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L∗-GROUPS OF ODD TYPE
WITH RESTRICTED 2-TORAL ACTIONS

I. HIGH Prüfer 2-RANK
(September 2022)

JEFFREY BURDGES AND GREGORY CHERLIN

Abstract. This is the first of a series of papers devoted to the
algebraicity conjecture for simple groups of finite Morley rank of
odd type. One the hand, we aim to extend the existing theory for
K∗-groups to a broader class of L∗-groups with a further assump-
tion on definable automorphism groups. Some of the results aimed
at in the series are new in the K∗-case as well. In particular we
intend to give an identification theorem for PSp4 in this broader
context; this is new even in the K∗-case.

In the present paper the main result is an extension [Bur09] from
the K∗ setting to our version of the L∗ setting. Namely, if G is an
odd type simple group of finite Morley rank having Prüfer 2-rank
at least 3 which satisfy both an L∗ hypothesis suitable for odd type,
and the condition that definable automorphism groups of definable
simple sections of degenerate type are again of degenerate type,
then the group G is either algebraic or has a definable strongly
embedded subgroup.

We also develop the general theory, notably the signalizer func-
tor theory and a theory of algebraic components whose unipotent
subgroups are strongly unipotent in a model theoretic sense, in a
form suitable for further applications, laying the groundwork for
the identification of PSp4, and for identification of G2 in favorable
cases (e.g., over fields not of characteristic 3).
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1. Introduction

1.1. The Odd Type Algebraicity Conjecture. The Algebraicity
Conjecture for simple groups of finite Morley rank, also known as the
Cherlin-Zilber conjecture, states that connected simple groups of finite
Morley rank are simple algebraic groups over algebraically closed fields.

The Sylow 2-subgroup in groups of finite Morley rank has a subgroup
of finite index of the form

U ∗ T
with U definable, connected, of finite exponent (2-unipotent), and T a
divisible abelian 2-group (2-torus). The group is said to have even, odd,
mixed or degenerate type according as T is trivial, or U is trivial, or
neither is trivial, or both are, respectively. Odd type includes algebraic
groups over algebraically closed fields of any characteristic other than 2,
including characteristic 0. These notions are independent of the choice
of Sylow 2-subgroup as they are conjugate in this context.

The Borovik program of transferring methods from finite group the-
ory to this setting has led to considerable progress, notably when the
subgroup U is non-trivial.

Even & Mixed Type Theorem ([ABC08]).
There are no connected simple groups of finite Morley and mixed

type.
Those of even type are algebraic; more precisely, they are Chevalley

groups over algebraically closed fields of characteristic 2.

It is noteworthy that this result is proved with no prior classification
of groups of degenerate type, which may in principle appear as sections.
From the point of view of finite group theory, this would correspond
to classifying groups of characteristic 2 type without first proving the
Odd Order Theorem!

For the algebraicity problem, degenerate type is much more prob-
lematic. However, a mix of methods from finite group theory (both the
theory of finite simple groups, and black box group theory) with model
theoretic ideas of a more geometric character suffices to eliminate the
case of 2-Sylow subgroup which is finite, but non-trivial.

Fact 1.1 (Degenerate Type Theorem [BBC07]). A connected group of
finite Morley rank and degenerate type has trivial Sylow 2-subgroup.

In other words, any connected group of finite Morley rank which
contains an involution has an infinite Sylow 2-subgroup.1

1It also transpires that one can say something about useful about torsion in
general, not just 2-torsion.
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Our concern here is exclusively with odd type, or equivalently, the
case of finite and non-zero 2-rank (bearing in mind Fact 1.1). Here
there is also a large body of work, much of it inspired by techniques of
finite simple group theory. So our subject is the following.

Odd Type Algebraicity Conjecture. A connected simple group of finite
Morley rank of odd type is a Chevalley group over an algebraically
closed field of characteristic other than 2.

If one combines this conjecture with the known results one can phrase
the conjecture more generally, and more usefully for the sake of appli-
cations, as follows.

Non-Degenerate Type Algebraicity Conjecture. A connected simple group
of finite Morley rank which contains an involution is a Chevalley group
over an algebraically closed field.

More generally still, the conjecture can be stated as follows: for any
connected group G of finite Morley rank, if Ô(G) denotes the largest
connected definable normal subgroup of G whose simple sections are
all of degenerate type, then G/Ô(G) is a central product of Chevalley
groups over algebraically closed fields.

We explain this last point, using structural notions familiar in finite
group theory whose analogs in our setting will be reviewed below, as
well as the more geometrical notion of connected component. We also
make use of the theory of central extensions of simple algebraic groups
in the category of groups of finite Morley rank, and some consequences
of the general theory of automorphisms of simple algebraic groups, spe-
cialized to the case of finite Morley rank and definable automorphism
groups.

From odd type to non-degenerate type. After factoring out Ô(G) we have
F ∗◦(Ḡ) = E(Ḡ). Assuming the Odd Type Conjecture, this is a prod-
uct of Chevalley groups over algebraically closed fields; this point relies
on the theory of central extensions. It then follows from the theory of
definable automorphism groups of simple algebraic groups that E(Ḡ)
has finite index in Ḡ, and hence equals Ḡ. □

1.1.1. Thin, quasi-thin, and generic cases: Prüfer 2-rank. Just as the
theory of finite simple groups involves three substantially distinct cases,
known as thin, quasi-thin, and generic, an entirely parallel—but more
straightforward—division occurs in the setting of groups of finite Mor-
ley rank of odd type. In terms of the Algebraicity Conjecture these
three layers of theory should correspond to Lie ranks 1, 2, or higher,
respectively.
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To make this case division precise in our setting, we consider the con-
nected component T of a Sylow 2-subgroup. This is a divisible abelian
group of finite 2-rank, and the thin, quasi-thin, and generic cases cor-
respond to this 2-rank being 1, 2, or higher, respectively. Indeed, T will
be the product of a finite number of so-called “quasi-cyclic” or “Prüfer”
2-groups, and the number of factors is its 2-rank, which is also called
the Prüfer 2-rank of G. In a simple algebraic group of odd type, this is
the Lie rank.

In the present paper we will develop methods which are helpful even
in Prüfer rank 2, as long as the 2-rank is at least 3. But the dividing
line between Prüfer rank 2 and 3 remains very sharp and when one
comes o apply these methods, this can be done in a uniform way in
higher Prüfer rank and only in a very ad hoc way in Prüfer rank 2. So
for the applications, we confine ourselves here to the generic case. We
intend to return to the subject in succeeding articles.

Whether one is working with finite simple groups or with simple
groups of finite Morley rank, there is another important case division
which is largely independent of the thin/quasi-thin/generic division.
Namely, there are special configurations called “uniqueness cases,” the
best known being the case of a “strongly embedded” subgroup. We will
have a good deal to say about such uniqueness cases further on, as well.

1.1.2. K∗ and L∗. Most results on finite simple groups of odd type
assume a strong inductive hypothesis: the group in question is a K∗-
group. This means that all proper connected definable simple sections
are algebraic. Here K stands for “known,” and unlike the finite case,
there are no known sporadic, or even twisted, groups.2 Thus one aims
here to refine a catalog of “minimal configurations” which must be
either eliminated in some fashion, or may possibly suggest real phe-
nomena to be explored via Hrushovski constructions, as in the case of
bad fields, or by some other approach.

However, it is not so helpful to list “degenerate type” as a possi-
ble obstruction to the proof of the Odd Type Conjecture. One would
prefer to adapt the inductive hypothesis to the case at hand. Ideally,
this would simply be the “odd type L∗-hypothesis:” any proper defin-
able section of odd type is algebraic. A similar approach worked very
well in the treatment of even type (and less directly, also mixed type).
But as we will explain next, to get an odd type theory at all compa-
rable to the even type L∗ theory we will need to impose another fairly

2The closest known relatives of the latter would be certain simple stable but not
superstable groups of an exceptional type associated with Moufang quadrangles in
characteristic 2.
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strong hypothesis. On the other hand, the effect of doing so is to re-
fine and clarify very considerably our list of “minimal configurations”
representing potential obstructions to the Odd Type Conjecture.

In this connection, we note that one nice result in the K∗ setting
is that the case of “strong embedding” falls under the thin case, and
therefore can be set aside much of the time. This result becomes very
difficult in a more general setting as it passes through the theory of
minimal simple groups, which tends to rely heavily on the theory of
solvable groups. If one allows degenerate type sections matters become
considerably more complex.

1.2. Altınel’s lemma and NTA2. As shown in [ABC08], one can
prove the Even and Mixed Type Theorems by an inductive strategy
even without a great deal of information about potential non-algebraic
simple groups of finite Morley rank of degenerate type.

In both the even and mixed type settings one simply replaces the
notion of K∗-group by the more general notion of L∗-group: a group of
finite Morley rank whose proper connected definable simple sections of
even type are algebraic.

To make this work, it suffices to have Altınel’s Lemma, which says
that a group of finite Morley rank of degenerate type (or even, finite
2-rank) admits no faithful definable action by an infinite elementary
abelian 2-subgroup. This has the effect of uncoupling the degenerate
case from the inductive analysis in even type.

Then one first proves the even type classification by analyzing the
structure of L∗-groups of even type inductively. After that one can
eliminate a connected simple group of mixed type by considering a
minimal example and using the structure of the even type sections.

We will consider straightforward analogs of these two ingredients—
the L∗-notion and Altınel’s Lemma—which are suitable for the context
of groups of odd type.

Definition 1.2. A group G of finite Morley rank and odd type is
an L∗-group (in the odd type sense) if every proper definable simple
section of odd type is a Chevalley group over an algebraically closed
field of characteristic other than 2.

This definition clashes with the traditional use of the term L∗ given
above, but on the other hand, now that we have the Even and Mixed
Type Theorems we know that all groups of finite Morley rank are L∗-
groups in that earlier sense, so we are not likely to encounter the term
often in that sense going forward.
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What is a suitable version of Altınel’s Lemma in odd type? This
would concern faithful definable actions of groups containing a non-
trivial 2-torus (divisible abelian 2-group) on groups of degenerate type.
Unfortunately, we cannot simply rule these out, since the multiplica-
tive groups of a field acts on its additive group. A more appropriate
analog of Altınel’s Lemma in the odd type setting would be the absence
of faithful definable actions of groups of odd type on simple groups of
degenerate type. This is conjectural and difficult, and the question has
been a subject of considerable interest in one form or another (also in
the broader context of definable involutive automorphisms of degener-
ate type [DJ16]).

Automorphism Conjecture. A simple group of finite Morley rank of
degenerate type has no definable odd type group of automorphisms; in
other words, no non-trivial divisible abelian 2-group can be contained
in a definable group acting faithfully on a simple group of degenerate
type.

We will consider the class of L∗-groups whose sections satisfy this
version of Altınel’s conjecture.

Definition 1.3. A group G of finite Morley rank satisfies the condition
NTA2 if every definable section of G which acts faithfully and defin-
ably on a definable simple section of G of degenerate type, is itself of
degenerate type.

Here the notation NTA2 is intended to suggest the phrase “no 2-toral
automorphisms” in a definable setting.

How reasonable is the condition NTA2? Given that as yet no con-
nected simple groups of degenerate type have been constructed, there
are no formal constraints on what may be conjectured.

This particular condition strikes us as having some considerable de-
gree of plausibility. It is similar in some ways to the conjecture that
the Algebraicity Conjecture itself holds in Prüfer rank 1, with inner
automorphisms replaced by outer automorphisms. Each of these is a
very hard problem.

The algebraicity conjecture in degenerate type is viewed as doubt-
ful. The automorphism conjecture seems distinctly more robust, and
it can be proved in some noteworthy, though quite special, cases. In
particular, the Automorphism Conjecture holds for connected simple
bad groups.

A bad group is a non-solvable connected group of finite Morley rank
all of whose proper definable connected subgroups are nilpotent. An ar-
gument of Delahan and Nesin, given in [BN94, Prop. 13.4], shows that
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bad group admits no definable automorphism of order 2; Jaligot [Jal01,
Prop. 6.1] notes that the argument applies to a somewhat broader class
of minimal connected simple groups (full Frobenius). In [BB08] it is
shown that a similar argument applies within linear groups to degener-
ate type sections. This assumes more than linearity of the section itself;
still, linearity is a condition which sometimes arises from the internal
structure of a group.

Involutory automorphisms and actions by 2-tori are also a central
theme in the analysis of [DJ16]. For connected minimal simple groups
of degenerate type, a connected group of odd type acting definably and
faithfully contains no 4-group, and if it contains an involution then the
centralizer of that involution is a self-normalizing Borel subgroup of
G. In other words, when one restricts attention to minimal connected
simple groups of degenerate type, the configurations which arise are
quite similar to those which arise in minimal simple groups of Prüfer
rank 1, and the two cases can be put into a common framework. There is
nothing here that suggests an approach to a proof of the Automorphism
Conjecture in general, but the problem lies naturally within an already
existing framework.

In the present paper we will show that an odd type simple L∗-group
of finite Morley rank and generic type satisfying condition NTA2 is
either algebraic or has a strongly embedded group. In other words,
minimal obstructions to the Odd Type conjecture fall into one of the
following classes.

(1) Simple groups of degenerate type with a definable group of au-
tomorphisms of odd type.

(2) Groups of Prüfer rank at most 2.
(3) Groups with a strongly embedded subgroup.

We expect to refine this in subsequent articles so that in Prüfer rank
2 we come down either to 2-rank 2 or to some exceptional configurations
reminiscent of G2 in characteristic 3 where the 2-rank is 3.

1.3. The main theorem. We now state our main result formally, and
give the necessary technical definitions.

High Prüfer Rank Theorem (5.1). Let G be a simple L∗-group of finite
Morley rank of odd type with Prüfer 2-rank at least three which satisfies
NTA2. Then one of the following applies.

(1) G is a Chevalley group over an algebraically closed field of char-
acteristic other than 2; or

(2) G has a proper definable strongly embedded subgroup.
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We note that by prior work case (2) has various special features;
notably, the 2-rank and Prüfer 2-rank must coincide. We will discuss
the sharper version of this known under a K∗ hypothesis below.

Prior work reduces the proof of this result to the verification of a set
of conditions which are reviewed in §5.3. Thus the bulk of the present
paper is devoted to the verification of those conditions. Along the way
the machinery (signalizer functor theory and some applications) is de-
veloped in greater generality than is required here, so as to prepare for
the continuation in the case of Prüfer 2-rank 2.

Now we give precise definitions.

Definition 1.4. Let G be a group of finite Morley rank (normally, but
not exclusively, connected, simple, and of odd type).

G is aK-group if every definable connected simple section is algebraic
(more explicitly, a Chevalley group over an algebraically closed field).

G is an L-group if every definable connected simple section containing
an involution is algebraic.

G is a D-group if no definable connected simple section contains an
involution.

G is a K∗-group, L∗-group, or D∗-group, respectively, if the corre-
sponding condition applies to every proper definable simple section.

In the absence of degenerate type simple sections the notions of L-
group, L∗-group, D-group, and D∗-group reduce to more conventional
notions as follows. as follows.

K-group notions and their L-group counterparts

Classical K K∗ solvable minimal connected simple

Variant L L∗ D D∗

Now we discuss strong embedding and some related concepts.

Definition 1.5. Let G be a group of finite Morley rank.
1. A subgroup M of G is strongly embedded in G if M is a proper sub-

group containing an involution, and the normalizer of eery 2-subgroup
of M lies in M .

2. The 2-generated core ΓS,2 of G relative to a Sylow 2-subgroup S
of G is the smallest subgroup of G containing the normalizer of every
elementary abelian subgroup of S of rank 2.
The 2-generated core is well-defined up to conjugacy, so in partic-

ular the condition that the 2-generated core be a proper subgroup is
independent of the choice of Sylow 2-subgroup.

Clearly if G has a definable strongly embedded subgroup then it
contains a Sylow 2-subgroup of G and also the associated 2-generated
core, and so G has a proper 2-generated core in this case.
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The fundamental case division in the proof of Theorem 5.1 goes
according as G has a proper 2-generated core or not. The first branch
leads to a strongly embedded subgroup and the other branch leads to
identification.

A High Prüfer Rank Theorem was proved for the K∗ setting in
[Bur09, BBN08]; this in turn builds on the tame case treated earlier,
with the strongly embedded case eliminated via [BCJ07]. As far as the
first two steps are concerned, we follow the same strategy closely in the
L∗ setting.3

The results for the K∗ setting are as follows.

Theorem A. Generic Trichotomy Theorem4 ([Bur09]). Let G be a con-
nected simple K∗-group of finite Morley rank and odd type with Prüfer
2-rank at least 3. Then one of the following applies.

• G is a Chevalley group over an algebraically closed field of char-
acteristic other than 2; or

• G has a proper 2-generated core.

Theorem B. Strong Embedding Theorem I ([BBN08]). Let G be a con-
nected simpleK∗-group of finite Morley rank and odd type with normal
2-rank at least 3 and Prüfer 2-rank at least 2. Suppose that G has a
proper 2-generated core M . Then G is a minimal connected simple
group, and M is strongly embedded.

Theorem C. Strong Embedding Theorem II ([BCJ07], cf. [ABF13, §6]).
Let G be a minimal connected simple group of finite Morley rank and
of odd type. Suppose that G contains a proper definable strongly em-
bedded subgroup. Then G has Prüfer 2-rank one.

Thus in the K∗ setting we wind up with the following, as discussed
in [Bur09].

Odd Type Theorem, Generic Case. A connected simple K∗-group of
finite Morley rank and odd type with Prüfer 2-rank at least 3 is a
Chevalley group over an algebraically closed field of characteristic not
2.

The second step above, the Strong Embedding Theorem, was already
carried over to the L∗ context in [BC08]; here the hypothesis NTA2 is
not needed.

3In this paper, at least, the term “L∗ setting” is used loosely, to refer to the
study of simple L∗-groups of odd type satisfying the condition NTA2.

4This is either a Trichotomy Theorem or a Generic Dichotomy Theorem, de-
pending on what one thinks of the non-generic case. We leave the name as it is.
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Fact 1.6 ([BC08, Corollary 4.2 and Theorem 4.3]). Let G be a con-
nected simple L∗-group of finite Morley rank and odd type with

m2(G) ≥ 3

and with proper 2-generated core ΓS,2. Then M = N(ΓS,2) is strongly
embedded in G.

Here Corollary 4.2 of [BC08] connects the 2-generated core to yet an-
other subgroup, namely the subgroup ΓV associated with an elementary
abelian 2-subgroup of 2-rank 2, defined as

⟨C◦(i) : i ∈ V ×⟩.

Namely, Corollary 4.2 gives N(ΓV ) = ΓS,2, and then Theorem 4.3
works withN(ΓV ).

5 Theorem 6.6 of [BC08] then gives more information
about the strongly embedded case, but this is an aspect we do not
pursue here. It has considerable importance in its own right.

The treatment of Theorem C in [BCJ07], as well as the alternative
approach given in [ABF13], involves methods appropriate to the setting
of minimal simple groups, where the theory of solvable groups plays a
major role. There is a large gap between the theory of solvable groups
and the theory of D-type groups, so generalization is problematic.

One particularly useful, though elementary, part of the solvable the-
ory is the fact that a unipotent p-group for a prime p must fall into
the Fitting subgroup of a solvable group. It might be of interest to
extend the results known in the K∗ setting to the context of L∗-groups
of odd type which satisfy not only NTA2 together with that the con-
dition that no definable simple connected section of degenerate type
contains a non-trivial unipotent p-subgroup, for any prime p. A more
adventurous approach would require working only with restrictions on
definable actions of p-tori for all p. In any case torsion elements will
certainly come into play.

In the treatments of the Strong Embedding Theorem II there is a
major case division according as involutions lie in the Fitting subgroup
of the strongly embedded subgroup, or not. Each case leads to a con-
tradiction in the K∗ context. The former case can also be eliminated
in the L∗ context [BC22d].

5Corollary 4.2 was stated in excessive generality and one should be aware of that
when quoting it. Namely, the lemma refers to a prime p but the proof requires p = 2
and the lemma fails more generally. Here the relevant prime is in fact 2. One can
find detailed and useful discussions of this point in [Del12, Jal11].
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1.4. Discussion. The results presented above show that the obstacles
to a complete classification of connected simple groups of finite Morley
rank with an involution are of the following kinds.

(1) The strongly embedded case in Prüfer 2-rank at least 3, with
the group a D∗-group.

(2) Configurations with Prüfer rank at most 2, conjecturally cor-
responding to Chevalley groups of rank at most 2 (again with
issues around strongly embedded subgroups, along with a vari-
ety of other issues);

(3) Hypothetical simple groups of degenerate type with definable
automorphism groups containing an infinite abelian 2-subgroup,
and Prüfer rank 1 cases; these may have a similar flavor at times.

In case (1) the Sylow 2-group is connected, and in particular the
2-rank coincides with the Prüfer rank (Fact 2.13). Elimination of this
case seems very difficult but it should be attempted.

We intend to examine case (2) further in subsequent papers, under
the assumption of 2-rank at least 3 (hence Prüfer 2-rank 2, by Fact
2.10). Under that hypothesis, the strongly embedded case is ruled out,
so the aim becomes outright identification of the group as PSp4 or G2.
Our work [BC22a, BC22b, BC22c] (in preparation) is intended to show
that one arrives either at the expected identification, or else at a very
specific configuration associated to groups resembling the group G2 in
characteristic 3. This configuration arises also in finite group theory
but is eliminated in that setting using character theory.

1.4.1. Structure of the paper. After some lengthy preliminaries, we give
the main results in Sections 4 and 5.

In §4 we study the structure of centralizers of involutions and their
quasi-simple components, arriving at Proposition 4.6. The standing
hypothesis in this section is that the 2-rank is at least 3. We intend to
make considerable use of this material subsequently in the setting of
Prüfer rank 2.

In §5 we proceed to the proof of the main theorem. Here we require
the Prüfer rank to be at least 3 throughout. In the case of Prüfer rank
2 we will be forced to turn to more laborious methods.

1.4.2. Remark. Given the difficulties in eliminating simple groups with
strongly embedded subgroups of high Prüfer rank, one might want to
consider further what happens to the theory if such groups are allowed
as definable sections, along with degenerate type groups.



L∗-GROUPS OF HIGH Prüfer RANK 13

2. General theory (background)

Here we review some of the general theory of groups of finite Morley
rank on which we will rely. Some more specialized material of a similar
character will be reviewed in the following section. Proofs are given
when we lack a clear reference for the result as formulated here.

Points noted without reference are generally to be found in [BN94],
and reviewed in [ABC08]. The conjugacy of Sylow 2-subgroups [BN94,
Theorem 10.11] is often applied without explicit mention.

2.1. Π-tori and 2-ranks.

Definition 2.1. Let G be a group of finite Morley rank.
For p a prime, a p-torus is a divisible abelian p-subgroup of G. Such

a subgroup will have finite p-rank.
A Π-torus is a divisible abelian torsion subgroup of G (Π denotes

the set of all primes).
A decent torus is the definable hull of a Π-torus.
A good torus is a definable connected group such that each of its

definable connected subgroups is a decent torus.

Fact 2.2 ([AB08, Thm. 1]). Let T be a Π-torus in a connected group
G of finite Morley rank. Then CG(T ) is connected.

Note that a simple group of finite Morley rank is of odd type if and
only if the connected component of a 2-Sylow subgroup is a 2-torus.

Corollary 2.3. Let G be a connected group of finite Morley rank and
odd type. Then any finite normal subgroup A of a Sylow 2-subgroup S
of G is contained in the maximal 2-torus T of S.

Proof. As the definable hull d(T ) is connected and normalizes A, it
follows that A centralizes T .
But the Sylow 2-subgroups of CG(T )/T are finite, hence trivial by

Facts 1.1 and 2.2. Thus A ≤ T . □

Fact 2.4 ([BC08, Lemma 1.6]). Let G be a 2-torus and i an involution
acting on T . Then either i inverts T , or CT (i) is infinite.

Fact 2.5 ([BC09, Theorem 3]). Let G be a connected group of finite
Morley rank and odd type. Then any involution in G lies in some 2-
torus of G.

In particular, this gives i ∈ C◦G(i) in this case.

Definition 2.6. Let G be a group of finite Morley rank. Two invo-
lutions i, j ∈ I(G) are said to be co-toral if they lie in a 2-torus of
G.
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Lemma 2.7. Let G be a group of finite Morley rank and odd type, and
i, j ∈ I(G). Then the following conditions are equivalent.

(1) i, j are co-toral.
(2) j ∈ C◦G(i).

Proof. The forward direction is clear.
For the converse, suppose

j ∈ C◦G(i).

Then by Fact 2.5 and hypothesis, both i and j lie in C◦G(i). Then Fact
2.5 applies also to C◦G(i), and hence there are maximal 2-tori Ti, Tj

of C◦G(i) containing i and j respectively. These 2-tori are conjugate in
C◦G(i), and hence i ∈ Tj. Thus i, j are co-toral. □

Fact 2.8 ([Ber01, BB04, §3.3] (Tate Modules)). Let Tp be a p-torus of
Prüfer p-rank n in a group of finite Morley rank. Then the endomor-
phism ring End(Tp) can be faithfully represented as the ring of n × n
matrices over the p-adic integers Zp.

More precisely, if Tp is represented as the direct limit

Tp = lim
→

Tp[p
n]

where Tp[n] is the subgroup annihilated by multiplication by n, then we
identify End(Tp) with the endomorphism ring of

T̂p = lim
←

Tp[p
n]

with maps given by multiplication by p.

E.g., in the case of Prüfer rank 1, the action of Zp = lim
←

Z/pnZ on

Z(p∞) = lim
→

Z/pnZ is induced by the action by multiplication of Z/pnZ
on itself.

Definition 2.9 (2-ranks). Let G be a group of finite Morley rank.

• The 2-rankm2(G) is the maximum rank of an elementary abelian
2-subgroup of G.

• The normal 2-rank n2(G) is the maximal rank of a normal ele-
mentary abelian subgroup of a Sylow 2-subgroup of G.

• The Prüfer 2-rank pr2(G) is the maximum 2-rank of a 2-torus
of G.

Remarks. If S is a Sylow 2-subgroup of G then m2(G) = m2(S),
n2(G) = n2(S), and pr2(G) = pr2(S).
In odd type, these various ranks are all finite and nonzero, with

m2 ≥ n2 ≥ pr2,
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since the Prüfer rank of a 2-torus is its 2-rank.

In fact when G is connected of finite Morley rank and odd type, then

n2(G) = pr2(G)

(Corollary 2.3).

Fact 2.10 ([BC08, Thm. 1.2]). Let G be a connected group of finite
Morley rank and odd type with

m2(G) ≥ 3.

Then every elementary maximal elementary abelian 2-subgroup has 2-
rank at least 3.

This important point was overstated in [BC08]. Namely, what we
state here for the prime 2 was claimed for an arbitrary prime. In the
proof given, the step just following the display labeled (∗) requires
p = 2. See [Del12] for further discussion.

Fact 2.11 ([BC08, Lemma 1.11]). Let G be a connected group of finite
Morley rank and odd type with m2(G) ≥ 3. Then

pr2(G) ≥ 2.

Corollary 2.12. Let G be a connected group of finite Morley rank and
odd type with

m2(G) ≥ 3,

and let T be a maximal 2-torus of G.
Then every elementary abelian 2-subgroup U contained in T can be

extended to an elementary abelian 2-group A of 2-rank at least 3 which
normalizes T .

Proof. We may suppose that U = Ω1(T ). By Fact 2.11, T has 2-rank
at least 3. If m2(T ) > 2 then we take A = U . So we may suppose that
T and U have 2-rank 2. By Fact 2.10 there is an elementary abelian
2-subgroup A of G of 2-rank 3 which contains U .

Consider a Sylow 2-subgroup S of C(U) which contains A. Then the
connected component S◦ is a maximal 2-torus of C(U), and S◦ is con-
jugate to the 2-torus T in C(U). As A normalizes S◦, T is normalized
by a conjugate of A containing U . □

Fact 2.13 ( [BC08, Lemma 1.15]). A connected D-group has a con-
nected Sylow 2-subgroup.
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In particular, in this case the 2-rank and Prüfer 2-rank will coincide.
There is another notion of 2-rank which becomes of particular im-

portance when the Prüfer 2-rank is 2 in connection with the signalizer
functor theory developed below (see Proposition 4.6). In the present
paper we restrict ourselves to the case of Prüfer 2-rank at least 3, but
in order to develop the signalizer functor theory at an appropriate level
of generality for future applications we now deal with this point.

Definition 2.14. Let G be a group of finite Morley rank and odd
type. The co-toral 2-rank m◦2(G) is defined as the maximal 2-rank of an
elementary abelian 2-subgroup A such that the graph on I(A) whose
edges are the co-toral pairs of involutions in A is connected.

Thus

pr2(G) ≤ m◦2(G) ≤ m2(G)

E.g., for groups of type G2 the Prüfer 2-rank is 2 while m◦2(G) =
m2(G) = 3.

Lemma 2.15. Let G be a group of finite Morley rank and odd type.
Suppose m2(G) ≥ 3. Then m◦2(G) ≥ 3.

More precisely, if U is an elementary abelian 2-group of rank 2 which
is contained in a 2-torus, then there is an elementary abelian 2-subgroup
A of 2-rank 3 containing U , and an involution i ∈ I(U) which is co-
toral with every involution of A.

Proof. By Fact 2.11 we have pr2(G) ≥ 2, so the second statement
is indeed a refinement of the first. Therefore we take up the second
formulation, with U ≤ Ω1(T ), where T is a maximal 2-torus and U has
2-rank 2.

If the Prüfer rank is at least 3 then we take U ≤ A ≤ Ω1(T ).
So we suppose now

pr2(G) = 2.

Claim 1. Suppose U ≤ A with A an elementary abelian 2-group of
rank 3, and i ∈ I(U) is co-toral with some involution j ∈ A \ U . Then
i is co-toral with all involutions of A.

Our assumption can be expressed as follows.

U ≤ C◦G(i); A ∩ C◦G(i) ̸≤ U,

and thus A ≤ C◦G(i), which gives the claim.
So it suffices to find an involution j ∈ CG(U) which is co-toral with

an involution of U , and then take A = ⟨U, j⟩.
By Fact 2.10 there is an elementary abelian 2-subgroup A of rank 3

which contains U .
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We take j ∈ A, j /∈ U , and let S be a Sylow 2-subgroup of CG(j)
containing A. Then R = S◦ is a maximal 2-torus of CG(j) normalized
by A. If R meets U nontrivially we are done, so suppose U ∩R = 1.

We consider the action of U on R.
Suppose some involution i ∈ I(U) acts nontrivially on Ω1(R). Then

i does not invert or centralize R, and hence C◦R(i) is a 2-torus of Prüfer
rank 1. As CΩ1(R)(i) = ⟨j⟩, this 2-torus contains j. Thus j ∈ C◦G(i),
and i, j are co-toral; we conclude that the group A and the involution
i meet our conditions.

Now we may suppose that U centralizes Ω1(R). We cannot have every
involution of U inverting R, so some i ∈ I(U) has infinite centralizer
in R, by Fact 2.4. Let j′ be an involution in C◦R(i) and replace A by
⟨U, j′⟩. Then this group meets our conditions. □

2.2. Nilpotent groups. A number of elementary properties of nilpo-
tent groups can be sharpened in the context of finite Morley rank by
considering connected components. In particular the normalizer condi-
tion takes on the following useful form.

Fact 2.16 ([ABC08, Corollary I.5.2]). Let Q be a connected nilpotent
group of finite Morley rank. Then Z(Q) is infinite.

Fact 2.17 ([ABC08, Proposition I.5.3]). Let Q be a nilpotent group of
finite Morley rank and P a definable subgroup of infinite index. Then
P has infinite index in NQ(P ).

In practice we are interested in the case in which P is connected,
and the conclusion becomes N◦Q(P ) > P .

Fact 2.18 ([BN94, Thm. 6.8, 6.9]). Let H be a nilpotent group of finite
Morley rank. Then

H = B ∗D

where B and D are definable characteristic subgroups satisfying

• B has bounded exponent;
• D is divisible.

In particular, D is connected and B ∩D is finite.
Furthermore, the torsion subgroup T of D is central in H and there

is a decomposition

D = T ⊕D0

with D0 torsion free and divisible. Hence D′ is torsion-free.
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Remark 2.19. A nilpotent torsion group Q is the direct sum of its p-
torsion subgroups Qp with p varying over the primes. Hence in Fact
2.18, B is a finite direct sum

B =
⊕
p

Bp

with Bp a p-group, for various primes p.

Definition 2.20. A group of finite Morley rank is Π-unipotent if it is
connected, solvable, and has bounded exponent. If it is a p-group, it is
said to be p-unipotent.

In [ABC08] Π-unipotence is called unipotence. As we will make use
of variant notions of unipotence discussed below, we refine the termi-
nology.

Fact 2.21. [ABC08, Lemma I.5.5] A Π-unipotent group of finite Morley
rank is nilpotent.

Notation 2.22. Let G be a group of finite Morley rank. Then F (G) is
the Fitting subgroup (a definable subgroup) and F ◦(G) is its connected
component.

2.3. Solvable groups.

Fact 2.23 ([ABC08, Lemma I.8.3, Cor. I.8.4]). Let G be a connected
solvable group of finite Morley rank.

Then the quotient G/F ◦(G) is divisible abelian. Hence any Π-unipotent
subgroup of G is contained in the Fitting subgroup.

Notation 2.24. Let G be a group of finite Morley rank.

• σ(G) is the solvable radical and σ◦(G) is its connected compo-
nent.

• O(G) denotes then the largest connected definable normal sub-
group of G of degenerate type.

We write OF (G) and Oσ(G) for O(F (G)) and O(σ(G)).

If the group G has no definable simple sections of degenerate type
then O(G) = Oσ(G).

Lemma 2.25. Let H be a connected group of finite Morley rank and
A a finite central subgroup. Suppose that H̄ = H/A is a direct product

H̄ = H̄1 × H̄2,

and let H1, H2 be the preimages in H of H̄1, H̄2, respectively.
Then

(1) OσH = OσH1 ∗OσH2.
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(2) OσH = OσH̄.

Proof. Let K̄i be OσH̄i and Ki the preimage of K̄i in H, for i = 1, 2.
We have

Oσ(H̄) = K̄1 × K̄2.

Now K̄◦i = K̄i. Furthermore K◦i is connected and of degenerate type,
hence has no involutions; so K̄◦i ⊆ OσH. It follows that K◦i = Oσ(Hi)
and K1K2 covers Oσ(H̄), so Oσ(H) = K1K2 = Oσ(H1) ∗Oσ(H2). □

Definition 2.26. Let G be a group of finite Morley rank acting defin-
ably on an abelian group V .

V is G-minimal if there is no infinite proper definable G-invariant
subgroup of A.

V isG-irreducible if there is no nontrivial proper definableG-invariant
subgroup of A.

Lemma 2.27. Let G be a group of finite Morley rank and H a con-
nected solvable normal subgroup that acts trivially on each G-minimal
section of F (H). Then H ≤ F (G).

Proof. Let V be a G-minimal subgroup of Z(F ◦(H)). Then V ≤ Z(H).
Factoring out V , we may conclude inductively. □

Fact 2.28 ([ABC08, Proposition 4.11]). Let G be a connected group
of finite Morley rank acting definably, faithfully, and irreducibly on an
abelian group V . Let T ◁ G be abelian.
Then the subring of End(V ) generated by the action of T is a G-

definable field K, and V is a finite dimensional K-vector space on
which G acts linearly.

Lemma 2.29. Let G be a connected group of finite Morley rank. Then
[G, σ◦(G)] ≤ F ◦(G).

Proof.

Claim 1. The commutator [G, σ◦(G)] acts trivially on every G-minimal
abelian section V of F ◦(G).

As F ◦(G) is nilpotent and connected, it acts trivially on V . Further-
more, the action of the abelian quotient σ◦(G)/F ◦(G) on V commutes
with the action of G, since that action is either trivial or else, by Fact
2.28, it gives rise to a field K with the action of G K-linear.

This proves the claim. Now by Lemma 2.27 it follows that [G, σ◦(G)]
is nilpotent and hence contained in F ◦(G). □
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Definition 2.30. We write Up(G) for the subgroup generated by all
p-unipotent subgroups of G.

Note that for simple algebraic groups, Up(G) will be G if the char-
acteristic is p, and trivial otherwise.

Fact 2.31 ([BN94, Cor. 6.20; Theorem 9.29]). Let G be a connected
solvable group of finite Morley rank. Then

• Up(G) ≤ F ◦(G) is p-unipotent.
• Any maximal p-subgroup P of G is connected, and P = Up(G)∗
T with T a divisible abelian p-group.

Remark 2.32. In the context of solvable groups of finite Morley rank,
there is a good theory of Sylow p-subgroups (and even Hall subgroups).
If one works more generally, it is not even clear what the appropriate
definitions are: rather than looking at maximal p-subgroups, it seems
more useful to consider maximal locally finite p-subgroups, in contexts
where the notions differ. But in the solvable case these coincide.

2.4. Notions of unipotence. We will require a “characteristic zero”
analog of the operators Up considered above. These are introduced in
[Bur09]; a more refined variant is introduced by Frécon [Fré06].

Definition 2.33. Let A be a connected abelian group of finite Morley
rank.

The group A is indecomposable if it has a unique maximal proper
definable connected subgroup, denoted J(A).
The reduced rank r̄(A) of A is the Morley rank of the quotient

A/J(A), i.e. r̄(A) = rk(A/J(A)).
For a group G of finite Morley rank, and any integer r, we define

U(0,r)(G) =

〈
A ≤ G

∣∣∣∣ A is a definable indecomposable group,
r̄(A) = r, and A/J(A) is torsion-free

〉
.

We say that G is a U(0,r)-group if U0,r(G) = G.
Set r̄0(G) = max{r : U(0,r)(G) ̸= 1}, the maximal (relevant) unipo-

tence rank. One may take this to be 0 if no such rank exists; similarly,
U0,0(G) is the trivial subgroup.

For simple algebraic groups G in characteristic zero, possibly with
additional structure (but of finite Morley rank) we will have r̄0(G) equal
to the rank of the base field (Corollary 2.45).

Fact 2.34 ([Bur09, Lemma 2.11]). Let f : G :→ H be a definable
homomorphism between two groups of finite Morley rank. Then

(1) (Push-forward) f [U(0,r)(G)] ≤ U(0,r)(H) is a U(0,r) -group.
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(2) (Pull-back) If U(0,r)(H) ≤ f [G] then f [U(0,r)(G)] = U(0,r)(H).

We view the reduced rank parameter r as a scale of unipotence, with
larger values being more unipotent. By the following fact, analogous
to Fact 2.31, the “most unipotent” subgroups of a solvable group are
nilpotent.

Fact 2.35 ([Bur09, Theorem 2.16]). Let G be a connected solvable
group of finite Morley rank. Then U0,̄r0(G)(G) ≤ F (G).

Fact 2.36 ([Bur06, Corollary 4.6]). Let G = HT be a group of finite
Morley rank, with H and T definable and nilpotent, and H◁G. Suppose
that T is a U(0,r)-group for some r ≥ r̄0(H). Then G is nilpotent.

If none of our notions of unipotence apply, we have tori, in a suitable
abstract sense.

Fact 2.37 ([Bur04, Thm. 2.19]; [Bur09, Thm. 2.15]). Let H be a con-
nected solvable group of finite Morley rank. Suppose

Up(H) = 1 for all primes p

U0,̄r0(H)(H) = 1 for all r

Then H is a good torus, i.e. every definable subgroup of H is the de-
finable hull of its torsion subgroup.

The operators U0,r can be also be used to give a refined decomposition
of a definable nilpotent subgroup.

Fact 2.38 ([Bur06, Cor. 3.6]; [Bur04, Thm. 2.31]). Let G be a nilpotent
group of finite Morley rank. Then G = D ∗ B is a central product of
definable characteristic subgroups D,B ≤ G where D is divisible and B
is connected of bounded exponent. Let T be the torsion part of D. Then
we have decompositions of D and B into central products as follows.

D = d(T ) ∗ U0,1(G) ∗ U0,2(G) ∗ · · ·
B = ΠpBp (p-torsion subgroups).

The overlap between the factors of this decomposition is far from
clear, as our definitions involve a kind of radical J(A) whose structure
is not controlled. But a result of Frécon casts some useful light on this.

Definition 2.39 ([Fré06]). Let H be a connected nilpotent group of
finite Morley rank, and r ≥ 1. Then H is a homogeneous U(0,r)-group
iff every connected definable subgroup K of H satisfies

K = U0,r(K).
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This is, clearly, a more robust notion of unipotence, when it is ap-
plicable.

Fact 2.40 ([Fré06, Thm. 4.11]). Let G be a connected group of finite
Morley rank acting definably on a nilpotent group H with H = U0,r(H).
Then [G,H] is a definable homogeneous U0,r-group.

Notation 2.41. Let H be a group of finite Morley rank. For r ≥ 1 let
U∗0,r denote the largest normal homogeneous (0, r)-unipotent subgroup
of H, and

U∗(H) =
∏
p>2

Up(H) ·
∏
r≥1

U∗0,r(H).

Let U(H) denote the largest connected definable nilpotent normal
subgroup of H whose torsion subgroup has bounded exponent.

Notice that U∗(H) ≤ U(H) ≤ O(H) and U(H) = B ∗ D where B
has bounded exponent and D is torsion free.

Lemma 2.42. Let G be a connected group of finite Morley rank and
odd type.

(1) If U∗F (G) = 1 then G centralizes F (G).
(2) In general, [G,F (G)] ≤ UF (G) ≤ OF (G).

Proof.

Ad 1. We take F (G) = B ∗D as in Fact 2.38. As U∗F (G) = 1 we find
that B is finite. So G centralizes B.

By Fact 2.40, the subgroups [G,U0,r(F (G))] are homogeneous U0,r-
groups, and hence trivial by our hypothesis. So the decomposition of
D reduces to D = d(T ) with T a central Π-torus. Thus G centralizes
D and (1) follows.

Ad 2. We argue by induction on rank. If U∗F (G) = 1 then (1) applies.
Otherwise, we set Ḡ = G/U∗F (G) we apply induction. Then

[Ḡ, F (Ḡ)] ≤ UF (Ḡ).

Now F (G) ≤ F (Ḡ), and the preimage H in G of UF (Ḡ) is a normal
solvable subgroup containing no Π-torus. Then

[G,F (G)] ≤ (F (G) ∩H)◦ ≤ U(F (G)). □

We will use the unipotence theory in connection with signalizer func-
tor theory. This leads in particular to a consideration of the various
unipotent radicals of the additive and multiplicative groups of a field.

In nonzero characteristic we need only the following.
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Fact 2.43. Let k be an infinite field of finite Morley rank of charac-
teristic p > 0. Then the additive group k+ is p-unipotent.

This merely asserts that k+ is connected, which is well known: indeed,
the field k has Morley degree 1 and both k+ and k× are connected,
whatever the language. (The rank may be greater than 1.)

We turn to the case of characteristic 0.

Fact 2.44 ([Poi87, Cor. 3.3]). Let k be a field of finite Morley rank and
characteristic 0. Then the additive group k+ is minimal: there are no
proper definable nontrivial subgroups.

Corollary 2.45. Let k be an field of finite Morley rank and character-
istic 0, and k+, k

× the additive and multiplicative groups. Then

r̄0(k+) = rk(k) > r̄0(k
×)

and k+ is a U0,rk(k)-group.

Proof. By minimality

r̄0(k+) = rk(k).

On the other hand k× is connected and contains torsion so

r̄0(k
×) < rk(k). □

2.5. “Relatively prime” actions. We give two results on what may
be called “relatively prime” group actions in the finite Morley rank
context, one of which includes a “characteristic zero” variant.

Fact 2.46 ([ABC99, Prop. 2.43], [ABC08, Prop. I.9.12]). Let G =
H ⋊ P be a group of finite Morley rank, and Q a normal subgroup of
H, with Q, H, and P definable.

Suppose that Q and T are solvable, and the following conditions hold,
for some finite set of primes π.

• P is a π-group of bounded exponent;
• Q is a P -invariant π⊥-subgroup.

Then

CH/Q(P ) = CH(P )Q/Q

A case of frequent interest takes P to be generated by an involution
t and Q centralized by P : then CH/Q(t) = CH(t)/Q.

Fact 2.47 ([ABCC03], [Bur09, Lemma 3.5]). Let G be a connected
solvable p⊥-group of finite Morley rank, and let P be a finite p-group
of definable automorphisms of G. Then CG(P ) is connected.

If in addition G is a nilpotent U0,r-group then CG(P ) is a U(0,r)-group.



24 JEFFREY BURDGES AND GREGORY CHERLIN

3. Specialized topics (background)

We continue our review of useful background material with some
important topics of more limited scope.

3.1. Automorphisms of algebraic groups. A key tool in our anal-
ysis is the fact that a group of finite Morley rank acting faithfully as a
group of automorphisms of a quasi-simple algebraic group6 must itself
be algebraic.

Definition 3.1. Given a quasi-simple algebraic group G, a maximal
torus T of G, and a Borel subgroup B of G which contains T , the
group Γ of graph automorphisms associated to T and B is the group of
algebraic automorphisms of G which normalize both T and B.

Fact 3.2 ([BN94, Theorem 8.4]). Let G⋊H be a group of finite Morley
rank where G and H are definable, G is a quasi-simple algebraic group
over an algebraically closed field, and CH(G) is trivial. Then viewing
H as a subgroup of Aut(G), we have H ≤ Inn(G)Γ where Inn(G) is
the group of inner automorphisms of G and Γ is the group of graph
automorphisms of G, relative to a fixed choice of Borel subgroup B and
maximal torus T contained in B. In other words, H acts as a group of
algebraic automorphisms.

In particular, if the group H is connected then it acts by inner auto-
morphisms.

An algebraic group is said to be reductive if it has trivial unipo-
tent radical. Such a group is a central product of semisimple algebraic
groups and algebraic tori. The centralizer of an involution in a reductive
algebraic group over a field of characteristic not 2 is itself reductive.

Fact 3.3 ([Ste68, Theorem 8.1]). Let G be a quasi-simple algebraic
group over an algebraically closed field. Let ϕ be an algebraic automor-
phism of G whose order is finite and relatively prime to the character-
istic of the field. Then C◦G(ϕ) is nontrivial and reductive.

Proof. If we replace G by its universal central extension Ĝ for the
category of algebraic groups, then ϕ lifts to an algebraic automorphism,
by the universal property, with the same order, since the cover is again
perfect. Furthermore, if K is the kernel of the map Ĝ → G then

C◦
Ĝ
(ϕ)K/K = C◦G(ϕ)

since K is finite.

6The groups we call quasi-simple algebraic groups are called “simple” in the
context of algebraic group theory, but we avoid that usage.
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Thus it suffices to treat the case in which G is simply connected.
Since ϕ is algebraic and has finite order, G ⋊ ⟨ϕ⟩ is an algebraic

group which contains ϕ as an inner automorphism. Since the order of
ϕ is finite and relatively prime to the characteristic, ϕ is a semisimple
automorphism of G. So the result follows from Theorem 8.1 of [Ste68].

□

We need some more precise information about involutory automor-
phisms. We use the notation of §3.2 here.

Fact 3.4 ([GLS98, Table 4.3.1, p. 145]). Let L be a quasi-simple alge-
braic group over an algebraically closed field of characteristic other than
2, and let α be an involutory algebraic automorphism of L. Suppose

L ̸≃ (P)SL2 .

Then E(CL(α)) > 1.

Fact 3.5 ([Bur09, Fact 2.16]). Let G be a quasi-simple algebraic group
over an algebraically closed field of characteristic other than 2, and let
V be a 4-group acting algebraically, though not necessarily faithfully,
on G. Suppose

L ̸≃ (P)SL2 .

Then L = ⟨E(CG(α)) : α ∈ I(V ).

3.2. Quasi-simple components.

Definition 3.6. Let H be a group of finite Morley rank.
A component of H is a quasi-simple subnormal subgroup ([BN94,

p. 118 (2)]).
E(H) is the product of the quasi-simple components of H.
Ealg(H) denotes the product of the algebraic quasi-simple compo-

nents of H◦.
The generalized Fitting subgroup F ∗(H) is the product of F (H) and

E(H).

This leaves us with the awkward notation F ∗◦(H) for F ◦(H)E◦(H);
this is the more important subgroup.

Remarks.
1. All components are normal in H◦ by [BN94, Lemma 7.1iii].
2. By [BN94, Lemmas 7.9, 7.10, 7.13], the product F ∗(H) = F (H)E(H)

is a central product, the group E(H) itself is a central product of
finitely many normal quasi-simple factors, each definable in G, and
CH(F

∗(H)) = Z(F ∗(H)) = Z(F (G)) ≤ F ∗(H).
In consequence, H/Z(F (G)) embeds definably into Aut(F ∗(H))
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3. E◦(H) is the product of the connected quasi-simple components.
If H is connected then E(H) = E◦(H).

We make use of the theory of central extensions of quasi-simple alge-
braic groups in the finite Morley rank category, in the following form.

Fact 3.7 ([AC99]). Let G be a group of finite Morley rank, and L
a quasi-simple component of G with L/Z(L) algebraic. Then L is an
algebraic component of G.

In particular, in this situation Z(L) is finite.
We mention that the treatment in [AC99] is brisk around the point

where the connection to K-theory is described, and a fuller account
exists but remains unpublished. It may find its way to arXiv.

Fact 3.8 ([BC08, Lemma 1.13]). Let H be a connected group of finite
Morley rank, and K = C◦H(Ealg(H)). Then

H = Ealg(H) ∗K; Ealg(K) = 1.

We remark that this follows directly from Fact 3.2.

3.3. Structure of L-groups with NTA2. As the hypothesis NTA2

involves degenerate simple sections rather than degenerate quasi-simple
sections, we insert the following.

Remark 3.9. If an automorphism of a quasi-simple group L acts triv-
ially on L/Z(L), then it acts trivially on L.
Indeed, with α the automorphism and a, b ∈ L, we find

α([a, b]) = [α(a), α(b)] = [a, b]

The following structural analysis will be our workhorse.

Proposition 3.10. Let H be a connected L-group of finite Morley rank
and odd type satisfying the condition NTA2. Suppose that

UF (H) ≤ Z(H).

Then

H = Ealg(H) ∗K where K is connected with

K/Z◦(K) of degenerate type.

Hence the Sylow 2-subgroup of K is central in H, and connected.

Proof. We set K = C◦G(Ealg(H)). By Fact 3.8 we have

H = Ealg(H) ∗K; Ealg(K) = 1.
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By Lemma 2.42 we have

[K,F (K)] ≤ UF (K) ≤ Z(K).

Let a ∈ F (K). Then commutation with a induces a homomorphism
from K into UF (K). If S is a 2-Sylow subgroup of K, it follows that
S centralizes F (K).

By NTA2 and Remark 3.9, S◦ centralizes E(K). Thus S◦ centralizes
F ∗(K). So S◦ ≤ F (K).

It follows that S◦ ≤ Z(K). Thus K/Z◦(K) is of degenerate type,
and being connected, this quotient has no involutions. That is, S ≤
Z◦(K) ≤ Z◦(H).
In particular, S is connected, and all claims have been proved. □

Lemma 3.11. Let H be a connected L-group of finite Morley rank and
odd type satisfying NTA2 and let H̄ = H/OF (H).
Then OF (H̄) ≤ Z(H̄). Hence

H̄ = Ealg(H̄) ∗ K̄ where K̄ is connected and

K̄/Z◦(K̄) has degenerate type.

Proof. Let H0 be the preimage in H of OF (H̄). Then H0 ≤ Oσ(H).
By Lemma 2.29, [H,H0] ≤ F (H) and as [H,H0] is connected it follows
that [H,H0] ≤ OF (H). Thus OF (H̄) = H̄0 is central in H̄.

The rest then follows from Proposition 3.10. □

Lemma 3.12. Let H be a connected D-group of finite Morley rank
and odd type satisfying NTA2. Then H/UF (H) has a unique, central,
2-Sylow subgroup.

Proof. Let H = H/F ◦(H). By Lemma 2.29 we have

F ◦(H) ≤ Z(H).

By Proposition 3.10 we find that H/Z◦(H) is of degenerate type.
That is, H has a unique, central, 2-Sylow subgroup.

Let T be a Sylow 2-subgroup of H and H1 = F ◦(H)d(T ). Then H1

is normal in H, any 2-Sylow subgroup of H lies in H1, and F ◦(H1) =
F ◦(H).

Let H̄1 = H1/UF (H). By Lemma 2.42 F (H1) ≤ Z(H̄1). So H̄1

is commutative and hence has a unique, central, 2-Sylow subgroup.
Therefore the same applies to H/UF (H). □

3.4. Generation theorems. As indicated in the introduction, the fol-
lowing will play an essential role in our analysis.
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Definition 3.13. Let G be a group of finite Morley rank, and V an
elementary abelian 2-subgroup.

We set

ΓV = ⟨C◦(U) : U ≤ V, [V : U ] = 2⟩
We have the following generation principle for L-groups.

Fact 3.14 ([BC08, Theorem 2.1]). Let G be a connected L-group of
finite Morley rank and odd type. Let V be an elementary abelian 2-
group acting definably on G.

Then ΓV = G.

The generality of this result is overstated in [BC08], in terms of a
prime p which should in fact be 2, as is the case here. Cf. [Del12]. The
case in which V is cyclic is vacuous and will not come into play.
We mention a considerably more elementary version of this genera-

tion result which we prefer to quote directly whenever it is applicable.
For our purposes, the prime p will again be 2.

Fact 3.15 ([Bur09, Fact 3.7]). Let p be prime, and let H be a solvable
p⊥-group of finite Morley rank. Let A be a finite elementary abelian
p-group acting definably on H. Then

H = ⟨CH(V ) : V ≤ A, [A : V ] = p⟩.
It would be very useful to extend Fact 3.14 from L-groups to L∗-

groups. We have the following.

Fact 3.16 ([BC08, Thm. 4.3]). Let G be a connected simple L∗-group
of finite Morley rank and odd type with

m2(G) ≥ 3.

Suppose that ΓV (G) < G for some elementary abelian 2-subgroup V of
rank 2. Then the normalizer

N(ΓV (G))

is a strongly embedded subgroup.

3.5. Signalizer functors.

Definition 3.17. Let G be a group of finite Morley rank and A an
elementary abelian 2-subgroup.

An A-signalizer functor is a function θ defined on the set of involu-
tions I(A) whose values are definable A-invariant 2⊥-subgroups of G,
such that θ satisfies the following additional conditions.

(1) θ(i)◁ CG(i) for i ∈ I(A);
(2) (“Balance”) θ(i) ∩ CG(j) = θ(j) ∩ CG(i) for i, j ∈ A.
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(One can gives definition for general primes p and elementary abelian
p-groups as well, and this is often done in the literature.)

We say that the signalizer functor θ is connected, nilpotent, or trivial
iff all of its values are connected, nilpotent, or trivial, respectively. In
particular, θ is nontrivial if some value of θ is nontrivial.

We write θ(A) for the group ⟨θ(i) : i ∈ I(A)⟩.
An A-signalizer functor θ is said to be complete if

• θ(A) is a solvable 2⊥-group, and
• θ(i) = θ(A) ∩ C(i) for all i ∈ I(A).

The “canonical” signalizer functor would be defined by θ(i) = O(G)∩
CG(i) and the terminology reflects the idea that θ carries a signal sug-
gesting that O(G) should be nontrivial. Here G is typically simple, so
something will have to block the signal.

In the context of groups of finite Morley rank, the critical signal-
izer functors are the connected nilpotent ones (so the intuition replaces
O(G) by OF (G)), and in this setting other signalizer functors are con-
sidered as first approximations to nilpotent ones.

The basis for this is approach is a very general result originating with
Borovik. With our conventions, the prime p referred to will be taken
to be 2, but the result is general.

Fact 3.18 ([Bur09, Thm. A.2], cf. [BN94, Thm. B.30]). Let G be a
group of finite Morley rank, p a prime, and A ≤ G a finite elementary
abelian p-group of rank at least 3. Let θ be a connected nilpotent A-
signalizer functor. Then θ is complete and the group θ(A) is nilpotent

The next result is not actually in the literature in the general form
we wish to give here, but the missing element is supplied by [BC08].
We will go through the details.

Proposition 3.19 (cf. [Bur09, Thm. 1.28]). Let G be a connected sim-
ple L∗-group of finite Morley rank and odd type. Suppose that for some
rank 3 elementary abelian 2-subgroup A of G, there is a nontrivial con-
nected nilpotent A-signalizer functor θ satisfying the naturality condi-
tion

θ(i)g = θ(ig) when g ∈ G and i, ig ∈ I(A).(⋆)

Then G has a proper definable strongly embedded subgroup.

The philosophy here is that θ signals that G should have a non-
trivial proper normal subgroup, but as this possibility is excluded by
hypothesis, we arrive at a different and quite extreme conclusion.

We prepare for the proof of this proposition with a lemma which
shall be reused below.
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Definition 3.20. Let G be a group of finite Morley rank and A a
subgroup.

ΓA,2(G) denotes the definable hull of the subgroup

⟨NG(U) : U ≤ A is elementary abelian with m2(U) = 2⟩.

Lemma 3.21. Let G be an L∗-group of finite Morley rank and odd
type, and A an abelian 2-subgroup of rank at least 3. Then for i ∈ I(A)
we have

C◦G(i) ≤ ΓA,2(G).

Proof. Set H = CG(i).
Take U ≤ A with m2(U) = 2 and i /∈ U . For j ∈ I(U) we have

CH(j) = C(i, j) ≤ N(⟨i, j⟩) ≤ ΓA,2(G).

By Fact 3.14 H◦ is generated by the centralizers CH◦(j) (j ∈ I(U)),
and we conclude. □

Now we return to the proof of Proposition 3.19.

Proof of Proposition 3.19. We consider the definable subgroups

ΓU(G) = ⟨C◦G(i) : i ∈ I(U)⟩

for U ≤ A with m2(U) = 2. Our goal is to show that ΓU(G) < G, and
to apply Fact 3.16.

For U ≤ A we set

θ(U) = ⟨θ(i) : i ∈ I(U)⟩.

Claim 1. For U ≤ A of rank 2 we have

θ(U) = θ(A).

By Fact 3.18 θ(A) is a solvable 2⊥-group. Fact 3.15 and completeness
apply to give

θ(A) = ⟨Cθ(A)(i) : i ∈ I(U)⟩ = ⟨θ(i) : i ∈ I(U)⟩
= θ(U).

Claim 2.

ΓA,2(G) ≤ NG(θ(A)).

By the naturality condition, for U ≤ A and g ∈ N(U) we have
θ(U)g = θ(U), so when m2(U) = 2 the previous claim yields NG(U) ≤
NG(θ(A)) and the claim follows.
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In view of Lemma 3.21 and the simplicity of G, for U ≤ A with
m2(U) = 2 we have

ΓU(G) ≤ ΓA,2(G) < G.

Then Fact 3.16 says that NG(ΓU(G)) is strongly embedded. □

3.6. Root SL2-subgroups and Coxeter groups. We turn now to
recognition theorems for groups of high Prüfer 2-rank.

If L is a quasi-simple algebraic group and T a maximal torus, then
the root SL2-subgroups of L associated with T are the Zariski closed sub-
groups of G which are normalized by T and are isomorphic to (P)SL2;
in other words, those generated by pairs of opposite root subgroups
relative to T .

We quote the main facts in the form used for identification in the
context of groups of finite Morley rank.

Fact 3.22 ([BB04, Fact 2.1], [Bur09, Fact 3.2]). Let G be a quasi-
simple algebraic group over an algebraically closed field. Let T be a
maximal torus in G and let K,L be Zariski closed subgroups of G that
are isomorphic to SL2 or PSL2 and are normalized by T . Then

1. Either K and L commute or ⟨K,L⟩ is a quasi-simple algebraic
group of type A2, C2, or G2.
2. The subgroups K and L are root SL2-subgroups of ⟨K,L⟩.
3. If ⟨K,L⟩ is of type G2, then G = ⟨K,L⟩.

Berkman and Borovik refer to the full classification of semisimple
subsystem subgroups [Sei83, 2.5] for the proof; by definition, these are
the semisimple subgroups normalized by a maximal torus T . The ar-
gument in [Bur09] is more elementary but also uses properties of sub-
system subgroups.

Fact 3.23 ([Car93, p. 19], [Bur09, Fact 3.4]). Let G be a semisimple
algebraic group over an algebraically closed field, and T a maximal
algebraic torus of G. Then the following hold.

1. G is generated by the root SL2-subgroups associated with T .
2. The intersection T∩K of the torus T with a root SL2-subgroup
K associated to T is a maximal algebraic torus of K.

Fact 3.24 ([Bur09, Fact 3.5]). Let L be a quasi-simple algebraic group
over an algebraically closed field of characteristic not 2. Let T be a
maximal algebraic torus of L, and let K be a root SL2-subgroup of L
normalized by T.
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Let T be the 2-torsion subgroup of T and let T⊥K denote C◦T (K).7

Then

K = E(CL(T
⊥
K )).

Fact 3.25 ([Bur09, Fact 3.7]). Let L be a quasi-simple algebraic group
over an algebraically closed field of characteristic not 2, and let T be a
maximal 2-torus of L. Then CL(T ) is a maximal algebraic torus of L.

We add a result which is useful for pinning down the structure of
Weyl groups. This relies on a careful examination of the classification
of complex reflection groups.

Fact 3.26 ([BBBC08, Prop. 3.1]). Let W be a finite group and I ⊆ W .
Assume the following conditions.

(1) I is a set of involutions which generates W and is closed under
conjugation in W .

(2) The graph on I with edges the pairs (i, j) of non-commuting
involutions i, j ∈ I is connected.

(3) For all sufficiently large prime numbers p, the group W has a
faithful representation Vp over the prime field Fp in which the
elements of I operate as “complex reflections” (i.e., fixing a
hyperplane) with no common fixed vectors.

Then one of the following occurs.

(a) The group W is a dihedral group acting in dimension n = 2, or
cyclic of order two.

(b) The group W is isomorphic to an irreducible crystallographic Cox-
eter group, that is, one of An, Bn, Cn, Dn with n ≥ 3, En with
n = 6, 7, or 8, or F4.

(c) The group W is a semidirect product of a quaternion group of order
8 with the symmetric group Sym3 acting naturally, represented in
dimension 2.

Suppose in addition that the group W has an irreducible representa-
tion of dimension at least 3 over some field, in which the elements of
I act as reflections. Then case (b) applies.

One elementary point involved in the wording of the foregoing lemma
is worth isolating further.

Lemma 3.27. Let W be a finite group and I ⊆ W a subset satisfying
the following conditions.

7[Bur09] uses CT (K) but it seems more natural to take the connected component,
and the proof is the same.
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(1) The set I generates W , consists of involutions, and is closed
under conjugation in W ;

(2) The graph on I with edges the pairs (i, j) of non-commuting
involutions i, j ∈ I is connected.

Let W act linearly on the vector space V over a field whose character-
istic p does not divide the order of W , with the elements of I acting as
complex reflections, and without a common fixed point. Then W acts
irreducibly on V .

Proof. As p ∤ |W | the representation is completely reducible.
If the representation splits as V = V1 ⊕ V2 then the (−1)-eigenspace

of each involution is contained in either V1 or V2 and the action on the
other space is trivial.

If all of the (−1)-eigenspaces lie in one factor then the other factor
is fixed by W .

If the (−1)-eigenspaces are split between V1 and V2, then I is par-
titioned correspondingly into two sets of involutions which must com-
mute with each other, violating the connectivity hypothesis.

The result follows. □

The reflections in a Coxeter group correspond to roots in the associ-
ated root system ([Hum90, Lemma 5.7]), and hence there are at most
two conjugacy classes of such reflections, depending on how many root
lengths occur.

Fact 3.28 ([Hum78, 10.4 Lemma C]). A finite irreducible reflection
group of type An, Dn, E6, E7, or E8 has only one conjugacy class of
reflections. A finite irreducible reflection group of type Bn, Cn, F4, and
G2 has two conjugacy classes of reflections, corresponding to the short
and long roots.

When there are two root lengths, then as the roots of a fixed length
are closed under the action of the Coxeter group they form the root
system for a proper subgroup.

Fact 3.29. The subgroup of a reflection group of type Bn, Cn, F4, or
G2 which is generated by the reflections associated to roots of a fixed
length is a proper subgroup.
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4. Components in centralizers of involutions

Our concern here is with the general structure of Oσ(CG(i)) for i an
involution, and with the existence of components in CG(i). More par-
ticularly, the line of argument shows that certain well-behaved compo-
nents of CG(i)/O

σCG(i) must “descend” to E(CG(i)).
We will work with the following hypothesis.

Hypothesis 4.1. Let G be a group of finite Morley rank. We suppose
the following.

(1) G is a connected simple L∗-group of odd type satisfying the
condition NTA2.

(2) m2(G) ≥ 3.
(3) G has no proper nontrivial definable strongly embedded sub-

group.

Eventually we will add to this hypothesis the assumption of Prüfer
2-rank at least 3.
The hypothesis NTA2 enters into our analysis via Proposition 3.10,

in the proof of Lemma 4.4 below (via the preparatory Lemma 4.3). We
will be explicit about the operative hypotheses as we proceed.

4.1. The structure of OσC(i). We aim at Proposition 4.6 below,
which kills certain subgroups of Oσ(CG(i)) for i an involution, namely
the subgroups UpO

σ(CG(i)) and certain subgroups U0,rO
σCG(i), for r

sufficiently large. Recall that OσCG(i) is connected and solvable, by
definition.

Definition 4.2. Let G be a group of finite Morley rank and i an
involution of G.

1. We associate to the involution i the following reduced ranks.

r0,i = r̄0(O
σCG(i));

rf,i = max(r̄0(k
×) : k the base field of a component of

Ealg(CG(i)/O
σCG(i))).

Here the subscript “f” stands for “field.”
If is possible to have rf,i = 0, and not just in the absence of algebraic

components: this would mean that the multiplicative group of any base
field involved is a good torus.

2. Let A be an elementary abelian 2-subgroup of G.
We set

r0,A = max(r0,i : i ∈ I(A)); rf,A = max(rf,i : i ∈ I(A)).
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Similarly we define

rf,G = max(rf,i : i ∈ I(G)).

3. For i an involution, and ρ either a prime or a symbol (0, r), we set

θρ(i) = Uρ(O
σCG(i))

Note that if ρ is the prime 2 then θρ(i) = (1). So we restrict our
discussion to odd primes below.

Lemma 4.3. Let G be an L∗-group of finite Morley rank of odd type,
satisfying NTA2. Let i, k be commuting involutions of G.

Let H = C◦G(i), H̄ = H/Oσ(CG(i)), K̄ = CH̄(E(H̄)), and let K be
the preimage of K̄ in H.

Then the following hold.

(1) H̄ = Ealg(H̄) ∗ K̄ with K̄/Z(K̄) of degenerate type.

(2) OσCG(k) ∩ CG(i) ≤ OσCH̄(k̄).
(3) OσCH̄(k̄) = OσCEalg(H̄)(k̄) ∗OσCK̄(k̄).

Proof.

Ad 1.
This holds by Proposition 3.10 (which assumes NTA2).

Ad 2.
As i normalizes OσCG(k), by Fact 2.47 the group OσCG(k) ∩ CG(i)

is connected, hence coincides with OσCG(k) ∩H.

By Fact 2.46 we have CH̄(k̄) = CH(k). Accordingly OσCG(k) ∩H
is normal in CH̄(k̄). As this intersection is also connected, we have

OσCG(k) ∩H ≤ OσCH̄(k̄).
Point (2) follows.

Ad 3.
] Let A = Ealg(H̄) ∩ K̄, a finite central subgroup of H̄. Let H̄1 =

CH̄(k̄)
◦ and let H̄2 be the connected component of the preimage in H̄

of the centralizer of k̄ in H̄/A. Then H̄1 ⊆ H̄2. On the other hand
[H̄2, k̄] ≤ A and this group is connected, hence trivial. Thus H̄1 = H̄2.
In particular the image of H̄1 in H̄/A is the direct product

CE(H̄)A/A(k̄)× CKA/A(k̄).

Now by Lemma 2.25 applied to C◦
H̄
(k̄), point (3) follows. □

Lemma 4.4. Let G be an L∗-group of finite Morley rank of odd type,
satisfying NTA2
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Let i, j, k be three commuting involutions in G and let ρ be either an
odd prime, or a symbol (0, r) satisfying the conditions

r > rf,i; r ≥ r0,i.

Suppose the following.

(1) i and j are co-toral in G.
(2) θρ(k) ∩ CG(j) ≤ θρ(j).

Then

θρ(k) ∩ CG(i) ≤ θρ(i).

Proof. We use the notation of the preceding lemma: H = C◦G(i), H̄ =
H/Oσ(CG(i)) = E(H̄) ∗ K̄. That lemma gives in particular

Uρ(O
σCH̄(k̄)) ≤ Uρ(O

σCEalg(H̄)(k̄))Uρ(O
σCK̄(k̄)).

Claim 1.

Uρ(O
σCEalg(H̄)(k̄)) = 1.

By Fact 3.3, C◦
Ealg(H̄)

(k̄) is reductive, and therefore OσCEalg(H̄)(k̄) is

contained in a product R of algebraic tori over various algebraically
closed fields.

For p a prime, the p-unipotent subgroups of R are trivial. Further-
more, for r > rf,i, we have U0,r(k

×) = 1 for the fields k associated with
the factors of R. So by Fact 2.34, we have U0,r(R) = 1 as well. Thus
the claim follows.

Claim 2.

θρ(k) ∩ CG(i) ≤ K.

First, θρ(k) ∩ CG(i) is a Uρ-group by Fact 2.47. Now apply the pre-
vious claims.

We have θρ(k)∩CG(i) = θρ∩H ≤ Uρ(O
σCH(k)). Modulo Oσ(CG(i))

we have θρ(k) ∩H ≤ Uρ(O
σCH̄(k̄)) ≤ K̄ and thus the claim follows.

Claim 3.

θρ(k) ∩ CG(i) ≤ OσCG(i).

Let

Q = θρ(k) ∩ CG(i).

As j commutes with i and k, it acts on Q.
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As i, j are co-toral, and K̄ has a central 2-Sylow subgroup, ȷ̄ central-
izes K̄, and in particular ȷ̄ centralizes Q̄. By Fact 2.46 we have

CQ(j) = CQ̄(j̄) = Q̄.

By hypothesis

CQ(j) = Q ∩ CG(j) ≤ θρ(k) ∩ CG(j) ≤ OσCG(j).

Thus CQ(j) ≤ OσCG(j) ∩K. Again by Fact 2.46 we have

CK(j) = CK̄(j̄) = K̄;

Q̄ = CQ(j) ≤ OσCG(j) ∩K ≤ OσCK(j)

≤ Oσ(CK̄(j̄)) = OσK̄ = 1.

The claim follows.

From the last claim, the statement of the Lemma follows using Fact
2.47. □

Lemma 4.5. Let G be an L∗-group of finite Morley rank and odd type
satisfying NTA2 with

m2(G) ≥ 3

Let A be an elementary abelian 2-subgroup of G of 2-rank 3.
Suppose that the graph on I(A) with edges (i, j) for co-toral pairs of

involutions is a connected graph. Let ρ be either a prime or a symbol
of the form (0, r) with r ≥ r0,A > rf,A.

Then θρ(i) = Uρ(O
σCG(i)) defines a connected nilpotent signalizer

functor on A.

Proof. By definition θρ(i) is connected, and by Facts 2.31 and 2.35 θρ(i)
is nilpotent.

The only other nontrivial condition is the balance condition: for i, k ∈
A we claim that

θρ(k) ∩ CG(i) ≤ θρ(i).

We argue by induction on the distance d(i, k) in the co-torality graph
on A. If the distance is 0 then i = k and the claim is clear.

Now consider a pair of involutions i, k in A at positive distance
d(i, k) > 0 and choose j ∈ I(A) co-toral with i, and with

d(j, k) = d(i, k)− 1

Then by induction θρ(k) ∩CG(j) ≤ θρ(j) and by Lemma 4.4 the claim
follows.

□
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We now derive the main result of this section as a corollary to the
above.

Proposition 4.6. Let G be a group of finite Morley rank satisfying
Hypothesis 4.1. Let A be an elementary abelian 2-subgroup of 2-rank 3.

Suppose that the graph on I(A) with edges (i, j) for co-toral pairs of
involutions is a connected graph.

Then for i ∈ I(A) an involution, we have

Up(O
σCG(i)) = 1 for all primes p;

U(0,r)(O
σCG(i)) = 1 for all r > rf,A.

Proof. Assuming the contrary, then by Lemma 4.5 we get a nontrivial
connected nilpotent A-signalizer functor θρ, where ρ is either a prime
p or the symbol (0, r0,A).
Then we may apply Proposition 3.19 to get a proper definable strongly

embedded subgroup, contradicting our hypothesis. □

4.2. Existence of components.

Definition 4.7. Let G be a group of finite Morley rank, H a definable
subgroup, and r ≥ 0.

∆r(H) denotes the definable subgroup of H generated by all p-
unipotent subgroups with p prime, and all connected abelian subgroups
of reduced rank strictly greater than r.

For A a subgroup of G, EA is the set of all quasi-simple algebraic
components of any of the subgroups ∆r(CG(i)) as i varies over I(A)
and r ≥ rf,A.

Remark 4.8. With notation as above, for r ≥ rf,A we have

∆r(CG(i))◁∆rf,A(CG(i))

and hence the quasi-simple components of ∆r(CG(i)) are also quasi-
simple components of ∆rf,A(CG(i)); in other words, we are free to set
r = rf,A in the definition of EA.
Lemma 4.9. Let L be a quasi-simple algebraic group of finite Morley
rank (in any language), with base field k. Fix r ≥ 0.
Then the following are equivalent.

(1) ∆r(L) > 1.
(2) ∆r(L) = L.
(3) rk(k) > r, or the characteristic of k is nonzero.

Proof. We prove (1) =⇒ (3) =⇒ (2), beginning with the latter.

If k has characteristic p > 0 then the root subgroups are p-unipotent
and they generate L, so ∆r(L) = L and we may set this case aside.
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If k has characteristic zero and rk(k) > r, then as L is generated by
its unipotent subgroups and r̄(k+) = rk(k), we again find ∆r(L) = L.

For the converse, suppose now that ∆r(L) > 1 and that k has charac-
teristic zero. Consider an indecomposable connected abelian subgroup
A of L with r̄(A) > r.

If A is contained in a unipotent subgroup then its Zariski closure is a
vector subgroup and it follows easily that A ≃ k+. If A is not contained
in a unipotent subgroup then it has a nontrivial image in a quotient
B/F (B) with B a Borel subgroup, and it follows easily that

rk(k) > r̄0(k
×) ≥ r̄(A).

So in either case rk(k) > r. □

Our goal is to show under Hypothesis 4.1 that suitable quasi-simple
algebraic components exist for A of 2-rank 3 such that the co-torality
graph on I(A) is connected.. To begin with, we work in CG(i)/O

σCG(i)
for suitable involutions i.

Lemma 4.10. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1, and let A ≤ G be an elementary abelian 2-subgroup of
2-rank at least 3 such that the co-torality graph on I(A) is connected.
Then for some i ∈ I(A),

Ealg(CG(i)/O
σCG(i)) > 1.

Proof. Suppose the contrary. Then by definition we have

rf,A = 0.

Claim 1. Oσ(C(i)) is a good torus for i ∈ I(A).

By Proposition 4.6 we find Up(O
σC(i)) = U(0,r)(O

σC(i)) = 1 for all
primes p and all r ≥ 1. Then Fact 2.37 yields the claim.

In particular Oσ(C(i)) is central in C◦(i).

Claim 2. σ◦C(i) = F ◦C(i) for i ∈ I(A).

By Lemma 2.42 we find

[C◦(i), FC◦(i)] ≤ ZC◦(i).

Then by Fact 2.23 σ◦C(i) is nilpotent, proving the claim.
We could go on to show that σ◦C(i) is divisible abelian but this will

suffice for our purposes.

By Proposition 3.10 and the supposed absence of algebraic compo-
nents modulo OσC(i), a maximal 2-torus T in C(i) lies in σ◦C(i), hence
in F ◦C(i). It follows that T is central in C◦(i), and in particular the
2-Sylow subgroup is unique, and is normalized by A.
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By Fact 2.4, we can find j ̸= i in I(A) so that C◦T (j) is nontrivial. So
a maximal 2-torus T0 of C◦(i, j) is central in C◦(i), C◦(j), and C◦(ij).
Hence with U = ⟨i, j⟩ we have

ΓU(G) ≤ C(T0) < G.

Applying Fact 3.16 once more, we arrive at a proper definable strongly
embedded subgroup, and a contradiction. □

Next we consider the structure of the subgroups ∆r(CG(i)) for r =
r̄0(O

σCG(i)). First, a preparatory lemma.

Lemma 4.11. Let H be a group of finite Morley rank for which

Up(O
σ(H)) = 1 for all primes p.

Let ρ = r̄0(O
σ(H)). Then

[∆ρ(H), F (Oσ(H))] = 1.

We remark that for r > ρ the same conclusion then applies a fortiori
to ∆r(H).

Proof. Let U be either a p-unipotent subgroup of H for some prime p,
or a U0,r-subgroup with r > ρ.
Then the group F (Oσ(H)) ·U is solvable and by Facts 2.31 and 2.35

we have U ≤ F (UF (Oσ(H))). Thus F (Oσ(H)) ·U is nilpotent. By Fact
2.38 U centralizes F (Oσ(H)).

As such subgroups U generate ∆ρ(H), the result follows. □

Lemma 4.12. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1. Let i be an involution of G and r ≥ r0,i.
Then

∆r(C(i)) = Ealg(∆r(C(i))) ∗K,

where K = ∆r(K) is a group whose Sylow 2-subgroup is central, and

Ealg(∆r(C(i))) = ∆r(Ealg(C(i))).

Proof. Set H = C◦(i).
By Proposition 4.6 Up(O

σH) = 1 for all primes p. By Lemma 4.11

[∆r(H), F (Oσ(H)]) = 1.

As ∆r(H) is characteristic in H we have OF (∆r(H)) ≤ OF (H) ≤
FOσ(H) and thus OF (∆r(H)) ≤ Z(∆r(H)).
By Proposition 3.10

∆r(H) = Ealg(∆r(H)) ∗K
with K/Z(K) of degenerate type.
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As the center of Ealg(∆r(H)) is finite it follows easily that

∆r(K) = K.

Now Ealg(∆r(H)) is a central product of quasi-simple components L
of H with finite centers, so each satisfies L = ∆r(L) ≤ ∆r(Ealg(H)).
On the other hand, ∆r(Ealg(H)) is a connected normal subgroup of H
contained in Ealg(H), hence is a product of components L of Ealg(H)
with ∆r(L) = L. It follows that

Ealg(∆r(H)) = ∆r(Ealg(H)).

This completes the proof. □

Lemma 4.13. Let G be a group satisfying Hypothesis 4.1.
Let i be an involution of G and ρ = rf,G. Then

∆ρ(CG(i)) = ∆ρ(Ealg(CG(i)))

is the product of algebraic components of CG(i) whose base field k either
has non-zero characteristic or satisfies rk(k) > ρ.

Proof. We use the notation of Lemma 4.12 and continue the analysis.

∆ρ(CG(i)) = Ealg(∆ρ(C(i))) ∗K

with K = ∆ρ(CCG(i)(∆ρ(Ealg(CG(i))))). We need to show that K is
trivial.

By the definition of ρ we find that K centralizes

Ealg(CG(i)/OFCG(i)).

Claim 1. If T is a 2-torus in CG(i) then T centralizes K.

In view of Lemma 3.11, we have [T,K] ≤ OF (CG(i)).
Let U be an abelian U0,r-subgroup of K with r > ρ, or a connected

p-unipotent subgroup for some prime p. Then [T, U ] ≤ OF (CG(i)) and
thus T normalizes OF (CG(i)) · U . As

U = U0,r(UOF (CG(i)) or Up(UOF (CG(i)), respectively,

we find that T normalizes U .
If T does not centralize U then some t′ ∈ T acts on U as a non-trivial

involutory automorphism and U decomposes as U+ × U− under this
action, with both factors being U0,r-subgroups or connected p-unipotent
subgroups, correspondingly. But U− = [t′, U−] ≤ OFCG(i) and hence
U− = 1, and t′ centralizes U . The claim follows.

Claim 2. K ≤ ∆ρ(CCG(j)(∆ρ(Ealg(CG(j)))) for j co-toral with i.
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We have i, j in a 2-torus T of CG(i). In particular K ≤ CG(j).
With U either an abelian U0,r-subgroup of K and r > ρ, or a p-

unipotent subgroup of K, as U centralizes T the induced action on
Ealg(C

◦
G(j)/OFCG(j)) is either trivial or acts on some component like

a subgroup of the multiplicative group of the base field. This would
contradict the definition of ρ. This proves the claim.
Now take a 4-group V containing i and contained in a maximal 2-

torus T . If we define

Kt = ∆ρ(CCG(t)(∆ρ(Ealg(CG(t))))

for t an involution then our last claim states that Kj ≤ Kj for co-toral
involutions. Thus for t an involution in V , the group Kt is independent
of t.

Hence ΓV ≤ N(K) and thus K = 1. □

Proposition 4.14. Let G be a group of finite Morley rank satisfying
Hypothesis 4.1. Let A ≤ G be an elementary abelian 2-subgroup of 2-
rank 3 such that the co-torality graph on I(A) is connected. Then EA is
nonempty.

Proof. By Lemma 4.10 there is at least one algebraic component in
C(i)/OσC(i), for some i ∈ I(A).

Take an involution i ∈ A with rf,i = rf,A for which there is an
algebraic component L̄ of C(i)/OσC(i) whose base field k = kL̄ satisfies

r̄0(k
×) = rf,A.

Set H = C◦(i) and ρ = rf,A. Let L be the preimage of L̄ in H.
By Proposition 4.6 ρ ≥ r̄0(H). Thus by Lemma 4.12 we have

∆ρ(H) = Ealg(∆ρ(H)) ∗K
with K = ∆ρ(K) and the Sylow 2-subgroup of K central.

By Lemma 4.9 and Corollary 2.45 we have

L̄ = ∆ρ(L̄).

By Fact 2.34 ∆ρ(L) covers L̄. In particular ∆ρ(L) is a normal sub-
group of ∆ρ(H) which, taken modulo its solvable radical, is simple and
has a nontrivial 2-Sylow subgroup.

If we had

∆ρ(L) ∩ Ealg(H) = 1

then ∆ρ(L) would be isomorphic to a subgroup ofK, and have a central
Sylow 2-subgroup. So we must have ∆ρ(L) ≤ Ealg(H).

Accordingly ∆ρ(L) is a quasi-simple algebraic component of H with
L̄ as a quotient (by a finite center contained in Oσ(H)). In particular
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∆ρ(L) has the same base field as L̄ up to definable isomorphism, and
belongs to EA. □

The following variation on the previous lemma is also useful.

Lemma 4.15. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1. Let A ≤ G be an elementary abelian 2-subgroup of 2-rank
3 such that the co-torality graph on I(A) is connected, and let i be an
involution of A. Let L be a definable quasi-simple algebraic subgroup
of CG(i) over a base field k which is either of characteristic p or has
r̄0(k

×) = rf,A. Then L ≤ Ealg(C
◦
G(i)).

Proof. Set H = C◦G(i), H̄ = H/Oσ(H), and ρ = rf,A. Then as in the
preceding argument

L̄ = ∆ρ(L̄) ≤ ∆ρ(H)

= Ealg(∆ρ(H)) ∗ K̄
where the Sylow 2-subgroup of K̄ is central.

As L̄ is quasi-simple and contains a noncentral 2-torus, we have
L̄ ≤ Ealg(∆ρ(H̄)). So L̄ is contained in a product of algebraic com-
ponents of Ealg(H̄) with the same base field, and these are covered

by isomorphic algebraic components of Ealg(H). Thus L ≤ L̂ ∗ Oσ(H)

where L̂ is a product of algebraic components of H. It follows that
L ≤ L̂ ≤ Ealg(H). □

4.3. Generation by components. Now we aim at the following.

Proposition 4.16. Let G be a group of finite Morley rank satisfying
Hypothesis 4.1. Let A be an elementary abelian 2-group of 2-rank 3
such that any pair of involutions in A are co-toral. Set

ρ = rf,A.

Then G is generated by the groups

Ealg(∆ρ(CG(i))) (for i ∈ I(A)),

or even by the restricted family corresponding to i ∈ I(U), where U ≤ A
is any elementary abelian subgroup of 2-rank 2.

We work with components of type EA (Definition 4.7).

Lemma 4.17. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1. Let A ≤ G be an elementary abelian 2-subgroup of 2-rank
3 such that the co-torality graph on I(A) is connected, and let U ≤ A
be a subgroup of 2-rank 2 which is contained in a 2-torus.

Then there is an involution i ∈ U such that C(i) contains a quasi-
simple component belonging to EA. Furthermore, for any quasi-simple
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algebraic component L belonging to EA, there is an involution i ∈ U
such that L is contained in a product of quasi-simple components be-
longing to EU .
Proof. Let ρ = rf,A and fix an involution j ∈ I(A) and a quasi-simple
component L of C(j) with L ∈ EA (Proposition 4.14).

Case 1. Some i ∈ I(U) does not normalize L.

In this case, consider L̂ = ⟨L,Li⟩ = L ∗ Li. Then CL̂(i) contains the

diagonal subgroup L̂ = {(a, ai) : a ∈ L} which is a central quotient
of L. By Lemma 4.15 this is contained in Ealg(CG(i)), hence lies in a
product of components with the same base field as L up to definable
isomorphism.

Case 2. U normalizes L.
Then by Fact 3.2 U induces algebraic automorphisms of L. By Fact

3.3 their centralizers are reductive (with the same base field, up to
definable isomorphism).

Thus any components of these centralizers will meet the conditions
of the lemma.

If there are no such components, then by Fact 3.4 the group L is of
the form (P)SL2. Then there are no graph automorphisms so U induces
inner automorphisms.

Now U is contained in a maximal 2-torus T of G. Then T ∩ L is a
maximal 2-torus of L, and the Zariski closure of T ∩ L is an algebraic
torus R of L. As U acts trivially on T it acts like a subgroup of R
on L. Therefore the action is not faithful, and some involution i ∈ U
centralizes L. We then conclude via Lemma 4.15. □

Corollary 4.18. Let G be a group of finite Morley rank satisfying
Hypothesis 4.1. Let A ≤ G be an elementary abelian 2-subgroup of 2-
rank 3 such that the co-torality graph on I(A) is connected., and let
U ≤ A be a subgroup of 2-rank 2 which is contained in a 2-torus. Then

rf,U = rf,A.

Now we require an analog of the groups ΓV .

Definition 4.19. Let G be a group of finite Morley rank, U an ele-
mentary abelian 2-subgroup of of 2-rank 2, H a U -invariant subgroup
of G, and r ≥ 0. Then

Γ̃U,r(H) = ⟨Ealg(∆r(CH(i))) : i ∈ I(U)⟩
Lemma 4.20. Let G be a group of finite Morley rank satisfying Hy-
pothesis 4.1. Let A ≤ G be an elementary abelian 2-subgroup of 2-rank
3. Suppose that every pair of involutions in A are co-toral. Let ρ = rf,A.
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Then for U, V ≤ A of 2-rank 2 we have

Γ̃U,ρ(G) = Γ̃V,ρ(G)

Proof. Let i ∈ U and let L be an algebraic component of CG(i) with
∆ρ(L) = L. We claim that

L ≤ ⟨Ealg(∆ρ(CG(v))) : v ∈ I(V )⟩

We highlight the following point as it depends on the co-torality
hypothesis.

Claim 1. V normalizes L.

By the co-torality hypothesis, A ≤ C◦G(i). As the group L is normal
in C◦G(i), the claim follows.

If L is not of type (P)SL2 then by Facts 3.2 and 3.5,

L = ⟨E(CL(v) : v ∈ I(V )⟩ = ⟨Ealg(CL(v)) : v ∈ I(V )⟩

Now Ealg(CL(v)) is a product of quasi-simple groups with nontrivial
Sylow 2-subgroups, and with the same base field as L, and it follows
that Ealg(CL(v)) ≤ Ealg(∆ρ(C(v))). The result follows easily in this
case.

On the other hand, if L is of type (P)SL2, then as argued previously,
some v ∈ I(V ) centralizes L, and we conclude similarly. □

Proof of Proposition 4.16. Set

G0 = ⟨Ealg(∆ρ(CG(i))) : i ∈ I(A)⟩.

It follows from Lemma 4.20 that

G0 = Γ̃U,ρ

for U ≤ A elementary abelian of 2-rank 2. Hence

ΓA,2 ≤ N(G0).

But then by Lemma 3.21, for U ≤ A elementary abelian of 2-rank 2
we have

ΓU ≤ N(G0).

So by Fact 3.16 G has a strongly embedded subgroup, a contradic-
tion. □
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5. The High Prüfer Rank Theorem

We arrive at the main result.

Theorem 5.1 (High Prüfer Rank Theorem). Let G be a simple L∗-
group of finite Morley rank of odd type with Prüfer 2-rank at least three
which satisfies NTA2. Then one of the following applies.

• G is a Chevalley group over an algebraically closed field of char-
acteristic other than 2; or

• G has a proper definable strongly embedded subgroup.

The full proof would be rather long, but the bulk of it has been
covered by previous work. We follow [Bur09] which aims to bring [BB04]
to bear. In fact, in [Bur09], sufficient conditions for the argument in
[BB04] were given. These conditions are collected in Hypothesis 5.10
below.

From that point onward, one can follow the line of [BB04] to analyze
the Weyl group and then apply the form of the Curtis-Tits theorem
given as Fact 5.23 below. The differences between the treatment in the
K∗ and L∗ contexts become minor, the principal difference being that
we must now explicitly require all quasi-simple components considered
to be algebraic.
See Fact 5.11, p. 50 for a statement of this last point, which could

conclude the present paper, though we continue afterward with a review
of how the argument proceeds from that point.

5.1. Hypotheses and notation. Our operative hypotheses will be
those of Hypothesis 4.1, together with the assumption of Prüfer 2-rank
at least 3. We will work relative to a fixed maximal 2-torus T . We
codify this as follows.

Hypothesis 5.2. Let G be a group of finite Morley rank. We suppose
the following.

(1) G is a connected simple L∗-group of odd type.
(2) G satisfies NTA2.
(3) pr2(G) ≥ 3.
(4) G has no proper nontrivial definable strongly embedded sub-

group.

Furthermore, as a matter of notation we suppose

T is a fixed maximal 2-torus in G.(∗)

Notation 5.3. Let G be a group of finite Morley rank satisfying Hy-
pothesis 5.2.
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For any involution i ∈ I(T ) and any definable connected quasi-simple
algebraic L ≤ Ealg(C G◦(i)) which is normalized by T , we set

TL = CL(T ).

Lemma 5.4. Let G be a group of finite Morley rank satisfying Hypoth-
esis 5.2. For any i ∈ I(T ) and any definable connected quasi-simple
algebraic L ≤ E(C◦G(i)) which is normalized by T , we have

1. T = (T ∩ L) · C◦T (L), and
pr2(G) = pr2(T ) = pr2(C

◦
T (L)) + pr2(T ∩ L).

2. TL = CL(T ∩ L) is a maximal algebraic torus of L,

Proof.
Ad 1. Since T normalizes L, the intersection T ∩ L is a maximal

2-torus of L.
By Fact 3.2, the connected definable group d(T ) acts by inner auto-

morphisms on L. These inner automorphisms centralize T ∩L so those
in T are induced by elements of T ∩ L. The claim follows.

Ad 2. By (1)

TL = CL(T ∩ L)

By Fact 3.25, this is a maximal algebraic torus of L. □

Our focus will be on the components in the family ET (Definition
4.7).

5.2. Abstract root SL2-subgroups. We develop an abstract notion
of root SL2-subgroup slightly extending the algebraic theory.

Definition 5.5.
1. If L is a quasisimple algebraic group and T a maximal algebraic

torus of L, a root SL2-subgroup is any Zariski closed subgroup of L
which is normalized by T and isomorphic to (P)SL2.
2. Let G be a group of finite Morley rank satisfying Hypothesis 5.2.
A subgroup K of G is a root SL2-subgroup of G with respect to T if

there is a component L in ET such that K is a root SL2-subgroup of
the algebraic group L with respect to its maximal torus TL.

3. Σ = ΣT denotes the set of all root SL2-subgroups of G with respect
to T .

Remark 5.6. Note that in the foregoing, if L is a component in ET , then
L is in particular a component of some C◦G(i) with an i an involution
of T , and since T ≤ C◦G(i), T will normalize L and TL will indeed be a
maximal torus of L.
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We note also that the restriction to components in ET is purely tech-
nical, and one could certainly consider a broader definition. But given
that we aim at an identification theorem, at which point there would
only be one base field, it is at least plausible that our definition of root
SL2-subgroup is sufficiently broad for practical purposes.

Lemma 5.7. Let G be a group of finite Morley rank satisfying Hypoth-
esis 5.2. Then G is generated by its root SL2-subgroups.

Proof. The root SL2-subgroups of any component K in ET generate K
by Fact 3.23 (1), and by Proposition 4.16 these components generate
G. □

Lemma 5.8. Let G be a group of finite Morley rank satisfying Hypoth-
esis 5.2, and Σ = ΣT . For any K ∈ Σ, we have the following.

1. K is normalized by T .
2. If g ∈ NG(T ) then Kg ∈ Σ.
3. K = E(CG(C

◦
T (K))).

4. K is a Zariski closed subgroup of any definable algebraic quasi-
simple subgroup M < G which contains K, and which is nor-
malized by T .

The term algebraic is used here in our customary sense (in the context
of quasi-simple groups): Chevalley over an algebraically closed field.
And at this stage in the analysis, we must still allow for the possibility
that the base field may vary from one component to another.

Proof.

Ad 1. This point was already observed in Remark 5.6.

Ad 2. The set ET is normalized by N(T ), hence the same applies to Σ.

Ad 3. Set T⊥K = C◦T (K). This is a 2-torus of Prüfer 2-rank one less
than that of T . Take an involution j ∈ T⊥K . By Lemma 4.15 we have
K ≤ E(CG(j)).

We consider the projection Ki of K onto simple factors of

E(CG(j))/ZE(CG(j)).

Then T⊥K centralizes Ki. If there are two such projections which are
nontrivial then the Prüfer 2-ranks of T and T⊥K differ by at least 2, a
contradiction. So K is contained in one of the quasisimple factors L of
E(CG(j)). As L ◁ C◦G(j) we find CL(T

⊥
K ) ◁ C◦G(T

⊥
K ).

By Fact 3.24,K = E(CL(T
⊥
K )). SoK ◁ C◦G(T

⊥
K ) andK ≤ E(C◦G(T

⊥
K )).

But again E(C◦G(T
⊥
K )) has Prüfer 2-rank at most 1, soK = E(C◦G(T

⊥
K )).
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Ad 4. Let K ≤ M < G where M is definable, algebraic, quasi-simple,
and normalized by T . The group T⊥K ≤ T acts on M by inner automor-
phisms by Fact 3.2, so K = E(CM(K⊥)) is Zariski closed. □

Lemma 5.9 (cf. [BB04, Lemma 3.1]). Let G be a group of finite Morley
rank satisfying Hypothesis 5.2. Let K,L ∈ Σ be distinct, and set

M = ⟨K,L⟩ .

Then

1. (CT (K) ∩ CT (L))
◦ ̸= 1.

2. Either K and L commute or M is an algebraic group of type
A2, B2 = C2, or G2.
3. K and L are root SL2-subgroups of M normalized by TM .
4. The maximal tori TK, TL associated with K and L commute.
5. T ∩M = (T ∩K) ∗ (T ∩ L) is a Sylow◦ 2-subgroup of M .

Proof. Set

K⊥ = C◦T (K); L⊥ = C◦T (L).

Ad 1. Here we use the hypothesis of Prüfer 2-rank at least 3.
Since T normalizes K and L by Lemma 5.8 (1), and K,L are of type

(P)SL2 over their respective base fields, we know

pr2(K
⊥), pr2(L

⊥) = pr2(T )− 1

and it follows easily that

pr2(K
⊥ ∩ L⊥) ≥ pr2(T )− 2 ≥ 1.

Thus (CT (K) ∩ CT (L))
◦ ̸= 1

Ad 2. Let i ∈ I(K⊥ ∩ L⊥). By Lemma 4.15, K and L are contained in
algebraic quasi-simple components of CG(i).

If they belong to different components of C◦G(i), then they commute.
Suppose K and L both belong to the same algebraic component

H ∈ C◦G(i). As K,L ∈ Σ we find H ∈ ET . Thus H is a quasi-simple
algebraic group normalized by T .
By Lemma 5.8 (3), K and L are Zariski closed in H. By Fact 3.22

(1), M = ⟨K,L⟩ is an algebraic group of type A2, B2 = C2, or G2.

For points (3–5), if K and L commute then everything is clear. So
we suppose [K,L] > 1 and M is a quasi-simple algebraic group.

Then points (3,4) follow by Facts 3.22 (2), and 3.23 (2), respectively,
and point (5) follows from (4). □
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5.3. An axiomatic setting; The graph on Σ. At this point we reach
the axiomatic setting of [Bur09], which suffices for the identification
argument of [BB04] to be carried through. We can drop several of the
hypotheses on G which brought us to this point and replace them by
the properties of the root SL2-subgroups.

Hypothesis 5.10. G is a connected simple group of finite Morley rank
and odd type with

pr2(G) ≥ 3.

T2 is a maximal 2-torus of G.
Σ is a family of subgroups of G of type (P)SL2.
For L ∈ Σ, TL = CL(T2) is a maximal algebraic torus of L.
We assume that Σ satisfies all conditions given in Lemmas 5.8 and

5.9.
We also assume that

(⋆)
〈⋃

Σ
〉
= G.

This hypothesis is in effect to the end of the article, and—in a de-
parture from our earlier practice—will not be systematically repeated
below.

Fact 5.11 ([Bur09, §3, cf. Hyp. 3.12, Fact 3.25 et seq.]). Under Hypoth-
esis 5.10 the group G is algebraic (i.e., Chevalley, over an algebraically
closed field).

Furthermore, the argument of [BB04], as presented in [BBBC08],
applies.

In the remainder of this article we review the proof of Fact 5.11,
following and occasionally elaborating on the discussion from §3 of
[Bur09].

Definition 5.12. We give Σ a graph structure by placing an edge
between L,K ∈ Σ when [L,K] ̸= 1.

Lemma 5.13. The graph Σ is connected, and all groups in Σ are de-
fined over the same base field (the base fields are definably isomorphic).
In particular, the rank of the base field is the same in each case.

Proof. SinceG is simple and
⋃
Σ generatesG, the graph Σ is connected.

By Lemma 5.9 (2), any adjacent pair L,K ∈ Σ are algebraic groups
over the same algebraically closed base field. By connectedness the
same follows for all pairs K,L. □

Whether the definable isomorphisms referred to in the preceding
lemma are canonical depends on the structure of Σ. If this graph is
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acyclic this is more or less the case, selecting one of the copies of the
base field as a point of reference.

5.4. The Weyl group. We continue under Hypothesis 5.10. We turn
our attention to the construction and identification of the Weyl group
of G.

Definition 5.14. The natural torus T for G is the group defined by

T = ⟨TL : L ∈ Σ⟩ .

Lemma 5.15.

(1) The natural torus T is divisible abelian.
(2) For L ∈ Σ, we have TL = T ∩ L = CL(T).
(3) NL(TL) ≤ NG(T).

Proof.

Ad 1. By Lemma 5.9 (5), the algebraic tori TK for K ∈ Σ all commute,

Ad 2. By the definition of T and (1) we have TL ≤ T ∩ L ≤ CL(T).
Hence

CL(T) ≤ CL(TL) = TL

and (2) follows.

Ad 3. Let w ∈ L normalize TL, and let K ∈ Σ. The claim is that w
normalizes TK .

If K and L commute this is clear. Otherwise, M = ⟨K,L⟩ is a quasi-
simple algebraic group, and K,L are root SL2-subgroups. In this case
the claim may be verified within M . □

Definition 5.16 (Restricted Weyl Group). Set

W = NG(T)/CG(T);
WL = NL(TL)/TL for L ∈ Σ.

By Lemma 5.15 (2,3) there is a canonical embedding of WL into W .
The group WL has order 2. Let rL denote the involution of W cor-

responding to a generator of WL.
Define the restricted Weyl group W0 as

⟨rL : L ∈ Σ⟩ .

Recall that W is finite, and hence W0 is also finite.

Lemma 5.17 (cf. [BB04, Lemma 3.5]). For any L,K ∈ Σ, [K,L] = 1
if and only if [rK , rL] = 1.
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Proof. We may suppose that [K,L] ̸= 1, in which case M = ⟨K,L⟩
is algebraic by Fact 3.22, and K,L are root SL2-subgroups of M with
respect to TM .

In this setting the Weyl group acts on the root groups as it acts on
the roots, and the commutation relation corresponds to orthogonality
of roots in both cases. □

Lemma 5.18 (cf. [BB04, Lemmas 3.6 & 3.7]).

(1) T2 is the Sylow 2-subgroup of T.
(2) CG(T2) = CG(T)

In particular, the restricted Weyl group W0 acts faithfully on T2.

Proof.

Ad 1. By Lemma 5.15, T is divisible abelian, so its Sylow 2-subgroup
is connected.

Let D = T ∩ T2. Suppose toward a contradiction that

D < T.

For all K ∈ Σ, we have [T2, K] ≤ K and

[T2, rK ] ≤ T2 ∩K ≤ TK ,

so rK acts trivially on T2/D, and thus W0 acts trivially on T2/D.
Let b ∈ T2 be of order at least 4 modulo D, and let a ∈ T2 satisfy

a|W0| = b. Then

c = Πw∈W0a
w

satisfies b/D = c/D. Hence the order of c is at least 4.
Now for K ∈ Σ we have

T2 = CT2(K) ∗ (T2 ∩K);

CT2(rK) = CT2(K) ∗ CT2∩K(rK).

Hence

[CT2(rK) : CT2(K)] ≤ 2

We also have c ∈ CT2(rK), and thus

c2 ∈ CT2(K)

for all K ∈ Σ. So c2 ∈ CG(⟨
⋃
Σ⟩) = Z(G) = 1, a contradiction.

Thus T2 is the Sylow 2-subgroup of T.
Ad 2. Since T2 ≤ T we have CG(T) ≤ CG(T2).

For the reverse direction, consider x ∈ CG(T2). Then for every L ∈ Σ,
x centralizes CT2(L). So x normalizes L = E(CG(CT2(L))) by Lemma
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5.8 (2). Since x centralizes the maximal 2-torus TL, x must act on
L as an element of TL by Fact 3.2. Thus x ∈ CG(T) and CG(T2) ≤
CG(T). □

Now we use the action of the restricted Weyl group W0 on the group
T2 to obtain a complex representation of W0.

Lemma 5.19 (cf. [BB04, §3.3]). W0 has a faithful irreducible complex
representation of dimension d = pr2(G) ≥ 3 in which the involutions
rL act as complex reflections for L ∈ Σ.

For the construction we employ a Tate module over the 2-adic inte-
gers (Fact 2.8).

Proof of Lemma 5.19. By Lemma 5.18, W0 acts faithfully on T2. By
Fact 2.8,W0 has a faithful representation over the ring of 2-adic integers
Z2 on a free module of dimension d = pr2(T2) ≥ 3. Embedding Z2 into
C, we view this as a faithful complex representation of dimension d.

For L ∈ Σ, rL acts by inversion on T2∩L and trivially on CT2(L). The
intersection of these two 2-tori, though finite, is not necessarily trivial.
However in the dual Tate module T̂2 this corresponds to a direct sum
decomposition and rL is represented as a reflection over the ring Z2

and hence over C.
It remains to prove the following.

Claim 1. This complex representation V is irreducible.

By Lemma 3.27 we need to show that the reflections rK for K ∈ Σ
have no common fixed point. For this, it suffices to consider the action
on the Tate module. In terms of the dual action on T2 the question is
whether there is a nontrivial 2-torus R ≤ T2 centralized by all of these
reflections.

If K ∈ Σ and rK centralizes R, then R ≤ K⊥ = CT2(K). Since⋃
Σ generates G, if R commutes with all the rK then R ≤ Z(G), a

contradiction. □

Lemma 5.20 (cf. [BB04, §3.4]). For primes p not dividing the order of
W0, and not the characteristic of the (common) base field of the groups
in Σ, the group W0 has a faithful irreducible representation over Z/pZ
such that the involution rL acts by a reflection for any L ∈ Σ.

Proof. Consider the finite elementary abelian p-group Ep generated by
all elements of order p in T. The whole Weyl group W = NG(T)/CG(T)
acts on Ep.

Claim 1. W = NG(T)/CG(T) acts faithfully on Ep.
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Suppose w ∈ W centralizes Ep.
If L ∈ Σ then L ∩ Lw contains Ep, but L and Lw either commute

or are root SL2-subgroups in some quasi-simple algebraic group. Hence
L = Lw. As L is of type (P)SL2, the element w acts on L as an inner
automorphism by Fact 3.2, and hence acts on T ∩ L as an element of
NL(T∩L). That is, w either centralizes or inverts TL. Since w centralizes
Ep and p is not the characteristic of the base field, w centralizes TL for
each L ∈ Σ.

But then w centralizes T, that is w = 1 as an element ofNG(T)/CG(T).
Claim 2. The involutions rK act as reflections on Ep for K ∈ Σ.

For every L ∈ Σ, [Ep, rL] ≤ TL so [Ep, rL] = Ep ∩ L, a cyclic group
inverted by the involution rL.

Claim 3. W0 acts irreducibly on Ep.

By Lemma 3.27 it suffices to check that the subgroup V of Ep fixed
by all of the involutions rL is trivial.

For any L ∈ Σ, V acts on L by inner automorphisms (Fact 3.2).
As V ≤ Ep, V centralizes TL. Accordingly, for each v ∈ V there is
t = t(v, L) such that vt centralizes L. As rL commutes with v, the
element t centralizes rL, so t is at worst an involution and v2 centralizes
L. As

⋃
Σ generates G we find v2 ∈ Z(G), v2 = 1, and V = 1. □

Proposition 5.21 (cf. [BB04, Lemma 3.11]). There exists an irre-
ducible root system I of type An, Bn, Cn, Dn, E6, E7, E8, or F4 on
which W0 acts as a crystallographic reflection group.

Proof. Apply Fact 3.26 to W0, with I = {rL : L ∈ Σ}.
The set

I = {rL : L ∈ Σ}
generates W0, and is closed under conjugation even in W since Σ is
N(T2)-invariant. The noncommuting graph on this set is connected by
Lemma 5.17.
Lemma 5.20 provides suitable linear actions over Fp. Lemma 5.19

provides a representation of dimension at least 3 as required in the
final clause of Fact 3.26. □

To complete the discussion of the restricted Weyl group, we show
that all reflections in this group come from the root SL2-subgroups in
Σ.

Lemma 5.22 (cf. [BB04, Lemma 3.12]). Every r ∈ W0 which is a
reflection in the representation R over C has the form rK for some
K ∈ Σ.
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Proof. By Fact 3.28, there are at most two conjugacy classes of reflec-
tions in I(W0), corresponding to the short and long roots. So we may
assume that W0 has more than one root length, i.e. W0 is of type Bn,
Cn, or F4, and that the set S = {rL : L ∈ Σ} consists of only one of
these conjugacy classes.

But then by Fact 3.29, ⟨S⟩ < W0, a contradiction. □
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5.5. Identification. We continue under Hypothesis 5.10 to the final
identification of the group G, following the discussion at the end of
[BBBC08, §4].

With the Weyl group identified, we can refine our notion of “root
SL2-subgroup” and arrive at the hypotheses of a version of the Curtis-
Tits Theorem, based on a result given by Timmesfeld [Tim04].

The result required says that if we have a suitable collection of “root
SL2-subgroups” which is actually attached to an irreducible root system
of spherical type, then we have, essentially, the root SL2-subgroups of
the expected Chevalley group. The precise formulation we use runs as
follows.

Fact 5.23 ([BBBC08, Prop. 2.3]). Let Φ be an irreducible root system
of spherical type and rank at least 3, and let Π be a system of funda-
mental roots for Φ. Let X a group generated by subgroups Xr for r ∈ Π,
Set Xrs = ⟨Xr, Xs⟩. Suppose that for r, s ∈ Π we have

Xrs is a group of Lie type Φrs over an infinite field, with
Xr and Xs corresponding root SL2-subgroups with respect
to some maximal torus of Xrs.

Then X/Z(X) is isomorphic to a group of Lie type via a map carry-
ing the subgroups Xr to root SL2-subgroups.

Proof of Theorem 5.1. By Proposition 5.21 and Lemma 5.22, our re-
stricted Weyl group W0 is the Coxeter group associated with an ir-
reducible root system of spherical type and the set of distinguished
involutions

I = {rL : L ∈ Σ}
corresponds to the set of reflections in the associated real representation
of W0. Furthermore apart from root lengths, the associated Dynkin
diagram ∆ is determined by W0, and corresponds to a subset of I
which we call I0.

Claim 1. The groups Li for i ∈ I0 generate G.

Let G0 = ⟨Li : i ∈ I0⟩.
The reflections ri for i ∈ I0 generate W0 and the groups Li contain

representatives of these elements. If L ∈ Σ then rL is conjugate under
W0 to one of the reflections ri with i ∈ I0, so there is a group L∗ ∈ Σ
which is conjugate to Li under G0 and satisfies

rL = rL∗ .

But as L,L∗ lie in Σ, if L ̸= L∗ this contradicts the structure of ⟨L,L∗⟩.
Thus L = L∗ ≤ G0.
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Now we have largely recovered the hypotheses of Fact 5.23, with Π
corresponding to I0. But we need to examine more carefully the key
condition, which we repeat.

For r, s ∈ I0,Xrs is a group of Lie type Φrs over an infinite
field, with Xr and Xs corresponding root SL2-subgroups
with respect to some maximal torus of Xrs.

This is approximately the content of Lemma 5.9. To this we may
add that when two root SL2-subgroups K,L ∈ Σ do not commute, the
structure of ⟨K,L⟩ can be inferred from the order of rKrL, and that
even when K,L do commute the base fields can be identified, as the
Dynkin diagram is connected.8

At this point, we have managed to verify the required information
for Fact 5.23 (without actually determining root lengths, which may
perhaps be remarkable).

Accordingly G, which is centerless, is a simple Chevalley group over
an algebraically closed field. □
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minimal simple groups of finite Morley rank. Israel J. Math., 197(1):377–
407, 2013.

[AC99] Tuna Altınel and Gregory Cherlin. On central extensions of algebraic
groups. J. Symbolic Logic, 64(1):68–74, 1999.
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[DJ16] Adrien Deloro and Éric Jaligot. Involutive automorphisms of N◦
◦ -groups

of finite Morley rank. Pacific J. Math., 285(1):111–184, 2016.
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