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L∗-GROUPS OF ODD TYPE
WITH RESTRICTED 2-TORAL ACTIONS

II. PRÜFER RANK 2 AND 2-RANK AT LEAST 3:
COMPONENT ANALYSIS

JEFFREY BURDGES AND GREGORY CHERLIN

Abstract. We begin the analysis of connected simple K∗-groups of finite Morley rank and odd
type having Prüfer 2-rank 2 and 2-rank at least 3. More generally, we consider certain simple

L∗-groups of odd type; degenerate type simple sections are allowed, but their definable auto-

morphism groups are restricted. The present paper analyzes algebraic components in centralizers
of involutions, isolating the expected configurations involving components that woujld be en-

countered in groups of type PSp4 or G2, namely SL2 ∗ SL2 and possibly PSL2. The recognition

problem (via verification of BN -pair axioms) will be discussed subsequently. At that point one
exotic configuration appears in the case of G2 which can be eliminated in the context of finite

simple group theory but which has not been eliminated in the finite Morley rank context.

In the general L∗ context the so-called uniqueness case presents additional difficulties, but
in the present case, as 2-rank is assumed to be greater than Prüfer rank, the uniqueness case is

eliminated by prior work.
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1. Introduction

1.1. The Algebraicity Conjecture(s). The Algebraicity Conjecture
for simple groups of finite Morley rank states that connected simple
groups of finite Morley rank are simple algebraic groups over alge-
braically closed fields.

The Sylow 2-subgroup in a group G of finite Morley rank has a
subgroup of finite index of the form

U ∗ T

with U definable, connected, of finite exponent, and T a divisible
abelian 2-group. The group G is said to have even, odd, mixed or
degenerate type according as T is trivial, or U is trivial, or neither is
trivial, or both are, respectively. Odd type includes algebraic groups
over algebraically closed fields of any characteristic other than 2, in-
cluding characteristic 0. The classification by type is independent of
the choice of Sylow 2-subgroup, as they are conjugate.

This four-way division into types gives us four versions of the Alge-
braicity Conjecture which may appear to be inextricably interlinked,
but this is misleading. The even and mixed type cases have been re-
solved, independently of the other two types.

Even & Mixed Type Theorem ([ABC08]). There are no connected sim-
ple groups of finite Morley and mixed type. Those of even type are
algebraic; more precisely, they are Chevalley groups over algebraically
closed fields of characteristic 2.

The case of degenerate type represents both the most doubtful and
the most difficult portion of the conjecture. However, a mix of methods
from finite group theory (both the theory of finite simple groups, and
black box group theory) with model theoretic ideas of a more geometric
character suffices to prove the following, which we will find useful here,
even though our focus will be on groups of odd type.
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Degenerate Type Theorem ([BBC07]). A connected group of finite Mor-
ley rank and degenerate type has trivial Sylow 2-subgroup.

In other words, any connected group of finite Morley rank which
contains an involution has an infinite Sylow 2-subgroup.

The case of odd type can be approached by methods closely parallel
to methods used in finite simple group theory, but does lead back to
difficult problems in degenerate type. One of our concerns has been
to separate the difficulties which may be viewed as inherited from the
degenerate case from those specific to the analysis in odd type.

We are concerned accordingly with the following.

Odd Type Algebraicity Conjecture. A connected simple group of finite
Morley rank of odd type is a Chevalley group over an algebraically
closed field of characteristic other than 2.

If one combines this conjecture with the known results it can also
be put in the following form.

Non-Degenerate Type Algebraicity Conjecture. A connected simple group
of finite Morley rank which contains an involution is a Chevalley group
over an algebraically closed field.

1.2. Inductive strategies. The analysis of groups of finite Morley
rank is inductive, or bottom-up, but really divides into three somewhat
independent layers—thin, quasi-thin, and generic type (i.e., tiny, small,
and typical)—each with their own particular techniques. In terms of
the Algebraicity Conjecture these layers should correspond to Lie ranks
1, 2, or above.

Whichever layer one considers, one typically assumes that the group
under consideration is a minimal counterexample to the Algebraicity
Conjecture. That is, one works inductively. But it is desirable to re-
strict this induction hypothesis in a way which clarifies what is actually
required for the inductive argument, and which disentangles the var-
ious portions of the Algebraicity Conjecture as far as is possible. It
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is this approach which led to an unconditional proof of the Even and
Mixed Type conjectures without first dealing with the caae of degen-
erate type.

In the odd type case, a similar approach throws into relief what
the salient problems are for groups of degenerate type, and possibly
some other groups of Prüfer rank 1, with regard to the Algebraicity
Conjecture for groups with involutions.

Building on a sequence of results of increasing generality, the fol-
lowing was shown in [BC22a].

High Prüfer Rank Theorem. Let G be a simple group of finite Morley
rank of odd type with Prüfer 2-rank at least three. Then one of the
following applies.

(1) G is a Chevalley group over an algebraically closed field of char-
acteristic other than 2.

(2) G has a proper definable strongly embedded subgroup.

(3) G has a definable simple section of odd type which is non-
algebraic and has Prüfer rank at most 2.

(4) G has a definable simple section of degenerate type on which
some definable section of G of odd type acts faithfully as a group
of automorphisms.

Note that in the last case, the section which acts faithfully can be
supposed to be the definable hull of a nontrivial 2-torus.

In theK∗ case, where all proper definable connected simple sections
are assumed to be algebraic, it is known that one can eliminate the
second alternative, and for that step it would suffice to have Prüfer
rank at least 2.

To put this in an inductive setting, we assume that proper defin-
able connected simple sections with involutions are algebraic, which



L∗ GROUPS IN ODD TYPE: QUASI-THIN GROUPS, COMPONENTS 7

eliminates the third alternative, and that any definable automorphism
groups of connected simple sections of degenerate type are themselves
of degenerate type, which eliminates the last alternative; but we allow
simple definable sections of degenerate type. The High Prüfer Rank
Theorem gives either an identification or a configuration of “unique-
ness type” that calls for further analysis. One knows in this uniqueness
case that Prüfer 2-rank and ordinary 2-rank agree, which is already
somewhat pathological.

We continue here, and in subsequent papers, to analyze the situa-
tion in Prüfer 2-rank 2 and 2-rank at least 3, under similar inductive
hypotheses. The restriction on automorphism groups of simple sections
of degenerate type is denoted NTA2, which is intended to suggest the
phrase “no 2-toral automorphisms.” A similar restriction on infinite el-
ementary abelian 2-groups acting faithfully on degenerate type groups
is known as Altınel’s lemma and was the starting point for the success-
ful analysis of groups of even and mixed type—where it is a lemma,
rather than an assumption.

1.3. The target theorem. We aim ultimately at the following result,
in which the terms “L∗ group” and “NTA2” refer to our inductive hy-
potheses on simple sections of odd type, or on automorphism groups of
simple sections of degenerate type, respectively (Definition 2.1). Since
the proof is not given in this paper we treat this as a conjecture here.

Conjecture 1. Let G be a connected simple L∗ group of finite Morley
rank of odd type satisfying the condition NTA2, with Prüfer 2-rank 2
and

m2(G) ≥ 3.

Then either G is a simple Chevalley group over an algebraically closed
field (PSp4 or G2), or G has 2-rank 3 and involves a configuration
known from finite simple group theory, associated with groups of type
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G2 in characteristic 3, but with the wrong Borel subgroup (normalizer
of a Sylow 3-subgroup),

We intend to give our analysis in three parts. The first part, compo-
nent analysis, will be given here. This part is lengthy and troublesome,
and involves a number of special cases which do not arise in nature and
must be eliminated. We were able to bypass this kind of detailed anal-
ysis in the case of higher Prüfer rank by very general considerations.

With the analysis of the present paper in hand, one can prove a
recognition theorem for PSp4, corresponding to the case of Prüfer rank
2 and 2-rank at least 4 [BC22b]. In the case of Prüfer rank 2 and 2-rank
3 the target group is G2. Here one gets either the desired identification
or a rather specific configuration encountered also in the finite case,
involving a base field of characteristic 3 [BC22c]. In the finite case
the corresponding configuration is eliminated by character theoretic
arguments.

The method of proof of the analog of Conjecture 1 in the case
of higher Prüfer rank (where however there is also an unresolved case
involving strongly embedding, when the Sylow 2-subgroup is a 2-torus)
is to aim at a form of the Curtis-Tits theorem, involving generation
by root SL2-subgroups. That approach requires having some control of
Lie rank 2 subgroups a priori and is not appropriate here.

In Prüfer rank 2 we aim at a direct construction of a BN-pair, once
the necessary component analysis is in hand, and then apply results
of Kramer, Tent, and van Maldeghem to identify the group. To verify
that the expected (B,N)-pair has the desired properties, we first verify
that the Weyl group has the expected structure, and then examine its
action on root groups, reaching a qualitative approximation to the
Chevalley commutator formula holds for positive roots, after which
the appropriate properties follow.

As far as the pathological configuration arising in the G2 analysis
is concerned, while number of finite group theoretic arguments based
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on character theory have been successfully replaced in the context of
groups of finite Morley rank by structural analyses, using for example
the fact that any definable infinite field will be algebraically closed, the
particular configuration that arises appears to be challenging, even in
the setting of K∗ groups.

Conjecture 1 leaves the case of Prüfer rank 2 and 2-rank 2 entirely
open. Conjecturally of course this should correspond to groups of type
PSL3 but this is not part of what we are aiming at.

1.4. Component analysis. As in finite group theory the analysis in
groups of sufficiently high 2-rank begins with an examination of the
groups E(CG(i)) for involutions i, which in our context shifts to the
subgroup Ealg(CG(i)), which is the product of the algebraic compo-
nents. In favorable cases this analysis is handled largely by signalizer
functor theory.

Along the way, some delicate points arise which call for the use of
unipotence theory in the finite Morley rank context. The general theory
was already given in [BC22a] at a level of generality that allows for
some applications in our current setting (Prüfer rank 2, 2-rank at least
3). Up to a point this treatment is fairly uniform, but in Prüfer rank
at least 3 there comes a point at which one can study the interaction
of subgroups of type (P)SL2 by reduction to the case of Prüfer rank 2.

In Prüfer rank 2 we cannot escape a close examination of the various
pathological cases which may arise in theory. We aim at the following,
where part of the analysis involves a subgroup EE of Ealg which is
particularly well-behaved.

Theorem 1.1. Let G be a connected simple L∗ group of finite Morley
rank of odd type satisfying the condition NTA2, with Prüfer 2-rank 2
and

m2(G) ≥ 3.
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Then there are at most two conjugacy classes of involutions, and
one of the following applies.

(1) There are two conjugacy classes of involutions.

Then the 2-rank of G is 4; one conjugacy class of involutions
satisfies EE(CG(i)) = PSL2, and the other satisfies EE(CG(i)) =
SL2 ∗2 SL2, with the same base field in all components; the two
components of SL2 ∗2 SL2 are conjugate, and the Sylow 2-subgroup
is as in PSp4.

(2) There is one conjugacy class of involutions, and these satisfy

Ealg(CG(i)/OFCG(i)) = SL2 ∗2 SL2

(not necessarily over the same base field).

More precisely, if L is a component of CG(i), then L is of type
SL2, CG(i) = L ∗2CG(L), and Ealg(CG(L)/OFCG(L)) is of type
SL2.

Furthermore, CG(i) is connected and contains a Sylow 2-subgroup
of G, isomorphic to that of SL2 ∗2 SL2 (in characteristic other
than 2).

In the finite case, there are three configurations involving an involu-
tion for which E(C(i)) is of type SL2 ∗2 SL2, treated in [FW69, Fon70]:
the configuration in which the components are conjugate, correspond-
ing to PSp4, the configuration where they are normal in the centralizer
of the involution but the base fields are isomorphic, corresponding to
G2, and a third configuration where the base fields are different, cor-
responding to the twisted group 3D4. In Theorem 1.1 our first case
lies squarely on the road to PSp4 while our second case points in the
general direction of G2, though at this point in the analysis one branch
which has properties reminiscent of both PSp4 and G2 remains to be
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eliminated, while the other branch allows for possibilities reminiscent
of 3D4.

We carry the analysis a little further (by much the same kind of
argumentation) to describe the configurations more precisely.

Theorem 1.2. Let G be a connected simple L∗ group of finite Morley
rank of odd type satisfying the condition NTA2, with Prüfer 2-rank 2
and

m2(G) ≥ 3.

Then there are at most two conjugacy classes of involutions, and
one of the following applies.

(1) There are two conjugacy classes of involutions.

Then the 2-rank of G is 4; and the Sylow 2-subgroup is as in
PSp4.

One conjugacy class of involutions satisfies

C◦
G(i) ≃ PSL2(k)× k×,

and the other satisfies

CG(i) ≃ SL2(k) ∗2 SL2(k),

with the two components of SL2(k) ∗2 SL2(k) conjugate (and all
three base fields the same in the sense that they are definably
isomorphic).

In this case, for i an SL2-involution, i will be the only SL2-
involution in C◦

G(i).

Furthermore the following are equivalent for involutions t.

(a) t is a PSL2-involution.
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(b) t lies in a component of a PSL2-involution.

(c) t lies in a subgroup of G of type PSL2.

For t a PSL2-involution, and Lt = Ealg(CG(t)), the involu-
tions of C◦

G(t) are those of L ⟨t⟩. Those in Lt ∪ {t} are PSL2-
involutions, and the rest are SL2-involutions.

(2) There is one conjugacy class of involutions, and these satisfy

CG(i) = SL2(k1) ∗2 SL2(k2)

where the base fields k1, k2 have the same characterstic. Further-
more, in characteristic zero, we have

r̄0(k
×
1 ) = r̄0(k

×
2 )

in the sense of characteristic zero unipotence theory (§2.3).

Furthermore, CG(i) is connected and contains a Sylow 2-subgroup
of G, isomorphic to that of SL2 ∗2 SL2 (in characteristic other
than 2).
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2. General background

Here we collect useful material on a variety of topics. We do not
go into the history or the origins of the material, but we aim to give
reasonably accessible sources for the material in the form it is applied
here.

2.1. L-groups, D-groups, NTA2.

Definition 2.1. Let G be a group G of finite Morley rank.
1. If G is of odd type, then it is an L-group in the odd type sense

if every definable simple section of odd type is a Chevalley group over
an algebraically closed field of characteristic other than 2, and it is
an L∗-group in the odd type sense if the same applies to every proper
definable simple section of odd type.

2. G satisfies the condition NTA2 if every definable section of G
which acts faithfully on a definable simple section of G of degenerate
type is itself of degenerate type.

3. The group G is a D-group if every definable connected simple
section has degenerate type (and hence contains no involutions), and
G is a D∗-group if the same applies to its proper definable connected
simple sections.

Notation 2.2. If G is a group of finite Morley rank, we will write

O(G)

for the largest definable normal connected subgroup without involu-
tions.

There are two points to note here: the connectedness requirement,
and the absence of any requirement of solvability. On the other hand,
we write σ(G) and F (G) for the solvable radical and Fitting subgroup
of G, and then σ◦(G), F ◦(G) for the respective connected components.
We also write Oσ(G) for Oσ(G).
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Fact 2.3 ( [BC08, Lemma 1.15]). The Sylow 2-subgroup of a connected
D-group G of finite Morley rank is connected.

Fact 2.4 ([BC22a, Lemma 2.29]). Let G be a connected group of finite
Morley rank. Then

[G, σ◦(G)] ≤ F ◦(G).

Definition 2.5. Let H be a group of finite Morley rank.
Then U(H) denotes the largest connected definable nilpotent nor-

mal subgroup of H whose torsion subgroup has bounded exponent.

In particular we will have U(H) = B ∗
∏

r U0,r(U(H)) with B the
torsion subgroup of U(H).

Fact 2.6 ([BC22a, Proposition 3.10]). Let H be a connected L-group of
finite Morley rank and odd type satisfying the condition NTA2. Suppose
that

UF (H) ≤ Z(H).

Then

H = Ealg(H) ∗K where K is connected with

K/Z◦(K) of degenerate type.

In particular, the Sylow 2-subgroup of K is central in H.

Fact 2.7 ([BC22a, Lemma 3.11]). Let H be a connected L-group of fi-
nite Morley rank and odd type satisfying NTA2 and let H̄ = H/OF (H).

Then OF (H̄) ≤ Z(H̄). Hence

H̄ = Ealg(H̄) ∗ K̄ where K̄ is connected and

K̄/Z◦(K̄) has degenerate type.

Fact 2.8 ([BC22a, Lemma 3.12]). Let H be a connected D-group of
finite Morley rank and odd type satisfying NTA2. Then H/UF (H) has
a unique, central, Sylow 2-subgroup.
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2.2. Torsion.

Fact 2.9 ([BN94, Ex. 11 p. 93; Ex. 13c p. 72]). Let H be a definable
normal subgroup of G. If x ∈ G is an element such that x̄ ∈ G/H is a p-
element for some prime p, then xH contains a p-element. Furthermore,
if H and G/H are p⊥-groups, then G is a p⊥-group.

Definition 2.10. For π a set of primes, a π-torus is a divisible abelian
π-group. We write Π for the set of all primes, so that a Π-torus is a
maximal divisible abelian torsion group.

Fact 2.11 ([Che05]). Let G be a group of finite Morley rank. Then any
two maximal Π-tori of G are conjugate.

For the most part one applies the following with p = 2 and with
the group of odd type, to conclude that all involutions lie in a 2-torus.

Fact 2.12 ([BC09, Theorem 3]). Let G be a connected group of finite
Morley rank and odd type, π a set of primes. Then any π-element a in
G such that C◦

G(a) contains no non-trivial π-unipotent subgroup lies in
some π-torus of G.

Fact 2.13 ([AB08, Theorem 1]). If G is a connected group of finite
Morley rank and T is a p-torus of G, then CG(T ) is connected.

Fact 2.14 ([ABC08, Thm. I.6.4]). Let G be a group of finite Morley
rank, S the connected component of a Sylow 2-subgroup with maximal
2-torus T . Then N(T ) controls fusion in S.

We are interested in the case of odd type: so here, S = T .

Definition 2.15. A good torus in a group of finite Morley rank is a
connected definable divisible abelian subgroup such that every defin-
able subgroup is the definable hull of its torsion subgroup.

A decent torus is the definable hull of a Π-torus.

Fact 2.16 ([Wag03], cf. [ABC08, Prop. I.4.20]). If k is a field of finite
Morley rank and non-zero characteristic, then the multiplicative group
k× is a good torus.



16 JEFFREY BURDGES AND GREGORY CHERLIN

From the general theory connected with this notion we quote the
following.

Fact 2.17 ([ABC08, Cor. I.4.22]). Let G be a group of finite Morley
rank, and T a connected definable subgroup of a finite product of good
tori. Then T is a good torus.

It is also clear that a definable quotient of a good torus is a good
torus.

Fact 2.18 ([Fré06b, Lemma 3.1]). Let G be a group of finite Morley
rank, N a definable normal subgroup of G, and T a maximal decent
torus of G. Then TN/N is a maximal decent torus of G/N , and every
maximal decent torus of G/N has this form.

Fact 2.19 ([ABC08, Lemma 8.3]). Let G be a connected solvable group
of finite Morley rank. Then G/F ◦(G) is divisible abelian.

The following may be checked most simply in the Tate module
associated with a 2-torus.

Fact 2.20 ([BC08, Lemma 1.6]). Let T be a nontrivial 2-torus, and let
i be an involution acting on T . Then either i inverts T , or CT (i) is
infinite.

Definition 2.21. There are various useful definitions of Weyl group.
Here we use the one used in [BC09]: W = NG(T )/CG(T ) with T a
maximal Π-torus (bearing in mind Fact 2.13).

Fact 2.22 ([BC09, Theorem 5]). Let G be a connected group of finite
Morley rank. Suppose the Weyl group is nontrivial and has odd order,
with p the smallest prime divisor of its order. Then G contains a p-
unipotent subgroup.

2.3. Unipotence theory. We use the notation U0,r(H) for the sub-
group generated by (0, r)-unipotent subgroups in the sense introduced
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in [Bur04b]. The theory is reviewed in some detail in [BC22a, §2.4].
Here we give a bit of the intuition and recall some useful properties.

In the first place, we have the classical theory of p-unipotent sub-
groups of a group H of finite Morley rank, for p a prime. These are
by definition connected definable solvable p-subgroups. Any such are
in fact nilpotent. One defines Up(H) as the subgroup generated by the
p-unipotent subgroups. If H is solvable then Up(H) is nilpotent and
hence lies in F ◦(H). On the other hand if H is a quasi-simple algebraic
group then Up(H) = 1 unless the characteristic of the base field is p,
in which case Up(H) = H.

The theory of p-unipotent subgroups will be useful here, but we
require an extension to the “prime” 0. In this case, rather than a notion
of 0-unipotence, we will have a graded notion of (0, r)-unipotence for
r ≥ 0, and a corresponding subgroup U0,r(H). While these notions
are not directly comparable, the general sense is that for larger r the
(0, r)-unipotent subgroups become “more” unipotent. In particular,
we attach particular importance to the parameter r̄0(H) defined as the
largest value r for which U0,r(G) > 1 (and r̄0(H) = 0 if there is no such
r).

One subtlety not encountered for ordinary primes p is that in prin-
ciple a U0,r-unipotent subgroup may contain a U0,s-unipotent subgroup
with s ̸= r; when this does not occur, the U0,r-unipotent subgroup in
question is called homogeneous.

We have the following formal properties.

Fact 2.23 ([Bur09, Lemma 2.11]). Let f : G :→ H be a definable
homomorphism between two groups of finite Morley rank. Then

(1) (Push-forward) f [U(0,r)(G)] ≤ U(0,r)(H) is a U(0,r) -group.

(2) (Pull-back) If U(0,r)(H) ≤ f [G] then f [U(0,r)(G)] = U(0,r)(H).

More substantively, we have useful analogs of facts about p-unipotence.
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Fact 2.24 ([Bur09, Theorem 2.16]). Let G be a connected solvable
group of finite Morley rank, for which U0,r(G) is nontrivial for some r.
Then U0,̄r0(G)(G) ≤ F (G).

Fact 2.25 ( [Bur04a, Thm. 2.31]; [Bur06, Cor. 3.6]; cf. [BN94, Thm. 6.8,
6.9]). Let Q be a nilpotent group of finite Morley rank. Then Q = B∗D
is a central product of definable characteristic subgroups B, D ≤ Q
where B is connected of bounded exponent and D is divisible.

Let T be the torsion part of D. Then we have decompositions of D
and B into central products as follows.

B = U2(G)× U3(G)× U5(G)× · · ·
D = d(T ) ∗ U0,1(G) ∗ U0,2(G) ∗ · · ·

with T a Π-torus.

We will only be interested in groups of odd or degenerate type, so
in practice the term U2(Q) wii be trivial and B ≤ O(Q). On the other
hand it is not so clear what the intersections of the various factors in the
decomposition of D will be, as the factors need not be homogeneous.

Fact 2.26 ([Bur06, Corollary 4.6]). Let G = HT be a group of finite
Morley rank, with H and T definable and nilpotent, and H◁G. Suppose
that T is a U0,r-group for some r ≥ r̄0(H). Then G is nilpotent.

In particular, if r > r̄0(H) then T centralizes H.

(For the final statement, apply Fact 2.25.)
We have noted that a failure of homogeneity may cause complica-

tions. In that regard the following is helpful.

Fact 2.27 ([Fré06a, Thm. 4.11]). Let G be a connected group of finite
Morley rank acting definably on a nilpotent group H with H = U0,r(H).
Then [G,H] is a definable homogeneous U0,r-group.

What follows is intended to be helpful in some extreme cases in the
study of L-groups.
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Definition 2.28. We say that a group has abelian Borels if all of its
definable connected solvable subgroups are abelian.

Lemma 2.29. Let G be a connected group of finite Morley rank with
abelian Borels.

Then the following hold.

(1) The Borel subgroups of G are conjugate.

(2) G is generated by its definable connected solvable subgroups.

(3) σ◦(G) = Z◦(G).

Proof.

Ad 1. We argue by induction on the rank of G. If σ(G) is infinite
we may factor it out and conclude at once, while if σ(G) is finite it
is contained in the center and we may in any case factor it out and
suppose that σ(G) = 1, and in particular Z(G) = 1.

By rank computations, if B1, B2 are Borel subgroups then the union
of their conjugates is generic in G. Therefore we may suppose B1 meets
B2 nontrivially. Taking a ̸= 1 in the intersection, we may replace G by
C◦

G(a)/(B1 ∩B2), and conclude by induction on rank.

Ad 2,3.
Let H be the subgroup of G generated by its definable connected

solvable subgroups. If B is a definable connected solvable subgroup of
G then so is σ◦(G)B and hence B centralizes σ◦(G). It follows that

σ◦(G) = Z◦(H)

Furthermore, by a Frattini argument, with B a Borel subgroup of
G, we have G = HN ◦(B). If G > H then N ◦(B) > B and hence there
is an infinite abelian subgroup Ā of N ◦(B)/B. But then the preimage
A is definable connected solvable subgroup of G and we arrive at a
contradiction.
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So G = H and both (2) and (3) follow,
□

Lemma 2.30. Let G be a connected group of finite Morley rank with
abelian Borels.

Suppose that G has a definable faithful action on a torsion-free
abelian group V . Then the following hold.

(1) Up(G) = 1 for all primes p.

(2) Every element of G belongs to a Borel subgroup.

(3) If G is of degenerate type then every Borel subgroup of G is
self-normalizing.

(4) The inverse image of E(G/σ(G)) in G is the central product
σ(G) ∗ E(G). In particular, if G is nonabelian then E(G) > 1.

Proof.

Ad 1. Up(G) = 1 for all primes p.
Suppose that U ≤ G is p-unipotent. Then U commutes with V .

But the action is assumed faithful.

Ad 2. It suffices to show that every non-trivial element a of G lies
in a non-trivial connected definable abelian subgroup. We proceed by
induction on the rank of G.

If d(a) is connected then we are done so suppose d(a) = C × d◦(a)
with C finite and cyclic and write a = aCa

′ with aC ∈ C, a′ ∈ d◦(a).
By Fact 2.12 aC is contained in a Π-torus Ta. Thus aC ∈ C◦

G(aC).
As d◦(a) ≤ C◦

G(aC) we have a ∈ C◦
G(aC). If aC is not central in G we

can conclude by induction.
If aC is central in G then it lies in every maximal Π-torus of G.

Hence aC lies in every Borel subgroup. but d◦(a) lies in some Borel
subgroup, so a lies in some Borel subgroup.

This proves (2).
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Ad 3. With T a maximal Π-torus and B a Borel subgroup containing
T , we have N(B) ∩ C(T ) = N(B) ∩ C◦(T ) = B and hence N(B)/B
embeds into N(T )//T .

But in view of Fact 2.22 this group is trivial. This proves (3).

Ad 4.As σ◦(G) = Z◦(G), the inverse image inG ofG/σ◦(G) is Z◦(G)E(G).
Also E(G) centralizes σ(G)/σ◦(G), so E(G) centralizes σ(G). □

2.4. Co-prime actions.

Fact 2.31 ([ABC99, Prop. 2.43], [ABC08, Prop. I.9.12]). Let G =
H ⋊T be a group of finite Morley rank, Q◁H, and π a set of primes,
such that Q, H, and T are definable and

(1) Q and T are solvable;

(2) T is a π-group of bounded exponent;

(3) Q is a T -invariant π⊥-subgroup.

Then

CH/Q(T ) = CH(T )Q/Q.

Fact 2.32 ([ABC08, I.10.4]). Let G be a group of finite Morley rank
without involutions, and α a definable involutory automorphism of G.
Then

G = CG(α)×G−

(i.e., the multiplication map from right to left is bijective) where G− is
the subset inverted by α.

Lemma 2.33. Let H be a connected D-group of finite Morley rank and
odd type satisfying NTA2. Let T be a Sylow 2-subgroup of H. Then

H = UF (H) · C◦
H(T ).
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Proof. CH(T ) = CH(A) for some finite 2-subgroup A ≤ T .
Apply Fact 2.8 toH and Fact 2.31. toH⋊A. Taking H̄ = H/UF (H),

we have

H̄ = CH̄(A) = CH(A) = CH(T ),

and the lemma follows. □

Fact 2.34 ([ABCC03], [Bur09, Lemma 3.5]). Let G be a connected
solvable p⊥-group of finite Morley rank, and let P be a finite p-group
of definable automorphisms of G. Then CG(P ) is connected.

If in addition G is a nilpotent U0,r-group then CG(P ) is a (0, r)-
unipotent group.

The following is a variation on [BN94, Prop. 13.4] (a simple bad
group has no definable involutive automorphism).

Fact 2.35. Let G be a connected group of finite Morley rank of de-
generate type, and let α be an involutive automorphism of G. Then⋃
CG(α)

G is disjoint from G− \ {1}, where G− = {x ∈ G | xα = x−1}.

Proof. By Theorem 1.1, G has no involutions. By Fact 2.32 we have
G = CG(α)G

−.
Suppose g ∈ G and x ∈ G− ∩ CG(α)

g. We may take g ∈ G−. So

xg
−1

= (xg
−1)α = (xα)(g

−1)α = (x−1)g;

xg
−2

= x−1.

Thus g4 ∈ C(x), but g ∈ d(
〈
g4
〉
), so also g ∈ C(x). Thus x−1 = x,

x = 1. □

Fact 2.36 ([ABC08, Prop. II 11.7]). Let H be a connected solvable π⊥-
group of finite Morley rank acting faithfully and definably on a nilpotent
π-group V of bounded exponent. Then H is a good torus.
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2.5. Generic subsets.

Fact 2.37 ([BBC07, Lemma 4.1]). Let G be a group of finite Morley
rank, H a definable subgroup of G, and X a definable subset of G.
Suppose that

rk(X \
⋃
g /∈H

Xg) ≥ rk(H)

Then rk(
⋃
XG) = rk(G).

Fact 2.38 ([BC09, Thm. 1 (1,2)]). Let G be a connected group of finite
Morley rank, p a prime, and let a be a generic element of G. Then

(1) the element a commutes with a unique maximal p-torus Ta of
G, and

(2) the definable hull d(⟨a⟩) contains Ta.

2.6. The Uniqueness Case.

Fact 2.39 ([BC08, Lemma 6.2]). Let G be a simple L∗-group of finite
Morley rank and odd type, with pr2(G) ≥ 2. Suppose that G has a
strongly embedded subgroup M .

Then M is a D-group, and hence its Sylow 2-subgroups of G are
connected.

The second point is found in Fact 2.3.

Corollary 2.40. Let G be a simple L∗-group of finite Morley rank and
odd type with

pr2(G) = 2; m2(G) ≥ 3.

Then G has no proper definable strongly embedded subgroup.

This gives a useful generation result.
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Definition 2.41. Let G be a group of finite Morley rank, and V a
subgroup (in practice, an elementary abelian 2-subgroup withm2(V ) ≥
2). We set

ΓV = ⟨C◦(U) : U ≤ V, [V : U ] = 2⟩ .

Fact 2.42 ([BC08, Thm. 4.3]). Let G be a connected simple L∗-group
of finite Morley rank and odd type with

m2(G) ≥ 3.

Suppose that ΓV (G) < G for some elementary abelian 2-subgroup V of
rank 2. Then the normalizer

N(ΓV (G))

is a strongly embedded subgroup.

Corollary 2.43. Let G be a simple L∗-group of finite Morley rank and
odd type with

pr2(G) = 2; m2(G) ≥ 3.

Then for any elementary abelian 2-subgroup V of rank 2 we have

ΓV = G.

The following result is similar, but it has a more elementary char-
acter, as it concerns L-groups rather than L∗-groups.

Fact 2.44 ([BC08, Theorem 2.1]). Let G be a connected L-group of
finite Morley rank and odd type. Let V be an elementary abelian 2-
group of rank 2 acting definably on G.

Then ΓV = G.
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2.7. Algebraic groups. A key tool in our program is the fact that
a group of finite Morley rank acting faithfully as a group of automor-
phisms of a quasi-simple algebraic group must itself be algebraic.

Given a quasi-simple algebraic group G, a maximal torus T of G,
and a Borel subgroup B of G which contains T , we define the group
Γ of graph automorphisms associated to T and B to be the group of
algebraic automorphisms of G which normalize both T and B.

Fact 2.45 ([BN94, Theorem 8.4]). Let G ⋊ H be a group of finite
Morley rank where G and H are definable, G an infinite quasi-simple
algebraic group over an algebraically closed field, and CH(G) is trivial.
Then, viewing H as a subgroup of Aut(G), we have H ≤ Inn(G)Γ
where Inn(G) is the group of inner automorphisms of G and Γ is the
group of graph automorphisms of G, relative to a fixed choice of Borel
subgroup B and maximal torus T contained in B.

An algebraic group is said to be reductive if it has no unipotent rad-
ical. Such a group is a central product of semisimple algebraic groups
and algebraic tori. The centralizer of an involution in a reductive alge-
braic group over a field of characteristic ̸= 2 is itself reductive.

Fact 2.46 ([Ste68, Theorem 8.1]). Let G be a quasisimple algebraic
group over an algebraically closed field. Let ϕ be an algebraic automor-
phism of G whose order is finite and relatively prime to the character-
istic of the field. Then C◦

G(ϕ) is nontrivial and reductive.

Proof. We shall replace G by its universal central extension, so our
original group is now Ḡ = G/Q for some Q ≤ Z(G). We also replace
ϕ by an automorphism of our new G, which exists say by Fact 2.45.
There is a homomorphism CG(ϕ mod Q) → Q given by x 7→ [ϕ, x]. As
Q is finite, ϕ centralizes C◦

G(ϕ mod Q). So it suffices to prove the result
for our G which is its own universal central extension.

Since ϕ is algebraic and has finite order, the group G ⋊ ⟨ϕ⟩ is an
algebraic group which contains ϕ as an inner automorphism. Since the
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order of ϕ is finite and relatively prime to the characteristic, ϕ is a
semisimple automorphism of G. So the result follows from Theorem
8.1 of [Ste68]. □

Lemma 2.47. Let G be a connected group of finite Morley rank and t ∈
G. Suppose that K ◁ C(t) is a definable normal quasisimple algebraic
subgroup of C(t) and t ∈ K.

Then [CG(t) : C
◦
G(t)] ≤ |Γ|.

Proof. We argue that CG(t)/C
◦
G(t) ↪→ Γ. Otherwise, some x ∈ CG(t) \

C◦
G(t) centralizes K by Fact 2.45.
Now x has finite order modulo C◦

G(t), so by Fact 2.9 we may assume
that x has finite order. As t ∈ Z(K) by hypothesis, t lies inside a
maximal torus T of K. As x centralizes K, by Fact 2.13 we find

x ∈ C(T ) = C◦(T ) ≤ C◦(t). □

Table 1 below contains necessary information about conjugacy classes
of involutory algebraic automorphisms, as well as their centralizers, in
Lie rank one or two quasi-simple groups (see [GLS98, Table 4.3.1 p. 145
and Table 4.3.3 p. 151]). Note that where there are central involutions
in the group they are not shown, as the corresponding automorphisms
are trivial. Furthermore, in such cases some of the involutory automor-
phisms are represented by elements of order 4 in the group.

Here the second involutory automorphism of Sp4 is represented by
an element of order four.

Fact 2.48 ([Poi01, Thms. 1,4]). Let k be a field of finite Morley rank
(as usual, in any language) and let G be a definable subgroup of GLn(k).
Then the following hold.

(1) If the characteristic of k is non-zero and G is simple, then G is
definably isomorphic to an algebraic group.
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G Γ̄ Z i C◦
G(i)

SL2 1 Z/2Z inner k∗

PSL2 1 1 inner k∗

SL3 Z/2Z Z/3Z inner SL2 ∗k∗

graph PSL2

PSL3 Z/2Z 1 inner SL2 ∗2k∗

graph PSL2

Sp4 1 Z/2Z inner SL2× SL2

inner SL2 ∗2k∗

PSp4 1 1 inner SL2 ∗2 SL2

inner PSL2×k∗

G2 1 1 inner SL2 ∗2 SL2

Table 1. Data on Chevalley Groups

(2) If n = 2, then either G is solvable by finite, or G contains
SL2(k).

The following is a useful consequence of the second point.

Corollary 2.49. Let k be a field of finite Morley rank, and T1, T2 two
nontrivial connected definable subgroups of PSL2(k) not contained in a
single Borel subgroup. Then PSL2(k) is generated by T1 ∪ T2.

Proof. The subgroup generated by T1, T2 is connected and definable.
Hence the preimage in SL2(k) is either SL2(k) or solvable and con-
nected. In the latter case its Zariski closure is a solvable group which
is connected in the algebraic sense. □
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Lemma 2.50. Let G be an algebraic group of finite Morley rank, T
a torus, and U a definable subgroup of a unipotent group which is
normalized by an infinite subgroup of T acting faithfully on U . Then
U is Zariski closed in G.

Proof. We may suppose that U is connected, and proceeding induc-
tively, we may suppose that U is abelian and T -minimal. We may
suppose further that the Zariski closure of U is 1-dimensional, and we
come down to the case where U is a subgroup of the additive group of
the base field k which is invariant under an infinite subgroup T of the
multiplicative group. Then the stabilizer of U under multiplication in
k is an infinite subring of k, hence is all of k. □

2.8. Covering groups.

Definition 2.51. Let L be a group of finite Morley rank. A covering
group L∗ of L is any group of finite Morley rank such that

(1) L∗/σ◦(L∗) ≃ L.

(2) Any proper definable normal subgroup of L∗ is solvable.

Lemma 2.52. Let H be a group of finite Morley rank which is a cov-
ering group of a quasi-simple algebraic group L Then σ◦(H) = F ◦(H).

Proof. Let H̄ = H/F ◦(H). By Fact 2.4 σ◦(H̄) is central in H̄ and thus
H̄ has a normal subgroup with quotient L. By the minimality of H,
we find σ◦(H̄) = 1 and σ◦(H) = F ◦(H). □

Lemma 2.53. Let H be a group of finite Morley rank of odd type which
is a covering group of a quasi-simple algebraic group L with base field
k. Then σ◦(H) = OF (H). Furthermore we have the following.

(1) If k has characteristic p > 0 then OF (H) is a unipotent p-group.
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(2) If k has characteristic 0 and rk(k) = r then OF (H) is a homo-
geneous (0, r)-unipotent subgroup.

Proof. We know σ◦(H) = F ◦(H). Let B be the preimage in H of a
Borel subgroup B of H/F ◦(H). Then U = B′ is a nilpotent group
covering the unipotent radical U of B. Thus U ≤ F (B) and UF ◦(H)
is nilpotent.

Depending on the characteristic of k, U is either p-unipotent or
(0, r)-unipotent. If the corresponding subgroup

Up(F
◦(H)) or U(0,r)(F

◦(H))

is proper in F ◦(H), then after factoring out a maximal proper definable
normal subgroup Q of F ◦(H) containing that subgroup, the action of
U induced by U on the quotient F ◦(H)/Q is trivial. This applies to all
unipotent subgroups of L and hence [H,F ◦(H)] ≤ Q. Therefore Q is
normal in H and F ◦(H)/Q is normal in the quotient. But then by the
minimality of H we find F ◦(H) = Q, a contradiction. So F ◦(H) must
in fact reduce to Up(F

◦(H)) or U(0,r)(F
◦(H)) respectively.

If the characteristic is p > 0 (odd) the proof is complete.
If the charactertistic is zero we have F ◦(H) = U(0,r)(F

◦(H)). By
Fact 2.27 the group [H,F ◦(H)] is a homogeneous U(0,r)-group. Tak-
ing the quotient by this subgroup and applying minimality shows
that F ◦(H) = [H,F ◦(H)] is a homogeneous U(0,r)-group. In particular
F ◦(H) = O(H) and we conclude. □

Lemma 2.54. Let H be a group of finite Morley rank and odd type, L
a quasi-simple algebraic group, and L1 a definable subgroup of H which
is a covering group of L with OF (L1) ≤ O(H). With H̄ = H◦/O(H),
suppose that H̄ = Ealg(H̄) ∗ K̄ with K̄ a D-group.

Then the normal closure L2 of L1 in H is a covering group of L̄2.

Proof. In H̄/Z(Ealg(H̄)) the central product decomposition becomes a
direct product and the projection of L̄1 to the image of K̄ is a D-group.
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Hence the kernel is not solvable and by minimality it is L1. It follows
that L̄1 ≤ Ealg(H̄) and the same appies to L̄2, which is a product
of components of Ealg(H̄). The normal closure of L̄1 in L̄2 is again a
product of components of Ealg(H̄) and hence is normal in H̄. Thus this
normal closure in L̄2. In other words, the normal closure of L1 in L2

covers L̄2.
Thus O(H) ∩ L2 = σ◦(L2) and L2/σ

◦(L2) ≃ L̄2.
Now suppose N is a proper definable normal subgroup of L2. Then

N ∩ L1 is a proper definable normal subgroup of L1, hence lies in
OF (L1) ≤ O(H). But N is normal in L2. If L

∗
2 is the normal closure

of L1 in L2, then [N,L∗
2] ≤ O(H).

But L∗
2 covers L̄2, and it follows that N ≤ O(H). Thus N is solvable

and L2 is a covering group of L̄2. □
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3. Special topics

We will next bring in some more specialized topics which will come
into play as we encounter particular pathological configurations which
need to be eliminated. Then in §3.4 we will review the tools developed
in [BC22a] for finding algebraic components in centralizers of involu-
tions, with reference to the particular case of Prüfer rank 2. This is
where the main line of our analysis begins.

3.1. Thompson A × B. We give a version of Thompson’s A × B
lemma suitable for our present purposes—it will be applied repeatedly
in §§5,6. Related results see found in [Suz86, Chap. 4, §1] and [ABC08,
§I.12].

Lemma 3.1. Let G be a group of finite Morley rank, π a set of primes,
and HK a subgroup with H, K definable. Assume the following.

(1) K normalizes H.

(2) No non-trivial definable quotient of K is definably isomorphic
to a definable section of H.

Then

[K, [K,H]] = [K,H]

Proof. We may take G = H ⋊K.
By [ABC08, Cor. I.3.29] the groups [K,H] and [K, [K,H]] are de-

finable.
Let N = [K,H]K.

Claim 1. N is the smallest normal subgroup of G for which G/N is
definably isomorphic to a definable section of H.

On one hand, G/N ≃ H/[K,H]. On the other hand, if N ∗ ◁ G
and G/N∗ is isomorphic to a quotient of H, then K ≤ N ∗ and hence
[K,H] ≤ N ∗.
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Thus the claim holds. In particular N is definably characteristic in
G.

Similarly, N1 = [H,K,K]K is the smallest definable normal sub-
group of N such that N/N1 is definably isomorphic to a definable sec-
tion of H. Hence N1 is definably characteristic in N , and thus normal
in G.

As N1 contains K, it follows that N1 = N , and this yields the
claim. □

Lemma 3.2 (Thompson A × B Lemma). Let G be a group of finite
Morley rank. Let U ≤ Q be definable subgroups of G, and T any sub-
group of G. Suppose the following.

(1) Q is nilpotent.

(2) CQ(U) ≤ U .

(3) T normalizes Q and centralizes U .

(4) No non-trivial definable quotient of d(T ) is definably isomorphic
to a definable section of Q.

(5) Either d(T ) is connected, or U and Q are connected.

Then T centralizes Q.

Proof. Let K be the definable hull d(T ). Then CQ(T ) = CQ(K). We
suppose toward a contradiction that

Q > CQ(K).

Claim 1. Without loss of generality, U is normal in Q.

Suppose first that K is connected. Set U1 = CQ(K) and Q1 =
NQ(U1). Then our hypotheses on U and Q apply to U1 and Q1, in-
cluding Q1 > U1, this last by the normalizer condition in Q. So we
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may replace U,Q by U1, Q1, and add to our hypotheses the condition
U ◁ Q.

Now suppose that U and Q are connected. Set U1 = C◦
Q(K) and

Q1 = N ◦
Q(U). Then our hypotheses on U andQ—including connectedness—

again apply to U1 and Q1.
So in either case we may suppose U ◁ Q.

Now we have

[[K,U ], Q] = [1, Q] = 1;

[[U,Q], K] ≤ [U,K] = 1.

By the three subgroups lemma we get

[[Q,K], U ] = 1.

As CQ(U) ≤ U this gives [Q,K] ≤ U and [[Q,K], K] = 1.
By Lemma 3.1 this gives [Q,K] = 1 as required. □

Corollary 3.3. Let G be a group of finite Morley rank, and U,Q,K
definable nilpotent subgroups satisfying the following conditions.

(1) U ≤ Q.

(2) CQ(U) ≤ U .

(3) K normalizes Q and centralizes U .

(4) K is connected.

(5) Q is a homogeneous U0,r-group.

(6) U0,r(K) centralizes Q.

Then K centralizes Q.
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Proof. In view of Fact 2.25, it suffices to prove the result with K re-
placed by its subgroups of the following forms.

(1) Up(K) with p a prime;

(2) U(0,s)(K)/U(0,r)(U(0,s)(K)) for s ̸= r;

(3) the maximal decent torus of K.

These are connected subgroups of K, and none has a definable
quotient definably isomorphic to a definable section of Q. So Lemma
3.2 applies. □

3.2. Linearization. A general result on linearization of actions of al-
gebraic groups in the finite Morley rank category has been attained
only recently.

Fact 3.4 ([Bor20, Theorem 3]). Let K be an algebraically closed field
of characteristic p > 0 and G the group of points over K of a sim-
ple algebraic group defined over K. Assume that G acts definably and
irreducibly on an elementary abelian p-group V of finite Morley rank.
Then V can be given the structure of a finite dimensional K-vector
space VK in a manner compatible with the action of G, and G becomes
a Zariski closed subgroup of GL(VK).

.
This result was preceded by very special cases dealing with actions

of SL2 in low rank situations, which so far have been adequate for the
applications to identification theorems [CD12]. That state of affairs
actually continues to be the case here. But with the stronger result on
hand one may hope to put it go good use as well—if not for classifica-
tion results, then in the study of permutation groups of finite Morley
rank.

On the other hand what one may call the “characteristic zero”
version is classical, given originally in the superstable context, but we
specialize in various respects, as follows.
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Fact 3.5 ([LW93, Theorem 4]). Suppose that there is an infinite defin-
able set S of automorphisms of the abelian, torsion free group A, such
that A is S-minimal, and the structure (A, S) together with the action
has finite Morley rank. Then there is a subgroup A1 ≤ A and a field
K such that A1 ≃ K+ definably. Furthermore, S embeds into a matrix
ring over K.

Implicit in this statement is the structure of a K-vector space on
A.

3.3. Around the Z∗ theorem. The Z∗ theorem of finite group theory
has no real analog in the finite Morley rank context, as far as is known,
but the following is related, and useful.

Fact 3.6 ([BBC07, Thm. 6]). Let G be a connected group of finite
Morley rank, S a Sylow 2-subgroup in G, and i ∈ S an involution.
Then either

(1) i is conjugate in G to another involution in S; or

(2) CG(i) is connected.

Below we will put considerable effort into eliminating specific con-
figurations that would immediately violate the Z∗-theorem.

3.4. Algebraic components in centralizers of involutions. For
what follows, we will be making use of the following hypotheses.

Hypothesis 3.7. Let G be a group of finite Morley rank.
We suppose the following.

(1) G is a connected simple L∗-group of odd type satisfying the
condition NTA2.

(2) m2(G) ≥ 3.
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(3) G has no proper non-trivial definable strongly embedded sub-
group.

Soon we will focus on the case of Prüfer rank 2 (Hypothesis 4.1
below) but for the present section this is the right setting.

We are interested now in the existence of algebraic quasi-simple
components in centralizers of involutions. We first state two general
results from [BC22a], and then fill in the relevant definitions.

The main thing to retain from what follows is that the notation EA
refers to a certain set of particularly well=behaved algebraic quasisim-
ple components of centralizers CG(i) as i varies over the involutions of
an elementary abelian 2-subgroup A. See Definition 3.15. The notation
m◦

2 refers to a variant of 2-rank which is introduced in Definition 3.12.

Fact 3.8 ([BC22a, Lemma 2.15]). Let G be a group of finite Mor-
ley rank and odd type. Suppose m2(G) ≥ 3. Then m◦

2(G) ≥ 3. More
precisely, if U is an elementary abelian 2-group of rank 2 which is con-
tained in a 2-torus, then there is an elementary abelian 2-subgroup A
of 2-rank 3 containing U , and an involution i ∈ I(U) which is co-toral
with every involution of A.

Fact 3.9 ([BC22a, Lemma 4.17]). Let G be a group of finite Morley
rank satisfying Hypothesis 3.7. Let A ≤ G be an elementary abelian
2-subgroup of 2-rank 3 such that the co-torality graph on I(A) is con-
nected, and let U ≤ A be a subgroup of 2-rank 2 which is contained in
a 2-torus.

Then there is an involution i ∈ U such that C(i) contains a quasi-
simple component belonging to EA. Furthermore, for any quasi-simple
algebraic component L belonging to EA, there is an involution i ∈ U
such that L is contained in a product of quasi-simple components be-
longing to EU .

There are two points to clarify here: the co-torality condition, and
the definition of EA.
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Definition 3.10. Let G be a group of finite Morley rank and i, j ∈ G
two involutions. We say that i and j are co-toral if there is a 2-torus
containing both.

For A ≤ G a subgroup, the co-torality graph on A has as its vertices
the involutions in A, and as its edges the co-toral pairs of involutions
in A.

Fact 3.11 (cf. [BC22a, §2.1]). Let G be a group of finite Morley rank
and odd type, and i, j ∈ I(G). Then the following are equivalent.

(1) i, j are co-toral.

(2) j ∈ C◦
G(i).

Indeed, if j ∈ C◦
G(i) then by [BC09, Thm. 3] one may take maximal

2-tori Ti, Tj containing i, j respectively, and they are conjugate in C◦
G(i)

(e.g., by conjugacy of Sylow 2-subgroups).
For applications of signalizer functor theory the following modified

2-rank is important.

Definition 3.12. The co-toral 2-rank m◦
2(G) is defined as the maximal

2-rank of an elementary abelian 2-subgroup A such that the graph on
I(A) whose edges are the co-toral pairs of involutions in A is connected.

Now we turn to the definition of EA. This makes use of the unipo-
tence theory of §2.3, and in particular the parameter r̄0(H) briefly
recalled there; this is the largest value of r for which H contains a
(0, r)-unipotent subgroup (or zero).

Definition 3.13. Let H be a group of finite Morley rank.
A component of H is a quasi-simple subnormal subgroup ([BN94,

p. 118 (2)]).
Ealg(H) denotes the product of the algebraic components of H◦.

Definition 3.14. Let G be a group of finite Morley rank, i an involu-
tion, and A a subgroup of G.
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We set

r0,i = r̄0(O
σ(CG(i)));

rf,i = max(r̄0(k
×) : k the base field of a component

of Ealg(CG(i)/O
σ(CG(i)))).

and

r0,A = max(r0,i : i ∈ I(A)); rf,A = max(rf,i : i ∈ I(A)).

Here the subscript “f” stands for “field.”

Definition 3.15 (The family EA). Let G be a group of finite Morley
rank, H a definable subgroup, and ρ ≥ 0.

∆ρ(H) denotes the definable subgroup of H generated by all p-
unipotent subgroups with p prime, together with all (0, r)-unipotent
subgroups for r > ρ (briefly: “all sufficiently unipotent subgroups”).

For A an abelian 2-subgroup of G, we let EA denote the family of all
quasi-simple algebraic components of any of the subgroups ∆r(CG(i))
as i varies over I(A) and r ≥ rf,A.

This definition is clarified by the following.

Fact 3.16 ([BC22a, Lemma 4.9]). Let L be a quasi-simple algebraic
group of finite Morley rank (in any language), with base field k. Let
r ≥ 1.

Then the following are equivalent.

(1) ∆r(L) > 1.

(2) ∆r(L) = L.

(3) rk(k) > r, or the characteristic of k is non-zero.

A closely related point of independent interest is the following.
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Fact 3.17 ([BC22a, Cor. 2.26], [Poi87, Cor. 3.3]). Let k be a field of
finite Morley rank and characteristic 0, and k+, k

× the additive and
multiplicative groups. Then

r̄0(k+) = rk(k) > r̄0(k
×)

and k+ is a U0,rk(k)-group.

The connection with components comes through the following.

Fact 3.18 ([BC22a, Lemma 4.13]). Let G be a group satisfying Hy-
pothesis 3.7. Let i be an involution of G and ρ = rf,G.

Then

∆ρ(CG(i)) = ∆ρ(Ealg(CG(i)))

is the product of algebraic components of CG(i) whose base field k either
has non-zero characteristic or satisfies rk(k) > ρ.

Note here that there must be some base field for k for which
r̄0(k

×) = rf,G and hence rk(k) > rf,G, and an involution i so that
k occurs as the base field of some algebraic component of the group
CG(i)/OFCG(i). In this case the previous fact gives an algebraic com-
ponent of CG(i) with the same base field.

Definition 3.19. We may also define EG similarly to EA (considering
all involutions in G and their centralizers). We write E for EG.

One of the points of the various definitions made is to ensure the
following.

Fact 3.20 ([BC22a, Lemma 4.15]). Let G be a group of finite Morley
rank satisfying Hypothesis 3.7. Let A ≤ G be an elementary abelian
2-subgroup of 2-rank 3 such that the co-torality graph on I(A) is con-
nected, and let i be an involution of A. Let L be a definable quasi-simple
algebraic subgroup of CG(i) over a base field which is either of charac-
teristic p or has a multiplicative group of reduced rank rf,A.

Then L is a subgroup of EE(C
◦
G(i)).
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We record a more technical point which underlies the theory.

Definition 3.21. Let G be a group of finite Morley rank, i an involu-
tion, and A a subgroup of G.

For i ∈ A, and ρ either a prime or a symbol (0, r), we set

θρ(i) = Uρ(O
σ(CG(i))).

Fact 3.22 ([BC22a, Lemma 4.4]). Let G be an L∗-group of finite Mor-
ley rank of odd type, satisfying NTA2.

Let ρ be either a prime or a symbol (0, r) satisfying the conditions

r > rf,i; r ≥ r0,i.

Let i, j, k be three commuting involutions in G satisfying the follow-
ing conditions.

(1) i and j are co-toral in G (i.e., there is 2-torus T containing i
and j).

(2) θρ(k) ∩ CG(j) ≤ θρ(j).

Then

θρ(k) ∩ CG(i) ≤ θρ(i).

An important consequence of the signalizer functor theory is the
following structural result.

Fact 3.23 ([BC22a, Lemma 4.6]). Let G be a group of finite Mor-
ley rank satisfying Hypothesis 3.7. Let A be an elementary abelian 2-
subgroup of 2-rank 3.

Suppose that the graph on I(A) with edges (i, j) for co-toral pairs
of involutions is a connected graph.

Then for i ∈ I(A) an involution, we have

Up(O
σ(CG(i))) = 1 for all primes p;

U(0,r)(O
σ(CG(i))) = 1 for all r > rf,A.
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Note that when Up(O
σ(CG(i))) = 1 for all primes p, then UF (CG(i))

is torsion free.
We also give the general result on signalizer functors, as it has

further applications.

Fact 3.24 ([BC22a, Lemma 3.19]). Let G be a connected simple L∗-
group of finite Morley rank and odd type. Suppose that for some rank 3
elementary abelian 2-subgroup A of G, there is a nontrivial connected
nilpotent A-signalizer functor θ satisfying the naturality condition

θ(i)g = θ(ig) when g ∈ G and i, ig ∈ I(A).(⋆)

Then G has a proper definable strongly embedded subgroup.

In particular, this is excluded in the case of Prüfer 2-rank 2 and
2-rank greater than 2.
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4. Component analysis: Preliminaries

We now come to our actual subject matter, the analysis of compo-
nents of centralizers of involutions, and notably the components in E
for groups satisfying the following conditions.

Hypothesis 4.1. Let G be a group of finite Morley rank.
We assume the following.

(1) G is a simple L∗-group of odd type satisfying the condition
NTA2.

(2) G has Prüfer 2-rank 2 and 2-rank at least 3.

Note that Hypothesis 4.1 implies Hypothesis 3.7, in view of Corol-
lary 2.40.

Our eventual goal is Theorem 1.1.

4.1. The point of departure. First we show the following, as our
point of departure.

Lemma 4.2. Let G be a group satisfying Hypothesis 4.1. Then E is
non-empty, and every component in E is of Prüfer rank 1.

Lemma 4.3. Let G be a group satisfying Hypothesis 4.1. Then the
following hold.

(1) The associated family E is non-empty.

(2) For any involution i in G we have

Up(O
σ(CG(i))) = 1 for all primes p;

U(0,r)(O
σ(CG(i))) = 1 for all r > rf,G.

In particular, UF (CG(i)) is torsion-free.

Proof.

Ad 1. By Facts 3.8 and 3.9, there are elementary abelian 2-subgroups
A of rank 3 on which the co-torality graph is connected. Then Fact
3.20 applies.
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Ad 2.
By Fact 3.8 any involution i belongs to an elementary abelian 2-

subgroup A of rank 3 on which the co-torality graph is connected. Then
Fact 3.23 gives (2). □

At this point the hypothesis NTA2 has been invoked via its con-
nection with the background material.

Lemma 4.4. Let G be a group satisfying Hypothesis 4.1. Then any
component in E has Prüfer rank 1 (type (P)SL2).

Proof. Suppose the contrary. Let i be an involution and L ∈ E be a
component of C◦(i) of Prüfer rank 2. Then i ∈ L is a central involution
and so

L = Ealg(C
◦(i)) ≃ Sp4(k),

with k algebraically closed (cf. Table 1). Let T be a maximal 2-torus
of C◦(i), and S a Sylow 2-subgroup of G containing T .

Claim 1. All involutions of G are conjugate.

Let j be an involution of G. We will show that j is conjugate to i.
By Fact 2.12 we may suppose j ∈ T . We may also suppose j ̸= i.

Then

CL(j) ≃ SL2(k)× SL2(k)

(Table 1).
By the definition of E and Fact 3.20 we have

CL(j) ≤ Ealg(C
◦(j)).

Hence we have the following two possibilities.

(a) Ealg(C
◦(j)) > CL(j); then Ealg(C

◦(j)) ≃ Sp4(k).
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(b) Ealg(C
◦(j)) = CL(j); then i ∈ Z(C◦(j)).

The same applies to j′ = ij.
By Corollary 2.43,G is generated by the groups C◦(t) for t ∈ Ω1(T ).

Hence i cannot centralize both C◦(j) and C◦(j′). As j, j′ are conjugate
in C◦(i) it follows that i centralizes neither, and thus

Ealg(C
◦(j′)) ≃ Sp4 .

Then i, j are conjugate in C◦(j′). The claim follows.

Claim 2. A Sylow 2-subgroup of L is a Sylow 2-subgroup of G.

As all involutions are conjugate, C(i) contains a Sylow 2-subgroup
S of G. As L ≃ Sp4(k) has no graph automorphisms, the centralizer
C(i) is connected by Lemma 2.47.

But then C(i)/Ealg(C
◦(i)) is connected and of degenerate type,

hence contains no involution. This proves the claim.

Now CL(j) ◁ CG(i, j) and so CL(j) = SL2(k)×SL2(k) = Ealg(C(i, j)),
with i lying in neither factor. But (i, j) is conjugate to (j, i) and so j
lies in neither factor, and as i ̸= j this is impossible. □

Proof of Lemma 4.2. Lemmas 4.3 and 4.4. □

4.2. Isolated components.

Definition 4.5. Let G be a group satisfying Hypothesis 4.1.
For any definable subgroup H we write EE(H) for the product of

the E-components of E(H).
An involution i ∈ I(G) is an E-involution if EE(CG(i)) > 1.

Definition 4.6. Let G be a simple L∗-group of finite Morley rank and
odd type satisfying Hypothesis 4.1 and let L be an E-component of the
centralizer of an involution. We say L is isolated if it is a component
of the centralizer of any involution which commutes with L.
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Remark 4.7. Any E-component of type SL2 is isolated.
An E-component L of type PSL2 is isolated if there is no involution

i with EE(CG(i)) ≃ L̂ ∗2 L̂ with L̂ ≃ SL2 over the same base field as L.
In particular, isolated components must exist.

Lemma 4.8. Let G be a group of finite Morley rank satisfying Hypoth-
esis 4.1. Suppose that L is an isolated component of G.

Then no 4-group in G centralizes L.

Proof. Suppose toward a contradiction that the 4-group V centralizes
L.

Since L is isolated, L is a component of C◦(i) for i ∈ I(V ), by Fact
3.20. Hence ΓV normalizes L, contradicting Corollary 2.43. □

Definition 4.9. Let G be a group satisfying Hypothesis 4.1. If L is an
E-component for G, and i is an involution centralizing L, set KL,i =
C◦

CG(i)
(L).

We generally will write KL for this, when the involution i is fixed.

Remark 4.10. When L is of type SL2 with central involution i, then i
is the only involution centralizing L and KL,i = C◦

G(L).

Lemma 4.11. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1. Suppose that L is an isolated E-component for G, i is an
involution of G centralizing L, and KL = KL,i.

Then we have the following.

(1) C◦
G(i) = LKL with both factors of Prüfer rank 1, and with

L ∩KL ≤ ⟨i⟩.

(2) More precisely, we have the following.

(a) If L is of type PSL2 then C◦
G(i) = L×KL.

(b) If L is of type SL2 then C◦
G(i) = L ∗2 KL with intersection

⟨i⟩.
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(3) i is the unique involution of KL, and the Sylow 2-subgroup of
KL is either connected or as in SL2.

(4) NG(KL) = NCG(i)(L).

Proof.

Ad 1. As CG(i) permutes its components, C◦
G(i) normalizes them.

As C◦
G(i) acts on L by inner automorphisms we find

C◦
G(i) = LKL.

As C◦
G(i) has Prüfer rank 2 and L has Prüfer rank 1, KL has Prüfer

rank 1.
The involution i is central in KL. By Lemma 4.8, CCG(i)(L) contains

no 4-group, so i is its only involution. As L ∩ KL ≤ Z(L) we have
L ∩KL ≤ ⟨i⟩.
Ad 2. Considering the possibilities according to the type of L gives
(2a, 2b).

Ad 3. We saw above that i is the unique involution of KL.
Let S be a Sylow 2-subgroup of KL and T = S◦, 2-torus of Prüfer

rank 1. As S has a unique involution, any element of S \T must invert
the elements of order 4 in T . It follows that S = T or S = T ⟨w⟩ where
w inverts T and w2 = i.

Ad 4. The claim is that NG(KL) = NCG(i)(L).
Certainly NCG(i)(L) ≤ N(KL).
Conversely, if T is a maximal 2-torus of KL, then

NG(KL) ≤ KLNG(T ) ≤ CG(i).

If CG(i) normalizes L there is nothing more to prove, and if not then
Ealg(KL) is a conjugate of L, so NG(KL) fixes that component of CG(i).
and hence also fixes the component L. □
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Lemma 4.12. Let G be a group satisfying Hypothesis 4.1 and sup-
pose that L an isolated E-component of CG(i). Let i be an involution
centralizing L.

If A is an elementary abelian 2-group of rank 3 contained in NCG(i)(L),
then

A ∩ C◦
G(A) ≤ ⟨i⟩ .

If L is of type PSL2 then this intersection is ⟨i⟩, while if L is of
type SL2 the intersection is trivial.

Proof. A acts on L as a group of inner automorphisms. As no 4-group
centralizes L, A must contain i and induce a 4-group acting faithfully
on L.

Claim 1. C◦
G(A) ≤ KL

We have

C◦
G(A) = C◦

CG(i)
(A) = C◦

LKL
(A).

Working modulo L ∩ KL = Z(L) we have a direct product, and one
finds

C◦
G(A) ≤ C◦

L mod Z(L)(A) · C◦
KL mod Z(L)(A).

But C◦
L mod Z(L)(A) = 1, so C◦

G(A) ≤ KL, as claimed.

Hence A ∩ C◦
G(A) ≤ A ∩KL ≤ ⟨i⟩.

If L is of type PSL2 then A = ⟨V, i⟩ with V ≤ L and CKL
(A) = KL,

so in this case the intersection is ⟨i⟩.
Conversely, if i ∈ C◦

G(A), then i lies in some 2-torus T of KL cen-
tralizing A. By Fact 2.13 we have A ≤ C◦

G(T ) ≤ C◦
G(i). But then TA

is contained in a Sylow 2-subgroup of C◦
G(i). If L is of type SL2 then

there is no such subgroup A. So in this case L is of type PSL2. □
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Lemma 4.13. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and let i be an involution of G for which EE(CG(i)) has
more than one component.

Then EE(CG(i)) is of type SL2 ∗2 SL2, possibly over different base
fields.

Proof. Set L = EE(CG(i)). Then L is a central product of two compo-
nents L1 ∗ L2, each of Prüfer rank 1.

Claim 1. EE(CG(i)) has a component of type SL2.

Let T be a maximal 2-torus of L. Then i ∈ C(T ) and hence i ∈
T ≤ L. So Z(L) is nontrivial and the claim follows.

We may suppose that L1 is of type SL2. Then L1 is isolated and by
Lemma 4.8 no 4-group centralizes it. So L2 is also of type SL2 and the
product cannot be direct.

The result follows. □

4.3. Isolated components of type PSL2.

Lemma 4.14. Let G be a group satisfying Hypothesis 4.1. Suppose that
L is an isolated E-component of type PSL2 and let i be an involution
centralizing L.

Then the following hold.

(1) The involutions of CG(i) lie in L ⟨i⟩, hence in C◦
G(i).

(2) The involution i is co-toral with any involution of CG(i).

(3) The only E-involution in CG(i) is i.

(4) A Sylow 2-subgroup of CG(i) is a Sylow 2-subgroup of G.

(5) CG(i) is connected.
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(6) A Sylow 2-subgroup of G has the form

T1 ⟨w⟩ × S2

with T1 a 2-torus, w an involution inverting T1, and S2 either a
2-torus or as in SL2.

In particular, G has 2-rank 3.

(7) EE(CG(i)) = L.

Proof.

Ad 1. Consider an involution j in CG(i). As j acts on L by an inner
automorphism there is an element t in L, either an involution or the
identity, for which jt is an involution centralizing L.

Then ⟨jt, i⟩ centralizes L. By Lemma 4.8 no 4-group centralizes L,
so jt ∈ ⟨i⟩. Point (1) follows.
Ad 2. This follows from (1) by Fact 3.11.

Ad 3. Let j be an E-involution in CG(i) (hence in C◦
G(i)). In view of the

structure of C◦
G(i) there is an elementary abelian 2-group A of rank 3

containing i and j.
Suppose first that EE(CG(j)) has an isolated component. Then

Lemma 4.12 applies to A and to both i and j, giving ⟨i⟩ = ⟨j⟩ and
i = j.

In particular, if EE(j) has a component of type SL2 we have a
contradiction. Therefore all E-components are of type PSL2, and are
isolated. So the argument applies generally.

Ad 4. Let S be a Sylow 2-subgroup of CG(i). As the only E-involution
in S is i, we find

NG(S) ≤ CG(i)

and hence S is a Sylow 2-subgroup of G.
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Ad 5. Since i is not conjugate to any other involution in CG(i), by Fact
3.6 CG(i) must be connected.

Ad 6. We work with a Sylow 2-subgroup of CG(i) = L×KL. Here KL

is connected of Prüfer rank 1 and has a unique involution i.
If KL is a D-group then its Sylow 2-subgroup is connected and the

structure is as stated with S2 a 2-torus.
Otherwise, with K̄L = KL/OF (KL), we have K̄L = Ealg(K̄L)K̄

∗
L

with Ealg(K̄L) of type SL2 and K̄∗
L of degenerate type. We get the

stated structure with S2 as in SL2.

Ad 7. By Lemma 4.13, EE(CG(i)) = L. □

Lemma 4.15. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and suppose that L ∈ E is of type PSL2 and isolated.

Then there are exactly three conjugacy classes of involutions in G.
These may be characterized by the following properties of the involution
t ∈ I(G).

(1) EE(CG(t)) is of type PSL2; then CG(t) is connected.

(2) t commutes with an E-involution t′ with t ∈ EE(CG(t
′)); then

EE(CG(t)) = 1 and CG(t) is disconnected.

(3) t commutes with an E-involution t′ ̸= t with t /∈ EE(CG(t
′));

then EE(CG(t)) = 1 and CG(t) is disconnected.

Furthermore:

(∗) A pair of distinct commuting involutions s, t in G are co-toral
if and only if there is an E-involution in the 4-group ⟨s, t⟩.

Proof. We fix an E-involution i, and we apply the information given in
Lemma 4.14.
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Claim 1. There are exactly three conjugacy classes of involution in G,
represented by i, the involutions of L, and the involutions of Li other
than i.

Let T be a maximal 2-torus of CG(i). Every involution is conju-
gate to an involution of T (Fact 2.12). We know that i is the only
E-involution in T . In particular NG(T ) ≤ CG(i).

If the other two involutions in T are conjugate, then as fusion in T
is controlled by NG(T ) (Fact 2.14), there is a 2-element of NG(T ) which
swaps them. Hence this conjugacy takes place in S; but S centralizes
the involutions of T . This proves the claim.

Now according to Lemma 4.14 the E-involutions t are conjugate
to i and have CG(t) connected, so point (1) is taken care of, and in
addition EE(CG(t)) = 1 in the other two cases. And in addition we
have most of (2,3), apart from the question of connectedness of CG(t),
to which we will return.

Claim 2. If s, t are distinct commuting involutions, then they are co-
toral if and only if the group ⟨s, t⟩ contains an E-involution.

If ⟨s, t⟩ contains an E-involution then we may suppose that involu-
tion is i and then look again at CG(i) to conclude.

Conversely, if s, t are co-toral then as the Prufer rank is 2 the group
⟨s, t⟩ contains a conjugate of i.

The claim follows.

Now looking again at representatives of conjugacy classes of invo-
lutions in CG(i), each involution t which is not an E-involution com-
mutes with an involution which is not co-toral with it. Thus by Fact
3.11, CG(t) is not connected.

So now all points (1–3), as well as point (∗), have been verified. □
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4.4. Components of type SL2.

Definition 4.16. If G is a group of finite Morley rank satisfying Hy-
pothesis 4.1, then an involution t ∈ I(G) is called an SL2-involution iff
CG(t) has a component in E of type SL2.

Of course, we expect to have SL2-involutions. Here we work toward
Lemma 4.21 below, which lays out the main configurations that arise
in that case, provisionally; one of them will be eliminated later.

Lemma 4.17. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1. Suppose that i is an SL2-involution and L is a component
of CG(i) of type SL2.

Then

(1) C◦
G(i) = NG(L).

(2) If CG(i) is disconnected then Ealg(CG(i)) is of type SL2 ∗2 SL2

with the factors conjugate in CG(i).

Proof.

Ad 1. The connected group C◦
G(i) must normalize its components. On

the other hand, NG(L) = L · CG(L) and if T is a 2-torus of L then
CG(L) ≤ CG(T ) ≤ C◦

G(i) (Fact 2.13).

Ad 2. If CG(i) is disconnected then L has a conjugate K ̸= L in CG(i)
and it follows that Ealg(CG(i)) = L ∗2 K = EE(CG(i)). The result
follows. □

Lemma 4.18. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1. Suppose that i is an SL2-involution.

Then either

(1) Ealg(CG(i)) = EE(CG(i)) is of type SL2 ∗2 SL2 with components
conjugate in CG(i), or

(2) CG(i) is connected. Letting KL = C◦
G(L) we have
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(a) CG(i) = L ∗2 KL with KL of Prüfer rank 1 and unique
involution i.

(b) KL = CG(L).

(c) Ealg(KL/OF (KL)) is of type SL2 (possibly with a different
base field from L, and not necessarily in E).

(d) A Sylow 2-subgroup of CG(i) is a Sylow 2-subgroup of G,
and is isomorphic to the Sylow 2-subgroup of SL2 ∗2 SL2.

In particular, G has 2-rank 3.

Proof. If CG(i) is disconnected then point (1) simply rephrases Lemma
4.17.

So we will suppose the contrary.

CG(i) is connected.

We then aim at point (2), clauses (a–d).

Clause (a) is covered by Lemma 4.11, bearing in mind Remark 4.10.
.As we suppose CG(i) is connected, (b) then follows.

Let S be a Sylow 2-subgroup of CG(i).

Claim 1. S is a Sylow 2-subgroup of G.

Any involution of CG(i) other than i can be written as ab with
a ∈ L, b ∈ KL of order 4. It follows that i is the only involution in
Z(S). Therefore i is central in N(S) and the claim follows.

Now we consider K̄L = KL/OF (KL) = Ealg(K̄L)K̄D withKD ≤ KL

a D-group (Fact 2.7).

Claim 2. Ealg(K̄L) ̸= 1.

Supposing the contrary, KL = KD is a D-group and its Sylow 2-
subgroup is connected. Then inspection of involutions in S shows that
the 2-rank is 2, a contradiction. The claim follows.
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Now as Ealg(K̄L) has Prüfer 2-rank one and no involution other
than i, it is of type SL2. This gives us point (c).

It then follows that S has the isomorphism type of a Sylow 2-
subgroup of SL2 ∗2 SL2 (but with no assumption of any connection
between the base fields of L and of Ealg(K̄L)).

The result is proved. □

Lemma 4.19. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1, and having an SL2-involution.

Then G has at most two conjugacy classes of involutions.
Furthermore, all SL2-involutions of G are conjugate, and all non-

SL2-involutions of G (if any) are conjugate.

Proof. Let i be an SL2-involution of G, S a Sylow 2-subgroup of CG(i),
and T = S◦. As usual the conjugacy classes of involutions in G have
representatives in T . By Lemma 4.18 if j is another involution of T
then j, ij are conjugate in S.

So there are at most two conjugacy classes of involutions in G. If
there are any non-SL2-involutions in G then everything is clear.

On the other hand, if all involutions of G are SL2-involutions, then
it follows similarly that ij and i are conjugate in CG(j), and thus there
is just one conjugacy class of involutions. □

Lemma 4.20. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1, and having an SL2-involution and two conjugacy classes
of involutions. Suppose that the centralizer of an SL2-involution is con-
nected.

Then the centralizer of a non-SL2-involution is a D-group.

Proof. Let i, t be commuting involutions with i an SL2-involution and
t a non-SL2-involution, and T a maximal 2-torus containing i, t. We
have case (2) of Lemma 4.18. We claim that Ealg(CG(t)/OFCG(t)) = 1.
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Claim 1. There is no component L̄ of CG(t)/OF (CG(t)) of type PSL2.

Assuming the contrary, there is an involution inverting a Prüfer
rank 1 subgroup of T and centralizing a Prüfer rank 1 subgroup. This
contradicts the structure of the Sylow 2-subgroup of G. The claim
follows.

Now if Ealg(CG(t)/OFCG(t)) has two components then its Sylow
2-subgroup must be a Sylow 2-subgroup of G with t central, and hence
t is conjugate to i, for a contradiction.

So if Ealg(CG(t)/OFCG(t)) > 1 we are left with the following pos-
sibility.

Ealg(CG(t)/OFCG(t)) is a single component, of type SL2.

Let S be a Sylow 2-subgroup of CG(t) containing T . Then S cen-
tralizes the involutions of T and in particular S ≤ CG(i). So S = T ·⟨w⟩
with w an element of order 4 inverting T . But CG(t) contains an ele-
ment of order 4 with a different nontrivial action on T , and we have a
contradiction. □

We now combine Lemmas 4.20 and 4.18 into a somewhat more
explicit list of possibilities.

Lemma 4.21. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and let i be an SL2-involution of G.

Then one of the following applies.

(1) Ealg(CG(i)) = EE(CG(i)) is of type SL2 ∗2 SL2 with components
conjugate in CG(i), or

(2) CG(i) is connected, contains a Sylow 2-subgroup of G, and has
the form L ∗2 KL with L of type SL2 and KL of Prüfer rank
1 and unique involution i; Ealg(KL/OF (KL)) is of type SL2.
Furthermore we have one of the following.
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(2a) There are two conjugacy classes of involution. For t not an
SL2-involution, CG(t) is a D-group.

(2b) There is one conjugacy class of involutions, and they satisfy

Ealg(CG(i)/OFCG(i)) = SL2 ∗ SL2,

(possibly with differing base fields).

This gives us a PSp4-configuration, a G2-configuration, and a patho-
logical configuration to consider.
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5. Component analysis: The case of no PSL2-component

We pursue the component analysis in the case in which there are
SL2-involutions and there is no E-component of type PSL2. Our aim
is to show that there is just one conjugacy class of involutions in this
case. So we will devote this section to eliminating the configuration
that arises if this fails.

Thus we consider the following pathological configuration.

Hypothesis 5.1. G is a group satisfying Hypothesis 4.1.
In addition, all components in E are of type SL2, and there are two

conjugacy classes of involutions.

Notation 5.2. In the context of Hypothesis 4.1 we will also set ρ =
rf,G.

5.1. Generalities. Recapitulating, we start with the following.

Lemma 5.3. Let G be a group satisfying hypothesis 5.1.
Then

(1) For i an SL2-involution, Ealg(CG(i)/OF (CG(i))) ≃ SL2 ∗2 SL2

(2) For t a non-SL2-involution, C
◦
G(t) is a D-group, and in partic-

ular its Sylow 2-subgroup is a 2-torus.

Proof. Lemma 4.21. □

Lemma 5.4. Let G be a group of finite Morley rank satisfying Hypoth-
esis 5.1. Let i be an SL2-involution, L = Ealg(CG(i)).

Then

(1) Case (2) of Lemma 4.18 applies. In particular, CG(i) is con-
nected and contains a Sylow 2-subgroup of G, isomorphic to the
Sylow 2-subgroup of SL2 ∗2 SL2.

(2) A pair of distinct commuting involutions s, t in G are co-toral
if and only if there is an SL2-involution in ⟨s, t⟩.
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Proof.

Ad 1. Suppose toward a contradiction that EE(CG(i)) has two conju-
gate components L1, L2. Then CG(i) contains involutions not in C◦

G(i);
these are the involutions swapping the two components. If j is such
an involution, then CG(j) contains a group of type PSL2, so in view of
Lemma 5.3 j must be an SL2-involution. In particular j and ij are both
SL2-involutions, hence are conjugate. On the other hand, for j ∈ C◦

G(i),
j and ji are also conjugate.

Applying what was just proved to j rather than i, it follows that
any involution t in CG(j) is conjugate to tj.

With T1 an algebraic torus of L1, j inverts the group T∗ = {(t(t−1)j) :
t ∈ T1}. Let w be the involution of T∗ and w′ a square root of w in T1.
Then

jw
′
= jw.

On the other hand w and wj are conjugate in CG(j) and so w, j are
conjugate. This gives a contradiction.

Ad 2.
Let s, t be commuting involutions in G, and V = ⟨s, t⟩. If s, t be-

long to a 2-torus T then V = Ω1(T ) meets every conjugacy class of
involutions, hence contains an SL2-involution.

Conversely, if V ≤ L contains an SL2-involution then we may sup-
pose i ∈ V . Since CG(i) is connected the claim follows. □

Remark 5.5. Let G be a group satisfying Hypothesis 5.1. Then for i an
SL2-involution of G and E = Ealg(CG(i)), we have

N(E) = CG(i).

Indeed, N(E) ≤ N(Z(E)) = CG(i) and the reverse inclusion is
clear.
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In what follows, one must bear in mind particularly the conclusion
that CG(i) is connected. In particular, the involutions of CG(i) other
than i are conjugate.

Lemma 5.6. Let G be a group satisfying Hypothesis 5.1. Let i be an
SL2-involution and L an associated E-component. If H is a definable
proper subgroup of G of 2-rank at least 2 containing L, then H ≤ CG(i).

Proof.

Claim 1. ∆ρ(OF (H)) ≤ CG(i).
∆ρ(OF (H)) is the product of unipotent subgroups Up(F (H)) and

U0,r-subgroups U0,r(F (H)) with r > ρ. So let U be one of the subgroups
Up(F (H)) or U0,r(F (H)) with r > ρ.

Take a 4-group V in H containing i. The involutions of V other
than i are not SL2-involutions.

Fix an involution t ∈ V other than i, and consider the group Ut =
CU(t) ≤ ∆ρ(CG(t)). As t is not an SL2-involution this must be trivial.
So t inverts U . The same applies to ti. Thus i centralizes U .

Claim 2. L centralizes OF (H).

We have ∆ρ(OF (H)) ≤ ∆ρ(CG(i)) ≤ Ealg(CG(i)). It follows that
∆ρ(OF (H)) normalizes L, so [L,∆ρ(OF (H))] ≤ L ∩OF (H) = 1.

On the other hand L centralizes U0,rF (H) for r ≤ ρ, so L centralizes
OF (H), as claimed.

Now let L̂ be the normal closure of L in H. Then L̂ centralizes
OF (H). The image of L̂ in H/OF (H) is contained in Ealg(H/OF (H)),

and normal. Hence L̂/Z(L̂) is quasi-simple and L̂ ≤ Ealg(H).
If Ealg(H) has Prüfer 2-rank 1, or more than one component, then

L = L̂ is a component of H and the result follows.
If Ealg(H) is quasi-simple with Prüfer 2-rank 2 then as it has two

conjugacy classes of involution but only one type of E-component and
we reach a contradiction. □
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5.2. UFCG(t) and KL. We consider UFCG(t) for involutions t which
are not SL2-involutions.

Lemma 5.7. Let G be a group satisfying Hypothesis 5.1. Then the
following hold.

(1) For any involution t which is not an SL2-involution, we have

r̄0(UF (CG(t))) > 0.

(2) ρ > 0.

Proof.

Ad 1. If we suppose (1) fails then for any involution t which is not
an SL2-involution we have r̄0(UF (CG(t))) = 0, UF (CG(t)) is a good
torus, and UF (CG(t)) is central in CG(t).

Take a maximal 2-torus T and an SL2-involution i ∈ T . Then for
t ̸= i an involution in T , we find T ≤ Z(C◦

G(t)) by Fact 2.6. Thus
C◦

G(t) ≤ CG(i). So with V = Ω1(T ) we have ΓV ≤ CG(i) < G, and a
strongly embedded subgroup, for a contradiction.

Thus r̄0(UF (CG(t))) > 0 for such involutions t.

Ad 2. In particular,

ρ ≥ r̄0(OF (CG(t))) > 0. □

Lemma 5.8. Let G be a group satisfying Hypothesis 5.1.
Let i be an SL2-involution of G and t an involution of CG(i) other

than i. Let T be a Sylow 2-subgroup of C◦
G(t) and let L be a component

of Ealg(CG(i)).
Then

(1) CG(T ) ≤ N(L).

(2) C◦
G(t) = UF (CG(t)) · CG(T ).
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(3) If UF (CG(t)) ≤ N(L) then C◦
G(t) ≤ CG(i).

Proof.

Ad 1. CG(T ) ≤ CG(i) = N(L).

Ad 2. This holds by Lemma 2.33.

Ad 3. This follows from (1) and (2). □

Lemma 5.9. Let G be a group satisfying Hypothesis 5.1. Let i be an
SL2-involution of G and t an involution of CG(i) other than i.

Then UF (CG(t)) is not contained in CG(i).

Proof. Assuming the contrary, by Lemma 5.8 we find

C◦
G(t) ≤ CG(i).

Let V be a 4-group in CG(i) not containing i. As the involutions of
V are conjugate to t in CG(i), it follows that ΓV ≤ N(L), contradicting
Corollary 2.43. □

Lemma 5.10. Let G be a group satisfying Hypothesis 5.1. Let i be an
SL2-involution, L a component of EE(CG(i)), and KL = C◦

G(L). Let
t ∈ CG(i) be a non-SL2-involution.

Then for all r we have

U0,rOF (CG(t)) ∩KL = 1.

Proof. Suppose toward a contradiction that

X = U0,rOF (CG(t)) ∩KL > 1.

As this intersection is also the centralizer in U0,rF (CG(t)) of a finite
set of involutions in L, the group X it is a U0,r-group (Fact 2.34).
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Claim 1. For s ̸= r,

U0,s(F (CG(t))) ≤ N(L).

The group CG(X) contains L and has 2-rank at least 2, so by
Lemma 5.6 we have CG(X) ≤ N(L). Since U0,s(F (CG(t))) commutes
with X for s ̸= r, the claim follows.

Let Tt = CL(t) and let T be a maximal 2-torus of Tt.

Claim 2. The 2-torus T centralizes U0,r(FC◦
G(t)).

We apply Lemma 3.2 to Q = U0,r(F (CG(t))), T , and U = Q∩N(L).
Here T normalizes Q, and centralizes U . Furthermore CQ(U) ≤ U since

CG(U) ≤ CG(X) ≤ N(L).

So the lemma applies, and T centralizes Q.

Thus U0,r(FCG(t)) ≤ CG(T ) ≤ CG(i) = N(L). So UF (CG(t)) ≤
N(L) and we contradict Lemma 5.9.

This contradiction completes the proof. □

Lemma 5.11. Let G be a group satisfying Hypothesis 5.1. Let i be an
SL2-involution, L a component of EE(CG(i)), and KL = C◦

G(L). Let
t ∈ CG(i) be a non-SL2-involution.

F (CG(t)) ∩KL = 1.

Proof. If X = F (CG(t))∩KL > 1 then as C(X) contains L and has 2-
rank at least 2, we have C(X) ≤ CG(i). On the other hand by Lemma
5.10, U0,r(X) = 1 for all r andX◦ is a good torus. HereX may be finite,
but in any case contains a nontrivial torsion element a, which commutes
with UF (CG(t)). So by considering C(a) we find UF (CG(t)) ≤ CG(i)
and again reach a contradiction. □
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5.3. FCG(t) and CG(i).

Lemma 5.12. Let G be a group satisfying Hypothesis 5.1. Let i be
an SL2-involution, t ∈ CG(i) a non-SL2-involution, and T a 2-torus
containing ⟨i, t⟩.

Then CG(i, t) = C(T ).

Proof. Let H = CG(⟨i, t⟩). As t is represented as a product of two ele-
ments of order 4 with square i in Ealg(CG(i)/OFCG(i)), one from each
component of EE(CG(i)), we find that H acts on Ealg(CG(i)/OFCG(i))
like a subgroup of C(T ), and thus we have [T,H] ≤ OFCG(i) ≤ KL.

But by Fact 2.8, also [T,H] ≤ UF (CG(t)) and so by Lemma 5.10,
[T,H] = 1. □

Lemma 5.13. Let G be a group satisfying Hypothesis 5.1. Let i be an
SL2-involution, L an E-component of CG(i), and t ∈ CG(i) a non-SL2-
involution. Let T be a 2-torus of CG(i) containing ⟨i, t⟩.

Let

Q = F (CG(t)) ∩ CG(i).

Then Q ≤ CL(T ).

Proof. Let T1 be the 2-torus T ∩ L and let w ∈ L invert the algebraic
torus Tt = CL(t) of L containing T1.

The group Q is w-invariant. As w inverts Q∩L, and CQ(w) ≤ KL,
the group Q decomposes as (Q ∩ L)(Q ∩ KL). But Q ∩ KL = 1 by
Lemma 5.10, so Q ≤ L.

In view of Lemma 5.12, the result follows. □

Lemma 5.14. Let G be a group satisfying Hypothesis 5.1. Let i be an
SL2-involution, t ∈ CG(i) a non-SL2-involution, and r ≥ 1.

If U0,r(FCG(i)) > 1 then U0,r(FCG(t)) ≤ CG(i).
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Proof. Let

Ui = U0,r(FCG(i)) ∩ CG(t);

Ut = U0,r(FCG(t)) ∩ CG(i);

U = Ui · Ut.

Claim 1. Ui > 1.

There is a 4-group V in CG(i) whose involutions are not SL2-
involutions, and some involution v ∈ V centralizes a nontrivial sub-
group of U0,r(UFCG(i)). By conjugacy, the same applies to t.

The claim follows by Fact 2.34.

Now U0,r(FCG(t)) · U is a solvable U0,r-group, hence nilpotent.
Let Q = NU0,r(FCG(t))·U(U). Note that Q ≤ CG(t).
By Lemma 5.12, T centralizes U .
By Lemma 5.6, CG(U) ≤ CG(Ui) ≤ CG(i). So CQ(U) ≤ CQ(i) = U .

Now by Lemma 3.2, T centralizes Q.
Accordingly Q = U and hence U0,r(FCG(t)) ≤ U ≤ CG(i). The

result follows. □

Lemma 5.15. Let G be a group satisfying Hypothesis 5.1. For i, t com-
muting involutions with i an SL2-involution and t a non-SL2-involution,
and any parameter r for which U0,r(OFCG(t)) > 1, we have

CU0,r(OFCG(t))(i) > 1.

Proof. We suppose on the contrary that CU0,r(OFCG(t))(i) = 1. By Lemma
5.14 we find U0,r(FCG(i)) = 1.

Furthermore i inverts U0,r(OFCG(t)), and this applies to all invo-
lutions t of CG(i) other than i.

Claim 1. The function θr(s) = U0,r(OFCG(s)) defines a signalizer
functor.
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We have to check the balance condition θr(t1)∩CG(t2) ≤ OF (CG(t2))
for commuting involutions t1, t2. This is trivial if the intersection in
question is trivial, which covers the case in which either one of the
involutions t1, t2 is i.

So we may suppose that t1, t2 are non-SL2-involutions commuting
with i, in which case our assumptions imply that i inverts OF (CG(t1)).
But then θr(t1) ∩ CG(t2) ≤ [i, CG(t2)] ≤ OF (CG(t2)) and the balance
condition holds.

This proves the claim.
By Fact 3.24 this signalizer functor must be trivial, contradicting

our assumptions. This contradiction completes the proof. □

5.4. L2.

Lemma 5.16. Let G be a group satisfying Hypothesis 5.1. For i an
SL2-involution of G, EE(CG(i)) consists of a single component L.

Proof. If there are two E-components then Lemma 5.13 implies that
for t a non-SL2-involution commuting with i we have

UFCG(t) ∩ CG(i) = 1.

This contradicts Lemma 5.15 □

In particular, going forward, L may be defined as EE(CG(i)), un-
ambiguously.

Definition 5.17. Let G be a group satisfying Hypothesis 5.1 and let
i be an SL2-involution of G.

Then we set L = EE(CG(i)), KL = C◦
G(L), and

L̄2 = Ealg(KL/OF (KL)).

The group L̄2 is of type SL2 by Lemma 5.3.
Let L2 be a minimal normal definable subgroup of CG(i) covering

L̄2. In particular L2 is a perfect group and L2/OF (L2) ≃ L̄2.
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Notation 5.18. Let k2 be the base field for L̄2 and set r×2 = r̄0(k
×
2 ),

r+2 = rk(k2+).

According to Lemma 5.16, L2 is not an E-component of CG(i).
Thus k2 has characteristic 0 and r+2 can also be defined as r̄0(k2+).
Furthermore r+2 ≤ rf,G = r̄0(k

x) with k the base field for L. It is
possible, but not certain, that OF (L2) > 1. (In fact we might be able
to ensure this just by widening the definition of E a bit we do not take
that approach, which would require revisiting earlier material.)

Lemma 5.19. Let G be a group satisfying Hypothesis 5.1. Let i be an
SL2-involution. Suppose also that OF (L2) > 1.

Then any definable proper subgroup H of G containing L2 is con-
tained in CG(i).

Proof. Let L̂2 be the normal closure in H of L2.

Claim 1. L̂2 = L2OF (L̂2).

In H̄ = H/OF (H), L̄2 is contained in Ealg(H̄). If Ealg(H̄) has Prüfer
rank 2 and a single component then as it has two conjugacy classes of
involutions and none of type PSL2 we have a contradiction. If Ealg(H̄)

is of type SL2 ∗2 SL2 then L̄2 is one of the components and hence L̂2 is
not the normal closure, for a contradiction.

So L̂2 has Prüfer 2-rank 1 and L̄2 covers L̂2/OF (L2). That is,

L2OF (L̂2) = L̂2 as claimed.

Furthermore L̄2 ≃ L2/OF (L2), so OF (L2) ≤ OF (L̂2) ≤ OF (H).
Let U = OF (H) ∩ CG(i). Then CG(U) ≤ CG(OF (L2)) ≤ CG(i) by

Lemma 5.6. Hence COF (H)(U) ≤ U . By Lemma 3.2 we find OF (H) ≤
CG(i).

Hence L̂2 ≤ CG(i) ≤ N(L2) and L̂2 = L2. Thus H ≤ N(L2) =
CG(i) by Lemma 5.6. □

Lemma 5.20. Let G be a group satisfying Hypothesis 5.1. If i is an
SL2-involution then we have the following.



L∗ GROUPS IN ODD TYPE: QUASI-THIN GROUPS, COMPONENTS 67

(1) OF (L2) = 1.

(2) Ealg(CG(i)) = LL2.

Proof. It suffices to show the first point. Suppose the contrary, and
consider Q = UFCG(t) ∩ CG(i).

By Lemma 5.15, Q > 1. By Lemma 5.13 Q ≤ CL(T ). As we suppose
OF (L2) > 1, by Lemma 5.19 we have NUFCG(t)(Q) ≤ CG(i), and Q is
self-normalizing in UFCG(t). Hence i centralizes UFCG(t), giving a
contradiction. □

Lemma 5.21. Let G be a group satisfying Hypothesis 5.1. Let i be an
SL2-involution.

Then any definable proper subgroup H of G containing L2 is con-
tained in CG(i).

Proof. By Lemma 5.19 we may suppose

OF (L2) = 1.

Let L∗
2 be the normal closure of L2 in H◦, and H̄ = H/OF (H).

Then L̄2 ≤ L̄∗
2 ≤ Ealg(H̄).

Claim 1. L̄2 = L̄∗
2.

Otherwise, L̄∗
2 has Prüfer 2-rank 2. As it has two conjugacy classes

of involutions and no component of type PSL2, it must be of the type
SL2 ∗2 SL2, in which case L̄2 is one of the factors and is normal in
H̄◦. Hence L2O(H) is normal in H◦ and L̄∗

2 = L̄2 after all (which is a
contradiction in this case).

The claim follows. That is,

L∗
2 = L2 ·OF (L∗

2).

If L∗
2 ≤ CG(i) then L2 is normal in L∗

2 and hence OF (L∗
2) centralizes

L2. But as L
∗
2 is the normal closure of L2 in H◦, OF (L∗

2) is then central
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in L∗
2. But then L∗

2 = L2×OF (L∗
2) OF (L∗

2) = 1, L∗
2 = L2, and L2 ◁ H◦.

In this case H◦ ≤ N(L2) ≤ CG(i) by Lemma 5.6. So i is the unique
SL2-involution of H◦. As H normalizes H◦, we have H ≤ CG(i) in this
case.

So we will suppose

L∗
2 is not contained in CG(i).

It follows that OF (L∗
2) is not contained in CG(i). This will lead to a

contradiction.
Let A = F (L∗

2) ∩ CG(i). Note that O(A) = A◦ and A = A◦ ⟨i⟩.
Claim 2. A = COF (L∗

2)
(L2).

A normalizes L2, so [A,L2] ≤ L2 ∩ A = 1. Thus A centralizes L2.
Conversely CG(L2) ≤ N(L2) = CG(i) by Lemma 5.6.
The claim follows.

Claim 3. O(A) ≥ O(Z(L∗
2)) > 1

Let B be a Borel subgroup of L2. Then OF (L∗
2)B is connected and

solvable, and its commutator subgroup lies in its Fitting subgroup.
Hence the unipotent radical U of B is in the Fitting subgroup and
OF (L∗

2)U is nilpotent. Hence A0 = C◦
ZOF (L∗

2)
(U) is nontrivial. On the

other hand C(U) ≤ N(U) ≤ CG(i) by Lemma 5.6. So A0 ≤ O(A). In
particular A0 centralizes L2 as well as OF (L∗

2), so A0 ≤ Z(L∗
2).

The claim follows.
We now consider

Q = N ◦
OF (L∗

2)
(A◦) > A◦.

By Fact 2.32 we have

Q = A◦ ×Q−.

Thus i inverts Q/A◦, and Q/A◦ is abelian.
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Let Q0 be the centralizer in Q of U modulo A◦. Then Q0 > A◦. For
u ∈ U, x ∈ Q0 we have

[u, x] = [u, x]i = [u, xi] = [u, x−1]; [u, x2] = 1; [u, x] = 1.

So x ∈ C(U) ≤ CG(i) and Q0 = A◦, for a contradiction. □

5.5. Two conjugacy classes implies PSL2-components. Now we
may conclude.

Proposition 5.22. Let G be a group satisfying Hypothesis 4.1, with
an SL2-involution, and with two conjugacy classes of involutions.

Then some E-component of an involution is of type PSL2.

Proof. With Q = OFCG(t) ∩ CG(i), by Lemma 5.15 we have Q > 1,
and by Lemma 5.13 we have Q ≤ CL(T ). By Lemma 5.21 we have
NOFCG(t)(Q) ≤ CG(i), and Q is self-normalizing in OFCG(t). Hence i
centralizes OFCG(t), giving a contradiction. □

Lemma 5.23. Let G be a group satisfying Hypothesis 4.1, with an
SL2-involution i, and with two conjugacy classes of involutions.

Then

(1) CG(i) is disconnected.

(2) EE(CG(i)) is of type SL2 ∗2 SL2 with the two components conju-
gate by an involution of type SL2.

(3) The Sylow 2-subgroup is as in PSp4.

Proof.

Ad 1.
Let S be a Sylow 2-subgroup of C◦

G(i), T = S◦, and Ŝ a Sylow
2-subgroup of G containing S.
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Claim 1. There is an involution j in Ŝ\S.

Let t be a PSL2-involution and Tt a maximal 2-torus in CG(t).
Then there is an involution w in CG(t) normalizing Tt and centralizing
a Prüfer 2-rank 1 subgroup of Tt. Accordingly in a Sylow 2-subgroup
Ŝ of G containing S, there is an involution j acting similarly on T . By
inspection, j is not in C◦

G(i).
This proves the claim.

Now i is the unique SL2-involution in T , so j centralizes i. Therefore
CG(i) is disconnected.

Ad 2,3. Let E = EE(CG(i)).

Claim 2. The normalizer of the components of E in Ŝ is S.

Let s ∈ Ŝ normalize the components of E. Then there is some
s′ ∈ S so that ss′ centralizes E. But CS(T ) = T , so this forces s ∈ S.
This proves the claim.

In particular, j switches the components of E and Ŝ = S ⟨j⟩. This
determines the structure of Ŝ and, in particular, this must match the
structure of a Sylow 2-subgroup of PSp4. □
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6. Component analysis: The case of no SL2-components

We need to show that when E-components of type PSL2 occur, then
we have two conjugacy classes of involutions, and that the two classes
correspond to E-components of type PSL2 and SL2, respectively. The
essential point may also be phrased as follows.

Proposition 6.1. Let G be a group of finite Morley rank satisfying
Hypothesis 4.1.

Then some component in E is of type SL2.

Accordingly we work toward a contradiction under the following hy-
pothesis, to be expanded by some notational conventions in Hypothesis
6.4 below.

Hypothesis 6.2. G is a group of finite Morley rank satisfying Hy-
pothesis 4.1. In addition, there is no component in E of type SL2.

This will take an extensive analysis.

6.1. Preliminaries. We are assuming that all E-components are of
type PSL2, and, in particular, the terms “EE-involution” and “PSL2-
involution” are synonyms.

Furthermore, under this assumption the E components are isolated,
so Lemmas 4.14 and 4.15 apply. For convenience we repeat those results
here, in a different order.

(1) There are three conjugacy classes of involutions. These have the
following form.

(a) PSL2-involutions;

(b) component involutions: involutions in an E-component;

(c) products of a PSL2-involution i with an involution in EE(CG(i)).

(2) For i a PSL2-involution and L = EE(CG(i)), we have the follow-
ing.
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(a) L is a single E-component, of type PSL2.

(b) CG(i) is connected and contains a Sylow 2-subgroup of G,
of the form

S1 × SL

where S1 = Tt ⟨w⟩ is a Sylow 2-subgroup of L, Tt a 2-
torus of Prüfer 2-rank 1, w an involution inverting Tt, and
SL = CS(L) is either a Prüfer 2-rank 1 2-torus or as in SL2.

In particular, G has 2-rank 3.

(c) i is the only PSL2-involution in CG(i).

(d) The involutions of CG(i) are in L ⟨i⟩.

(3) Commuting involutions t, t′ of G are co-toral iff ⟨t, t′⟩ contains
a PSL2-involution.

As the analysis leading to the identification of PSp4 might naturally
begin with the assumption that the 2-rank is at least 4, none of what
follows would be needed in that context.

We go over some closely related and familiar ground not explicitly
contained in the above.

Lemma 6.3. Let G be a group of finite Morley rank satisfying Hypoth-
esis 6.2. Let i be an E-involution, L = EE(CG(i)), KL = CCG(i)(L), and
K̄L = KL/OF (KL).

Then

K̄L = Ealg(K̄L) ∗ K̄D

with KD a D-group and Ealg(K̄L) either trivial or of type SL2.
Correspondingly, in the representation of a Sylow 2-subgroup S of

CG(i) as S1 × SL, the factor SL is
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(1) a Prüfer 2-group if Ealg(K̄L) = 1;

(2) the Sylow subgroup of SL2 otherwise.

Proof. CG(i) is connected and CG(i) = L×KL.
The main point here is that KL is an L-group. So by Fact 2.6 we

have

K̄L = Ealg(K̄L) ∗ K̄D

with K̄D/Z
◦(K̄L) of degenerate type. In particular KD is a D-group.

We know that the Sylow 2-subgroup of KL contains a unique invo-
lution, so if Ealg(K̄L) is non-trivial then it is of type SL2, and contains
SL.

On the other hand if Ealg(K̄L) is trivial then K̄L is a connected
D-group and its Sylow 2-subgroup is connected (Fact 2.3).

This covers all claims made. □

We now update our hypothesis and notation to include the struc-
tural information just given.

Hypothesis 6.4. G is a group satisfying Hypothesis 6.2.
i is an E-involution in G. L = EE(CG(i)). KL = CCG(i)(L).

Ẽalg(KL) is the preimage in KL of Ealg(KL/OF (KL)). KD is the
preimage in KL of K̄D.

Our focus now is on centralizers of other involutions, and on NG(L).

Lemma 6.5. Let the group G be as in Hypothesis 6.4, with the associ-
ated notational conventions. Let t be an involution of CG(i) other than
i.

Set H = C◦
G(t) and H̄ = H/OH. Then the following hold.

1. If Tt is a maximal 2-torus of C◦
L(t) and SL is a Sylow 2-subgroup

of KL, then Tt × SL is a Sylow 2-subgroup of H.
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2. H̄ decomposes as

H̄ = Ealg(H̄) ∗ H̄D

with H̄D a D-group, and the image of Ẽalg(KL) in H̄ is Ealg(H̄).

3. H ≤ UF (H) · C◦
N(L)(t) = UF (H)(Tt × K̂◦

L).

4. If UF (H) ≤ N(L), then H ≤ N(L).

Proof.

Ad 1. L contains t or ti, so C◦
L(t) is an algebraic torus of L and Tt is

its 2-torsion subgroup. Tt is inverted by an involution w of L.
Tt ⟨w⟩×SL is a Sylow 2-subgroup of CG(t). As w, t are not co-toral,

w is not in C◦
G(t). So Tt × SL is a Sylow 2-subgroup of H.

Ad 2. By Fact 2.6, H̄ has the structure

Ealg(H̄) ∗ H̄D

with H̄D a D-group.
The group Ẽalg(KL) is contained in H. Its image in H̄ is isomorphic

to Ealg(K̄L). if Ealg(K̄L) is non-trivial then in view of the structure of
Tt×SL, it covers Ealg(H̄). If Ealg(K̄L) is trivial then Tt×SL is connected
and Ealg(H̄) is trivial. So the second point follows in all cases.

Ad 3. As KL normalizes (and centralizes) L, the same applies to its
subgroup Ẽalg(KL). So it suffices to check that

HD ≤ UF (H)(H ∩N(L)).

Applying Lemma 2.33 to the group SHD with S = Tt × S◦
L a max-

imal 2-torus in CG(i), we find

HD ≤ UF (H)CH(S).

But i ∈ S and so CH(S) ≤ CG(i) ≤ N(L). The claim follows.
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Ad 4. Apply (3). □

Lemma 6.6. Let G be as in Hypothesis 6.4, with the associated nota-
tional conventions. Let t be an involution of L.

Then UFCG(t) is not contained in N(L).

Proof. Assuming the contrary, by Lemma 6.5 we have

C◦
G(t) ≤ N(L).

Let V ≤ L be a 4-group. As the involutions of V are conjugate to
t in L, it follows that ΓV ≤ N(L), contradicting Corollary 2.43. □

The starting point for our analysis is Lemma 4.3 (part (2)), which
we repeat for convenience. Namely, for any involution i in G we have

Up(O
σ(CG(i))) = 1 for all primes p;

U(0,r)(O
σ(CG(i))) = 1 for all r > rf,G.

In particular, UF (CG(i)) is torsion-free.

Lemma 6.7. Let G be as in Hypothesis 6.4, with the associated nota-
tional conventions.

Let k be the base field of a component in E. Then k has character-
istic 0.

Proof. Suppose on the contrary that k has positive characteristic. Then
the algebraic tori in L are good tori, and hence have no non-trivial
torsion free subgroups. Thus rf = 0. It then follows from Lemma 4.3
that Oσ(CG(i)) is a good torus and UF (CG(i)) = 1.

This contradicts Lemma 6.6. □

Notation 6.8. We will write Edeg(H) for the product of the quasi-
simple components of E(H) of degenerate type.
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Lemma 6.9. Let G be as in Hypothesis 6.4, with the associated no-
tational conventions. Let H be a definable subgroup of G containing
L.

Then L is a component of Ealg(H), and is the only component of
PSL2 type. In particular,

H ≤ N(L).

Proof. We make use of the notation introduced in Definition 3.15.

Claim 1.

[L,∆rf (F (H))] = 1.

∆rf (F (H)) is the central product of the subgroups U0,r(F (H)) with
r > rf . Let U = U0,r(F (H)) be one such.

By Fact 2.34 the group CU(t) is also a (0, r)-group for any involution
t ∈ I(L). L contains a 4-group V and U is generated by CU(t) for t an
involution of V (Fact 2.44), so it suffices to check that

[L,CU(t)] = 1.

Let T be a maximal 2-torus of CG(t) containing i. Then by Fact
2.27, [T, U ] is contained in U0,r(FCG(t)), which is trivial by Lemma
4.3. Thus T centralizes CU(t). So CU(t) ≤ CG(i) and CU(t) acts on
L, acting like a subgroup of C◦

L(t). But then as r > rf this action is
trivial, and [L,CU(t)] = 1.

The claim follows.

Claim 2. L centralizes F ◦(H) and Edeg(H).

By Fact 2.33 the 2-tori of L centralize Edeg(H), so the second point
is clear.

The root subgroups of L are copies of the additive group of the
base field k+. By Fact 3.17, k+ is a (0, r)-group with r = rk(k) > rf .
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A maximal divisible torsion subgroup of F (H) is central in H and
the root subgroups of L act trivially on Up(F (H)) for any prime p,
so it suffices to show that L centralizes U0,r(F (H)) for all r. The case
r > rf was dealt with in the previous claim and for r ≤ rf < rk(k+) it
follows from the unipotence theory.

This proves the claim.

Claim 3. L ≤ Ealg(H).

Set

H1 = C◦
H(F

◦(H)Edeg(H)).

Then L ≤ H1 and

F ∗◦(H1) = Ealg(H)

In particular CH1
(Ealg(H)) ≤ Ealg(H).

But H1 induces inner automorphisms on Ealg(H) and hence

H1 ≤ Ealg(H)CH1
(Ealg(H)) = Ealg(H).

So L ≤ Ealg(H), as claimed.

Claim 4. L is the unique component of Ealg(H) of PSL2 type.

In view of the structure of the Sylow 2-subgroup of G, H can only
have components of type PSL2 and SL2, and at most one of each. The
claim follows.

From the last claim we infer that H ≤ N(L). □

6.2. Case 1. Involution centralizers and CG(L). We focus now on
the case where we have an involution t ∈ CG(i) with OFCG(t) not
contained in N(L), but OFCG(t) meets CG(L). So for the present we
work with the following hypotheses and notation.



78 JEFFREY BURDGES AND GREGORY CHERLIN

Hypothesis 6.10. G is a simple L∗-group of finite Morley rank and
odd type of Prüfer 2-rank 2 and 2-rank at least 3, satisfying NTA2.
There is no component in E of type SL2.

Fix i an E-involution and set L = EE(CG(i)), K̂L = CG(L), and

rK̂L
= r̄0(K̂L).
Take an involution t ∈ I(CG(i)), t ̸= i. Let Tt be the algebraic torus

C◦
L(t).
Suppose

OFCG(t) ∩ K̂L > 1;

OFCG(t) ̸≤ N(L).

Note that by Lemma 6.5 the condition OFCG(t) ̸≤ N(L) can be
sharpened to

UFCG(t) ̸≤ N(L).

We will make use of this form of the hypothesis withour further men-
tion.

Lemma 6.11. Let G, i, and t satisfy Hypothesis 6.10. Then t ∈ L.

Proof. Suppose toward a contradiction that t ∈ Li. Let

Q = OF (CG(t)) ∩N(L).

Claim 1. Q = OF (CG(t)) ∩ CG(i).

Since CG(i) ≤ N(L), one inclusion is clear. In the reverse direction,
as Q is i-invariant and contains no involutions we have

Q = (Q ∩ CG(i))×Q−

where Q− is the set of elements inverted by i. However an element q
of N(L) inverted by i for which d(q) contains no involutions must lie
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in [i, N(L)] = [i, K̂L] ≤ K̂L and hence commute with the element ti of
L. Hence Q− ⊆ CG(t, ti) ≤ CG(i) and Q ≤ CG(i).

This proves the claim.

Now let Q1 = NOF (CG(t))(Q). Then CQ1
(i) = Q and Q1 = Q×Q−

1 ,
with Q−

1 the subset inverted by i.

Claim 2. Q−
1 centralizes Q.

We take q ∈ Q, x ∈ Q−
1 , and we have

[q, x] = [q, x]i = [q, x−1]; [q, x2] = 1

and thus x centralizes q, proving the claim.

To conclude, we have Q−
1 ⊆ CG(Q) ≤ N(L) since Qt meets K̂L.

Thus Q1 = Q and Q = OF (CG(t)). That is, OF (CG(t)) ≤ N(L), for a
contradiction.

Thus t ∈ L. □

Lemma 6.12. Let G, i, L, K̂L, t, and Tt satisfy Hypothesis 6.10.
Let Tt be the maximal 2-torus of Tt. Then the following hold.

(1) U0,rK̂L
(FCG(t)) is not contained in N(L).

(2) U0,s(FCG(t)) is contained in L for s ̸= rK̂L
.

(3) OFCG(t) ∩ K̂L is a homogeneous U0,rK̂L
-group.

Furthermore,

Tt ≤ Z(C◦
G(t))
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Proof. Let Q = OF (CG(t)) ∩ K̂L.

Claim 1. Q is a homogeneous U0,r-group for some r, and U0,s(FCG(t)) ≤
N(L) for s ̸= r.

By Lemma 6.9, C(Q) ≤ N(L), and the same applies to any non-
trivial subgroup of Q.

If Qt meets ZOF (CG(t)) then OF (CG(t)) ≤ N(L) and we have
a contradiction. So Q is a product of its subgroups U0,r(Q) for cer-
tain values of r. If more than one such subgroup is nontrivial then
OF (CG(t)) is generated by the centralizers of nontrivial subgroups of
Q and we arrive at the same contradiction. Thus Q is a homogeneous
U0,r-subgroup for some value of r, and the claim follows.

We continue to work with the fixed parameter r.

Claim 2. U0,r(FCG(t)) is not contained in N(L).

SinceOFCG(t) is the central product of the subgroups U0,s(FCG(t))
with s varying, this follows from the previous claim and our hypotheses.

Claim 3. For s ̸= r,

U0,s(FCG(t) ∩ CG(i)) ≤ L

Let Tt be the algebraic torus of L containing t and w an involution
of L inverting Tt.

The group Y = U0,s(FCG(t)) is a w-invariant subgroup of L× K̂L,
hence is of the form

(Y ∩ Tt)× (Y ∩ K̂L).

As Y meets K̂L = 1, we find Y ≤ Tt ≤ L.



L∗ GROUPS IN ODD TYPE: QUASI-THIN GROUPS, COMPONENTS 81

Claim 4. r = rK̂L
.

By definition, r ≤ rK̂L
. If r < rK̂L

then let A be an abelian U0,rK̂L
-

subgroup of K̂L. By Lemma 6.11 we have t ∈ L and thus A normalizes
U0,r(FCG(t)). As rK̂L

> r, A must centralize U0,r(FCG(t)).
Hence U0,r(FCG(t)) ≤ CG(A) ≤ N(L), a contradiction to Claim 2.

We have proved points (1–3). Now we consider the 2-torus Tt.

Claim 5. Tt centralizes OF (CG(t)).

Certainly Tt centralizes ZC
◦
G(t) so it suffices to consider the action

of Tt on subgroups of the form U0,r(OF (CG(t))).
It follows from Claim 1 that Tt centralizes U0,s(FCG(t)) for s ̸= rK̂L

by looking at the action of that group on L.
For U0,rK̂L

(FCG(t)) we apply Lemma 3.2 to the groupsQ = OF (CG(t)),

Tt, and U = Qt ∩N(L). Here Tt normalizes Q, and centralizes U . Fur-

thermore CQt
(U) ≤ U since CG(U∩K̂L) ≤ N(L). So the lemma applies,

and Tt centralizes Q.

Claim 6. Tt centralizes C◦
G(t).

LetH = C◦
G(t). By Lemma 6.5, part (2),H ≤ (H∩K̂L)HD withHD

a D-group. As Tt centralizes K̂L, it suffices to check that Tt centralizes
HD. Then Lemma 2.33 and the previous claim complete the proof of
the claim.

Now all points of our lemma have been proved. □

6.3. Case 1, continued. U0,rK̂L
(OF (CG(t))). We work graduatlly to-

ward the following.

Proposition 6.13. Let G be as in Hypothesis 6.4, with the associated
notational conventions. Let t be an involution of L, and K̂L = CG(L).

Then OFCG(t) ∩ K̂L = 1.
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We first make a detailed analysis of U0,rK̂L
(OF (CG(t))). We extend

the notation of Hypothesis 6.10 as follows.

Notation 6.14. Let G, i, L, K̂L, t, Tt satisfy Hypothesis 6.10.
We set Qt = U0,rK̂L

(FCG(t)) and

At = Qt ∩ L; Bt = CQt
(L); Ut = NQt

(L); Q1 = NQt
(Ut).

By assumption Bt is nontrivial.

Lemma 6.15. Let G, i, L, K̂L, t, and Tt satisfy Hypothesis 6.10. Then
the torsion in Qt lies in At.

Proof. The torsion subgroupX in Qt is Π-torus, hence central in C◦
G(t).

Since Qt meets K̂L it follows that X normalizes L. Furthermore X is
w-invariant, where w ∈ L inverts Tt. So X decomposes as (X ∩ L) ×
(X ∩ K̂L) and the second factor is trivial. The lemma follows. □

Lemma 6.16. Let G, i, L, K̂L, t, and Tt satisfy Hypothesis 6.10. Let
w ∈ I(L) invert Tt.

Then

(1) At ≤ Tt.

(2) Ut = At ×Bt is abelian.

(3) i and w invert Q1/Ut.

(4) CQt
(Q1) = Z(Q1) ≤ At.

(5) Z2(Q1) ∩ Ut decomposes as

Z(Q1)× (Z2(Q1) ∩Bt),

with both factors non-trivial.
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L K̂L

At Bt

Q1

t

w

i

Proof.

Claim 1. Ut = At ×Bt and At ≤ Tt.
The group Ut is w-invariant. It acts on L like a subset of Tt with Bt

the kernel of the action. Here Bt is centralized by w and Tt is inverted
by w. The claim follows.

Claim 2. Q1 > Ut.

This holds since Q is not contained in N(L).

Claim 3. The involution i inverts Q1/Ut. In particular, Q1/Ut is abelian.

CQt
(i) ⊆ Qt ∩N(L) = Ut. The claim now follows by Fact 2.31.

Claim 4. CQt
(Q1) = Z(Q1) ≤ At.

We have

CQt
(Q1) ≤ CQt

(Bt) ≤ Qt ∩N(L) = Ut ≤ Q1,

so CQt
(Q1) = Z(Q1). As Z(Q1) is w-invariant and contained in Ut =

At ×Bt we get

CQt
(Q1) = CAt

(Q1)× CBt
(Q1).

Now as Q1 is not contained in N(L), we find CBt
(Q1) = 1. The

claim follows.
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Claim 5. Ut is abelian.

At is abelian.
We have U ′

t = B′
t. So B′

t is normal in Q1. If B
′
t is non-trivial then it

meets Z(Q1), a contradiction. So Bt is abelian and the claim follows.

Now consider the subset Q−
1 of Q1 consisting of elements which are

inverted by i.

Claim 6. Q1 = CQ1
(i)×Q−

1

This is Fact 2.32.

Claim 7. Z2(Q1) ∩ At = Z(Q1).

Let b ∈ Z2(Q1)∩At. Since CG(i) ≤ N(L) we have CQt
(i) ≤ Ut and

thus b centralizes CQ1
(i).

We show now that b centralizes Q−
1 .

Let q ∈ Q1 with qi = q−1. Then [b, q] ∈ Z(Q1) ≤ At, so

[b, q] = [b, q]i = [b, q−1] = [b, q]−1.

Hence [b, q] = 1 as required. The claim follows.

Claim 8. Z2(Q1) ∩ Ut = Z(Q1) × (Z2(Q1) ∩ Bt), with both factors
non-trivial.

By w-invariance and the previous claim the factorization holds, and
as Ut is normal in Q1 and properly contains Z(Q1), we have Z2(Q1) ∩
Ut > Z(Q1).

Claim 9. w inverts Q1/Ut.

Let Tw be the 2-torus of L containing w. By Lemma 6.12 Tw central-
izes C◦

G(w). If w does not invert Q1/Ut then w centralizes some element
q of Q1 \Ut. Then d(q) is a torsion-free group, so d(q) ≤ C◦

G(w). Hence
Tw centralizes q.
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But the 2-torus Tt containing t also centralizes d(q) and thus L
centralizes q. So q ∈ N(L) ∩Qt = Ut, a contradiction.

The claim follows.
With this, the proof of the lemma is complete. □

Lemma 6.17. Let G, i, L, K̂L, t, and Tt satisfy Hypothesis 6.10. Let
w ∈ I(L) invert Tt. Then

Q1 = Ut · (Q1 ∩OF (CG(wi))).

In particular, Q1 ∩OF (CG(wi)) is not contained in N(L).

Proof.

Claim 1. Q1 = Ut · CQ1
(wi).

By Lemma 6.16, wi centralizes Q1/Ut. By Fact 2.31, CQ1
(wi) covers

Q1/Ut. This proves the claim.

As w inverts Q1/Ut, according to Fact 2.32, the group H = CQ1
(wi)

decomposes as the product of two sets

CH(i)×H−,

where H− is the subset inverted by w (or, equivalently, by i).

Claim 2. H− ⊆ OF (CG(wi)).

By Lemma 6.5, part (3) applied to C◦
G(wi), we have

[w,H−] ≤ OF (CG(wi))[w,CN(L)(wi)].

Now

CN(L)(wi) = CL(wi)× CK̂L
(wi) ≤ CL(w)× K̂L.

Thus

[w,H−] ≤ OF (CG(wi)).
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Since w inverts H− this gives the claim.

Hence

CQ1
(wi) = CH(i)×H− ≤ (Q1 ∩N(L)) ·OF (CG(wi))

= Ut ·OF (CG(wi)),

and the result follows from Claim 1. □

Lemma 6.18. Let G, i, L, K̂L, t, and Tt satisfy Hypothesis 6.10.
Then OF (CG(ti)) ∩ K̂L = 1.

Proof. By Lemma 6.11 if we assume the contrary then OF (CG(ti)) ≤
N(L). However this contradicts Lemma 6.17. □

Lemma 6.19. Let G, i, L, K̂L, t, and Tt satisfy Hypothesis 6.10. Let
w ∈ I(L) invert Tt.

Then

Z(OF (CG(wi))) ∩N(L) = 1.

Proof. By Lemma 6.18, OF (CG(wi)) meets K̂L trivially.
As Z(OF (CG(wi))) is w-invariant, it suffices therefore to consider

the group ZL = Z(OF (CG(wi)))∩L, which is contained in the algebraic
torus of L containing w.

As Q1∩OF (CG(wi)) commutes with ZL and (by Lemma 6.12) with
the 2-torus containing t, if ZL is non-trivial then Q1 ∩ OF (CG(wi))
centralizes L, contradicting Lemma 6.17. □

6.4. Case 1, continued. Ut ◁ Qt. We continue the study of Q1 and
eventually show that Q1 = Qt.

Lemma 6.20. Let G, i, L, t satisfy Hypothesis 6.10. Let w be an
involution inverting the algebraic torus of L containing t.

Let Q+
1 = CQ1

(wi). Then
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(1) Q1 = Ut ⋊Q+
1 .

(2) Q+
1 = Q1 ∩OF (CG(wi)).

(3) Q+
1 is abelian and inverted by i.

(4) i inverts Bt.

(5) CQt
(i) = At.

(6) Q′
1 = (Q′

1 ∩ At)× (Q′
1 ∩Bt) = [Q+

1 , Ut].

Proof. Let B+
t = CBt

(i).

Claim 1. Q+
1 = B+

t × (Q1 ∩OF (CG(wi))).

Recall that Q1 = Ut · (Q1 ∩OF (CG(wi))), so

Q+
1 = (Q+

1 ∩ Ut)(Q1 ∩OF (CG(wi))).

We have Q+
1 ∩ Ut = CAt×Bt

(wi) = B+
t and thus

Q+
1 = B+

t · (Q1 ∩OF (CG(wi))).

As OF (CG(wi)) ∩ K̂L = 1 and the factors are normal in Q+
1 we

have

Q+
1 = B+

t × (Q1 ∩OF (CG(wi))).

This proves the claim.

Claim 2. i inverts Bt, and Q+
1 = Q1 ∩OF (CG(wi)).

If B+
t > 1 then Q+

1 ≤ CG(B
+
t ) ≤ N(L) and hence Q1 ≤ N(L), a

contradiction. So B+
t = 1. Therefore i inverts Bt (point (4)) and we

have Q+
1 = Q1 ∩OF (CG(wi)), which is point (2).
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Claim 3. CQt
(i) = At. (Point (5).)

Since CQt
(i) ≤ Ut = At ×Bt and i inverts Bt this is immediate.

Claim 4. Q+
1 is abelian, inverted by i and w. (Point (3).)

As Q+
1 ∩ K̂L = 1 and Q+

1 ∩ L = 1, we find Q+
1 ∩ N(L) = 1. So i

inverts Q+
1 . Hence Q+

1 is abelian and w also inverts Q+
1 .

Claim 5. Q1 = Ut ⋊Q+
1 . (Point (1).)

We have Q1 = UtQ
+
1 with Ut◁Q1. Furthermore Q+

1 ∩Ut = B+
t = 1.

The claim follows.

At this point we have covered the first five points in the statement
of the lemma.

Claim 6. Q′
1 = (Q′

1 ∩ At)× (Q′
1 ∩Bt) = [Q+

1 , Ut] = [Q+
1 , At][Q

+
1 , Bt].

As Q′
1 ≤ Ut the first equation holds by w-invariance.

For the second, take x1 = q1u1, x2 = q2u2 with u1, u2 ∈ Ut and
q1, q2 ∈ Q+

1 , and compute the commutator bearing in mind that Ut

and Q+
1 are abelian and Q′

1 ≤ Ut.

[x1, x2] = [q1u1, q2u2] = [q1, q2u2]
u1[u1, q2u2] = [q1, q2u2][u1, q2u2];

[q1, q2u2] = [q1, u2][q1, q2]
u2 = [q1, u2];

[u1, q2u2] = [u1, u2][u1, q2]
u2 = [u1, q2];

[q1u1, q2u2] = [q1, u2][u1, q2] = [q1, u2][q2, u1]
−1;

Q′
1 = [Q+

1 , Ut].

Finally since Ut = At ×Bt we find [Q+
1 , Ut] = [Q+

1 , At][Q
+
1 , Bt] This

proves the claim, and completes the proof of the lemma. □

Now we move on from Q1 to Qt.

Lemma 6.21. Let G, i, L, t satisfy Hypothesis 6.10. Let w be an
involution inverting the algebraic torus of L containing t.

Let Q+
t = CQt

(wi) and Q−
t = {q ∈ Qt : qwi = q−1}. Then
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(1) Ut = Q−
t .

(2) Qt = Ut ·Q+
t and Ut ∩Q+

t = 1.

(3) Q+
t is an abelian group inverted by i and w.

(4) If P is a (wi)-invariant subgroup of Qt, then

P = (P ∩ Ut) · (P ∩Q+
t ).

Proof. By Lemmas 6.16 and 6.20 Ut = At ×Bt ≤ Q−
t .

Claim 1. Qt = Q−
t ×Q+

t as a product of sets.

This is Fact 2.32.

Claim 2. Q−
t = Ut.

Bear in mind that the torsion in Qt lies in At (Lemma 6.15).
Let q ∈ Q−

t . Decompose Qt with respect to the action of i; then
q = q+q− with q+ centralized by i and q− inverted by i.

Now q+ ∈ CQt
(i) = At, so w also inverts q+. Hence

q−1 = qiw = q−1
+ (qw−)

−1;

q+q− = qw−q+;

(q−)
wq+ = q−.

If q− ∈ Ut then q ∈ Ut. Supposing the contrary, then, q− has infinite
order and q− ∈ d(q−)

◦.
Now wq+ is an involution of L and q− ∈ C◦

G(wq+). By Lemma
6.12 the 2-torus of L containing wq+ commutes with q−. The 2-torus
containing t also centralizes q−. These 2-tori are distinct, so q− must
centralize L. Accordingly q− ∈ Bt and q ∈ Ut.

This proves the claim.
At this point, we have

Qt = Ut ·Q+
t ; Ut ∩Q+

t = 1.
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Claim 3. Q+
t is an abelian group inverted by i and w.

Since Q+
t ∩ Ut = 1, we have CQ+

t
(i) = 1, and thus i inverts Q+

t . So

w does as well, and the group Q+
t is abelian.

Claim 4. If P is a (wi)-invariant subgroup of Qt, then

P = (P ∩ Ut) · (P ∩Q+
t ).

We have the decomposition as a product of sets with respect to the
action of wi:

P = P−P+,

so the claim follows from the corresponding claim for Qt. □

Lemma 6.22. Let G, i, L, t satisfy Hypothesis 6.10.
Then the following hold.

(1) Z2(Qt) ≤ Q1.

(2) Z2(Qt) ∩ At = Z(Qt).

Proof. By Lemma 6.16 we have At ≤ Tt and CQt
(Q1) = Z(Q1) ≤ At.

We continue to work with the decomposition

Qt = Q−
t ·Q+

t = Ut ·Q+
t .

Ad 1. We have Z(Qt) ≤ CQt
(Q1) ≤ At and hence Z2(Qt) normalizes

Ut. Thus Z2(Qt) ≤ Q1, as claimed.

Ad 2. We know Z(Qt) ≤ At. We must show that Z2(Qt)∩At ≤ Z(Qt).
Since At commutes with Ut and Ut = Q−

t , it suffices to show that
Z2(Qt) ∩ At also centralizes Q+

t .
Let a ∈ Z2(Qt) ∩ At and q ∈ Q+

t . Then [a, q] ∈ Z(Qt) ≤ At, and i
inverts Q+

t , so

[a, q] = [a, q]i = [a, q−1] = [a, q]−1.

So [a, q] = 1. This proves the claim. □
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Lemma 6.23. Let G, i, L, t satisfy Hypothesis 6.10. Suppose that
Q1 < Qt.

Then the following hold.

(1) Z(Qt) = Z2(Qt) ∩ Ut.

(2) Q′
1 ≤ At = Z(Q1).

Proof.

Claim 1. Z2(Qt) ∩ Ut = Z(Qt).
Suppose Z2(Qt) ∩ Ut > Z(Qt). Then Z2(Qt) meets Bt. But Q

′
t cen-

tralizes Z2(Qt), so Q′
t ≤ CQt

(Z2(Qt)∩Bt) = Ut. But then Ut is normal
in Qt and Qt = Q1, a contradiction.

Claim 2. Q′
1 ≤ At

We know Q′
1 = (Q′

1 ∩ At)× (Q′
1 ∩Bt).

If Q′
1 is not contained in At, then Q′

1 meets Bt. As Z2(Qt) centralizes
Q′

1, it follows that Z2(Qt) ≤ Ut. But then Z2(Qt) = Z(Qt) and Qt is
abelian, a contradiction.

Claim 3. At = Z(Q1).

We know Z(Q1) ≤ At (Lemma 6.16) and we must prove the reverse
inclusion.

Since Q′
1 ≤ At we have

[Q+
1 , At] ≤ At.

Then for q ∈ Q+
1 , a ∈ At we find

[q, a] = [q, a]i = [q−1, a].

This then gives

[q2, a] = 1; [a, d(q2)] = 1; [a, q] = 1.
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Hence Q+
1 centralizes At. Since Q1 = UtQ

+
1 with Ut abelian it follows

that At ≤ Z(Q1). The claim follows.
This completes the proof. □

Lemma 6.24. Let G, i, L, t satisfy Hypothesis 6.10. Then Ut ◁ Qt.

Proof. We suppose on the contrary that

Q1 < Qt.

Let Q2 = NQt
(At).

Claim 1. Q1 ≤ Q2 and Q2/At is abelian, inverted by i.

As At = Z(Q1) we have Q1 ≤ Q2.
Now CQ2

(i) = At, so i inverts Q2/At. Thus Q2/At is abelian.

At = Z(Q1) = CQt
(i)

Bt

Q2 = NQt
(At)

Q1

Claim 2. At = Z(Q2).

We have Z(Q2) ≤ Z(Q1) = At. We need to show At ≤ Z(Q2).
We have Q2 = AtQ

−
2 with Q−

2 the subset inverted by i, so it suffices
to show that [At, Q

−
2 ] = 1.

This goes as before. For a ∈ At, q ∈ Q−
2 we have

[a, q] = [a, q]i = [a, qi] = [a, q−1],

a = aq
2

; [a, q] = 1.
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Claim 3. Q2 = Qt.

As At is characteristic in Q2, At is normal in NQt
(Q2). It follows

that Q2 is self-normalizing in Qt, so Q2 = Qt.

Now we arrive at a contradiction. Since Qt = Q2 we find Q′
t ≤ At

and hence Qt normalizes Ut, so

Q = Q1,

in spite of our assumption to the contrary.
This concludes the proof. □

Corollary 6.25. Let G, i, L, t satisfy Hypothesis 6.10.
Then

CQt
(wi) = Qt ∩OF (CG(wi)).

Proof. Apply point (2) of Lemma 6.20. □

6.5. Proof of Proposition 6.13. Going forward, the main items of
notation are the following.

Qt = U0,rK̂L
(FCG(t)); At = Qt ∩ L = CQt

(i);

Q+
t = CQt

(wi) = Qt ∩OF (CG(wi));

Q+
tw = CQtw

(wi) = Qtw ∩OF (CG(wi)),

with w ∈ L inverting Tt.
To this we add the following.

Notation 6.26. With G, i, L, t satisfying Hypothesis 6.10, fix t ∈ L,
and let Tt be the 2-torus of L containing t. Let w be an involution of
L inverting Tt, and define the following.

Âw = U0,rK̂L
(CL(w)); R = U0,rK̂L

(FCG(wi))Âw.
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Note that Aw ≤ Âw.

Lemma 6.27. Suppose G is a simple L∗-group of finite Morley rank
and odd type satisfying Hypothesis 6.10.

Then R is a nilpotent group with

R =
〈
Q+

t , Q
+
tw, Âw

〉
and

CR(t) = Q+
t ; CR(tw) = Q+

tw; CR(w) = Âw.

Each of these three groups is non-trivial.

Proof. We set

R0 = U0,rKL
(FCG(wi)).

Recall that the torsion of R0 lies in Aw.
We have Âw ≤ CG(wi) so Âw normalizes R0 and R is a connected

solvable group. R is in fact nilpotent by Fact 2.26.

Claim 1.
〈
Q+

t , Q
+
tw, Âw

〉
≤ R

As Q+
t and Q+

tw are U0,rK̂L
-groups, Corollary 6.25 covers Q+

t and

Q+
tw. The group Âw is included by definition.

Claim 2. CR(w) = Âw

It suffices to check that CR0
(w) ≤ Âw. As CR0

(w) ≤ CG(i) ≤ N(L),
we find

CR0
(w) ≤ Tw × K̂L.

As R0 is t-invariant and R0 ∩ K̂L = 1 (Lemma 6.18), we find

CR0
(w) = R0 ∩ Tw.
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On the other hand by Fact 2.34, CR0
(w) is itself a U0,rK̂L

-group, and

thus this intersection lies in Âw.
The claim follows.

Claim 3. CR(t) = Q+
t .

The group CR(t) reduces to CR0
(t), so this is a U0,rK̂L

-subgroup of

FCG(t). That is,

CR(t) ≤ U0,rK̂L
(FCG(t)) = Qt.

As CQt
(wi) = Q+

t , the claim follows.

Correspondingly, CR(tw) = Q+
tw.

Now by Fact 2.44 the group R is generated by its subgroups

C◦
R(t), C

◦
R(tw), C

◦
R(w).

Only the final point (non-triviality) remains to be checked.
By our assumptions Q+

t is non-trivial, and Q+
tw is a conjugate. Fur-

thermore Âw contains Aw and we know Z(Qw) ≤ Aw. So the result
follows. □

Now we come to the proof of Proposition 6.13.

Proof of Proposition 6.13. Now G satisfies Hypothesis 6.4, and t de-
notes an involution of L. The claim is that OFCG(t) ∩ K̂L = 1.

Suppose on the contrary that OFCG(t)∩ K̂L > 1. Then by Lemma
6.6, Hypothesis 6.10 applies to t. We take w ∈ L inverting the torus
Tt of L containing t.

Claim 1. There is a non-trivial connected subgroup X of Q+
t commut-

ing with a non-trivial connected subgroup Y of Âw.

Consider the group R as in Lemma 6.27.

R =
〈
Q+

t , Q
+
tw, Âw

〉
,
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with all three subgroups non-trivial.
The connected component of the center of R is generated similarly

by

C◦
Z(R)(t), C

◦
Z(R)(tw), C

◦
Z(R)(w),

where now some of these subgroups may be trivial.
However, as t and tw are interchangeable for our present purpose,

we may suppose that at least one of the groups C◦
Z(R)(t) or C

◦
Z(R)(w)

is non-trivial. Any central subgroup of R commutes with Q+
t and with

Âw. Therefore this gives us either a non-trivial connected subgroup of
Âw commuting with Q+

t , or a non-trivial connected subgroup of Q+
t

commuting with Âw.
In either case, the claim follows.

But Qt commutes with the 2-torsion subgroup Tt of Tt (Lemma
6.12), and thus X commutes with Tt and Y , forcing X ≤ C(L), and
thus X ≤ Q+

t ∩N(L) = 1, a contradiction. □

6.6. Case 2. Preliminaries.

Hypothesis 6.28 (Hypothesis and notation).

Hypotheses

G is a simple L∗ group of finite Morley rank and odd type satisfying
NTA2. We suppose that there is no component in E of type SL2.

Notation

Let i be an E-involution.
L = EE(CG(i)), K̂L = CG(L), KL = CG(L, i).
σ is maximal so that U0,σ(FCG(t)) ̸≤ N(L) for t ∈ I(L).
For t, t′ commuting involutions in CG(i) set

Qt = U0,σ(FCG(t)); At = Qt ∩ L;

Q+
t (t

′) = CQt
(t′).
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Remark 6.29. In the context of Hypothesis 6.28, if t is an involution of
L, we have the following.

(1) OFCG(t) has maximal reduced rank at most rf and Up(FCG(t)) =
1 for p prime. (Lemma 3.23).

(2) UFCG(t) is not contained in N(L) (Lemma 6.6).

By (1), OFCG(t) decomposes as a product of groups U0,r(FCG(t))
and a central subgroup d(T ) with T a Π-torus. By (1,2), σ is well-
defined and is at most rf .

By Proposition 6.13 we have Qt ∩ K̂L = 1. Furthermore, as Qt is
w-invariant contains no involutions we find

Qt ∩N(L) = At × (Qt ∩ K̂L)

= At.

Also At = CQt
(i) is a connected U0,σ-subgroup of the algebraic torus

Tt of L containing t.

Lemma 6.30. Let G, i satisfy Hypothesis 6.28.
Then for s an involution in CG(i) we have

[i, C◦
G(s)] ≤ OF (CG(s)).

Proof. This follows from Lemma 6.5 since Ealg(CG(s)) is either trivial
or of type SL2 and CC◦

G(s)
(i) covers the centralizer of i in the quotient

modulo OFCG(s). □

Lemma 6.31. Let G, i satisfy Hypothesis 6.28. Let t, w be distinct
commuting involutions in L, and suppose

C◦
G(wi) ≤ N(L).

Then wi inverts Qt and Qt is abelian.
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Proof. We have

C◦
Qt
(wi) ≤ Qt ∩N(L) = At

and CAt
(wi) = 1, so C◦

Qt
(wi) = 1 and wi inverts Qt.

Hence Qt is abelian. □

Lemma 6.32. Let G, i satisfy Hypothesis 6.28.
Then for any involution s ∈ CG(i) with s ̸= i we have

UF (CG(s)) ̸≤ N(L).

Proof. Supposing the contrary, we have s = it with t an involution of L.
With w ∈ L inverting Tt, by conjugacy we have UF (CG(wi)) ≤ N(L).
By Lemma 6.5 we find C◦

G(wi) ≤ N(L) and then by Lemma 6.31 wi
inverts Qt and Qt is abelian.

Therefore the decomposition of Qt with respect to the action of i
can be written as

Qt = Q+
t (i)×Q+

t (w) = At ×Q+
t (w).

Here i inverts Q+
t (w) and in particular [i, Q+

t (w)] = Q+
t (w). By

Lemma 6.30 we have

Q+
t (w) ≤ OF (CG(w)).

But Q+
t (w) is a U0,σ-group and so Q+

t (w) ≤ Qw.
If At is non-trivial then Aw is non-trivial and both centralizeQ+

t (w),
so Q+

t (w) centralizes L and then Q+
t (w) = 1, a contradiction. So At, Aw

are trivial and Qt = Q+
t (w) ≤ Qw. Hence Qt = Qw is normalized by the

algebraic tori of L containing t and w respectively, and L normalizes
Qt.

But L cannot centralize Qt, so L acts faithfully on Qt. In particular
the root subgroups of L, which are copies of the additive group of the
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base field k, act faithfully onQt. This forces the characteristic of k to be
zero and the rank of the additive group (which is also its reduced rank)
to be at most σ. But σ is at most the reduced rank of the multiplicative
group of k, so this is a contradiction.

The result follows. □

Remark 6.33. Our hypotheses on t ∈ I(L) now apply to all involutions
of CG(i) other than i. In particular we have

Qs ∩N(L) = As.

In the case s = ti with t ∈ L, As is a subgroup of the algebraic torus
of L containing t.

Lemma 6.34. Take the hypotheses and notation as in Hypothesis 6.28.
Let s be any involution in CG(i) other than i, and let V be a 4-group

in CG(i) commuting with s and not containing s.
Then

(1) For v, v′ ∈ I(V ) distinct, Q+
s (v) is an abelian U0,σ-group in-

verted by v′.
In particular, Q+

s (v) ∩Q+
s (v

′) = 1.

(2) Qs = ⟨Q+
s (v) : v ∈ I(V )⟩.

(3) If v ∈ I(V ) \ ⟨s, i⟩ then Q+
s (v) = Qs ∩Qv.

(4) U0,σ(K̂L) = 1.

(5) Qi = 1.

Proof. By Proposition 6.13 we have

OF (CG(s)) ∩ K̂L = 1

for all such s.
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Ad 1. v′ inverts Q+
s (v).

By Fact 2.34, the groups Q+
s (v) are U0,σ-groups.

Suppose first that i ∈ ⟨s, v⟩. Then Q+
s (v) ≤ CQs

(i) ≤ Qs ∩N(L) =
As. But As is contained in an algebraic torus of L inverted by the
elements of ⟨V, s⟩ \ ⟨s, i⟩, hence by v′.

Now suppose i /∈ ⟨v, s⟩. ThenQ+
s (v)∩N(L) = Q+

s (v)∩L ≤ CL(s, v),
and CL(s, v) is finite. Since CG(i) ≤ N(L), this implies that the group
Q+

s (v) is inverted by i, and is abelian. Furthermore the elements of
I(V ) \ {v} belong to ⟨v, s⟩ i and hence invert Q+

s (v).

Ad 2. Qs = ⟨Q+
s (v) : v ∈ I(V )⟩.

This point is simply an application of Fact 2.44, but it should be
kept in mind.

Ad 3. If v ∈ I(V ) \ ⟨s, i⟩, then Q+
s (v) = Qs ∩Qv.

Evidently Qs ∩Qv ≤ Q+
s (v).

Conversely, as Q+
s (v) is inverted by i, it follows from Lemma 6.30

that Q+
s (v) ≤ F (CG(v)) and thus Q+

s (v) ≤ Qs ∩Qv.
This proves the claim.

Ad 4. U0,σ(K̂L) = 1.

Claim 1. U0,σ(K̂L) ≤ OF (K̂L).

Suppose X is a non-trivial abelian U0,σ-subgroup of K̂L.
Let t ∈ I(L) and let w ∈ L invert the algebraic torus of L containing

t. Then X normalizes Q+
t (w) and as both X and Q+

t (w) are U0,σ-
groups, the group Q+

t (w)X is nilpotent.
Let Z be the center of Q+

t (w)X. Since Z commutes with X we have
Z ≤ N(L). By w-invariance

Z = (Z ∩ L)× (Z ∩ K̂L).

But Z ∩ L ≤ Q+
t (w) ∩ L = 1. Thus Z ≤ K̂L. Now since Z commutes

with Q+
t (w) we find Q+

t (w) ≤ N(L), and then Q+
t (w) = 1. Thus

Qt =
〈
Q+

t (i), Q
+
t (wi)

〉
.
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If CX(i) > 1 then similarly we get Q+
t (wi) = 1 and Qt = Q+

t (i) ≤
N(L), for a contradiction. So i inverts X. In particular X ≤ OF (K̂L).
This proves the claim.

Claim 2. U0,s(FCG(t)) commutes with U0,σ(K̂L) for s ̸= σ.

For s < σ, as U0,σ(K̂L) normalizes FCG(t), U0,σ(K̂L) centralizes
U0,s(FCG(t)).

For s > σ we have U0,s(FCG(t)) ≤ N(L), so U0,s(FCG(t)) normal-

izes U0,σ(K̂L) and hence centralizes it.
This proves the claim.

The group K̂L normalizes Qt = U0,σ(FCG(t)). Let R be the group

QtU0,σ(K̂L).

Then R is normalized by K̂L and by C◦
L(t), hence by C◦

G(t)∩N(L).

Claim 3. R is normalized by OFCG(t).

Certainly R is normalized by U0,s(FCG(t)) for s ̸= σ, and R con-
tains Qt = U0,σ(FCG(t)), so the claim follows.

So R is normalized by OFCG(t) · (C◦
G(t)∩N(L)). By Lemma 6.5 it

follows that R is normalized by C◦
G(t), and thus R = Qt.

But then Qt meets K̂L, a contradiction. Point (4) follows.

Ad 5. Qi = 1.
As Qi ≤ U0,σ(N(L)) and U0,σ(L) is either 1 or L, we have Qi ≤

U0,σ(K̂L) = 1 by the previous claim. □

Now we return to consideration of

As = Qs ∩ L.

Lemma 6.35. Take the hypotheses and notation as in Hypothesis 6.28.
Let s ∈ I(CG(i)), s ̸= i and set Ts = C◦

L(s).
Then U0,σ(Ts) = As. In particular, As = Asi.
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Proof. Let A∗
s = U0,σ(Ts). We argue as in the analysis of U0,σ(K̂L)

above.
A∗

s centralizes K̂L. As A
∗
s lies in CG(s) it centralizes U0,r(F (CG(s)))

for r < σ. For r > σ we have U0,r(F (CG(s))) ≤ C◦
N(L)(s) = Ts × K̂L so

also in this case A∗
s centralizes U0,r(FCG(t)).

Now the group QsA
∗
s is normalized by OF (CG(s)) and by K̂L, so

by C◦
G(s). As it is a nilpotent U0,σ-group, QsA

∗
s ≤ Qs and so A∗

s ≤
Qs ∩ L = As. The result follows. □
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Summary

Taking t, w ∈ I(L), s ∈ I(CG(i)) other than (possibly) i.

—Lemma 6.5, p. 73. Set H = C◦
G(t) and H̄ = H/OH.

1. Tt × SL is a Sylow 2-subgroup of H.
2. H̄ decomposes as H̄ = Ealg(KL) ∗ H̄D with H̄D a D-group.
3. H ≤ UF (H) · C◦

N(L)(t).

4. If UF (H) ≤ N(L), then H ≤ N(L).

—Hypothesis 6.28, p. 96. G simple L∗-group, odd type, with NTA2.
No E-component of type SL2.

—Remark 6.29, p. 97. For t ∈ I(L) we have

(1) r̄0(OFCG(t)) ≤ rf ; Up(FCG(t)) = 1. (Lemma 3.23).

(2) OFCG(t) is not contained in N(L) (Lemma 6.6).

—Lemma 6.30, p. 97. [i, C◦
G(s)] ≤ OF (CG(s)).

—Lemma 6.32, p. 98. UF (CG(s)) ̸≤ N(L).

—Remark 6.33, p. 99. Qs ∩N(L) = As.

—Lemma 6.34, p. 99. s /∈ V , v, v′ ∈ V distinct.

(1) Q+
s (v) is an abelian U0,σ-group inverted by v′.

In particular, Q+
s (v) ∩Q+

s (v
′) = 1.

(2) Qs = ⟨Q+
s (v) : v ∈ I(V )⟩.

(3) If v ∈ I(V ) \ ⟨s, i⟩ then Q+
s (v) = Qs ∩Qv.

(4) U0,σ(K̂L) = 1.

(5) Qi = 1.

—Lemma 6.35, p. 101. U0,σ(Ts) = As.
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6.7. Normalizers of subgroups of Qt. Revised 10/2022. Review.
Next we apply signalizer functor theory.

Lemma 6.36. Take the hypotheses and notation as in Hypothesis 6.28.
Let s ∈ I(CG(i)), s ̸= i. and set Ts = C◦

L(s).
Then the following hold.

(1) Q+
s (i) = As = U0,σ(Ts).

(2) As > 1.

Proof.

Ad 1. Q+
s (i) is a U0,σ-group (Fact 2.34).

We have

Q+
s (i) ≤ Qs ∩N(L) = Qs ∩ L = As.

So (1) follows by Lemma 6.35.

Ad 2. Suppose toward a contradiction that

As = 1.

Then i inverts Qs.
Also by Lemma 6.35 we have Asi = As = 1, and as Qi = 1 our

hypothesis becomes

As = 1 for all involutions s ∈ CG(i).

Now take an elementary abelian 2-group A of 2-rank 3 containing
the involution i and define θ on I(A) by

θ(s) = Qs.
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Claim 1. The function θ defines an invariant nilpotent signalizer func-
tor on A.

We need to check the balance condition on A:

Q+
s (s

′) = Qs ∩ CG(s
′) ≤ Qs′.

As i inverts Qs for all s ∈ A, (Qs ∩CG(s
′)) = [i, Qs ∩CG(s

′)] lies in
OF (CG(s

′)). Furthermore Q+
s (s

′) is again a U0,σ-group, so the balance
condition follows and the claim holds.

It follows that the signalizer functor θ is trivial.

Qs = 1 for s an involution in CG(i).

But this contradicts Lemma 6.32. □

Lemma 6.37. Take the hypotheses and notation as in Hypothesis 6.28.
Then we have the following.

(1) K̂L has abelian Borel subgroups.

(2) σ◦(K̂L) = Z◦(K̂L).

(3) OF (K̂L) = 1.

(4) K̂◦
L is a D-group with K̂◦

L/Z
◦(K̂L) of degenerate type.

(5) K̂◦
L has a connected Sylow 2-subgroup of Prüfer rank 1.

(6) K̂L = KL is connected.

Proof.

Ad 1. Let H ≤ K̂L be definable, connected, and solvable. Let Q =
F (QtH). By Lemma 6.34 U0,σ(Q) = 1. Hence Q commutes with Qt. If
Q > 1 this forces Qt ≤ N(L), a contradiction.



106 JEFFREY BURDGES AND GREGORY CHERLIN

Thus F (QtH) = Qt and H ′ ≤ Qt ∩H = 1. Hence H is abelian.

Ad 2. This is given by Lemma 2.29.

Ad 3. As U0,σ(K̂L) = 1 and OF (K̂L) ≤ OF (CG(t)), the group OF (K̂L)
commutes with Qt. Hence it is trivial.

Ad 4. By Fact 2.7 we have

K̂L = Ealg(K̂L) ∗KD

with KD/Z
◦(KD) of degenerate type.

We show that Ealg(K̂L) = 1. Let B be a Borel subgroup of Ealg(K̂L)

and U its unipotent radical. Then U ≤ B′ ≤ F (QtB). As U0,σ(K̂L) = 1

the group U centralizes Qt, and hence must be trivial. So Ealg(K̂L) = 1.
Thus (4) follows.

Ad 5. This is immediate from (4) .

Ad 6. K̂L has the unique involution i so N(K̂L) ≤ CG(i). Thus K̂L =
KL ≤ CG(i).

But CG(i) is connected, and CG(i) = L×KL. So KL is connected.
□

Remark 6.38. It follows that a Sylow 2-subgroup of G has the form
SL×Ti with SL a Sylow 2-subgroup of L and T a 2-torus containing i.

Lemma 6.39. Take the hypotheses and notation as in Hypothesis 6.28.
Then for s an involution which is not a PSL2-involution, CG(s) is a
D-group.

Proof. We may suppose s = t or ti and w inverts Tt. Then s, w are not
cotoral so w /∈ C◦

G(s). It follows that the Sylow 2-subgroups of C◦
G(s)

are connected. Thus with H = C◦
G(s) and H̄ = H/OF (H), we have

Ealg(H̄) = 1 and the result follows. □
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Lemma 6.40. Take the hypotheses and notation as in Hypothesis 6.28.
Then Z◦(Qt) is inverted by i.

Proof. Supposing the contrary we have

Z◦(Qt) ∩ At > 1.

As t is conjugate to w in L we find

Z◦(Qw) ∩ Aw > 1.

Claim 1. Qt,w = 1.

The group Qt,w is centralized by nontrivial connected subgroups of
At and Aw, and hence by L, which must act trivially, forcing Qt,w = 1.

Thus w inverts Qt and Qt is abelian.
Let Bwi = NQwi(Aw). Writing Bwi(s) for CBwi

(s) we have

Bwi = ⟨Bwi(t), Bwi(tw), Bwi(w)⟩ .

Here Bwi(w) = Bwi(i) = Aw. Accordingly Bwi(t) or Bwi(tw) is
nontrivial, so by conjugacy both are nontrivial.

Now Bwi(t)∩Aw is trivial and hence i inverts Bwi(t). Hence Bwi(t) ≤
Qt. Therefore Bwi(t) is normalized by At.

Claim 2. Bwi(t) centralizes Aw

For b ∈ Bwi(t) and a ∈ Aw we have [b, a] ∈ Aw and thus

[b, a] = [b, a]w = [b−1, a]

and as usual [b, a] = 1.
This proves the claim.
As Bwi(t) centralizes Aw and At, it centralies L, giving a contradic-

tion. □
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Notation 6.41. Let G satisfy Hypothesis 6.28.
We let Ti denote the 2-torus of K̂L.
For t, w commuting involutions, we set

Qt,w = Qt ∩Qw;

Qt(w) = CQt
(w).

In the next lemma we will probably take t, w ∈ L but it may be
useful to have it a little more generally.

Lemma 6.42. Take the hypotheses and notation as in Hypothesis 6.28.
Let t, w be distinct commuting involutions in CG(i), distinct from i,
with w inverting At and conjugate to t. Then Qt,w = Qt(w) > 1.

Proof. Qt(w) is inverted by i hence lies in Qt,w. If Qt(w) is trivial then
w inverts Qt and Qt is abelian. But this contradicts Lemma 6.40. □

This last point is one to bear in mind as it will tend to be applied
without explicit mention.

Lemma 6.43. Take the hypotheses and notation as in Hypothesis 6.28.
Let t, w be distinct commuting involutions in CG(i), distinct from i,
with w inverting At and conjugate to t.

Then N ◦
At
(Qt,w) = 1.

Proof. Assuming the contrary, then as (t, v) is conjugate to (v, t) we
find

N ◦
At
(Qt,v), N

◦
Av
(Qt,v) > 1.

Hence L normalizes Qt,v as well. On the other hand the reduced rank
of the additive group of the base field is bigger than σ and hence L
centralizes Qt,v, giving Qt,v = 1, and a contradiction. □

Lemma 6.44. Take the hypotheses and notation as in Hypothesis 6.28.
Let B be a non-trivial subgroup ⟨Ti, t, w⟩-invariant subgroup of Qt in-
verted by i, with N ◦

At
(B) > 1. Then the following hold.
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(1) NG(B) ∩ L ≤ Tt ⟨w⟩.

(2) N ◦
G(B) = OF (NG(B)) ·N ◦

CG(i)
(B).

(3) C◦
G(B) = OF (CG(B)) ·N ◦

Tt
(B).

(4) U0,σ(NG(B)) = U0,σF (NG(B)).

Proof. Let H = N ◦
G(B) and H̄ = H/OF (H). By Fact 2.7 we have

H = Ẽalg(H) ·HD

with Ẽalg(H) the inverse image of Ealg(H̄)

Ad 1. We have N ◦
At
(B) > 1, so if (1) fails then L normalizes B. As

rk(k) > σ it then follows that L centralizes B, and B = 1.

Ad 2.

Claim 1. H̄ is a D-group.

Suppose on the contrary that L1 = Ealg(H̄) > 1. Then in view of
the structure of a Sylow 2-subgroup it is of type PSL2. The 2-torus
Ti acts on L1 and centralizes at least one algebraic torus T1 of L1. If
T1 is the preimage in H then C◦

T1
(i) covers T1. The involutions of L1

are conjugate and L1 contains a 4-group, so the involutions of L1 are
conjugate to involutions in L. In particular an involution t1 of CT1

(i)
lies in L. Then CL2

(t1i) covers L̄1 and we contradict Lemma 6.39.
This proves the claim.
It follows that [Ti, H] ≤ UF (H) (Fact 2.8). Hence C◦

H(i) covers H̄.
This gives (2).

Ad 3. This follows freom (1, 2).

Ad 4.
We have

U0,σ(H) ≤ OF (H)U0,σ(CH(i)) ≤ OF (H)U0,σ(NTt
(B)).
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Let U = U0,σ(H).

Claim 2. U0,rF (U) centralizes U ∩ Tt for r ̸= σ.

For r < σ, U centralizes U0,rF (U).
Suppose now that r > σ and let Ur = U0,rF (U). Then

Ur =
〈
C◦

Ur
(t), C◦

Ur
(w), C◦

Ur
(tw)

〉
.

Here the centralizers of w and tw meet Tt trivially. Hence they are
inverted by i. Thus these groups lie in Qw and Qtw respectively. But
then as r > σ they must lie in Aw or Atw. But U cannot meet Aw or
Atw nontrivially, so we find CUr

(w), CUr
(tw) = 1 and Ur ≤ C(t) with Ur

inverted by w. But then w inverts UNTt
(B) and hence Ur centralizes

NTt
(B).
It follows that U0,σ(FU)U0,σNTt

(B) is normal in U . But FU covers
the quotient of U by this subgroup and hence U0σ(FU) covers the
quotient (since U = U0,σ(U). Thus U = U0,σ(FU)U0,σNTt

(B). This is
then nilpotent, and hence contained in F (N(B)).

This proves (4). □

Lemma 6.45. Take the hypotheses and notation as in Hypothesis 6.28.
Let t, w ∈ L be involutions with w inverting Tt. Let Bt,w = U0,σN(Qt,w).

Then Bt,w is abelian and inverted by i.

Proof. Let Bt,w(i) be CBt,w
(i). By Lemma 6.44 Bt,w(i) ≤ Tt. As this is

a U0,σ-group and N ◦
At
(Qt,w) = 1 we find that i inverts Bt,w. Hence Bt,w

is abelian. □

Lemma 6.46. Take the hypotheses and notation as in Hypothesis 6.28.
Let t, w ∈ L be involutions with w inverting Tt. Let Bt,w = U0,σN(Qt,w).
and let Bt,w(t) = Bt,w ∩Qt.

Let A∗
t = U0,σNAt

(Bt,w(t)). Then A∗
t > 1.
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Proof. Let H = U0,σNQt
(Bt,w(t)). If CH(i) is trivial then H is abelian

and hence contained in Bt,w, for a contradiction.
So CH(i) is a nontrivial U0,σ-subgroup contained in A∗. □

Lemma 6.47. Take the hypotheses and notation as in Hypothesis 6.28.
Let t, w ∈ L be involutions with w inverting Tt.

Then Qt,w = Qt,tw = Qw,tw.

Proof. Qt,w = Qt(w) = Qt(tw) = Qt,tw, and similarly for Qw,tw. □

Accordingly we might also use the notation Q⟨t,w⟩ and, similarly,
B⟨t,w⟩, but we prefer the lighter, less symmetric notation.

Lemma 6.48. Take the hypotheses and notation as in Hypothesis
6.28. Let t, w ∈ L be involutions with w inverting Tt, and Bt,w =
U0,σNG(Qt,w). Then U0,σN(Bt,w) = Bt,w.

Proof. Let H = U0,σN(Bt,w). CH(i) is generated by CH(i, t), CH(i, w),
and CH(i, tw). and these groups are conjugate.

If CH(i, t) is trivial then CH(t) is abelian and contained in

U0,σCG(Qt,w) = Bt,w.

The same then applies to CH(i, w) and CH(i, tw), and H = Bt,w.
Otherwise, A∗

t = U0,σNTt
(Bt,w) is nontrivial, and A∗

w similarly. So
L normalizes U0,σNTt

(Bt,w). So L normalizes Bt,w. But the rank of the
base field of F is greater than σ and then L centralizes Bt,w and hence
also Qt,w, for a contradiction. □

We can apparenty set the next point aside and head directly for the
final argument.

Lemma 6.49. Take the hypotheses and notation as in Hypothesis
6.28. Let t, w ∈ L be involutions with w inverting Tt, and Bt,w =
U0,σNG(Qt,w).
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Let H(t, w) be U0,σNG(Bt,w(t)) and H0(t, w) the preimage in H(t, w)
of U0,σZ(H(t, w)/Bt,w(t)).

Then H0(t, w) ≤ Bt,w.

Proof. Bt,w centralizes Bt,w(t) and hence lies in H(t, w). Thus

[Bt,w, H0(t, w)] ≤ Bt,w(t) ≤ Bt,w,

and H0(t, w) normalizes Bt,w. Thus H0(t, w) ≤ Bt,w. □

6.8. Existence of components of type SL2. We can now prove the
existence of components of type SL2 in E .

Proof of Proposition 6.1. Supposing the contrary, we arrive at Hypoth-
esis 6.28 and we consider a 4-group V = ⟨t, w⟩ contained in L.

With the notation of Lemma 6.46 we have

A∗
t = U0,σ(A

∗
t ) ≤ NG(Bt,w(t)).

On the other hand U0,σCG(Bt,w(t)) = Bt,w and thus A∗
t ≤ NG(Bt,w).

There is a conjugate subgroup A∗
w of NG(Bt,w) and thus L normalizes

Bt,w. Then as usual L centralizes Bt,w and we arrive at a contradiction.
□
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7. The main results

Now we will prove the main result, Theorem 1.1, and add some
further details about the structure of centralizers of involutions.

For the main result, this is largely a matter of assembling the
prior results, with some additional argument in the manner of [FW69,
Won69].

7.1. Theorem 1.1.

Lemma 7.1. Let G be a connected simple L∗ group of finite Morley
rank of odd type satisfying the condition NTA2, with Prüfer 2-rank 2
and

m2(G) ≥ 3.

Then then there is an SL2-involution (an involution whose centralizer
has an E-component of type SL2). For any such involution i, one of
the following applies.

(1) Ealg(CG(i)) = EE(CG(i)) is of type SL2 ∗2 SL2 with components
conjugate in CG(i), and CG(i) disconnected;

or:

(2) CG(i) is connected, contains a Sylow 2-subgroup of G, and has
the form L ∗2 KL with L of type SL2 and KL of Prüfer rank
1 and unique involution i; Ealg(KL/OF (KL)) is of type SL2.
Furthermore we have one of the following.

(2a) There are two conjugacy classes of involution. For t not an
SL2-involution, CG(t) is a D-group.

(2b) There is one conjugacy class of involutions, and they satisfy

Ealg(CG(i)/OFCG(i)) = SL2 ∗2 SL2,

(possibly with differing base fields).
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Proof. The analysis begins with Lemma 4.2 (also subsumed under later
results): E is non-empty and consists of Prüfer 2-rank 1 groups. Ac-
cording to Lemma 4.13, if EE(CG(i)) has more than one component
for some involution i, then it has the structure

SL2 ∗2 SL2,

allowing for the possibilty of unrelated base fields. In particular there
is a clear distinction between SL2-involutions and PSL2-involutions,
when both types exist.

By Proposition 6.1, there are SL2-involutions.
By Lemma 4.19 there are at most two conjugacy classes of involu-

tions.
By Lemma 4.21 the possibilities associated with an SL2-involution

are as described. □

Continuing, we divide the analysis according to the number of con-
jugacy classes of involution present.

Lemma 7.2. Let G be a connected simple L∗ group of finite Morley
rank of odd type satisfying the condition NTA2, with Prüfer 2-rank 2
and

m2(G) ≥ 3.

Suppose that G has two conjugacy classes of invoution.
Then the following hold.

(1) The 2-rank of G is 4.

(2) One conjugacy class of involutions satisfies EE(CG(i)) = PSL2,
and the other satisfies EE(CG(i)) = SL2 ∗2 SL2, the two compo-
nents of SL2 ∗2 SL2 are conjugate.

(3) The Sylow 2-subgroup is as in PSp4.
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(4) All components of centralizers of involutions have the same base
field.

Note that we have arrived at case (1) from the statement of Theo-
rem 1.1.

Proof. By Proposition 5.22 one class of involutions consists of PSL2-
involutions, the other of SL2-involutions. (In particular, Case (2a) above
is eliminated.)

Then by Lemma 5.23, the SL2 involutions satisfy EE(CG(i)) ≃
SL2 ∗2 SL2 with components conjugate by an involution, and the Sylow
2-subgroup is as in PSp4. In particular the 2-rank is 4.

By Lemma 4.13, if i is a PSL2-involution then EE(CG(i)) is a single
component, of type PSL2.

This gives points (1–3). The various components of type SL2 have
the same base field, and it remains to consider components of type
PSL2. We can take an involution swapping two compoments of type
SL2(k). Then we have PSL2 over the same base field in the centralizer.

□

Lemma 7.3. Let G be a connected simple L∗ group of finite Morley
rank of odd type satisfying the condition NTA2, with Prüfer 2-rank 2
and

m2(G) ≥ 3.

Suppose that G has one conjugacy class of invoution.
Then CG(i) is connected.

Proof. Suppose the contrary. Then by Lemma 4.18, EE(CG(i)) is of the
form SL2 ∗2 SL2 with the components conjugate. Now we argue more
or less as in [FW69] (with some overlap with [Won69]).

Claim 1. There is an element j ∈ CG(i) with j2 ∈ ⟨i⟩ which swaps the
two components.
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Take j to be any element which swaps the two components L1, L2

and let

j2 = a1a2c

with a1 ∈ L1, a2 ∈ L2, c ∈ CG(L1L2),
We make two computations of (ja−1)2.

(ja−1
1 )2 = (j2a−1

1 )ja−1
1 ∈ L1c

j;

(ja−1
1 )2 = (a−1

1 )j
−1(j2a−1

1 ) ∈ L2c,

so (ja−1
1 )2 = cj = c. and thus replacing j by ja−1

1 gives j2 ∈ CG(L1L2).
Let T be a maximal 2-torus of L1L2. Then CG(T ) is connected

and any 2-element of CG(T ) lies in T . Thus CG(L1L2)/ ⟨i⟩ contains no
involutions. Hence jCG(L1L2) contains an element whose square lies
in ⟨i⟩, as claimed.

Now consider the group

S = T ⟨w, j⟩ ,

with w inverting T and commuting with j. This is a Sylow 2-subgroup
of CG(i, t). We will show that ⟨i⟩ is characteristic in S.

The connected component of S is T and T ⟨w⟩ is the subgroup
acting trivially or by inversion on T . We consider the fourth powers of
elements of the coset (T ⟨w⟩)j.

Choose notation as follows. For elements of T we write a = a1a2 ∈ T
with a1 ∈ L1, a2 ∈ L2; we also write a = (a1, a2) but must allow for
possible adjustments by i.



L∗ GROUPS IN ODD TYPE: QUASI-THIN GROUPS, COMPONENTS 117

We have the two cosets Tj and Twj to consider. Then we have the
following.

(aj)2 = aj2aj = j2(a1a2, a1a2); (aj)4 = ([a1a2]
2, [a1a2]

2);

(ajw)2 = a(jw)2ajw

= j2(a1a
−1
2 , a−1

1 a2); (ajw)4 = ([a1a
−1
2 ]2, [a−1

1 a2]
2).

In other words, the fourth powers run over a 2-torus containing t
and a 2-torus containing ti. If follows that ⟨i⟩ is characteristic in S.

From this it follows that S is self-normalizing in CG(t) and hence S
is a Sylow 2-subgroup of CG(t). As the structure of a Sylow 2-subgroup
of CG(i) is different, we find that i and t are not conjugate, giving a
contradiction.

This proves the lemma. □

Proof of Theorem 1.1. We have a connected simple L∗ group G of finite
Morley rank of odd type satisfying the condition NTA2, with Prüfer
2-rank 2 and

m2(G) ≥ 3.

By Lemma 7.1 there are at most two conjugacy classes of involu-
tions.

If there are two conjugacy classes of involutions then Lemma 7.2
gives point (1) of Theorem 1.1.

Suppose therefore that there is one conjugacy class of involutions.
By Lemma 7.1 the involutions are SL2-involutions and case (2b) of
that lemma applies. That is,

Ealg(CG(i)/OFCG(i)) = SL2 ∗2 SL2,

possibly with different base fields.
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The rest of clause (2) of Theorem 1.1 is then clear.
Thus in either case the relevant clause of Theorem 1.1 is verified.

□

7.2. Continuation: one conjugacy class. We push the structural
analysis of centralizers of involutions a little further in the two con-
figurations presented in Theorem 1.1. We begin with the case of one
conjugacy class.

Lemma 7.4. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and having one conjugacy class of involutions. Let i be an
involution and let L be an E-component of CG(i). Let H be a definable
proper subgroup of G containing L and having 2-rank at least 2.

Let L̂ be the normal closure of L in H.
Then either L ≤ EE(H) or L̂ = OF (L̂) · L

Proof. Let k be the base field of L and let L̂ be the normal closure of
L in H. Then L̂/OF (L̂) is of type G2, SL3, SL2 ∗2 SL2, or SL2, with
base field k.

But if L̂/OF (L̂) is of type SL2 ∗2 SL2 then L covers one of the com-
ponents and some element of H conjugates L to a group L∗ covering
the second component. Then the conjugating element may be taken to
lie in CG(i) and this gives a contradiction. So the quotient L̂/OF (L̂)
is of type G2, SL3, or SL2.

L̂ is a covering group of L̂/OF (L̂). Let Q = OF (L̂). If Q is trivial

then L ≤ L̂ ≤ EE(H).
So we assume that

Q > 1.

By Lemma 2.53, O(L̂) is a either a p-unipotent group, if the char-
acteristic of the base field k is p > 0, or else a U0,r-unipotent group
with r = rk(k), if the characteristic is zero.

Let Qi = CQ(i).
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Case 1. Qi > 1.
By Fact 3.18 Qi ≤ Ealg(CG(i)). Then Qi normalizes L and so Qi

centralizes L. Hence Ealg(CG(i)) has two components L,L2 of type SL2

and Qi ≤ L2. Here the base fields of the components have the same
characteristic, and the same rank if the characteristic is zero.

If L̂/Q is of type G2 then CL̂(i) covers Ealg(CG(i)) and we have a
contradiction as Qi ≤ Ealg(CG(i)).

Suppose next that L̂/Q is of type SL3(k).

The Sylow 2-subgroup of L̂ has the form T ⟨ti⟩ where T is a 2-torus
with Ω1(T ) = ⟨i, j⟩ and ti is an involution inverting a torus Ti of L
containing i and swapping 2-tori containing j and ij.

In CG(i) the torus T is a central prodict of 2-tori T1, T2 from the
factors L,L2 and ti is the product of an element of order 4 in L which
inverts T1 by an element of order 4 in T2. This element must centralize
Qi, which is contained in a unipotent subgroup of L2. This is impossi-
ble.

Therefore we find L̂/OF (L̂) is of type SL2 and L̂ = Q · L.
Case 2. Qi = 1.

Suppose that L̂/Q is of type G2 or SL3 and Qi = 1. Then the

involutions are conjugate and the claim applies to a 4-group in L̂,
showing that Q = 1, a contradiction. Thus L̂/Q is of type SL2 and

L̂ = Q · L. □

The following is more or less found in the preceding, but we bring
it out.

Lemma 7.5. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and having one conjugacy class of involutions. Let i be an
involution and let L be an E-component of CG(i) with base field k. Let
H be a definable proper subgroup of G containing L and having 2-rank
at least 2.
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Let L̂ be the normal closure of L in H and Q = OF (L̂). If L̂ =

OF (L̂) · L and CQ(i) > 1 then EE(CG(i)) has two components of type
SL2 whose base fields have the same characteristic, and, in the case of
characteristic zero, the same rank.

Proof. We review the relevant part of the previous argument. We set
Qi = CQ(i), which is p-unipotent if k haa characteristic p and is U0,r-
unipotent if k has characteristic zero and rank r.

Then Qi is a unipotent subgroup of Ealg(CG(i)) commuting with L,
so if Qi > 1 then it lies in a root subgroup of a second component of
Ealg(CG(i)). So the characteristics agree, the rank of the second base
field is at least the rank of k, and in characteristic zero the ranks
agree. □

In the same situation, if i inverts Q which is non-trivial and not
the natural module, one will arrive at the same conclusion regarding
the structure of Ealg(CG(i)).

Lemma 7.6. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and having one conjugacy class of involutions. Let i be an
involution and let L be an E-component of CG(i). Let H be a definable
proper subgroup of G with L ≤ Ealg(H).

Then either EE(H) is of type SL3 or H ≤ CG(i).

Proof. We suppose that EE(H) is not of type SL3.
If Ealg(H) is of type SL2 or SL2 ∗2 SL2 then L is a component of

Ealg(H) and H ≤ N(L) = CG(i).
So it remains only to eliminate the case in which Ealg(H) is of type

G2. With L̂ the normal closure of L in H we then have

L̂ = Ealg(H) = EE(H) ≃ G2 .(⋆)

In this case for i ∈ L a central involution, CG(i) = Li × K with
Li ≃ SL2 ∗2 SL2 and K of degenerate type. Then K acts on CG(t) for t
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an involution of Li and centralizes CG(i, t), which contains a maximal
algebraic torus of CG(t). So on the one hand K acts on EE(CG(t)) as
a subgroup of this torus and on the other hand K centralizes an ele-
ment w which inverts it. As K contains no involutions, K centralizes
EE(CG(t)). If follows that K centralizes EE(H) and EE(H) is normal-
ized by CG(i), hence by ΓV for V ≤ Li a 4-group. So ΓV ≤ N(EE(H)),
a contradiction.

This eliminates case (⋆) and completes the proof. □

Lemma 7.7. Let G be a group of finite Morley rank satisfying Hypoth-
esis 4.1 and having one conjugacy class of involutions.

Let i be an involution and suppose that Ealg(CG(i)) is of type SL2 ∗2 SL2.
Then CG(i) = Ealg(CG(i)).

Proof. We know that CG(i) is connected. As the involutions are conju-
gate our assumption on CG(i) applies to all involutions.

Let Ei = EE(CG(i)) and factor CG(i) as Ei ×Ki with Ki of degen-
erate type. For t another involution of CG(i), consider U = CKi

(t).
Decompose CG(t) similarly as Et ×Kt.
U acts on Et as a subgroup of degenerate type commuting with

an elementary abelian 2-group ⟨i, t, w⟩ of rank 3. Hence the action is
trivial and U ≤ Kt. So U commutes with Ei and Et.

As there is a four-group in Ei with involutions conjugate over i, if
Ki > 1 then we may suppose that U > 1. We let H = CG(U). As H
contains Ei and Et the only possible structure for Ealg(H) is G2, and
this must then be EE(H).

But this was eliminated in Lemma 7.6. □

We put the last few lemmas together.

Lemma 7.8. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and having one conjugacy class of involutions. Let i be an
involution and let L be an E-component of CG(i).
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Let H be a definable proper subgroup of G containing L and having
2-rank at least 2. Let L̂ be the normal closure of L in H and Q =
OF (L̂).

Then one of the following applies.

(1) Q = 1 and L̂ ≤ Ealg(H).

(a) H ≤ CG(i), or

(b) Ealg(H) is of type SL3.

or

(2) Q > 1 and L̂ = Q · L.

(a) i inverts Q, or

(b) CG(i) = Ealg(CG(i)) = EE(CG(i)) has two components of
type SL2. Their base fields have the same characteristic and,
in the case of characertistic zero, the same rank.

Lemma 7.9. Let G be a group of finite Morley rank satisfying Hypoth-
esis 4.1 and having one conjugacy class of involutions.

Let i be an involution. Suppose that CG(i) has a component L of
type SL2 with base field k of characteristic p > 0. Then Ealg(CG(i)) is
of type SL2 ∗2 SL2 with both components of characteristic p.

Proof. Let KL = CCG(i)(L), let L2 = Ealg(KL/OF (KL)). and let k2 be
the base field of L2. If k2 has characteristic p then EE(CG(i)) has the
desired structure. So suppose the characteristic of k2 is not p.

Then a maximal p-torus P of CG(i) has Prüfer rank 1, lies in L2, and
commutes with a maximal 2-torus T of CG(i). Taking t an involution
other than i in T , since t and i are conjugate it follows that P lies in
a conjugate L2,t of L2 contained in CG(t). Then H = CG(P ) contains
L and a component of CG(t) conugate to L.
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Referring to Lemma 7.8, we do not have H ≤ CG(i) or L̂ = OF (L̂) ·
L, so this leaves the possibility that Ealg(H) is of type SL3, generated
by compoents of Ei and Et. P then centralizes an involution of Ealg(H)
which lies in CG(i) and inverts an algebraic torus of L. But viewed in
CG(i) this involution cannot centralize P .

So this gives a contradiction, and the result follows. □

Lemma 7.10. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and having one conjugacy class of involutions.

Let i be an involution. Suppose that CG(i) has a component L of type
SL2 with base field k of characteristic zero. Then one of the following
holds.

(1) Ealg(CG(i)) is of type SL2 ∗2 SL2 with both base fields k, k2 of
characteristic zero and with r̄0(k

×) = r̄0(k
×
2 ). In particular

Ealg(CG(i)) = EE(CG(i)).

(2) Ealg(CG(i)) is of type SL2 and r̄0(k
×) = rk(k2).

Proof. The group Ealg(CG(i)/OF (CG(i))) is of type SL2 ∗2 SL2. We call
the base fields k, k2. Let ρ = r̄0(k).

If k2 has caracteristic p then EE(CG(i)) has a component of char-
acteristic p and Lemma 7.9 applies to give a contradiction. So both k
and k2 have characteristic zero.

Case 1. rk(k2) > ρ.
Suppose first that rk(k2) > ρ. Then ∆ρ(CG(i)) ≤ EE(CG(i)) is

of type SL2 ∗2 SL2. In particular the role of the two components is
symmetrical, so we may suppose r̄0(k2) ≤ r̄0(k).

If r̄0(k2) = ρ we are done, so suppose r̄0(k2) < ρ. We let T be a
maximal 2-torus of CG(i) and T = C◦

Ealg(CG(i))
(T ). Then U0,ρ(T) ≤ L.

Similarly U0,ρ(T) is contained in a conjugate of L in CG(j) for each
involution of T .
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Hence H = CG(U0,ρ(T)) contains components of Ealg(CG(t)) for
each such involution t. Then by Lemma 7.8 Ealg(H) is of type SL3.
Then as before, an involution which inverts T should centralize U0,r(T)
and we have a contradiction.

So this case is eliminated.

Case 2. rk(k2) < ρ.
Then we may argue similarly in terms of T , T, and U0,r(T), though

in place of the components of Ealg(CG(i)) we must work with the inverse
images of the components of Ealg(CG(i)/OFCG(i)).

Case 3. rk(k2) = ρ.
Writing L2 for a normal subgroup of CCG(i)(L) covering Ealg(CCG(i)(L)),

and minimal such, if OF (L2) = 1 then we may proceed as above and
arrive at a contradiction. Otherwise, we have |Ealg(CG(i)) = L and
the second alternative applies. □

Lemma 7.11. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and having one conjugacy class of involutions.

Let i be an involution. Suppose that CG(i) has a component L of
type SL2 with base field k of characteristic zero. Then Ealg(CG(i)) is
of type SL2 ∗2 SL2 with both base fields k, k2 of characteristic zero and
with r̄0(k

×) = r̄0(k
×
2 ). In particular

Ealg(CG(i)) = EE(CG(i)).

Proof. Let ρ = r̄0(k
×) and let k, k2 be the base fields of the compo-

nents of Ealg(CG(i))/OFCG(i)). Let L2 be a normal subgroup of CG(i)
covering Ealg(CG(L)). We have to eliminate the case of Lemma 7.10
for which

rk(k2) = ρ

and OF (L2) > 1 (a homogeneous U0,ρ-group).
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We use the signalizer functor theory. Define θ(t) = U0,ρ(OFCG(t)).
We need to check the balance condition

θ(i) ∩ CG(t) ≤ OFCG(t)

for t an involution in CG(i).
In CG(t) we have a conjugate Lt of L. The involution i acts on Lt

like an element i1 of order 4 and centralizes an algebraic torus Ti. The
subgroup Q = θ(i) ∩ CG(t) acts on L like a U0,ρ-group centralizing i1,
hence as a subgroup of T. If w is an involution in CG(t) inverting Ti

then Q is w-invariant and is hence a product Q1 × Q2 with Q1 ≤ Ti

and Q2 centralizing Lt.

Claim 1. Q1 = 1.

The centralizer H1 of Q1 contains both L and a conjugate L∗
2 of L2

contained in Lt. If Q1 > 1 then H1 must fall under one of the cases
listed under (1) in Lemma 7.8: H1 ≤ CG(i) or Ealg(H1) is of type SL3.

As the notmral closure of a Sylow 2-subgroup of H1 contains L∗
2,

we cannot have Ealg(H1) of type SL3. So this forces L∗
2 ≤ CG(i). But

L2∗ centralizes j so this is impossible.
The claim is proved.

Claim 2. Q = 1.

At this point, Q = Q2 centralizes Lj. Suppose Q > 1. The central-
izer H of Q contains L and Lj, so again we find either H ≤ CG(i) or
Ealg(H) is of type SL3. But Lj is not contained in CG(i).

So Ealg(H) must be of type SL3. In particular Q centralizes the
normal closure of a Sylow 2-subgroup of H. Thus Q centralizes L∗

2.
But then L∗

2 ≤ Ealg(H) and again we have a contradiction.
Thus the claim is proved, and with this, the balance condition is

proved. But then θ gives a non-trivial nilpotent signalizer functor and
we have a contradiction. □
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Lemma 7.12. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1 and having one conjugacy class of involutions.

Let i be an involution. Then CG(i) is of type SL2 ∗2 SL2 where the
base fields k1, k2 of the two components have the same characteristic,
and in addition r̄0(k

×
1 ) = r̄0(k

×
2 ). In parciular CG(i) = EE(CG(i)).

Proof. Putting together Lemmas 7.9 and 7.11, the structure of Ealg(CG(i))
is as stated, and furthermore EE(CG(i)) = Ealg(CG(i)).

Then Lemma 7.7 applies. □

One should perhaps prove rk(k1) = rk(k2) as well, at least in char-
acteristic zero, but it does not seem necessary. Having all components
be E-components seems like the main point (along with the fact that
two components occur in Ealg(CG(i))).

7.3. Continuation: two conjugacy classes. We now turn to the
case of two conjugacy classes, beginning with the configuration as de-
scribed by Theorem 1.1.

Hypothesis 7.13.

(1) G is a simple L∗-group of odd type, satisfying NTA2.

(2) There are two conjugacy classes of involution, as follows.

(a) There is an involution i with EE(CG(i)) ≃ SL2(k)∗2SL2(k),
and with the components conjugate by an involution.

(b) There is an involution t with EE(CG(t)) ≃ PSL2(k).

(3) The Sylow 2-subgroup is as in PSp4. In particular the 2-rank is
4.

Lemma 7.14. Let G be a group of finite Morley rank satisfying Hy-
pothesis 7.13 and leet i be an SL2-involution of G. Then the following
hold.



L∗ GROUPS IN ODD TYPE: QUASI-THIN GROUPS, COMPONENTS 127

(1) i is the unique SL2-involution of C◦
G(i).

(2) The PSL2-involutions are precisely the involutions lying in a
copy of PSL2 in G.

(3) The PSL2-involutions are precisely the involutions lying in a
component of the centralizer of a PSL2-involution.

(4) For t a PSL2-involution, and Lt = Ealg(CG(t)), the involu-
tions of C◦

G(t) are those of L ⟨t⟩. Those in Lt ∪ {t} are PSL2-
involutions and the rest are SL2-involutions.

Proof.

Ad 1. The involutions in a given torus consist of one SL2-involution and
two PSL2-involutions. All the involutions in C◦

G(i) are co-toral with i.
So apart from i they are PSL2-involutions and point (1) follows.

Ad 2. There is an involution in C◦
G(i) which lies in a copy of PSL2, and

all PSL2-involutions are conjugate.
On the other hand if i were to lie in a copy L of PSL2 then there

would be an involution w in the centralizer of i inverting the torus of
L containing i, and conjugate to i in L. Such an involution would be
an SL2-involution and so cannot lie in C◦

G(i). It must then swap the
two components of C◦

G(i). But then the tori of C◦
G(i) inverted by w do

not contain i.
Thus point (2) follows.

Ad 3. This is more or less immediate from point (2). There are in-
volutions which lie in components of centralizers of PSL2-involutions.
Such involutions must be PSL2-involutions, and all PSL2-involutions
are conjugate.

Ad 4. This adds a bit more to the above.
Let s be an involution of C◦

G(t). Then s, t are co-toral. Let T be a
2-torus containing s, t. Then T is a maximal 2-torus of C◦

G(t) and hence
meets Lt in a nontrivial 2-torus T1. Accordingly s ∈ T1 ⟨t⟩ ≤ Lt ⟨t⟩. As



128 JEFFREY BURDGES AND GREGORY CHERLIN

we have seen the involutions of L ∪ {t} are PSL2-involutions. On the
other hand there is an SL2-involution cotoral with t which must then
lie in L · t, and all of the latter, apart from t, are connugate under the
action of Lt. This completes the argument.

□

Now we argue in the vein of Lemma 7.4

Lemma 7.15. Let G be a group of finite Morley rank satisfying Hy-
pothesis 7.13. Let i be an involution and let L be an E-component of
CG(i). Let H be a definable proper subgroup of G containing L and
having 2-rank at least 2.

Let L̂ be the normal closure of L in H.
Then either L ≤ EE(H) is of type PSp4 or L̂ = OF (L̂) · L

Proof. Let k be the base field of L.
Then L̂/OF (L̂) is of type PSp4, G2, SL3, SL2 ∗2 SL2, or SL2, with

base field k.
In the cases of G2 or SL3 all toral involutions would be SL2-involutions,

and hence all involuitons would be SL2-involutions, a contradiction.
If L̂/OF (L̂) is of type SL2 ∗2 SL2 then L covers one of the compo-

nents and some element of H conjugates L to a group L∗ covering the
second component. Then the conjugating element may be taken to lie
in CG(i) and this gives a contradiction.

So the quotient L̂/OF (L̂) is of type PSp4 or SL2. In the latter case

L̂ = OF (L̂) · L.
So suppose that L̂/OF (L̂) is of type PSp4 and let Q = OF (L̂). This

is a p-unipotent or a U0,r-unipotent group with r = rk(k). For i ∈ L̂
an SL2-involution, CL̂(i) covers Ealg(CG(i)) and CQ(i) ≤ Ealg(CG(i)),

which forces Qi = 1. There is a 4-subgroup V in L̂ whose involutions
are SL2-involutions . So Q = 1 and L̂ ≤ Ealg(H) is of type PSp4. □
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Lemma 7.16. Let G be a group of finite Morley rank satisfying Hy-
pothesis 7.13 and let i be an SL2-involution. Then C◦

G(i) is of type
SL2 ∗2 SL2.

Proof. We write C◦
G(i) = EK with E = Ealg(CG(i)) and K the cen-

tralizer of E. Let H = CG(K).
For t ̸= i an involution in E, K acts on the component Lt =

EE(CG(t)) of type PSL2 and centralizes a 4-group in Lt, so the action
is trivial and Lt ≤ H.

If K > 1 then in view of Lemma 7.15 Ealg(H) must be of type
PSp4.

Now let t1, t2 be commuting involutions of Ealg(H), Eℓ = Ealg(CG(tℓ)),
and Kℓ = CCG(tℓ)(Eℓ). Then K1 centralizes t2, hence acts on E2, and
centralizes a 4-subgroup. Hence K1 acts trivially on E2, and K1 ≤ K2.
Thus K1 = K2. Taking a 4-group V in Ealg(H), the associated group
KV is normalized by ΓV , so ΓV < G, and we have a contradiction.

This shows that K = 1. □

Lemma 7.17. Let G be a group of finite Morley rank satisfying Hy-
pothesis 7.13. Suppose that t is a PSL2-involution of G commuting with
an SL2-involution i, and let Ei = Ealg(CG(i)), Lt = Ealg(CG(t)).

Then C◦
G(Lt) = CEi

(Lt) is a 1-dimensional algebraic torus of Ei.

Proof. Fix a maximal 2-torus T of Ei. Take j an involution of N(T )
swapping the factors of Ei. We may suppose that t is the involution of
T in the diagonal subgroup with respect to j. Let K = C◦

G(Lt).
We may suppose that j ∈ Lt, replacing j by jt if needed. Then j

is a Weyl group element with respect to T ∩ Lt = T− and T+ ≤ K.
Furthermore j commutes with K.

Then T = T+ × T− where T+ = C◦
T (j) and T− is inverted by j.

Also j acts on Lt, so T− is a maximal 2-torus of Lt and either j or jt
is a Weyl group element in Lt.
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As i ∈ C◦
G(t) is an SL2-involution, ti lies in Lt. Thus j and ti both

centralize K.
As j is a PSL2-involution, Lj = Ealg(CG(j)) is the diagonal copy

of PSL2 with respect to the action of j on Ei. Here K acts on Lj and
t ∈ Lj.

Furthermore the algebraic torus Tt of Lj containing t lies in C◦
G(t)

and commutes with both T and the Weyl group element j of Lt, so
Tt ≤ K and K acts on Lj like Tt.

Let K0 = C◦
K(Lj). Then

K = TtK0

where K0 centralizes Lt and Lj. Since i ∈ Lt ⟨t⟩, it follows that K0

centralizes i.
So K0 acts on Ei like a subgroup of the algebraic torus containing

T . But K0 commutes with the Weyl group element of Lj which inverts
T , and K0 is connected, so K0 is trivial.

Thus K = Tt ≤ Lj ≤ Ei. □

7.4. Theorem 1.2. We may now conclude. We have two configura-
tions, one involving two conjugacy classes of involutions and 2-rank 4,
the other involving one class of involuations and 2-rank 3, with fairly
detailed information concerning the structure of centralizers of involu-
tions.

Proof of Theorem 1.2. The difference between the prior Theorem 1.1
and Theorem 1.2 lies in a more precise description both of Ealg(CG(i))
and of the full centralizer CG(i) in each of the two cases arising.

In the case of one conjugacy class of involutions the additional
information is found in Lemma 7.12.

In the case of two conjugacy classes of involutions it is found mainly
in Lemma ??. For the further statements about the SL2-involutions
and the PSL2-involutions one refers to Lemma 7.14.

□
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automorphisms I. high Prüfer 2-rank. preprint, 2022.

[BC22b] Jeffrey Burdges and Gregory Cherlin. L∗-Groups of odd type with restricted 2-toral
automorphisms III. Identification of PSp4. preprint, 2022.

[BC22c] Jeffrey Burdges and Gregory Cherlin. L∗-Groups of odd type with restricted 2-toral
automorphisms IV. Toward the identification of G2. preprint, 2022.

[BN94] Alexandre Borovik and Ali Nesin. Groups of Finite Morley Rank. The Clarendon Press
Oxford University Press, New York, 1994. Oxford Science Publications.

[Bor20] Alexandre Borovik. Finite group actions on abelian groups of finite morley rank.
preprint, 11pp,, 2020.

1By far the longest part.



132 JEFFREY BURDGES AND GREGORY CHERLIN

[Bur04a] Jeff Burdges. Simple Groups of Finite Morley Rank of Odd and Degenerate Type. PhD
thesis, Rutgers University, New Brunswick, New Jersey, 2004.

[Bur04b] Jeffrey Burdges. A signalizer functor theorem for groups of finite Morley rank. J. Algebra,
274(1):215–229, 2004.

[Bur06] Jeffrey Burdges. Sylow theory for p = 0 in solvable groups of finite Morley rank. J.
Group Theory, 9(4):467–481, 2006.

[Bur09] Jeffrey Burdges. Signalizers and balance in groups of finite Morley rank. J. Algebra,
321(5):1383–1406, 2009.

[CD12] Gregory Cherlin and Adrien Deloro. Small representations of SL2 in the finite Morley
rank category. J. Symbolic Logic, 77(3):919–933, 2012.

[Che05] Gregory Cherlin. Good tori in groups of finite Morley rank. J. Group Theory, 8:613–621,
2005.

[Fon70] Paul Fong. A characterization of the finite simple groups PSp(4. q), G2 (q), D4
2 (q). II.

Nagoya Math. J., 39:39–79, 1970.
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