2.
If K2 = δ then S cannot contain a triangle of type (1, δ, δ).
If K1 = δ then S is empty.
If C = 2δ + 2, then S is empty.

Note that if δ = ∞ then C0, C1 should be omitted and the (1, δ)-spaces are just
cliques.

We claim of course that these admissibility conditions are precisely the con-
ditions required on our parameters to ensure that the corresponding class is an
amalgamation class. We will not prove this here, though we will present the amal-
gamation procedure which works when the parameters meet these conditions.

We also have some antipodal variations on the classesAδ
K1,K2;C0,C1;S

to present.
The antipodal case falls under our formalism for appropriate values of the numerical
parameters, but the additional constraint set S is somewhat different. On one hand,
the (1, δ)-spaces of order at least 3 with the distance δ present are already excluded
by the antipodality condition, so we are only concerned with cliques. On the other
hand, if Kn does not embed into an antipodal graph, then none of the graphs
obtained by replacing k vertices of Kn by antipodal vertices can embed. So we
make the following definition, which takes into account some further constraints
when δ = 3.

Definition 5.7. Let δ ≥ 4 be finite and 2 ≤ n ≤ ∞, or δ = 3 and n = ∞.
Then

(1) Aδ
a = Aδ

1,δ−1; 2δ+2,2δ+1; ∅ is the set of finite integral metric spaces in which

no triangle has perimeter greater than 2δ.
(2) Aδ

a,n is the subset of Aδ
a containing no subspace of the form Iδ−1

2 [Kk,Kℓ]

with k + ℓ = n; here Iδ−1
2 denotes a pair of vertices at distance δ − 1 and

Iδ−1
2 [Kk,Kℓ] stands for the corresponding composition, namely a graph of
the form Kk ∪Kℓ with Kk, Kℓ cliques (at distance 1), and d(x, y) = δ− 1
for x ∈ Kk, y ∈ Kℓ. In particular, with k = n, ℓ = 0, this means Kn does
not occur.

One may make a general observation about the form of the admissibility con-
ditions in Definition 5.6. Take S = ∅, so that we consider Aδ

K1,K2;C0,C1;∅
as a

5-parameter family of classes of finite metric structures. Looking over the condi-
tions on the five parameters δ,K1,K2, C0, C1 given above, we observe the following.

The condition (∗) “Aδ
K1,K2;C0,C1

is an amalgamation class”
is expressible in Presburger arithmetic.

If we knew this fact on a priori grounds we would then interpret the admissibility
conditions as the result of expressing the property (∗) in quantifier free terms in
a language suitable for quantifier elimination in Presburger arithmetic, namely a
language permitting the formation of linear combinations of variables with integer
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coefficients, and with predicates for congruence modulo a fixed integer (above,
parity will suffice).

To cast some light on this heuristically, consider the following three conditions,
whose precise meaning will require some elucidation.

(C1) The family of constraints defining Aδ
K1,K2;C0,C1;∅

is uniformly definable in

Presburger arithmetic, in the parameters δ,K1,K2, C0, C1.
(C2) For any fixed k, the condition “The family Aδ

K1,K2;C0,C1;∅
has the k-

amalgamation property” is definable in Presburger arithmetic as a prop-
erty of δ,K1,K2, C0, C1.

(C3) The condition “Aδ
K1,K2;C0,C1

is an amalgamation class” is expressible in
Presburger arithmetic as a property of δ,K1,K2, C0, C1.

Let us clarify the meaning of these statements before considering their rela-
tionship. Since we vary δ, the language here is a binary language with predicates
Ri(x, y) for i ∈ Z, i ≥ 0. We consider only structures in which every ordered pair
of points satisfies exactly one of the relations Ri (with R0 the equality relation);
we may restrict our attention to symmetric relations, but this is not essential.

The family of constraints defining Aδ
K1,K2;C0,C1;∅

is the the set of minimal finite

structures not in the class, which in the case at hand are structures of order at most
3, and include all pairs x, y violating the bound δ, all failures of symmetry, and all
triples violating the triangle inequality, as well as the more specific constraints
associated with K1,K2, C0, C1. We may identify a structure A whose universe is
{1, . . . , s} with the s2-tuple

(d(i, j) : 1 ≤ i, j ≤ s)

where we use the metric notation d(i, j) to denote the unique subscript d such
that Rd(i, j) holds in A. With n = s2 we arrange this n-tuple in a definite order.
Then the constraints of order s associated with K1,K2, C0, C1 become a subset of
Nn and with s bounded we are dealing with a finite number of such sets. So we
may say that the set of constraints defining Aδ

K1,K2;C0,C1;∅
is uniformly definable

in Presburger arithmetic from the parameters if the encoded constraint sets in Nn

are so definable (for s = 2, 3). This gives our first statement a definite sense.
In condition (C2) we consider the k-amalgamation property, which is the amal-

gamation condition for pairs of structures A1, A2 of orders k′ < k, over a base of
order k′ − 1; in other words, we require the ability to complete amalgamation dia-
grams in which the relation of one pair of points a1, a2 remains to be determined,
and the total number of points involved is at most k. In our second condition,
we require that the set of parameter 5-tuples (δ,K1,K2, C0, C1) for which the as-
sociated class has the k-amalgamation property should be definable in Presburger
arithmetic, for each fixed value of k.

The third condition is similar, but refers to the full amalgamation property.
These three conditions (C1)–(C3) are all satisfied by our family Aδ

K1,K2;C0,C1;∅
,

which has the additional property that it contains every amalgamation class of fi-
nite metric spaces which is determined by a set of constraints of order at most 3
(and 3 seems to be something of a magic number in terms of capturing a good deal
of the sporadic side in classifications of homogeneous structures for finite binary
languages). The following questions arise: is this kind of definability to be expected,
not only in the present instance, but more generally; and could our analysis be ma-
terially simplified using automated techniques to perform an appropriate quantifier
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elimination in Presburger arithmetic? We do not have answers to these questions,
but we point out the following: the first property is interesting, but evident in the
case at hand; the first property implies the second; and the second makes the third
seem highly probable. We add a word on each of these three points.

The uniform definability in Presburger arithmetic of the constraint sets asso-
ciated with the classes Aδ

K1,K2;C0,C1;∅
is evident by inspection of the definition,

which is already in that form. In particular, the triangle inequality is expressed
by a formula of Presburger arithmetic. We had expected to define an appropriate
family of amalgamation classes by imposing conditions of triangles involving only
the size and parity of their perimeters, but this was inadequate. Our first try,
a 3-parameter family Aδ

K,C , had that simple form, but did not cover all relevant
amalgamation classes. The modification required in going to the 5-parameter fam-
ily brought an additional term of Presburger arithmetic into the definition. We do
not have any heuristic which explains why we are able to define a single family of
classes uniformly in Presburger arithmetic, in terms of a bounded number of nu-
merical parameters, which captures all amalgamation classes defined by constraints
of order at most 3.

Now let us consider the implication (C1) =⇒ (C2). Consider the amalga-
mation property for amalgams of order precisely k in which the desired structure
is completely determined apart from the relations holding between one pair of ele-
ments a, b. This amalgamation property is directly expressed by a formula of the
following form, with n = k2:

∀x1∀x2 · · · ∀xn−2 ∃y1∃y2φ(x1, . . . , xn−2, y1, y2, δ,K1,K2, C0, C1)

where φ simply states that the corresponding structure satisfies the required con-
straints, which will be expressible in Presburger arithmetic if condition (C1) holds.
Of course in symmetric structures we will require y1 = y2 and we may dispense
with one existential quantifier (and several universal ones).

The displayed formula is very far from a quantifier free condition, and is not
really useful for our purposes until it is expressed directly in terms of the param-
eters δ,K1,K2, C0, C1. The admissibility conditions on the parameters given in
Definition 5.6 express the 5-amalgamation property for the case of our particular
family Aδ

K1,K2;C0,C1;∅
. Indeed, in deriving these conditions we considered only cer-

tain key amalgamation diagrams involving at most 5 elements; and eventually we
found that we had enough conditions to derive the full amalgamation property.
Thus the analysis that produced the admissibility conditions showed that they are
equivalent to k-amalgamation for all k ≥ 5. So at that point the obvious condi-
tion (C1) explained the general form of our conditions, corresponding to k = 5 in
condition (C2), and we understood that our work to that point could be construed
as carrying through an elimination procedure for a specific formula of Presburger
arithmetic.

Of course, to pass from (C2) to (C3) in general requires finding a value of
k0 such that the quantifier-free form of condition (C2) is independent of k for all
k ≥ k0. It seems intrinsically reasonable that when we have a bound on the sizes of
the constraints involved, there is also a bound k such that k-amalgamation implies
full amalgamation. So there is some expectation that (C2) will lead to (C3), and
thus that (C1) will lead to (C3).

Bearing in mind that Presburger arithmetic is decidable while diophantine
problems over Z are in general undecidable, we may wonder whether the general
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classification problem for homogeneous structures in a finite relational language in-
volves conditions which are largely expressible in Presburger arithmetic, or perhaps
conditions of a more general diophantine type. One approach to this question would
be to look more carefully at the examples tabulated in §14, giving 27 amalgamation
classes determined by constraints on triangles whose Fräıssé limit is primitive, of
which an impressive proportion (17) can be interpreted as metrically homogeneous
graphs. We have just described a natural embedding of those 17 metrically ho-
mogeneous graphs into a 5-parameter family of graphs characterized by conditions
expressible in Presburger arithmetic. One might ask for a natural extension of this
5-parameter family to another one given by similar conditions, in which all 27 ex-
amples for the case of 4 symmetric 2-types are found. Observe however that the
collection of homogeneous structures for a given language is invariant under permu-
tations of the language, while a useful definable relation in Presburger arithmetic
should not be invariant under arbitrary permutations of the base set! So there is
a prior issue of “symmetry breaking.” Even the 17 examples which can be inter-
preted as metrically homogeneous graphs give rise to 20 examples after breaking
the symmetry ( §10.1).

5.5. Statement of Results. Our first two theorems can be taken as a sum-
mary of the way the catalog was constructed.

Theorem 9. Let δ ≥ 3, 1 ≤ K1 ≤ K2 ≤ δ or K1 = ∞, 2δ+1 ≤ C0, C1 ≤ 3δ+2
with C0 even and C1 odd, and S a set of (1, δ)-spaces occurring in Aδ

K1,K2;C0,C1
.

Then the class

Aδ
K1,K2;C0,C1;S

is an amalgamation class if and only if the parameters δ,K1,K2, C0, C1,S are ad-
missible, or K1 = 1, K2 = δ − 1, C0 = 2δ + 2, and C1 = 2δ + 1, and S = ∅.

There is a point of notation that needs to be explained here, as it is possible
for two sets of parameters to define the same class, with one set admissible and
the other not. We make canonical choices of parameters, taking for example K1

to be the least k for which there is an odd triangle of perimeter 2k + 1, and K2

the greatest, with values K1 = ∞ and K2 = 0 if there is none. In particular if
C1 = 2δ + 1 this forces K2 < δ. One defines C0, C1 similarly as the least values
strictly above 2δ such that perimeters of appropriate parity above the given bound
are forbidden. Thus if there are no odd triangles, then C1 = 2δ+1. And of course,
we take only minimal constraints in S which are not consequences of the other
constraints.

Note that when K1 = 1, K2 = δ − 1, C0 = 2δ + 2, and C1 = 2δ + 1, we have
the condition S = ∅ here, but we also have the amalgamation classes Aδ

a,n with the
same parameters K1,K2, C0, C1 and a modified constraint set S.

Theorem 10. Let Γ be a connected metrically homogeneous graph and suppose
that Γ1 is either imprimitive or contains no infinite independent set. Then Γ1 is in
our catalog under case I or II.

We will prove Theorem 10 in §8, but our discussion of Theorem 9 in §6 is
confined primarily to a detailed description of the amalgamation procedure. It
takes some additional calculation to see that this procedure produces a metric
meeting the required constraints in all cases.
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Now let us turn to the case in which Γ is imprimitive. The first point is a
very general fact which is quite familiar in the finite case but does not depend on
finiteness, and which is also discussed in [AMp10].

Fact (cf. [AH06, Theorem 2.2]). Let Γ be an imprimitive connected distance
transitive graph of degree at least 3. Then Γ is either bipartite or antipodal (possibly
both).

The next result goes some distance toward bringing the antipodal case under
control. It is proved in §7.2.

Theorem 11. Let Γ be a connected metrically homogeneous and antipodal
graph, of diameter δ ≥ 3. Then for each vertex u ∈ Γ, there is a unique vertex
u′ ∈ Γ at distance δ from u, and we have the “antipodal law”

d(u, v) = δ − d(u′, v) for u, v ∈ Γ

In particular, the map u 7→ u′ is an automorphism of Γ.

In the study of finite distance transitive graphs, there are good reductions in
both of the imprimitive cases—bipartite as well as antipodal—back (eventually) to
the primitive case. The reduction in the bipartite case is straightforward in our
context as well, but we will see that there is no simple reduction in the antipodal
case, in the category of metrically homogeneous graphs. Still Theorem 11 suggests
that the situation can be viewed as a modest elaboration beyond the primitive case.

We made some further explorations of the bipartite case, emphasizing extreme
behavior, so as not to overlook anything obvious that would belong in the catalog.
This led to the following results.

Theorem 12. Let Γ be a connected metrically homogeneous graph of odd diam-
eter δ = 2δ′ + 1 which is both antipodal and bipartite. Then BΓ is connected, and
Γ is the bipartite double cover of BΓ. The graph BΓ is a metrically homogeneous
graph with the following properties:

(1) BΓ has diameter δ′;
(2) No triangle in BΓ has perimeter greater than 2δ′ + 1;
(3) BΓ is not antipodal.

Conversely, for any metrically homogeneous graph G with the three stated prop-
erties, there is a unique antipodal bipartite graph Γ of diameter 2δ′ + 1 such that
BΓ ∼= G.

By inspection we find the following.

Corollary 12.1. Let Γ be a connected metrically homogeneous graph of odd
diameter δ = 2δ′ + 1 which is both antipodal and bipartite. Suppose that BΓ is in
the catalog. Then Γ is in the catalog, and the relevant pairs (BΓ,Γ) are as follows.

(1) BΓ complete of order n, 3 ≤ n ≤ ∞, and Γ the bipartite double of an inde-
pendent set of order n− 1 (the bipartite complement of a perfect matching
between two sets of order n).

(2) (Cn, C2n) with Cn an n-cycle, and n odd.
(3) (Gc

3,Γ
5
∞,0;12,13;∅).

(4) (Γδ′

1,δ′;2δ′+2,2δ′+3;∅,Γ
δ
∞,0;2δ+2,2δ+1;∅) with δ′ ≥ 3.
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In particular, for Γ antipodal and bipartite of odd diameter δ ≤ 5, since the
Lachlan/Woodrow classification is complete through diameter 2, the corollary ap-
plies (Corollary 12.2, §7.2).

Another natural case in the bipartite context is the following. The structure
of Γ1 tells us nothing in the case of a bipartite graph when Γ1 is infinite, but we
may single out for special attention the metrically homogeneous bipartite graphs
for which Γ1 is infinite while BΓ is itself exceptional. Here too everything conforms
to the catalog.

Theorem 13. Let Γ be a connected, bipartite, and metrically homogeneous
graph, of diameter at least 3, and degree at least 3, and with Γ1 infinite. Then
either BΓ1 is isomorphic to the Rado graph, or BΓ and Γ are in the catalog under
one of the following headings.

(1) BΓ ∼= T∞,∞, and Γ is an infinitely branching tree T2,∞.
(2) BΓ ∼= K∞, and Γ has diameter 3, with Γ either the complement of a

perfect matching, or the generic bipartite graph Γ3
∞,0;10,7;∅.

(3) BΓ ∼= K∞[I2], Γ has diameter 4, and Γ ∼= Γ4
∞,0;10,9;∅ is the generic an-

tipodal bipartite graph of diameter 4.
(4) BΓ ∼= Gc

n, the complement of a Henson graph, for some n ≥ 3, and
Γ ∼= Γ4

∞,0;14,9;{I
(4)
n }

the generic bipartite graph in which there is no set of

n vertices which are pairwise at distance 4.
(5) BΓ ∼= Gc

3, Γ
∼= Γ5

∞,0;12,11;∅ antipodal bipartite of diameter 5 as in Corollary
12.1.

One could explore the imprimitive case more, and perhaps find something else
of a similar sort that needs to be added to the catalog. But after that the question
becomes how to approach a proof of its completeness. This is governed by the struc-
ture of the catalog. To show that the catalog is complete, we would need to show
on the one hand that any example not falling under one of the exceptional headings
has the same constraints on triangles as one of our standard amalgamation classes,
and then that for each metrically homogeneous graphs with one of the specified
patterns of forbidden triangles, any further minimal forbidden configurations must
be (1, δ)-spaces (or the analogous constraints appropriate to the antipodal case).
Some instances of the latter type of analysis were given in [AMp10].

It is no doubt useful to divide the classification problem into the two parts
just mentioned, but both parts appear challenging, and they are likely to become
intertwined in an inductive treatment of the problem.

In proving the completeness of the catalog one first takes δ finite. There is
something more to be checked when δ is infinite. Once one has a degree of control
on the triangles involved it becomes easy to reduce from the case of infinite diameter
to finite diameter. And that degree of control may well follow quickly from the
classification in finite diameter, but we have not looked closely at that.

The rest of this Part is devoted to the proofs of Theorems 10 and 11–13. In the
case of Theorem 9 we will confine ourselves to an indication of the amalgamation
procedure used when the parameters are admissible.
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6. Constructions of metrically homogeneous graphs

We are concerned here with the use of Fräıssé constructions to produce metri-
cally homogeneous graphs of generic type, including some bipartite and antipodal
cases.

6.1. The Main Construction. Recall that in the definition of the class
Aδ

K1,K2;C0,C1;S
of finite integral metric spaces of diameter δ with constraints K1,

K2, C0, C1, and S, the parameter K1 controls the presence of triangles with small
odd perimeter, the parameters C0, C1 control those of large perimeter, S is a set of
(1, δ)-spaces, and the parameter K2 is used to further control the presence of odd
triangles, excluding all those whose perimeter P satisfies

P > 2K2 + d(a, b)

for some choice of a, b in the triangle. If K2 = δ then this condition is vacuous.
The admissible combinations of these parameters are described in Definition 5.6.
In that presentation the parity of C0 and C1 plays less of a role than their relative
sizes, so we introduce the notation C = min(C0, C1) and C′ = max(C0, C1). The
simplest cases are those in which C′ = C + 1: we exclude all triangles of perimeter
C or greater. We use the values 3δ+1 or 3δ+2 (with appropriate parity) to indicate
that the constraints corresponding to C0 or C1 are absent.

The main result concerning amalgamation for classes of type Aδ
K1,K2;C0,C1;S

can then be phrased as follows.

Theorem (9). Let δ ≥ 3, 1 ≤ K1 ≤ K2 ≤ δ or K1 = ∞, 2δ+1 ≤ C0, C1 ≤ 3δ+
2 with C0 even and C1 odd, and S a set of (1, δ)-spaces occurring in Aδ

K1,K2;C0,C1
.

Then the class

Aδ
K1,K2;C0,C1;S

is an amalgamation class if and only if the parameters δ,K1,K2, C0, C1,S are ad-
missible.

There is also a variation associated with the antipodal case and a modified
constraint set S (Theorem 14, below).

The proof that the admissibility constraint is necessary (for classes specified in
this way) requires many constructions of specific amalgamation diagrams, mostly of
order 5, which have no completion when the parameters lie outside the admissible
range. The proof that in the admissible cases amalgamation can be carried out
involves the specification of a particular amalgamation procedure varying in detail
according to the different cases occurring within the definition of admissibility, and
depending further on some details of the amalgamation problem itself, followed by
additional computation to verify that the proposed procedure actually works. We
will describe the procedure itself in detail and leave the rest for another occasion.

For the proof of amalgamation, it suffices to consider amalgamation diagrams
of the special form A1 = A0 ∪ {a1}, A2 = A0 ∪ {a2}, that is with only one dis-
tance d(a1, a2) needing to be determined; we call these 2-point amalgamations.
Furthermore, any distance lying between

d−(a1, a2) = max
x∈A0

(|d(a1, x)− d(a2, x)|)

and

d+(a1, a2) = min
x∈A0

(d(a1, x) + d(a2, x))
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will give at least a pseudometric (and if d−(a1, a2) = 0, we will identify a1 and a2).
When C′ = C +1 we have the requirement that all triangles have perimeter at

most C − 1 and therefore we consider a third value

d̃(a1, a2) = min
x∈A0

(C − 1− [d(a1, x) + d(a2, x)])

In this case the distance i = d(a1, a2) must satisfy:

d−(a1, a2) ≤ i ≤ min(d+(a1, a2), d̃(a1, a2))

Similarly when K1 = ∞ then as there are no odd triangles we modify the definition
of d̃ as follows:

d̃(a1, a2) = min
x∈A0

(C0 − 2− [d(a1, x) + d(a2, x)])

The amalgamation procedure is then given by the following rules for complet-
ing a 2-point amalgamation diagram Ai = A0 ∪ {ai} (i = 1, 2). We will assume
throughout that d−(a1, a2) > 0, as otherwise we may simply identify a1 with a2.
We will also write:

i− = d−(a1, a2), i
+ = d+(a1, a2), ı̃ = d̃(a1, a2)

and we seek a suitable value for i = d(a1, a2).

(1) If K1 = ∞:
Then the parity of d(a1, x) + d(a2, x) is independent of the choice of

x ∈ A0.
If S is empty then any value i with i− ≤ i ≤ i+ and of the correct

parity will do.
If S is nonempty (and irredundant) then S consists of a δ-clique, and δ

is even. In particular δ ≥ 4. In this case take d(a1, a2) = i with 1 < i < δ
and with i of the correct parity. We may take i = i+ if this is less than δ,
i = i− if this is greater than 1, and otherwise, when i− ≤ 1 and i+ ≥ δ,
take i = 2 or 3 of the correct parity.

(2) If K1 < ∞ and C ≤ 2δ +K1:
(a) If C′ = C + 1 then:

(i) If min(i+, ı̃) ≤ K2 let d(a1, a2) = min(i+, ĩ). Otherwise:
(ii) If i− ≥ K1 let d(a1, a2) = i−. Otherwise:
(iii) Let d(a1, a2) = K2.

(b) If C′ > C + 1 then:
(i) If i+ < K2 let d(a1, a2) = i+. Otherwise:
(ii) If d− > K2 let d(a1, a2) = i−. Otherwise:
(iii) Take d(a1, a2) = K2 unless there is x ∈ A0 with d(a1, x) =

d(a2, x) = δ, in which case take d(a1, a2) = K2 − 1.

(3) If K1 < ∞ and C > 2δ +K1:
(a) If i− > K1, let d(a1, a2) = i−.
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(b) Otherwise:
(i) If C′ = C + 1:

(A) If i+ ≤ K1 let d(a1, a2) = min(i+, ı̃). Otherwise:
(B) Let d(a1, a2) = K1 unless we have one of the following:

There is x ∈ A0 with d(a1, x) = d(a2, x),
and K1 + 2K2 = 2δ − 1; or K1 = 1.

In these cases, take d(a1, a2) = K1 + 1.
(ii) If C′ > C + 1:

If i+ < K2 let d(a1, a2) = i+.
Otherwise, let d(a1, a2) = min(K2, C − 2δ − 1).

We note some extreme cases. With K1 = ∞ we are dealing with bipartite
graphs; with C = 2δ + 1 we are dealing with antipodal graphs. With K1 > 1 we
have the case Γ1

∼= I∞; with K1 = 1 and S = {Kn}, we have the case of Γ1 the
generic Kn-free graph.

Lemma 6.1. Let Γ be a metrically homogeneous graph of diameter δ. Then Γ
is antipodal if and only if no triangle has perimeter greater than 2δ.

Proof. The bound on perimeter immediately implies antipodality.
For the converse, let (a, b, c) be a triangle with d(a, b) = i, d(a, c) = j, d(b, c) =

k, and let a′ be the antipodal point to a. Then the triangle (a′, b, c) has distances
δ− i, δ− j, and k, and the triangle inequality yields i+ j+ k ≤ 2δ, as claimed. �

6.2. An Antipodal Variation. We consider modifications of our definitions
which allow us to include constraints on cliques when the associated graph is an-
tipodal and K1 = 1. In this case the associated amalgamation class may require
constraints which are neither triangles nor (1, δ)-spaces.

Definition 6.2. Let δ ≥ 4 be finite and 2 ≤ n ≤ ∞. Then

(1) Aδ
a = Aδ

1,δ−1; 2δ+2,2δ+1; ∅ is the set of finite metric spaces in which no

triangle has perimeter greater than 2δ.
(2) Aδ

a,n is the subset of Aδ
a containing no subspace of the form Kk ∪Kℓ with

Kk, Kℓ cliques, k + ℓ = n, and d(x, y) = δ − 1 for x ∈ Kk, y ∈ Kℓ. In
particular, Kn does not occur.

Theorem 14. If δ ≥ 4 is finite and 2 ≤ n ≤ ∞, then Aδ
a,n is an amalgamation

class. If n ≥ 3 then the associated Fräıssé limit is a connected antipodal metrically
homogeneous graph which is said to be generic for the specified constraints.

Here the parameter n stands in place of the set S; since there are no triangles
of perimeter greater than 2δ, the only relevant (1, δ)-spaces are 1-cliques. In these
graphs Γ1 is the generic graph omitting Kn.

We will give the proof of amalgamation for these particular classes in detail.
The following lemma is helpful.

Lemma 6.3. Let δ be fixed, and let A be a finite metric space with no triangle
of perimeter greater than δ. Then there is a unique “antipodal” extension Â of
A, up to isometry, to a metric space satisfying the same condition, in which every
vertex is paired with an antipodal vertex at distance δ, and every vertex not in A is
antipodal to one in A.

If A is in Aδ
a,n, then Â is in the same class.
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Proof. The uniqueness is clear: let

B = {a ∈ A : There is no a′ ∈ A with d(a, a′) = δ}
and introduce a set of new vertices B′ = {b′ : b ∈ B}. Let Â = A ∪ B′ as a set.

Then there is a unique symmetric function on Â extending the metric on A, with
d(x, b′) = δ − d(x, b) for x ∈ Â, b ∈ B.

So the issue is one of existence, and for that we may consider the problem of
extending A one vertex at a time, that is to A∪{b′} with b ∈ B, as the rest follows
by induction.

We need to show that the canonical extension of the metric on A to a function
d on A ∪ {b′} is in fact a metric, satisfies the antipodal law for δ, and also satisfies
the constraints corresponding to n.

The triangle inequality for triples (b′, a, c) or (a, b′, c) corresponds to the ordi-
nary triangle inequality for (b, a, c) or the bound on perimeter for (a, b, c) respec-
tively, and the bound on perimeter for triangles (a, b′, c) follows from the triangle
inequality for (a, b, c).

Now suppose n < ∞ and b′ belongs to a configuration Kk ∪Kℓ with k+ ℓ = n
and d(x, y) = δ − 1 for x ∈ Kk, y ∈ Kℓ. We may suppose that b′ ∈ Kk; then
Kk \ {b′} ∪ (Kℓ ∪ {b}) provides a copy of Kk−1 ∪Kℓ+1 of forbidden type. �

Lemma 6.4. If δ ≥ 4 is finite, 2 ≤ n ≤ ∞, then Aδ
a,n is an amalgamation class.

Proof. We consider a two-point amalgam with Ai = A0 ∪ {ai}, i = 1, 2. If
d(a2, x) = δ for some x ∈ A0 then there is a canonical amalgam A1 ∪A2 embedded

in Â1. So we will suppose d(ai, x) < δ for i = 1, 2 and x ∈ A0. Then applying
Lemma 6.3 to A1 and A2, we may suppose that for every vertex v ∈ A0 there is an
antipodal vertex v′ ∈ A0.

We claim that any metric d on A1 ∪ A2 extending the given metrics di on Ai

will satisfy the antipodal law for δ. So with d such a metric, consider a triangle of
the form (a0, a1, a2) with a0 ∈ A0. By the triangle law for (a1, a

′
0, a2) we have

d(a1, a2) ≤ 2δ − [d(a1, a0) + d(a2, a0)]

and this is the desired bound on perimeter.
We know by our general analysis that any value r for d(a1, a2) with

d−(a1, a2) ≤ r ≤ d+(a1, a2)

will give us a metric, and in the bipartite case we will want r to have the same
parity as d−(a1, a2) (or equivalently, d

+(a1, a2)).
To deal with the the constraints involving the parameter n, it is sufficient to

avoid the values r = 1 and r = δ − 1. But d+(a1, a2) > 1, and d−(a1, a2) < δ − 1,
so we may take r equal to one of these two values unless we have

d−(a1, a2) = 1, d+(a1, a2) ≥ δ − 1

In this case, we take r to be some intermediate value, and as δ > 3, there is one. �

7. Imprimitive Graphs

7.1. Smith’s Theorem. We now turn to Smith’s Theorem, which provides a
general analysis of the imprimitive case, following [AH06] (cf. [BCN89, Smi71]).
This result applies to imprimitive distance transitive graphs (that is, the homo-
geneity condition is assumed to hold for pairs of vertices), and even more generally
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in the finite case. There are three points to this theory in the finite case: (1) the
imprimitive graphs are of two extreme types, bipartite or antipodal; (2) associated
with each type there is a reduction (folding or halving) to a potentially simpler
graph; (3) with few exceptions, the reduced graph is primitive. Among the ex-
ceptions that need to be examined are the graphs which are both antipodal and
bipartite. As our hypothesis of metric homogeneity is not preserved by the folding
operation in general, we lose a good deal of the force of (2) and a corresponding
part of (3). On the other hand, we will see that metric homogeneity implies that
with trivial exceptions, in antipodal graphs the antipodal equivalence classes have
order two. In that sense, antipodal graphs are not far from primitive, but there is
no simple reduction to the primitive case, and the full classification is best thought
of as a variation on the primitive case, to be handled by similar methods.

We will first take up the explicit form of Smith’s Theorem given in [AH06],
restricting ourselves to the distance transitive case. If Γ is a distance transitive
graph, then any binary relation R invariant under Aut(Γ) is a union of relations Ri

defined by d(x, y) = i, R =
⋃

i∈I Ri. We denote by 〈t〉 the union ⋃

t|iRi taken over

the multiples of t. The first point is the following.

Fact 7.1 (cf. [AH06, Theorem 2.2]). Let Γ be a connected distance transitive
graph of diameter δ, and let E be a congruence of Γ.

(1) E = 〈t〉 for some t.
(2) If 2 < t < δ, then Γ has degree 2.
(3) If t = 2 then either Γ is bipartite, or Γ is a complete regular multipartite

graph, of diameter 2.

In particular, if the degree of Γ is at least 3, then Γ is either bipartite or antipodal
(and possibly both).

Of course, the exceptional case of diameter 2 has already been noticed within
the Lachlan/Woodrow classification, where it occurs as the complement of m ·Kn,
with m,n ≤ ∞.

If Γ is a connected distance transitive bipartite graph, we write BΓ for the
graph induced on either of the two equivalence classes for the congruence 〈2〉; these
are isomorphic, with respect to the edge relation R2: d(x, y) = 2. This is called
a halved graph for Γ, and Γ is a doubling of BΓ. If Γ is a connected distance
transitive antipodal graph of diameter δ (necessarily finite), then AΓ denotes the
graph induced on the quotient Γ/Rδ by the edge relation: C1 is adjacent to C2 iff
there are ui ∈ Ci with (u1, u2) an edge of Γ. This is called a folding of Γ, and Γ is
called an antipodal cover of AΓ. In our context, the halving construction is more
useful than the folding construction.

Fact 7.2 (cf. [AH06, Theorem 2.3]). Let Γ be a connected metrically homoge-
neous bipartite graph. Then BΓ is metrically homogeneous.

Proof. Since Aut(Γ) preserves the equivalence relation whose classes are the
two halves of Γ, the homogeneity condition is inherited by each half. �

Some insight into the folding construction is afforded by the following.

Lemma 7.3. Let Γ be a connected distance transitive antipodal graph of diameter
δ, and let C1, C2 be two equivalence classes for the antipodality relation Rδ. Then
the set of distances d(u, v) for u ∈ C1, v ∈ C2 is a pair of the form {i, δ− i} (which
is actually a singleton if i = δ/2 with δ even).
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Proof. Since there are geodesics (u, v, u′) with d(u, v) = i, d(v, u′) = δ − i,
and d(u, u′) = δ, whenever we have d(u, v) = i we also have d(u′, v) = δ − i for
some u′ antipodal to u, by distance transitivity.

We claim that for u ∈ C1, v, w ∈ C2, with d(u, v) = i, d(u,w) = j and
i, j ≤ δ/2, we have i = j. If i < j, then d(v, w) ≤ i + j < δ and hence v = w, a
contradiction.

Thus for u ∈ C1 the set of distances d(u, v) with v in C2 has the form {i, δ− i},
and for v in C2 the same applies with respect to C1, with the same pair of values.
This implies our claim. �

Corollary 7.3.1 (cf. [AH06, Proposition 2.4]). Let Γ be a connected distance
transitive antipodal graph of diameter δ, and consider the graph AΓ as a metric
space. If u, v ∈ Γ with d(u, v) = i, then in AΓ the corresponding points ū, v̄ lie at
distance min(i, δ − i).

Proof. Replacing v by v′ with d(u, v) = δ−i, we may suppose i = min(i, δ−i).
We have d(ū, v̄) ≤ d(u, v).

Let j = d(ū, v̄) and lift a path of length j from ū to v̄ to a walk (u, . . . , v∗)
in Γ. If v∗ = v then d(u, v) ≤ j and we are done. Otherwise, δ = d(v, v∗) ≤
d(v∗, u) + d(u, v) ≤ j + i, and as i, j ≤ δ/2, we find i = j = δ/2. �

This implies in particular that the folding of an antipodal metrically homoge-
neous graph of diameter at most 3 is complete, and that the folding of any connected
distance transitive antipodal graph is distance transitive. But now consider the
“generic” antipodal graph Γδ

1,δ−1;2δ+2,2δ+1;∅ of diameter δ ≥ 4. Let P = (u0, . . . , uδ)

be a geodesic in Γ, and let C = (v0, . . . , vδ, v0) be an isometrically embedded cycle.
On P we have d(ui, uj) = |i−j| and on C we have d(vi, vj) = min(|i−j|, δ−|i−j|),
so the images of these graphs in AΓ are isometric. We claim however that there is
no automorphism of AΓ taking one to the other.

Let δ1 = ⌊δ/2⌋ and δ′ = ⌈δ1/2⌉. Then there is a vertex wC in Γ at distance
precisely δ′ from every vertex of C. Hence the same applies in the folded graph AΓ
to the image of C. We claim that this does not hold for the image of P . Supposing
the contrary, there would be a vertex wP in Γ whose distance from each vertex of
P is either δ′ or δ − δ′. On the other hand, the distances d(wP , ui), d(wP , ui+1)
can differ by at most 1, and δ − δ′ > δ′ + 1 since δ ≥ 4, so the distance d(wP , ui)
must be independent of i. However d(u0, wP ) = δ − d(uδ, wP ), which would mean
δ = 2δ′, while in fact δ > 2δ′.

Still, we can get a decent grasp of the antipodal case in another way.

7.2. The Antipodal Case. All graphs considered under this heading are
connected and of finite diameter. Our main goal is the following.

Theorem (11). Let Γ be a connected metrically homogeneous and antipodal
graph, of diameter δ ≥ 3. Then for each vertex u ∈ Γ, there is a unique vertex
u′ ∈ Γ at distance δ from u, and we have the law

d(u, v) = δ − d(u′, v)

for u, v ∈ Γ. In particular, the map u 7→ u′ is an automorphism of Γ.

For v ∈ Γ, Γi(v) denotes the graph induced on the vertices at distance i from v,
and since the isomorphism type is independent of v, this will sometimes be denoted
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simply by Γi, when the choice of v is immaterial. In particular, Γδ
∼= I

(δ)
n , a set of

n vertices mutually at distance δ. Our claim is that n = 1.
We begin with a variation of Lemma 7.3.

Lemma 7.4. Let Γ be metrically homogeneous and antipodal, of diameter δ.
Suppose u, u′ ∈ Γ, and d(u, u′) = δ. Then for i < δ/2, the relation Rδ defines a
bijection between Γi(u) and Γi(u

′), while Γδ/2(u) = Γδ/2(u
′).

Proof. First suppose i < δ/2, and v ∈ Γi(u). We work with the equivalence
classesC1, C2 of u and v respectively, with respect to the relationRδ. As d(u, v) = i,
d(u, u′) = δ, i ≤ δ/2, and d(v, u′) ∈ {i, δ − i}, we have d(v, u′) = δ − i.

Now (v, u′) extends to a geodesic (v, u′, v′) with d(v, v′) = δ, d(u′, v′) = i, and
we claim that v′ is unique. If (v, u′, v′′) is a second such geodesic then we have
d(v, v′) = d(v, v′′) = δ and d(v′, v′′) ≤ 2(δ − i) < δ, so v′ = v′′.

Thus we have a well-defined function from Γi(u) to Γi(u
′), and interchanging

u, u′ we see that this is a bijection.
Now if i = δ/2, apply Lemma 7.3: with i = δ/2, the set {i, δ− i} is a singleton.

�

Taking n > 1, we will first eliminate some small values of δ.

Lemma 7.5. Let Γ be a metrically homogeneous antipodal graph, of diameter

δ ≥ 3, and let Γδ
∼= K

(δ)
n with 1 < n ≤ ∞. Then δ ≥ 5.

Proof. First suppose that δ = 3. Fix a basepoint in Γ. Define an equivalence
relation ∼ on Γ2 by

x ∼ y iff there is a vertex u ∈ Γ3 with x, y ∈ Γ1(u)

By homogeneity, any two vertices of Γ2 at distance 2 are in the same class. If C1, C2

are two distinct equivalence classes in Γ2 then each vertex of C1 is at distance 3
from at most one vertex of C2, and is adjacent to the remainder. In particular there
are some edges between C1 and C2, and therefore there are none within C1 or C2,
in other words Γ1 is an independent set, and Γ omits K3.

Let a1, a2 ∈ Γ3 be distinct. We have shown that for any vertex u in Γ1(a1)
there is at most one vertex in Γ1(a2) not adjacent to u. Taking a3 a vertex at
distance 3 from a1, a2, we may take u1 ∈ Γ1(a1), u2 ∈ Γ1(a2) adjacent. Then the
number of vertices of Γ1(a3) not adjacent to both u1 and u2 is at most 2, but since
Γ3 is triangle free, there are no vertices adjacent to both u1 and u2, so |Γ1| ≤ 2.
But then Γ is a cycle, and this contradicts n > 1.

So now suppose the diameter is 4. Take a1, a2, a3 ∈ Γ pairwise at distance 3,
and u1, v1 ∈ Γ1(a1) with d(u1, v1) = 2. Then the distances occurring in the triangle
(a3, u1, v1) are 3, 3, 2.

Consider v2 ∈ Γ1(a2) with d(v1, v2) = 4. As d(u1, v1) = 2 and 2 = δ/2 we find
that d(u1, v2) = 2. Hence the triangles (a3, u1, v1) and (a3, u1, v2) are isometric. By
metric homogeneity there is an isometry carrying (a3, u1, v1, a1) to (a3, u1, v2, b1) for
some b1. Then u1, v2 ∈ Γ1(b1) and d(b1, a3) = 4. But then d(a1, b1), d(a2, b1) ≤ 2
while a1, a2, a3, b1 are all in the same antipodality class, forcing a1 = b1 = a2, a
contradiction. �

Now we need to extend Lemma 7.3 to some cases involving distances which
may be greater than δ/2.
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Lemma 7.6. Let Γ be metrically homogeneous and antipodal, of diameter δ ≥ 3,

and let Γδ
∼= K

(δ)
n with 1 < n ≤ ∞. Suppose d(a, a′) = δ and i < δ/2. Suppose

u ∈ Γi(a), u′ ∈ Γi(a
′), with d(u, u′) = δ. If v ∈ Γi(a) and d(u, v) = 2i, then

d(u′, v) = δ − 2i.

Proof. We have d(a, u′) = δ − i. Take v0 ∈ Γi(a) so that (a, v0, u
′) is a

geodesic, that is d(v0, u
′) = δ − 2i. As u, v0 ∈ Γi(a) we have d(u, v0) ≤ 2i. On the

other hand d(u, u′) = δ and d(v0, u
′) = δ − 2i, so d(u, v0) ≥ 2i. Thus d(u, v0) = 2i.

So we have at least one triple (a, u, v0) with v0 ∈ Γi(a), d(u, v0) = 2i, and
with d(v0, u

′) = δ − 2i. Let (a, u, v) be any triple isometric to (a, u, v0). Then
the quadruples (a, u, v, a′) and (a, u, v0, a

′) are also isometric since u, v, v0 ∈ Γi(a)
with i < δ/2. But as a, u together determine u′, we then have (a, u, v, a′, u′) and
(a, u, v0, a

′, u′) isometric, and in particular d(v, u′) = δ − 2i. �

After these preliminaries we can prove Theorem 11.

Proof. We show that n = 1, after which the rest follows directly since if u
determines u′, then d(u, v) must determine d(u′, v).

By Lemma 7.5 we may suppose that δ ≥ 5. We fix a1, a2, a3 at mutual distance
δ, and fix i < δ/2, to be determined more precisely later.

Take u1, v1 ∈ Γi(a1) with d(u1, v1) = 2i, and then correspondingly u2, v2 ∈
Γi(a2), u3, v3 ∈ Γi(a3), with u1, u2, u3 and v1, v2, v3 triples of vertices at mutual
distance δ.

Now d(u1, v3) = δ − 2i, and d(u1, u3) = δ, so as usual d(u3, v3) = 2i. We
now consider the following property of the triple (u1, v1, a3): For v3 ∈ Γi(a3) with
d(v1, v3) = δ, we have d(u1, v3) = δ − 2i. The triple (u1, v1, a3) is isometric with
(v3, u3, a2). It follows that d(v3, u2) = δ − 2i. So

δ = d(u1, u2) ≤ 2(δ − 2i)

This shows that i ≤ δ/4, so for a contradiction we require

δ/4 < i < δ/2

and for δ > 4 this is possible. �

We now give the classification of metrically homogeneous antipodal graphs of
diameter 3; this is also treated in [AMp10].

Theorem 15. Let G be one of the following graphs: the pentagon (5-cycle),
the line graph E(K3,3) for the complete bipartite graph K3,3, an independent set
In (n ≤ ∞), or the random graph Γ∞. Let G∗ be the graph obtained from G
by adjoining an additional vertex adjacent to all vertices of G, and let Γ be the
graph obtained by taking two copies H1, H2 of G∗, with a fixed isomorphism u 7→ u′

between them, and with additional edges (u, v′) or (v′, u), for u, v ∈ H1, just when
(u, v) is not an edge of H1. Then Γ is a homogeneous antipodal graph of diameter 3
with pairing the given isomorphism u 7→ u′. Conversely, any connected metrically
homogeneous antipodal graph of diameter 3 is of this form.

Proof. Let Γ be connected, metrically homogeneous, and antipodal, of diam-
eter 3. Fix a basepoint ∗ ∈ Γ and let G = Γ1(∗). Then G is a homogeneous graph,
which may be found in the Lachlan/Woodrow catalog given in §4.

Let H1 = G ∪ {∗}. Then the pairing u ↔ u′ on Γ gives an isomorphism of H1

withH2 = Γ1(∗′)∪{∗′}. Furthermore, for u, v ∈ Γ1(∗), we have d(u, v′) = δ−d(u, v),
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so the edge rule in Γ is the one we have described. It remains to identify the set of
homogeneous graphsG for which the associated graph Γ is metrically homogeneous.

We claim that for any homogeneous graph G, the associated graph Γ has the
following homogeneity property: if A,B are finite subgraphs of Γ both containing
the point ∗, then any isometry A → B fixing ∗ extends to an automorphism of Γ.
Given such A,B, we first extend to Â, B̂ by closing under the pairing u ↔ u′, then
reduce to G by taking Ã = Â ∩ G, B̃ = B̂ ∩ G. Then apply the homogeneity of G
to get an isometry extending the given one on Ã to all of H1, fixing ∗, which then
extends canonically to Γ. It is easy to see that this agrees with the given isometry
on A.

This homogeneity condition implies that for such graphs Γ, the graph will be
metrically homogeneous if and only if Aut(Γ) is transitive on vertices. For any
of these graphs Γ, whether metrically homogeneous or not, we have the pairing
u ↔ u′. Furthermore, we can reconstruct Γ from Γ1(v) for any v ∈ Γ. So the
homogeneity reduces to this: Γ1(v) ∼= G for v ∈ G = Γ1(∗); here we use the pairing
to reduce to the case v ∈ G.

Now Γ1(v) is the graph obtained from the vertex ∗, the graph G1(v) induced on
the neighbors of v in G, and the graph G2(v) induced on the non-neighbors of v in
G, by taking the neighbors of ∗ to be G1(v), and switching the edges and nonedges
between G1(v) and G2(v). Another way to view this would be to replace v by ∗,
and then perform the switching between G1(v) and G2(v). So it is really only the
latter that concerns us.

We go through the catalog. In the degenerate cases, with G complete or inde-
pendent, there is no switching, so the corresponding graph Γ is homogeneous. But
when G is complete this graph is not connected, so we set that case aside.

When G is imprimitive, we switch edges and non-edges between the equivalence
classes not containing the fixed vertex v, and the vertices in the equivalence class
of v other than v itself. As a result, the new graph becomes connected with respect
to the equivalence relation on G, so this certainly does not work.

When G is primitive, nondegenerate, and finite, we have just the two examples
mentioned above for which the construction does work, by inspection.

Lastly, we consider the Henson graphs G = Γn, generic omitting Kn, their com-
plements, and the random graph Γ∞. The Henson graphs and their complements
will not work here. For example, if G = Γn, then G2(v) contains Kn−1, and switch-
ing edges and nonedges with G1(v) will extend this to Kn. The complementary
case is the same. So we are left with the case of the Rado graph. This is charac-
terized by extension properties, and it suffices to check that these still hold after
performing the indicated switch; and using the vertex v as an additional parameter,
this is clear. �

There is a good deal more to the general analysis of [AH06], Proposition 2.5
through Corollary 2.10, all with some parallels in our case, but the main examples
in the finite case do not satisfy our conditions, while the main examples in our case
have no finite analogs, so the statements gradually diverge, and it is better for us
to turn to the consideration of graphs which are exceptional in another sense, and
only then come back to the bipartite case.

In particular the main result of [AH06] is the following.
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Fact 7.7 ([AH06, Theorem 3.3]). An antipodal and bipartite finite distance
transitive graph of diameter 6 and degree at least 3 is isomorphic to the 6-cube.

We have infinite connected metrically homogeneous graphs of any diameter
δ ≥ 3 which are both bipartite and antipodal. In the case δ = 6, the associated
graph Γ2 is the generic bipartite graph of diameter 4, and the associated graph
Γ3 is isomorphic to Γ itself. So even in the context of Smith’s Theorem, the two
pictures eventually diverge. But graphs of odd diameter which are both bipartite
and antipodal are quite special.

Theorem (12). Let Γ be a connected metrically homogeneous graph of odd di-
ameter δ = 2δ′+1 which is both antipodal and bipartite. Then BΓ is connected, and
Γ is the bipartite double cover of BΓ. The graph BΓ is a metrically homogeneous
graph with the following properties:

(1) BΓ has diameter δ′;
(2) No triangle in BΓ has perimeter greater than 2δ′ + 1;
(3) BΓ is not antipodal.

Conversely, for any metrically homogeneous graph G of diameter with the three
stated properties, there is a unique antipodal bipartite graph of diameter 2δ′ + 1
such that BΓ ∼= G.

We remark that conditions (1-3) on BΓ imply that BΓd is a clique of order at
least 2. One exceptional case included under this theorem is that of the (4d+2)-gon,
of diameter 2d+ 1, associated with the (2d+ 1)-gon, of diameter d.

Proof. Let A,B be the two halves of Γ. Then the metric on Γ is determined
by the metrics on A and B and the pairing

a ↔ a′

between A and B determined by d(a, a′) = 2d+ 1, since

d(a1, a
′
2) = 2d+ 1− d(a1, a2)

So the uniqueness is clear.
Let us next check that the conditions on BΓ are satisfied. The first is clear.

For the second, suppose we have vertices (a1, a2, a3) in BΓ forming a triangle of
perimeter at least 2d+2; we may construe these as vertices of A forming a triangle
of perimeter P ≥ 4d+ 4. Then looking at the triangle (a1, a2, a

′
3), we have

d(a1, a
′
3) + d(a2, a

′
3) = (4d+ 2)− [d(a1, a3) + d(a2, a3)]

= (4d+ 2)− P + d(a1, a2)

< d(a1, a2),

contradicting the triangle inequality. Finally, consider an edge (a1, a2) of BΓ, which
we construe as a pair of vertices of A at distance 2. Then there must be a vertex
a such that a′ is adjacent to both, and this means that a1, a2 ∈ Γ2d(a), that is
a1, a2 ∈ BΓd(a).

Conversely, suppose G is a metrically homogeneous graph of diameter d, and Γ
is the metric space on G×{0, 1} formed by doubling the metric of G on A = G×{0}
and on B = G× {1}, pairing A and B by (a, ǫ)′ = (a, 1− ǫ), and defining

d(a1, a
′
2) = 2d+ 1− d(a1, a2) for a1, a2 in A
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The triangle inequality follows directly from the bound on the perimeters of trian-
gles. We claim that Γ is a homogeneous metric space. Furthermore, the pairing
a ↔ a′ is an isometry of Γ, and is recoverable from the metric: y = x′ if and only
if d(x, y) = 2d+ 1.

Let X,Y be finite subspaces of Γ, and f an isometry between them. Then
f extends canonically to their closures under the antipodal pairing. So we may
suppose X and Y are closed under the antipodal pairing; and composing f with
the antipodal pairing if necessary, we may suppose f preserves the partition of Γ
into A, B. Then restrict f to A∩X , extend to A by homogeneity, and then extend
back to Γ. Thus Γ is a homogeneous metric space.

Finally, we claim that the metric on Γ is the graph metric, and for this it suffices
to show that vertices at distance 2 in the metric have a common neighbor in Γ.
So let a1, a2 be two such vertices, taken for definiteness in A; write ai = (vi, 0).
Taking v ∈ G with v1, v2 ∈ Gd(v), and a = (v, 1), we find that a is adjacent to a1
and a2. �

Corollary 12.1 made this result explicit for the case in which BΓ is already in
the catalog.

Corollary (12.2). Let Γ be an antipodal bipartite graph of diameter 5. Then
BΓ is either a pentagon, or the generic homogeneous graph omitting I3 (the com-
plement of the Henson graph G3) and Γ is its bipartite double cover.

Proof. Let G = BΓ. Then G has diameter 2, so it is a homogeneous graph,
on the list of Lachlan and Woodrow.

Furthermore, by the theorem, G contains I2 but not I3. As d = 2 here, G
contains a path of length 2 as well as a vertex at distance 2 from both vertices of
an edge. By the Lachlan/Woodrow classification, in the finite case G is a 5-cycle
and in the infinite case it must be the generic graph omitting I3. �

The bipartite double cover of C5 is C10, and the bipartite double cover of Gc
3

is Γ5
1,4;12,11;∅, the generic antipodal bipartite graph of diameter 5.

8. Exceptional Metrically Homogeneous Graphs

We turn now from the imprimitive case to the case in which the graph Γ1 is
exceptional.

If Γ is a metrically homogeneous graph, then Γ1 is a homogeneous graph, and
must occur in the short list of such graphs described in §4. There are three possibil-
ities for Γ1 which are compatible with the Fräıssé constructions we have described:
an infinite independent set, the Henson graphs, and the Rado graph. Thus we make
the following definition.

Definition 8.1. Let Γ be a metrically homogeneous graph.
1. Γ is of generic type if the graph Γ1 is of one the following three types:

(1) an infinite independent set I∞;
(2) generic omitting Kn for some n ≥ 3;
(3) fully generic (the Rado graph).

2. If Γ is not of generic type, then we say it is of exceptional type.

All the bipartite graphs (indeed, all the triangle free ones) are included under
“generic type” and will have to be treated under that heading. But it is useful to
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dispose of the classification of the exceptional metrically homogeneous graphs as a
separate case.

Thus in the exceptional case we have the following possibilities for Γ1.

• Γ1
∼= C5 or the line graph of K3,3.

• Γ1
∼= m ·Kn or Km[In] with 1 ≤ m,n ≤ ∞; and not of the form I∞.

• Γ1 the complement of a Henson graph

We will classify those falling under the first two headings and show that the
third case does not occur. The case in which Γ1 is finite is covered by [Cam80,
Mph82], split under two headings: (a) Γ finite; or (b) Γ infinite and Γ1 finite. Those
proofs use considerably less than metric homogeneity. We include a treatment of
those cases here, but making full use of our hypothesis.

8.1. Exceptional graphs with Γ1 finite and primitive.

Lemma 8.2. Let Γ be a connected metrically homogeneous graph of diameter
at least 3 and degree at least 3, and suppose that Γ1 is one of the primitive finite
homogeneous graphs containing both edges and nonedges, that is C5 or the line
graph of K3,3. Then Γ is the antipodal graph of diameter 3 obtained from Γ1 in the
manner of Theorem 15.

Proof. We fix a basepoint ∗ in Γ so that Γi is viewed as a specific subgraph
of Γ for each i. The proof proceeds in two steps.

(1) There is a ∗-definable function from Γ1 to Γ2.

We will show that for v ∈ Γ1, the vertices of Γ1 not adjacent to v have a unique
common neighbor v′ in Γ2.

If Γ1 is a 5-cycle then this amounts to the claim that every edge of Γ lies in
two triangles, and this is clear by inspection of an edge (∗, v) with ∗ the basepoint
and v ∈ Γ1.

Now suppose Γ1 is E(K3,3). We claim that every induced 4-cycle C ∼= C4 in Γ
has exactly two common neighbors.

Consider u, v ∈ Γ1 lying at distance 2, and let Gu,v be the metric space induced
on their common neighbors in Γ. This is a homogeneous metric space. Since these
common neighbors consist of the basepoint ∗, the two common neighbors a, b of
u, v in Γ1, and whatever common neighbors u, v may have in Γ2, we see that pairs
at distance 1 occur, and the corresponding graph has degree 2 (looking at ∗) and
is connected (looking at (a, ∗, b)). So Gu,v is a connected metrically homogeneous
graph of degree 2, and furthermore embeds in Γ1(u) ∼= Γ1. So Gu,v is a 4-cycle,
and therefore (u, a, v, b) has exactly 2 neighbors, as claimed. This proves (1).

Now let f : Γ1 → Γ2 be ∗-definable. By homogeneity f is surjective, and as Γ1 is
primitive, it is bijective. It also follows from homogeneity that for u, v ∈ Γ1, d(u, v)
determines d(f(u), f(v)), so f is either an isomorphism or an anti-isomorphism.
Since Γ1 is isomorphic to its complement, Γ1

∼= Γ2 in any case. Hence the vertices
of Γ2 have a common neighbor v, and v ∈ Γ3. We claim that |Γ3| = 1.

By homogeneity all pairs (u, v) in Γ2 × Γ3 are adjacent. In particular for
v1, v2 ∈ Γ3 we have Γ1(v1) = Γ1(v2) and d(v1, v2) ≤ 2. Since we have pairs of
vertices u1, u2 in Γ1 at distance 1 or 2 for which Γ1(u1) 6= Γ1(u2), we find |Γ3| = 1.

It now follows that Γ is antipodal of diameter 3 and the previous analysis
applies. �
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8.2. Exceptional graphs with Γ1
∼= Km[In]. We will prove the following.

Proposition 8.3. Let Γ be a connected metrically homogeneous graph of di-
ameter δ, and suppose Γ1

∼= Km[In] with 1 ≤ m,n ≤ ∞ Then one of the following
occurs.

(1) δ ≤ 2, Γ is homogeneous and found under the Lachlan/Woodrow classifi-
cation.

(2) Γ ∼= Cn, an n-cycle, for some n;
(3) m = 1, δ ≥ 3, and one of the following occurs.

(a) n is finite, and Γ is the bipartite complement of a perfect matching
between two sets of order n+ 1.

(b) δ = ∞, Γ is a regular tree of degree n, with 2 ≤ n ≤ ∞.
(c) n = ∞, and any two vertices at distance 2 have infinitely many

common neighbors.

Lemma 8.4. Let Γ be a connected metrically homogeneous graph of diameter
at least 3, and suppose that Γ1 is a complete multipartite graph of the form Km[In]
(the complement of m ·Kn). Then m = 1.

Proof. Suppose that m > 1. Fix a geodesic (∗, u, v) of length 2 and let
Γi = Γi(∗). Let A be the set of neighbors of u in Γ1. Then A ∼= Km−1[In], and
the neighbors of u in Γ include ∗, v, and A. Now “d(x, y) > 1” is an equivalence
relation on Γ1(u), and ∗ is adjacent to A, so v is adjacent to A. Now if we replace
u by u′ ∈ A and argue similarly with respect to (∗, u′, v), we see that the rest of Γ1

is also adjacent to v, that is Γ1 ⊆ Γ1(v). Now switching ∗ and v, by homogeneity
Γ1(v) ⊆ Γ1. But then the diameter of Γ is 2, a contradiction. Thus m = 1. �

We next consider the case m = 1, that is, Γ1 is an independent set. We suppose
in this case that the set of common neighbors of any pair of points at distance 2
is finite, which covers the case in which n is finite but also picks up the case of an
infinitely branching tree. When n = 2 we have either a cycle or a 2-way infinite
path, so we will leave this case aside in our analysis.

Lemma 8.5. Let Γ be a metrically homogeneous graph of diameter at least 2,
with Γ1

∼= In, 3 ≤ n ≤ ∞. Suppose that for u, v ∈ Γ at distance two, the number k
of common neighbors of u, v is finite. Then either k = 1, or n = k + 1.

Proof. We consider Γ1 and Γ2 with respect to a fixed basepoint ∗ ∈ Γ. For
u ∈ Γ2, let Iu be the k-set consisting of its neighbors in Γ1. Any k-subset of Γ1

occurs as Iu for some u. For u, v ∈ Γ2 let u · v = |Iu ∩ Iv|. If u · v ≥ 1 then
d(u, v) = 2. Now Aut(Γ)∗ has a single orbit on pairs in Γ2 at distance 2, while
every value i in the range max(1, 2k − n) ≤ i ≤ k − 1, will occur as u · v for some
such u, v. Therefore k ≤ 2 or k = n− 1, with n finite in the latter case.

The case k = 2 < n − 1 is eliminated by a characteristic application of ho-
mogeneity. A set of three pairs in Γ1 which intersect pairwise may or may not
have a common element (once n ≥ 4), so if we choose u1, u2, u3 and v1, v2, v3 in
Γ2 corresponding to these two possibilities for the associated Iuj

and Ivj , we get
isometric configurations (∗, u1, u2, u3) and (∗, v1, v2, v3) which lie in distinct orbits
of Aut Γ. So we have k = 1 or n = k + 1. �

Lemma 8.6. Let Γ be a connected metrically homogeneous graph of diameter
at least 3, with Γ1

∼= In, and 3 ≤ n ≤ ∞. Suppose any pair of vertices at distance
2 have k common neighbors, with k < ∞. Then one of the following occurs.
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(1) n = k+1, and Γ is the complement of a perfect matching, in other words
the antipodal graph of diameter 3 obtained by doubling Γ1.

(2) k = 1, and Γ is a k-regular tree.

Proof. We fix a basepoint ∗ and write Γi for Γi(∗).
Suppose first that n = k + 1. Then any two vertices of Γ2 lie at distance 2,

and there is a ∗-definable function f : Γ2 → Γ1 given by the nonadjacency relation.
By homogeneity f is surjective, and as Γ2 is, primitive, f is bijective. In particular
Γ2

∼= Γ1 and there is a vertex v ∈ Γ3 adjacent to all vertices of Γ2, hence Γ1(v) = Γ2.
It follows readily that |Γ3| = 1 and Γ is antipodal of diameter 3. The rest follows
by our previous analysis.

Now suppose that k = 1. It suffices to show that Γ is a tree.
Suppose on the contrary that there is a cycle C in Γ, which we take to be of

minimal diameter d. Then the order of C is 2d or 2d+ 1.
Suppose the order of C is 2d. Then for v ∈ Γd, v has at least two neighbors

u1, u2 in Γd−1, whose distance is therefore 2. Furthermore, in Γd−2 there are no
edges, and each vertex of Γd−2 has a unique neighbor in Γd−3, so each vertex of
Γd−2 has at least two neighbors in Γd−1, whose distance is therefore 2.

So for u1, u2 ∈ Γd−1, there is a common neighbor in Γd, and also in Γd−2. This
gives a 4-cycle in Γ, contradicting k = 1.

So the order of C is 2d + 1. In particular, each v ∈ Γd has a unique neighbor
in Γd−1, and Γd contains edges.

Let G be a connected component of Γd. Suppose u, v in G are at distance 2
in G. As any vertex in Γd−1 has at least two neighbors in Γd, the vertices u, v
must have a common neighbor in Γd−1 as well as in G, and this contradicts the
hypothesis k = 1. So the connected components of Γd are simply edges.

Take a ∈ Γd−1, u1, v1 ∈ Γd adjacent to a, and take u2, v2 ∈ Γd adjacent to u1, v1
respectively. By homogeneity there is an automorphism fixing the basepoint ∗ and
interchanging u1 with v2; this also interchanges u2 and v1. Hence d(u2, v2) = 2. It
follows that u2, v2 have a common neighbor b in Γd−1. Now (a, u1, u2, b, v2, v1, a) is
a 6-cycle. Since the minimal cycle length is odd, we have |C| = 5 and d = 2.

Furthermore the element b is determined by a ∈ Γ1 and the basepoint ∗: we
take u ∈ Γ2 adjacent to a, v ∈ Γ2 adjacent to u, and b ∈ Γ1 adjacent to v. So the
function a 7→ b is ∗-definable. However Γ1 is an independent set of order at least 3,
so this violates homogeneity. �

This completes the proof of Proposition 8.3.

8.3. Exceptional graphs with Γ1
∼= m · Kn, n ≥ 2. We deal here with

the tree-like graphs Tr,s derived from the trees T (r, s) as described in §5.3. With
r, s < ∞ these graphs are locally finite (that is, the vertex degrees are finite).
Conversely:

Fact 8.7 (Macpherson, [Mph82]). Let G be an infinite locally finite distance
transitive graph. Then G is Tr,s for some finite r, s ≥ 2.

The proof uses a result of Dunwoody on graphs with nontrivial cuts given in
[Dun82].

The graph Tr,s has Γ1
∼= s · Kr−1. We are interested now in obtaining a

characterization of these graphs, also with r or s infinite, in terms of the structure
of Γ1.
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Our goal is the following.

Proposition 8.8. Let Γ be a connected metrically homogeneous graph with
Γ1

∼= m ·Kn, with n ≥ 2 and δ ≥ 3. Then m ≥ 2, and Γ ∼= Tm,n+1.

Our main goal will be to show that any two vertices at distance two have a
unique common neighbor. We divide up the analysis into three cases. Observe that
in a metrically homogeneous graph with Γ1

∼= m ·Kn, the common neighbors of a
pair a, b ∈ Γ at distance 2 will be an independent set, since for u1, u2 adjacent to
a, b, and each other, we would have the path (a, u1, b) inside Γ1(u2).

Lemma 8.9. Let Γ be a metrically homogeneous graph of diameter at least 3
and suppose that Γ1

∼= m · Kn with n ≥ 3. Then for u, v ∈ Γ at distance 2, there
are at most two vertices adjacent to both.

Proof. Supposing the contrary, every induced path of length 2 is contained
in two distinct 4-cycles. Fix a basepoint ∗ ∈ Γ and let Γi = Γi(∗).

Fix v1, v2 ∈ Γ1 adjacent. For i = 1, 2, let Hi be the set of neighbors of vi in Γ2.
The connected components of H1 and H2 are cliques. We claim

H1 ∩H2 = ∅
Otherwise, consider v ∈ H1 ∩H2 and the path (∗, v1, v) contained in Γ1(v2).
We will find u1 ∈ H1, and u2, u

′
2 ∈ H2 distinct, so that

d(u1, u2) = d(u1, u
′
2) = 1

Extend the edge (v1, v2) to a 4-cycle (v1, v2, u2, u1). Then u1, u2 /∈ Γ1 ∪ {∗}, so
u1 ∈ H1 and u2 ∈ H2. By our hypothesis there is a second choice of u2 with the
same properties.

With the vertices u1, u2, u
′
2 fixed, let A, B,B′ denote the components of H1

and H2, respectively, containing the specified vertices. Observe that B and B′ are
distinct: otherwise, the path (u1, u2, v2) would lie in Γ1(u

′
2).

(2) The relation “d(x, y) = 1” defines a bijection between A and B

With u ∈ A fixed, it suffices to show the existence and uniqueness of the corre-
sponding element of B. The uniqueness amounts to the point just made for u1,
namely that B 6= B′.

For the existence, we may suppose u 6= u1. Then d(u, v2) = d(u, u2) = 2. We
have an isometry

(∗, v1, u, v2, u2) ∼= (∗, v2, u2, v1, u)

and hence the triple (u, u1, u2) with u1 ∈ H1 corresponds to an isometric triple
(u2, u

′, u) with u′ ∈ H2.
Thus we have a bijection between A and B definable from (∗, v1, v2, u1, u2) and

hence we derive a bijection between B and B′ definable from (∗, v1, v2, u1, u2, u
′
2).

Using this, we show

n = 2

The graph induced on B∪B′ is 2·Kn, and any isometry between finite subsets of
B∪B′ containing u2, u

′
2 which fixes u2 and u′

2 will be induced by Aut(Γ). So if there
is a bijection between B and B′ invariant under the corresponding automorphism
group, we find n = 2. �



TWO PROBLEMS ON HOMOGENEOUS STRUCTURES, REVISITED 49

Lemma 8.10. Let Γ be a metrically homogeneous graph of diameter at least
3 and suppose that Γ1

∼= m · Kn with n ≥ 2. Let u, v ∈ Γ lie at distance 2,
and suppose u, v have finitely many common neighbors. Then they have a unique
common neighbor.

Proof. We fix a basepoint ∗, and for u ∈ Γ2 we let Iu be the set of neighbors
of u in Γ1. Our assumption is that k = |Iu| is finite. Then any independent subset
of Γ1 of cardinality k occurs as Iu for some u ∈ Γ2.

We consider the k − 2 possibilities:

|Iu ∩ Iv| = i with 1 ≤ i ≤ k − 1

As n ≥ 2, all possibilities are realized, whatever the value of m. However in all
such cases, d(u, v) ≤ 2, so we find k − 1 ≤ 2, and k ≤ 3.

We claim that for u, v ∈ Γ2 adjacent, we have |Iu ∩ Iv| = 1.
There is a clique v, u1, u2 with v ∈ Γ1 and u1, u2 ∈ Γ2. As u1, u2 are adjacent

their common neighbors form a complete graph. On the other hand Iu1 and Iu2 are
independent sets, so their intersection reduces to a single vertex. By homogeneity
the same applies whenever u1, u2 ∈ Γ2 are adjacent, proving our claim.

Now suppose k = 3. Then |Iu ∩ Iv| can have cardinality 1 or 2, and the case
|Iu ∩ Iv| = 2 must then correspond to d(u, v) = 2.

Now k ≤ m, so we may take pairs (ai, bi) for i = 1, 2, 3 lying in distinct
components of Γ1. Of the eight triples t formed by choosing one of the vertices
of each of these pairs, there are four in which the vertex ai is selected an even
number of times. Let a vertex vt ∈ Γ2 be taken for each such triple, adjacent to
its vertices. Then the four vertices vt form a complete graph K4. It follows that
K3 embeds in Γ1, that is n ≥ 3. So we may find independent triples I1, I2, I3 such
that |I1 ∩ I2| = |I2 ∩ I3| = 1 while I1 ∩ I3 = ∅. Take u1, u2, u3 ∈ Γ2 with Ii = Iui

and with d(u1, u2) = d(u2, u3) = 1. Then Iu1 ∩ Iu3 = ∅, while d(u1, u2) ≤ 2, a
contradiction. Thus k = 2.

With k = 2, suppose m > 2. For u ∈ Γ2, let Îu be the set of components of Γ1

meeting Iu. We consider the following two properties of a pair u, v ∈ Γ2:

|Iu ∩ Iv| = 1; |Îu ∩ Îv| = i (i = 1 or 2)

These both occur, and must correspond in some order with the conditions d(u, v) =
1 or 2. But just as above we find u1, u2, u3 with d(u1, u2) = d(u2, u3) = 1 and
Iu1 ∩ Iu3 = ∅, and as d(u1, u3) ≤ 2 this is a contradiction.

So we come down to the casem = k = 2. But then for v ∈ Γ2, all components of
Γ1(v) are represented in Γ1, and hence v has no neighbors in Γ3, a contradiction. �

Lemma 8.11. Let Γ be a metrically homogeneous graph of diameter at least 3
and suppose that Γ1

∼= m · Kn with n ≥ 2. Let u, v ∈ Γ lie at distance 2, and
suppose u, v have infinitely many common neighbors. Then n = ∞.

Proof. We fix a basepoint ∗, and for u ∈ Γ2 we let Iu be the set of neighbors
of u in Γ1. Our assumption is that Iu is infinite. Then any finite independent
subset of Γ1 is contained in Iu for some u ∈ Γ2.

For u ∈ Γ2, let Îu be the set of components of Γ1 which meet Iu, and let Ĵu be
the set of components of Γ1 which do not meet Iu. We show first that

Ĵu is infinite.
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Supposing the contrary, let k = |Ĵu| < ∞ for u ∈ Γ2. Any set of k components

of Γ1 will be Ĵu for some u ∈ Γ2, and the k + 1 relations on Γ2 defined by

|Ĵu ∩ Ĵv| = i

for i = 0, 1, . . . , k will be nontrivial and distinct. Furthermore, for any preassigned

k components Ĵ , and any vertex a ∈ Γ1 not in the union of Ĵ , there is a vertex u
with Ĵu = Ĵ and a ∈ Iu, so our (k+1) relations are realized by pairs u, v ∈ Γ2 with
Iu ∩ Iv 6= ∅, and hence d(u, v) ≤ 2. Hence k + 1 ≤ 2, k ≤ 1.

Suppose k = 1 and fix a vertex v0 ∈ Γ1. Then for u, v ∈ Γ2 adjacent to v0,
the two relations Ĵu = Ĵv, Ĵu 6= Ĵv correspond in some order to the relations
d(u, v) = 1, d(u, v) = 2, and since the first relation is an equivalence relation, they
correspond in order.

With u ∈ Γ2, v0, v1 ∈ Iu distinct, there are u0, u1 in Γ2 with u0 adjacent to u
and v0, and with u1 adjacent to u and v1. The neighbors of u form a graph of type

∞ ·Kn, so d(u0, u1) = 2. However d(u, u0) = d(u, u1) = 1 and hence Ĵu0 = Ĵu1 , a
contradiction.

So k = 0 and for u ∈ Γ2, the set Iu meets every component of Γ1. That is, Γ1(u)
meets every component of Γ1, and after switching the roles of u and the basepoint
∗, we conclude Γ1 meets every component of Γ1(u), which is incompatible with the

condition δ ≥ 3. So Ĵu is infinite for u ∈ Γ2.
Now we claim

For u, v ∈ Γ2 adjacent, Îu \ Îv is infinite

Supposing the contrary, for all adjacent pairs u, v ∈ Γ2, the sets Îu and Îv
coincide up to a finite difference.

Take u ∈ Γ2, v0, v1 ∈ Γ1 adjacent to u, and u0, u1 adjacent to u, v0 or u, v1
respectively. Then, as above, d(u0, u1) = 2, while Ĵu0 = Ĵu = Ĵu1 . Thus for

u, v ∈ Γ2 with d(u, v) ≤ 2 we have Ĵu = Ĵv. Furthermore, the size of the difference

|Ĵu \ Ĵv| is bounded, say by ℓ. But we can fix u ∈ Γ2 and then find v ∈ Γ2 so that

Iu meets Iv but Îv picks up more than ℓ components of Ĵu. Since Iu meets Iv we
have d(u, v) ≤ 2, and thus a contradiction. This proves our claim.

We make a third and last claim of this sort.

For u, v ∈ Γ2 adjacent, Îu ∩ Îv is infinite

Supposing the contrary, let k′ be |Îu ∩ Îv| for u, v ∈ Γ2 adjacent, fix u, v ∈ Γ2

adjacent, and let I be a finite independent subset consisting of representatives for
more than k′ components in Îv \ Îu.

Take a ∈ Iu ∩ Iv and take v′ ∈ Γ2 adjacent to a and to u, with J ⊆ Îv′ and
Iv 6= Iv′ .

Now u, v, v′ are adjacent to a, and v, v′ are adjacent to u, so v and v′ are
adjacent. But by construction |Îv′ \ Îv| > k′. This proves the third claim.

Now, finally, suppose n is finite. Take u ∈ Γ2, v ∈ Iu, and let A,B be compo-
nents of Γ1 which are disjoint from Iu but meet Iu′ for some u′ adjacent to u, v.
Then

We can then find neighbors wa,b of u, v in Γ2 for which the intersection of Iw
with A and B respectively is an arbitrary pair of representatives a, b. But this
requires n− 1 ≥ n2, and gives a contradiction. �
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Corollary 8.11.1. Let Γ be a metrically homogeneous graph of diameter at
least 3 and suppose that Γ1

∼= m ·Kn with n ≥ 2. Then for u, v ∈ Γ with d(u, v) = 2,
there is a unique vertex adjacent to both.

Proof. Apply the last three lemmas. If u, v have infinitely many common
neighbors, then n is infinite. In particular, n ≥ 3. But then they have at most
two common neighbors. So in fact u, v have finitely many neighbors, and we apply
Lemma 8.10. �

After this somewhat laborious reduction, we can complete the proof of Propo-
sition 8.8.

Proof of Proposition 8.8. If m = 1 then evidently Γ is complete, contradicting the
hypothesis on δ. So m ≥ 2.

By definition, the blocks of Γ are the maximal 2-connected subgraphs. Any
edge of Γ is contained in a unique clique of order n + 1. It suffices to show that
these cliques form the blocks of Γ, or in other words that any cycle in Γ is contained
in a clique.

Supposing the contrary, let C be a cycle of minimal order embedding into Γ
as a subgraph, and not contained in a clique. The cycle C carries two metrics:
its metric dC as a cycle, and the metric dΓ induced by Γ. We claim these metrics
coincide. In any case, dΓ ≤ dC .

If the metrics disagree, let u, v ∈ C be chosen at minimal distance such that
dΓ(u, v) < dC(u, v), let P = (u, . . . , v) be a geodesic in Γ, and let Q = (u, . . . , v)
be a geodesic in C. Let v′ be the first point of intersection of P with Q, after u.
Then P ∪ Q contains a cycle C′ smaller than C, and containing u, v′. Hence by
hypothesis the vertices of C′ form a clique in Γ, and in particular u, v′ are adjacent
in Γ.

If u, v′ are adjacent in C, then dC(v, v
′) = dC(u, v)−1, dΓ(v, v

′) = dΓ(u, v)−1,
so dΓ(v, v

′) < dC(v, v
′), and this contradicts the choice of u, v. So they are not

adjacent, and the edge (u, v′) gives belongs to two cycles C1, C2 whose union
contains C, both smaller than C. So the vertices of C1 and C2 are cliques. Since C
is not a clique, there are u1 ∈ C1 and u2 ∈ C2 nonadjacent in Γ. Then d(u1, u2) = 2,
and there is a unique vertex adjacent to u1 and u2; but u, v′ are two such, a
contradiction.

Thus the embedding of C into Γ respects the metric. In particular, C is an
induced subgraph of Γ.

Let d be the diameter of C, so that the order of C is either 2d or 2d+1. Fix a
basepoint ∗ ∈ C, and let Γi = Γi(∗).

For v ∈ Γi with i < d, we claim that there is a unique geodesic [∗, v] in Γ.
Otherwise, take i < d minimal such that Γ contains vertices u, v at distance i with
two distinct geodesics P,Q from u to v. By the minimality, these geodesics are
disjoint. Their union forms a cycle smaller than C, hence they form a clique. As
they are geodesics, i = 1 and then in any case the geodesic is unique.

Let v ∈ Γd−1, and let H = Γ1(v), a copy of m ·Kn. Then H contains a unique
component meeting Γd−2. We claim that no other component of H meets Γd−1.

Suppose on the contrary that u1, u2 are adjacent to v with u1 ∈ Γd−1, u2 ∈
Γd−2, and d(u1, u2) = 2. Then taking P1, P2 to be the unique geodesics from u1 or
u2 to ∗, P1∪P2 contains a cycle smaller than C, and containing the path (u1, v, u2),
and hence is not a clique. This is a contradiction.
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Since Γd contains at least one component of H , in particular there is an edge
in Γd whose vertices have a common neighbor in Γd−1. Using this, we eliminate
the case |C| = 2d+ 1 as follows.

If |C| = 2d+1 then C ∩Γd consists of two adjacent vertices v1, v2, whose other
neighbors u1, u2 in C lie in Γd−1. Furthermore v1, v2 have a common neighbor u in
Γd−1, and u 6= u1, u2. Let P, P1 be the unique geodesics in Γ connecting ∗ with u, u1

respectively. Then P ∪ P1 ∪ {v1} contains a cycle shorter than C, which contains
the path (u1, v, v1), and we have a contradiction.

Thus |C| = 2d, in other words the vertices v ∈ Γd are connected to the basepoint
∗ by at least two distinct geodesics, and any two such geodesics will be disjoint.

Take u ∈ Γd−1, and u′ ∈ Γ1, with d(u, u′) = d − 2. Take v′ ∈ Γ1 with
d(u′, v′) = 2. We claim

d(u, v′) = d

Otherwise, with P,Q the geodesics from u to u′ and v′ respectively, we have |P ∪
Q| ≤ 2d − 1 < |C|, and hence (u′, ∗, v′) is contained in a cycle smaller than C, a
contradiction since u′, v′ are nonadjacent.

Thus d(u, v′) = d, and the extension of the geodesic from u to u′ by the path
(u′, ∗, v′) gives a geodesic Q from u to v′. There is a second geodesic Q′ from u to
v′, disjoint from Q. Let u1 be the unique neighbor of u in Γd−2; this lies on Q. Let
u′
1 be the neighbor of u in Q′. As the cycle Q ∪ Q′ satisfies the same condition as

the cycle C, the metric on this cycle agrees with the metric in Γ, and in particular
d(u1, u

′
1) = 2. By the minimality of C, we have u′

1 ∈ Γd. Let u′
2 be the following

neighbor of u′
1 in Q′. Then d(u, u′

2) = 2, with u, u′
2 ∈ Γd−1.

Suppose m ≥ 3. Then there is u∗ adjacent to u and at distance 2 from u1 and
u′
1. In view of the minimality of C, the vertex u∗ cannot be in Γd−2 or Γd−1, hence

lies in Γd. Hence any two vertices of Γd at distance 2 have a common neighbor in
Γd−1. This applies to u and u′

2 and contradicts Corollary 8.11.1. We conclude that

m = 2

Fix an edge a1, a2 in Γd−1. For i, j = 1, 2 in some order, set

Hij = {v ∈ Γ : d(v, ai) = 1, d(v, aj) = 2}
We claim Hij ⊆ Γd.

As a1, a2 have the same unique neighbor in Γd−2, we have

(H12 ∪H21) ∩ Γd−2 = ∅
Now suppose v ∈ H12 ∩ Γd−1. Then d(v, a2) = 2 and v, a2 ∈ Γd−1. Now since

|C| = 2d, there is w ∈ Γd adjacent to v and a2. Then a2, v have the two common
neighbors w and a1, a contradiction. So H12, H21 ⊆ Γd.
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Let v1 ∈ H12, v2 ∈ H21. We claim that

d(v1, v2) = 3

Otherwise, there is a cycle of length at most 5, not contained in a clique. As |C|
is even, it follows that C is a 4-cycle, so vertices at distance 2 have at least two
common neighbors, a contradiction. Thus for any other choice v′1 ∈ H12, v

′
2 ∈ H21,

we have (∗, a1, a2, v1, v2) isometric with (∗, a1, a2, v′1, v′2).

There is a unique element u ∈ Γ1 at distance d− 2 from a1 and a2; namely, the
element at distance d−3 from their common neighbor in Γd−2. On the other hand,
for v ∈ Γd, if Iv is the set {v′ ∈ Γ1 : d(v, v′) = d− 1}, then by our hypotheses, Iv is
a pair of representatives for the two components of Γ1. And if v ∈ H12 or H21, one
of these representatives will be u. Let B be the component of Γ1 not containing u.
Then the distance from a1 or a2 to a vertex of B is d. It follows that all vertices of
B will occur as the second vertex of Iv for some v1 ∈ H12 and for some v2 ∈ H21.
Therefore, we may choose pairs (v1, v2) and (v′1, v

′
1) with v1, v

′
1 ∈ H12, v2, v

′
2 ∈ H21,

and Iv1 = Iv2 , while Iv′

1
6= Iv′

2
. But as (∗, a1, a2, v1, v2) and (∗, a1, a2, v′1, v′2) are

isometric, this contradicts homogeneity. �

8.4. Γ1 cannot be the complement of a Henson graph. The last excep-
tional case requiring consideration is the one in which Γ1 is the complement of a
Henson graph.

Lemma 8.12. Let Γ be a metrically homogeneous graph of diameter at least 3
with Γ1 infinite and primitive. Then Γ1 contains an infinite independent set.

Proof. Suppose the contrary. Evidently Γ1 contains an independent pair. By
the Lachlan/Woodrow classification, if n is minimal such that Γ1 contains no inde-
pendent set of order n, then for any finite graph G which contains no independent
set of order n, G occurs as an induced subgraph of Γ1.

We consider a certain amalgamation diagram involving subspaces of Γ. Let A
be the metric space with three points a, b, x constituting a geodesic, with d(a, b) = 2,
d(b, x) = 1, d(a, x) = 3. Let B be the metric space on the points a, b and a further
set Y of order n− 1 with the metric given by

d(a, y) = d(b, y) = 1, y ∈ Y(3)

d(y, y′) = 2, y, y′ ∈ Y distinct(4)

As the diameter of Γ is at least 3, the geodesic A certainly occurs as a subspace
of Γ. On the other hand, the metric space B embeds into Γ1, and hence into Γ.
Therefore there is some amalgam G = A ∪B embedding into Γ as well.

Now for y ∈ Y , the structure of (a, x, y) forces d(x, y) ≥ 2. On the other hand,
the element b forces d(x, y) ≤ 2. Thus in G, the set Y ∪{x} is an independent set of
order n. Furthermore this set is contained in Γ1(b), so we arrive at a contradiction.

�

We may sum up this section as follows.
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Theorem (10). Let Γ be a connected metrically homogeneous graph and sup-
pose that Γ1 is either imprimitive or contains no infinite independent set. Then Γ1

is found in our catalog under case I or case II.

Proof. By the Lachlan-Woodrow classification of homogeneous graphs and
Lemma 8.12, Γ1 must be finite, imprimitive, or the complement of a Henson graph,
and we have just ruled out this last possibility.

Suppose Γ1 is finite and primitive. Then Lemma 8.2 applies if Γ1 is neither
complete nor an independent set. If Γ1 is complete, then Γ is complete. Proposition
8.3 covers the case in which Γ1 is a finite independent set.

Lastly, suppose Γ1 is imprimitive. If Γ1 is of the form Km[In] with m,n ≥ 2
then Proposition 8.3 applies. Alternatively, Γ1 may have the form m · Kn with
m,n ≥ 2. This is covered by Proposition 8.8. �

It is now appropriate to return to the bipartite case and look at metrically
homogeneous bipartite graphs Γ for which the associated graph BΓ falls on the
exceptional side.

9. Exceptional Bipartite Metrically Homogeneous Graphs

If Γ is a connected bipartite metrically homogeneous graph, then we consider
the graph BΓ induced on each half of the bipartition by the edge relation “d(x, y) =
2”, as described in §7. In addition to the exceptional graphs considered in the
previous section, we wish to consider those for which BΓ is itself exceptional in the
sense of the previous section. The result in that case will be as follows.

Theorem (13). Let Γ be a connected, bipartite, and metrically homogeneous
graph, of diameter at least 3, and degree at least 3, and with Γ1 infinite. Then
either BΓ1 is isomorphic to the Rado graph, or BΓ and Γ are in the catalog under
one of the following headings.

(1) BΓ ∼= T∞,∞, and Γ is an infinitely branching tree T2,∞.
(2) BΓ ∼= K∞, and Γ has diameter 3, with Γ either the complement of a

perfect matching, or the generic bipartite graph Γ3
∞,0;10,7;∅.

(3) BΓ ∼= K∞[I2], Γ has diameter 4, and Γ ∼= Γ4
∞,0;10,9;∅ is the generic an-

tipodal bipartite graph of diameter 4.
(4) BΓ ∼= Gc

n, the complement of a Henson graph, for some n ≥ 3, and
Γ ∼= Γ4

∞,0;14,9;{I
(4)
n }

the generic bipartite graph in which there is no set of

n vertices which are pairwise at distance 4.
(5) BΓ ∼= Gc

3, Γ
∼= Γ5

∞,0;12,11;∅ antipodal bipartite of diameter 5 as in Corollary
12.1.

If Γ1 is finite then this was already covered in §8. So we may suppose Γ1
∼= I∞.

This means that BΓ contains an infinite clique and thus BΓ1 also contains an
infinite clique. Furthermore, it follows from the connectedness and homogeneity of
Γ that BΓ is connected.

By the Lachlan/Woodrow classification this already reduces the possibilities to
the following.

(1) BΓ1 is imprimitive of the form m ·K∞ or K∞[Im], with 1 ≤ m ≤ ∞;
(2) BΓ1 is generic omitting In, for some finite n ≥ 2;
(3) BΓ1 is the Rado graph.
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The possibilities for the exceptional graph BΓ when BΓ1 falls under (1) or (2)
above are then known, and will be treated in the following order.

(1) BΓ is a clique;
(2) BΓ ∼= K∞[Im];
(3) BΓ ∼= Tr,s with 2 ≤ r,∞ ≤ ∞;
(4) BΓ is the complement of a Henson graph.

9.1. Bipartite graphs with BΓ a clique.

Proposition 9.1. Let Γ be a connected, bipartite, and metrically homogeneous
graph, of diameter δ ≥ 3. Suppose that BΓ is an infinite clique. Then δ = 3 and Γ
is either the complement of a perfect matching, or a generic bipartite graph.

These possibilities occur in the catalog as Γ3
a,3 and Γ3

∞,0;10,7, respectively.

Proof. As BΓ is complete, δ ≤ 3, and so δ = 3.
Let Γ′ be the graph obtained from Γ by switching edges and non-edges between

the two halves of Γ. If Γ′ is disconnected, then by homogeneity of Γ, the relation
“d(x, y) = 3” defines a bijection between the halves, and Γ is the complement of a
perfect matching. So suppose that Γ′ is connected. Then the graph metric on Γ′

results from the metric on Γ by interchanging distance 1 and 3.
Any isometry A ∼= B in Γ′ corresponds to an isometry in Γ and is therefore

induced by an automorphism of Γ. These automorphisms preserve the partition of
Γ, possibly switching the two sides. So they act as automorphisms of Γ′ as well. It
follows that Γ′ is a metrically homogeneous graph.

If Γ or Γ′ has bounded degree, we contradict Theorem 10. Thus if A, B are
the two halves of the partition of Γ, for u ∈ A the set Bu of neighbors of u in B is
infinite, with infinite complement. In particular for any two disjoint finite subsets
B1, B2 of B, there is u ∈ A such that u is adjacent to all vertices of B1 and no
vertices of B2. This is the extension property which characterizes the Fräıssé limit
of the class of finite bipartite graphs, so Γ is generic bipartite. �

9.2. Bipartite graphs with BΓ ∼= K∞[Im].

Proposition 9.2. Let Γ be a connected, bipartite, and metrically homogeneous
graph. Suppose that BΓ ∼= K∞[Im] with 2 ≤ m ≤ ∞. Then m = 2, and Γ ∼=
Γ4
∞,0;10,9;∅, the generic antipodal bipartite graph of diameter 4.

Proof. The relation d(x, y) ∈ {0, 4} is an equivalence relation on Γ. It follows
that Γ is antipodal of diameter 4 and in particular that m = 2. We claim that Γ is
the generic antipodal graph of diameter 4.

We call a metric subspace of Γ antipodal if it is closed under the pairing
d(x, y) = 4 in Γ.

It suffices to show that for any antipodal subspace G of Γ and any extension
G ∪ {v} of G to a graph in which all perimeters of triangles are even and bounded
by 8, the extension G ∪ {v} embeds into Γ over G.

Let X = G ∩ A, Y = G ∩B. We may suppose both are nonempty, and that v
is on the B side in the sense that its distances from vertices of X are odd.

Our hypotheses imply that d(v, y) = 2 for all y ∈ Y , and that the neighbors of
v in X form a set of representatives X0 for the components of X . Thus to realize
this extension in Γ, it suffices to see that there are infinitely many vertices v ∈ Γ
adjacent to all vertices of X0.
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As X is finite, there is an infinite subset of B consisting of vertices whose
neighbors in X are identical. Furthermore, the set of neighbors in question is
a set of representatives for the components of X , hence isometric with X0. By
homogeneity, X0 has infinitely many common neighbors in B. �

9.3. Bipartite graphs with BΓ treelike.

Proposition 9.3. Let Γ be a connected, bipartite, and metrically homogeneous
graph. Suppose that BΓ ∼= Tr,∞ with 2 ≤ r ≤ ∞. Then r = ∞ and Γ is an infinitely
branching tree.

Proof. Let A,B be the two halves of Γ, and identify A with BΓ. In particular,
for u ∈ B, the neighbors of u in A form a clique in the sense of BΓ.

Suppose that vertices u, u′ in B are adjacent to two points v1, v2 of A. These
points are contained in a unique clique of A, so all the neighbors of u, u′ lie in a
common clique. Therefore this gives us an equivalence relation on B, with u, u′

equivalent just in case they have two common neighbors in A. But the graph
structure on B is also that of BΓ, which is primitive, so this relation is trivial, and
distinct vertices of B correspond to distinct cliques in A. In particular, r = ∞.

At the same time, every edge in A lies in the clique associated with some vertex
in B, so the neighbors of the vertices of B are exactly the maximal cliques of A.
Evidently the edge relation in B corresponds to intersection of cliques in A. Thus
B is identified with the “dual” of A with vertices corresponding to maximal cliques,
and maximal cliques corresponding to vertices. At this point the structure of Γ has
been recovered uniquely from the structure of T∞,∞, and must therefore be the
infinitely branching tree. �

9.4. Bipartite graphs with BΓ the complement of a Henson Graph.
In this case, the diameter of Γ is 4 or 5. We take up the case of diameter 4 first.

Proposition 9.4. If BΓ is the generic homogeneous graph omitting In and the
diameter of Γ is 4, then Γ ∼= Γ4

∞,0;14,9;{I
(4)
n }

.

Proof. Let ∆,∆′ be the two halves of Γ, each isomorphic to 2BΓ (that is,
isomorphic to BΓ after rescaling the metric). We know the finite subspaces of 2BΓ.
Our claim is that for any finite A,B ⊆ 2BΓ and any metric on the disjoint union
A∪B in which all cross-distances between A and B are equal to either 1 or 3, there
is an embedding of A into ∆ and B into ∆′ such that the metric of Γ induces the
specified metric on A ∪ B. Note that A ∪ B and Γ are both considered as metric
spaces here rather than as graphs.

We will prove this by induction on the order of B. The case k = 0 is known so
we treat the inductive step. With k fixed, we proceed by induction on the number
a4 of pairs u1, u2 in A with

d(u1, u2) = 4

So we consider an appropriate metric space A ∪B with |B| = k. We have to treat
the cases a4 = 0, and the induction step for a4. We begin with the latter.

Suppose a4 > 0 and fix u1, u2 ∈ A with d(u1, u2) = 4. Take v ∈ B. We may
suppose d(v, u1) = 3. We adjoin a vertex a to A as follows:

d(a, u1) = 4, d(a, u′) = 2 for u′ ∈ A, u′ 6= u1

d(a, v) = 1, d(a, v′) = 3 for v′ ∈ A, v′ 6= v
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Now the configuration (A∪{a}, B\{v}) embeds into Γ by induction on k = |B|, and
the configuration (A\{u1}∪{a}, B) embeds into Γ by induction on a4 (with k fixed).
So there is an amalgam (A ∪ {a}, B) of these two configurations embedding into
Γ, and the metric on this amalgam agrees with the given metric on (A,B) except
possibly at the pair (u1, v). But we have d(u1, a) = 4, d(v, a) = 1, so d(u1, v) ≥ 3,
d(u1, v) is odd, and d(u1, v) ≤ 4. Thus d(u1, v) = 3 also in the amalgam.

There remains the case in which a4 = 0, so that in Γ, A is an independent set

of the form I
(2)
m .

Suppose first that k > 1. Then we extend (A,B) to a finite configuration
(A,B1) with the following properties.

(1) Some vertex b ∈ B1 is adjacent to all vertices of A.
(2) No two vertices of A have the same neighbors in B1.

Now consider the configurations ({a}, B1) for a ∈ A. If they all embed into Γ, then
some amalgam does as well, and this amalgam must be isomorphic to (A,B1) since
the vertices of A must remain distinct and the metric is then determined. So it
suffices to check that these configurations ({a}, B1) embed into Γ.

As there is an automorphism of Γ switching the two halves of its bipartition, it
suffices to deal with with the configuration (B1, {a}) instead. In this configuration,
the value of k = 1, so we conclude by induction on k.

Now suppose

k = 1

Thus |B| = 1; and a4 = 0 by our case hypothesis.
Take a basepoint ∗ in Γ and a vertex u in Γ2. It suffices to show that the set

Iu of neighbors of u in Γ1 is an infinite and coinfinite subset of Γ1. By Theorem
10, the set Iu is infinite. Furthermore there are by assumption vertices u1, u2 in
Γ with d(u1, u2) = 4, and we may suppose that the basepoint ∗ lies at distance 2
from both. Then u1, u2 ∈ Γ2 and Iu1 , Iu2 are disjoint. Thus they are coinfinite.

This completes the identification of Γ. �

Now we turn to diameter 5. The claim in this case is as follows.

Proposition 9.5. If BΓ is the generic homogeneous graph omitting In and
the diameter of Γ is 5, then n = 3 and Γ is the generic antipodal bipartite graph of
diameter 5, Γ5

∞,0;12,11;∅.

We treat the cases n = 3 and n > 3 separately. Once we have Γ antipodal,
Corollary 12.2 completes the analysis.

Since we are now taking the diameter to be 5, the following will allow us to
simplify the statements of some results.

Lemma 9.6. Let Γ be a connected bipartite metrically homogeneous graph of
diameter 5. Then one of the following holds.

(1) Γ is the cycle C10.
(2) BΓ is the complement of a Henson graph Gn.
(3) BΓ is the Rado graph.

Proof. Theorem 10 takes care of the case in which Γ1 is finite. So we may
suppose BΓ contains an infinite clique. Proposition 9.1 eliminates the possibility
that BΓ is an infinite clique. As BΓ is connected, Proposition 9.2 disposes of
the case in which BΓ is imprimitive. By the Lachlan/Woodrow classification, this
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leaves the cases in which BΓ is the complement of a Henson graph, or the Rado
graph. �

Lemma 9.7. Let Γ be a metrically homogeneous bipartite graph of diameter 5
with BΓ ∼= Gc

3. Then Γ is antipodal.

Proof. Suppose |Γ5| ≥ 2. We will show first that there is a triple (a, b, c) in
Γ with d(a, b) = 4, d(a, c) = 5, and d(b, c) > 1.

Take a pair u1, u2 ∈ Γ5. Then d(u1, u2) is 2 or 4, and if it is 4 then our triple
(a, b, c) can be (u1, u2, ∗) with ∗ the chosen basepoint. If d(u1, u2) = 2 then extend
u1, u2 to a geodesic (u1, u2, u3) with d(u2, u3) = 1, d(u1, u3) = 3. As d(u2, u3) = 1
we find u3 ∈ Γ4 and therefore the triple (∗, u3, u1) will do.

Now fix a triple (a, b, c) with d(a, b) = 4, d(a, c) = 5, and d(b, c) = 3 or 5. Take
a triple (b, c, d) with d(c, d) = 1 and d(b, d) = 4; this will be a geodesic of length 4
or 5, and therefore exists in Γ by homogeneity.

Now d(a, b) = d(b, d) = 4, and consideration of the path (a, c, d) shows that

d(a, d) ≥ 4, and d(a, b) is even, so d(a, d) = 4 as well, and we have I
(4)
3 in Γ, a

contradiction. �

It remains to show that in an infinite metrically homogeneous bipartite graph
Γ of diameter 5 for which BΓ contains an independent set of order 3, BΓ contains
arbitrarily large independent sets. We will subdivide this case further according
to the structure of Γ5. Since in this case Γ is not antipodal, it follows that Γ5 is
infinite. Note that if we rescale the metric on Γ5 by 1/2 we get a homogeneous
graph contained in BΓ. Thus the possible structure on Γ5 is quite limited. The
first case to be considered is that of a clique.

Lemma 9.8. Suppose that Γ is bipartite of diameter 5, that I
(4)
3 embeds into Γ,

and that Γ5 = I
(2)
∞ . Then I

(4)
∞ embeds in BΓ and BΓ is the Rado graph.

Proof. Our claim is that I
(4)
n embeds into Γ for all n; then since δ = 5,

BΓ is a connected homogeneous graph containing an infinite clique and an infinite
independent set. Proposition 9.2 implies that BΓ is not of the form K∞[I∞] and
then the Lachlan/Woodrow classification leaves only the Rado graph.

We proceed by induction, with the case n = 3 assumed.

Suppose I
(4)
n embeds into Γ, with n ≥ 3. Let I ∼= I

(4)
n−1 be a metric subspace

of Γ. We aim to embed subspaces A = I ∪ {a, u} and B = I ∪ {b, u} into Γ, with

I ∪ {a} ∼= I ∪ {b} ∼= I
(4)
n , and with u chosen so that

d(u, a) = 1 d(u, b) = 5
d(u, x) = 3 (x ∈ I)

Supposing we have this, considering (a, u, b) we see that d(a, b) ≥ 4 and hence

I ∪ {a, b} ∼= I
(4)
n+1.

We treat the second factor I ∪ {b, u} first. Consider the metric space I ∪
{b, b′} in which b′ lies at distance 2 from each point of I ∪ {b}. The corresponding
configuration in BΓ is a point b′ adjacent to an independent set of order n, and
this we have in BΓ. Thus the space I ∪ {b, b′} embeds into Γ.

By hypothesis, there is also a triple (u, b, b′) with b, b′ ∈ Γ5(u). Amalgamate
I ∪ {b, b′} with (u, b, b′) over b, b′. For x ∈ I, considering (u, b′, x), we see that
d(u, x) ≥ 3, and that d(u, x) is odd. Our hypothesis on Γ5 implies that d(u, x) 6= 5,
so d(u, x) = 3 for all x ∈ I. Thus I ∪ {b, u} is as desired.
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The construction of the factor I∪{a, u} is more elaborate. Consider the metric

spaces A = I ∪ {a} ∪ J and B = J ∪ {a, u}, where J ∼= I
(2)
n , and J may be labeled

as {v∗ : v ∈ I} in such a way that

d(a, v∗) = d(v, v∗) = 4 (v ∈ I)
d(v, w∗) = 2 v, w ∈ I distinct
d(u, v) = 5 (v ∈ J)

Supposing that A and B embed into Γ, take their amalgam over J ∪ {a}. Then for
v ∈ I the triple (u, a, v) shows that d(u, v) ≥ 3, and the distance is odd, while the
triple (u, v′, v) and the hypothesis on Γ5 shows that this distance is not 5. Thus
the space I ∪ {a, u} will have the desired metric. It remains to construct A and B.

Consider B = J ∪{a, u}. The graph Γ contains an edge (a, u) as well as a copy
of J ∪ {u}, the latter by the hypothesis on Γ5. Furthermore, in any amalgam of
(a, u) with J ∪ {u}, the only possible value for the distance d(a, v), for v ∈ J , is 4.
So this disposes of B.

Now consider A = I ∪ J ∪ {a}, in which all distances are even. So we need to
look for the rescaled graph (1/2)A in BΓ. It suffices to check that the maximal
independent sets of vertices in (1/2)A have order at most n. This is the case for
I ∪ {a}, and any independent set meeting J would have order at most 3. Since
n ≥ 3, we are done. �

Lemma 9.9. Suppose that Γ is metrically homogeneous, bipartite, infinite, not

antipodal, and of diameter 5. Then Γ5 contains a subspace of the form I
(2)
∞ ; in

other words, (1/2)Γ5 contains an infinite clique.

Proof. Supposing the contrary, for each u ∈ Γ4, the set Iu of neighbors of u
in Γ5 is finite and nonempty, of fixed order k. Since any subset of Γ5 isomorphic

to I
(2)
k+1 would have a common neighbor u ∈ Γ4, it follows that the Iu represent

maximal cliques of (1/2)Γ5.
As BΓ is either generic omitting In for some n ≥ 3, or the Rado graph, it

follows that Γ4 is primitive and contains both edges and nonedges. Now the map
u → Iu induces an equivalence relation on Γ4 which can only be equality, that is
the map is a bijection. Since Γ4 contains both edges and non-edges, it follows that
Γ5 is primitive. As each vertex v ∈ Γ5 has infinitely many neighbors in Γ4, we have
|Iu| > 1 for u ∈ Γ4. On the other hand if |Iu| ≥ 3 then for u, u′ ∈ Γ4 we have
the possibilities |Iu ∩ Iu′ | = 0, 1, 2 while there are only two distances occurring in
Γ4. So |Iu| = 2. That is, (1/2)Γ5 is generic triangle-free, and the vertices of Γ4

correspond to edges of (1/2)Γ5. It follows that vertices of Γ4 lie at distance two
iff the corresponding edges meet, that is (1/2)Γ4 is the line graph of (1/2)Γ5. But
there are pairs of vertices in the latter graph at distance greater than 2, so (1/2)Γ4

is not homogeneous, and we have a contradiction. �

Lemma 9.10. Suppose that Γ is bipartite, metrically homogeneous, and of di-
ameter 5, and Γ5 contains a pair of vertices at distance 4. Then the relation

“d(x, y) = 0 or 4”

is not an equivalence relation on Γ5.

Proof. Supposing the contrary, we have

Γ5
∼= I(2)∞ [I

(4)
k ]
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for some k with 2 ≤ k ≤ ∞.
Suppose first k ≥ 3. Fix two equivalence classes C,C′ in Γ5, and choose a triple

u1, u2, u3 in C1 and a vertex u′
1 in C′. Choose v ∈ Γ with d(v, u1) = d(v, u′

1) = 1,
and let di = d(v, ui) for i = 2, 3. We may then choose u′

2, u
′
3 in C′ so that d(v, u′

i) =
di for i = 2, 3.

Now the permutation of the ui, u
′
i which switches u′

1 and u′
2 and fixes the

other elements is an isometry, so there is an element v′ with d(v′, u) = d(v, u) for
u = u1, u2, u3, u

′
3, but with d(v′, u′

1) = d2, d(v
′, u′

2) = 1.
As u1 is adjacent to v, v′ we have d(v, v′) = 2. Now u3, v, v

′ is isometric
with u′

3, v, v
′, and the equivalence class of u3 contains a common neighbor of v, v′;

therefore the equivalence class of u′
3 contains a common neighbor of v, v′. But v can

have at most one neighbor in an equivalence class, so this contradicts the choice of
v′.

So we are left with the case k = 2:

Γ5
∼= I(2)∞ [I

(4)
2 ]

In this case we will consider a specific amalgamation.
Let γ = (u, v, w) be a geodesic with

d(u, v) = 1; d(v, w) = 4; d(u,w) = 5

Let A = γ ∪ {a}, B = γ ∪ {b}, with the metrics given by

u v w
a 4 3 5
b 4 5 5

If A,B embed into Γ, then their relation to v prevents them from being identified
in the amalgam. However a, b, u ∈ Γ5(w) and d(a, u) = d(b, u) = 4. So d(a, b) = 4
by our assumption, and this contradicts k = 2. �

Lemma 9.11. Suppose that Γ is bipartite, metrically homogeneous, and of diam-
eter 5. Then Γi is connected with respect to the edge relation given by d(x, y) = 2,
for 1 ≤ i ≤ 5.

Proof. This is true for Γ1 automatically. It is true for i = 2 or 4 in view of
the structure of BΓ. It remains to prove it for i = 3 or 5.

If Γi is disconnected with respect to this relation, then for u ∈ Γi−1, the set Iu
of neighbors of u in Γi is contained in one of the equivalence classes of Γi, and there
is more than one such class. Thus we have a function from Γi−1 to the quotient
of Γi. As i − 1 is even, in view of the structure of BΓ we know Γi−1 is primitive,
so as Γi contains more than one equivalence class, this function is 1− 1. Then the
sets Iu for u ∈ Γi−1 must be exactly the equivalence classes of Γi, and Γi−1 is in
bijection with the quotient. In particular, only one distance occurs in Γi−1. But in
view of the structure of BΓ, this is not the case. �

Corollary 9.11.1. Suppose that Γ is bipartite, metrically homogeneous, and
of diameter 5, and Γ5 contains a pair of vertices at distance 4. Then Γ5 is primitive,

infinite, and contains a copy of I
(2)
∞ .

Lemma 9.12. Suppose that Γ is bipartite, metrically homogeneous, and of di-
ameter 5, that Γ5 contains a pair of vertices at distance 4, and that BΓ is generic

omitting In+1. Then I
(4)
n−1 embeds into Γ5.
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Proof. Let k be maximal so that I
(4)
k embeds into Γ5, and suppose k ≤ n− 2.

Let I ∼= I
(4)
n−1, and suppose a, b, u are additional vertices with I∪{a} ∼= I∪{b} ∼=

I
(4)
n , and with d(u, a) = 1, d(u, b) = 5, d(u, v) = 3 for v ∈ I. If I ∪ {a, u} and
I ∪ {b, u} embed into Γ, then so does an amalgam I ∪ {a, b, u}, and the auxiliary

vertex u forces d(a, b) = 4, and I∪{a, b} ∼= I
(4)
n+1, a contradiction as BΓ omits In+1.

So it suffices to embed I ∪ {a, u} and I ∪ {b, u} into Γ.

Construction of I ∪ {a, u}.
Introduce a metric space J =

⋃

v∈I Jv with Jv ∼= I
(4)
k and with d(x, y) = 2 for

x ∈ Jv, y ∈ J \ Jv. Extend to a metric on I ∪ J by taking

d(v, x) =

{

4 if x ∈ Jv

2 if x ∈ J \ Jv

for v ∈ I.
Give J ∪ {a, u} the metric with d(a, x) = 4, d(u, x) = 5 for x ∈ J . We claim

that I ∪ J ∪ {a} and J ∪ {a, u} embed into Γ. Now BΓ is generic omitting In+1,
and (1/2)Γ5 is generic omitting Ik+1. Since the space I ∪ J ∪ {a} does not contain

I
(4)
n+1, and all its distances are even, it embeds into Γ. Since J does not contain

I
(4)
k+1, it embeds into Γ5, so J ∪{u} embeds into Γ. In any amalgam of J ∪{u} with
{a, u} we have d(a, x) = 4 for x ∈ J , so J ∪ {a, u} embeds into Γ as well.

Thus an amalgam of I ∪ J ∪ {a} and J ∪ {a, u} embeds into Γ. For v ∈ I,
consideration of (u, a, v) shows that d(u, v) is 3 or 5, and consideration of Jv∪{u, v}
shows that d(u, v) is not 5. Thus we have d(u, v) = 3 for all v ∈ I in our amalgam,
and thus I ∪ {a, u} embeds isometrically into Γ.

Construction of I ∪ {b, u}.
Let J ′ =

⋃

v∈I J
′
v with J ′

v
∼= I

(4)
k−1. Put a metric on I ∪ J ′ ∪ {b, u} by taking

d(u, x) = 5, d(b, x) = 4 for x ∈ J ′, while for v ∈ I we take d(v, x) = 4 for x ∈ J ′
v,

and d(v, x) = 2 for x ∈ J \ J ′
v.

Introduce an auxiliary vertex b′ with d(b′, u) = 5, d(b′, x) = 2 for x ∈ I∪J ′∪{b}.
We claim that I ∪ J ′ ∪ {b, b′} and J ′ ∪ {u, b, b′} embed isometrically in Γ. For

I ∪ J ′ ∪ {b, b′} we use the structure of BΓ, together with the condition k + 1 < n,
and for J ′ ∪ {u, b, b′} we use the structure of Γ5 to check that J ∪ {b, b′} embeds
into Γ5.

Therefore some amalgam I ∪ J ′ ∪ {u, b, b′} embeds into Γ. Let v ∈ I. In the
amalgam, the auxiliary vertex b′ ensures that d(u, v) is 3 or 5. Consideration of
J ′
v ∪ {u, b, v} shows that d(u, v) is not 5. Thus d(u, v) = 3 for v ∈ I, and I ∪ {b, u}

embeds isometrically in Γ. �

We will need some additional amalgamation arguments to complete our anal-
ysis, beginning with the following preparatory lemma.
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Lemma 9.13. Let Γ be bipartite of diameter 5, and not antipodal. Suppose BΓ

is generic omitting I
(4)
n+1, with n ≥ 3, and Γ5 contains a pair of vertices at distance

4. Then the following hold.

(1) I
(4)
n embeds in Γ3;

(2) Γ3 is primitive.

Proof.

1. I
(4)
n embeds in Γ3:

We show inductively that I
(4)
m embeds into Γ3 for m ≤ n.

Let I ∼= I
(4)
m−1. Form extensions I∪{u} and I∪{v} with d(u, x) = 5, d(v, x) = 3

for x ∈ I. Then I ∪ {u} embeds into Γ since m− 1 ≤ n− 1, while I ∪ {v} embeds
into Γ by induction on m. So some amalgam I ∪ {u, v} embeds into Γ with d(u, v)
either 2 or 4.

Consider a geodesic {u, v, w} with d(u,w) = 1, d(v, w) = 3, and d(u, v) as
specified. There is an amalgam I ∪ {u, v, w} of I ∪ {u, v} with {u, v, w} over u, v,

and consideration of (w, u, x) for x ∈ I show that I∪{w} ∼= I
(4)
m . As I∪{w} ⊆ Γ3(v),

the induction is complete.
2. Γ3 is primitive:
By Lemma 9.11 we have (1/2)Γ3 connected. Suppose now that Γ3 is discon-

nected with respect to the edge relation “d(x, y) = 4.”
Fix two connected components C,C′ with respect to this relation. By (1) these

have order n, and by assumption n ≥ 3. Fix u ∈ C and u′
1, u

′
2 ∈ C′, and v1 ∈ Γ2

adjacent to u, u′
1. With ∗ the chosen basepoint for Γ, consider the isometry of

C ∪ C′ ∪ {∗} which interchanges u′
1 and u′

2 and fixes the remaining vertices. Then
this extends to an isometry C ∪ C′ ∪ {∗, v} ∼= C ∪ C′ ∪ {∗, v′} for some vertex v′.
Take u′

3 ∈ C′, distinct from u1, u2. Then the map (∗, u3, u
′
3, v, v

′) 7→ (∗, u′
3, u3, v, v

′)
is an isometry and therefore extends to Γ; its extension interchanges C and C′ and
fixes v, v′. However d(v, x) = d(v′, x) for x ∈ C, so the same applies to C′. But
d(v, u′

1) = 1, d(v′, u′
2) = 1, and d(u′

1, u
′
2) = 4, so this is impossible. �

Now we can assemble these ingredients.

Lemma 9.14. If Γ is bipartite of diameter 5 and not antipodal, then BΓ is the
universal homogeneous graph (Rado’s graph).

Proof. The alternative is that BΓ is generic omitting In+1 for some n ≥ 3.
By Lemma 9.8, we may suppose that Γ5 contains a pair of vertices at distance 4,

and hence I
(4)
n−1 embeds in Γ5 by Lemma 9.12.

To get a contradiction, we will aim at an amalgamation of the following form.

Let I ∼= I
(4)
n−1, let I ∪ {a} ∼= I ∪ {b} ∼= I

(4)
n , and adjoin a vertex u such that

d(u, a) = 1; d(u, b) = 5; d(u, x) = 3 for x ∈ I

We will embed I ∪ {a, u} and I ∪ {b, u} in Γ, and then in their amalgam we will

have I ∪{a, b} ∼= I
(4)
n+1, a contradiction. Each of the factors I ∪{a, u} and I ∪{b, u}

will require its own construction.



TWO PROBLEMS ON HOMOGENEOUS STRUCTURES, REVISITED 63

Construction of the first factor, I ∪ {a, u}.
Let I = I0 ∪ {c} and introduce a vertex v with

d(v, a) = 1 d(v, c) = 5 d(v, u) = 2
d(v, x) = 4 (x ∈ I0 ∪ {a})

If I0 ∪ {a, u, v} and I0 ∪ {c, u, v} embed into Γ, then in their amalgam I0 ∪
{a, c, u, v} we have d(a, c) = 4 and thus the desired metric space I ∪ {a, u} is
embedded into Γ.

Construction of I0 ∪ {a, u, v}.
We first embed I0 ∪ {a, u} into Γ. Introduce a vertex a′ with

d(a′, u) = 1; d(a′, a) = 2; d(a′, x) = 2 for x ∈ I0

On the one hand, the geodesic (a, u, a′) embeds into Γ; on the other hand, the
metric space I0 ∪ {a, a′} embeds into BΓ. So some amalgam I0 ∪ {a, a′, u} embeds
into Γ, and for x ∈ I0, consideration of the paths (u, a, x) and (u, a′, x) shows that
d(u, x) = 3, as required. Thus I0 ∪ {a, u} embeds into Γ.

Take a as basepoint. Then u ∈ Γ1, I0 ⊆ Γ4, and d(u, x) = 3 for x ∈ I0. Let

I1 ⊆ I0 be obtained by removing one vertex, so I1 ∼= I
(4)
n−3. Consider the sets

A = {u ∈ Γ1 : d(u, x) = 3 for x ∈ I1}
B = {u ∈ Γ4 : d(u, x) = 4 for x ∈ I1}

The partitioned metric space (A,B) is homogeneous with respect to the metric
plus the partition. We consider the structure of (A,B).

We show first that A is infinite. Assuming the contrary, consider a configuration

I1∪I2 in I2 ∼= I
(2)
∞ , and I1∪{x} ∼= I

(4)
n−2 for each x ∈ I2. This configuration embeds

into Γ4. There is a pair x, y ∈ I2 such that I1 ∪ {x} and I1 ∪ {y} have the same

vertices at distance 3 in Γ1. Now Γ4 is generic omitting I
(4)
n . By homogeneity

it follows easily that any two subsets of Γ4 isomorphic to I
(4)
n−2 have the same

vertices at distance 3 in Γ1. This yields a nonempty subset of Γ1 definable without
parameters, and a contradiction. So A is infinite.

Now B is generic omitting I
(4)
3 . In particular B is primitive. Furthermore, each

vertex of B lies at distance 3 from some vertex of A. By primitivity, this vertex
cannot be unique. Take c ∈ B and u, v ∈ A so that d(c, u) = d(c, v) = 3. Then
I0 ∪ {c, a, u, v} has the desired structure.

Construction of I0 ∪ {c, u, v}.
We introduce a vertex d at distance 1 from u and v, and distance 4 from c,

with the relation of d to I0 will be determined below.
In any amalgam of I0 ∪ {c, d, u} with I0 ∪ {c, d, v} over I0 ∪ {c, d} we have

d(u, v) = 2. It remains to construct I0 ∪ {c, d, u} and I0 ∪ {c, d, v}.



64 GREGORY CHERLIN

We claim first that I0 ∪ {c, u} embeds into Γ, in other words that I0 ∪ {c}
embeds into Γ3(u). This holds by Lemma 9.13. Now we may form I0 ∪ {c, d, u}
by amalgamating I0 ∪ {c, u} with {c, d, u} (a geodesic) to determine the metric on
I0∪{d}; all distances d(x, d) will be even for x ∈ I0. This amalgamation determines
the structure of I0 ∪ {d} and thereby completes the determination of the second
factor I ∪ {c, d, v} as well.

We claim that I ∪ {c, d, v} embeds into Γ. Since the distance d(c, d) = 4 is
forced in any amalgam of I0 ∪ {v, c} with I0 ∪ {v, d}, we consider these two metric
spaces separately.

Now I0 ∪ {v, d} ∼= I0 ∪ {u, d}, so this is not at issue, and we are left only with
I0∪{c, v}. This last embeds into the second factor I∪{b, u}, so we may turn finally
to a consideration of this second factor.

Construction of the second factor, I ∪ {b, u}.
We introduce another vertex v satisfying

d(v, b) = 1; d(v, u) = 4; d(v, x) = 5 for x ∈ I

This will force d(b, x) = 4 for x ∈ I. So it will suffice to embed I∪{u, v} and {b, u, v}
separately into Γ. Since {b, u, v} is a geodesic, we are concerned with I ∪ {u, v}.

Introduce a vertex d with

d(u, d) = 1; d(v, d) = 5; d(x, d) = 2 for x ∈ I

Then amalgamation of I ∪ {d, u} with I ∪ {d, v} forces d(u, v) = 4. It remains to
embed I ∪ {d, u} and I ∪ {d, v} into Γ.

The second of these, I ∪ {d, v}, has a simple structure with I ∪ {d} ⊆ Γ5(v),
and since I ∪{d} has order n, with all distances even, it embeds into Γ5 by Lemma
9.12. So we need only construct I ∪ {d, u}.

Taking d as base point, and I contained in Γ2, we are looking for a vertex
u ∈ Γ1 at distance 3 from all elements of I. For v ∈ I, let Iv be the set of neighbors
of v in Γ1. Any vertex u ∈ Γ1 which is not in

⋃

v∈I Iv will do. So it remains to be
checked that

⋃

v∈I Iv 6= Γ1.
The sets Iv for v ∈ I are pairwise disjoint. Suppose they partition Γ1. We may

take a second set J ∼= I
(4)
n−1 in Γ2 overlapping with I so that |I ∩ J | = n − 2, and

then the Iv for v ∈ J will also partition Γ1; so the vertices v1 ∈ I \ J and v2 ∈ J \ I
have the same neighbors in Γ1. As Γ2 is primitive, it follows that all vertices of Γ2

have the same neighbors in Γ1, a contradiction. �

At this point, the proof of Proposition 9.5, and also Theorem 13, is complete.
We review the analysis.

Proof of Theorem 13. BΓ1 falls under the Lachlan/Woodrow classification.
If Γ1 is finite, then Theorem 10 applies, and as we assume diameter at least 3

and degree at least 3, we arrive at either the complement of a perfect matching or
a tree in this case.

With Γ1 infinite, BΓ contains an infinite clique, and hence so does BΓ1. As
noted at the outset, BΓ is connected. So by the Lachlan/Woodrow classification,
BΓ is either imprimitive of the form K∞[Im] or m · K∞, 2 ≤ n ≤ ∞, or generic
omitting In for some finite n ≥ 2, or universal homogeneous (Rado’s graph).

When BΓ1 is imprimitive, the classification in Theorem 10 applies to BΓ, and
as BΓ contains an infinite clique, the result is that BΓ is either an imprimitive
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homogeneous graph of the form K∞[Im] (2 ≤ m ≤ ∞), or one of the tree-like
graphs of Macpherson, Tr,∞ with 2 ≤ r ≤ ∞.

When BΓ is of the form K∞[Im] with m ≥ 2, Lemma 9.2 applies. When BΓ is
tree-like, Lemma 9.3 applies, and Γ is a tree.

Thus we may suppose that BΓ1 is primitive. We have set aside the case in
which BΓ1 is universal homogeneous as a distinct (and typical) case. So we are left
with the possibility that BΓ1 is generic omitting In with 2 ≤ n < ∞. In view of
Theorem 10, BΓ must have diameter at most 2, and be homogeneous as a graph.
Then our hypothesis on BΓ1 implies that BΓ is also generic omitting In.

In case n = 2, Lemma 9.1 applies. If n > 2 then the diameter of Γ is 4 or 5. If
the diameter is 4, then Lemma 9.4 applies, and leads to case 4 of the theorem.

This leaves us with the case taken up in Proposition 9.5: Γ has diameter 5, and
BΓ is generic omitting In. As the diameter is 5, we have n ≥ 3. As BΓ1 does not
contain I∞, Γ is antipodal by Lemma 9.14. So Corollary 12.2 applies. �

10. Graphs of small diameter

In the Appendix to [Che98], we gave an exhaustive list of certain amalgamation
classes for highly restricted languages. The languages considered were given by a
certain number of irreflexive binary relations, symmetric or asymmetric, with the
proviso that every pair of distinct elements satisfies one and only one of the given
relations. The The cases of interest here are the languages with either 3 or 4
symmetric irreflexive binary relations. The amalgamation classes A listed were
those satisfying the following three conditions:

(1) The class A is determined by a set of forbidden triangles.
(2) The Fräıssé limit of the class is primitive.
(3) The class in question is not a free amalgamation class.

This last point means that there is no single relation R(x, y) such that every
amalgamation problem A0 ⊆ A1, A2 can be completed by taking R to hold between
A1 \A0 and A2 \A0. This excludes some readily identified metrically homogeneous
graphs of diameter 3, but none of greater diameter.

For example, in the case of three symmetric relations A(x, y), B(x, y), C(x, y),
the only such class (up to a permutation of the language) is the one given by the
following constraints:

(AAB), (ACC), (AAA)

In this notation, AAB represents a triple x, y, z with A(x, y), A(x, z), and B(y, z).
Now for the Fräıssé limit of this class to correspond to a metric space of diameter

3, one of the forbidden configurations must correspond to the triangle (113). Since
the configuration corresponding to (113) may be either (AAB) or (ACC), there are
two distinct homogeneous metric spaces of this type, with the following constraints:

(113), (122), (111) or (233), (113), (333)

The first of these has no triangle of odd perimeter 5 or less, that is K1 = K2 = 3,
C0 = 10, C1 = 11. The second has no triangle of perimeter 8 or more, that is
K1 = 1, K2 = 3, C0 = 8, C1 = 9. We recognize these as falling within our previous
classification with C > 2δ +K1 and C′ = C + 1.

Of course, any of our examples of type A3
K1,K2;C0,C1

will be a free amalgamation
class unless one of the forbidden triangles involves the distance 2, which means:

K1 = 3 or C ≤ 8
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And as our list was confined to the primitive case it omits bipartite and antipodal
examples.

We view the classification of the amalgamation classes determined by triangles
as a natural ingredient of a full catalog of “known” types, and a natural point of
departure for an attempt at a full classification. In [AMp10] (a working draft)
the problem is taken from the other end, in the case of diameter 3, and it is shown
that in the triangle-free case (i.e., K3-free), the classification does indeed reduce
to identifying the combinations of triangle constraints and (1, 2)-space constraints
which (jointly) define amalgamation classes.

10.1. Diameter 4. The explicit classification of metrically homogeneous graphs
of diameter 4 whose minimal forbidden configurations are triangles is more com-
plex. Once the diameter δ exceeds 3, the possibility of “free amalgamation” falls
by the wayside, as one can use an amalgamation to force any particular distance
strictly between 1 and δ, using the triangle inequality. So in diameter 4, the table
in [Che98] covers all primitive homogeneous structures with 4 symmetric 2-types
which can be given in terms of forbidden triangles.

There are 27 such (up to a permutation of the language) of which 17 correspond
to homogeneous metric spaces, some in more than one way (permuting the distances
matters to us, if not to the theory). We will exhibit those classes in a number of
formats. Table 4, at the end of the paper, gives all 27 classes in the order they were
originally given, using the symbols A,B,C,D for the binary relations involved. The
numbering of cases used in the next two tables conforms to the numbering given
in that table. Note that the entry “1” means the given configuration is included in
the constraint set, and hence is omitted by the structures under consideration.

In Table 1 we have converted A,B,C,D to distances, usually in the order
1, 2, 3, 4, or 4, 2, 3, 1, and in one case in the order 2, 4, 3, 1, for those cases in which
the result is a metric space. In checking the possibilities, begin by identifying the
forbidden triangle (1, 2, 4), involving three distinct distances; in all 27 cases this
can only be the triple (ABD), by inspection. Thus C corresponds to distance 3.
After that, look for the forbidden triangle (113): by inspection, this is either CDD
or AAC in each case. Thus A or D corresponds to distance 1, after which there is
at most one assignment of distances that produces the constraint (114).

All primitive metrically homogeneous graphs of diameter 4 whose constraints
are all of order 3 are listed in the resulting table. We omit the columns correspond-
ing to the non-geodesic triangles of types (1, 2, 4), (1, 1, 3), and (1, 1, 4), which are
of course present as constraints in all cases.

In Table 2 we list these metric spaces together with their defining parameters
K1,K2, C, C

′.
Let us compare the outcome to the statement of Theorem 9.
The table contains no examples with C ≤ 2δ +K1. The case C′ > C + 1 and

3K2 = 2δ − 1 is impossible with δ = 4, while the case K1 = ∞ is imprimitive
and omitted. On the other hand, when C′ = C + 1, if C = 2δ + 1 then again
the graph is imprimitive, while if C ≥ 2δ + 2 then K1 ≥ 2, and the condition
K1+2K2 ≤ 2δ−1 = 7 gives K2 = K1 = 2, and hence C = 2(K1+K2)+1 = 2δ+1
after all.

So what we see here is the range of possibilities illustrating the third case under
Theorem 9: K1 < ∞, C > 8 +K1, K1 + 2K2 ≥ 7, 3K2 ≥ 8, and if K1 + 2K2 = 7
then C ≥ 10 +K1, while if C′ > C + 1 then C ≥ 8 +K2.
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# 111 122 133 144 223 244 334 444 344 A,B,C,D
23′ 0 0 0 1 0 0 0 1 1 1,2,3,4
7 0 0 0 1 0 0 0 1 0 4,2,3,1
3 0 0 0 1 0 0 0 0 0 4,2,3,1

25 1 0 0 0 0 0 0 1 1 1,2,3,4
25′ 1 0 0 0 0 0 0 1 1 4,2,3,1
8 1 0 0 1 0 0 0 1 0 4,2,3,1
5 1 0 0 1 0 0 0 0 0 4,2,3,1

18 1 1 0 1 0 0 0 1 0 4,2,3,1
16 1 1 0 1 0 0 0 0 0 4,2,3,1
26′ 0 0 0 0 0 1 1 1 1 1,2,3,4
21′ 0 0 0 0 0 0 0 1 1 1,2,3,4
4 0 0 0 0 0 0 0 1 0 4,2,3,1
1 0 0 0 0 0 0 0 0 0 4,2,3,1

24 1 0 0 0 0 0 0 1 1 4,2,3,1
6 1 0 0 0 0 0 0 1 0 4,2,3,1
2 1 0 0 0 0 0 0 0 0 4,2,3,1

17 1 1 0 0 0 0 0 1 0 4,2,3,1
15 1 1 0 0 0 0 0 0 0 4,2,3,1
26 1 1 1 0 1 0 0 0 0 2,4,3,1
22 0 0 0 1 0 0 0 0 1 4,2,3,1
22′ 0 0 0 1 0 0 0 0 1 1,2,3,4
23 1 0 0 1 0 0 0 0 1 4,2,3,1

Table 1. 22 metric spaces, with duplication

If C′ = C + 1 these constraints amount to 1 ≤ K1 ≤ K2, K2 = 3 or 4,
C ≥ 9 +K1, and if K1 = 1 and K2 = 3 then C ≥ 11. This corresponds to the first
two sections of the table, arranged according to increasing K2.

If C′ > C + 1 then there is the added constraint C ≥ 8 +K2 and this implies
C = 11, C′ = 14, K2 = 3. Since C > 2δ+K1 we find K1 ≤ 2. This corresponds to
the last two lines of the table.

Part III. Extension Properties of Finite Triangle Free Graphs

11. Extension properties

A structure has the finite model property if every first order sentence true in the
structure is true in some finite structure. A slightly stronger property is the finite
submodel property, where the finite approximation should be taken to lie within
the original structure. There is little difference between the notions in the cases
of most immediate concern here. We focus mainly on the finite model property
for the generic triangle free graph, and as “triangle free” is part of the first order
theory of this structure, the finite model property and the finite submodel property
are equivalent here. We do not necessarily expect the finite submodel property to
be true. The evidence in either direction is meager. However that may be, the
problem is a concrete one connected with problems in finite geometries, and we will
take pains to put it in an explicit form.
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# K1 K2 C C′

23′ 1 3 11 12
7 1 3 12 13
3 1 3 13 14

25, 25′ 2 3 11 12
8 2 3 12 13
5 2 3 13 14
18 3 3 12 13
16 3 3 13 14

26′ 1 4 10 11
21′ 1 4 11 12
4 1 4 12 13
1 1 4 13 14
24 2 4 11 12
6 2 4 12 13
2 2 4 13 14
17 3 4 12 13
15 3 4 13 14
26 4 4 13 14

22,22′ 1 3 11 14
23 2 3 11 14

Table 2. 20 metric spaces, sorted

While the finite model problem has attracted the attention of a number of
combinatorialists and probabilists, the main conclusion to date is that it is elusive,
and there is hardly any literature to be found on the subject. Here I assemble and
document the main information that has come my way about the problem.

There is some literature on lower bounds for finite approximations to Fräıssé
limits, in cases where probabilistic considerations guarantee their existence, e.g.
[Sz265, Bon09, Bon10]. Such explorations may also shed light on cases where
the existence of any such approximation remains in question. Below we will discuss
some explorations of that sort in the case of triangle free graphs, where we see clear
possibilities for some meaningful analysis.

11.1. Extension Properties En, E
′
n, Adjn. In general, the theory of a ho-

mogeneous locally finite structure is axiomatized by two kinds of axioms: negative
axioms defining the “forbidden substructures,” e.g. triangles in the case that most
concerns us, and extension properties stating that for each k, any k-generated sub-
set of k elements may be extended to a (k + 1)-generated subset in any way not
explicitly ruled out by the negative constraints. We will drop all further mention
of k-generated structures here, and suppose that the language is purely relational,
so that the issue is one of extending k given elements by one more element.

In the context of triangle free graphs, the natural extension properties are the
following three.

(En): for any set A of at most n vertices, and any subset B of A consisting of
independent vertices, there is a vertex v adjacent to all vertices of B, and to none
of A \B.
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(E′
n): (a) any maximal independent set contains at least n vertices; and (b) for

any set A of n independent vertices, and any subset B of A, there is a vertex v
adjacent to all vertices of B, and to none of A \B.

(Adjn): Any set of at most n independent vertices has a common neighbor.
Here the properties En, together with the axiom stating that triangles do not

occur, gives the full axiomatization of the generic triangle free graph. Therefore the
problem of the finite model property for the generic triangle free graph is simply
the question, whether for each n some finite triangle free graph has the extension
property En.

The equivalence of En and E′
n in triangle free graphs is straightforward, with

the former condition more easily applied, and the latter more readily checked. The
mutual adjacency condition Adjn is manifestly weaker, but only because it allows
some relatively degenerate examples: the complete bipartite graph, and some less
obvious ones—these can all be satisfactorily classified. As a result, we can replace
the property E′

n by a mild strengthening of Adjn, giving us the simplest version to
check.

Our first order of business will be to sort out the force of these extension prop-
erties. Along the way we will find it useful to classify explicitly all the triangle free
graphs which satisfy the condition Adjn and E2 but not En. For this, a descrip-
tion of triangle free graphs satisfying Adj3 in terms of combinatorial geometries
(or hypergraphs) is useful. These geometries can be given in two ways, either as
a bipartite graph with one set called “points” and the other set called “blocks,”
calling the edge relation between points and blocks “incidence,” or more concretely
by taking the geometry to consist of a set of points together with a collection of sets
of points called blocks (or hyperedges). The two points of view are not identical: in
the bipartite setting, distinct blocks may be incident with the same set of points;
in the more concrete setting where the blocks are taken to be sets of points, each
such set can occur only once.

Given a graph G and a vertex v ∈ Γ we form the geometry Gv whose points are
the neighbors of v in G and whose blocks are the nonneighbors distinct from v, with
the edge relation between points and blocks given by the edge relation in G. Edges
between pairs of points and pairs of blocks are ignored. This is of interest to us
only if the graph can be reconstructed from the geometry. In the triangle free case
there are no edges between points, and there are no edges between blocks which
intersect. The graphs that interest us will not only be triangle free but maximal
triangle free (i.e., adding an edge produces a triangle). In such a case the edge
relation between blocks is determined by the geometry: two blocks are joined by
an edge if and only if they are disjoint. This point of view corresponds to the usual
construction of the Higman-Sims graph, and while none of our geometries will have
a geometry with the elegance of that graph’s, the same point of view will still be
useful. In general, the geometry obtained will depend both on the graph and on
the choice of a base vertex v in the graph.

We refer to triangle free graphs satisfying condition En as n-e.c., which stands
for “n-existentially complete” (for the category of triangle free graphs). This ter-
minology comes from model theory.

We will see that there are a number of infinite families of geometries all corre-
sponding to 3-e.c. graphs, but that the families known to date are neither varied
nor robust. In the M22 geometry which is associated with the Higman-Sims graph,
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every block has 6 points; but in the infinite families of 3-e.c. graphs known to us,
there is always at least one block of order 2 (and possibly just one). At the other
extreme, in a geometry associated with a 4-e.c. graph, the minimal block size is at
least 19. Barring some breakthrough taking us to finite 4-e.c. triangle free graphs
and beyond, it would be interesting to make the acquaintance of more robust 3-
e.c. graphs. We will give explicit descriptions of some infinite families, in the hopes
that this may stimulate someone to find better constructions.

Of the six known non-trivial triangle free strongly regular graphs, two provide
interesting examples of 3-e.c. graphs. The question as to whether there are more
such to be found, and possibly an infinite family, seems to be tied up with funda-
mental problems in that subject. However following a suggestion of Peter Cameron,
we can eliminate the possibility that a strongly regular triangle free graph could be
4-e.c.

The following general principle is immediate.

Remark 11.1. If M is a structure with the finite model property, and M ′ is a
structure which can be interpreted in M , then M ′ inherits the finite model property.

In particular if the generic Kn-free graph has the finite model property for one
value of n, then so does the generic Km-free graph for m ≤ n, interpreting the
latter as the graph induced on the set of vertices adjacent to (n − m) vertices of
the former. Thus the finite model property for the generic triangle free graph is the
weakest instance of the problem still open in the case of homogeneous graphs.

One would of course like to have general methods for settling the finite model
property in homogeneous structures. The finite model property for the Rado graph
and for similarly unconstrained homogeneous structures holds by a simple proba-
bilistic argument. Just as a random (countable) graph will be isomorphic to the
Rado graph with probability one, a large finite random graph will have one of
the appropriate extension properties with asymptotic probability 1 [Fag76]. But
probabilistic constructions behave very poorly in the presence of constraints.

For example, if we use counting measure on the set of triangle free graphs
of a given size, a random one will be bipartite with high probability [EKR76]
(cf. [KPR87] for the Kn-free case), so that the theory of the random finite triangle
free graph does not approximate the theory of the generic triangle free graph at all
well.

Some time ago Vershik raised the question of a Borel measure invariant un-
der the full infinite symmetric group and concentrating on the generic triangle free
graph, a question answered positively in [PV08] (with a classification of the mea-
sures in question). But this does not seem to help with the finite model property.

11.2. Equivalence of En and En′ . We examine the relationships among the
natural extension properties. The property E′

2 merits separate consideration.

Lemma 11.2. For triangle free graphs G the following properties are jointly
equivalent to E′

2:

(i) G is maximal triangle free;
(ii) G is indecomposable;
(iii) G contains an independent set of order 3.
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Maximality means that the adjunction of any additional edge would create a
triangle, which is the same as the mutual adjacency condition: any two independent
vertices have a common neighbor.

A graph is decomposable if it carries a nontrivial congruence, that is, an equiv-
alence relation such that for any two classes C1, C2 either all pairs in C1 × C2 are
edges, or none are.

Proof of 11.2. The implication from E′
2 to (i− iii) is immediate, so we deal with

the converse direction.
Given (ii, iii) it is easy to see that every maximal independent set has more

than one vertex, which is clause (a) of E′
2. So we consider clause (b): for any

independent pair of vertices A = {u, v} and any subset B of A, we have a vertex
adjacent to all vertices of B and no vertices of A \B. There are four cases here, all
of them relevant.

Suppose conditions (i, ii) hold, and that |G| ≥ 3. It is easy to see that if
condition E′

2(b) fails, then G is a 5-cycle. We give the details.
Fix an independent pair A = {u, v} in G. By the indecomposability of G, there

is a vertex u′ in G adjacent to exactly one of u and v; suppose u′ is adjacent to u,
but not to v. The pair {u′, v} also has a common neighbor v′, which is therefore
adjacent to v but not u. Thus for B = {u} or B = {v}, clause (b) of the property
E′

2 holds.
Thus under the hypotheses (i, ii), with |G| ≥ 3, any violation of E′

2 consists
of a pair A = {u, v} of independent vertices which is a maximal independent set.
The G \ A divides into three subsets over A: the set Gu of vertices adjacent to
u but not v, the set Gv of vertices adjacent to v but not u, and the residual set
G′ = G\(A∪Gu∪Gv). At this point the edge relation onG is completely determined
by conditions (1, ii): apart from the edges involving u or v, the remaining edges
must connect Gu to Gv; conversely, by maximality, the induced graph on Gu ∪Gv

is bipartite. Thus by indecomposability |Gu| = |Gv| = 1 and |G′| ≤ 1. The case
G′ = ∅ gives a 4-cycle, which is decomposable, so that is excluded, and we are left
with the case |G′| = 1, which gives a 5-cycle.

If we assume (iii) as well, we have a contradiction. �

Next we check that the properties E′
n and En are equivalent.

Lemma 11.3. For G triangle free, and n arbitrary, properties En and E′
n are

equivalent.

Proof. We must show that E′
n =⇒ En.

Let A be a vertex set of order at most n, and B an independent subset of A.
We must show that there is a vertex adjacent to all vertices of B and no vertices
of A \B. We proceed by induction on n, and on |A \B|.

If there is an edge (a, b) with a ∈ A \ B and b ∈ B, then let A0 = A \ {a},
and apply induction to n to get v adjacent to all vertices of B, and no vertices of
A0 \B, and hence to no vertex of A \B.

So we may suppose there is no edge connecting A \B and B, but that there is
an edge in A. In particular |A \ B| ≥ 2. We claim then: There is a vertex u /∈ A
which is adjacent to some vertex a ∈ A and to no vertex of B.

Let A0 ⊆ A be a maximal independent subset of A containing B, and u a
vertex not adjacent to any vertex of A0. Then u is not in A, and if u is adjacent to
some vertex of A we have our claim. So suppose u is adjacent to no vertex of A.
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Take a ∈ A \ B. Then B ∪ {a, u} is an independent set. Take a vertex v adjacent
to u and a, and to no vertex in B. Then v /∈ A, and v meets the conditions of our
claim.

Now applying the claim with u adjacent to a ∈ A and to no vertex of B, let
B1 = B ∪ {u}. Let A1 = A \ {a} ∪ {u}. By induction on |A \B| we find v adjacent
to all vertices of B1 and no vertex of A1 \B1. Then the set of neighbors of v in A
is B, as required. �

11.3. The strength of Adj3. We will show that with few exceptions, graphs
having the properties E2 and Adjn satisfy the full n-e.c. property En. The delicate
case arises when n = 3, and we first dispose of the others.

Lemma 11.4. If G is a 3-e.c. triangle free graph with the mutual adjacency
property Adjn, then G is n-e.c.

Proof. It suffices to verify the condition E′
n. We proceed by induction on n.

Fix A an independent set of order at most n. We may assume |A| = n or
conclude by induction. Our objective is to show that every subset of A occurs as
the set of neighbors in A of some vertex of G.

For v ∈ G, let us write Av for the set of neighbors in A of the vertex v. Then
for v′ chosen adjacent to v and to all vertices of A \Av, we find Av′ = A \ Av. So
the collection {Av : v ∈ G \A} is closed under complementation in A.

Fix X ⊆ A. We will show that X is Av for some vertex v. Taking complements
if necessary, suppose |X | ≤ n/2. Take a ∈ A \X and u a vertex whose neighbors
in A \ {a} are the vertices in X . We may suppose that Au = X ∪ {a}.

Let Y be the complement A \ (X ∪ {a}) and let v be a vertex with Av = Y .
If |Y | > 1 then taking u′ (inductively) whose set of neighbors in (A \ Y ) ∪ {v} is
X ∪ {v}, we finish.

We conclude that |X | = n − 2 6= n/2, so n ≤ 4. As G is 3-e.c., n ≥ 4. Thus
n = 4 and |X | = 2. In particular any singleton occurs as Av for some v.

Write A = {a1, a2, b1, b2} and let X = {a1, a2}. Let b′1 be a vertex with
Ab′1

= {b1}. Let b2 be a vertex whose unique neighbor in {a1, a2, b′1, b2} is b2. Let
u be a vertex adjacent to a1, a2, b

′
1, b

′
2. Then Au = X . �

Now we take up the graphs satisfying E2 and Adj3, but not E3, and we begin
with a construction.

11.4. The Linear Order Geometries. Given any triangle free graphG with
the mutual adjacency property Adj3 we associate a combinatorial geometry to each
vertex v of G by taking as the set of points P the neighbors of v, and as the blocks
of the geometry its non-neighbors. A point p lies on a block b if the pair (p, b)
is an edge. The geometry obtained may depend on the vertex chosen, but given
one such geometry, the graph G may be entirely reconstructed as follows. As the
vertex set for G we take P ∪B ∪ {v0} where v0 is an additional vertex. We take as
edges all pairs (v0, p) with p in P , all pairs (p, b) with p on b, and all pairs (b1, b2)
with b1, b2 disjoint when viewed as subsets of P ; and we symmetrize. This agrees
with the original graph G: in particular, if b1, b2 are not adjacent in G, then by the
property Adj3 there is a point p lying on both, and hence they are not adjacent in
the reconstructed version of G.

The following uses extremely weak assumptions, but then we intend to apply
it to an extremely weak geometry.
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Lemma 11.5. Let (P,B) be a combinatorial geometry on at least 3 points sat-
isfying the following conditions.

(1) No three blocks are pairwise disjoint.
(2) No pair of distinct blocks correspond to the same subset of P .
(3) For every block b and every point p not in b, there is a block containing p

and disjoint from b.
(4) For every pair of points there is a block containing one but not the other.
(5) No block is incident with every point of P .

Then the associated graph G is triangle free and 2-e.c.

Proof. One checks that G is maximal triangle free, indecomposable, with an
independent set of size at least three.

One point that requires checking is that no block is empty; this is part of the
verification that G is maximal triangle free. For this, use the assumptions to get
two nonempty blocks which are disjoint, and observe that the empty block would
extend this to a pairwise disjoint triple. �

Let L be a linear order. Let B be a set of proper initial segments of L and
proper terminal segments of L satisfying the conditions:

(1) For all a < b in L, there is an initial segment in B containing a and not
b, and a terminal segment in B containing b and not a.

(2) If I is an initial segment and a ∈ B \ I is a lub for I, then the terminal
segment [a,∞) is in B; and dually.

One way to meet these conditions is to let B consist of the proper segments of
the form (−∞, a] and [a,∞), and this is the only way to achieve even the first of
them if L is finite. Let us call such a geometry a linear geometry.

Lemma 11.6. Let (P,B) be a linear geometry on at least 3 points. Then the
associated graph satisfies the conditions E2 and Adjn for all n (if P is finite, this
is vacuous for n larger than |P |).

Proof. The conditions on the geometry have been written to ensure that our
criterion for the property E2 applies.

Now suppose A is any independent subset of the associated graph. If A contains
no points, then A consists of some blocks, and possibly the base point, and as the
blocks all meet pairwise, it suffices to take a point common to the minimal initial
segment in A, and the minimal terminal segment in A. That point is then a vertex
adjacent to all vertices of A.

If A contains a point p, then it cannot contain both initial segments and termi-
nal segments, as they would be separated by p. So suppose for example A contains
initial segments, and let I be the greatest among them. Let a ∈ A be the least
point. Then a /∈ I. One of our two conditions on B then applies to give a terminal
segment disjoint from I, and containing a.

Of course if A consists exclusively of points, the base point will suffice as a
common neighbor. �

If L is finite of size n, then the resulting graph G has order 3n− 1 and can be
construed as follows. The elements of G are the integers 0, 1, . . . , 3n− 2; the edge
relation is defined by |i−j| ∼= 1 mod 3. The value n = 2, which is not permitted as
we require 3 points, corresponds to the pentagon, and the first legitimate example
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is a graph of order 8. The maximal independent sets have size n and are the points
of the geometry, with respect to a basepoint which is their common neighbor. The
geometry obtained is independent of the base point.

Our next point is that the converse holds: a graph with property E2 and
property Adjn which does not have property En must be obtained in this way from
a linear geometry, and in particular if it is finite then it isomorphic to the graph
just described explicitly. It will suffice to treat the case n = 3, since once E3 is
satisfied, Adjn implies En.

11.5. Graphs with E2, Adj3, and not E3.

Definition 11.7. An independent set of vertices I in a graph G will be said
to be shattered if every subset of I occurs as {a ∈ I : a, v are adjacent} for some
vertex v.

We will be concerned for the present with graphs which are 2-e.c. but not 3-
e.c., and therefore contain independent triples which are not shattered. We want
to show that within the independent set of all neighbors of any fixed vertex of G,
if one triple is shattered, than all are. We arrive at this gradually by considering
various special cases.

Lemma 11.8. Let G be a triangle free graph with properties E2 and Adj3, and
suppose that a, b, c is a shattered independent triple. If a′, b, c is another independent
triple with a, a′ adjacent, then a′, b, c is also shattered.

Proof. Since we have property Adj3, and the collection of subsets of the set
A = {a′, b, c} which occur as the set of neighbors in A of vertices of G is closed
under complementation, it suffices to consider a single vertex u ∈ {a′, b, c} and to
show that u occurs as the unique neighbor of some vertex among a′, b, c.

For u = a′ we take a as the witnessing vertex. For u = b we take u′ adjacent
to a, b and not c. For u = c proceed similarly. �

Lemma 11.9. Let G be a triangle free graph with properties E2 and Adj3, and
suppose that the triple (a, b, c) is independent and not shattered. Then there is a
unique vertex u in {a, b, c} which does not occur as the unique neighbor among a, b, c
of a vertex in G.

Proof. There must be at least one such vertex, say b. Taking u adjacent to b
and not to a, the neighbors of u among a, b, c will be b and c; and then a common
neighbor of u and a will have a as its unique neighbor among a, b, c; similarly c will
occur as the unique neighbor of some vertex among a, b, c. �

Lemma 11.10. Let G be a triangle free graph with properties E2 and Adj3, and
suppose that I = {a, b, c, d} is an independent quadruple with a, b, c shattered, while
some vertex u has a and d as its only neighbors in I. Then (b, c, d) is shattered.

Proof. By Lemma 11.8 the triple u, b, c is shattered, and by another applica-
tion of the lemma, b, c, d is shattered. �

Lemma 11.11. Let G be a triangle free graph with properties E2 and Adj3, and
suppose that I = {a, b, c, d} is an independent quadruple with a, b, c shattered, while
no vertex u has precisely two neighbors in I. Then the triple b, c, d is shattered.
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Proof. Fix vertices a′, b′, c′ having as their unique neighbors in a, b, c the
vertices a, b, or c respectively. By our hypothesis, none of the vertices a′, b′, c′ is
adjacent to d.

Now at least two of the vertices a′, b′, c′ are nonadjacent; let u1, u2 be two such.
Take v adjacent to u1, u2, and d. Then v is adjacent to at most two vertices of
a, b, c, d and hence, by our hypothesis, to at most one; that is, v is adjacent to d
and not to a, b, c.

Suppose now that u1 = a′. Then I ′ = {a′, b, c, d} is an independent quadruple
with a′, b, c shattered, and v has only a′ and d as its neighbors in I ′. By the previous
lemma, b, c, d is shattered.

So we may suppose that u1 = b′ and u2 = c′. Then b′, c′, and v have as
their unique neighbors in b, c, d the vertices b, c, and d respectively, and so b, c, d is
shattered. �

Lemma 11.12. Let G be a triangle free graph with properties E2 and Adj3,
and suppose that I = {a, b, c, d} is an independent quadruple with a, b, c shattered.
Suppose there are vertices b′, c′ in G having as their neighbors in I the pairs a, b
and a, c respectively. Then b, c, d is shattered.

Proof. The triple b′, c′, d is independent. Let d′ be adjacent to b′, c′, d. Then
the vertices b′, c′, d′ show that the triple b, c, d is shattered. �

Lemma 11.13. Let G be a triangle free graph with properties E2 and Adj3,
and suppose that I = {a, b, c, d} is an independent quadruple with a, b, c shattered.
Suppose there are vertices u, u′ in G having as their neighbors in I the pairs a, b and
c, d, and no other pairs from a, b, c, d occur in this fashion. Then b, c, d is shattered.

Proof. Applying Lemma 11.10 to the quadruple (c, a, b, d), it follows that the
triple a, b, d is shattered.

Now if a, c, d is shattered, we argue similarly that b, c, d is shattered by looking
at the quadruple (a, c, d, b).

Take a vertex a′ adjacent to a and not adjacent to b, c. By our hypothesis, a′

is not adjacent to d either. Now take a vertex v adjacent to a′, b, d. Then v is not
adjacent to a, so by our hypothesis v is adjacent to c.

We now consider two cases. First, if there is a vertex d′ adjacent to d but not to
a, b, c, then we apply Lemma 11.8 to the series of independent triples a, b, d, a, b, d′,
a, v, d′, a, c, d′, a, c, d to conclude.

Now suppose that there is no such vertex d′. Then there is no vertex whose
unique neighbor in b, c, d is d. By Lemma 11.9, there is a vertex c′ whose unique
neighbor among b, c, d is c. Hence, by our hypothesis, c is the only neighbor of c′

among a, b, c, d. If (a′, c′) is an edge, we conclude by applying Lemma 11.8 to the
sequence of independent triples

(a, b, d); (a′, b, d); (c′, b, d); (c, b, d)

So we may suppose (a′, c′) is not an edge. Take a vertex w adjacent to a′, b, c′.
Then w is adjacent to b but not a or c, and hence not d either. Now apply Lemma
11.8 to the independent triples (a, b, d), (a, w, d), (a, c′, d), (a, c, d) to conclude. �

Lemma 11.14. Let G be a triangle free graph with properties E2 and Adj3, and
let I be an independent set containing some shattered triple. Then all triples of
vertices from I are shattered.
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Proof. By the foregoing lemmas, if (a, b, c, d) is any independent quadruple
containing a shattered triple, then all of its triples are shattered. The general case
follows. �

Proposition 11.15. Let G be a triangle free graph with properties E2 and
Adj3, but not E3. Let v be a vertex of G. Then the geometry (P,B) associated to
the vertex v in G is a linear geometry, and G is the associated graph.

Proof. G is certainly the associated graph, so everything comes down to rec-
ognizing the geometry on (P,B), with P the set of neighbors of v and B the set of
non-neighbors.

We first choose v to be a vertex of G having a triple of neighbors which is not
shattered, and let (L,B) be the associated geometry. Once we verify that this is
a linear geometry, the structure of G is determined, and it follows that the same
applies to the geometry at any vertex of G.

We next look for a linear betweenness relation on L. This is a ternary relation
β(x, y, z), irreflexive in the sense that it requires x, y, z to be distinct, which picks
out for each triple x, y, z a unique element which is between the other two, i.e.,
β(x, y, z) implies β(z, y, x) and not β(y, z, x) or β(z, x, y). In addition to these
basic properties we have the axiom:

For x, y, z, t distinct, β(x, y, z) implies β(x, y, t) or β(t, y, z)

Any linear order gives rise to a linear betweenness relation, and the reverse order
gives the same betweenness relation; conversely, a betweenness relation determines
a unique pair of linear orders which give rise to it (assuming there are at least two
points).

We define β(x, y, z) on L as follows: β(x, y, z) holds if any vertex adjacent to
y is adjacent to x or z; equivalently (taking complements) any vertex adjacent to
x and z is adjacent to y. This is symmetric in x and z, and by Lemma 11.9,
the relation picks out of each independent triple (x, y, z) which is not shattered, a
unique y satisfying β(x, y, z) and β(z, y, x). Furthermore by our choice of v and
Lemma 11.14, none of the triples in L are shattered. So we only have to check
the critical axiom: assuming β(x, y, z), with t a fourth vertex in L, we claim that
β(x, y, t) or β(t, y, z) holds.

Suppose β(x, y, z) holds and β(x, y, t) fails. We will show that β(t, y, z) holds.
As β(x, y, t) fails, we have β(x, t, y) or β(t, x, y).

Suppose β(x, t, y) holds. Take a vertex u adjacent to y and not t. Then by
β(x, t, y), u is not adjacent to x. By β(x, y, z), u is adjacent to z. This proves
β(t, y, z), as claimed.

Now suppose β(t, x, y) holds, and take a vertex u adjacent to y, but not adjacent
to z. Then by β(x, y, z) we have u adjacent to x, and by β(x, t, y) we have u adjacent
to t. Thus β(t, y, z) holds.

Accordingly, β is a linear betweenness relation on L and we may fix a linear
ordering giving rise to this relation. By the definition of β, the blocks of B are
convex, and are not bounded both above and below. Therefore they are initial
and terminal segments of L (reversing the order will of course interchange these
two notions). It remains to check that the blocks are proper, pairwise distinct,
and sufficiently dense in L to satisfy our axioms for a linear geometry. This all
follows from the assumption that G satisfies E2, now that the general shape of the
geometry has been established. �
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With this result in hand we can give a reasonably efficient axiomatization of
the geometries associated with 3-e.c. graphs.

11.6. Geometries associated with 3-e.c. graphs.

Definition 11.16. An E3-geometry is a combinatorial geometry (P,B) satis-
fying the following axioms.

I There are no three disjoint blocks.
II No block is contained in any other.
III There are at least two points. For any two distinct points, there is a block

containing exactly one of them, and a block containing neither.
IVa If b is a block and p, q are points not in b, then there is a block disjoint

from b containing p and q.
IVb If b, b′ are blocks which intersect, and p is a point outside their union,

then some block containing p is disjoint from b and b′.
V If three blocks intersect pairwise, then they either have a point in common,

or some block is disjoint from their union.

The E3-geometries are just the geometries associated with 3-e.c. triangle free
graphs, as we shall show. We avoid the seemingly natural term “3-e.c. geometry”,
as the natural interpretation for that term would be a considerably stronger set
of conditions in which, notably, in axiom V we would require both a point in
common and a disjoint block, that is, we would apply the 3-e.c. condition directly
to the geometry, specifying the type of the element of P ∪ B realizing the giving
condition. The thrust of this is considerably more like 4-e.c. in the corresponding
graph; in fact, it is 4-e.c. restricted to quadruples including the base point. No
doubt this is an interesting class of geometries in its own right, and more tractable
than those associated with 4-e.c. graphs, but still a good deal beyond anything we
can construct, or analyze, at present.

Lemma 11.17. The geometry associated to any vertex of a 3-e.c. triangle free
graph is an E3-geometry, and conversely the graph constructed in the usual way
from an E3-geometry is a 3-e.c. triangle free graph.

Proof. One can read off all these axioms directly from the 3-e.c. property
(with the triangle free condition accounting for the first of them). The point is to
check that conditions (I–V) are strong enough. For that, we use the analysis of the
previous subsection. By Axiom II, we exclude the linear geometries of section §11.4,
and therefore it suffices to check that the associated graph is triangle free, 2-e.c.,
and satisfies the adjacency condition Adj3, which is more or less what the axioms
assert (with IV(a), IV(b), and V corresponding to different instances of Adj3). �

We derive some further consequences of the axioms. Observe that Axioms I
and III imply that all blocks are nonempty, and that a further application of Axiom
III implies that there are at least 3 points.

Lemma 11.18. Let (P,B) be an E3-geometry. Then the union of two blocks is
never P .

Proof. Suppose first that b1, b2 are two blocks which meet, and let p ∈ b2 \ b1.
There is a block b′ containing p and disjoint from b1, and as b′ cannot be contained
in b2, it follows that b1 ∪ b2 6= P .
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Now suppose that b1, b2 are disjoint and their union is P . We may suppose
that |b1| ≥ 2. Take two points of b1 and a block b containing just one of them. As
b is not contained in b1 and b1 ∪ b2 is P , b meets b2. By construction b ∪ b2 is not
P , so there is a block b′′ disjoint from b ∪ b2. Then b′′ is a proper subset of b1 and
we have a contradiction. �

Lemma 11.19. Let (P,B) be an E3-geometry. Then any two points belong to
some block.

Proof. Call two points of P collinear if they lie in a common block. We claim
first that this is an equivalence relation on P .

Suppose that p, q ∈ b1, and q, r ∈ b2. Take a point a /∈ b1 ∪ b2, and a block b
disjoint from b1 ∪ b2 containing a. As p, r lie outside b, Axiom IVa applies, and p, r
are collinear.

By Axiom I, there are at most two equivalence classes for the collinearity rela-
tion, and we claim there is only one.

Suppose there are two collinearity classes P1, P2. As |P | ≥ 3, we may suppose
|P1| ≥ 2. Take a block b meeting (and hence contained in) P1. As there are no
inclusions between blocks, it follows from Axiom III that b is a proper subset of P1.
Therefore by Axiom IVa we have a block meeting P1 and P2, a contradiction. �

Corollary 11.19.1. Let (P,B) be an E3-geometry. Then every block contains
at least two points.

At this point we are through sorting through the basic axioms and we can begin
to look more closely at examples of 3-e.c. triangle free graphs and their associated
geometries.

We first take up the strongly regular case, then look into the minimal size of
an E4-geometry.

12. Strongly regular graphs and E4-geometries

We will discuss the extension properties of the known strongly regular triangle
free graphs and then show that such a graph cannot have property E4, following
up on an old suggestion of Peter Cameron. We also look at the minimum degree of
a graph with property E4, or in other words, the minimal size of an E4-geometry.

12.1. The Higman-Sims Graph. This is constructed from the M22 geome-
try, defined as follows. Let P0 be the projective plane over the field of order 4, with
21 points. Adjoin an additional point ∞ to get P = P0 ∪ {∞}. The associated
blocks will be of two kinds. The first kind are obtained by extending an arbitrary
line ℓ of P0 by the point ∞: ℓ∗ = ℓ∪{∞}. The second kind are called hyperovals. A
hyperoval is a set of 6 points in P0 which meets any line of P0 in an even number of
points. There are 168 hyperovals, and on this set the relation “|O1 ∩O2| is even” is
an equivalence relation, with three classes of 56 hyperovals each, permuted among
themselves by the automorphism group of the base field. Any one class of 56 hy-
perovals may be taken, together with the extended lines, as the set of blocks B for
the M22 geometry, on 22 points. Thus there are 77 blocks, each with 6 points, and
100 vertices in the associated graph, the Higman-Sims graph. Its automorphism
group is vertex transitive and edge transitive, so we get the same geometry from
any base point, and any adjacent point can play the role of the “new” point ∞.



TWO PROBLEMS ON HOMOGENEOUS STRUCTURES, REVISITED 79

We check that this graph is a 3-e.c. triangle free graph. Given three independent
vertices, one may be taken to be the base point v, and the other two will then
represent two intersecting blocks of the geometry. We may suppose that they both
contain the point ∞ in the associated geometry, and therefore they represent two
extended lines, whose intersection has order 2. So we have the condition Adj3 with
multiplicity two, that is there are two points meeting the adjacency conditions in
every case. Since the graph visibly satisfies the E2 condition, and there are no
containments between blocks, this completes the verification that it is 3-e.c. On
the other hand, it is not 4-e.c. As we know, this comes down to the 4-adjacency
property Adj4. Taking a triple of points lying on a projective line ℓ in P0, and
another line meeting ℓ in a different point, a common neighbor of the four vertices
involved would be a block containing the given three points and disjoint from the
given line; but there is only one block containing three given points, so this is
impossible.

The Higman-Sims graph is an example of a strongly regular triangle free graph.
In general, a graph on n vertices is strongly regular with parameters (n, k, λ, µ)
if it is regular of degree k, and any pair of vertices v, v′ has λ common neighbors
if v, v′ are adjacent, and µ common vertices otherwise. In the case of triangle
free graphs (λ = 0), leaving aside the complete bipartite graphs and the penta-
gon, there are six known examples, which go by the names of the Petersen, Cleb-
sch, Hoffman-Singleton, Gewirtz, M22, and Higman-Sims graphs [Br11, vLW92,
CvL91, BvL84]. Two of these graphs are 3-e.c., the Clebsch graph and the
Higman-Sims graph.

While there are no other known strongly regular triangle free graphs, there are
many “feasible” sets of parameters, that is combinations of parameters which are
compatible with all known constraints on such graphs. Following a suggestion of
Peter Cameron, we will use that theory to show that there are no 4-e.c. strongly
regular triangle free graphs, leaving entirely open the problem whether there are
any more, or infinitely many more, 3-e.c. strongly regular triangle free graphs.

We will also take a closer look at the known strongly regular triangle free graphs,
notably the Clebsch graph, which serves as the basis for the simplest construction
of an infinite family of 3-e.c. graphs, first proposed by Michael Albert.

12.2. Strongly regular graphs and properties E2, E3. Leaving aside the
complete bipartite graphs and the pentagon, the known strongly regular triangle
free graphs have the following parameters.

(1) Petersen: (10, 3, 0, 1);
(2) Clebsch: (16, 5, 0, 2);
(3) Hoffman-Singleton: (50, 7, 0, 1);
(4) Gewirtz: (56, 10, 0, 2);
(5) M22: (77, 16, 0, 4);
(6) Higman-Sims: (100, 22, 0, 6)

The entry “0” here simply says that the graph is triangle free. The Gewirtz
graphs and the M22 graph can be seen naturally inside the Higman-Sims graph
(the Hoffman-Singleton graph, less naturally): the Gewirtz graph is the graph on
the hyperovals of the M22 geometry, which could be viewed as the set of vertices
in Higman-Sims nonadjacent to two vertices lying on an edge. The M22 graph is
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the graph on the blocks of the M22 geometry, and appears as the constituent of
Higman-Sims on the non-neighbors of a fixed vertex.

In the Higman-Sims graph, any independent triple of vertices has exactly two
common neighbors, as noted previously. In particular if the vertices represent
hyperovals with two common points, then their common neighbors are both repre-
sented by points, and hence do not lie in the M22 graph. Thus neither the Gewirtz
graph nor the M22 graph can satisfy the condition Adj3.

The Hoffman-Singleton and Petersen graphs, with the fourth parameter µ = 1,
do not fit into this framework at all: there is no useful geometry induced on the
set of neighbors of a fixed vertex, as its blocks would consist of single points. The
Petersen graph does play a respectable role as the set of blocks in the geometry
associated to the Clebsch graph, and the latter is indeed a 3-e.c. graph. In the case
of the Clebsch graph, the geometry is extremely degenerate: it consists of all pairs
from a set of order 5. Nonetheless this geometry is an E3-geometry.

Thus the Clebsch graph and Higman-Sims graph both are 3-e.c., and the Pe-
tersen, Gewirtz, and M22 graphs are naturally represented as descriptions of part
or all of the associated geometries.

Any strongly regular graph other than the complete bipartite graphs and the
pentagon graph will satisfy the condition E2, and have no proper inclusion between
blocks, so in all other cases the condition En will be equivalent to the adjacency
condition Adjn.

However the condition Adj4 is already incompatible with strong regularity for
triangle free graphs, as we now show, following the notation of [Big09], which relies
on the eigenvalue theory for strongly regular graphs, expressing everything in terms
of the minimal eigenvalue for the adjacency matrix of the graph. So we begin by
reviewing that material.

12.3. Eigenvalues and E4 in the strongly regular case. LetG be strongly
regular with parameters (n, k, λ, µ). Let A be the n × n adjacency matrix for G,
with 0 entries for non-adjacent pairs of vertices, and 1 for adjacent pairs. With J
the n× n matrix consisting entirely of 1’s, the condition of strong regularity, with
the specified parameters, translates into the matrix condition

A2 + (µ− λ)A − (k − µ)I = µJ

and as J has the eigenvalues n with multiplicity 1 and 0 with multiplicity n − 1,
A has three eigenvalues: k with multiplicity 1, and two eigenvalues α, β which are
roots of the quadratic equation

x2 + (µ− λ)x − (k − µ) = 0

with multiplicities mα, mβ satisfying

mα +mβ = n− 1;mα · α+mβ · β = 0

since the trace of A is zero. Specializing to the case λ = 0 this gives the following
formulas in terms of the parameter s =

√
∆, ∆ being the discriminant µ2+4(k−µ),

an integer in the nontrivial cases (leaving aside the pentagon and complete bipartite
graph):

α =
s− µ

2
, β =

−s− µ

2
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Following [Big09], we write q for the eigenvalue of minimal absolute value (α,
above) and express everything in terms of q and µ as follows.

k = (q + 1)µ+ q2

n = (q2 + 3q + 2)µ+ (2q3 + 3q2 − q) + (q4 − q2)/µ

= (q + 2)k + (q3 + q2 − q) + (q4 − q2)/µ

µ ≤ q(q + 1)

The inequality on µ is not obvious but is derived rapidly from elementary
considerations of linear algebra in [Big09].

We note that the extremal values µ = q(q+1), k = q3+3q2+ q, n = q2(q+3)2

satisfy all known feasibility constraints and give k ≈ (q + 1)3, n ≈ (q + 1 1
2 )

4, so

that n4 and k3 are fairly close, and as we will see in a moment this makes the
refutation of condition E4 a little delicate. Namely, given E4, or what amounts
to the same thing, Adj4, our condition is that the collection of all independent
4-tuples of vertices (u1, u2, u3, u4) should be covered by the subset consisting of the
independent 4-tuples lying in neighborhoods of the vertices, with the former being
slightly less than n4 (at least n(n− (k + 1))(n − 2(k + 1))(n − 3(k + 1))) and the
latter approximately n · k4, leading to an estimate of roughly the form k4 > n3. At
least for large values of n it is clear that this will not be satisfied at the extreme
values and is less likely to hold lower down. But we will work through this more
precisely to get the following.

Proposition 12.1. There is no strongly regular triangle free graph with the
property E4.

Proof. Begin with the estimates

n = (q + 2)k + (q3 + q2 − q) + (q4 − q2)/µ

≥ (q + 2)k + (q3 + q2 − q) + (q2 − q)

= (q + 2)k + (q3 + 2q2 − 2q)

≥ (q + 3)k − (µ+ 2q)

≥ (q + 3)k − (q2 + 3q)

Now the number of independent quadruples of vertices in our graphG is at least
n[n− (k+1)][n− 2(k+1)+µ][n− 3(k+1)+µ] and assuming E4, they all occur in
neighborhoods of individual vertices, so the number is at most nk(k−1)(k−2)(k−3).
So we have

[n− (k + 1)][n− 2(k + 1) + µ][n− 3(k + 1) + µ] ≤ k(k − 1)(k − 2)(k − 3)

and we show this is impossible.
We have

[n− (k + 1)] ≥ (q + 2)k − (q2 + 3q + 1)

≥ (q + 2)(k − (q + 1))

and

(n− 2(k + 1) + µ)(n− 3(k + 1) + µ) ≥ [(q + 1)k − (2q + 2)][qk − (2q + 3)]

= q(q + 1)(k − 2)(k − (2 + 3/q))
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Furthermore q(q + 1)(q + 2) ≥ k + q, so

[n−(k+1)][n−2(k+1)+µ][n−3(k+1)+µ] ≥ (k+q)(k−(q+1)](k−2)[k−(2+3/q)]

Suppose µ ≥ q + 1. Then k ≥ (q + 1)2 + q2 ≥ 2q(q + 1), so

(k + q)(k − (q + 1)) = k2 − k − q(q + 1) ≥ k(k − 1
1

2
)

If we take q ≥ 6 as well then this yields

[n− (k + 1)][n− 2(k + 1) + µ][n− 3(k + 1) + µ] ≥ k(k − 1
1

2
)(k − 2)(k − 2

1

2
)

> k(k − 1)(k − 2)(k − 3)

ruling out this case.
For q < 6 we may consult the tables in [Big09]. The two cases in which

the necessary inequality holds are one for q = 2, namely the Higman-Sims graph,
already ruled out, and one for q = 3, with parameters n = 324, k = 57, µ = 12,
where oddly enough the two sides are exactly equal. One way to eliminate this is
to show that the block size is too small: later we will give a lower bound of 19 for
the minimal block size in a geometry associated with a 4-e.c. graph.

There remains the marginal case µ ≤ q. In this case as q ≤ 2q2 + q we have
n ≥ (q + 3)k + q3 − 3q ≥ (q + 3)k + 3 for q ≥ 3 and thus we can use the crude
estimate

(n− (k + 1))(n− 2(k + 1))(n− 3(k + 1)) ≥ [(q + 2)k][(q + 1)k][qk] ≥ k4

to reach a contradiction. �

Since we have quoted a lower bound for the block sizes in geometries associated
with 4-e.c. triangle free graphs, we will give that next.

12.4. E4-geometries: Block size. We will refer to a geometry associated
with a 4-e.c. triangle free graph as an E4-geometry. We will not try to write out
the axioms explicitly. These would consist of conditions encoding the 2-e.c. property
as was done in the case of E3-geometries, the condition that no block is contained
in another, to eliminate the degenerate case of a linear geometry, and finally the
main axioms which correspond to the adjacency condition Adj4 which takes on
various forms in the geometrical context depending on how the various vertices are
interpreted in the geometry. We may use any instance of the 4-e.c. condition, and
are not confined to the special cases corresponding directly to our reduced set of
axioms.

We omit the elementary proofs of the next three lemmas.

Lemma 12.2. Let (P,B) be an E4-geometry, let b, b1 be intersecting blocks, and
let b2 be any other block. Then

|(b ∩ b1) \ b2| ≥ 2

Lemma 12.3. Let (P,B) be an E4-geometry, let b, b1 be intersecting blocks,
Then |b ∩ b1| ≥ 5.

Lemma 12.4. Let (P,B) be an E4-geometry, and let b, b1, b2 be blocks with a
point in common, and b3 a block meeting b but disjoint from b1, b2. Then |b \ (b1 ∪
b2 ∪ b3)| ≥ 5.
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Proposition 12.5. Let (P,B) be an E4-geometry. Then any block contains at
least 19 points.

Proof. Let b be a block. We claim first that there are b1, b2 with b∩b1∩b2 6= ∅,
and with |(b ∩ b2) \ b1| ≥ 4.

Begin with b∩b1∩b2 nonempty and with the three blocks distinct, and suppose
|(b ∩ b2) \ b1| ≤ 3. Take a block b3 so that:

|b3 ∩ [(b ∩ b2) \ b1]| = 1; b3 ∩ b1 = ∅
Then |b ∩ b2 ∩ b3| = 1 and (b ∩ b3) \ b2| ≥ 4.

So fix blocks b1, b2 with b ∩ b1 ∩ b2 6= ∅, and with |(b ∩ b2) \ b1| ≥ 4. Then
|b ∩ (b1 ∪ b2)| ≥ 9. Now take b3 disjoint from b1, b2 and meeting b. Then we have
|b ∩ (b1 ∪ b2 ∪ b3)| ≥ 14. And then by the previous lemma |b| ≥ 19. �

It would be good to have a more sophisticated lower bound here. We can
convert this bound into a crude but decent lower bound for the number of points
in such a geometry.

Lemma 12.6. Let (P,B) be an E4-geometry. Then there are intersecting blocks
b1, b2 with |b1 ∪ b2| ≥ 33.

Proof. Let m = min(|b1 ∩ b2| : b1 ∩ b2 6= ∅). If m = 5 we are done.
Suppose m ≥ 6. Take any two intersecting blocks b1, b2. Take a block b meeting

b1 and disjoint from b2. Take a point p in b1 \ (b2 ∪ b), and a block b′ disjoint from
b2 containing p.

Then b1, b, b
′ meet pairwise and hence by the 4-e.c. condition have a point in

common. Furthermore b1 meets b2 and b, b′ are disjoint from b2. So by Lemma
12.4, |b1 \ (b∪ b′ ∪ b2)| ≥ 5. Furthermore |(b1 ∩ b′) \ b| ≥ 2. So |b1 \ (b∪ b2)| ≥ 7 and
|b1 \ b2| ≥ m+ 7 ≥ 13.

Also, in the proof of the previous lemma, the lower bound obtained on the
block size is actually m + 4 +m + 5 which with m ≥ 6 would give a block size of
at least 21 and a lower bound for |b1 ∪ b2| of at least 34 in this case. �

Lemma 12.7. Let (P,B) be an E4-geometry, n = |P |. Then n ≥ 66.

Proof. Take intersecting blocks b1, b2 with |b1 ∪ b2| ≥ 33. Let

m = min(|b3 ∩ b4| : b3 ∩ b4 6= ∅, (b3 ∪ b4) ∩ (b1 ∪ b2) = ∅)
Ifm = 5 the result is immediate, so take m = 6 and argue as in the previous lemma.

�

Another way of stating all of this is as follows.

Corollary 12.7.1. Let G be a 4-e.c. graph. Then every vertex has degree at
least 66, every pair of independent vertices has at least 19 common neighbors, and
every triple of independent vertices has at least 5 common neighbors.

In the Higman-Sims graph the corresponding numbers are 22, 6, and 2.
It might be of interest to explore the known feasible parameter sets for strongly

regular triangle free graphs to see which seem compatible with the E3-condition.
At the extreme value µ = q(q + 1), the ratio of k(k − 1)(k − 2) to

[n− (k + 1)][n− 2(k + 1) + µ]
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is q, which in the two known cases of the Clebsch and Higman-Sims graphs actually
corresponds to the condition Adj3 with multiplicity q. There are many other cases
where the necessary inequality is satisfied with smaller values of µ. In fact, the
majority of the cases listed in the appendix to [Big09] meet this condition. The
only case consistent with this inequality in which the Adj3 condition is known to
fail is the case of the M22 graph.

In a similar vein, dropping the E4 condition, we add some comments on the re-
lationship between the multiplicity with which Adj3 is satisfied, and the multiplicity
with which Adj2 is satisfied.

Let G be a 3-e.c. triangle free graph. Define µn(G) as the minimum over all
independent sets I ⊆ G of order n of the cardinality of the set of common neighbors
of I. Thus for example in the Higman-Sims graph, µ2(G) = 6 and µ3(G) = 2.

Lemma 12.8. Let G be a 3-e.c. triangle free graph. If µ3(G) ≥ 2 then µ2(G) ≥
5.

Proof. Fix two vertices u1, u2 ∈ G, and v adjacent to both. With v as base
point work in the associated geometry. We look for 4 blocks containing the points
u1, u2.

Let b1 be a block containing u1, u2, and u3 ∈ P \b1. Let b2 be a block containing
u1, u2, u3 (µ3(G) = 2), and u4 ∈ P \ b1 ∪ b2. Let b3 be a block containing u1, u2, u4.
It suffices to show that b1 ∪ b2 ∪ b3 6= P .

Let b be a block containing u4 and disjoint from b1, b2. Then b \ b3 ⊆ P \ (b1 ∪
b2 ∪ b3). �

So we have what appears to be a sharply descending series of successive weak-
enings of the E4 condition, with no known examples of even the weakest condition
other than subgraphs of the Higman-Sims graph.

(1) G is 4-e.c.
(2) µ3(G) ≥ 5
(3) µ3(G) ≥ 2
(4) µ2(G) ≥ 5
(5) µ2(G) ≥ 3
(6) In the geometry associated to some base point, every block contains at

least 3 points.

What we can do, as mentioned, is produce an infinite family of E3-geometries
with a unique block of order 2, but even in this case we get no bound on the number
of blocks of order 2 for other geometries associated with the same graph, at different
basepoints.

We return now to the case of E3-geometries. The first examples of an infinite
family of 3-e.c. triangle free graphs was given by Michael Albert. An examination
of the corresponding geometries leads naturally to the consideration of a more
general class of geometries with rather special properties. From one point of view
these examples are degenerate; on the other hand, examples can be constructed
naturally from projective geometries.

13. Some E3-geometries

13.1. Albert geometries. We first present Michael Albert’s original con-
struction. Observe that the Clebsch graph can be represented as a collection of 4
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copies of a 4-cycle, related systematically to one another: a vertex v in one copy
will be connected only to one vertex in any other copy, namely the vertex corre-
sponding to the one diagonally opposed to v. Evidently the same recipe can be
extended to any number of copies of a 4-cycle, and any triple of vertices in one of
these extended graphs embeds into a copy of the Clebsch graph; so the “stretched”
Clebsch graph inherits the 3-e.c. property from the Clebsch graph.

In terms of the associated combinatorial geometry, the Clebsch graph corre-
sponds to the geometry on 5 points in which every pair is a block. The stretched
Clebsch graphs correspond to a geometry on n points, n ≥ 5, in which the blocks
are of two sorts:

(i) all the pairs containing either of two fixed points;
(ii) all the sets of points of order n − 3 not containing either of those two

points.

Definition 13.1.
1. A point p in a combinatorial geometry (P,B) will be said to be isolated if

every pair of points containing p is a block.
2. An E3-geometry will be called an Albert geometry if it has at least one

isolated point.

Lemma 13.2. For n ≥ 5, there is a unique Albert geometry on n points having
two isolated points.

Proof. If p, q are two isolated points, and b is a block not containing p or q,
then |b| ≥ n− 3 as otherwise there will be three pairwise disjoint blocks.

Let a ∈ P , a 6= p, q. There is a block b disjoint from the blocks {a, p} and
{a, q}, and as |b| ≥ n− 3, b = P \ {a, p, q}. So the identification of the geometry is
complete. �

We will look at some examples of Albert geometries with a unique isolated
point. We do not expect that one can classify these without some further restric-
tions. In general, the geometry in the associated graph will depend on the base
point selected, so it is noteworthy that if one of these geometries is an Albert ge-
ometry, then they all are. We note that even the number of points in the geometry
may depend on the base point, in other words the corresponding graphs are not
regular in general. For the specific case of the geometry with two isolated points
just described, the corresponding graph is vertex transitive (as is clear from Al-
bert’s original description of it), so the same geometry is obtained from any base
point.

If we remove an isolated point from an Albert geometry and look at the geom-
etry induced on the remaining points, we get a reasonable class of geometries. This
point of view is useful for the construction of examples.

Definition 13.3. Let (P,B) be an Albert geometry, a an isolated point. The
derived geometry (P0, B0) with respect to a has point set P0 = P \ {a}, and blocks
B0 = {b ∈ B : a /∈ b}.

The reconstruction of (P,B) from (P0, B0) is immediate. We can phrase the
E3-conditions directly in terms of the derived geometry as follows.

I-D There are at least two points.
II-D For any three points p, q, r there is a block containing p, q, and not r.
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III-D There is no inclusion between distinct blocks.
IV-D For any block, its complement is a block.
V-D If b1, b2, b3 are blocks intersecting pairwise, but with no common point,

then b1 ∪ b2 ∪ b3 6= P0.

Any geometry satisfying these axioms will be called a derived geometry. This
terminology is justified by the following lemma.

Lemma 13.4. If (P,B) is an Albert geometry with a an isolated point then the
derived geometry with respect to a satisfies Axioms I-D through V-D. Conversely,
if (P0, B0) is a derived geometry, then the combinatorial geometry on P = P0 ∪{a}
whose blocks are the blocks of B0 together with the pairs containing a is an Albert
geometry.

We omit the verification. Using this result, we can give examples in a very
convenient form.

Examples 13.1.

(1) Let (P0, H) be a projective geometry with H the set of hyperplanes. Let
(P0, B0) have as its blocks the elements of H and their complements. This
is a derived geometry.

(2) Let (P0, L) be a projective plane and let L′ be a set of lines satisfying one
of the following conditions:
(a) Every point lies on at least 3 lines of L′;
(b) L′ contains all the lines of L not passing through some fixed point p,

and two of the lines passing through p.
Let L∗ consist of the lines in L′ and their complements. Then (P0, L

∗) is
a derived geometry.

(3) Let (P0, L) be a projective plane and ℓ ∈ L a fixed line. Let Lℓ consist
of the line ℓ together with the sets ℓ ∪ ℓ1 \ ℓ ∩ ℓ1 as ℓ1 varies over the
remaining lines. Taking these sets and their complements as blocks, we
get an Albert geometry, to which we return below.

(4) Let (P0, H) be as in (1) and let ∞ be an additional point. Extend (P0, H)
to (P1, H1) with P1 = P0 ∪ {∞}, H1 = {h ∪ {∞} : h ∈ H}, and let H∗

1

consist of the elements of H1 and their complements. Then (P1, H
∗
1 ) is a

derived geometry.
(5) Let (P0, B0) be a derived geometry, and a ∈ P0. Let

Pa = {b ∈ B0 : a ∈ b} ∪ {∞}
with ∞ a new point. Let Ba = P0 \ {a}. For p ∈ Ba let bp = {b ∈ B0 :
a ∈ b} ∪ {∞}. Let B∗

a consist of {bp : p ∈ Ba} and the complements
{Pa \ bp : p ∈ B1}. Then (Pa, B

∗
a) is a derived geometry; indeed, it

is just the derived geometry obtained by passing from (P0, B0) to the
corresponding graph, and then using the point p as a base point in place
of the original base point. If we repeat this construction to form the
geometry (Pa∞, Ba∞), we recover (P0, B0).

If (P0, B0) is a derived geometry with |P0| = n and |B0| = 2n′, we will say that
(n, n′) are the parameters of the derived geometry. In Example 13.1 (5) above, if
(P0, B0) has parameters (n, n′), then (Pa, Ba) has parameters (n′ + 1, n− 1). For
example: the derived geometry associated with a projective geometry has type
(n, n) and the new geometry (Pa, Ba) thus has parameters (n+ 1, n− 1).
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As we are ultimately interested in graphs, we will want to consider how the
geometry varies as we change the basepoint. We may suppose that any change
of basepoint takes place in a series of steps, replacing a given basepoint by one
adjacent to it, thus iterating the construction in Example 13.1 (5).

Proposition 13.5. Let (P,B) be an Albert geometry, G the associated graph
with base point v and vertex set {v} ∪ P ∪ B, and u ∈ G any vertex. Let (Pu, Bu)
be the geometry associated to the graph G with respect to the base point u. Then
(Pu, Bu) is again an Albert geometry.

Proof. Since G is connected, it suffices to prove the claim when u is a adjacent
to the base point v of G.

The case in which u is an isolated point of (P,B) must be handled separately.
In this case, there is an involution i ∈ Aut(G) defined by

v ↔ u; a ↔ {a, u} (a ∈ P \ {u}); b ↔ P \ b on blocks

Thus in this case (Pu, Bu) is isomorphic via this automorphism to the original
geometry (P,B).

Suppose now that p0 ∈ P is an isolated point, and u 6= p0. Let p1 = {p0, u} ∈
Pu. We claim that p1 is an isolated point of Pu.

The vertex p0 ∈ Bu is incident with {v, p1} in Pu. For any other b ∈ Pu\{v, p1},
we have b ∈ B0, u ∈ b, and b′ = P0 \ b is in Bu, with b′ incident with p1 and b.
Thus p1 is an isolated point. �

Lemma 13.6. Let (P,B) be an Albert geometry, p0 ∈ P an isolated point, and
(P0, B0) the corresponding derived geometry with parameters (n, n′) where n = |P0|
and n′ = |B0|/2. Let G be the graph associated with (P,B), with base point v. Then
for any vertex u ∈ B0 ∪ {p0, v}, the associated geometry with base point u has the
same parameters (n, n′), while for u ∈ P0 ∪ (B \ B0), the associated geometry has
parameters (n′ + 1, n− 1). Thus at most two vertex degrees occur in the associated
graph.

Proof. Let g be the order of the graphG. We have g = 1+(n+1)+(2n′+n) =
2n + 2n′ + 2. For p ∈ P0, the geometry (P,Bp) has parameters (np, n

′
p) where

np = |Pp| − 1 with Pp the set of neighbors of p in G, namely v, {p, p0}, and the
blocks in B0 which contain p: so np = n′ + 1, and therefore n′

p = n− 1.
Making use of the involution v ↔ p0 which interchanges B \ B0 and P0, the

same parameters are associated with u ∈ B \B0.
On the other hand, for a block b ∈ B0, the set Pb of neighbors of b consists

of the points p belonging to b, the pairs {p0, p} with p ∈ P0 not belonging to b,
and the complement b′ of b in P0, leading to nb = |Pb| − 1 = |P0| = n and thus
n′
b = n′. �

This raises the question as to what sorts of geometries are associated on the
one hand with regular graphs, and on the other hand with graphs having just two
vertex degrees. These conditions do not seem to be very restrictive, and it may
be of interest to impose similar conditions generalizing strong regularity, perhaps
allowing some further use of algebraic methods. As an example, if we begin with the
Albert geometry based on a projective geometry with a single hyperplane removed,
we get a regular graph.
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Example 13.2. Let G be the graph associated to the Albert geometry whose
derived geometry comes from the projective plane. Let v be the base point, p0 ∈ P
the isolated point, and ℓ ∈ B a line. The associated geometry has points Pℓ

consisting of:
{

points p ∈ P0 lying on ℓ

co-points {p, p0} with p /∈ ℓ

Then for ℓ1 6= ℓ a line, the points of Pℓ incident with ℓ as a block in Bℓ are

{p ∈ ℓ \ ℓ1} ∪ {p̂ : p ∈ ℓ1 \ ℓ}
In other words, this corresponds to the union of the fixed line ℓ with ℓ1, with their
common point removed. The block associated with the base point v is {p : p ∈ ℓ}.

In the specific case of the projective plane of order 2, the resulting geometry
again comes from the projective plane of order 2. Otherwise, the geometry is a
different one, and the automorphism group of the graph leaves the pair {v, p0}
invariant, and is Aut(P0, B0) × Z2. But for q = 2 the group is transitive on B0 ∪
{p0, v}.

13.2. Another series of E3-geometries. Moving away from Albert geome-
tries, what we would like to see next is an infinite family of 3-e.c. graphs G with
µ2(G) → ∞, ideally even µ3(G) → ∞. But we are far from this. Leaving aside
the M22 geometry with its remarkably good properties (µ2(G) = 6, µ3(G) = 2), in
infinite families the best we have done to date is to reduce the number of blocks of
order 2 to a single one, while all other blocks can be made arbitrarily large. But
in this construction we deal with single geometry, rather than the set of geometries
associated with a given graph. So there is much to be improved on even at this
weak level.

Example 13.3. With m1,m2,m3 ≥ 2, let the geometry A(m1,m2,m3) be
defined as follows. Our pointset is the union of three disjoint sets P1, P2, P3 with
|Pi| = mi, together with two distinguished points p′, p−, and the following blocks.

(1) b0 = {p′, p−} (size 2);
(2) For a ∈ Pi: a

′ = Pi \ {a} ∪ {p′} (size mi);
(3) For a ∈ Pi: a

+ = {a} ∪ Pi+1 (addition modulo 3), of size mi+1 + 1;
(4) For a ∈ Pi: a− = {a} ∪ Pi−1 ∪ {p−} (subtraction modulo 3), of size

mi−1 + 2.

If m1,m2,m3 ≥ 2 then A(m1,m2,m3) is an E3-geometry, and if m1,m2,m3 ≥
3 then it has a unique block of order 2, with the other blocks of order at least
min(m1,m2,m3). Let G(m1,m2,m3) be the associated graph.

Lemma 13.7. The dihedral group of order 8 acts on G = G(m1,m2,m3) as a
group of automorphisms, extending the natural action on the 4-cycle (v, p′, b0, p

−),
with v the base point, b0 = {p′, p−}. In this action the classes P0 = P1 ∪ P2 ∪ P3,
B′ = {a′ : a ∈ P0}, B+ = {a+ : a ∈ P0}, and B− = {a− : a ∈ P0} are permuted.

Proof. We define two involutions in Aut(G) by:

ι′ : v ↔ p′ b0 ↔ p− a ↔ a′ a+ ↔ a−

ι− : v ↔ p− b0 ↔ p′ a ↔ a− a+ ↔ a′

�
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Lemma 13.8. The graph G(m1,m2,m3) is regular.

Proof. It suffices to check the degree of a vertex a ∈ Pi. The neighbors of a
are v, a+, a− and a′1 for a1 ∈ Ai \ {a}, b− for ∈ Ai+1, c

+ for c ∈ Ai−1, for a total
of 3 + (mi − 1) +mi+1 +mi−1 which is the degree of the base point. �

The geometries associated with G(m1,m2,m3) (i.e., those giving an isomorphic
graph) are not well behaved.

Lemma 13.9. Let G = G(m1,m2,m3) corresponding to A(m1,m2,m3) with
point set P1 ∪ P2 ∪ P3 ∪ {p′, p−}, and take a ∈ Pi. Then the geometry (Pa, Ba)
associated with the base point a has at least mi + 1 blocks of order 2, and exactly
2(mi − 1) blocks of order m1 + m2 + m3 − 1 = n − 2 with n = |P | the degree of
G. On the set P ∗

i = {a′1 : a1 6= a, ai ∈ Pi} ∪ {a+, a−} of order mi + 1, the induced
geometry is the Albert geometry with two isolated points a+, a−, in the sense that
all pairs {a+, a′1} and {a−, a′1} occur as blocks of the associated geometry (Pa, Ba),
while all subsets of order n − 3 contained in Pa which are disjoint from {a+, a−}
and which contain Pa \ P ∗

i also occur as blocks.

Note that in the “restricted” geometry on P ∗
i we are taking as blocks, those

which lie within P ∗
i , and those which contain its complement.

Proof.

Pa = {v, a+, a−, b′(b ∈ Pi, b 6= a), c−(c ∈ Pi+1), d
+(d ∈ Pi−1)}

The block associated with a′ is {a+, a−}. The block associated with b+ for b ∈ Ai,
b 6= a is {a−, b′}. The block associated with b− for b ∈ Pi is {a+, b′}.

Finally, the block associated with b ∈ Pi (b 6= a) is

{v} ∪ P−
i+1 ∪ A+

i−1 ∪ {b′1 : b1 ∈ Pi, b1 6= a, b}
�

We observe that the smallest geometry for which we are able to get a single
block of order 2 has order 11, namely A(3, 3, 3), and this is sharp. We will give
some additional information concerning small geometries.

13.3. E3-Geometries of order at most 7.

Lemma 13.10. Let (P,B) be an E3-geometry, and n = |P |.
(1) The maximal block size is at most n− 3.
(2) If there is a block of order n− 3 then all pairs lying in its complement are

blocks.
(3) n ≥ 5.
(4) If p is a point which is contained in at least n− 3 blocks of order 2 then

p is isolated.
(5) If n = 5 or 6 then (P,B) is the Albert geometry with two isolated points.

Proof. The first three points are immediate. For the fourth, let q, q′ be the
two points not known to occur together with p as a block of order 2. Take a block
containing p, q and not q′; it must be {p, q}. Similarly {p, q′} is block.

For the last point, the case n = 5 is immediate, so take n = 6. Then there is a
pair of points p, q which do not constitute a block, and therefore they are contained
in two blocks of order 3, say {p, q, r} and {p, q, s}. Let t /∈ {p, q, r, s}. Then the
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pairs containing t and neither of p, q are blocks, by our second point. So t is an
isolated point. So the geometry has two isolated points, and we are done. �

We will also carry through the analysis for the case n = 7, finding in this case
that the geometry is necessarily an Albert geometry, and that there are only two
possibilities: the Albert geometry with two isolated points, and one other.

Example 13.4. We construct a derived geometry B′(n1, n2) as follows. Let
A1, A2 be sets of orders n1, n2 respectively, and c an additional point. Take as
blocks:

a1A2(a1 ∈ A1); a2A1(a2 ∈ A2; cA
′
i(A

′
i ⊆ Ai, |Ai \A′

i| = 1)

Let B(n1, n2) be the corresponding Albert geometry, with n1 + n2 + 2 points.

If n1 = n2 = 2 then this is the Albert geometry with two isolated points on 6
vertices. Otherwise, it is an Albert geometry with one isolated vertex. In particular
we have the case n1 = 2, n2 = 3 of order 7.

Lemma 13.11. Let (P0, B0) be the derived geometry associated with an Albert
geometry, with n0 = |P0| > 4. Call the blocks of order 2 in B0 edges, and view P0

as a graph with respect to these edges. Then all edges in P0 have a common vertex.

Proof. As n0 > 4 there can be no disjoint edges. So we need only eliminate
the possibility that there is a triangle.

Suppose p, q, r form a triangle: any pair is a block. Take further points s, t,
and a block b containing r, s but not t. Then b is disjoint from p, q and hence the
complement of b is p, q. But then t is in b, a contradiction. �

Lemma 13.12. An Albert geometry on 7 points with one isolated point must be
isomorphic with B(2, 3).

Proof. We work in the derived geometry (P0, B0) on 6 points, and consider
the graph on P0 whose edges are the pairs occurring as blocks in B0. If there
are three or more edges then their common vertex is a second isolated point, a
contradiction.

If there are exactly two edges we identify the geometry B(2, 3) as follows. Let
the vertex common to the edges be called c, and let the other vertices on the edges
be A = {a1, a2}, while the remaining vertices are B = {b1, b2, b3}. As there are just
the two edges, the other blocks containing c are triples of the form {c, b, b′} with
b, b′ ∈ B, and as we may exclude any element of B, all such triples occur. Thus we
know all the blocks containing c and taking complements, we have all the blocks.

Suppose there is at most one edge, and take four points A = {a1, a2, a3, a4}
containing no edge, and let c1, c2 be the other points. Then every block containing
c1 and meeting A is a triple, thus the blocks containing c1 meet A in a certain set
of pairs E1, and for any two points a, a′ ∈ A there is a pair in E1 containing a
and not a′. If E1 contains no disjoint pairs, it follows that the edge set E1 forms
a triangle in A; and if we define E2 similarly, and E2 contains no disjoint pairs,
then E2 forms a triangle in A. However E1 ∪ E2 covers all pairs in A. So we
may suppose that E1 contains two disjoint pairs, say {a1, a2} and {a3, a4}. We
may suppose then that E2 contains the pair {a1, a3}, and hence B0 contains the
blocks {c1, a1, a2}, {c1, a3, a4}, {c2, a1, a3} which meet pairwise but have no point
in common. But as the union of these blocks is P0, we contradict our axioms. �

And lastly we claim that up to this point no non-Albert geometry occurs.
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Lemma 13.13. Let (P,B) be an E3-geometry on n ≤ 7 points. Then (P,B) is
an Albert geometry.

Proof. We have dealt with the cases n < 7 and we suppose n = 7.
We call a block of order 2 an edge in P .
Suppose first that there is some block A of order 4. We claim that any a ∈ A

lies on an edge.
Let A = {a, a1, a2, a3} and take blocks b1, b2 with ai, a3 ∈ bi, a /∈ bi for i = 1, 2.

Take b disjoint from b1 ∪ b2 with a ∈ b. Since any pair disjoint from A is an edge,
b must also be an edge.

Now as |A| = 4 we can find two points a′, a′′ in A for which there are edges
{p, a′}, {p, a′′} with a common neighbor p ∈ P \ A. Then p lies on 4 edges and is
therefore an isolated point.

From now on suppose that there is no block of order 4, and we will arrive at a
contradiction.

We show first that every point lies on an edge. Suppose the point p lies on no
edge, so that every block containing p has order 3. Take two blocks b1, b2 whose
intersection is {p}. Then the complement of b1 ∪ b2 is an edge e.

Take q ∈ b1, r ∈ b2 with q, r 6= p, and with q, r not an edge, using the fact
that there are no three disjoint edges. Take a block b3 containing q, r, and not p.
Then b1, b2, b3 meet pairwise but have no common point, so they are disjoint from
a block, which must be e. Thus b3 ⊆ b1 ∪ b2. There is a point s /∈ b3 ∪ {p} ∪ e.
Form a block b containing q, s and not p, and take a block b′ disjoint from b ∪ b3
and containing p. Then p ∈ b′ ⊆ {p} ∪ e and thus b′ is an edge containing p.

Now consider the graph on P formed by the edges. Every vertex lies on an edge,
there are no three disjoint edges, and furthermore no vertex has degree greater than
3, as it would then be an isolated point of the geometry.

By the first two conditions, some vertex p must have degree at least 3, and
hence exactly 3. Then it follows by inspection that there is some vertex q not
adjacent to p such that every point of P other than p, q is adjacent to one of the
two points p, q. Consider a block b containing p, q. Since b cannot contain any edge
at p or q, b is {p, q}, so these points are adjacent and we have a contradiction. �

13.4. A small non-Albert geometry. We record some further information
about small E3-geometries. The smallest non-Albert geometry lives on a set with
8 points, and is unique up to isomorphism. This geometry has 7 blocks of order 2.

The smallest geometry in which one has a unique block of order 2 is the geom-
etry A(3, 3, 3) on 11 points. To get an E3 geometry with no block of order 2 one
may take the geometry of lines and hyperovals in the projective plane over a field of
order 4, with 21 points. On the other hand, we have checked that such a geometry
must have at least 13 points. We would like to know the minimum size of such a
geometry, and what the geometry is. We observe at this point some distinct and
possibly very substantial gap between the degenerate cases we have discussed and
the next level.

By brute force search, all of the E3-geometries of order 8 may be identified.
There are 11 such geometries, corresponding to 7 graphs. Four of these graphs
correspond to two geometries of order 8, two correspond to one geometry of order
8 apiece, while the last graph corresponds to one geometry of order 8 and one of
order 9. These geometries are Albert geometries except for one pair of geometries
corresponding to a single graph. We list the geometries as follows, including the
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block counts (the number of blocks of each size, from the minimum size 2 up to
the maximum size). We will refer to one geometry as a “variant” of another if it
defines an isomorphic graph.

E3-geometries of order 8:
(1) The Albert geometry with two isolated points. Block count (13, 0, 0, 6).
(2) Albert geometries with unique isolated points:

(a) The geometry whose derived geometry comes from a projective plane
minus a line, with a vertex transitive automorphism group. Block
count (7, 6, 6).

(b) The geometry whose derived geometry comes from a projective plane.
In the associated graph, there is also a geometry on 9 points. Block
count (7, 7, 7).

(c) The geometry B(2, 4) with block count (9, 4, 4, 2) and a variant with
block count (7, 6, 6).

(d) The geometry B(3, 3) with block count (7, 6, 6) and a variant with
block count (9, 4, 4, 2).

(e) An Albert geometry with block count (8,5,5,1) and a variant with
block count (7, 6, 6).

(3) A pair of non-Albert geometries with block counts (6, 10, 1, 2) and (7, 6, 6).
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14. Appendix: Amalgamation Classes (Tables)

The following table shows the full list of 27 amalgamation classes determined by
constraints on triangles, not allowing free amalgamation, and with the associated
Fräıssé limit primitive. The structures are assumed to have four nontrivial 2-types,
all of them symmetric (e.g., one may think of these structures as complete graphs,
with 4 colors of edges). The data are taken from [Che98], with slightly different
notation but the same numbering. Those which can be interpreted as homogeneous
metric spaces were put into a clearer form in §10.

# ABD CDD AAC ADD AAD BBD CCA CCD BDD BAA AAA DDD

1 1 1 0 1 0 0 0 0 0 0 0 0
2 1 1 0 1 0 0 0 0 0 0 0 1
3 1 1 0 1 1 0 0 0 0 0 0 0
4 1 1 0 1 0 0 0 0 0 0 1 0
5 1 1 0 1 1 0 0 0 0 0 0 1
6 1 1 0 1 0 0 0 0 0 0 1 1
7 1 1 0 1 1 0 0 0 0 0 1 0
8 1 1 0 1 1 0 0 0 0 0 1 1
9 1 1 0 0 1 0 0 0 0 0 0 1

10 1 0 0 1 0 0 0 0 0 0 1 1
11 0 1 0 1 0 1 0 0 0 0 0 1
12 0 1 0 1 1 1 0 0 0 0 0 1
13 0 1 0 1 0 1 0 0 0 0 1 1
14 0 1 0 1 1 1 0 0 0 0 1 1
15 1 1 0 1 0 1 0 0 0 0 0 1
16 1 1 0 1 1 1 0 0 0 0 0 1
17 1 1 0 1 0 1 0 0 0 0 1 1
18 1 1 0 1 1 1 0 0 0 0 1 1
19 1 1 0 0 1 1 0 0 0 0 0 1
20 1 1 0 0 1 1 0 0 0 0 1 1
21 1 1 1 0 1 0 0 0 0 0 0 1
22 1 1 1 1 1 0 0 0 0 0 0 0
23 1 1 1 1 1 0 0 0 0 0 0 1
24 1 1 1 1 0 0 0 0 0 0 1 1
25 1 1 1 1 1 0 0 0 0 0 1 1
26 1 1 1 0 1 0 0 1 1 0 0 1
27 1 0 0 1 1 0 1 1 1 1 1 1

Table 3. 27 amalgamation classes [Che98]. See §10
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