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L∗-GROUPS OF ODD TYPE
WITH RESTRICTED 2-TORAL ACTIONS

III: IDENTIFICATION OF PSp4

JEFFREY BURDGES AND GREGORY CHERLIN

Abstract. We give an identification theorem for PSp4 as part of an investiga-
tion of simpleK∗-groups of finite Morley rank of odd type having Prüfer 2-rank

2 and 2-rank at least 3. More generally, rather than taking a K∗-hypothesis, we
assume an L∗-hypothesis, so that degenerate type simple sections are allowed,

but we also place restrictions on their definable automorphism groups.

A prior paper analyzed algebraic components in centralizers of involutions,
isolating the expected configurations corresponding to PSp4 or G2. Here we

pursue the line which leads to PSp4. This is more tractable than the other

line, which we will discuss further elsewhere.
In the present paper the first half of the analysis, dealing with the Weyl

group, covers both the PSp4 and G2 configurations. The identification of PSp4
then involves the construction of a BN-pair.
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1. Introduction

1.1. Toward the quasi-thin Algebraicity Conjecture. The Al-
gebraicity Conjecture for groups of finite Morley rank states that an
infinite simple group of finite Morley rank is algebraic, or more ex-
plicitly, a Chevalley group over an algebraically closed field. This has
been proved for groups of infinite 2-rank. In the remaining cases the
connected component of a Sylow 2-subgroup is a 2-torus (a divisible
abelian 2-group) of finite Prüfer 2-rank (i.e., the 2-rank of its socle).
When the Algebraicity Conjecture holds this will also be the Lie rank.

One approach to take is inductive. This runs into the difficulty that
the analysis is easier if the Prüfer 2-rank is large, so that if one argues
in an inductive setting one may prove that the first counterexample
to the Algebraicity Conjecture must occur in low Prüfer rank, but not
that all counterexamples have low Prüfer rank. Still it is valuable to
attempt a census of the configurations involved essentially in potential
counterexamples to the Algebraicity Conjecture. We aim to do this in
a way which separates the issues connected specifically with groups of
degenerate type from the other issues involved when involutions are
present.

The Prüfer rank of a minimal counterexample to the Algebraicity
Conjecture is at most 2. This is proved in [Bur09] after a long series
of developments, notably the identification theorem of [BB04]. This is
stated as follows. (See also Fact 1.6 below.)

Fact 1.1. A simple K∗-group of finite Morley rank with Prüfer 2-rank
at least three is algebraic.

The K∗ hypothesis incorporates the inductive assumption: every
proper definable simple connected section of the group is algebraic. By
analogy with the terminology used in finite group theory, one might
call the Prüfer 2-rank two case the quasi-thin case.

The proof of Fact 1.1 is quite uniform. We cannot expect such a
uniform treatment in Prüfer 2-rank two. Instead, one anticipates (that
is, one aspires to) three separate identification theorems, one for each
of the groups SL3, PSp4, and G2. These must be supplemented by some
prior analysis that produces a suitable point of departure for each of
the three cases.

As far as the case of 2-rank at least 3 is concerned, that preliminary
analysis was carried out in [BC22b]. The following contains a good deal
of the information resulting from that analysis. A more detailed and
more general version will be given afterward as Fact 2.1.
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Fact 1.2 ([BC22b, Theorem 1.2]). Let G be a K∗-group of finite Mor-
ley rank and odd type, and Prüfer 2-rank two. Suppose further that the
2-rank is at least three. Then there is an involution i in G whose cen-
tralizer has a component of type SL2, and one of the following occurs.

(1) There are two conjugacy classes of involutions, the 2-rank is 4,
and the centralizer CG(i) is not connected.

(2) There is one conjugacy class of involutions, the 2-rank is 3, and
the centralizer CG(i) is connected.

This gives us three useful dividing lines—conjugacy classes of invo-
lutions, 2-rank, or connectivity of involution centralizers—which are
mutually equivalent. It is most helpful to take the number of conju-
gacy classes of involutions as the initial point of departure. The prior
analysis also gives fairly detailed information about the structure of
centralizers of involutions in these two settings.

In each case there is only one conjugacy class of involutions i whose
centralizer contains a component of type SL2, and in that case E(CG(i))
is of type SL2 ∗2 SL2. Furthermore, when CG(i) is disconnected some
involution in CG(i) swaps the two components, and otherwise, the com-
ponents are normal in CG(i).

When there is a second conjugacy class of involutions, for such an
involution t we have

E(CG(t)) ≃ PSL2(k)

where k is also the base field for the components of type SL2. Further
one sees that the Sylow 2-subgroup is determined in each case, and has
the expected form as in PSp4 or G2 respectively.

A preliminary statement (for the K∗ setting) of our main result runs
as follows.

Theorem. Let G be a K∗-group of finite Morley rank and odd type,
with Prüfer 2-rank two and 2-rank at least three, and having precisely
two conjugacy classes of involutions. Then G has the form PSp4(k) for
some algebraically closed field k.

However we will limit the use of the inductive hypothesis so as to get
a clearer view of the actual difficulties which may arise from smaller
configurations.

1.2. Beyond K∗-groups. To get a sharper view of what the minimal
obstructions to the Algebraicity Conjecture may be we will work in a
broader inductive framework.
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Definition 1.3. The groups of finite Morley rank and finite 2-rank are
subdivided as follows.

(1) Groups without involutions: degenerate type;

(2) Groups with involutions (and finite 2-rank): odd type.

In the case of odd type, the Prüfer rank is non-zero [BBC07]. So the
degenerate/odd type distinction provides a fairly strong dividing line.

Relatively little is known about the possible structure of simple
groups of finite Morley rank of degenerate type—that is, we have no
Feit-Thompson theorem, and for that matter no character theory. In
odd type, the K∗ hypothesis rules out all sections of degenerate type
by assumption. But one can get by with substantially weaker inductive
assumptions. We will make use of the following two.

Definition 1.4. Let G be a group of finite Morley rank and finite
2-rank.

(1) G is an L∗-group if every proper definable section of non-zero
Prüfer rank is algebraic.

(2) G satisfies the condition NTA2 if very connected definable sec-
tion which acts definably and faithfully on a simple section with-
out involutions also has no involutions. (This may be read as:
“no 2-toral actions,” for short.)

Similar notions played a very striking role in the case of infinite 2-
rank, where they actually led to a full proof of the corresponding part
of the Algebraicity Conjecture. One reason this works so well in that
setting is that the analog of the condition NTA2 does not need to be
taken as a hypothesis (and even holds in a stronger form), because
in that setting there is a direct proof of it (“Altınel’s Lemma”). We
are not going to describe the that version of L∗-group theory in any
more detail here. It is necessary to distinguish the meaning of the term
“L∗-group” in the two settings, but in view of the successful proof of
the Algebraicity Conjecture in the case of infinite 2-rank, one does not
foresee much further use for the version used in the case of infinite
2-rank (that is, even and mixed types).

One should also keep a third condition in view, in general.

Definition 1.5. Let G be a group, M a proper subgroup. Then M is
strongly embedded in G if M contains an involution while the intersec-
tion of M with any conjugate Mx, x /∈ M , contains no involution.
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The particular case in which our group has a definable strongly em-
bedding subgroup can present difficulties, though not in the present
paper, as we shall see. Such groups resist inductive analysis (regardless
of Prüfer rank) though they may be amenable to other techniques.

In particular, the generalized version of Fact 1.1 runs as follows.

Fact 1.6 ([BC22a, Theorem 5.1]). A simple L∗-group of finite Mor-
ley rank with Prüfer 2-rank at least three is either algebraic or has a
strongly embedded subgroup and a connected Sylow 2-subgroup.

In particular, in the latter case, the Prüfer 2-rank and the 2 rank are
equal.

A satisfactory treatment of the strongly embedded case has been
given for K∗-groups in Prüfer rank at least 2. So with that in mind,
Fact 1.6 can be viewed as a generalization of Fact 1.6. There is presently
no clear strategy for extending the treatment of strongly embedded
subgroups to the class of L∗-groups with NTA2.

1

On the other hand, our concern here is with the case of Prüfer rank
equal to two and 2-rank at least three, so in the present paper we will
not encounter difficulties with strongly embedded subgroups.

Fact 1.2 has also been proved with the K∗ hypothesis weakened to
an L∗-hypothesis together with the condition NTA2. This provides the
starting point for the present paper and will be discussed in consider-
able detail below.

1.3. The main result. The main result to be proved here takes on
the following form.

Theorem 1.7. Let G be a group of finite Morley rank and odd type.
Suppose that G is a simple L∗-group satisfying NTA2, with Prüfer 2-
rank two and 2-rank at least three, and having precisely two conjugacy
classes of involutions. Then G has the form PSp4(k) for some alge-
braically closed field k.

The main differences between the K∗ setting and our more general
setting are found in the prior work in this series (and the literature).
For what follows little will be lost (or gained) by thinking in terms of
the K∗ setting.

We proceed as follows, aiming at identification via the theory of
BN-pairs. With the “component analysis” of [BC22b] in hand—that

1It is an interesting topic, with some unpublished partial results. For the present,
the strongly embedded case must be added to the list of problematic configurations
(with, unfortunately, no bound on Prüfer rank).
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is, with the structure of centralizers of involutions pinned down to the
extent described in Fact 2.1— one next defines the Weyl group and a
well controlled subgroup N lifting the Weyl group into the given group
G. At this point one would like to look also at a maximal unipotent
subgroup. Here a more abstract substitute, denoted U , is introduced.
In fact U becomes considerably less abstract as we proceed; cf. Lemma
3.20. This brings us to a putative BN-pair. Proving that the desired
conditions are in fact satisfied involves working rather closely with the
action of the Weyl group and establishing a qualitative version of the
Chevalley commutator formula.

The component analysis left us with two configurations to consider:
the case of two conjugacy classes of involutions, which leads here to
identification of PSp4, and the case of one conjugacy class of involu-
tions, which conjecturally should lead to identification of G2. These
two configurations are delineated more thoroughly in Fact 2.1.

The present paper continues the analysis for a time in parallel for
both configurations, at least up to the point of determination of the
Weyl group, and somewhat beyond that point. When we come to the
actual verification of the BN-pair axioms, the details will depend on
the precise structure of the Weyl group, and some significant differences
arise in the two cases, with respect to the length, the difficulty, and the
degree of success of the analyses. And in the end the G2 analysis will
lead into some further byways.

Accordingly, as far as the verification of the BN-pair axioms is con-
cerned, we limit ourselves here to the case of two conjugacy classes of
involutions, and we will return elsewhere to a discussion of the remain-
ing case.

One noteworthy point in the case of a single conjugacy class of invo-
lutions is that the treatment of some version of a “maximal unipotent
subgroup” poses particular difficulties in that setting, and in one case,
associated with fields of characteristic 3, those difficulties remain un-
resolved.
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2. Preliminaries

2.1. The two configurations. From [BC22b, Thm. 1.2] we have the
following. We go off a little into the weeds of characteristic zero unipo-
tence theory here, but the main point is to have a general sense of the
structure of centralizers of involutions.

Fact 2.1. Let G be a connected simple L∗ group of finite Morley rank
of odd type satisfying the condition NTA2, with Prüfer 2-rank 2 and

m2(G) ≥ 3.

Then there are at most two conjugacy classes of involutions, and one
of the following applies.

(1) There are two conjugacy classes of involutions.

Then the 2-rank of G is 4; and the Sylow 2-subgroup is as in
PSp4.

One conjugacy class of involutions satisfies

C◦
G(i) ≃ PSL2(k)×K,

with K isomorphic to a subgroup of k×, and the other class
satisfies

CG(i) ≃ SL2(k) ∗2 SL2(k),

with the two components of SL2(k) ∗2 SL2(k) conjugate (and all
three base fields the same in the sense that they are definably
isomorphic).

(2) There is one conjugacy class of involutions, and these satisfy

CG(i) = SL2(k1) ∗2 SL2(k2)

where the base fields k1, k2 have the same characteristic. Fur-
thermore, in characteristic zero, we have

r̄0(k
×
1 ) = r̄0(k

×
2 )

in the sense of characteristic zero unipotence theory (§2.3).

In particular CG(i) is connected. Furthermore, CG(i) contains
a Sylow 2-subgroup of G, isomorphic to that of SL2 ∗2 SL2 (in
characteristic other than 2).
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One point to note in case (1) is the use of the notation ∗2 for a central
product with central involutions identified.

We add a bit more information, which lies more on the side of pre-
liminary analysis, but may be worth keeping in mind. This was also
included in [BC22b, Thm. 1.2].

Fact 2.2. Under the assumptions of Fact 2.1, in the case of two con-
jugacy classes of involutions, we have the following.

(1) For i an SL2-involution, i will be the only SL2-involution in
C◦

G(i).

(2) The following are equivalent for involutions t.

(a) t is a PSL2-involution.

(b) t lies in a component of a PSL2-involution.

(c) t lies in a subgroup of G of type PSL2.

(3) For t a PSL2-involution, and Lt = Ealg(CG(t)), the involu-
tions of C◦

G(t) are those of L ⟨t⟩. Those in Lt ∪ {t} are PSL2-
involutions, and the rest are SL2-involutions.

We should perhaps add in Lemma 5.2 as well as it gives a fuller sense
of the situation. Much of the above is covered in that more precise
statement.

For the most part we will be working in the following setting, going
forward.

Hypothesis 2.3. Let G be a group of finite Morley rank. We suppose

(1) G is a connected simple L∗-group of odd type which satisfies
the condition NTA2;

(2) The Prüfer 2-rank of G is two, and the 2-rank is at least three.

With regard to the hypothesis NTA2, we note that the prior work
cited here relies heavily on that assumption. In addition, the condition
NTA2 is used again in the proofs of Lemmas 3.12 and 3.16.

We use the following terminology.

Definition 2.4. Let G be a group of finite Morley rank, i an involution.
We say that i is an SL2-involution or a PSL2-involution if CG(i) contains
a component (a factor of EalgCG(i)) of the corresponding type. We also
use the expressions SL2-type or PSL2-type in the same sense—so these
expressions may apply either to components or to involutions.
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2.2. BN-pairs. Our main tool for identification will be the construc-
tion of a suitable BN-pair.

Definition 2.5 (BN-pair). Let G be a group. A BN-pair for G consists
of two subgroups B and N satisfying the following conditions, where
T = B ∩N .

(BN1) G = ⟨B,N⟩ and T ◁N .

(BN2) The group WBN := N/T is generated by a (specified) nonempty
set I of involutions.

(BN3) For v, w ∈ N and wT ∈ I we have

vBw ⊆ BvB ∪BvwB.

(BN4) wBw ̸= B for all w ∈ N with wT ∈ I.

We call WBN the Weyl group of the BN-pair.
We say that a BN -pair is :

• spherical if the Weyl group WBN is finite,

• irreducible if WBN is not a direct product of proper subgroups,
and

• split if B = U · T for some normal nilpotent subgroup U of B.

Fact 2.6 ([Ten04]). Let G be a group with an irreducible spherical BN-
pair of Tits rank two, where B contains a normal nilpotent subgroup U
with B = UT . Then the associated generalized n-gon Γ is a Moufang
n-gon and G/R contains its little projective group, where R denotes the
kernel of the action of G on Γ.

Remarks 2.7.
1. The effect of Fact 2.6, together with the classification of Moufang

polygons of finite Morley rank, is that for G of finite Morley rank and
Prüfer rank 2, identification will follow if we produce an irreducible
spherical BN -pair of Tits rank two.

2. An earlier version of Fact 2.6 found in [TVM03] also suffices,
because |WBN | = 8 or 12 in our cases and [Ten04] was needed to treat
the case |WBN | = 16.

The final identification is given by the following.

Fact 2.8 ([TVM03]). An infinite simple group of finite Morley rank
with a spherical Moufang BN-pair of Tits rank two is one of PSL2(F),
PSp4(F) or G2(F) for some interpretable field F.
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2.3. Unipotence theory. We review some aspects of the theory of
unipotence in groups of finite Morley rank.

Definition 2.9. A unipotence parameter is either a prime p or a pair
(0, r) with r ≥ 0.

For a prime p, a p-unipotent group is a definable connected nilpotent
p-group, and the p-unipotent radical of a group H of finite Morley rank
is the largest definable normal p-unipotent subgroup. One of the useful
points is that in a solvable group H of finite Morley rank, every p-
unipotent subgroup lies in Up(H) (hence in F (H)).

The “characteristic zero” unipotence theory uses the full range of
parameters (0, r), with the intuition being that larger values of r corre-
spond to “more unipotent” subgroups, smaller values to “more semisim-
ple” ones. One has a notion of (0, r)-unipotence and the U0,r-radical.
It is not the case in general that all (0, r)-unipotent subgroups belong
to the Fitting subgroup of a solvable group of finite Morley rank, but
this does hold for the most unipotent subgroups: that is, for the (0, r)-
unipotent subgroups corresponding to the largest value of r for which
non-trivial (0, r)-unipotent subgroups exist. One therefore focuses at-
tention on the parameter r̄0(H), defined as the largest such value of
r.

Generally speaking the (0, r)-unipotence theory runs parallel to the
more straightforward theory of p-unipotence. One recurring point of the
U0,r-theory is that by definition (0, r)-unipotent groups are generated
by connected abelian (0, r)-unipotent groups, so that when entering
into details one frequently returns to the abelian case.

In particular, when k is a field of finite Morley rank, one has the
following points.

(1) If the characteristic is non-zero then r̄0(k
×) = r̄0(k+) = 0.

(2) If the characteristic is zero then r̄0(k+) = rk(k+) > r̄0(k
×).

Thus, as one might hope, the additive group is more unipotent
than the multiplicative group.

Definition 2.10. Let k be a field of finite Morley rank. The Morley
characteristic χM(k) is defined as follows.

(1) If the characteristic is p > 0, the Morley characteristic is also
p.

(2) If the characteristic is zero, the Morley characteristic is the pair
(0, rk(k)).



12 JEFFREY BURDGES AND GREGORY CHERLIN

In other words, the Morley characteristic associates an abstract no-
tion of unipotence to the field.

We also require a partial order on Morley characteristics.
For π and π′ Morley characrteristics, “π′ ≥M π” means the following.

(1) If π = p > 0: then π′ = π.

(2) If π = (0, r): then π′ = (0, r′) and r′ ≥ r, or π′ = p > 0.

In this connection we have also the following, slightly rephrasing the
foregoing.

Fact 2.11. Let k be a field of finite Morley rank, π its Morley charac-
teristic, and π′ ≥ π. Then Uπ′(k×) = 1.

Here (and throughout) one treats the classical case π = p > 0 and
the case π = (0, r) separately.
In the next lemma one is interested mainly in the special case of

simple algebraic groups, where the definability hypotheses are auto-
matically satisfied.

Lemma 2.12. Let L be an affine algebraic group over an algebraically
closed field k of characteristic zero, equipped with its structure as an
algebraic group (with the field as an additional sort), and possibly ad-
ditional structure. Let r ≥ rk(k). Then a (0, r)-unipotent subgroup of
L is a unipotent subgroup (non-trivial only if r = rk(k)).

Proof. Certainly k+ is a (0, r)-unipotent group and therefore any unipo-
tent subgroup of L is, as well.

For the converse it suffices to consider an abelian (0, r)-unipotent
subgroup of L. This is then a product of a unipotent group and a torus
and as we have a (0, r)-unipotent group, the torus is trivial. □

A similar result, in a less transparent notation, is the following.

Fact 2.13 ([BC22b]). Let G be a group of finite Morley rank satisfying
Hypothesis 2.3.

Let t be an involution of G. Then

∆ρ(CG(t)) = EE(CG(t))

Here ρ is the maximum “reduced rank” of the multiplicative group
of the base field of a component of an involution. The fact implies that
for r at least the maximum rank of any such base field of character-
istic zero, any (0, r)-unipotent subgroup of CG(t) will be contained in
ECG(t) (hence unipotent).
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One important property of this parameter, coming from signalizer
functor theory, is the following.

Fact 2.14. Assuming Hypothesis 2.3, for any involution i we have

r̄0(OFCG(i)) ≤ ρ.

In addition UpCG(i) = 1 for all primes p.

2.4. Auxiliary results and notation. We record some useful prin-
ciples.

Fact 2.15 ([AB08, Theorem 1]). If G is a connected group of finite
Morley rank and T is a p-torus of G, then CG(T ) is connected.

Fact 2.16 ([ABC99, Prop. 2.43], [ABC08, Prop. I.9.12]). Let G =
H ⋊ T be a group of finite Morley rank, Q◁H, and π a set of primes,
such that Q,H, T are definable and

• Q and T are solvable;

• T is a π-group of bounded exponent;

• Q is a T -invariant π⊥-subgroup.

Then

CH/Q(T ) = CH(T )Q/Q

Fact 2.17 ([BC22a, Lemma 3.11]). Let H be a connected L-group of fi-
nite Morley rank and odd type satisfying NTA2 and let H̄ = H/OF (H).

Then

H̄ = Ealg(H̄) ∗ K̄ where K̄ is connected and

K̄/Z◦(K̄) has degenerate type.

Fact 2.18 ([ABCC03], [Bur09, Lemma 3.5]). Let G be a connected
solvable p⊥-group of finite Morley rank, and let P be a finite p-group
of definable automorphisms of G. Then CG(P ) is connected.

If in addition G is a (0, r)-unipotent group then CG(P ) is a (0, r)-
unipotent group.

Remark 2.19. The assumption of finiteness on P can be weakened to
local finiteness since the centralizer will be the centralizer of a finite
subgroup. This is useful in dealing with 2-tori.

Fact 2.20 ([BC08, Theorem 2.1]). Let G be a connected L-group of
finite Morley rank and odd type. Let V be an elementary abelian 2-
group acting definably on G.

Then ΓV = G.
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The following emerges from component analysis.

Fact 2.21 ([BC22b, Lemmas 7.8 and 7.14]). Let G be a group of fi-
nite Morley rank satisfying Hypothesis 2.3. Let L be a component of
EECG(i) with i an SL2-involution. If H is a proper definable subgroup

of G containing L, and L̂ the normal closure of L in H. Then at least
one of the following occurs.

(1) H ≤ CG(i).

(2) L̂ = OF (L̂) · L with OF (L̂) > 1.

(3) There is one conjugacy class of involutions, and L̂ = Ealg(H)
is of type SL3.

(4) There are two conjugacy classes of involutions, and L̂ = Ealg(H)
is of type PSp4.

Actually with Fact 2.1 in hand the last case above does not arise, as
it puts ΓV into L̂ for a 4-group in L̂.

Fact 2.22 ([LW93, Theorem 4] Linearization, characteristic 0). Sup-
pose that there is an infinite definable set S of automorphisms of the
abelian, torsion free group A, such that A is S-minimal, and the struc-
ture (A, S) together with the action has finite Morley rank. Then there
is a subgroup A1 ≤ A and a field K such that A1 ≃ K+ definably.
Furthermore, S embeds into a matrix ring over K.

Implicit in this statement is the definable structure of a K-vector
space on A.

Fact 2.23 ([Bor20, Theorem 3] Linearization, nonzero characteristic).
Let K be an algebraically closed field of characteristic p > 0 and G
the group of points over K of a simple algebraic group defined over K.
Assume that G acts definably and irreducibly on an elementary abelian
p-group V of finite Morley rank. Then V can be given the structure of
a finite dimensional K-vector space VK in a manner compatible with
the action of G, and G becomes a Zariski closed subgroup of GL(VK)

.

Notation 2.24. We make heavy use of the Fitting subgroup F (H) and
its odd part OF (H), and of course the subgroup Ealg(H), the product
of algebraic components. We also make occasional use of the connected
solvable radical, denoted σ◦(H).
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3. The Weyl group and unipotent subgroups

We now move towards the construction of a BN-pair by constructing
a maximal unipotent subgroup and analyzing the normalizer NG(T ) of
a maximal 2-torus T .

First we consider the Weyl group.

3.1. Weyl groups. We now introduce the Weyl group of G and prove
that it is a dihedral group of order 8 or 12, according as the number
of conjugacy classes of involutions in G is two or one, respectively. We
will focus afterward on the case of two conjugacy classes.

Notation 3.1. Let G be a group of finite Morley rank of odd type.
For T a maximal 2-torus of G and j an involution in T set

WT = NG(T )/CG(T ); Wj = NC(j)(T )/CC(j)(T ).

We call these the Weyl group of G, and of C(j), respectively (with
respect to T ). One may replace T by d(T ) here, so these groups are
quotients of definable groups.

By conjugacy of maximal 2-tori the Weyl group W = WT of G is
well-defined up to conjugacy.

Notation 3.2. We continue the preceding with some additional nota-
tion and clarifying remarks.

Wj may be identified with a subgroup of WT , namely the image of
NC(j)(T ) in WT .

In particular, any element ofWj will be considered also as an element
of WT .

Remarks 3.3.
1. For i an SL2-involution and E = Ealg(CG(i)) the Weyl group Wi

contains

WE ≃ (Z/2Z)2.

There is a unique element of Wi inverting T , and we denote this
element by w̄i. Wi coincides with WE if there is one conjugacy class
of involutions (that is, there is no element conjugating the two compo-
nents).

The element w̄i is represented by an involution wi ∈ E (not unique).
The components of wi in the factors of E (which are well-defined ele-
ments up to multiplication by i) are elements of order 4.
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2. For j a PSL2-involution, we have Wj ≃ Z/2Z, that is

Wj = ⟨w̄j⟩

where wj ∈ Lj = Ealg(CG(j)) is an involution inverting T ∩ Lj.

Lemma 3.4. Let G be a group of finite Morley rank satisfying Hypoth-
esis 2.3. Suppose that G has two conjugacy classes of involutions.

Fix an SL2-involution i, and a maximal 2-torus T in Ei = Ealg(CG(i)).
Then the Weyl group W of G is a dihedral group D8 of order 8, with

generators w̄1, j̄, where w1 ∈ Li,1 is a Weyl group element (of order 4)
and j ∈ CG(i) is an involution swapping the components of W .

Proof. We have NG(T ) ≤ CG(i) since i is the unique SL2-involution in
T . Therefore WT = Wi.

As CG(i) = E ⟨j⟩ with E of type SL2 ∗2 SL2 and j swapping the
components, the Weyl group has the form WE ⟨j⟩ with WE ≃ (Z/2Z)2,
where each involution centralizes one 2-torus of Prüfer rank one, and
inverts another. The extension by j is easily recognized as a dihedral
group. □

Now we examine the Weyl group in the case of one conjugacy class
of involutions, with every involution an SL2-involution.

Notation 3.5. When G has just one conjugacy class of involutions,
we label the components of Ei = Ealg(CG(i)) as Li,1 and Li,2, taking
the labels consistent with conjugation: Lig ,1 = Lg

i,1. In other words, we
label the two conjugacy classes of components of type SL2.

(We will also use a similar labeling when the components are conju-
gate, but without any particular coherence conditions.)

Lemma 3.6. Let G be a group of finite Morley rank satisfying Hypoth-
esis 2.3. Suppose that G has one conjugacy class of involutions.

Then the Weyl group of G is a dihedral group of order 12, with gen-
erators w̄1, w̄2, σ̄ where wℓ is an element of NLi,ℓ

(T ) of order 4, and
σ ∈ N(T ) is an element of order three acting on Ω1(T ) as the 3-cycle
(i, j, ij).

Proof. Let T be a maximal 2-torus of G. As N(T ) controls fusion in T ,
the Weyl group acts transitively on I(T ) and we have

W = Wi ⟨σ̄⟩
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where σ̄ has order 3. Then σ̄ lifts to a 3-element σ and σ3 is a 3-
element acting trivially on Ω1(T ). In particular σ3 ∈ CG(i). It follows
that σ3 = 1.

TheWeyl groupWi may be computed in Ei = Ealg(CG(i)) as (Z/2Z)2.
Thus |W | = 12.

The kernel W0 of the action of W on V = Ω1(T ) is given by the
element of Wi inverting T .

The action of W/W0 on V gives the full symmetric group on I(V ),
hence W/W0 ≃ Sym3, with W0 central of order 2.

So W has the structure Z/6Z ⋊ Z/2Z with the second factor acting
non-trivially on the first; this is the dihedral group of order 12. □

3.2. The group N .

Definition 3.7. Let G be a group of finite Morley rank satisfying
Hypothesis 2.3. Let T be a maximal 2-torus of G. We define a subgroup
N of N(T ), with the definition depending on the structure of the Weyl
group, as follows.

1. If the Weyl group is D8, let S be a Sylow 2-subgroup of G, and
set

N = d(S).

2. If the Weyl group is D12 we proceed as follows.
For i an involution of G, let xi be a representative for the Weyl group

WLi,1
in Li,1. That is, xi ∈ Li,1 has order 4 and inverts T ∩ Li,1 while

centralizing Li,2. Let wi be an involution of CG(i) inverting T .
Take two involutions i, j ∈ T and set

N = d(T ) ⟨xi, xj, wi⟩

Remark 3.8. In the second case, the action of xixj on Ω1(T ) is a 3-cycle
(i, j, ij). Consider the action of (xixj)

3 on T ∩Li,1. For a ∈ Li,1 we have
axj ∈ Lij,1 and axjxi ∈ Lj,1, so for a ∈ T ∩ Li,1 we have

a(xixj)
2

= ((a−1)xjxi)xj = ((a−1)xjxi)−1 = axjxi ;

a(xixj)
3

= axjxixixj = axjixj = ax
2
j i

xj
= aj(ij) = ai = a.

Thus (xixj) centralizes T . That is, xixj represents an element of order
3 in W .

Lemma 3.9. Let G be a group of finite Morley rank satisfying Hypoth-
esis 2.3. Let N be defined as above.
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Then

CN(T ) = N◦ = d(T ); N(T ) = C(T ) ·N ; N/d(T ) ≃ WT .

Proof. By construction d(T ) ≤ N . Since N/d(T ) is finite, in view of
Fact 2.15 we have CN(T ) = C◦

N(T ) = d(T ). So CN(T ) = N◦ = d(T ).
The statements N(T ) = C(T ) ·N and N/d(T ) ≃ WT are equivalent.

When W ≃ D8, this holds since S covers a Sylow 2-subgroup of the
quotient.

When W ≃ D12 the group N induces Sym3 on Ω1(T ), and the ele-
ment inverting T has been included. □

Lemma 3.10. Let G be a group of finite Morley rank satisfying Hy-
pothesis 2.3. Let N be defined as above.
Then the following hold.

(1) Any proper definable connected simple algebraic section L of G
is of type PSL2 or PSL3.

(2) There is no proper connected definable subgroup of G containing
N .

Proof.

Ad 1.
Otherwise, the section L is of type PSp4 or G2. Let L = H/K with

K normal and definable in H.
By Fact 2.17 Ealg(H/OF (H)) ≃ L. So we may suppose L = H/OF (H).

By Fact 2.16 the centralizer of an involution in H covers the centralizer
in L.

We consider an involution i of H covering an SL2-involution of L.
Then CH(i) has a quotient of type SL2 ∗2 SL2 and it follows that CG(i)
is contained in H. Then by Fact 2.21 and the remark following it, we
arrive at a contradiction.

This proves the first point.

Ad 2.
Suppose H is a proper connected definable subgroup of G containing

N . Then the Sylow 2-subgroup and Weyl group of H agree with that
of either PSp4 or G2, so H has a definable section of type PSp4 or G2,
for a contradiction. □
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3.3. Unipotent subgroups and tori. For L a component of the cen-
tralizer of an involution in G, with base field k, we define the Morley
characteristic χM(L) as the Morley characteristic of the base field in
the sense of Definition 2.10.

Lemma 3.11. Let G be a group of finite Morley rank satisfying Hy-
pothesis 2.3. Let T be a maximal 2-torus of G.

Suppose that L is a component of the centralizer of a PSL2-involution
t ∈ T . Let π ≥M χM(L) and let U be a nilpotent Uπ-group normalized
by t. Set U0 = CU(t). Then U0 is a unipotent subgroup of L (either
trivial, or a root subgroup).

Proof. By Fact 2.18 CU(t) is again a nilpotent Uπ-group.
We have C◦

G(t) definably isomorphic to the affine algebraic group
Lt × k× with k the base field, and Lemma 2.12 applies. □

Lemma 3.12. Let G be a group of finite Morley rank satisfying Hy-
pothesis 2.3. Let T be a maximal 2-torus of G, and let U be a maximal
definable T -invariant connected nilpotent group.

Then the following hold.

(1) U is maximal among definable connected nilpotent subgroups of
G.

(2) N◦(U)/σ◦(N(U)) is of degenerate type.

Proof. Let

H = N◦
G(U).

Claim 1. F ◦(H) = U .

Certainly U ≤ F ◦(H). Also F ◦(H) is T -invariant, so the claim fol-
lows by maximality.

Set H̄ := H/U . Since G satisfies NTA2, Fact 2.17 implies that

H̄ ∼= Ealg(H̄) ∗ K̄,

where K̄/Z◦(K̄) has degenerate type.
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Claim 2. Ealg(H̄) = 1.

Suppose on the contrary that L̄ = Ealg(H̄) > 1, and let L be the
preimage of L̄. The group T̄ is a maximal 2-torus of H̄ and T ∩ L is a
maximal 2-torus of L.

Let B̄ be a Borel subgroup of Ealg(H̄) containing T̄ , and let B be
its preimage in H. Then B′ ≤ F (B) and B′ covers (B̄)′, which is
the unipotent radical of B̄. So F (B) > U and F (B) is T -invariant,
contradicting the maximality of U . This proves the claim.

Thus H̄ = K̄. This already gives point (2).
Now T̄ ≤ Z(H̄), or [T,H] ≤ U . So any definable connected nilpotent

subgroup of H containing U will be normalized by T , so U must be
maximal such in H.

Therefore U is also maximal definable connected nilpotent in G. This
completes the proof. □

Lemma 3.13. Let G be a group of finite Morley rank satisfying Hy-
pothesis 2.3. Let T be a maximal 2-torus of G, and let U be a maximal
definable connected T -invariant nilpotent subgroup of G.

Let π be either a prime different from the characteristic of any base
field of a component of the centralizer of an involution, or a symbol
(0, r) with r greater than the Morley rank of the base field of any com-
ponent of the centralizer of an involution. Then

Uπ(U) = 1.

Proof. By Facts 2.18 and 2.20 the group Uπ(U) is generated by Uπ-
subgroups of centralizers of involutions in T . These are T -invariant
nilpotent Uπ-subgroups of CG(i) with i an involution of T .

The claim then follows from the structure of these centralizers. □

Notation 3.14. Let G be a group of finite Morley rank satisfying
Hypothesis 2.3. let T be a maximal 2-torus of G. Let i ∈ I(G) be an
SL2-involution, with the components of Ei = Ealg(CG(i)) denoted Li,1

and Li,2.
Then Bℓ denotes some Borel subgroup of Lℓ normalized by T for

ℓ = 1, 2, and B = B1B2. We write Xℓ for the unipotent radical of Bℓ

and we set X = X1X2.
Let U be a fixed maximal definable connected nilpotent subgroup of

G which contains X and is T -invariant.
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Lemma 3.15. Let G be a group of finite Morley rank satisfying Hy-
pothesis 2.3. With notation as in 3.14, we have

U ∩ d(T ) = 1.

Proof. T is contained in a product T of algebraic tori of Li,1 and Li,2

such that for T1 ≤ T non-trivial, UT1 is not nilpotent. Since d(T ) ≤ T
the result follows. □

Lemma 3.16. Let G be a group of finite Morley rank satisfying Hy-
pothesis 2.3. Let i ∈ I(G) be an SL2-involution and Ei = Ealg(CG(i)),
L = Li,1 ∗2 Li,2. In the event that the base fields k1, k2 are of charac-
teristic zero, choose notation so that

rk(k1) ≥ rk(k2).

Let π = χM(k1).
Then with notation as in 3.14, we may choose U to contain a maxi-

mal definable nilpotent Uπ-subgroup of G.

Proof. Let U0 = Uπ(X) (i.e., X1 if rk(k1) > rk(k2), and X otherwise).
Let U be chosen maximal subject to the following conditions.

(1) U is a definable connected nilpotent Uπ-group containing U0.

(2) U is normalized by T .

(3) If π ̸= χM(k2) then U centralizes X2.

It suffices to show that U is a maximal definable connected nilpotent
Uπ-subgroup of G; we may then extend UX2 further by an application
of Lemma 3.12.

As previously, we may work in H = N◦(UX2), which contains T . We
have U ≤ F (H). Furthermore Uπ(F (H)) = U by the maximality of U ;
note that if π ̸= χM(k2) then Uπ(F (H)) centralizes X2.
If H/OF (H) has an algebraic component K̄ with χM(K̄) = π, we

arrive at a contradiction as in the proof of Lemma 3.12.
In the contrary case, Ealg(H/U) contains no non-trivial Uπ-subgroup.
Now suppose H/OF (H) contains an abelian Uπ-subgroup Ā com-

muting with T̄ . Pulling back to a subgroup A ≤ H, we find that T
normalizes Uπ(A) and Uπ(A) centralizes X2 if π ̸= π2. So the maximal-
ity of U in H, and in G, follows. □
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Notation 3.17. Let G be a group of finite Morley rank satisfying
Hypothesis 2.3. Fix a maximal 2-torus T of G.

Then we let (correspondingly) T = CG(T ).

Remark 3.18. N normalizes T.
This is clear by the construction of N .

We think of T as the “algebraic” torus containing T . This is some-
what justified by the following.

Lemma 3.19.

(1) T = T1T2 with Tℓ the algebraic torus of Li,ℓ containing T ∩Li,ℓ.

(2) For t ∈ I(T ), and K a component of Ealg(CG(t)), the group
T ∩K is a maximal torus of K.

(3) U ∩ T = 1.

Proof.

Ad 1. CG(T ) = C◦
G(T ) ≤ C◦

G(i) = Ei, so T = C◦
Ei
(T ) = T1T2.

Ad 2. Similar.

Ad 3. Since U is nilpotent and contains X, we have U ∩ T = 1. □

Lemma 3.20. T normalizes the group U .
Furthermore, U is generated by unipotent subgroups of algebraic com-

ponents of centralizers of involutions t ∈ I(T ). In particular, if there
are two conjugacy classes of involutions, then U is a Uπ-group.

Proof. Let V = Ω1(T ) = ⟨i, j⟩.
By Fact 2.20 we have

U = ⟨C◦
U(t) : t ∈ I(V )⟩ .

Set Ut = C◦
U(t) (which is also CU(t)).

We will show that T normalizes Ut and that Ut is generated by unipo-
tent subgroups of algebraic components of CG(t).

Case 1. t is an SL2-involution.
In the case the argument takes place inside Et = CG(t) = Ealg(CG(t)),

and reduces to the two factors. We give the details.
Then T is a product of tori from the components of Et, and T is the

maximal 2-torus of T.
The 2-torus T normalizes Ut, which is a nilpotent subgroup of Et

with trivial intersection with T.
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If T centralizes Ut then Ut ⊆ T and hence Ut = 1, and there is
nothing more to prove.

Accordingly we may suppose that T1 = T ∩Lt,1 normalizes but does
not centralize Ut and as Ut is nilpotent, the commutator subgroup
[T1, Ut] is a non-trivial unipotent subgroup U1 of Lt,1 normalized by T.
It then follows (again by nilpotence) that Ut ≤ U1Lt,2. In other words,
Ut = U1U2 with U2 = U ∩ Lt,2.

A second application of the same argument then shows that U2 is
trivial if it centralizes T2, and unipotent and normalized by T otherwise.
Thus in this case T normalizes Ut, which is a product of unipotent

subgroups of the components.

Case 2. t is a PSL2-involution.
That is, CG(t) = Lt × k× with Lt ≃ PSL2(k) (and all components

have the same base field).
Furthermore the copy of k× occurring in CG(t) also occurs as a torus

in CG(i) for some SL2-involution, so Ut ∩ k× = 1.
As Ut is T -invariant it must then lie in Lt. As in Case 1, Ut does not

centralize T , and lies in a unipotent subgroup of Lt normalized by T.
Thus the desired conclusion applies in this case, for much the same

reason.
From this, the same statements follow for U . □
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4. B and N

From this point onward our analysis aims toward the construction
of a BN-pair. The verification of the main axiom will be quite detailed.

Notation 4.1. For the remainder of the paper we operate systemat-
ically within the framework of Hypothesis 2.3 and we make relatively
free use of those assumptions and the associated notation without fur-
ther explicit mention.

In particular, we will keep a particular maximal 2-torus T fixed
throughout. The group U is maximal definable nilpotent connected,
contains root groups of the components of CG(i), and is T -invariant.

The groups N , U , and T should all be kept in mind, though we now
replace N by a more “algebraic” counterpart.

We continue to work with both of the relevant configurations for the
remainder of this section, which has a very general character, dealing
with the reduction of the problem to the verification of the property
(BN3) for a reasonably specific choice of subgroups. At that point each
of the two configurations would require separate consideration. We con-
tinue in the next section to complete the analysis in the case of two
conjugacy classes of involutions, and leave the more difficult case of
one conjugacy class for further consideration elsewhere. (We mention
that our discussion of the group U is less satisfactory in that setting,
and will be replaced by something more precise.)

Notation 4.2.
N = T ·N and B = U · T.

Our goal is to show that B and N give a BN -pair with B ∩ N = T,
and as indicated above, we will carry this through in this section and
the next for the configuration corresponding to PSp4. Once one reaches
that point, then since B splits as UT, we can combine Facts 2.6 and
2.8 and conclude that our group G is algebraic (namely, PSp4).

Lemma 4.3. N ∩ B = T.

Proof. By definition N ∩ B = TN0 with N0 = N ∩ U . This last group
normalizes T and is normalized by it. Since U ∩ T = 1, the group N0

centralizes T. But CN(T) ≤ CN(T ) ≤ T. □

Here B, N, and T will play the role of the groups denoted by B, N ,
and T in the context of of BN-pairs. So we need to verify the conditions
(BN1–BN4) from §2.2. Also, to apply Fact 2.6 we need to take note of
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the condition B = UT with U nilpotent, and with trivial intersection,
which is part of our initial setup.

We turn now to condition (BN1) from Definition 2.5, which consists
of two conditions,

(BN1.1) G = ⟨B,N⟩ . (1.2) N ∩ B◁ N.

Condition (1.2) is given by Lemma 4.3.
Condition (1.1) is less clear, and we come back to this below, but at

this point we have the following.

Lemma 4.4.

(1) H = ⟨B,N⟩ is a definable subgroup of G.

(2) If N ≤ H◦ then H = G.

Proof.

Ad 1. LetH0 be the normal closure of B in ⟨B,N⟩. ThenH0 is connected
and definable, and ⟨B,N⟩ = ⟨H0,N⟩ = H0N is a finite extension of H0,
so ⟨B,N⟩ is definable.
Ad 2. Lemma 3.10. □

In (BN2) one must specify a generating set of involutions I to which
conditions (BN3, BN4) will be applied. We know that the associated
Weyl group W = N/T is dihedral of order 8 or 12, so is generated by a
(specified) pair of involutions I = {w̄1, w̄2}. There are representatives
for these generators in G which are either involutions or of order 4.
The remaining conditions refer to the specified generating set I.

(BN3) For v, w ∈ N and w̄ ∈ I we have

vBw ⊆ BvB ∪ BvwB.

(BN4) wBw ̸= B for all w ∈ N with w̄ ∈ I.

In our present context, verification of these two conditions will entail
condition (1.1) as well.

Lemma 4.5. Assuming (BN3, BN4) for our choice of B, N, and I,
(BN1) follows.
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Proof. As we have seen, this comes down to N ≤ H◦ with H = ⟨B,N⟩,
and this comes down further to

w ∈ H◦

with w̄ one of the distinguished involutions in I.
But we assume wBw ̸= B and wBw ⊆ BwB ∪ B, so BwB meets

wBw and thus w ∈ BBwB ≤ ⟨B,Bw⟩, which is a connected subgroup of
H. □

Now we verify part of (BN4).

Lemma 4.6. With w a Weyl group element of L1 = L1,i or L2 = L2,i,
we have

wBw ̸= B.

Proof. We may suppose w ∈ L1.
U contains a maximal unipotent subgroup X1 of L1 normalized by

T , and Xw1
1 is the opposite unipotent subgroup.

As X1,Xw1
1 generate L1, Xw1

1 is not contained in the solvable group
B. □

This leaves only condition (BN3) to be considered, and at this point
we turn to the specific configuration associated with PSp4.



L∗ GROUPS IN ODD TYPE: IDENTIFICATION OF PSp 4 27

5. Identification of PSp4

Now we take up the proof of the identification theorem for PSp4,
Theorem 1.7, which has previously been reduced to the verification of
the property (BN3) for the groups B = UT, N = TN , and chosen
generators I for N/T.

We rephrase it as follows.

Proposition 5.1. Let G be a group of finite Morley rank satisfying
Hypothesis 2.3, with two conjugacy classes of involutions.

Then G ≃ PSp4(k) for some algebraically closed field k.

Note that in this case the base fields k of all components of central-
izers of involutions are definably isomorphic. We set π = χM(k), the
Morley characteristic (to be used as a notion of unipotence).

The following notation is fixed throughout. A maximal 2-torus T is
chosen, and i is the SL2-involution of T , which in the present context
is unique. Ei = C◦

G(i) = Li,1 ∗2 Li,2 with Li,1, Li,2 definably isomorphic
to SL2(k). As we pay special attention to i we may also write E, L1,
and L2, rather than Ei, Li,1, Li,2, when the context allows.

An involution j is chosen which swaps the components of L and t is
an involution in the diagonal copy of PSL2 with respect to the action
of j (there remains some choice to be made of the type of j, which we
return to below).

The group U is maximal connected definable nilpotent, T-invariant,
and contains a product of root groups X1X2 with Xℓ ≤ Lℓ. We specify
further that X2 = Xj

1. U is a Uπ-group.
T = CG(T ), B = UT, N = TN where N/d(T ) ≃ W , the Weyl group.
I = {w̄2, ȷ̄} where w2 ∈ Li,2 has order 4 and inverts T ∩ Li,2, and j

is a PSL2-involution swapping the two components of Ei.
2

We also write t for the involution of T ∩L centralized by j (a “diag-
onal” element) and w for the involution wt

2w2. We have the maximal
elementary abelian group A = ⟨i, t, w, j⟩, of less importance in itself,
but the generators and relations between them are of considerable im-
portance. Our main concern is with the type of the involutions (i.e.,
their conjugacy class) and the co-torality relation between them.

Lemma 5.2. With hypotheses and notation as above, we may choose
j to be either an SL2-involution or a PSL2-involution. If we take j to
be an SL2-involution then we have the following.

2There is no good reason for using w2 rather than w1 but as that choice was
made at some point we are leaving it alone.
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(1) The SL2-involutions of A are i, j, and ijt′ with t′ an involution
of ⟨t, w⟩.

(2) The co-toral pairs of involutions t1, t2 are those for which ⟨t1, t2⟩
contains exactly one SL2-involution:

(i, t′) t′ ∈ I(⟨i, t, w⟩); (j, t′) t′ ∈ I(⟨j, t, w⟩);
(ijt, t′) t′ ∈ I(⟨ijt, t, wi⟩); (ijw, t′) t′ ∈ I(⟨ijw, ti, w⟩);
(ijtw, t′) t′ ∈ I(⟨ijtw, ti, wi⟩).

Proof. Note that a maximal 2-torus contains a unique SL2-involution.

Claim 1. The involutions of Lt are PSL2-involutions, the involutions
of Ltt other than t are SL2-involutions, and j could be taken to lie in
either class.

The involution i is co-toral with the involutions of A ∩Ei = ⟨i, t, w⟩
and no others in A. In particular the involutions of ⟨i, t, w⟩ other than
i are PSL2-involutions.

Lt has two conjugacy classes of involution other than the central
involution t, and contains the involutions i, it, one of each type. So
these classes represent the two types of involution in G.

On the other hand j can be replaced by jt and this will switch the
types. For the moment (only), take j to be a PSL2-involution. Then
Lj is the diagonal subgroup of Ei with respect to j. Its involutions are
PSL2-involutions, so the rest (apart from j) are SL2-involutions. This
applies equally to Lt.
The claim follows.
With the claim in hand, we will now change our preference and take

j to be an SL2-involution, as in the statement of the Lemma.

Ad 1: SL2-involutions.
The unique SL2-involution of ⟨i, t, w⟩ is i, and the unique SL2-involution

of ⟨j, t, w⟩ is j. It remains to consider ij ⟨t, w⟩.
Here t, w, and tw are interchangeable so we consider ij ⟨t⟩ and look

at CG(t). Then i, j ∈ Ltt, so ij ∈ Lt and ijt ∈ Ltt It follows that ij is
a PSL2-involution and ijt is an SL2-involution.
Since the same analysis applies to w or tw, we conclude.

Ad 2: Co-torality
The involution i is co-toral with the involutions of A ∩Ei = ⟨i, t, w⟩

and no others in A; a similar statement applies to j. So it suffices to
consider involutions of A co-toral with ijt′ for t′ an involution of ⟨t, w⟩,
and we may take t′ = t.
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As i, j are co-toral with t, so is ijt.
As ijt is not co-toral with i or j it is not co-toral with it or jt.
It remains to consider involutions in ⟨i, j, t⟩w.
Now write t = t1t

j
1 with t1 ∈ Li,1 of order 4. Then jt1 = j(t−1

1 )jt1 =
jt1tt1 = ijt. So j and ijt are conjugate inN(A). Therefore we can apply
conjugation to check the list for ijt and similarly for ijw, ijtw. □

Let us fix this convention going forward.

The involution j swapping components of CG(i) is taken to be(⋆j)

an SL2-involution.

Accordingly the involution ij is a PSL2-involution with the same action
on CG(i).
We continue on in much the same vein.

Lemma 5.3. With hypotheses and notation as above, N(A)/A acts
faithfully on the five SL2-involutions as Sym5.

Proof. Clearly the pointwise stabilizer of the five involutions i, j, ijt,
ijw, ijtw is trivial.

Toward the end of the proof of Lemma 5.2 we made use of the relation

jt1 = ijt

where the element t1 fixes i and sends w to wi, hence fixes ijw and
ijtw. That is, this a transposition on the SL2-involutions fixing i. There
is a similar transposition fixing j (and moving i) and so the action of
N(A)/A on the five SL2-involutions is transitive and contains a trans-
position. Therefore it induces Sym5. □

5.1. The group U .

Lemma 5.4. U ̸≤ CG(i).

Proof. If U ≤ CG(i) then U = X is a maximal unipotent subgroup of
L.

We write ∆i for the diagonal subgroup C(i, j) of Ei, of type PSL2,
and U∆ for the intersection U ∩∆i, a maximal unipotent subgroup of
∆i. Let T∆ = T ∩∆i.

By lemma 5.3 there is an element τ of G (more specifically, an ele-
ment of N(A)) which interchanges i and j and fixes t, w. In particular
τ acts on ∆i like an element of A and after adjusting by an element
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of ⟨t, w⟩ we may suppose τ centralizes ∆i. In particular T∆ normalizes
U τ .

Set

H = ⟨U,U τ ⟩ ≤ C◦
G(U∆)

and let H̄ = H/OF (H). By Lemma 2.17 we have

H̄ = ĒH ∗ K̄

with ĒH = Ealg(H̄) and K̄/Z◦(K̄) of degenerate type.
T∆ normalizes H.

Claim 1. [T∆, H̄] ◁ ĒH is nontrivial.

We have [T∆, K̄] = 1 so [T∆, H̄] ≤ ĒH .
If the commutator is trivial, this means

[T∆, H] ≤ OF (H).

But [T∆, U ] = U and [T∆, U
τ ] = U τ so this would force ⟨U,U τ ⟩ to be

nilpotent. Then by maximality of U , we find U τ = U and U ≤ CG(j),
which is not the case.

The claim follows.

We have T∆ ∩ H ≤ CT∆
(U∆) = 1. So H has Prüfer 2-rank 1. Thus

we have

[T∆, H̄] = Ealg(H̄).

Now U∆ ≤ F (H), so j inverts Ū . Hence ijt centralizes Ū . Similarly
ijt centralizes Ū τ . So ijt centralizes H̄.

Therefore CH(ijt) covers H̄. So EalgCH(ijt) ≃ Ealg(H̄).
If EalgCH(ijt) is of type SL2 then ijt ∈ H ≤ C(U∆), a contradiction.

Thus EalgCH(ijt) is of type PSL2.

Claim 2. If s is a PSL2-involution then C◦
G(EalgCG(s)) ≤ CG(s).

Let i1, j1 be commuting SL2-involutions with EalgCG(s) = CG(i1, j1).
Then C◦

G(EalgCG(s)) is generated by its intersection with the connected
centralizers of i1, j1, and i1j1. The connected centralizer in CG(i1)
or CG(j1) is trivial so C◦

G(EalgCG(s)) ≤ CG(i1j1). Since EalgCG(s) =
EalgCG(i1j1) and s ∈ C◦

G(EalgCG(s)), this then forces i1j1 = s and the
claim follows.

Now U∆ ≤ C(EalgCG(ijt)) gives U∆ ≤ CG(ijt), a contradiction.
The result follows. □
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Lemma 5.5.

(1) The involution wt = tj is in Lt and generates the Weyl group
relative to T ∩ Lt.

(2) The involution wti = twj is in Lti and generates the Weyl group
relative to T ∩ Lti.

(3) The involution j acts on Lt as the Weyl group element wt, and
centralizes Lti.

(4) The involution ijw acts on Lti as the Weyl group element wti,
and centralizes Lt.

We should comment on the symmetry-breaking here. We could re-
place j by ijw as the involution swapping L1 and L2. Selecting j gives
a particular isomorphism between L1 and L2 and a particular diagonal
subgroup ∆i, and then a particular choice of t. Replacing j by ijw
interchanges t and ti, Lt and Lti.

Proof.

Ad (1)
By Lemma 5.2 (2), j, t are co-toral and ⟨j, t⟩ contains the unique

SL2-involution j. Thus tj is a PSL2-involution in C◦
G(t). We have also

noticed that the involutions of Lt are PSL2-involutions and the involu-
tions of Ltt other than t are SL2-involutions. So tj ∈ Lt.

In its action on T , tj centralizes T ∩∆i, an algebraic torus contain-
ing t, and inverts a an algebraic torus containing ti. As tj normalizes
T ∩ Lt which does not contain t, tj inverts T ∩ Lt and generates the
corresponding Weyl group.

So (1) holds.

Ad (2)
With w1 a Weyl group element in Li,1 relative to T ∩ Li,1, we have

jw1 = ijw and tw1 = ti, so (2) follows from (1).

Ad (3,4)
By definition j acts on Lt like wt.
On the other hand wi inverts T and normalizes Lt, so wi also acts

like wt on Lt. Hence ijw centralizes Lt.
Now conjugating by w1, ijw acts on Lti like wti and j centralizes Lti.
(3,4) are verified. □
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Lemma 5.6. U = X ⟨Z1,Z2⟩, where the following hold.

(1) Z1 is a root subgroup of Lt.

(2) Z2 is a root subgroup of Lti.

(3) Z2 = Zw2
1 where w2 represents a Weyl group element in Li,2.

(4) XZ2 is abelian.

Furthermore, the subgroup

Y = Uπ(NU(X)) = ⟨X,Z2⟩ = XZ2

is abelian, normal in U , and normalized by j.

Proof. Let Y = Uπ(NU(X)). As U is not contained in CG(i), we have
Y > X. Set Y1 = C◦

Y(t), Y2 = C◦
Y(ti). By Fact 2.20 we have

Y = ⟨C◦
Y(t

′) : t′ ∈ I(⟨i, t⟩)⟩ = ⟨X,Y1,Y2⟩ .

By Fact 2.18 the groups Y1, Y2 are nilpotent Uπ-subgroups. By Fact
2.1, Yℓ ≤ Ealg(C

◦
G(tℓ)) for t1 = t and t2 = ti. Furthermore Yℓ is a

unipotent subgroup of the corresponding component, invariant under
the action of T. If Yℓ is non-trivial, it will be a root subgroup of that
component.

Claim 1. Y1 = 1

Otherwise, Y1 is a root subgroup of Lt and Y1 ⊆ NG(X). Applying
wt it follows that Lt ≤ NG(X). It then follows from Facts 2.22 and 2.23
that the action of Lt (of type PSL2) on X must be trivial.

In particular tj acts trivially on X. But tj acts by inversion on X, so
this is a contradiction. This proves the claim.

It follows that Y2 is non-trivial and hence is a root subgroup of Lti

normalized by T ∩ Lti. We now set

Z2 = Y2.

Thus

Y = XZ2.
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Claim 2. Yj = Y.

.
The involution j normalizes X and centralizes Lti, so this follows.

Now define

Z1 = Zw2
2 ,

where w2 is an L2,i-component of w (well-defined up to multiplication
by i). Then Z1 is a maximal unipotent subgroup of Lt normalized by
T. As w2 and Z2 centralize X1, the group Z1 centralizes X1.

Claim 3. Y is abelian.

As t centralizes Z2, we have

CY(t) = CXZ2(t) = (X ∩∆i)Z2.

As this group is T-invariant, it follows easily that Z(CY(t)) ≥ X ∩∆i,
and hence (X ∩∆i)Z2 is abelian.

Since X is abelian, we find X ∩ ∆i ≤ Z(Y). So if Y is not abelian
then Z(Y) = X ∩∆i.

In the latter case, we still have X ≤ Z2(Y). We may decompose X
with respect to the action of t. For x ∈ X inverted by t and z ∈ Z2, we
have [x, z] ∈ Z(Y) = CX(t) and so

[x, z] = [x, z]t = [x−1, z] = [x, z]−1;

[x, z] = 1,

and so X ≤ Z(Y) after all.
This proves the claim.

Claim 4. U > Y.

Suppose toward a contradiction that U = Y.
Let H = N◦

G(X1) and H̄ = H/OF (H) = ĒH ∗ K̄ with ĒH = Ealg(H̄)
and K̄/Z◦(K̄) of degenerate type.

We have Li,2 ≤ H and so L̄i,2 ≤ ĒH . In particular ı̄ ∈ Z(ĒH) and so
Ei ∩H covers ĒH . Hence ĒH = L̄i,2.

Now we show that Ȳ = X̄2. Otherwise, Ȳ meets K̄ non-trivially. But
the intersection centralizes the 2-torus T̄ and the corresponding sub-
group of Y centralizes T modulo OF (H). On the other hand [T, Ȳ] = Ȳ,
so this is impossible. So Ȳ = X̄2.
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Therefore Y ≤ OF (H)X2. So Y ≤ Uπ(F (H))X2, and the latter is a
nilpotent group.

On the other hand, we are supposing U = Y. So by maximality we
now have

U = Uπ(F (H))X2.

As Z1 centralizes X1, it lies in H. Now i operates on Z1 like the
involution ti of Lt, that is by multiplication by −1. That is, i inverts
Z1. It follows that Z1 ≤ OF (H). But then Z1 ≤ U , a contradiction.

This proves the claim.

Now we have

U = ⟨CU(v) : v ∈ I(⟨i, t⟩⟩) = ⟨X, CU(t), CU(ti)⟩ ,

and by definition Z2 = C◦
U(ti), a maximal unipotent subgroup of Lti.

The group C◦
U(t) must be non-trivial, hence is a maximal unipotent

subgroup Z̃1 of L̄t.
In particular, with the notation used above, Z̃1 normalizes Uπ(F (H))Z2

and by maximality of U we find U = Uπ(F (H))Z2Z̃1. In particular

Z1 ≤ U , and thus Z̃1 = Z1.
This completes our analysis. □

5.2. (BN3,BN4).

Lemma 5.7. Bj ̸= B.

Proof. We have
〈
Z1,Zj

1

〉
= Lt and hence Zj

1 ̸≤ B. □

Lemma 5.8. The pair (B,N) satisfies condition (BN4) with respect to
the generating set I.

Proof. Lemma 4.6 and 5.7. □

We turn to condition (BN3), which we repeat in our present notation,
taking as distinguished generators j and w2.

(BN3) For v, w ∈ N and w = w2 or j, we have

vBw ⊆ BvB ∪ BvwB.
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We will need to make a detailed calculation involving the structure
of U . Our claim reduces at once to

vUw ⊆ BvB ∪ BvwB.(BN3’)

We take representatives for the eight elements v of WBN .

1 w1 w1 = wj
2 w = w1w2

j jw1 jw2 jw = wj

Condition (BN3) certainly holds when v = 1 so we may leave that
case aside.
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One should bear in mind the structure of U as described in Lemma
5.6. In addition we have the following.

Lemma 5.9.

(1) Xj = X.

(2) Xw2
1 = X1, Xw1

2 = X2.

(3) Xw1
1 ⊆ {1} ∪ Bw1X, Xw2

2 ⊆ {1} ∪ Bw2X.

(4) Zj
1 = Zw

1 ⊆ {1} ∪ BjB.

(5) Zw2
1 = Z2.

(6) Zjw
1 = Z1; Zj

2 = Z2.

Proof.

Ad 1. Recall that our notation is taken so that Xj
1 = X2. Thus Xj = X.

Ad 2. The element w2 commutes with X1, and w1 commutes with X2.

Ad 3. The specified inclusions hold as the corresponding subgroups of
Li,1 or Li,2 form a BN-pair there. E.g.,

Xw1
1 ⊆ B1 ∪B1w1B1,

with B1 a Borel subgroup of L1, and Xw1
1 ∩B1 = 1.

Ad 4. We claim that Zj
1 and Zw

1 are both equal to the unipotent sub-
group of Lt opposite to Z1. Since jw centralizes Lt it suffices to consider
Zj

1. But we know that j acts like the Weyl group element wt. So the
claim holds.

Now by looking at the BN-pair of Lt induced by (B,N) we find that
Zj

1 is contained in {1} ∪ BtjBt with Bt = B ∩ Lt.

Ad 5. Z1 = Zw2
2 by definition.

Ad 6. The involution jw centralizes Lt and j centralizes Lti. □

We deal now with the cases of (BN3) of type vBj, which we break
down into three groups as follows.
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Z2

X1Z1
Xw2

2

Zj
1 = Zw

1 X2

Y j

w2

Figure 1. Root groups

Lemma 5.10.

(1) jUj ⊆ U ∪ BjB

(2) vUj ⊆ UvjU for v = w2, jw, jw1, or w1.

(3) vUj ⊆ UvU ∪ UvjU for v = w or jw2.

Proof.

Ad 1.

jUj = jZ1Yj = jZ1jY ⊆ ({1} ∪ BjB)Y ⊆ U ∪ BjB.

Ad 2.

vUj = vZ1Yj = vZ1jY,
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so it will suffice to show

vZ1j ⊆ Uvj

in these cases.

w2Z1j = Z2w2j ⊆ Uw2j;

jwZ1j = Z1jwj ⊆ U(jw)j;

jw1Z1j = Zjw1

1 jw1j = Z(jw)w2

1 jw1j = Zw2
1 jw1j = Z2jw1j ⊆ U(jw1)j;

w1Z1j = j(jw1Z1j) = j(Z2jw1j) = Z2j(jw1j) = Z2w1j.

Ad 3.

wUj = (wj)jUj ⊆ (wj)(U ∪ BjB) = wjU ∪ (wjBj)B
⊆ UwjU ∪ (Bwj · jB)U = UwjU ∪ BwB;

jw1Uj = w2(jUj) ⊆ w2(U ∪ BjB) = w2U ∪ (w2Bj)B ⊆ Uw2U ∪ Bw2jB · U
= Uw2U ∪ Bw2jB = Ujw1jU ∪ Bjw1B. □

Lemma 5.11. Let Y∗ = ⟨X1,Z1,Z2⟩. Then X1Z1 is an abelian normal
subgroup of Y∗, Y∗ = (X1Z1)Z2, Y∗ is normal in U , and U = Y∗X2.
Furthermore Y∗ is w2-invariant.

Proof. We begin with a different definition of Y∗, which we will prove
agrees with the above.

Y∗ = Uπ(U ∩ Uw2).

With this definition, we find that Y∗ is a w2-invariant subgroup of U
containing ⟨X1,Z1,Z2⟩ and disjoint from X2. In particular X1Z1 is an
abelian subgroup of Y∗.
Taking U1 = Uπ(NU(Y∗)) we find U1 > Y∗ and

U1 =
〈
C◦

U1
(v) : v ∈ I(⟨i, j⟩)

〉
=

〈
C◦

U1
(i),Z1,Z2

〉
and X1 ≤ C◦

U1
(i). As U1 > Y∗ we find C◦

U1
(i) = X and U1 = U , that is

Y∗ ◁ U

and thus U = X2Y∗.
Similarly NY∗(X1Z1) = Y∗ and thus Y∗ = (X1Z1)Z2. □
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Recall that we have taken j and w2 as our distinguished generators
in this section. So the remaining part of condition (BN3) may be stated
as follows.

Lemma 5.12. vUw2 ⊆ BvB ∪ Bvw2B for all v ∈ N.

Proof. We have

vUw2 = vX2Y∗w2 = vX2w2Y∗,

So what we require is

vX2w2 ⊆ BvB ∪ Bvw2B

for representatives v of all nontrivial elements of N .
For v = w2 this follows using the induced BN-pair in L2.
Since Xw1

2 = X2 and Xj
2 = X1, for v = w1, j, or jw1 we get Xv

2 ⊆ U
and

vX2w2 ⊆ Uvw2 ⊆ Uvw2U

This leaves the cases v = jw2, w, and jw.

wX2w2 = w1w2X2w2 ⊆ w1(B ∪ Bw2B) ⊆ Bw1B ∪ (Bw1w2B)B
= Bww2B ∪ BwB;

jwX2w2 = w2jw2X2w2 ⊆ w2j(B ∪ Bw2B) ⊆ Bw2jB ∪ (jw1Bw2)B
⊆ Bjw1B ∪ Bjw1w2B · B = B(jw)w2B ∪ BjwB;

jw2X2w2 ⊆ j(B ∪ Bw2B) ⊆ BjB ∪ (Bjw2B)B
= B(jw2)w2B ∪ Bjw2B. □

So finally (BN3) holds by Lemmas 5.10 and 5.12, and our general
remarks earlier.

Proof of Proposition 5.1. We have an irreducible split BN-pair of Tits
rank two. Hence G is algebraic (Remark 2.7). □
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