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ABSTRACT

Volume I
Part I: A complete classification of homogeneous ordered graphs is

given: up to a change of language each is either a generically ordered
homogeneous graph or tournament, or a generic linear extension of a
homogeneous partial order.

Part II: A catalog of the currently known metrically homogeneous
graphs is given, with proofs of existence and some evidence for the
completeness of the catalog. This includes a reduction of the problem
to what may be considered the generic case, and some tools for the
analysis of the generic case.

Some related developments are discussed in an appendix.

Volume II
Here the impact of the results of Parts I and II and of related

work in Amato, Cherlin, and Macpherson [2021] on the classification
of homogeneous structures for a language with two anti-symmetric
2-types or with 3 symmetric 2-types is worked out in detail.

An appendix to Volume II discusses some further advances in re-
lated areas, and a wide variety of open problems.

An extensive bibliography of related literature and a quick survey
of that literature, organized by topic, will be made available online
(Cherlin [2021]).

The method used in Part I of Volume I is due to Alistair Lachlan.
The method used in Part II of Volume I and throughout Volume II
is a direct application of Fraïssé’s theory of amalgamation classes.

2020 Mathematics subject classifications. Primary 03C15. Sec-
ondary 03C10, 03C13, 05C12, 05C55, 05C63, 06F99, 20B27.
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PREFACE TO VOLUME II

A comprehensive introduction to both volumes of this work is given
in Volume I. We give a briefer introduction to Volume II here.

In Volume I we considered two classification problems, the classi-
fication of the homogeneous ordered graphs and the classification of
metrically homogeneous graphs, in Parts I and II respectively. We
gave a full solution to the first problem and provided an explicit cat-
alog and conjecture, a body of relevant theory, and some applications
in Part II. Additional work in Amato, Cherlin, and Macpherson [2021]
confirms the conjecture in diameter 3 and further discussion of the
prospects for the general case is found in the appendix to Volume I.

As we explained in the preface to Volume I, the work in that vol-
ume together with the work in diameter 3 casts some light on the
classification of the homogeneous structures with two pairs of anti-
symmetric 2-types or with 3 symmetric 2-types, which we call 2-
multi-tournaments or 3-multi-graphs, respectively. The task of the
present volume is to see where exactly these results leave us, with
respect to the broader problems. Clarifying this point requires us
to undertake some further substantial explorations, some of which
might be considered logically prior to the material of Volume I, from
the point of view of a systematic study.

Recall that we work throughout with amalgamation classes in ac-
cordance with the Fraïssé theory, which amounts to characterizing
homogeneous structures by their forbidden substructures. We call a
homogeneous structure 3-constrained if the minimal forbidden sub-
structures have order at most 3. In dealing with explicit classification
problems for binary relational languages, leaving aside the specialized

xi



xii Preface to Volume II

techniques useful for some particular classes (such as finite struc-
tures), the general approach to making a catalog (potential classifi-
cation) of homogeneous structures and investigating its completeness
is the following.

1. Classify the 3-constrained homogeneous structures of the desired
type.

2. Show that, with few exceptions, the triangle constraints in any
homogenous structure of the desired type agree with the triangle
constraints in some 3-constrained structure.

3. In all cases for which the triangle constraints are inconsistent
with free amalgamation, classify the resulting structures, which
are considered to be of exceptional type from the point of view
of the general problem.

4. In the remaining case, show, again with few exceptions, that
the remaining homogeneous structures are associated with free
amalgamation classes.

If this last step ever breaks down—as well it might—we should see
something distinctly new appearing. However our focus now is on the
first three steps.

The first step was actually carried out in Cherlin [1998], with com-
puter assistance. In the case of 2-multi-tournaments we have to redo
this by an explicit argument in order to prepare the way properly for
step (2).

One notices that the work carried out in Part I of Volume I and
in Amato, Cherlin, and Macpherson [2021] bears specifically on in-
stances of step (3) in each of the two contexts, and that there are
indeed some other points that have to be addressed in order to draw
definite conclusions as to where the broader classification stands.

This explains why we felt the present volume was necessary. We
had thought it would be a supplementary third part to the two parts
of Volume I, but discovered that there was a great deal of unfinished
business still to be taken care of to bring this to a satisfactory state.

What was achieved, and how, will be described in considerable
detail in Chapter 18 (we continue the numbering of chapters, and of
open problems, from Volume I). Here we give an overview.

The results for homogeneous 3-multi-graphs are quite satisfactory.
They occupy Chapter 19, and are summarized in §19D. We find that
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an unknown homogeneous 3-multigraph must be infinite and prim-
itive, and the only forbidden triangles are monochromatic (mainly
due to the classification theorem of Amato, Cherlin, and Macpher-
son [2021], as well as prior classifications in finite and imprimitive
cases). These constraints must also be compatible with free amalga-
mation. With this as a point of departure one may expect, or in any
case hope, to find that what remains are in fact free amalgamation
classes. At that stage, the powerful classical methods of Lachlan and
Woodrow may well become relevant.

On the other hand, in the case of 2-multi-tournaments, we find we
have a good deal more work to do. At the end of our analysis four very
recalcitrant cases remain, which do not correspond to 3-constrained
examples and therefore should, conjecturally, be eliminated.

To begin with, there is no prior classification of homogeneous 2-
multi-tournaments in the imprimitive case, so we supply one in Chap-
ter 20. Then we give a proof of the classification of the 3-constrained
homogeneous 2-multi-tournaments (Chapter 21. This is needed be-
cause we require more than the resulting list of examples—we need
to understand why there are no other examples under the strong as-
sumption of 3-constraint. The next challenge is to reach the same
conclusion concerning triangle constraints under the assumption of
homogeneity alone.

Here a lengthy analysis of the possible patterns of forbidden trian-
gles leads to the identification of four potentially exceptional cases,
not corresponding to 3-constrained structures, but not yet ruled out.
See Proposition 22.1 and §22G, as well as §22H.1.

If one uses explicit amalgamation arguments as we do here, one
finds that the exceptional cases are the ones for which every amalga-
mation diagram on five points can be completed, but not every such
diagram on six points can be. In all other cases one can use a series of
amalgamation diagrams of order at most five to carry out the analy-
sis; these have factors of order four which while compatible with the
triangle constraints may or may not embed in the given structure,
but in all cases one arrives eventually at a contradiction.

Leaving aside these four delicate cases—that is, moving on to step
(3) of our plan—and returning to the patterns of forbidden triangles
which do correspond to a 3-constrained class without free amalgama-
tion, and which are not already covered by Part I: these are the seven
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examples shown in Table 21.1, under Groups III and IV, labeled 6–12
(as part of a longer list given earlier).

Now Proposition 22.19 gives the classification of the homogeneous
2-multi-tournaments falling under case #12 in Table 21.1. So in or-
der to reach what one may consider the generic case of the classifi-
cation problem for homogeneous 2-multi-tournaments, one must not
only eliminate the four exotic patterns of forbidden triangles already
identified, but complete six additional classification problems defined
by patterns of forbidden triangles which correspond to 3-constrained
homogeneous 2-multi-tournaments. We have not assessed the com-
plexity of these problems. The ones treated in Part I of Volume I were
complex, the one just mentioned as case #12 is relatively straight-
forward, and the rest deserve further study.
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CHAPTER 18

CLASSIFICATION PROBLEMS FOR SMALL
BINARY LANGUAGES

In this volume we will consider the material of Parts I and II,
together with the result of Amato, Cherlin, and Macpherson [2021],
in a substantially broader context, which had been touched on in the
Appendix to Cherlin [1998]: namely, lists of 3-constrained structures
for small languages were given there, leaving aside the straightforward
cases of imprimitive structures or structures with free amalgamation.

I had assumed that the consideration of these classification prob-
lems would be one of many open problems to be passed in review,
in the manner of the appendix to Volume I or the present volume.
It quickly became clear that due diligence requires a good deal more
in these cases. So clearing up this point, as far as I was able, has
become the subject of this volume.

The present Chapter provides an overview of the volume, stating
the relevant facts and conjectures, and some associated concrete open
questions. The following chapters then prove the various points that
have not been dealt with previously.

It is reasonable to ask whether the class of homogeneous structures
for a finite relational language is classifiable in any sense at all in
general: a reasonable interpretation of this question was given by
Lachlan, and we review his suggestion in §18A, along with another
related problem.

Descending (abruptly) to the level of structures homogeneous for
a binary relational language, one may formulate the question more
narrowly, asking in effect whether there are any examples fundamen-
tally different from those we have already seen. We take a stab at
formulating this question precisely in §18B. In the symmetric case
(that is, all 2-types are symmetric) one can go further, as discussed
already in the appendix fo Volume I.

1



2 18. Classification for small binary languages

After these general considerations we return to the main line of the
present monograph. From the point of view of Cherlin [1998], Parts
I and II of the present monograph deal with particular fragments of
natural classification problems of a type similar to the one treated in
that memoir. Namely, after the classification of homogeneous directed
graphs, the next two classification problems to consider in the same
spirit would be either the classification of 2-multi-tournaments or 3-
multi-graphs. By this we mean tournaments with a coloring of the
arcs by two colors, or complete graphs with a coloring of the edges by
3 colors, respectively. In model theoretic terms, we would refer to the
class of structures with two pairs of anti-symmetric atomic 2-types, or
with three symmetric 2-types, respectively. Our choice of terminology
here is intended to avoid major clashes with a number of similarly
named notions found in the literature. In particular, the term 3-graph
has been used in the homogeneous context both for graphs with edge
colorings and for 3-hypergraphs, while 2-graph conventionally has yet
another meaning.

As we will discuss, the material of Part I falls within the classi-
fication problem for 2-multi-tournaments, and the material of Part
II, when one sets δ = 3, falls within the classification problem for 3-
multi-graphs; that special case is resolved in Amato, Cherlin, and
Macpherson [2021]. Therefore it is natural to take up those two
broader problems here, to take stock of the situation, and to con-
tinue the analysis somewhat further in each case.

The first step in any classification problem is to make a catalog,
or, as Cameron puts it, a “census” of the known examples, which
includes making known any that ought to be known at the outset.
From the point of view of the classification problems for homogeneous
2-multi-tournaments or 2-multi-graphs, everything in Part I, or in
Part II with δ = 3, falls under the heading of census-taking, without
however exhausting the subject. Before leaving the subject, we bring
the census to a natural stopping point (but not completion). This is
discussed in §18C, and then the work is carried out in Chapter 19 for
3-multi-graphs and in Chapters 20–22 for 2-multi-graphs.

There are many striking conjectures on homogeneous structures
for a finite relational language. We have little immediate prospect of
settling any of them. But the results of classification projects have
provided some examples which have turned out to be helpful in stim-
ulating the development of the relevant techniques.



18A. Lachlan’s classification problem 3

Notably, since the completion of the first draft of this monograph,
a number of lines of development have contributed to a better under-
standing of the known binary homogeneous structures. These have
been discussed in the Appendix to Volume I but we recall them here.

The first line is the application of the theory of ample generics and
structural Ramsey theory via a close study of the “partial” metrically
homogeneous graphs. This involves work of Aranda Lopez, Bradley-
Williams, Coulson, Evans, Hng, Hubička, Karamanlis, Kompatscher,
Konečný, Nešetřil, and Pawliuk. A second line is the study of sta-
tionary independence relations in the sense of Tent and Ziegler, and
involves work of Li.

These two lines, and a good deal of other prior work, lead to a
very broad concept of generalized metric space with values in a fi-
nite partially ordered commutative semigroup which can account for
the “exotic” 3-constrained examples in the appendix to Cherlin [1998]
and also helps in understanding the properties of the 3-constrained
metrically homogeneous graphs of generic type. This setting includes
the generalized ultrametric spaces used by Braunfeld in studying
Cameron’s problem on structures with finitely many linear orders,
and Conant’s generalized metric spaces. More may be found in the
Appendix to Volume I.

This development reinforces the impression that to date, the stock
of examples one has is not all that varied. It remains to be seen
whether this way of viewing these examples is limited to the case
of symmetric binary languages or can be extended to cover anti-
symmetric cases as well (but here one could use additional examples
as test cases).

One should also take note of a radically different approach due to
Pierre Simon which uses ideas of geometric neostability theory, and
while not yet very general yields results that seem inaccessible by
more direct methods when it applies.

18A. Lachlan’s classification problem

Lachlan posed “the” classification problem for homogeneous struc-
tures in finite relational languages in its broadest formulation.

Problem 9 (Lachlan). Is the following problem decidable?
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Given two finite collections of structures A+,A− in a finite
relational language, determine whether there is an amalgama-
tion class containing A+ and disjoint from A−.

In other words, is the classification of homogeneous structures in
finite relational languages an art or a science?

One path to decidability might be as follows: one can check easily
whether a particular amalgamation problem has a solution. If one
could bound the sizes of the amalgamation problems that need to be
checked, this would suffice.

For a specified relational language, one may dispose of the problem
by any sort of reasonably explicit full classification. For example,
there are uncountably many homogeneous directed graphs, but the
explicit classification given in Cherlin [1998] passes Lachlan’s test: it
immediately gives a decision procedure for Lachlan’s problem in that
setting.

A variant of Lachlan’s problem arises as a practical matter in the
course of explicit classifications.

Problem 10. Is the following problem decidable?

Given a finite collection of structures A− in a finite relational
language, determine whether the class of finite structures con-
taining no isomorphic copy of a structure in A− is an amal-
gamation class.

In binary languages this problem is decidable, as it suffices to con-
sider amalgamation problems with just two points outside the base,
and one can list the possible obstructions to completion in this case.
This is helpful: several explicit amalgamation arguments in each of
the first two parts of the present monograph were found by following
this line of analysis.1

Other variants of Lachlan’s problem are of combinatorial interest,
notably the following.

Problem 11. Given A+, A− as above, determine whether the num-
ber of amalgamation classes containing A+ and disjoint from A− is

1A recent preprint connects this problem to the study of context-free languages.
This is a striking development which presumably is worth looking at model the-
oretically. See Bodirsky, Knäuer, and Rydval [2021].
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(a) finite;
(b) countable.

The decidabilty of version (b) of the problem is open even in the
case of homogeneous directed graphs, where it becomes equivalent to
an instance of the following (for the class of tournaments).

Problem 12. [WQO Problem] Let A− be a finite set of finite struc-
tures in a fixed finite relational language, and let Q be the quasi-
ordered class of finite structures not containing any structure in A−,
ordered by isomorphic embedding. Determine whether the class Q
contains an infinite antichain (equivalently, whether the class Q is
“well quasi-ordered”—wqo).

I have discussed this problem at length in Cherlin [2011a], so I will
not elaborate here. It is also well known in the context of permutation
pattern classes, where the wqo property holds in a number of cases of
interest, and has strong implications for other properties of interest.

In practice this problem leads to an attempt to classify the “min-
imal antichains” in the given class of structures. In the context of
permutation patterns a rich set of such antichains has been identi-
fied; richer than in the case of tournaments.

This suggests the following problem.

Problem 13. Give an encoding of permutations as tournaments
that allows the minimal antichains of permutation patterns to be
interpreted as minimal antichains of tournaments.

This seems a little too hard as stated, and probably one should
settle for an encoding which works for the known minimal antichains.
(Preserving minimality seems challenging.)

An example of an undecidable problem with some connections to
homogeneity (specifically, the existence of universal graphs with spec-
ified constraints) is given in Cherlin [2011b]. One might take this as
a hint of a negative solution to Lachlan’s problem.

The problem of decidability of j.e.p. for permutation pattern classes
determined by finitely many constraints is also open. On the other
hand the homogeneous permutations are known; there are finitely
many of them and Lachlan’s problem trivializes in that context.



6 18. Classification for small binary languages

18B. Standard binary homogeneous structures

The supply of known binary homogeneous structures, while exten-
sive, is not very varied. At some point, after becoming convinced that
the conjectured classification of the metrically homogeneous graphs
put forward in Part II is reasonable, I began to wonder whether
something very similar occurs in general. Phrasing this thought ex-
plicitly produces a number of concrete classification problems and a
systematic way to look for “natural” examples very broadly.

We define standard binary homogeneous structures as follows, and
then ask whether the classification of binary homogeneous structures
reduces, in a very weak sense, to the standard case.

Definition 18.1. Let A be an amalgamation class of finite binary
structures.

1. An amalgamation strategy γ for A is a function on 2-point amal-
gamation problems P over A such that γ(P ) supplies a 2-type which
can be used to complete the diagram.

2. A Henson constraint relative to γ is a finite binary structure
whose 2-types lie outside the range of γ.

3. A standard binary homogeneous structure Γ is one whose asso-
ciated amalgamation class A has the form

A = A3 ∩ Aγ,H

where A3 is a 3-constrained amalgamation class, γ is an amalga-
mation strategy for A3, and Aγ,H is the class defined by a set of
γ-Henson constraints.

The conjectured classification of metrically homogeneous graphs of
generic type from Part II of the previous volume amounts, abstractly,
to the conjecture that these structures are standard. Much of Part
II is then devoted to figuring out what this means concretely. In this
case, γ-Henson usually means (1, δ)-Henson.

Problem 14. Is there a binary homogeneous structure Γ which sat-
isfies neither of the following conditions?
(a) Γ is standard.
(b) There is a ∈ Γ and a non-trivial 2-type p for which

ap = {x | tp(a, x) = p}

realizes fewer triangle types than Γ.
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As all imprimitive structures fall under case (b), this is a problem
about primitive binary homogeneous structures. One would much
prefer to have all non-trivial 1-types over a realize fewer triangles, and
perhaps in the primitive case this is reasonable. Clause (b) allows for
cases like the generic local order which are primitive but not standard.

There is a long-standing conjecture of a considerably more explicit
form in the finite case (as we describe below, a proof has now been
announced).

Conjecture 1. Every finite primitive binary structure is of one of
the following forms.
(a) Symn acting naturally;
(b) A cyclic group of prime order acting regularly;
(c) An anisotropic affine orthogonal group over a finite field acting

naturally (necessarily of dimension at most 2).

Note that even finite cliques are standard in our sense (barely):
there is an amalgamation strategy which uses no non-trivial 2-type, so
any constraint may be considered a Henson constraint. This stretches
the notion of free amalgamation and one may prefer to add finite
cliques as an explicit exceptional case.

One may check that the affine anisotropic orthogonal groups in
dimension 2 also satisfy the stated conditions. In odd characteristic
after fixing a point the locus of a 1-type becomes imprimitive with
respect to the relation y = ±x. In even characteristic with the order
q of the field at least 4 one can check that some 2-type is omitted in
one of the induced 1-types. For q = 2 we have a finite clique.

Wiscons reduced the proof of Conjecture 1 to the case of primitive
actions of almost simple groups in Wiscons [2016], and a systematic
attack on the almost simple case by Dalla Volta, Gill, Hunt, Liebeck,
and Spiga completed the treatment of all such cases, about the time
this book was submitted for publication. (See Appendix 23.)

The companion to Problem 14 is the following.

Problem 15. Classify the 3-constrained binary homogeneous struc-
tures explicitly.

The problem is really to classify the standard ones, but dealing
with the 3-constrained case would be the heart of the matter.

In practice, Problem 15 has been part of most censuses which have
been undertaken, but has tended to involve isolated examples or the
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imprimitive case. At present this problem is emerging as a center of
attention, accompanied by the question to what extent the solution
fits into the framework of generalized metric spaces when the 2-types
are all symmetric.

Once one has a grip on the 3-constrained classes, and the associ-
ated standard type homogeneous structures, one wants to know, with
specific exceptions, that the pattern of forbidden triangles in any ho-
mogeneous structure of the same type defines one of the specified
3-constrained classes. In particular, in the case of metrically homo-
geneous graphs, we know the 3-constrained classes and a full proof
of the classification conjecture one would naturally start with this
problem: to show that the forbidden triangles in a metrically homo-
geneous graph of generic type form one of the specified admissible
sets of constraints.

Problem 14 includes an inductive element under clause (b); that is,
it leads to a classification problem where the structure induced on
one of the 1-types over a parameter is a is known, and exceptional.

A related problem is the following.

Problem 16. Let Γ be a primitive binary structure, a ∈ Γ, and p
a 2-type. Does it follow that ap is primitive? Does it follow that the
operation of algebraic closure is trivial?

18C. Concrete classification problems: overview

We now consider the classification problem for homogeneous 2-
multi-tournaments and for homogeneous 3-multi-graphs. Our point of
view is that of the preceding section: in other words, we first ask what
the 3-constrained homogeneous structures are, and identify their vari-
ations (adding Henson constraints). We then ask whether the pattern
of forbidden triangles is necessarily as in one of the 3-constrained
cases. After that, one wants to work out in each case whether the
structures with a specified collection of forbidden triangles are the
standard structures associated to that particular collection.

In the case of 2-multi-tournaments and 3-multi-graphs, the 3-con-
strained homogeneous structures were already identified in the ap-
pendix to Cherlin [1998].

Our task in this section is to put the material of Parts I and II into
this context, to see what has been accomplished and also what needs
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to be added at this point to complete the picture. We will devote the
rest of the volume to filling in some of the missing pieces.

18C.1. Classification problems for small languages.
The conventional view of the distinction between graphs and tour-

naments, for a model theorist, is that they share the same language
but different axioms. We prefer to view the language as specifying
the structure of the set of quantifier-free k-types for some definite
value of k (with k = 2 here). This structure includes the action of
the symmetric group on the variables, as well as the restriction maps
to ℓ-types for ℓ < k. In the case of homogeneous tournaments and
graphs, this brings us back to the point of view that tournaments are
structures with one pair of anti-symmetric 2-types, and graphs are
structures with two symmetric 2-types We consider only irreflexive
k-types. (all elements distinct)

The number of irreflexive k-types, counted up to symmetry, will be
called the rank of the language.

From this perspective, here are the known classification results that
cover all homogeneous structures of a specified combinatorial type in
a purely binary language (just one 1-type, and a finite set of irreflexive
2-types, symmetric or anti-symmetric).

— Rank 1, symmetric: Theory of equality.
— Rank 1, anti-symmetric: Tournaments: finitely many
— Rank 2, symmetric: Graphs: countably many
— Rank 2, with one symmetric type and one anti-symmetric pair

of types: Directed graphs; uncountably many, with
one uncountable family, and countably many others.

The complexity of the classification appears to rise quickly and
it is unclear whether such explicit classifications can continue much
further; but the only definitely known obstacle to this, so far, is the
sheer length of the arguments required. It would be remarkable if one
could handle all finite binary relational languages using the current
methods and patience, but this is merely a more concrete way of
phrasing Lachlan’s question of effectivity.

We feel that the rank is more significant than the total number
of 2-types; that is, while increasing the number of 2-types by break-
ing symmetry complicates matters substantially, increasing the rank
complicate matters even more.

The “next” cases to be considered from this point of view would be
the following.
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(a) Rank 2, anti-symmetric.
(b) Rank 3, symmetric.
In the terminology we have adopted, structures of the first type are

called 2-multi-tournaments, and structures of the second type are 3-
multi-graphs, in other words tournaments with a coloring of the arcs
by two colors, and complete graphs with a coloring of the edges by
three colors.

The 3-constrained homogeneous structures of these types were given
in Cherlin [1998], with the imprimitive ones and the free amalgama-
tion classes omitted. This was based mainly on a computer search
and no documentation was provided there. We will give these lists
here, and we supply further details in the following chapters.

18C.2. Primitive 3-constrained homogeneous 3-multi-
graphs without free amalgamation. There is only one primi-
tive 3-constrained homogeneous 3-multi-graph which is not associ-
ated with a free amalgamation class. After labeling the 2-types ap-
propriately it may be interpreted as being either of the following
metrically homogeneous graphs.

Γ3
3,3,10,11 or Γ3

1,3,8,9.

The forbidden triangles are then of the following types in the two
cases.

Γ3
3,3,10,11 : (1, 1, 3), (2, 2, 1), (1, 1, 1);

Γ3
1,3,8,9 : (3, 3, 2), (1, 1, 3), (3, 3, 3).

The correspondence between these two points of view is given by
cyclic permutation of the labels on the 2-types: (1, 3, 2). Notice that
the triangle inequality on one side corresponds to a less trivial con-
straint on the other side.

There are other primitive metrically homogeneous graphs of diam-
eter 3, but the corresponding amalgamation classes have free amal-
gamation, using distance 2 as the “default” value. (Typically free
amalgamation is interpreted as the absence of additional relations,
but in binary languages with all 2-types treated on an equal foot-
ing, the meaning is that a particular type is to be used to make the
amalgam; and it is preferable that the type used be symmetric.)

The infinite imprimitive homogeneous 3-multi-graphs were classi-
fied in Cherlin [1999], and all finite homogeneous 3-multi-graphs were
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classified by Lachlan in Lachlan [1986, §2], with more details given
in an unpublished work (Lachlan [ca. 1982]).

We will give the catalog of all known homogeneous 3-multi-graphs
in §19A.

18C.3. Primitive 3-constrained homogeneous 2-multi-
tournaments without free amalgamation.

There is a distinctly richer supply of primitive 3-constrained 2-
multi-tournaments which do not correspond to free amalgamation
classes. This is shown in Table 18.1, p. 12, which shows the (non-
degenerate) possibilities up to a permutation of the language. The
table has been arranged and labeled to suit our present purpose. We
use the labels 1, 2 for the two colors of arc, and we list the forbidden
triangles using the following conventions.

Notation 18.2. For i, j, k ∈ {1, 2}, the symbol “C3(i, j, k)” denotes
an oriented 3-cycle with arcs of type (i, j, k) respectively: a i−→ b

j−→
c

k−→ a (so this is also denoted C3(j, k, i) and C3(k, i, j)).
Similarly, L3(i, j, k) is a transitive tournament on three vertices

a, b, c where a
i−→ b

j−→ c and a
k−→ c.

When listing forbidden triangles we use a compressed notation,
e.g., “C3 : 111, 112” stands for “C3(1, 1, 1), C3(1, 1, 2).”

Note in particular that when there is a definable linear order it
may be taken to be given by 1−→ ∪ 2−→; there are four such cases,
numbered 2–5. These are the cases in which the structure may be
viewed as an ordered graph, or as an ordered tournament.

This catalog will be discussed in Chapter 22. The label “Excep-
tional” means “poorly understood” and, in particular, the existence
of those structures is one of the points we will need to check.

18C.4. The story so far: 3-constraint.
Recall the standard plan of attack for classification theorems in

binary languages.

1. Determine the 3-constrained structures.
2. Determine the associated standard structures.
3. Attempt to show that the set of forbidden triangles in a homo-

geneous structure taken by itself already determines an amalga-
mation class, on the list above. Note any exceptions (aiming for
a complete classification of all such at this stage).
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# Constraints Type
Group I: Finite

1 C3: 111,112,222 L3: 111,121,122,211, Pentagram
212,221,222

Group II: Linearly ordered by 1−→ ∪ 2−→
Common Constraints

C3: 111,112,221,222 L3: None
Additional Constraints

2 C3: none L3: none RG ∗ <
3 C3: none L3: 112 ≤ extends PO
4 C3: none L3: 111 Henson ∗ <
5 C3: none L3: 112,221 < ∗ <

Group III: p.o. by 1−→, no definable linear order
Common Constraints

C3: 111, 112 L3: 112
6 C3: none L3: none Desymm. PO
7 C3: 221 L3: none Exceptional

Group IV: Infinite, no definable partial order
# Constraints
8 C3: 111,112 L3: none Exceptional
9 C3: 112 L3: 111 "

10 C3: 111,112 L3: 111 "
11 C3: 111,222 L3: 111,122,212 S̃(3)
12 C3: 111,112 L3: 121,211,221,222 S(4)

Table 18.1. Primitive 3-constrained
non-degenerate homogeneous 2-multi-tournaments

without free amalgamation.



18C. The story so far: 3-constraint 13

4. Attempt to show, ideally, that every homogeneous structure in
the class is standard, in the sense corresponding to the associ-
ated 3-constrained structure. When this fails, aim to show that
one of the structures induced on the locus of some non-trivial
1-type over a point was previously classified, and complete the
classification on a more ad hoc basis.

For example, in the classification of homogeneous tournaments, the
treatment of the generic local order falls under point (4), when no
triangle is forbidden but the structure is not generic.

The lists given in Cherlin [1998, Appendix] omit the imprimitive
and free amalgamation cases, but we will want to include them here.
The free amalgamation classes present no difficulties from this point
of view but the imprimitive case requires its own separate treatment.

As mentioned above, the imprimitive homogeneous 3-multi-graphs
are known. On the other hand, the imprimitive homogeneous 2-multi-
tournaments were never classified. We will fill this gap in §20B, as
follows.

Proposition 20.6. Let Γ be an imprimitive homogeneous 2-multi-
tournament. Then up to a change of language Γ is one of the follow-
ing.

• A composition T2[T1] with Ti an i−→-tournament.
• (Shuffled type) Γ is derived from a homogeneous local order
Γ1
∼= Q or S which is partitioned into n dense pieces, with

2 ≤ n ≤ ∞, and with a
2−→ b in Γ iff a, b lie in distinct pieces of

Γ1, and a
1−→ b holds in Γ1.

• (Semi-generic type) Generic imprimitive with infinite compo-
nents (type Q, S, or Γ∞) and satisfying the parity constraint
described below.
• (Generic type) The generic de-symmetrization of an imprimitive

homogeneous directed graph n · T with 2 ≤ n ≤ ∞, where T is
an infinite homogeneous tournament.

We will leave the precise definitions used above to §20B. The proof
of the proposition follows Cherlin [1987], at a greater level of gener-
ality. The original argument strikes us as very compressed at points
and possibly incomplete.
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Thus both the imprimitive homogeneous 3-multi-graphs and the
imprimitive homogeneous 2-multi-tournaments are classified explic-
itly, and we may set these aside in any further analysis of these struc-
tures.

There is no difficulty in verifying the accuracy of the list of 3-
constrained 3-multi-graphs and in fact we will arrive at a more general
result in Proposition 19.2, quoted below.

On the other hand, the classification of 3-constrained homogeneous
2-multi-tournaments is both richer and harder to verify, both in terms
of the existence of the structures (the amalgamation property) and
the completeness of the list. We deal with this in §21A.

Proposition 21.1. Up to a permutation of the language, the primi-
tive 3-constrained homogeneous 2-multi-tournaments are the twelve
shown in Table 18.1 together with the free amalgamation classes,
which forbid only C3(1, 1, 1), L3(1, 1, 1), or both.

18C.5. Forbidden triangles in homogeneous 3-multi-graphs,
and beyond. The next question in logical order is whether the set
of forbidden triangles for a given homogeneous structure in our class
is one of the known patterns defining a 3-constrained homogeneous
structure, and if not, what exceptions arise. Only after this would
we come to the question as to whether, in each case, the structures
associated with one such pattern of forbidden triangles are in fact
standard, a point settled in certain cases by Amato, Cherlin, and
Macpherson [2021] or Part I of this monograph.

In the case of homogeneous 3-multi-graphs, the cases treated in
Amato, Cherlin, and Macpherson [2021] can be used to complete
the analysis of forbidden triangles for homogeneous 3-multi-graphs in
general. Thus in Chapter 19 we show that the following proposition
is an easy consequence of the known classification results.

Proposition 19.2. Let Γ be a homogeneous 3-multi-graph not in
the catalog of known examples. Then any triangle omitted by Γ is
monochromatic, and the set of triangles omitted by Γ defines a free
amalgamation class.

From this point onward, the task is to show that any homogeneous
3-multi-graph not covered by the prior results corresponds to a free
amalgamation class.

It is not clear whether one should expect that this will actually be
the case; and even if it is the case, it is very unclear how to adapt
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previous arguments to prove it. This is the most significant question
arising within this classification problem, as there is a realistic possi-
bility that examples of a new type will arise. But some cases of this
type were handled in Amato, Cherlin, and Macpherson [2021] and
did in fact lead to free amalgamation classes.

We continue the analysis somewhat further, in a direction suggested
by clause (b) of Problem 14. If a monochromatic triangle of type i
is forbidden, then the corresponding 1-type over a parameter does
not realize the type i and may therefore be viewed as a homogeneous
graph. One particular case that should be eliminated is that in which
the induced structure is imprimitive. We refer to this situation as the
locally degenerate imprimitive case since the induced structure on a
1-type is both degenerate (omits a 2-type) and imprimitive.

We will show the following.

Proposition 19.49. Suppose that Γ is a homogeneous 3-multi-graph
which is locally degenerate imprimitive. Then Γ is of known type.

In general, the case in which there is some forbidden clique (mono-
chromatic subgraph) is a candidate for inductive analysis, with the
case above arising at the base of the induction. Of course, that is a
very broad case and would be expected to require the style of analysis
of Part I, at a minimum.

18C.6. Forbidden triangles in homogeneous 2-multi-tour-
naments. One would expect a language with two pairs of asym-
metric 2-types to be easier to handle than one with three symmetric
2-types, but this is certainly not the case as far as the analysis of
patterns of forbidden triangles is concerned. The relevant combina-
tions of forbidden triangles, even in the 3-constrained case, are more
varied, but even the analysis of individual cases turns out to be more
complex.

So a central concern in Chapters 21 and 22 will be the allowable
patterns of triangles in a general homogeneous 2-multi-tournament.

18C.6.1. The 3-constrained case. To begin with one classifies the
3-constrained cases; this is the topic of Chapter 21. The result is
shown in Table 21.1, §21A. There we restrict ourselves to cases with
no ∅-definable linear order, as Part I of this monograph gives the full
classification in the presence of a linear order. This provides a sub-
stantial simplification: of the twelve 3-constrained classes not associ-
ated with free amalgamation, one is finite and four involve ∅-definable
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linear orders, so only seven are left, along with the free amalgamation
classes shown for the sake of completeness but playing no real role in
our present concerns.

Two of these seven cases allow a ∅-definable partial order, which
in this particular context means only that one of the two 2-types is
transitive. Of the remaining five, two have natural interpretations as
being either generalizations of the generic local order or closely re-
lated to such a generalization, while the other three have not been
given a natural interpretation as yet. However two of them arise as
the 3-constrained structures within a particular infinite family of ho-
mogeneous 2-multi-tournaments.

18C.6.2. The general case. We turn to the problem of the iden-
tification of the possible patterns of forbidden triangles in infinite
primitive homogeneous 2-multi-tournaments with no ∅-definable lin-
ear order, where this pattern is not associated with any free amalga-
mation class. Then our target is one of the patterns associated with
the 3-constrained classes found, and specifically those associated with
entries numbered 6–12 in the list given in Table 21.1.

One learns from the classification of the 3-constrained classes that
in four cases the relevant amalgamation diagrams have order 6. We
focus here on the points which can be checked in the 3-constrained
case using diagrams of order at most 5. This leads to the following
result.

Proposition 22.1. Let Γ be an infinite, primitive, homogeneous 2-
multi-tournament not associated with a free amalgamation class. If
Γ has a ∅-definable linear order then it is found in the classification
in Part I. If not, then either the set of forbidden triangles in Γ defines
one of the known 3-constrained 2-multi-tournaments, or one of the
following four cases applies.

1. Triangle types C3(1, 1, 1) and C3(2, 2, 2) are forbidden and all
other triangle types are realized.

2. Triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbidden and all
other triangle types are realized.

3. Triangle type C3(1, 1, 2) is forbidden and all other triangle types
realized.

4. Triangle types C3(1, 1, 2) and L3(2, 2, 1) are forbidden and all
other triangle types realized.
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It seems likely that these four remaining cases, corresponding to
amalgamation diagrams of order 6 in the 3-constrained case, will
be challenging to treat in general, but they should eventually be
eliminated by the same sort of direct analysis.

This analysis is given in Chapter 22 and is summarized in §22G.
18C.7. The catalog revisited. We conclude in §22H with an

overview of the results achieved on forbidden triangles in homo-
geneous 2-multi-tournaments, as well as the results known only in
the 3-constrained case. Our final Tables 22.1 (imprimitive case) and
22.2 (primitive case) contained a detailed and explicit catalog of the
known homogeneous 2-multi-tournaments, with the constraints of or-
der 3 listed, and other supplementary constraints indicated where
required.





CHAPTER 19

HOMOGENEOUS 3-MULTI-GRAPHS

The results to be proved in this chapter, and succeeding chapters,
have been presented in detail in Chapter 18.

Namely, our subject in the present chapter is the classification prob-
lem for homogeneous 3-multi-graphs, in the terminology adopted in
Chapter 18. These are complete labeled graphs with label set {1, 2, 3};
in this language, 2-multi-graphs are essentially ordinary graphs, after
deciding that one of the two colors represents edges and the other
non-edges. Similarly homogeneous graphs can be interpreted as ho-
mogeneous 3-multi-graphs in six different ways, using two of the three
colors. These are called degenerate 3-multi-graphs, as one 2-type is
omitted.

As mentioned in Chapter 18, the finite or imprimitive homogeneous
3-multi-graphs have been classified previously.

This chapter will also rely on the main result of Amato, Cherlin,
and Macpherson [2021], showing that the conjectured classification
of metrically homogeneous graphs is valid in diameter 3. The proof
of that result itself makes occasional use of Part II of the present
monograph. So we can view that work as a bridge from Part II of the
previous volume to the present volume.

We first give a full catalog of the known examples of homogeneous
3-multi-graphs. Then we determine the patterns of forbidden trian-
gles which may occur in an arbitrary homogeneous 3-multi-graph
not covered by one of the prior classification results (Proposition
19.2). At that point we see that the result of Amato, Cherlin, and
Macpherson [2021] brings us down to the generic case of the classifi-
cation problem for homogeneous 3-multi-graphs, by which we mean
the case in which the target consists exclusively of structures associ-
ated with free amalgamation classes (classes closed under one of the

19



20 19. Homogeneous 3-Multi-graphs

relevant notions of free amalgamation).2 This reduction goes quickly,
modulo the previously known results.

This generic case divides further into a more special case in which
some clique is forbidden, where induction on the size of the forbidden
clique is helpful, and the case in which no clique is forbidden, which
provides an interesting challenge; a similar challenge is dealt with in
Part I of this monograph, but in a considerably simpler context.

As we have seen in this monograph, it is useful to examine the local
structure of homogeneous structures; in the case of 3-multi-graphs,
these are the structures Γ1,Γ2,Γ3 induced on the realizations of one
of the 1-types over a basepoint (labeled by the corresponding 2-type
over the empty set). In particular one has the exceptional case in
which Γ1 (say) is imprimitive. We will consider the case in which
Γ1 is not only imprimitive, but degenerate. We refer to this as the
locally degenerate imprimitive case. This takes quite a long analysis
to dispose of (§19C, in seven parts). One recognizes a certain style
of argument associated with local analysis but for the present the
method involves a close examination of various concrete possibilities.
Since these are all eliminated in due course, it is reasonable to seek
more general methods, applicable when the full structure is primitive.

It would have been more satisfactory to dispose of the locally im-
primitive case in full, but issues of both time and space finally weighed
in. We return to a summary of the state of affairs with respect to the
classification of homogeneous 3-multi-graphs at the end of the chap-
ter (§19D).

19A. A catalog

We give a catalog of the known homogeneous 3-multi-graphs. We
fix notation for the irreflexive 2-types: these will be denoted by 1 , 2 ,
and 3 , or more simply by 1, 2, 3 where possible.

The degenerate case in which not all 2-types occur is covered by
the Lachlan/Woodrow classification. We do not include this below.

We first give a classification of the examples into eight families, six
of them imprimitive. We will give an explicit structural description
of each family below.

2We used the term generic type in a different sense in Part II, specific to the
context of metrically homogeneous graphs.
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1. Imprimitive
(a) Composite
(b) Product
(c) Double cover
(d) Clique-restricted
(e) Semi-generic
(f) Generic imprimitive

2. Primitive
(a) Γ3

K1,K2,C0,C1,S with admissible parameters
(b) Free amalgamation class

We now describe these families in detail. They are intended to be
non-overlapping, and generally speaking we may take it as tacitly
given that each family includes the condition of not falling into an
earlier family. But some marginal cases fall naturally under more
than one heading.
1(a) Composite. The characteristic feature is that there is a non-
trivial congruence.

The 3-multi-graph has the form G2[G1] with G1, G2 homogeneous
graphs in disjoint languages. The automorphism group is a wreath
product.

As our language allows three 2-types, one of the factors G1, G2 is
complete. The other factor may itself by composite, in which case
the structure has the form K[K[K]] with each K an i -clique, for
varying i ∈ {1, 2, 3}.

In the remaining imprimitive cases, the equivalence classes for
any minimal equivalence relation must be cliques of some type (i.e.,
monochromatic).
1(b) Product The characteristic feature is a pair of transversal
equivalence relations.

Like composition, the product construction G1⊗G2 can be defined
in great generality.

The vertex set is the underlying Cartesian product, and the type of
the pair (a1b1, a2b2) is the pair of types (tp(a1a2),tp(b1b2)). The au-
tomorphism group is the direct product of the automorphism groups
of the factors.

In general, if G1, G2 have k and ℓ non-trivial 2-types, then G1⊗G2

has kℓ+k+ ℓ non-trivial 2-types. If the product has three non-trivial
2-types, this means that both G1 and G2 must be complete. So this
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is the case of interest here. The product of two complete graphs is
a grid with three non-trivial 2-types: equal first coordinate, equal
second coordinate, or neither. Or in more geometric terms: vertically
related, horizontally related, or in general position.

On the other hand, the composition of two complete graphs Km[Kn]
is a complete multipartite graph with m parts of size n; or its com-
plement, the disjoint union of m copies of Kn, depending on which
2-type is called an edge, and which is called a non-edge.
1(c) Double cover.

The characteristic feature is an equivalence relation with classes of
order 2, which is not a congruence, and preferably not a product.

Construction: Let G be a homogeneous graph, and identify the two
non-trivial 2-types (edge, non-edge) with the labels 1, 2 respectively.

Form an extension G∗ = G ∪ {⋆} with ⋆ adjacent to every vertex
of G. Then take two copies G∗

1, G∗
2 of G∗, and set Ĝ = G∗

1 ∪ G∗
2

with edges and non-edges (i.e., types 1 and 2 respectively) between
G∗

1 and G∗
2 corresponding to non-edges and edges (types 2 and 1

respectively) within G∗, apart from the pairs (a, a′) corresponding to
the same element of G∗, which realize the third type 3 .

Note that this construction results in the following properties. If
the point ∗1 in G∗

1 is taken as basepoint, we get Γ1 = G1, Γ2 = G2,
Γ3 = {∗2}, and we also have a kind of “antipodal” law tp(a1, b2) =
3−tp(a1, b1) if we consider equality as type 0. Examples follow below.

The result of this construction is not always homogeneous. But if
the automorphism group of the double cover is transitive, then the
structure is homogeneous. These are in fact metrically homogeneous
graphs of diameter 3 and antipodal type (apart from the disconnected
case (a) below). There are four types of double cover, if we include
under this heading a case which was already treated as a product.
(a) With G a clique, and thus G∗ also a clique, the double cover is

K2 ⊗G∗.
(b) With G the pentagon, the double cover is the 1-skeleton of the

icosahedron.
(c) With G the primitive non-degenerate homogeneous graph of or-

der 9, the double cover is a finite antipodal graph of order 20.
Cameron’s presentation of this graph is as the graph of 3-subsets
of a 6 element set, with edge relation given by

|x ∩ y| = 2
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(d) With G the random graph, the double cover is the generic an-
tipodal metrically homogeneous graph of diameter 3.

1(d) Clique-restricted.
We fix a 2-type i relating some pair of inequivalent points. In this

case, we add the constraint that an i-clique of some fixed order m
is forbidden. We also fix the number n of equivalence classes (which
may be infinite) subject to n ≥ m.

There is a generic graph of this type for each allowable choice of
m,n.
1(e) Semi-generic

Here one requires that for any two pairs of points taken from dis-
tinct equivalence classes, the number of edges of a given type between
the two pairs be even.

There is a generic graph of this type (that is, the associated class of
finite structures is an amalgamation class, hence has a Fraïssé limit).
1(f) Generic imprimitive

Finally, we have a graph with a specified number n of equivalence
classes, with 2 ≤ n ≤ ∞, and otherwise generic. The induced struc-
ture on each class is a clique, and any two classes constitute a generic
bipartite graph. This does not exhaust the properties of the graph,
but fixes the ideas.

This completes the discussion of imprimitive families. That part of
the catalog is complete: an imprimitive homogeneous 3-multi-graph
lies in one of these families.

We now review the two known primitive types.
2(a) Primitive metric; 3-constraints and Henson constraints

We have met the graphs Γ3
K1,K2,C0,C1,S in Part II.

2(b) Free amalgamation classes
In the case of free amalgamation, we take any set C of finite 3-multi-

graphs with the property that at most two 2-types are involved in all
of the constraints. Taken C as forbidden, we have free amalgamation
with respect to the third 2-type, and a corresponding generic 3-multi-
graph ΓC .

As we have mentioned several times, this catalog of known types
has been proved complete in the following three cases.
(a) In the finite case, it is treated by a direct inductive analysis in

Lachlan [1986, §2], with more details given in Lachlan [ca. 1982].
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(b) In the imprimitive case, it is covered by Cherlin [1999].
(c) In the metrically homogeneous case, it is treated in Amato,

Cherlin, and Macpherson [2021].
Note that the metric case, in the setting of 3-multi-graphs, is sim-

ply the case in which triangles of type (1, 1, 3) are forbidden. This
does not appear to be a very striking condition—as such, it defines
a free amalgamation class—but it turns out to simplify the problem
enormously.

We sum all this up as follows.

Remark 19.1. Any homogeneous 3-multi-graph not in the above
catalog (up to a change of language) is infinite and primitive.

We will put this remark in a sharper form in the next section.

19B. Triangle constraints

In this section we aim at the following.

Proposition 19.2. Let Γ be a homogeneous 3-multi-graph not in the
catalog given above. Then any triangle omitted by Γ is monochro-
matic, and the set of triangles omitted by Γ defines a free amalga-
mation class.

As we will see, the bulk of the proof is covered by the main result
of Amato, Cherlin, and Macpherson [2021].

Notation 19.3. Let Γ be a homogeneous 3-multi-graph.
For any vertex v ∈ Γ and any non-trivial 2-type p we set

vp = {x ∈ Γ | tp(vx) = p}.

When p is the type i we also write vi for vp. Explicitly:

vi = {x ∈ Γ | v i x}.
In particular, we fix an arbitrary basepoint denoted by v∗ and we

define the homogeneous 3-multi-graphs Γi correspondingly:

Γi = vi∗.

These are the local constituents of Γ, and are again homogeneous
3-multi-graphs.

We denote by i∼ the binary relation which is the reflexive exten-
sion of i , which is of particular interest when it is an equivalence
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relation on Γ, or, indeed, whenever its restriction to one of the local
constituents Γj is an equivalence relation.

More generally, if S is a set of 2-types, S∼ denotes the reflexive
extension of their union.

In our diagrams we represent type 1 by a solid edge, type 2 by a
dotted edge, and type 3 by a stippled edge with wide stipples.

Lemma 19.4. Let Γ be a homogeneous 3-multi-graph in which tri-
angles of type (i, i, j) are forbidden for some fixed and distinct i, j ∈
{1, 2, 3}. Then Γ is in the catalog above.

Proof. We may assume that triangles of type (1, 1, 3) are forbid-
den. We will consider the graph structure on Γ with edge relation 1

(but Γ retains its original language).
We know that Γ is primitive. So the graph on Γ is connected. By

Fact I 1.3 (an elementary result, from Chapter 1 of Volume I) the
metric on Γ is the path metric, and hence Γ is a metrically homoge-
neous graph. Now the classification in Amato, Cherlin, and Macpher-
son [2021] applies. □

Lemma 19.5. Let Γ be a homogeneous 3-multi-graph in which tri-
angles of type (1, 2, 3) are forbidden. Then Γ is in the catalog above.

Proof. By the previous lemma we may assume that all triangles
of type (i, i, j) with i, j distinct are realized in Γ. We now sharpen
this as follows.

Claim 1. For any i, j distinct, triangles of type (i, j, j) are realized
in Γi.

We may take i = 1, j = 2, so that we aim to put a triangle of type
(1, 2, 2) into Γ1.

We first consider the following amalgamation diagram, in which
the three paths from a1 to a2 are colored using all three possible
pairs of colors (Figure 1).

Since any completion would contain a triangle of type (1, 2, 3), this
is a diagram with no completion, and so one of the factors does not
embed in Γ.

The factor omitting a1, shown on the right, is forced by the amal-
gamation in which (u, v) are treated as a pair whose type is to be
determined. The factors of this latter diagram are triangles afforded
by the previous lemma.
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a1 a2

u

v

w

Figure 1

a1

u

v

w

a2

u

v

w

So the factor omitting a2, shown on the left, is omitted. Therefore,
if we treat this factor as a diagram in which the type of (u, v) is to
be determined, the unique completion has u 1 v, as shown.

a1

u

v

w

With v as basepoint, this gives a triangle of type (1, 2, 2) in v2,
proving our claim.

Now consider the following amalgamation diagram (Figure 3).
The factors of this diagram consist of a triangle of type (1, 1, 2) in

w2 and a triangle of type (2, 3, 3) in u2, hence embed in Γ by the
claim. But the diagram has no completion. This contradiction proves
the lemma. □

Proof of Proposition 19.2. By Propositions 19.5 and 19.4 a
new homogeneous 3-multi-graph Γ must realize all triangle types
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a1 a2

u

v

w

Figure 3

other than the monochromatic triangles, i.e., those of type (1, 1, 1),
(2, 2, 2), or (3, 3, 3). Furthermore, as Γ must be infinite, by Ramsey’s
theorem we must realize at least one of these triangle types, and we
can omit any two of them in a free amalgamation class.

Thus the proof of Proposition 19.2 is complete. □

19C. The locally degenerate imprimitive case

Local analysis is the study of the local constituents of a homoge-
neous structure. As we saw in Part II this can be developed exten-
sively in the case of metrically homogeneous graphs and can then be
usefully applied to obtain concrete classification results. Generally
speaking, a classification conjecture predicts what constituents will
occur, and the extent to which their structure reflects the structure
of the whole. In particular in the primitive case we expect the local
constituents to be primitive.

Accordingly, a special case of considerable interest at the outset is
the locally imprimitive case, that is, the case in which for some ℓ the
local constituent Γℓ is imprimitive. This covers a very wide variety of
cases which we would hope to eliminate at a relatively early stage of
the analysis, eventually clearing the way for a robust analysis of the
generic case.

In this section we are concerned with the locally degenerate imprim-
itive case, meaning that not only is some local subgraph imprimitive,
but it is also degenerate in the sense that some 2-type is not realized.
In other words we are assuming here that a triangle of type (i, i, j) is
forbidden, and setting aside the known cases, this means that i = j
and an i-clique of order 3 is forbidden. More generally, the case in
which some i-clique is forbidden lends itself to induction on the order
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n of the forbidden clique. In some sense the case n = 2, the degener-
ate case, is the true base of the induction, but since it will come with
many “sporadic” or “exceptional” solutions, in an inductive treatment
these will all occur, potentially, as local constituents. We do not take
up the locally imprimitive non-degenerate case; it is possible that
some of our arguments would go over to that case as well.

In the case of 3-multi-graphs, an imprimitive and degenerate local
constituent must have the form K[K], or more explicitly Ki

m[Kj
n],

that is a composition of cliques of orders m,n and types i, j, respec-
tively, where i, j are distinct and m,n ≥ 2; here we allow m or n to
be infinite.

We aim here at the following.

Proposition 19.49. Suppose that Γ is a homogeneous 3-multi-graph
which is locally degenerate imprimitive. Then Γ is of known type.

Remark 19.6. Up to a permutation of the language, the known
locally degenerate imprimitive homogeneous 3-multi-graphs are the
following.
(a) (Composite) K1

2 [∆] with ∆ an imprimitive homogeneous graph.
(b) The generic 1-triangle free imprimitive 3-multi-graph with equiv-

alence relation 2∼, with n ≥ 3 classes
In particular these 3-multi-graphs are imprimitive, and since all

imprimitive homogeneous 3-multi-graphs are known, another way to
phrase Proposition 19.49 is as follows: there is no homogeneous 3-
multi-graph which is both primitive and locally degenerate imprimi-
tive.

As we have said, Proposition 19.49 is a natural first step toward the
anticipated classification of homogeneous 3-multi-graphs omitting a
monochromatic triangle. We will return to this at the end.

The proof of this result will require a detailed analysis of a number
of special cases, so we first set out some notations and assumptions
that will remain in force throughout.

Since we are only interested in cases not already in the catalog
of known examples, we may suppose that the locally degenerate im-
primitive homogeneous 3-multigraph Γ is itself primitive and infinite,
and realizes all triangle types which are not monochromatic.

Notation 19.7. We choose notation so that Γ1 is degenerate and
imprimitive. Since only monochromatic triangles may be omitted, it
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follows that Γ1 omits the 2-type 1 ; that is, Γ omits a triangle of
type (1, 1, 1).

Recall that i∼ denotes the reflexive extension of i . We may sup-
pose that the non-trivial ∅-definable equivalence relation on Γ1 is 2∼.
That is, Γ1

∼= K3
m[K2

n] for some m,n with 2 ≤ m,n ≤ ∞. And by
homogeneity, the same applies to u1 for any vertex u ∈ Γ.

Remark 19.8.

max(m,n) =∞.

In other words, Γ1 is infinite.

This holds since Γ is infinite, primitive, and ℵ0-categorical. It fol-
lows that the algebraic closure of a point, in the model theoretic
sense, is trivial, and hence each local constituent is infinite.

19C.1. Some general ideas. We will need to examine a large
number of special configurations and apply homogeneity (or amalga-
mation) in a few different ways. We digress here to build up some
intuition which may be helpful to the reader going through these
arguments in detail.3

From a purely technical point of view, one method for eliminat-
ing the more recalcitrant configurations is to consider all the defining
conditions for the configuration as defining a class of finite structures,
and to work out why this is not already an amalgamation class, which
may lead to some insight or at least to a correct argument. As one
approaches the conclusion that the structure under consideration is
behaving like the Fraïssé limit of a class that does not have amal-
gamation, this style of argument becomes increasingly likely; see for
example the proof of Proposition 19.40, or its immediate predecessor
(in order of proof) Lemma 19.43.

But in practice one can often give a more transparent argument
based on a few simple principles, one of them being the fact that
we have only three non-trivial 2-types at our disposal, and complex
configurations may produce more than that; or alternatively some
simple structure which is not homogeneous for a binary language
may embed in some useful way into a more complex structure.

The following principle is helpful, and allows of some further vari-
ations.

3This topic is much more richly illustrated by the arguments of Chapter 15,
but we do not assume any familiarity with that material.
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Lemma 19.9. Let Γ be a homogeneous structure for a finite rela-
tional language, A a finite subset, and B1, B2 the sets of realizations
of two 1-types over A. Suppose that there is an A-definable bijection
f : B1 → B2. Then up to a change of language f is an isomorphism.
In particular B1 and B2 realize the same number of types.

Proof. What this means, concretely, is that the type of a sequence
in B1 determines, and is determined by, the type of the corresponding
sequence in B2. Indeed, treating A as a set of constants, if b is a
sequence of elements in B1, then the type of f [b] in B2 can be viewed
as part of the type of b in B1. □

More generally, if the map f in question is only an A-definable map
from B1 to B2, it must in any case be surjective. If B1 is primitive,
then f will automatically be injective (unless B2 consists of a single
element and f is constant). We may extend further to the case in
which f is a bijection between a quotient of B1 and a quotient of B2;
if these quotients are taken with respect to congruences then these
quotient structures are again homogeneous, and one can work either
syntactically or directly with the relevant automorphism groups.

We are interested in certain key failures of homogeneity, since these
serve as a template for various proofs by contradiction. We give two
closely related examples.

Example 19.10. Fix k finite and take a set of n ≥ 2k points A.
View the k-subsets of A as the elements of a structure equipped with
binary relations Ri(a, b) defined by

|a ∩ b| = i

for 0 ≤ i < k. E.g., for k = 2 and n = 5 this is the Petersen
graph. This structure is not homogeneous: we can find triples of k-
sets (a1, a2, a3) or (b1, b2, b3) such that pairwise intersections ai∩aj or
bi∩bj all have cardinality k−1, for i, j distinct, but |a1∪a2∪a3| = k+1
and |b1 ∪ b2 ∪ b3| = k+2. The automorphism group of this structure
is Sym(n) acting naturally, so these two triples have distinct types,
but they involve a unique 2-type.

In the case k = 2 the vertices may be thought of edges in a complete
graph, with edge and non-edge relations corresponding to disjoint or
non-disjoint edges, and the relevant triples are then the edges of a
triangle or the edges of a star, the point being that these are not
isomorphic but when reduced to any two edges give a path of length
2.
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This example shows up in the proof of Proposition 19.30, point
(4), and similarly in the proofs of Proposition 19.31, Claim 1, of
Proposition 19.34, Claim 1, and of Lemma 19.35, point (1).

An elaboration on this train of thought is found in the proof of
Lemma 19.13, Claim 1, in a more elaborate context in which points
are correlated with certain k-sets (whose elements are points in a
quotient structure), but are not necessarily uniquely determined by
them.

Example 19.11. We consider homogeneous bipartite graphs. It is
natural to view the bipartition as given either by an equivalence re-
lation with two classes, or by a pair of unary predicates. We consider
the latter possibility, which allows for more examples as the auto-
morphism group need not act transitively.

There are very few homogeneous bipartite graphs, which goes back
to the fact that some very simple configurations are incompatible
with homogeneity, cf. Goldstern, Grossberg, and Kojman [1996] (this
reference deals also with the uncountable case, which we set aside).

Namely, up to bipartite complementation, the homogeneous bipar-
tite graphs are the following.

(a) Complete bipartite;
(b) Perfect matching (in particular, the parts have the same cardi-

nality);
(c) Generic (homogeneous universal) or “random.”

The crux of the matter is that if a point on one side has finitely
many neighbors, then it either has at most one neighbor, or at most
one non-neighbor, after which the analysis is trivial. It will be in-
structive to see why this is the case. So let the vertices on side A
have precisely k neighbors on side B, and let |B| = n ≤ ∞, where
k is finite. Passing to the bipartite complement if necessary we may
suppose that k ≤ n/2. We then have a definable map from the set A
to the structure considered in the previous example. By homogeneity
it is surjective. As the structure on A is trivial, A is primitive, and
therefore this map is either 1-1 or constant. As the map is surjective,
it must be 1-1. So we have a definable bijection between A and the
k-subsets of B. Now we may conclude in a number of ways: the set A
has a unique non-trivial 2-type, and for k ≥ 2 this does not hold for
the k-sets, which quickly gives a contradiction. A more sophisticated
argument is this: the k-sets do not form a homogeneous structure
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for a binary language, and A does, so the definable bijection quickly
leads to a contradiction.

The philosophy that this suggests is that when finite parameters
come up in the context of homogeneous structures, they tend to be
0 or 1 (at least, up to a change of notation). Of course this is not at
all true when the structures themselves are finite, but the principle
is reasonable in the context of infinite primitive structures for finite
binary languages.

Another canonical example of failure of homogeneity in a very rudi-
mentary structure occurs in the proof of Lemma 19.22, which we give
in some generality when we come to it.

Example 19.12. One sees from the classification of the homo-
geneous graphs that the graphs Kn□Kn are not homogeneous for
n ≥ 4; and since the 2-types in these graphs reduce to the edge and
non-edge relation, this means that they are not homogeneous in any
binary language, which is a more useful point of view for us.

These may be thought of in several ways. They are the line graphs
of complete bipartite graphs Kn,n. In terms of their automorphism
groups they correspond to the wreath ptroduct Sym(n) ≀Sym(2) with
its product action. More concretely, Kn□Kn is the graph product
with vertex set [n]× [n] and with edge relation (i, j) (i′, j′) defined
by “i = i′ or j = j′” for distinct vertices (i, j) and (i′, j′).

In these graphs, the 3-types correspond to isomorphism types of
subgraphs, but the 4-types are not: in terms of the underlying grid
structure, edges may be horizontal or vertical, and a pair of edges in
general position will give isomorphic subgraphs, but the edges may
be parallel or not, corresponding to distinct 4-types.

In addition, we point to the content of Lemma 19.17 below as
an elementary and useful consequence of homogeneity, one which is
a little more technical (or at least specialized), but relevant to the
study of locally imprimitive homogeneous 3-multi-graphs generally.
We will not elaborate on it here, as this is best illustrated by the
analysis that begins with Lemma 19.17.

Now we return to our main line of argument.
In the next three sections we eliminate the cases in which m or n is

finite. The remaining case, m = n =∞, presents the main difficulty.
19C.2. The case m <∞: preliminary analysis. We first elim-

inate the case in which m is finite (and thus n is infinite), in several
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steps (and in two sections). The goal of the preliminary analysis is
Lemma 19.24 (page 47), giving considerable information about the
1-types realized in Γ2 over Γ1.

The statement of the next lemma allows for one special configura-
tion which is superficially plausible but does not actually occur; but
we leave the verification of that point for the lemma immediately
following it.

Lemma 19.13. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m < ∞, and
that Γ realizes all triangle types which are not monochromatic. Fix
ℓ = 2 or 3.

Then one of the following holds.

(a) For u ∈ Γℓ and C a 2∼-class of Γ1, u1 ∩ C is a proper subset of
C, possibly empty.

(b) m = 2, ℓ = 3, there is no monochromatic triangle of type 3,
Γ3
∼= K1

2 [K
2
∞], and for u ∈ Γ3 in Γ, u1 ∩ Γ1 is a 2∼-class of Γ1.

Proof. We suppose that for u ∈ Γℓ, u1 contains some 2∼-class of
Γ1, and we show that we arrive at the specified exceptional case.

Claim 1. For u ∈ Γℓ, u1 ∩ Γ1 is a 2∼-class of Γ1.

Let A(u) be the finite set

{C ∈ (Γ1/
2∼) |C ⊆ u1}

and set k = |A(u)|.We have assumed k ≥ 1. Our claim is that k = 1.
Here we will use the fact that there are only three non-trivial 2-

types in Γ.
Taking u, v ∈ Γℓ distinct with u 1 v, we have A(u) ∩ A(v) = ∅,

and thus

k ≤ m/2.

Suppose toward a contradiction that

k ≥ 2.

By homogeneity, any k-set of 2∼-classes in Γ1 will occur as A(u) for
some u ∈ Γℓ.

For u, v ∈ Γℓ, the quantity

|A(u) ∩A(v)|
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is determined by the type of (u, v) (which determines the type of u, v
over the basepoint).

There are at least k possible values for |A(u) ∩ A(v)|, namely
0, 1, . . . , k − 1, and only three non-trivial 2-types.

Furthermore the case |A(u) ∩ A(v)| = k − 1 must correspond to
at least two distinct 2-types, as we can choose triples (c1, c2, c3) and
(c′1, c

′
2, c

′
3) in Γℓ so that the the corresponding sets Ai = A(ci) and

A′
i = A(c′i) satisfy

|Ai ∩Aj | = |A′
i ∩A′

j | = k − 1 (i, j distinct);

|A1 ∪A2 ∪A3| = k + 1; |A′
1 ∪A′

2 ∪A′
3| = k + 2.

Thus the triples (c1, c2, c3) and (c′1, c
′
2, c

′
3) realize distinct types, and

consequently some pairs (ci, cj) and (c′i, c
′
j) also realize distinct types,

by homogeneity.
So at this point we have accounted for at least k + 1 non-trivial

2-types realized in Γℓ, and thus we have only the case

k = 2

with all three 2-types accounted for.
In particular the possibility A(u) = A(v) with u, v ∈ Γℓ distinct

does not occur. That is, A(u) determines u.
But then the type of the pair (A(u), A(v)) determines the type

of (u, v). But the type of the pair (A(u), A(v)) is determined by
|A(u)∩A(v)|, and as we have seen, this does not determine the type
of (u, v), when |A(u) ∩A(v)| = k − 1.

This is a contradiction, and thus k = 1, as claimed.

Now for u ∈ Γℓ, let C(u) denote the 2∼-class u1 ∩ Γ1 of Γ1.

Claim 2. The relation ∼ on Γℓ defined by

C(x) = C(y)

is non-trivial, with infinite equivalence classes, and in particular Γℓ

is imprimitive.

Let v∗ be the chosen basepoint for Γ, and let a ∈ Γ1.
We have

v∗ ∈ a1 ∼= K3
m[K2

∞]



19C. The case m <∞: preliminary analysis 35

Hence a1 meets each of Γ2 and Γ3 in an infinite subset. Thus a1 ∩Γℓ

is infinite.
But for u ∈ a1 ∩ Γℓ, we have C(u) = a/

2∼. This proves that the
∼-classes in Γℓ are infinite. As every 2∼-class of Γ1 occurs as C(u) for
some u ∈ Γℓ, the equivalence elation ∼ is non-trivial.

This proves the claim.
Now we know that Γℓ realizes at least two 2-types, though it may

possibly omit the type ℓ . Also, the 2-type 1 is realized in Γ2, and
any realization involves a pair of points in distinct ∼-classes.

Claim 3. The relation ∼ is a congruence on Γℓ.

We suppose the contrary. Then ∼ must be i∼ for some i ̸= 1, and
the other two 2-types are realized between any two ∼-classes of Γℓ.

Let C1, C2 be distinct 2∼-classes of Γ1, and C∗
1 , C

∗
2 be the corre-

sponding ∼-classes of Γℓ. Take v ∈ C∗
1 , u ∈ C∗

2 with u 1 v. Then

C(u) ∪ {v} ⊆ u1,

In view of the structure of u1, for some i = 2 or 3 we have

v i C(u)

If we vary u, but continue to require u 1 v, then C(u) varies over
Γ1 \C(v), and i is fixed. Thus

v i Γ1 \C(v)

Thus v realizes only the types 1 and i over Γ1. By homogeneity the
same applies to all v ∈ Γℓ, with the same value of i. But all three 2-
types are realized between Γ1 and Γℓ, so we arrive at a contradiction.
The claim follows.

Claim 4. m = 2 and Γℓ
∼= K1

2 [C
∗] with C∗ a ∼-class.

We have a bijection between Γ1/
2∼ and Γℓ/∼ definable over the

basepoint. As Γ1/
2∼ realizes a unique non-trivial 2-type, the same

applies to Γℓ/∼. On the other hand the 2-type 1 is realized between
∼-classes, so we find

Γℓ
∼= K1

m[C∗]

with C∗ a ∼-class.
Since there is no monochromatic triangle of type 1, we find m = 2.
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Claim 5. The relation ∼ is the restriction of 2∼ to Γℓ, ℓ = 3, and
there is no monochromatic triangle of type 3 in Γ.

For a ∈ Γ1,

a1 ∩ Γℓ

is a ∼-class of Γℓ.
On the other hand a1 contains the basepoint v∗ and meets both

Γ2 and Γ3.. Since a1 ∼= K1
2 [K

2
∞] it follows that the 2∼-class of a1

containing v∗ is a1∩(Γ2∪{v∗}) and the other 2∼-class of a1 is a1∩Γ3.
In particular the only non-trivial 2-type realized in a1 ∩Γℓ is type 2,
so ∼ is 2∼.

Thus Γℓ
∼= K1

2 [K
2
∞] omits type 3, and hence

ℓ = 3

and Γ contains no monochromatic triangle of type 3.
The claim follows.
Now the lemma follows from Claims 1, 4, and 5. □

Now, as promised, we eliminate the exceptional case which arose
in the previous lemma.

Lemma 19.14. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m < ∞, and
that Γ realizes all triangle types which are not monochromatic. Fix
ℓ = 2 or 3.

Then for u ∈ Γℓ and C a 2∼-class of Γ1, u1 ∩ C is a proper subset
of C, possibly empty.

Proof. We assume the contrary. By Lemma 19.13 we then have
the following conditions.

— m = 2 and ℓ = 3.
— There is no monochromatic triangle of type 3 in Γ.
— Γ3

∼= K1
2 [K

2
∞].

— For u ∈ Γ3, u1 ∩ Γ1 is a 2∼-class of Γ1.

In particular restriction of the relation 2∼ to either Γ1 or Γ3 is an
equivalence relation.

Claim 1. For u ∈ Γ1, u1 ∩ Γ3 contains a 2∼-class of Γ3.
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We consider v ∈ u1 ∩Γ3 and the 2∼-class C of v in Γ3. The equiva-
lence relation defined on Γ3 by “x1 ∩ Γ1 = y1 ∩ Γ1” has two classes,
so all elements of C lie in the same class. The claim follows.

Claim 2. For v ∈ Γ2, v3 ∩ Γ3 contains a 2∼-class of Γ3.

We take u ∈ v1 ∩ Γ1 and let C∗ = u1 ∩ Γ3. Then u1 contains

C∗ ∪ {v, v∗}
where v∗ is the chosen basepoint.

Here v∗
2 v and v∗

3 C∗, so by virtue of the structure of u1 we
have v 3 C∗, and the claim follows.

Now consider the structure Γ′ derived from Γ by interchanging
the 2-types 1, 3. This satisfies the hypotheses of the previous lemma.
Furthermore, Γ′

2 = Γ2, and Claim 2 may be expressed as follows, in
terms of Γ′: for v ∈ Γ′

2, v1∩Γ′
1 contains a 2∼-class of Γ′

1. Taking ℓ = 2,
this contradicts the previous lemma.

This contradiction completes the proof.
□

Lemma 19.15. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m < ∞, and
that Γ realizes all triangle types which are not monochromatic. Then
for u ∈ Γ2 we have

|u1 ∩ Γ1| > 1.

Proof. Supposing the contrary, we have a function f : Γ2 → Γ1

defined by

u 1 f(u)

If this function is a bijection, then since Γ1 realizes only two 2-
types, the same applies to Γ2. But this is already a contradiction. So
the following three cases are all witnessed by pairs in Γ2.

f(u) = f(v), u ̸= v

f(u) 2 f(v)

f(u) 3 f(v)

Therefore the three 2-types realized in Γ2 correspond to these three
relations, in some order. So the relation f(u) = f(v) is k∼ for some
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k ∈ {1, 2, 3}, and then since f gives a bijection of Γ2/
i∼ with Γ1

∼=
K3

m[K2
∞], Γ2 has the structure

Ki
m[Kj

∞[Kk
r ]]

for some r, 2 ≤ r ≤ ∞, where i, j, k are 1, 2, 3 in some order.
As there are no monochromatic triangles of type 1, but there are

triangles of type (1, 1, k), it follows that k is not 1. Similarly j is not
1. So i = 1.

For a ∈ Γ2, it follows that a1 ∩Γ2
∼= K1

m−1[K
j
∞[Kk

r ]]. In particular
a1 contains a copy of Kj

∞[Kk
r ]. But this is impossible. □

Now we continue with the idea that relevant finite numerical pa-
rameters should be 0 or 1, up to a change of notation (so really, the
expected values are 0, 1, m − 1, or m, in our context). The next
lemma is in this vein.

Lemma 19.16. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m < ∞, and
that Γ realizes all triangle types which are not monochromatic. Then
one of the following conditions holds.

(a) For u ∈ Γ2, u1 meets each 2∼-class of Γ1.
(b) For u ∈ Γ2, u1 meets just one 2∼-class of Γ1.

Proof. Suppose toward a contradiction that for u ∈ Γ2, u1 meets
m′ 2∼-classes of Γ1, with

2 ≤ m′ < m.

Claim 1. Let C be a family of 2∼-classes in Γ1 with |C| = m′. Let
A,A′ be two disjoint sets of representatives for C in Γ1. Then there
is some u ∈ Γ2 with

A ⊆ u1

A′ ∩ u1 = ∅
By homogeneity, it suffices to show that a configuration isomorphic

to A ∪A′ ∪ {u} occurs with A ∪A′ ⊆ Γ1 and u ∈ Γ2.
We start with u ∈ Γ2, consider the associated family Cu of 2∼-classes

in Γ1 which meet u1, take Au as a set of representatives for Cu lying
in u1, and then, since u1 does not contain any of the 2∼-classes of
Γ1, take A′

u as a set of representatives for Cu disjoint from u1. Then
Au ∪A′

u ∪ {u} has the required form. This proves the claim.
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Now fix two distinct families C1, C2 of 2∼-classes in Γ1, each con-
sisting of m′ classes, and with at least one class in common. Let
A1, A

′
1, A2, A

′
2 be sets of representatives in Γ1 for the family C1, and

A3, A
′
3 sets of representatives in Γ1 for the family C2, satisfying the

following conditions.
(a) Ai, A

′
i are disjoint for i = 1, 2, 3.

(b) A1 ∩A2 ∩A3 is nonempty.
(c) A2 meets A′

1.
Take elements u1, u2, u3 in Γ2 with

Ai ⊆ u1i ∩ Γ1;

A′
i ∩ u1i = ∅.

Take a ∈ A1∩A2∩A3. Then u1, u2, u3 are in a1 and so is the chosen
basepoint v∗. As v∗

2 u1, u2, u3 and 2∼ is an equivalence relation on
a1, the three elements u1, u2, u3 are all related by the type 2. Thus
the configurations induced on v∗, u1, u2 and v∗, u1, u3 are isomorphic.

However the 3-types realized are different: u11 and u12 meet the same
2∼-classes of Γ1, while u11 and u13 do not meet the same 2∼-classes of
Γ1. This is a contradiction. □

Now we are more or less within striking distance of Lemma 19.24:
for u ∈ Γ2 and any non-trivial 2-type p, up meets all 2∼-classes of
Γ1, even though we will still need to eliminate a certain number of
concrete alternatives. The first order of business is to understand
where in fact the previous lemma leaves us. Some further notation
will be useful, which is explained by the following lemma.

Lemma 19.17. There is a partition Π of the non-trivial 2-types
{1, 2, 3} such that for u ∈ Γ2 and C a 2∼-class of Γ1, the set of
2-types realized by pairs (c, u) with c ∈ C belongs to Π.

Proof. For u ∈ Γ2 and C a 2∼-class of Γ1, let

u(C) = {p |up meets C}

Claim 1. With u ∈ Γ2 fixed, the sets u(C) partition the set of
nontrivial 2-types.

The sets u(C) are certainly non-empty.
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Every non-trivial 2-type is realized by a pair u, v with u ∈ Γ2,
v ∈ Γ1, and by homogeneity the same applies with u ∈ Γ2 fixed. So
it suffices to show that the sets u(C) are pairwise disjoint or equal.

We suppose up meets the 2∼-classes C1, C2 of Γ1, and we take ci ∈ Ci

with u p ci for i = 1, 2. Then u, c1 and u, c2 realize the same type
over v∗ and thus the set of types q for which uq meets c1/

2∼ or c2/
2∼

are the same. This proves the claim.
Thus each u ∈ Γ2 defines a corresponding partition Πu of {1, 2, 3}.

By homogeneity, the partition Πu is independent of the choice of
u ∈ Γ2. □

Notation 19.18. Π denotes the partition of the non-trivial 2-types
{1, 2, 3} given by Lemma 19.17. This will be called the (Γ1,Γ2)-type
partition. Note that this terminology is not at all symmetrical.

For u ∈ Γ2 and C a 2∼-class of Γ1, we set

u(C) = {p |up meets C}

(a set belonging to Π).

Using this notation we can put Lemma 19.16 in a much clearer
form.

Lemma 19.19. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m < ∞, and
that Γ realizes all triangle types which are not monochromatic. Let Π
be the (Γ1,Γ2)-type partition. Then one of the following holds.

1. The partition Π is trivial: for all 2-types p and all u ∈ Γ2, up

meets each 2∼-class of Γ1.
2. The partition Π has the form (1i|j) where {i, j} = {2, 3}. In this

case, for all u ∈ Γ2 we have the following.
— The sets u1 ∩ Γ1 and ui ∩ Γ1 partition one 2∼-class of Γ1,
— The set uj ∩Γ1 is the union of the other (m− 1)

2∼-classes.

Proof. If u1 meets every 2∼-class of Γ1 then all of the sets u(C)
coincide and the partition Π is trivial. This is the first of our two
possibilities.

Otherwise, the partition Π has at least two parts, and by Lemma
19.16, for fixed u ∈ Γ2, the part containing the 2-type 1 is associated
with a unique 2∼-class of Γ1.
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On the other hand, by Lemma 19.14 the class of the 2-type 1 in
the partition Π has at least two elements, and thus Π has the form
(12|3) or (13|2).

The lemma follows. □

Lemma 19.20. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m <∞, and that
Γ realizes all triangle types which are not monochromatic. Suppose
that the (Γ1,Γ2)-type partition is non-trivial. Let ∼ be the equivalence
relation on Γ2 defined by

(x2 ∩ Γ1)/
2∼ = (y2 ∩ Γ1)/

2∼

Then ∼ is either 1,2∼ or 2,3∼ (that is, the reflexive extension of the union
of types 1 and 2 or types 2 and 3, respectively), and the following hold.

(a) If ∼ is 1,2∼ then
— for u1, u2 ∈ Γ1 satisfying u1

2 u2,
the sets u21 ∩ Γ1 and u22 ∩ Γ1 meet, and

— Γ2 contains a triangle of type (2, 2, 1).
(b) If ∼ is 2,3∼ then

— for u1, u2 ∈ Γ2 satisfying u1
2 u2,

the sets u21 ∩ Γ1 and u22 ∩ Γ1 are disjoint, and
— the (Γ1,Γ2)-type partition is (12|3).

Proof. By hypothesis Case 2 of Lemma 19.19 applies. Thus we
have a definable map

γ : Γ2 → Γ1/
2∼

given by γ(u) = (u1 ∩ Γ1)/
2∼.

Furthermore (u2 ∩ Γ1)/
2∼ is either γ(u) or Γ1 \ γ(u), so ∼ is the

kernel of the map γ. By homogeneity γ is surjective, so

|Γ/∼| = m

Any non-trivial 2-type is either contained in the equivalence rela-
tion ∼ or transversal to it, on Γ2.

As Γ contains an infinite 2-clique, so does Γ2. As |Γ2/∼| is finite,
the relation 2∼ is contained in ∼.

Furthermore some 2-type is not contained in ∼.
The rest of the analysis divides into two cases, each of which leads

to one of the two alternatives in the statement of the lemma.
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Case 1. For u1, u2 ∈ Γ2 satisfying u1
2 u2, the sets u21∩Γ1 and u22∩Γ2

meet.

Take u1, u2 ∈ Γ2 with u1
2 u2 and take v ∈ u21 ∩ u22 ∩ Γ1. Then

u21 contains the triangle (u2, v, v∗) with v∗ the basepoint. This is a
triangle of type (2, 2, 1), so this triangle type is realized in Γ2. As
2∼ is contained in the equivalence relation ∼, the relation 1∼ is also
contained in ∼. Since some 2-type is not contained in ∼, we find that
∼ is 1,2∼ on Γ2.

Since we have arrived at the first of the two possibilities envisioned
in the statement of the lemma, this disposes of the first case.

Case 2. For u1, u2 ∈ Γ2 satisfying u1
2 u2, the sets u21∩Γ1 and u22∩Γ2

are disjoint.

As 2∼ is contained in ∼, u21 and u22 meet the same 2∼-classes in Γ1.
If u21 ∩ Γ1 and u22 ∩ Γ1 are disjoint, it follows that these sets split the
relevant classes non-trivially. Therefore the (Γ1,Γ2)-type partition Π
must be

(12|3).

It remains to show that the equivalence relation ∼ is 2,3∼ .

Suppose first that for u ∈ Γ2 we have

⋆ |u2 ∩ Γ1| = 1.

Consider the function f : Γ2 → Γ1 defined by

x 2 f(x)

For u ∈ Γ2 and C = f(u)/
2∼ we have

u1 ∩ Γ1 = C \ {f(u)}

Thus for u ∼ v in Γ2 the sets u1 ∩ Γ1 and v1 ∩ Γ1 intersect. In
particular the type 1 is disjoint from ∼.

If ∼ is 2∼ then f is a bijection. As Γ1 realizes two 2-types and Γ2

realizes 3, this is a contradiction.
So ∼ must be 2,3∼ .
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Now suppose that for u ∈ Γ2 we have
⋆ |u2 ∩ Γ1| > 1.

Fix a ∈ Γ1 and let C = a/
2∼. We claim that the family

Fa = {u2 ∩ C |u ∈ a2 ∩ Γ2}

is infinite.
By assumption the sets in Fa do not reduce to a, so their union

is an a-definable subset of C properly containing {a}. Therefore the
union

⋃
Fa is C.

Thus if the sets in Fa are finite, there are certainly infinitely many
of them.

If the sets in Fa are infinite, then by homogeneity any finite subset
of C is contained in a set in Fa, and as each set in Fa is a proper
subset of C, it again follows that the family Fa is infinite.

In particular, for a ∈ Γ1 the set a2 ∩ Γ2 is infinite.
Consider the following three relations on Γ2.

x ̸∼ y;

x ∼ y, x2 ∩ y2 = ∅;
x ∼ y, x2 ∩ y2 ̸= ∅, x ̸= y.

Each of these three relations is realized in Γ2, and hence they co-
incide in some order with the three non-trivial 2-types in Γ2. By
hypothesis, type 2 implies, and hence coincides with, the second of
these relations.

For distinct elements of a2 ∩Γ2 the third relation holds, so a2 ∩Γ2

is monochromatic of the type associated with that relation; so this
cannot be type 1. Therefore it is type 3, and 3∼ is contained in ∼.

Thus again ∼ is 2,3∼ .
So the second case leads to our second alternative.
This completes the proof of all parts of the lemma. □

For the present we will continue to use the symbol ∼ for the canon-
ical equivalence relation on Γ2, as long as we consider the configu-
rations envisioned above with a non-trivial (Γ1,Γ2)-type partition.
And when we switch basepoint, considering u2 rather than Γ2, we
will use ∼ in a similar sense, without changing the notation.

Lemma 19.21. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m <∞, and that
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Γ realizes all triangle types which are not monochromatic. Suppose
that the (Γ1,Γ2)-type partition is non-trivial. Then the (Γ1,Γ2)-type
partition is (12|3).

Proof. Suppose the contrary, so that by Lemma 19.19 the (Γ1,Γ2)-
type partition is

(13|2)
Then by Lemma 19.20 we have the following conditions.

(a) The relation ∼ is 1,2∼
(b) For u1, u2 ∈ Γ2 satisfying u1

2 u2, the sets u21 ∩ Γ1 and u22 ∩ Γ2

meet.
(c) Γ2 contains a triangle of type (2, 2, 1).

Claim 1. m = 2.

For u ∈ Γ2 we have the following configuration inside u2, with v∗
the basepoint as usual.

v∗ ∼ u2 ∩ Γ1.

Hence the type 3 is not realized in u2 ∩ Γ1.
However the (Γ1,Γ2)-type partition Π is (13|2), so u2∩Γ1 is a union

of (m− 1)
2∼-classes of Γ1. Thus m = 2.

Claim 2. For v ∈ Γ3, the set v3 ∩ Γ1 is a 2∼-class of Γ1.

Take u ∈ v2 ∩ Γ2 and let C = u2 ∩ Γ1; note that since m = 2 and
Π is (13|2), this is a 2∼-class in Γ1.

In u2 we have the following.

v∗ ∼ C; v∗
3 , v

so v 3 C. As m = 2 and Γ1 is not contained in v3 (the types 1, 2 are
also realized by v over Γ1) we find v3 ∩ Γ1 = C.

This proves the claim.
Now we reach a contradiction. Take a class C ∈ Γ1/

2∼ and a, b ∈ C.
There is u ∈ a2 with b 3 u.

Clearly u /∈ Γ1.
If u ∈ Γ2 then as a ∈ u2 we have u2 ∩ Γ1 = C and b ∈ u2, a

contradiction.
If u ∈ Γ3 then as b ∈ u3 we have u3 ∩ Γ1 = C and a ∈ u3, a

contradiction.
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Thus u does not exist, and this contradiction proves the lemma. □

We mentioned the next lemma earlier, as an application of Example
19.12.

Lemma 19.22. Let Γ be a binary homogeneous structure with two
distinct 1-types over the empty set, with loci A and B. Suppose that
A carries a non-trivial ∅-definable equivalence relation ∼ with finitely
many classes, and with a unique type realized between any two distinct
classes. Let p be a 2-type realized in B × A. If B realizes at most 3
2-types, then for b ∈ B, bp is not a transversal to ∼ in A.

Proof. We suppose the contrary. Let T be the set of transversals
to ∼ in A and let

τ : B → T

be defined by τ(b) = bp.
Note that all transversals realize the same type in Γ. In particular

τ is surjective.
There are at least two non-trivial binary relations defined on T ,

namely

t1 ∩ t2 = ∅
t1 ∩ t2 ̸= ∅, t1 ̸= t2

Define the equivalence relation ≈ on B by

τ(x) = τ(y)

As B realizes at most three 2-types, this is a congruence (possibly
trivial).

So B/≈ is again a binary homogeneous structure. But there is
a definable bijection with T , which is not a binary homogeneous
structure, as there are 4-types not determined by their restrictions
to 2-types.

Namely, when there are just two ≈-classes then T is a kind of grid,
as discussed in Example 19.12. The 4-types in question involve two
pairs of grid segments in general position, parallel in one case and
not in the other—for example, the 4-tuples

(0, 0), (1, 0), (2, 1), (3, 1)

(0, 0), (1, 0), (2, 1), (2, 2)

in {0, 1, 2, 3}2.
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When there are more than 2 classes we arrive at the same situation
by fixing m− 2 elements of the transversals involved.

This completes the proof. □

Lemma 19.23. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m <∞, and that
Γ realizes all triangle types which are not monochromatic. Suppose
that the (Γ1,Γ2)-type partition is non-trivial. Then the relation ∼ is
2,3∼ .

Proof. Supposing the contrary, by Lemma 19.20 we have the fol-
lowing conditions.

(a) The relation ∼ is 1,2∼ .
(b) For u1, u2 ∈ Γ2 satisfying u1

2 u2, the sets u21 ∩ Γ1 and u22 ∩ Γ1

meet.
(c) Γ2 contains a triangle of type (2, 2, 1).

Claim 1. Let C be a ∼-class of Γ2 and v ∈ Γ3. Then
1.1 vp meets C for all 2-types p;
1.2 |v2 ∩ C| = 1.

It suffices to show this for one choice of v and C. Then the first
clause applies to all such pairs and hence the second one does as well.
So we may assume from the outset that v2 meets C.

It will be convenient to use notation analogous to that of Notation
19.18; namely, we may consider the (Γ2,Γ3)-type partition encoding
the combinations of types realized by elements of Γ3 over ∼-classes
of Γ2.

Fix a ∈ v2 ∩ C. Then in a2 we have the following.

v∗
2 a2 ∩ C;

v∗
3 v.

In view of the structure of Γ2 this gives

v 3 a2 ∩ C.

So at least v3 meets C.
If v1 ∩ C = ∅ then there is a (Γ2,Γ3)-partition of the non-trivial

2-types of the form (1|23) and thus v1 ∩ Γ2 is a union of ∼-classes.
In particular v1 realizes the type 1, which is a contradiction.

So v1, v2, and v3 all meet C, and as we have seen, a2 ∩ C ⊆ v3.
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Now suppose |v2 ∩C| > 1 and fix b ∈ v2 ∩C, b ̸= a. Since we have
a2 ∩ C ⊆ v3, we cannot have a 2 b, and since a ∼ b we must have

b ∈ a1

On the other hand, there is no triangle of type (1, 1, 1) and hence

b 2 (a1 ∩ C) \ {b}

As above, b2∩C ⊆ v3. But then C ⊆ v2∪ v3, a contradiction. This
proves the claim.

Now apply Lemma 19.22 to the structure (Γ2,Γ3) to get a contra-
diction.

This proves the lemma. □

Lemma 19.24. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m < ∞, and
that Γ realizes all triangle types which are not monochromatic. Then
for all u ∈ Γ2 and all non-trivial 2-types p, up meets each 2∼-class of
Γ1.

Proof. In other words, we claim that the (Γ1,Γ2) partition of 2-
types is trivial. By Lemmas 19.21 and 19.23 the only other possibility
is that the (Γ1,Γ2)-type partition is

(12|3)
and that the canonical equivalence relation ∼ on Γ2 is the relation

2,3∼ .

Recall that Γ2 has m ∼-classes.
Since the type 1 holds between points of distinct ∼-classes in Γ2,

and there is no monochromatic triangle of type 1, we find

m = 2.

Claim 1. For a ∈ Γ1, the structures induced on a1∩Γ2 and a1∩Γ3

are 2-cliques.

In a1 we have the following.

v∗
2 a1 ∩ Γ2;

v∗
3 a1 ∩ Γ3,

so the claim follows from the structure of Γ1, bearing in mind that
m = 2.
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Claim 2. For u ∈ Γ2 the structures induced on the sets

u2 ∩ Γi (i = 1, 2, 3)

are 2-cliques.

This is known for the case of u2 ∩ Γ1.
Take a ∈ u2 ∩ Γ1. In u2 we have the following.

v∗
1 a;

v∗ ∼ u2 ∩ (Γ2 ∪ Γ3).

So a 1 u2 ∩ (Γ2 ∪ Γ3) and the previous claim applies.
This proves the claim.
So u2 is a union of three 2-cliques and hence the same applies to

Γ2. But then some ∼-class must be a 2-clique, hence all are, which is
a contradiction. □

19C.3. Proof that m = ∞. Having disposed of a large number
of special cases under the assumption that m is finite, we will shortly
be able to exclude that case entirely (Proposition 19.29).

Lemma 19.25. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m < ∞, and
that Γ realizes all triangle types which are not monochromatic. Then
for u ∈ Γ2, all non-trivial 2-types p, and all 2∼-classes C of Γ1, up

meets C in an infinite set.

Proof. By Lemma 19.24 up meets every 2∼-class of Γ1.
Applying Lemma 19.22 to the structure (Γ1,Γ2) we find that

|up ∩ C| > 1

for all 2∼-classes C in Γ1.
Fix a 2∼-class C and suppose toward a contradiction that p is a

2-type for which the sets up ∩ C are finite for u ∈ Γ2.

|up ∩ C| = n with 1 < n <∞.
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Let p, i, j be the types 1, 2, 3 in some order. For u, v ∈ Γ2 and
S ⊆ {i, j} let

Cu = up ∩ C;

SC(u, v) = {q ∈ {i, j} | vq ∩ Cu ̸= ∅};

νS(u, v) = |{C ∈ (Γ1/
2∼) |SC(u, v) = S}|.

The condition SC(u, v) = ∅ means that vp ∩ C = up ∩ C. But for
any choice of values for νS with S varying over nonempty subsets of
{i, j}, if their sum is m then there is some v ∈ Γ2 for which νS(u, v)
takes on the specified values.

There are at least 6 possible choices of such functions and hence at
least 6 non-trivial 2-types realized in Γ2, which is a contradiction. □

Lemma 19.26. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞] and m < ∞, and
that Γ realizes all triangle types which are not monochromatic. Then
the following hold.

1. For v ∈ Γ2, we have v1 ∩Γ2
∼= K3

m[K2
∞], and each 2∼-class of v1

meets Γ1.
2. 2∼ does not define an equivalence relation on Γ2.

Proof.

Claim 1. For v ∈ Γ2, every 2∼-class of v1 meets Γ1.

By Lemma 19.25, v1 ∩ Γ1 has m
2∼-classes. As v1 also has m

2∼-classes, the claim follows.

Claim 2. For v ∈ Γ2, the 2∼-classes of v1 ∩ Γ2 are infinite.

Take u ∈ Γ2, and C a 2∼-class of Γ1. It suffices to verify the claim
with u2 in place of Γ2.

By Lemma 19.25, the set u2 ∩ C is infinite. Let v∗ be the chosen
basepoint of Γ. Then in u2, we have v∗

1 u2 ∩ C, so v1∗ ∩ u2 has
infinite 2∼-classes.

The claim follows.

Claim 3. For v ∈ Γ2, v1 ∩ Γ2
∼= K3

m[K∞
2 ].

As the 2∼-classes of v1∩Γ2 are infinite, it suffices to show that there
are m of them.
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Take u ∈ v1 ∩ Γ2. Then the 2∼-class of u in v1 meets a unique
2∼-class C(v, u) of Γ1. It follows that every 2∼-class of Γ1 occurs as
C(v, u) for some u ∈ v1 ∩ Γ2 and the claim follows.

Claim 4. The relation 2∼ is not an equivalence relation on Γ2.

Take u ∈ Γ2 and take distinct v1, v2 in a 2∼-class of u1 ∩ Γ2. Then
take c ∈ Γ1 with v1, v2

2 c.
We switch to the point of view with v1 as basepoint: that is, we

consider v21 in place of Γ2. In v21 we have

v2
2 v∗, c.

Since v∗
1 c, the relation 2∼ is not an equivalence relation on v21.

Thus the same applies to Γ2. The claim follows.
These claims prove the lemma. □

Lemma 19.27. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞], m <∞, and that Γ
realizes all triangle types which are not monochromatic. Let v1, v2 ∈
Γ2 with v1

2 v2. Then the following hold.
1. For any non-trivial 2-type p, we have vp1 ∩ Γ1 ̸= vp2 ∩ Γ1.
2. For any 2∼-class C in Γ1, there is a 2-type p for which vp1 ∩C ̸=

vp2 ∩ C.

Proof.

Claim 1. For each 2∼-class C of Γ1 and each non-trivial 2-type p,
the family of sets

{up ∩ C |u ∈ Γ2}

is infinite.

As up ∩ C is infinite, every finite subset of C is contained in one
of the sets in this family. As these sets are proper subsets of C the
claim follows.
Ad 1.

Consider the equivalence relation ≈ defined on Γ2 by

xp ∩ Γ1 = yp ∩ Γ1.
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Suppose toward a contradiction that 2∼ is contained in ≈. By Lemma
19.26, the relation 2∼ is not itself an equivalence relation on Γ2. Thus
there is only one 2-type transversal to ≈ in Γ2.

By Claim 1 the quotient Γ2/≈ is infinite, so this transversal 2-type
is not the type 1. Thus for u 1 v in Γ2 we also have up∩Γ1 = vp∩Γ1.

In particular p is not the type 1. Now take two 2∼-classes C1, C2 in
Γ1 with u1 ∩ C1 in the same 2∼-class of u1 as v.

u1 ∩ (C1
⋃
C2)

1 u 1 v

Γ1 Γ2

In view of the structure of u1, the vertex v realizes the type 2 over
u1 ∩C1 and realizes the type 3 over u1 ∩C2. So the type p cannot be
2 or 3 either, and we have a contradiction.
Ad 2.

Suppose toward a contradiction that C is a 2∼-class in Γ1 such that
vp1 ∩ C = vp2 ∩ C for all non-trivial 2-types p.

Take a vertex u ∈ Γ with u 1 v1, v2 and consider an arbitrary
2∼-class C ′ of Γ1. As v1, v2 are in the same 2∼-class of u1, and are not
in C ′, they realize a single type p over the vertices of u1 ∩ C ′.

By Lemma 19.24 and our current hypothesis, the vertices v1, v2
also realize the type p over some point a of C. Since v1, v2 induce the
same partition of C = a/

2∼, by homogeneity v1, v2 induce the same
partition of (u1∩C ′)/

2∼ = C ′. As C ′ is arbitrary this contradicts (1).
The claim follows.

This proves the lemma. □

Lemma 19.28. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞], m <∞, and that Γ
realizes all triangle types which are not monochromatic. Let u, v ∈ Γ2

with u 1 v. Then the following hold.

1. For each 2∼-class C of Γ1, there is a non-trivial 2-type p for
which the set up ∩ C is not v-definable in C.

2. For each non-trivial 2-type p, there is a 2∼-class C of Γ1 for
which the set up is not v-definable.

Proof.
Ad 1.
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Fix the 2∼-class C. Suppose toward a contradiction that up ∩ C is
v-definable for all 2-types p. Then the sets up ∩ C coincide with the
sets vp ∩ C up to a permutation.

By Lemma 19.26, u1 ∩ Γ2 has non-trivial 2∼-classes.
If v1, v2 are in the same 2∼-class of u1 ∩ Γ2, then they realize the

same type over u1 ∩ C. and hence the relevant permutation of the
sets vp1 ∩ C or vp2 ∩ C is the same. That is, vp1 ∩ C = vp2 ∩ C for all
2-types p. This contradicts the previous lemma. Point (1) follows.
Ad 2.

Let p be a non-trivial 2-type and let C be any 2∼-class in Γ1.
Suppose that up ∩ C is v-definable in C. Then for u1, u2 in the

2∼-class of u in v1∩Γ2, since u1 and u2 realize the same type over the
points of v1∩C, we have up1∩C = up2∩C = up∩C. By Lemma 19.27
this cannot hold for every 2∼-class C of Γ1. Point (2) follows. □

After these lengthy preliminaries we can finally exclude the case in
which m is finite.

Proposition 19.29. Suppose that Γ is a locally degenerate imprim-
itive homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

∞], and that Γ re-
alizes all triangle types which are not monochromatic. Then m =∞.

Proof. We fix u, v ∈ Γ2 with

u 1 v

We choose two 2∼-classes C1, C2 of Γ1 so that u1 ∩ C1 is in the same
2∼-class of u1 as v.

We study the partitions into three labeled parts induced on C1 and
on C2 by u and v. This will lead to a configuration contradicting the
previous lemma. To begin with, we have the following.

v 2 u1 ∩ C1; v 3 u1 ∩ C2.(19.1)

We may represent this by the following chart (Figure 4), where the
partitions of C1, C2 afforded by u are indicated by numbers within
the boxes representing C1, C2 and the partitions associated with v
are indicated by numbers outside the boxes, when the indicated in-
tersections are known to be non-empty. We add brackets when any
entries not shown are known to correspond to empty intersections.

Maintaining a chart of this type may be helpful in following the
analysis below.
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C1 C2

1

2

3

1

2

3

[2] [3]

Figure 4

An essential point is that the information concerning C1 and C2 is
complementary in the following sense.

Claim 1. No 1-type over the pair u, v is realized in both C1 and
C2: that is, any set of the form up ∩ vq meets at most one of the
classes C1, C2.

Otherwise, we could find an automorphism taking u, v, C1 to u, v, C2,
and fixing the basepoint, contradicting the relations of u1 ∩ C1 and
u1 ∩ C2 to v. This proves the claim.

Claim 2. If ui ∩ C1 meets vi ∩ C1 for some i, then modulo the
basepoint C1 realizes the same type over u, v as over v, u. In other
words, there is an automorphism fixing the basepoint and taking
(C1, u, v) to (C1, v, u).

In particular we have

v1 ∩ C1 ⊆ u2 ∩ C1

Indeed, if we have some c ∈ C1 realizing the same type over u
and v, then we can find an automorphism fixing the basepoint and
taking cuv to cvu, hence taking (C1, u, v) to (C1, v, u). Then from
u1 ∩ C ⊆ v2 we deduce v1 ∩ C ⊆ u2. This proves the claim

As we accumulate more information about C1 this argument will
have further consequences. It applies a little more generally: if both
ui ∩ vj ∩ C1 and uj ∩ vi ∩ C1 are non-empty then again C1, u, v and
C1, v, u realize the same type.

Claim 3. v1 ∩ C1 ̸= u3 ∩ C1

If v1 ∩ C1 = u3 ∩ C1 then by Claim 2 v2 ∩ C1 is disjoint from
u2 ∩ C1, and hence v2 ∩ C1 coincides with u1 ∩ C1, leaving v3 ∩ C1
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to be u2 ∩C1. At this point each of u1 ∩C1, u2 ∩C1, and u3 ∩C1 is
v-definable, contradicting Lemma 19.28, part (1).

This proves the claim.

Claim 4. v1 meets u2 ∩ C1.

Suppose the contrary. Then

v1 ∩ C1 ⊆ u3 ∩ C1,

and by the previous claim this inclusion is proper. Also, under this
hypothesis claim 2 still applies and in particular the sets u3∩C1 and
v3 ∩ C1 are disjoint.

Thus v3 ∩ C1 ⊆ u2 ∩ C1 and v2 must meet u3 ∩ C1. This situation
is summarized in the following table.

C1 C2

1

2

3

1

2

3

[2]

3

[1,2]

[3]

?

?

We also have v3 ∩ C1 = u2 ∩ C1, since we assume v1 disjoint from
u2 ∩ C1 and Claim 2 gives v2 disjoint from u2 ∩ C1. So the left side
of the table is completely precise.

Now by our complementarity principle neither v1 nor v2 meets
u3 ∩ C2, and hence

u3 ∩ C2 ⊆ v3.

Similarly, v3 does not meet u2 ∩ C2. Thus v3 ∩ C2 = (u1 ∪ u3) ∩ C2

is u-definable in C2.
But v3 ∩ C1 = u2 ∩ C1 is also u-definable, and we arrive at a

contradiction to Lemma 19.28, part (2), since all 2∼-classes in Γ1

have the same type over u, v as C1 or C2. This proves the lemma.

Taking stock, at this point our reference chart looks as follows
(Figure 5).
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C1 C2

1

2

3

1

2

3

[2]

1

[3]

Figure 5

Since u1 ∩ v2 and u2 ∩ v1 both meet C1, arguing as in the proof of
Claim 2 we now have the following symmetry principle.

Claim 5. (C1, u, v) and (C1, v, u) have the same type over the base-
point.

Claim 6. v3 meets u2 ∩ C1.

We suppose the contrary. Then

v3 ∩ C1 ⊆ u3.

In particular Claim 2 applies and as we have u1 ∩ C1 ⊆ v2 and
v3 ∩ C1 ⊆ u3 we deduce

v1 ∩ C1 ⊆ u2; v3 ∩ C1 = u3 ∩ C1.

We claim that v2 meets u2 ∩ C1. Otherwise, we have v2 ∩ C1 =
u1 ∩ C1 and then v1 ∩ C1 must be u2 ∩ C1 and the partition of C1

induced by v is u-definable, contradicting Lemma 19.28, part (2).
So both v1 and v2 meet u2∩C1 and therefore neither meets u2∩C2.

u2 ∩ C2 ⊆ v3

As v3∩C1 = u3∩C1, v3 does not meet u3∩C2 and thus v3∩C2 =
(u1∪u2)∩C2. Thus v3∩C1, v3∩C2 are both u-definable, contradicting
Lemma 19.28, part (2).

This proves the claim.

Claim 7. v2 ∩ C2 = u2 ∩ C2.

As C1, u, v and C1, v, u realize the same type we deduce from the
previous claim that v2 meets u3 ∩ C1, and thus v2 does not meet
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u3 ∩ C2. Thus

v2 ∩ C2 ⊆ u2

As v1, v3 meet u2 ∩ C1, they do not meet u2 ∩ C2 and thus

u2 ∩ C2 ⊆ v2

This proves the claim.
From this, it follows also that

v1 ∩ C2 ⊆ u3

We revisit our chart.

C1 C2

1

2

3

1

2

3

[2]

[1,3]

2,3?

[3]

[2]

1,3?

From this we see that if v3 does not meet u3∩C1 then v2∩C1 and
v2 ∩ C2 are both u-definable, contradicting Lemma 19.28, part (1).

Thus v3 meets u3 ∩ C1 and does not meet u3 ∩ C2. But then the
partition of C2 associated to u is v-definable, and we have a contra-
diction to Lemma 19.28, part (2). □

19C.4. Proof that n =∞. It will be considerably easier to prove
that n is infinite (Proposition 19.31 below).

Lemma 19.30. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
∞[K2

n], and that Γ realizes
all triangle types which are not monochromatic. Suppose that n <∞.
Then the following hold.

1. For a ∈ Γ1, we have a1 ∩ Γ2
∼= K2

n−1.
2. n ≥ 3.
3. For u ∈ Γ2, the set u1∩Γ1 is contained in a single 2∼-class C(u)

of Γ1.
4. For u, v ∈ Γ2 distinct, we have C(u) = C(v) iff u 2 v.
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Proof.

Ad 1.

For a ∈ Γ1, the 2∼-class of v∗ in a1 is {v∗} ∪ (a1 ∩ Γ2), so point (1)
is immediate.

Ad 2.

Suppose n = 2. Then by (1) we may define a function f : Γ1 → Γ2

by

a 1 f(a).

Then we have three mutually exclusive relations R(a, b) on Γ1 of the
form

f(a) i f(b).

But we have only two non-trivial 2-types in Γ1, so we get a contra-
diction. Thus n ≥ 3.

Ad 3.

For C a 2∼-class of Γ1, let

C∗ =
⋃
c∈C

(c1 ∩ Γ2).

Then C∗ ⊆ Γ2 is finite and of fixed size.
We consider the collection

{C∗ |C ∈ Γ1/
2∼}.

This family contains an infinite ∆-system, so by homogeneity it is
itself a ∆-system. But⋂

{C∗ |C ∈ Γ1/
2∼},= ∅

so the sets C∗ are pairwise disjoint (and also distinct for distinct
classes C). This is point (3).

So for u ∈ Γ2 we now define C(u) as the 2∼-class of Γ1 containing
u1 ∩ Γ1.
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Ad 4.
Let ≈ be the equivalence relation on Γ2 defined by

C(u) = C(v).

We claim that the relation ≈ is 2∼.
For a ∈ Γ1 and u ∈ a1 ∩ Γ2 we have C(u) = a/

2∼. As a1 ∩ Γ2 is a
non-trivial 2-clique, it follows that the relation 2∼ on Γ2 is contained
in ≈.

Now suppose that ≈ contains another non-trivial 2-type p. Then
≈ is a congruence with a unique type transversal to the equivalence
classes, and with infinite quotient.

We conclude that the type 1 must be contained in ≈. From this
we will derive a contradiction.

Set k = |u1∩Γ1| for u ∈ Γ2. Note that k ≤ n by (3). In fact, taking
u, v ∈ Γ2 with u 1 v, since u1 ∩ v1 = ∅ we find that

k ≤ n/2 ≤ n− 2.

We divide into two cases.
Case 1. k > 1.

We take a 2∼-class C in Γ1 and consider triples of k-subsets A1, A2, A3

of C with

Ai ∩Aj ̸= ∅

for i, j distinct. Then for elements u1, u2, u3 ∈ Γ2 with A(ui) = Ai,
we have ui

2 uj . Thus the type of the triple (u1, u2, u3) over the
basepoint is uniquely determined, while the cardinality |A1∪A2∪A3|
may be k + 1 or k + 2. This is a contradiction.
Case 2. k = 1.

Then there is a function f : Γ2 → Γ1 defined by

u 1 f(u).

Furthermore, f(u) = f(v) when u 2 v. Thus u 1 v when C(u) = C(v)
and f(u) ̸= f(v).

But n ≥ 3. Take three elements u1, u2, u3 in the same 2∼-class of
Γ1, and take vi ∈ Γ2 with f(vi) = ui to get a monochromatic triangle
of type 1, and a contradiction.

This completes the proof. □
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Proposition 19.31. Suppose that Γ is a locally degenerate imprim-
itive homogeneous 3-multi-graph with Γ1

∼= K3
m[K2

n], and that Γ
realizes all triangle types which are not monochromatic. Then m =
n =∞.

Proof. Proposition 19.29 shows

m =∞.

Suppose toward a contradiction that n is finite.
We use the notation and information from Lemma 19.30. Thus for

u ∈ Γ2 we let C(u) be the 2∼-class of Γ1 containing u1 ∩ Γ1, and we
set

k = |u1 ∩ Γ1|.

Since u1 ∩ Γ1 ⊆ C(u) we have

k ≤ n.

Recall that for u, v ∈ Γ2 distinct, we have C(u) = C(v) iff u 2 v.

Claim 1. k = n.

Fix a 2∼-class C. Let C∗ = {u ∈ Γ2 |C(u) = C}. Then C∗ is a
2-clique.

Consider the function

A : C∗ → P(C)

defined by

A(u) = u1 ∩ C

If A is not 1-1 on C∗ then as C∗ is a 2 -clique, A must be constant
on C∗, and thus A(u) = C for u ∈ C∗, and k = n.

So suppose the function A is 1-1 on C∗. In particular k < n, and
we aim at a contradiction.

For a ∈ C and u, v ∈ C∗ distinct, the set A(u) meets A(v). As
A(u) ̸= A(v) we conclude

k > 1.

If

2 ≤ k < n− 1,

then for any three distinct k-subsets A1, A2, A3 of C and any u1, u2, u3
in C∗ with A(ui) = Ai, as C∗ is a 2 -clique the type of (u1, u2, u3) is
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uniquely determined. But under our hypotheses on k, the cardinality
of |A1 ∪A2 ∪A3| is not uniquely determined. This is a contradiction.
So there remains only one case to be considered:

k = n− 1.

In this case, consider the function f : Γ2 → Γ1 defined by

{f(u)} = C(u) \A(u)
Since A is 1-1 on each set C∗, the function f is a bijection. But Γ1

realizes two non-trivial 2-types while Γ2 realizes three.

Claim 2. Γ2 is imprimitive with 2 -cliques of order n−1 as equiv-
alence classes, and with any pair of distinct classes realizing both
types 1 and 3 .

Fix a 2∼-class C of Γ1 and consider the associated 2∼-class C∗ of Γ2.
We know k = n, that is

C∗ 1 C

Hence |C∗| = n− 1 (Lemma 19.30, point (1)).
Since we have a bijection Γ1/

2∼ ↔ Γ2/
2∼ and Γ1/

2∼ realizes a unique
non-trivial 2-type, all non-trivial 2-types other than 2 must be re-
alized between any pair of 2∼-classes in Γ2.

This proves the claim.

Claim 3. Let v ∈ Γ2. Then for any non-trivial 2-type p, vp ∩ Γ1 is
a union of 2∼-classes of Γ1.

By Claim 1, v1 ∩ Γ1 is a 2∼-class of Γ1.
Next we consider the type 3. Take u ∈ Γ2 with u 1 v. In view

of the structure of u1 we have v 3 C(u). Thus v3 ∩ Γ1 contains a
2∼-class of Γ1, and it follows by homogeneity that v3 ∩ Γ1 is a union
of 2∼-classes of Γ1.

Since vp ∩ Γ1 is a union of 2∼-classes of Γ1 for p = 1 or 3, the same
follows also for p = 2.

This proves the claim.
Now to conclude, take v ∈ Γ2. We know that v2 contains 2∼-classes

of order n in Γ1, and Γ2 has 2∼-classes of order n − 1, contradicting
homogeneity. □
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19C.5. The case m = n =∞: Structure of up∩Γ1 for u ∈ Γ2.
Now we begin the analysis of locally degenerate imprimitive homoge-
neous 3-multi-graphs in the most plausible (i.e., the most “generic”)
case: m = n =∞.

Our target in this subsection is the following.

Proposition 19.32. Suppose that Γ is a locally degenerate imprim-
itive homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ realizes all triangle types which are not monochromatic.
Then for u ∈ Γ2 and p a non-trivial 2-type we have

up ∩ Γ1
∼= K3

∞[K2
∞].

Lemma 19.33. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞].

Then for a ∈ Γ1 the structure induced on a1 ∩ Γ2 is an infinite 2-
clique.

Proof. Take a as the basepoint. Then the original basepoint v∗
lies in a1 and v2∗ ∩ a1 is an infinite 2-clique. □

Lemma 19.34. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ realizes all triangle types which are not monochromatic.
With ℓ = 2 or 3, u ∈ Γℓ, p a non-trivial 2-type, and C a 2∼-class in
Γ1, suppose that up meets C.

Then up ∩ C is infinite.

Proof.

Claim 1. |up ∩ Γ1| is infinite.

Suppose on the contrary that up ∩ Γ1 is finite. Let C(u) be the
union of the 2∼-classes of Γ1 meeting up.

If C(u) contains more than one 2∼-class of Γ1, then the following
four relations are all realized by pairs u, v ∈ Γℓ.

1. C(u) ∩ C(v) = ∅.
2. C(u) meets C(v) and C(u) ̸= C(v).
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3. C(u) = C(v) and up ∩ Γ1 is disjoint from vp ∩ Γ1.
4. C(u) = C(v) and up ∩ Γ1 meets vp ∩ Γ1, but the two sets are

distinct.
But only three non-trivial 2-types are realized in Γ2, a contradic-

tion. Thus C(u) consists of a single 2∼-class of Γ1, containing up∩Γ1.
In particular the (Γ1,Γℓ)-type partition is non-trivial and of the

form (pq|r) with {p, q, r} = {1, 2, 3}, where up and uq split the 2∼-
class C(u) into a finite and a co-finite piece, and ur is the union of
the other 2∼-classes of Γ1.

Now if |up ∩ Γ1| > 1 then the following three relations are realized
by pairs u, v in Γ2.

1. C(u) ̸= C(v).
2. C(u) = C(v), up ∩ Γ1 disjoint from vp ∩ Γ1.
3. up ∩ Γ1 meets vp ∩ Γ1 and the two sets are distinct.
So these three relations correspond in some order to the non-trivial

2-types realized in Γ2.
Therefore the function mapping u to up ∩ Γ1 is injective and iden-

tifies Γ2 with the 2-cliques of some fixed order k > 1 in Γ1. However,
as usual, this is not a homogeneous structure for a binary language
(cf. Example 19.10), and we arrive at a contradiction.

So we find |up ∩ Γ1| = 1. That is, we have a function f : Γℓ → Γ1

defined by

x p f(x).

As Γℓ and Γ1 realize different numbers of 2-types this is not a bi-
jection, and the following relations on Γℓ must correspond to the
non-trivial 2-types on Γ2.

R1 : f(x) = f(y), x ̸= y;

R2 : C(x) = C(y), f(x) ̸= f(y);

R3 : C(x) ̸= C(y).

Which of these relations corresponds to the type 1?
If u 1 v and f(u) = f(v) then up, uq, ur meet Γ1 is the same sets as

vp, vq, vr, respectively, giving triangles of types (p, p, 1), (q, q, 1), and
(r, r, 1), and, in particular, a triangle of type (1, 1, 1), a contradiction.

If we fix a 2∼-class C0 of Γ1 and for each a ∈ C0 pick some ua ∈
f−1(a), then the ua form an infinite clique with respect to the edge
relation R2, so the relation R2 cannot correspond to the type 1.
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On the other hand, if we pick representatives for the sets f−1(C ′)

with C ′ now varying over the 2∼-classes of Γ1, then we get an infinite
clique with respect to the edge relation R3, so the relation R3 cannot
correspond to the type 1.

Thus we reach a contradiction, and finally prove our claim.

Now suppose toward a contradiction that k = |up ∩ C| satisfies

1 ≤ k <∞,

Then for any 2∼-class C ′ of Γ1. |up ∩ C ′| is 0 or k.
In particular, by Claim 1 the set up meets infinitely many 2∼-classes

of Γ1.

Claim 2. For u ∈ Γℓ, u1 meets every 2∼-class of Γ1.

Otherwise the (Γ1,Γℓ)-type partition has the form (p, q|r). That is,
uq is C(u) \up and ur is Γ1 \C(u).

In particular for u, v ∈ Γℓ and C a 2∼-class of Γ1 meeting up and
vp we have a point c ∈ C with tp(u, c) = tp(v, c) = q. Take u, v so
that up and vp have a common point in one 2∼-class C1 and meet
another 2∼-class C2 in non-empty but disjoint sets. Take points c1 ∈
C1, c2 ∈ C2 with tp(ci, u) = tp(ci, v) = q. Then the isomorphism
(c1, u, v) ∼= (c2, u, v), with basepoint fixed, contradicts homogeneity.

This proves the claim.

Claim 3. For any u, v ∈ Γℓ and any 2∼-class C in Γ1 the partition
of C into three pieces corresponding to u or to v is the same modulo
finite sets, and up to the order of the pieces.

The partition in question consists of up ∩ C, uq ∩ C, and ur ∩ C
with p, q, r the three non-trivial 2-types. Here up ∩ C is finite, and
if one of the other pieces is also finite then the claim is vacuous. So
assume that uq ∩ C and ur ∩ C are infinite.

Take two 2∼-classes C1, C2 in Γ1 and as in the proof of the previous
claim take v ∈ Γℓ so that vp ∩ C1 = up ∩ C1 and vp ∩ C2 ̸= up ∩ C2.
If there are points c1 ∈ C1 and c2 ∈ C2 so that the types of c1 and
c2 over u, v agree then we have a contradiction.

In particular if uq ∩ C1 meets both vq and vr we arrive at a con-
tradiction, and similarly if ur ∩ C1 meets both vq and vr. So after
removing (up ∪ vp) ∩ C1 the partitions agree up to the labels on the
sets. This proves the claim.
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Claim 4. There is a second non-trivial 2-type, which we will call
q, such that uq meets each 2∼-class of Γ1 in a finite set.

This follows from the previous claim. If uq ∩ C1 and ur ∩ C1 are
both infinite then we can find v ∈ Γℓ so that vq and vr intersect
uq ∩ C1 in arbitrarily large sets, and hence we may find v so that
these intersections are infinite, contradicting the previous claim.

This proves the claim.

Now we reach a contradiction similar to those just seen. We have
a 2-type r for which ur ∩C is cofinite in every 2∼-class of Γ1, for any
u ∈ Γℓ. So for any pair of vertices u, v ∈ Γℓ and any 2∼-class C of Γ1,
the type tp(c, u) = tp(c, v) = r is realized in C. Then taking two such
classes C1, C2 and arranging up∩C1 = vp∩C1 while up∩C2 ̸= vp∩C2

we contradict homogeneity. □

Lemma 19.35. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ realizes all triangle types which are not monochromatic.
With ℓ = 2 or 3 and p a non-trivial 2-type, suppose that up meets a
finite number of 2∼-classes of Γ1 for u ∈ Γℓ. Let

C(u) =
⋃

[(up ∩ Γ1)/
2∼].

Then we have the following.
1. There are u, v ∈ Γℓ distinct such that C(u) = C(v).
2. C(u) is a single 2∼-class of Γ1.

Proof. C(u) is the union of the set of 2∼-classes of Γ1 which meet
up.

Let k be the number of 2∼-classes of Γ1 which meet up and define
a function

γ :Γℓ →
(
Γ1/

2∼
k

)
by

γ(u) = C(u)/
2∼,

that is, γ(u) is the set of 2∼-classes in Γ1 which meet up.
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Ad 1.
Suppose the contrary. Then the function γ is a bijection.
Since Γℓ is binary homogeneous with three non-trivial 2-types,

while
(Γ1/

2∼
k

)
is either not binary homogeneous (when k ≥ 2) or has

only one non-trivial 2-type (when k = 1), this is a contradiction.
Cf. Example 19.10.
Ad 2.

Suppose k ≥ 2. Consider the three relations on Γℓ defined as fol-
lows.

R1 : γ(x) = γ(y), x ̸= y;

R2 : γ(x) ∩ γ(y) ̸= ∅, γ(x) ̸= γ(y);

R3 : γ(x) ∩ γ(y) = ∅.
These must correspond to the three non-trivial 2-types in Γℓ.

So the equivalence relation ≈ on Γℓ defined by γ(x) = γ(y) must
be a congruence and now the induced map

γ̄ : Γ2/≈ →
(
Γ1/

2∼
k

)
takes a binary homogeneous structure with two 2-types to

(Γ1/
2∼

k

)
,

giving much the same contradiction as previously. □

Lemma 19.36. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ realizes all triangle types which are not monochromatic.
With ℓ = 2 or 3, and p a non-trivial 2-type, suppose that u ∈ Γℓ and
up ∩ Γ1 is a proper subset of a 2∼-class C(u) of Γ1. Then

1. u1 ∩ Γ1 ⊆ C(u).
Now suppose that the index ℓ is 2. Then we also have the following.
2. The equivalence relation ≈ defined on Γ2 by C(x) = C(y) is

either 2∼ or 12∼.
3. If ≈ is 2∼ then Γ2 is the generic K1

3 -restricted imprimitive ho-
mogeneous 3-multi-graph.

4. If ≈ is 12∼ then Γ2 is the composition K3
∞[H1,2

3 ] where the super-
scripts indicate the language used and in particular H1,2

3 is the
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generic triangle free (Henson) graph in a language in which 1

is the edge relation and 2 is the non-edge relation.

Proof.
Ad 1.

We claim u1 meets C(u). Otherwise, u2 and u3 split C(u) and
u1 ∩ Γ1 = Γ1 \C(u).

But then if we take u, v ∈ Γℓ with u 1 v and a ∈ Γ1 \ [C(u)∪C(v)],
then the triangle (a, u, v) has type (1, 1, 1), a contradiction.

This proves point (1).
From this, it follows that u1 meets C(u) in a proper subset (either

up ∩ Γ1 or the complement in C(u)), and that for some type q ̸= 1
orp the set uq ∩ Γ1 is Γ1 \C(u). In particular we may take the type
p to be the type 1 here.

Now we suppose

ℓ = 2.

Ad 2.
Take a 2∼-class C of Γ1 and fix a ∈ C. Then a1 ∩ Γ2 is a 2-clique

(Lemma 19.33) and for u ∈ a1 ∩ Γ2 we have C(u) = C. Hence 2 is
contained in ≈.

As ≈ is a non-trivial equivalence relation, it is 2∼, 1,2∼ , or 2,3∼ .
If ≈ is 23∼, then 1 is transversal to ≈ and there is an infinite 1-

clique, for a contradiction. Thus ≈ must be 2∼ or 1,2∼ .
Thus the second point is proved.
Now we consider the bijection

γ̄ : Γ2/≈Γ1/
2∼

induced by γ(u) = C(u). This is definable from the basepoint, and at
this stage we work systematically over the basepoint, which is treated
as a constant in the language.

When ≈ is not a congruence we must be a little careful about the
nature of the structure Γ2/≈; but what matters is the permutation
group induced on this structure by the stabilizer of the basepoint in
Aut(Γ). We continue to refer to its orbits on finite sequences in Γ2/≈
as types; these correspond via γ̄ to types in the usual sense in Γ1/

2∼,
which is an infinite set with no additional structure.
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Ad 3.

We suppose ≈ is 2∼.
We know that Γ2 is an imprimitive homogeneous 3-multi-graph

with equivalence relation 2∼ and infinite 2-cliques, omitting K1
3 , and

with the quotient Γ2/
2∼ infinite, and realizing only one non-trivial

2-type (the induced permutation group is doubly transitive).
Going through the classification of the imprimitive homogeneous

3-multi-graphs we find the following possibilities; we will eliminate
all but the generic 3-multi-graph with 2∼ an equivalence relation and
K1

3 forbidden.

1(a): Composite:
The types 1, 3 must occur between each pair of equivalence

classes. So Γ2 is not composite.
1(b): Product:

If Γ is a product with the stated properties, then it contains
an infinite clique for each non-trivial 2-type, a contradiction.

1(c): Double Cover.
Γ2 contains infinite 2-cliques.

1(d): Clique-restricted:
This is the case envisaged, and we know there are infinitely

many equivalence classes, so there is just one possibility of this
type.

1(e, f): Semi-generic or generic imprimitive:
This will contain an infinite 1-clique.

Ad 4.

Now we suppose that the relation ≈ is 1,2∼ , and in particular this
relation is a congruence. So Γ2

∼= K3
∞[∆] where ∆ is the structure

induced on a single 1,2∼ -class.
If ∆ is primitive, then it is the generic triangle-free graph, with 1

taken as the edge relation, as claimed.
If ∆ is imprimitive then it is one of the following.

K2
∞[K1

2 ] K1
2 [K

2
∞]

We must eliminate these possibilities.

We take u ∈ Γ2 and consider the structure of u2.
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Case 1. ∆ ∼= K2
∞[K1

2 ].
In u2 we have

v∗
1 u2 ∩ Γ1.

In view of the assumed structure of Γ2 this says that u2 ∩ Γ1 is a
single point, contradicting Lemma 19.34.
Case 2. ∆ ∼= K1

2 [K
2
∞].

In u2, the 1,2∼ -class of v∗ is u2 ∩ (Γ1 ∪ Γ2). So this is the union of
two 2-cliques. We conclude that

u2 ∩ Γ1
1 u2 ∩ Γ2.

In particular u2 ∩ Γ1 ⊆ C(u).
Take v ∈ u1 ∩ Γ2. Then C(v) = C(u) and v1, v2 also splits C(u).

As u2 ∩ Γ2
1 u2 ∩ Γ1, it follows that v1 does not meet u2 ∩ Γ1, and

hence

v 2 u2 ∩ Γ1.

So u2 ∩ Γ1 ⊆ v2 ∩ Γ1. By symmetry

u2 ∩ Γ1 = v2 ∩ Γ1.

As the ≈-class Cu of u2 is complete bipartite, x2∩Γ1 is independent
of x for x ∈ Cu. But then

⋃
x∈Γ2 x ∩ Γ1 ̸= Γ1, a contradiction. □

Lemma 19.37. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
∞[K2

∞], and that Γ realizes
all triangle types which are not monochromatic. Suppose that u1 ∩Γ1

is a proper subset of a 2∼-class C(u) of Γ1 for u ∈ Γ2. Then on Γ2

we have C(x) = C(y) iff x
1,2∼ y.

Proof. By Lemma 19.36 the alternative is that C(x) = C(y) iff
x

2∼ y, in which case Γ2 is the generic imprimitive homogeneous 3-
multi-graph with monochromatic triangles of type 1 forbidden, where
the equivalence relation in question is 2∼.

Claim 1. For u in Γ2, u1 ∩ C(u) and u2 ∩ C(u) partition C(u).

We consider u1 ∼= K3
∞[K2

∞].
We know u1 ∩ Γ1 is an infinite 2-clique and u1 ∩ Γ2 is K3

∞[K2
∞].

If u1 ∩ Γ1 is in the same 2∼-class of u1 as one of the classes meeting
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u1 ∩ Γ2, then the corresponding class in u1 ∩ Γ2 becomes definable
from u in Γ2, which is not the case. We conclude that

u1 ∩ Γ1
3 u1 ∩ Γ2.

Fix v ∈ u1 ∩ Γ2. Then v3 meets C(u). As the relation ≈ coincides
with 2∼, we also have C(v) ̸= C(u)

Therefore C(u) ⊆ v3 and the (Γ1,Γ2)-type partition is (12|3). This
is our claim.

Claim 2. For u ∈ Γ2 we have

u2 ∩ Γ1
1 u2 ∩ Γ2.

In u2 we find

v∗
1 u2 ∩ C(u);

v∗
2 u2 ∩ Γ2.

Hence in view of the structure of Γ2 the only relations between u2 ∩
C(u) and u2 ∩ Γ2 are 1 and 3 .

However C(u) = C(v) for v ∈ u2 ∩Γ2 and hence the only relations
holding between these two sets are 1 and 2 .

The claim follows.

Consider a ∈ u2 ∩ Γ1. If v ∈ a2 ∩ Γ2 then C(v) = C(u) and
hence u

2∼ v. But then by the foregoing if v ̸= u we have v ∈ a1.
So a2 ∩ Γ2 = {u}. Thus we may write u = f(a). Then f(a)2 ∩ Γ1

is an infinite a-definable subset of a/
2∼ and hence equals a/

2∼. So
u2 ∩ Γ1 = C(u), a contradiction. □

Lemma 19.38. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ realizes all triangle types which are not monochromatic.
Suppose u ∈ Γ2 and u1 ∩ Γ1 meets finitely many 2∼-classes of Γ1.
Then u1 ∩ Γ1 is a 2∼-class of Γ1.

Proof. By Lemma 19.35 u1 ∩Γ1 is contained in a unique 2∼-class
C(u) in Γ1.

Suppose toward a contradiction that u1 ∩ C(u) is a proper subset
of C(u). Then by Lemmas 19.36 and 19.37 we have the following
conditions.
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(a) For x, y ∈ Γ2, C(x) = C(y) iff x
1,2∼ y.

(b) Γ2
∼= K3

∞[H1,2
3 ].

Let D be a 1,2∼ -class in Γ2.

Claim 1. For u ∈ D, (u2 ∩D) 3 (u2 ∩ Γ3).

In u2 we have

v∗
2 u2 ∩ Γ2,

v∗
3 u2 ∩ Γ3,

and in view of the structure of u2 the claim follows.
Now Claim 1 implies that for v ∈ Γ3, v2∩D is a 1-clique and hence

has order at most 2.

Claim 2. For v ∈ Γ3 and any non-trivial 2-type p, vp meets every
1,2∼ -class of Γ2.

It suffices to find one such v ∈ Γ3. Take v ∈ u2 ∩ Γ3. Then v2 and
v3 meet D, by Claim 1. If v1 meets D as well then the claim follows
by homogeneity.

Otherwise, v2, v3 split D and v1 contains a 1,2∼ -class, which gives a
monochromatic triangle of type 1, and a contradiction.

Claim 3. For v ∈ Γ3, v2 meets each 1,2∼ -class of Γ2 in a single point.

Otherwise, v2 ∩D consists of a pair of points u1, u2 with u1
1 u2.

Then every other vertex u of D lies in u21∪u22, so by Claim 1 we have
v 3 D \ {u1, u2}. But also v1 meets D and so we have a contradiction.

Claim 4. For v1, v2 ∈ Γ3 and any two 1,2∼ -classes D1, D2 in Γ2, v1, v2
realizes the same type over D1 or D2; that is, there is an automor-
phism fixing the basepoint and taking (v1, v2, D1) to (v1, v2, D2).

It suffices to find points d1 ∈ D1, d2 ∈ D2 realizing the same types
over v1, v2. We take d1

2 v21 ∩D1, v
2
2 ∩D1 and similarly for d2. By

Claim 1 we have v1, v2 3 d1, d2 and so (v1, v2, d1) and (v1, v2, d2) have
the same type.

This proves the claim.
Now we arrive at a contradiction. We take 1,2∼ -classes D1, D2 in Γ2

and vertices d1, d
′
1 ∈ D1, d2, d′2 ∈ D2 so that di

i d′i for i = 1, 2. We
take vertices v, v′ ∈ Γ3 so that v 2 d1, d2 and v′ 2 d′1, d

′
2.
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Then v, v′ realize different types over D1 and D2, namely

v ∩D1
1 v′ ∩D1;

v ∩D2
2 v′ ∩D2.

This contradicts the previous claim.
As we have arrived at a contradiction, we conclude that u1 ∩ Γ1 =

C(u). □

Lemma 19.39. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞]

and that Γ realizes all triangle types which are not monochromatic.
Suppose that for u ∈ Γ2 the set C(u) = u1 ∩ Γ1 is a 2∼-class. Then

the following hold.

1. On Γ2 we have C(u) = C(v) ⇐⇒ u
2∼ v.

2. For u ∈ Γ2 and C a 2∼-class in Γ1, if u2 meets C then u2 contains
C.

3. Γ2 is a generic K1
3 -restricted imprimitive homogeneous 3-multi-

graph.
4. If u, v ∈ Γ2 and u 2 v then the sets u2 ∩ Γ1 and v2 ∩ Γ1 are

disjoint.
5. For D a 2∼-class, C the corresponding 2∼-class in Γ1, and a in

Γ1 \C, a2 ∩ Γ2 is a transversal to 2∼ in Γ2 \D.

Proof.
Ad 1.

For a ∈ Γ1 we know a2 ∩ Γ2 is a non-trivial 2-clique by Lemma
19.33. So if C(u) = C(v) then u

2∼ v, and the converse follows by
homogeneity.

In particular 2∼ is an equivalence relation on Γ2.
Ad 2.

Suppose a ∈ C and a 2 u. Taking a as basepoint, in a2 we either
have u 2 C \ {a}, in which case the claim holds, or u2 ∩ C \ {a} is
empty, and u2 ∩ C is finite, which contradicts Lemma 19.34.
Ad 3.

This follows as in the proof of Lemma 19.36
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Ad 4.

Take a ∈ u2 ∩ Γ1. The structure induced on u2 is a generic K1
3 -

restricted imprimitive homogeneous 3-multi-graph with equivalence
relation 2∼. In u2 we have

v∗
1 a;

v∗
2 v.

So the type of av is 1 or 3, and the claim follows.

Ad 5.

It follows from the point (4) that a3 meets D. Hence there is a
unique type of pair (a,D) of this kind. Since we have such pairs a,D
for which a2 meets D, we find that a2 meets each 2∼-class of Γ2 \D.

By point (4), a2 meets each 2∼-class of Γ2 in at most one vertex.
The claim follows. □

Proof of Proposition 19.32. Suppose that u ∈ Γ2 and up∩Γ1

is not isomorphic to K3
∞[K2

∞].
Then by Lemmas 19.34 and 19.35, up ∩Γ1 meets a unique 2∼-class.

By Lemma 19.36 we may suppose the type p is type 1. By Lemma
19.38, u1 ∩ Γ1 is a 2∼-class C(u).

We then have the situation described in Lemma 19.39. In partic-
ular, for D a 2∼-class in Γ2 there is a unique 2∼-class C(D) in Γ1

with

C(D) = D1 ∩ Γ1.

For C ̸= C(D) any other 2∼-class in Γ1 we have

C 2 u for a unique u = u(C,D) ∈ D

C 3 D \ {u(C,D)}

Now we have distinct pairs C1, C2 with u(C1, D) = u(C2, D), and
also pairs C ′

1, C
′
2 with u(C1, D) ̸= u(C2, D).

We fix representatives c1, c2, c
′
1, c

′
2. Then we may find u ∈ D with

u 3 c1, c2, c
′
1, c

′
2. It follows that (u, c1, c2) is isomorphic to (u, c′1, c

′
2).

This violates homogeneity. □
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19C.6. The (Γ1,Γ2)-type partition. We aim at the following.

Proposition 19.40. Suppose that Γ is a locally degenerate imprim-
itive homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞]

and that Γ is not of known type. Then for every u ∈ Γ2 and every
2∼-class C of Γ1, all three non-trivial 2-types are realized in C over
u. In other words, the (Γ1,Γ2)-type partition has one class.

Lemma 19.41. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with Γ1

∼= K3
∞[K2

∞], and that Γ is not
of known type. Then 2∼ is the only non-trivial, proper equivalence
relation on Γ2.

In particular, Γ2 is 1-connected (that is, connected as a graph with
edge relation 1 ).

Proof. By Proposition 19.32 u2 ∩ Γ1
∼= K3

∞[K2
∞].

Take u ∈ Γ2. In u2 we have

v∗
1 u2 ∩ Γ1.

This gives triangles of types (1, 1, 2) and (1, 1, 3) in u2, hence also in
Γ2. In addition, there are triangles of type (3, 3, 2) in u2 ∩ Γ1, hence
in Γ2.

So any non-trivial and proper equivalence relation on Γ2 is con-
tained in 2,3∼ and contains 2∼. In particular Γ2 is 1-connected.

Suppose now that 2,3∼ is an equivalence relation on Γ2. Then Γ2/
2,3∼ ∼=

K1
2 . Let A,B be the two 2,3∼ -classes of Γ2. Then

A 1 B.

Let A∗ =
⋃

u∈A u1 ∩ Γ1 and B∗ =
⋃

u∈B u1 ∩ Γ1. Then (A∗, B∗) is
an ∅-definable partition of Γ1. This is a contradiction.

So the only non-trivial, proper equivalence relation on Γ2 is 2∼. □

We now consider the (Γ1,Γ2)-type partition associated with Γ. Two
non-trivial 2-types p1, p2 are in the same class for this partition if they
occur in a configuration a1

p1 u, a2 p2 u with a1, a2 ∈ Γ1, a1
2∼ a2,

and u ∈ Γ2.
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Lemma 19.42. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞]

and that Γ is not of known type. Then in the (Γ1,Γ2)-type partition,
1 is associated with at least one other 2-type.

Proof. We suppose the contrary and derive a contradiction from
an amalgamation argument.

Claim 1. Γ contains a configuration av1v2v3 with

a 1 v1, v2; a 2 v3;

v2
3 v1, v2; v1

1 v3.

a

v1 v2 v3

From the point of view of a as basepoint, this configuration consists
of v3 ∈ Γ2, v1 ∈ v13 ∩ Γ1, and v2 ∈ v33 ∩ Γ1, with v1

3 v2. This is
afforded by Proposition 19.32.

Now we perform an amalgamation. We take b with tp(b/v1v2v3) =

tp(a/v3v2v1) and amalgamate a, b over v1v2v3. As v2
1 a, b we find

a i b with i = 2 or 3. Then taking v3 as basepoint the configuration
shows that the 2-types 1 and i fall into the same class. □

Lemma 19.43. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ is not of known type. Then the (Γ1,Γ2)-type partition is
not the partition (12|3)

Proof. We suppose the contrary and work toward a contradiction.

Claim 1. There are a ∈ Γ1 and u, v ∈ Γ2 satisfying

a 2 u, a 3 v, u 1 v.
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Take C ∈ Γ1/
2∼ and let

C∗ = C1,2 ∩ Γ2

In other words, C∗ consists of those u ∈ Γ2 for which the types
realized by u over C are 1 and 2 .

Now C∗ ̸= Γ2 and Γ2 is 1-connected by Lemma 19.41, so there are
u ∈ C∗ and v ∈ Γ2 \C∗ with u 1 v. There is a ∈ C with a 2 u and
then a, u, v provide the required configuration.

This proves the claim.

Now we analyze an amalgamation diagram with two factors, a1234
and b1234, which have the following type structure (shown first as a
table, and then as a diagram, the latter given in two parts).

b 1 2 3 4

a ? 1 3 1 2
1 1 2 3 2
2 1 2 3 1
3 2 3 3 1
4 2 2 1 1

3

4

1

2

3

4

1

2

a

b

In this diagram, the vertex 1 forces a i b with i = 2 or 3, and taking
vertex 1 or 3 as basepoint in the completed diagram then gives either
2 1,3 (a, b) or b 2,3 (a, 4), so that the type 3 is in the same class as
types 1 and 2, for a contradiction. So it suffices to show that the
factors a1234 and b1234 of this amalgamation diagram occur in Γ.

Claim 2. The configuration a1234 is the unique amalgam of the
configurations a124 and a134 which does not create a monochromatic
triangle of type 1 or put the type 3 in the same class as types 1 and
2.

Similarly, b1234 is the unique amalgam of b124 and b134 which
does not put the type 3 in the same class as types 1 and 2.

For this, consider the resulting configurations 4231 or b123, respec-
tively, where in each case the first vertex listed is to be viewed as the
basepoint. The claim follows by inspection.
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So it suffices to show that the four configurations a124, a134, b124,
and b134 with the structure specified all occur in Γ. Here both of the
configurations a124 and b134 are provided by Claim 1.

The configuration a134 with a taken as basepoint consists of the
pair 1, 3 in Γ1 and 4 in Γ2 with 1 3 3, and is afforded by Proposition
19.32. The configuration b124, with b taken as basepoint, consists of
a vertex 4 in Γ2 realizing the types 1 and 2 over a 2∼ class of Γ1, which
we have as the (Γ1,Γ2)-type partition is supposed to be (12|3).

Thus the necessary factors are all available, and the amalgamation
diagram produces a contradiction. □

Now we can prove the main result of this subsection: each vertex
in Γ2 realizes all non-trivial 2-types over each 2∼-class of Γ1.

Proof of Proposition 19.40. We claim that the (Γ1,Γ2)-type
partition has only one class.

Suppose the contrary. Then from Lemmas 19.42 and 19.43, the
(Γ1,Γ2)-type partition is

(13|2).

So we assume this is the case, and we work toward a contradiction.

Claim 1. Γ contains a configuration with a ∈ Γ1, u, v ∈ Γ2, and

a 1 u, a 3 v, u 2 v.

Take a 2∼-class C in Γ1 and set C∗ = C1,3∩Γ2 (the set of realizations
of types 1 and 3 in Γ2, over elements of C).

For a ∈ C, a1∩Γ2 is a non-trivial 2-clique (Lemma 19.33), so there
are elements u, v ∈ C∗ with u 2 v. If u1∩C ̸= v1∩C then the desired
configuration is realized.

Suppose u1 ∩ C = v1 ∩ C. Take two elements a, b ∈ u1 ∩ C. Then
there are u1, v1 ∈ Γ2 for which a, b ∈ u11 ∩ Γ1 and v11 ∩ {a, b} = {a}.
In particular u1, v1 ∈ a1 ∩ Γ2 so u1

2 v1.
As auv and au1v1 are isomorphic there is an automorphism taking

Cu1v1 to Cuv. But u1 ∩ C = v1 ∩ C while u11 ∩ C ̸= v11 ∩ C, so this
is a contradiction.

This proves the claim.
Now we work toward an amalgamation diagram with two factors

a1234 and b1234 with the following type structure, shown as a table
and as a diagram.
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b 1 2 3 4

a ? 1 1 2 1
1 1 2 2 3
2 2 2 2 1
3 2 2 2 1
4 2 3 1 1

3

4

1

2

3

4

1

2

a

b

In this diagram the vertex 1 forces a i b with i = 2 or 3 and then
the configuration 12ab or 34ab with first vertex as basepoint forces
2 1,2 (a, b) or b 2,3 (4, a), showing that the type 2 is in the same class
of the partition as types 1 and 3.

So it suffices to show that the configurations a1234 and b1234 occur
in Γ.

Now viewing a123 as an amalgam of a13 and a23 forces 1 2 2
or 1 = 2, so a1234 is the unique amalgam of a134 and a234. The
configuration b1234 is the unique amalgam of b134 and 1234 since the
configuration 423b, with 4 as basepoint, forces b 2 2. So it suffices to
show that the subfactors a134, a234, b134, and 1234 all occur in Γ.

We first consider a134 and a234. With 3 as basepoint, the configu-
ration a134 represents a, 4 in Γ1 and 1 in Γ2 realizing the types 1, 3,
so this configuration is afforded by the-type partition (13|2). With a
as basepoint, the configuration a234 consists of 4 in Γ2 and 2, 3 in
41 ∩ Γ1, so this configuration is realized.

Over the basepoint 3 the configuration 1234 is afforded by Claim
1. This leaves only the configuration b134 for consideration.

1

b

3

4

Over the basepoint 3 this consists of a vertex 4 ∈ Γ1 related to a
pair of vertices 1, b ∈ Γ2 with 1 1 b by the types 2 and 3.

Take a 2∼-class C in Γ1 and let C∗ = C1,3 ∩ Γ2. Since Γ2 is 1-
connected there are u ∈ C∗ and v ∈ Γ2 \C∗ with u 1 v. Take a ∈ C

with a 3 u. Then a 2 v and we have the required configuration. □



78 19. Homogeneous 3-Multi-graphs

19C.7. Types of 2∼-classes in Γ1 over pairs in Γ2. The ques-
tion that concerns us now is which pairs of types can be realized by a
point in a 2∼-class C over two vertices of Γ2. As any such pair of types
determines the type of the class C over that pair, once the type of
u, v is fixed this gives us a partition of the pairs of non-trivial 2-types
to consider. For u, v ∈ Γ2 and a ∈ Γ1 with a i u, a j v we will refer
to the type of a over u, v as (i, j).

We record the point of departure for our analysis as established in
previous subsections.

Lemma 19.44. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ is not of known type. Then for u ∈ Γ2 and C a 2∼-class of
Γ1, the sets

u1 ∩ C, u2 ∩ C, u3 ∩ C

partition C into three infinite sets.

Proof. By Proposition 19.40 these sets are non-empty and so by
Proposition 19.32 they are infinite. □

Lemma 19.45. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ is not of known type. Then for u, v ∈ Γ2 with u 2 v and
C a 2∼-class of Γ1, every type (i, j) is realized by some a ∈ C over
u, v.

Proof. Take distinct vertices aij of C for i, j ∈ {1, 2, 3}, and take
u0, v0 in Γ2 realizing the types

u0
i ai,j , v0

j ai,j (i, j ∈ {1, 2, 3}).
Since up ∩C is infinite for p ∈ {1, 2, 3}, such elements u0, v0 exist by
homogeneity.

As a11 1 u0, v0 we find u0
2 v0 (Lemma 19.33). By construction C

realizes all types (i, j) over u0, v0. For any other pair u, v ∈ Γ2 with
u 2 v and any a ∈ C the type of a over uv is realized by some b ∈ C
over u0, v0, and so the same result applies to u, v and C. □
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Lemma 19.46. Suppose that Γ is a locally degenerate imprimitive

homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ is not of known type. Then Γ realizes the configuration
a1a2u1u2 with a1, a2 ∈ Γ1, u1, u2 ∈ Γ2, ai 1 ui for i = 1, 2, and all
other 2-types type 2.

a1

a2

u1

u2

Proof. Fix a 2∼-class C in Γ1 and take u, v ∈ Γ2 with u 2 v. Apply
the previous lemma to complete the diagram with a1, a2 ∈ C. □

Lemma 19.47. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ is not of known type. For C a 2∼-class of Γ1, a ∈ C, and
u, v ∈ Γ2 with u 1 v, there is b ∈ C satisfying

tp(b/uv) = tp(a/vu).

Proof. It suffices to find some pair a, b ∈ C with tp(b/uv) =
tp(a/uv), as then we may find an automorphism carrying Cuv to
Cvu and fixing the basepoint.

Suppose there is no such pair, and consider the relation i → j
defined on the set {1, 2, 3} by the condition

ui ∩ vj ∩ C ̸= ∅.
This defines an anti-symmetric, and in particular, irreflexive, relation
on the set of non-trivial 2-types. Thus we view this as the arc relation
in a directed graph on three vertices with no loops.

By definition, all out-degrees in this directed graph are positive,
and thus it is a cyclic tournament. Thus there is a cyclic permutation
σ of {1, 2, 3} such that

vi ∩ C = uσ(i) ∩ C (i = 1, 2, 3).
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Relabeling u, v as v, u changes the permutation σ to σ−1. Accord-
ingly there is also some v0 ∈ Γ2 with u 1 v0 and

vi0 ∩ C = uσ
−1(i) ∩ C (i = 1, 2, 3)

For any u′, v′ in Γ2 with u′ 1 v′ and any 2∼-class C ′ in Γ1, one of
the types (1, 2) or (1, 3) must be realized in C ′ over u′, v′ and hence
by homogeneity the sets v′i∩C ′ form a cyclic permutation of the sets
u′i ∩ C ′.

If there are u, v1, v2 in Γ2 with

u 1 v1, v2 v1
2 v2

then the sets vi2 ∩C are a cyclic permutation of the sets vi1 ∩C. But
this contradicts Lemma 19.45. So this configuration does not occur.

On the other hand Γ2 is 1-connected and hence for u ∈ Γ2 the set
u1 ∩ Γ2 must be infinite, and thus is an infinite 3-clique. But each
element of this clique has a type related to the type of u over C by
either σ or σ−1 and hence we find v1, v2 ∈ Γ2 realizing the same type
over C, and with v1

3 v2. But taking a ∈ C with a 1 v1, v2, we find
v1

2 v2, a contradiction. □

Lemma 19.48. Suppose that Γ is a locally degenerate imprimitive
homogeneous 3-multi-graph with

Γ1
∼= K3

∞[K2
∞],

and that Γ is not of known type. Then Γ realizes the following con-
figuration.

a1, a2 ∈ Γ1; a1
2 a2;

u, v ∈ Γ2; u 1 v;

a1
1 u, a1

3 v; a2
2 u, v.

Proof. First we consider the configuration formed by a1, u, v and
the basepoint v∗. Over u as basepoint this consists of a, v in Γ1 with
a 3 v and v∗ in Γ2 related to a, v by types 1, 2 respectively. This is
certainly realized in Γ.

The configuration a2uv is also realized in Γ as when we view it as a
configuration on the four points v∗a2uv it is given by Lemma 19.46.
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So take u, v ∈ Γ2 with u 1 v and 2∼-classes C1, C2 containing
points a1, a2 with the specified types over u, v. If there is some type
(i, j) over u, v realized in both C1 and C2 we may conclude. Suppose
toward a contradiction this is not the case, and consider what types
may be realized in C1 and in C2, respectively.

By Lemma 19.47, if the type (i, j) is realized in one of these classes,
then the type (j, i) is realized in the same class. Furthermore the type
(1, 1) is not realized in either class.

To begin with we have (2, 2) realized in C1 and (1, 3), (3, 1) realized
in C2. Thus C1 realizes neither (1, 1) nor (3, 1) and hence realizes
(2, 1) and (1, 2). Then as C2 does not realize (2, 1) or (2, 2) it realizes
(2, 3) and (3, 2). Then similarly C1 realizes (3, 3) and we have the full
list of types realized in each class, which covers all types over (u, v)
that may occur for such pairs u, v.

C1 C2

(1,2), (2,1), (2,2), (3,3) (1,3), (3,1), (2,3), (3,2)

So for any pair u, v ∈ Γ1 with u 1 v and any 2∼-class C, the set of
types realized in C over (u, v) is given by one of these two lists.

Fix a 2∼-class C in Γ1 and u, v1 ∈ Γ2 with u 1 v1, such that C
realizes the types (1, 2), (2, 1), (2, 2), (3, 3) over u, v1. In particular
v1 ∩ C ⊆ u2 ∩ C.

Take a1, a2 ∈ v11 ∩ C and v2 ∈ Γ2 such that

v2
1 u; a1 ∈ v12 ∩ C; a2 ∈ v22 ∩ C.

Then C realizes the same types over u, v2 as over u, v1.
As a1 1 v1, v2 we find v1

2 v2 (Lemma 19.33). On the other hand
v31 ∩C = v32 ∩C since both are equal to u3 ∩C, and this contradicts
Lemma 19.45. □

19C.8. Proposition 19.49. Now we can eliminate the locally
degenerate imprimitive case.

Proposition 19.49. Suppose that Γ is a homogeneous 3-multi-graph
which is locally degenerate imprimitive. Then Γ is of known type.

Proof. We make an amalgamation of configurations a1234 and
b1234 with the type structure as shown in Figure 8.
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b 1 2 3 4

a ? 1 2 1 2
1 1 1 2 2
2 2 1 2 2
3 1 2 2 1
4 3 2 2 1

3

4

1

2

3

4

1

2

a

b

Figure 8. Amalgamation for Proposition 19.49

In this diagram, 1a2b forces a 2 b and then 3ab4 gives a contra-
diction. So it suffices to show that the factors a1234 and b1234 are
realized in Γ.

In the configuration a1234, taking a as basepoint gives the config-
uration covered by Lemma 19.46.

In the configuration b1234, taking 1 as basepoint gives the config-
uration covered by Lemma 19.48.

This completes the proof. □

19D. 3-Multi-Graphs: Conclusion

We review what was already said at the beginning of our analysis,
concerning the stage now reached in the classification of homogeneous
3-multi-graphs.

Combining the results of Amato, Cherlin, and Macpherson [2021]
with the analysis in this chapter, we see that we have a satisfacto-
rily systematic catalog of the homogeneous 3-multi-graphs, one which
has some prospects for being complete. Namely, going forward, we
may suppose that our homogeneous 3-multi-graph is primitive, and
that any forbidden triangle is monochromatic, while at least one
monochromatic triangle type is realized.

Since the target in this case is to identify the graph as the Fraïssé
limit of a free amalgamation class, this brings us at last to the
“generic” case. We remark that the treatment of Amato, Cherlin, and
Macpherson [2021] includes cases where the class has free amalgama-
tion (with value 2, if the 2-types are identified with distances 1,2,3),
so that we have already crossed over the threshold of the generic case.
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Here one would expect that one would soon come to rely heavily on
Lachlan’s Ramsey theoretic approach, which goes along with a change
of categories, where one replaces the original 3-multi-graph by a more
structured object consisting of the realizations of two 1-types over a
point, which is helpful in formulating matters in inductive terms. So
in order to apply this method, one of the first questions is whether
one has sufficient information about these 1-types.

In the favorable case in which there is a 2-type p such that some fi-
nite p-clique is forbidden, one will focus on Γp, which in principle can
be identified by induction, but only after eliminating various special
cases. We have just eliminated one of these, namely the locally degen-
erate imprimitive case: this gives the analysis when a monochromatic
triangle is forbidden. Thus while this falls on the “generic” side of the
analysis, still it is only concerned with the elimination of further spo-
radic examples in which Γp does not have the expected structure.

In particular, when Γ omits a monochromatic triangle of type p, we
may suppose that Γp is primitive. As it involves only two non-trivial
2-types, we view it as a homogeneous graph. Then Γp may be either
a Henson graph or a random graph up to a choice of notation, since
graph complementation simply amounts to relabeling the 2-types.

If Γp is a Henson graph, then one knows in particular which type is
available to be used for free amalgamation. If Γp is merely a random
graph, then even this point is not clear at this stage of the analysis.
So this last case may enter new territory.

Once those special cases are also disposed of, one will suppose that
all triangles are realized. This then gives very little control over the
constraints on the class. The target would be to show in this case that
one of the 2-types does not occur in any constraint. If there is any
forbidden clique (monochromatic constraint) then one has leverage
for an inductive argument. Otherwise we must somehow show that all
minimal constraints involve just two 2-types in taken together. This
was accomplished by surprisingly direct methods in Amato, Cherlin,
and Macpherson [2021], with very particular use of the triangle in-
equality (i.e., a particular constraint involving two 2-types already).
It remains to be seen whether the germ of something more general
can be found in that analysis. Namely, if one has a minimal con-
straint involving only two 2-types, one would like to use it to show
that all minimal contraints involve the same 2-types. Finally, there is



84 19. Homogeneous 3-Multi-graphs

the case—which should not occur—in which all minimal constraints
involve all 2-types, and this remains mysterious.



CHAPTER 20

IMPRIMITIVE HOMOGENEOUS
2-MULTI-TOURNAMENTS

Generalizing the problem taken up in Part I, we ask for the classifi-
cation of the homogeneous 2-multi-tournaments. By definition, these
are tournaments together with a coloring of the arcs by two colors:
that is, there are two pairs of anti-symmetric quantifier-free 2-types:
if we view the colors and the arcs separately, 2-multi-tournaments
may also be thought of as a set equipped with a graph relation and
a tournament relation, so that linearly ordered graphs are a very
special case.

This turns out to be somewhat more complex than we would have
expected, based on prior results—certainly more troublesome than
the case of 3-multi-graphs, which we find surprising. Perhaps one can
justify it after the fact by the observation that while the classification
of homogeneous structures in a language with with finitely many
equivalence relations and the classification of homogeneous structures
in a language with finitely many lineare orders can both be carried
out completely, the latter lies considerably deeper than the former.
That is, in the transitive case, anti-symmetry is much harder to deal
with than symmetry. The reason we find this surprising is that the
homogeneous directed graphs consist largely of the natural analogs
of homogeneous graphs, so that de-symmetrizing just one of the two
2-types does not radically alter the statement of the result (though
it does complicate the proof).

This chapter and the next run somewhat parallel to the discussion
of homogeneous 3-multi-graphs in Chapter 19, but the discussion has
to begin at an earlier stage in the analysis, and eventually becomes
more difficult.

85
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We begin with a catalog of the known examples. Then we will give
a full classification of the imprimitive homogeneous 2-multi-tourna-
ments. This had not previously been worked out, but the resulting
classification turns out to be very similar to the classification of im-
primitive homogeneous directed graphs. In a systematic study of ho-
mogeneous 2-multi-tournaments this topic would most naturally have
preceded the study in Part 1: imprimitivity is the most special case
of a triangle constraint. In the case of homogeneous 3-multi-graphs
the imprimitive case had been treated previously, and we were able
to begin the discussion in the previous chapter at a more advanced
point.

Once that point is disposed of, the general analysis of triangle con-
straints for homogeneous 2-multi-tournaments will occupy the follow-
ing chapter. As we will see, our analysis will leave more to be done
on that question.

We fix notation for the irreflexive 2-types as follows: these will be
denoted by 1−→,

2−→, together with their reversals by 1←−, 2←−.

Notation 20.1.
1. Much as in Chapter 19, we use the notation ai for

{x ∈ Γ | a i−→ x},

and the analogous notation ap where p is i−→.
However here we have the four 2-types 1, 2, 1op, 2op where i rep-

resents the type i−→ and iop represents the type i←−. We generally
prefer the notation ai

op to the equally reasonable notation ia; the
main exception will be noted next.

When we are less concerned with the color of the arc (1 or 2) than
with its direction, we sometimes find the following notation more
convenient.

2. For Γ a 2-multi-tournament with arc relations 1−→, 2−→, we let→
be the arc relation 1−→ ∪ 2−→ (the underlying tournament). For a ∈ Γ
we set

a′ = {x ∈ Γ | a→ x}; ′a = {x ∈ Γ |x→ a}.

We mention in passing that another notation similar in appearance
will be used with a very different meaning later on, namely the no-
tation T i, for T a finite tournament with arc relation → (Notation
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21.3). But the latter notation occurs in a very different context and
confusion seems unlikely.

20A. A catalog of homogeneous 2-multi-tournaments

We first list all the known homogeneous 2-multi-tournaments, up to
choice of language (labeling of 2-types) , under the following headings:
degenerate, imprimitive, finite—and the rest. Here we exclude from
each category any example already considered under one of the pre-
vious headings. There is some technical terminology to be explained
afterward. But we leave the detailed discussion of the final group of
five unusual 3-constrained examples for the following chapter.

A far more technical presentation of the catalog is tabulated in
Tables 22.1 and 22.2, pp. 265, 266, where the structures are given
in terms of the constraints defining the corresponding amalgamation
classes.

(I) Degenerate (omitting some 2-type):
— a homogeneous tournament in the language 1−→ or 2−→.

(II) Imprimitive, non-degenerate
— Compositions T1[T2] with Ti a homogeneous tournament

with arc relation i−→.
— Shuffled of type Q or S.
— Semi-generic of type Q, S, or T∞.
— Generic de-symmetrization of an imprimitive directed graph

of type n ∗ T with T an infinite homogeneous tournament
and 2 ≤ n ≤ ∞.

(III) Finite, primitive, non-degenerate: 5 vertices
— an oriented pentagram.

(IV) Infinite, primitive, non-degenerate
— A generic linear extension of a partial order.
— The free join of two homogeneous primitive infinite struc-

tures Γ1,Γ2, where
— Γ1 is a tournament and
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— Γ2 is either a homogeneous tournament or a homoge-
neous graph.

— A generic 2-splitting of a homogeneous tournament with
strong amalgamation, with forbidden tournaments of one
edge type.

— A generic de-symmetrization of a primitive homogeneous
directed graph with strong amalgamation.

— 3-constrained, and not previously listed.
(a) 1−→ is a partial order and a

1−→ b
1−→ c

2←− a is forbidden.
(b) Forbid a

1−→ b
1−→ c

1−→ a, a 1−→ b
1−→ c

2−→ c, that is
forbid 3-cycles with two edges of type 1−→.

(c) Forbid a
1−→ b

1−→ c
1←− a (L3) and a

1−→ b
1−→ c

2−→ a
(C3).

(d) Forbid a
1−→ b

1−→ c
1←− a, a 1−→ b

1−→ c
1−→ a (L3, C3)

and a
1−→ b

1−→ c
2−→ a.

(e) If (a, b) and (a, c) realize the same type, then b
1−→ c

is forbidden; and the 3-cycles a
1−→ b

1−→ c
1−→ a, a 2−→

b
2−→ c

2−→ c are forbidden. In particular, for each a ∈ Γ

and each 1-type p over a, (ap, 2−→) is a linear order.

Since we are about to launch into a detailed study of the imprim-
itive case, we will first discuss the various technical notions which
come into the specification of the known examples in the primitive
cases, and then address the imprimitive case in the following section.

In the degenerate case we assume that not all 2-types are realized,
so we may suppose that the language reduces to 1−→, and we are
considering the five homogeneous tournaments, which are denoted as
follows.

(a) I (trivial, one element).
(b) The 3-cycle C3.
(c) Q the rational order, as a tournament.
(d) The generic local order S.
(e) The generic (or homogeneous universal, or random) tournament

T∞.
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Definition 20.2. The oriented pentagram is the 2-multi-tournament
on Z/5Z with arc relations x

i−→ y for i = 1 or 2 given by

y − x = i.

We now discuss a number of “generic constructions” involving strong
amalgamation classes. The homogeneous structures which correspond
to strong amalgamation classes are those in which every set is alge-
braically closed in the model theoretic sense; in particular, if the
structure in question is imprimitive then the corresponding equiv-
alence classes are infinite, and in practice (when the homogeneous
structures are known) this condition—in the slightly more general
form of an “infinite index” condition—tends to be sufficient as well.

Definition 20.3 (Generic constructions).
1. Let A1,A2 be two strong amalgamation classes in languages

L1, L2, which we assume are disjoint (or which we make disjoint, if
necessary).

Their free join A = A1 ∗ A2 is the class of finite structures in the
language L = L1 ∪ L2 whose reducts to Li are in Ai for i = 1, 2.

This is then a strong amalgamation class. (We need to assume
A1,A2 are strong amalgamation classes even to deduce that their
free join is an amalgamation class.)

This terminology may be transferred to the Fraïssé limits Γ1,Γ2,Γ
of A1,A2,A: we may write

Γ = Γ1 ∗ Γ2

and call this structure the free join.
2. In a frequently occurring case, A2 is the class of finite linear

orders, and then Γ1 ∗Q is Γ1 expanded by a generic linear order.
3. Similarly, if Γ is the Fraïssé limit of a strong amalgamation class
A and p is a non-trivial 2-type of Γ, named by the language, to
split the 2-type p generically, we replace the name for p by a set of
names P , and replace the amalgamation class A by the structures in
the altered language in which each occurrence of p is replaced by an
arbitrary symbol from P .

The following case is of interest here. If we split an anti-symmetric
2-type into two anti-symmetric 2-types, an infinite homogeneous tour-
nament gives rise to a homogeneous 2-multi-tournament, with the arc
relation generically 2-split.
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4. When we split a 2-type into a set of 2-types P , we may also single
out a proper subset P0 of P closed under permutation of variables,
and then forbid in addition some set of P0-structures, using types in
P \P0 to complete amalgams where needed. That is, whenever the
original type p would have been used to complete an amalgam, types
in P \P0 may be used instead.

The additional constraints play the role of Henson constraints: ad-
ditional constraints compatible with the chosen amalgamation pro-
cedure.

5. Another way to split a type generically is to reduce its symmetry
group.

The case of interest here is the following. Take a homogeneous
directed graph Γ associated with a strong amalgamation class A (in
other words, if the directed graph is imprimitive, we require the equiv-
alence classes to be infinite). We split the symmetric “non-edge” rela-
tion into a pair of anti-symmetric 2-types. In terms of amalgamation
classes, we replace the directed graphs in A by 2-multi-tournaments
by orienting the non-edges in all possible ways.

The Fraïssé limit of the resulting class is the generic de-symmetri-
zation of Γ: it is a homogeneous 2-multi-tournament.

The generic linear extension of a partial order has a more special-
ized character. It is the Fraïssé limit of the class of all finite structures
in a language with a symbol for a partial order ⪯ and a symbol for a
linear order ≤, under the requirement the the linear order extends the
partial order (this example is familiar from structural Ramsey theory
and falls into the framework of Part I of this work, as an exceptional
case known from prior work).

One must pay a little attention to the correct amalgamation pro-
cedure. Given an amalgamation diagram, the union of the partial
orders on the factors gives an acyclic digraph, and the union of the
linear orders gives an acyclic digraph; in amalgamating, one should
take the minimal extension of the former to a partial order, and any
extension of the latter to a total order, so as to meet the required
constraint.

Now we have dealt with the terminology and notation used in the
catalog, with the exception of the aforementioned cases, namely: (1)
the imprimitive 2-multi-tournaments, which will be our next topic,
and (2) the five exceptional 3-constrained 2-multi-tournaments which
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will occupy us in the following chapter. The latter are explicitly de-
fined. but it is less clear at this point in our discussion that the
definitions give amalgamation classes, and we have no satisfactory
conceptual framework for them.

Now taking up the classification problem (completeness of the cat-
alog) from the very beginning, the first point is the following.

Fact 20.4 (Lachlan [1984], [1986]). The degenerate or finite homo-
geneous 2-multi-tournaments are as specified in the catalog above.

In particular, the finite homogeneous 2-multi-tournaments are the
compositions of finite tournaments (so in the non-degenerate case,
C3[C3]) together with the oriented pentagram.

In Lachlan [1986] our 2-multi-tournaments are called 2-tournaments,
and the homogeneous ones are also referred to as the members of
Hom(2; 1, 2;ω), meaning: binary homogenous, with only 1 symmet-
ric 2-type (equality) and with 2 pairs of asymmetric 2-types; in this
notation, the label ω signifies that the structures should be stable
(which for the purposes of classification, given the existing theory, is
not much more general than requiring finiteness).

With these cases out of the way, we come next to the imprimitive
case. In this case we will show that the catalog is complete.

20B. Imprimitive homogeneous 2-multi-tournaments

Definition 20.5. The minimal symmetric and reflexive extension
of the relation i−→ is denoted i∼. This relation is of interest mainly
when it is an equivalence relation.

In dealing with imprimitive homogeneous 2-multi-tournaments we
may suppose that 1−→ is an equivalence relation.

We will prove the following, along the lines of the classification of
the imprimitive homogeneous directed graphs given in Cherlin [1987].

Proposition 20.6. Let Γ be an imprimitive homogeneous 2-multi-
tournament. Then up to a change of language Γ is one of the following
structures.
(a) A composition T2[T1] with Ti an i−→-tournament for i = 1, 2.
(b) (Shuffled type) Γ is derived from a homogeneous local order

T ∼= Q or S with arc relation → which is partitioned into n
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dense pieces, with 2 ≤ n ≤ ∞. If a→ b holds in T then we take
a

1−→ b if a, b are in the same piece of T , and a
2−→ b if a, b are

in distinct pieces of T .
(c) (Semi-generic type) Generic imprimitive with infinite compo-

nents (type Q, S, or T∞) and satisfying the parity constraint
described below.

(d) (Generic type) The generic de-symmetrization of an imprimitive
homogeneous directed graph n · T with 2 ≤ n ≤ ∞, where T
is an infinite homogeneous tournament. Here n · T denotes the
disjoint union of n copies of T and the generic de-symmetrization
is denoted n ∗ T .

There is a lot of notation to address here, and we should also take a
moment where necessary to check the homogeneity of the structures
listed in our catalog, once they have been properly defined (Lemma
20.9 below).

We first describe the more direct constructions.

Definition 20.7.
1. The composition T2[T1] of two tournaments is the result of re-

placing each point of T2 by a copy of T1, and taking 1−→ to be the
tournament relation on T1 within each component, and 2−→ to be the
tournament relation on T2, between the components.

2. If T is an infinite homogeneous local order (the rational order Q
or the generic local order S) then the shuffled 2-multi-tournament of
type T with n classes is formed by dividing T into n dense subsets and
representing the tournament relation in T by 1−→ within the subsets
and by 2−→ between them.

We will denote this shuffled 2-multi-tournament by T (n): thus we
have Q(n) and S(n).

The term shuffled is perhaps more apt in the case of Q(n) than in
the case of S(n).

3. Generic de-symmetrization has been defined in Definition 20.3. It
applies to any homogeneous directed graph associated with a strong
amalgamation class, and produces a homogeneous 2-multi-tournament
with the non-edge relation split into a pair of anti-symmetric 2-types.

In the imprimitive case we begin with an infinite homogeneous
tournament T , form the disjoint sum of n copies of T , which we
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denote by

n · T,
and then take the generic de-symmetrization, which we denote by

n ∗ T.

Thus this is the disjoint union of n copies of T with arc relation 1−→,
and the arc relation 2−→ between these copies is imposed generically,
via the Fraïssé theory.

We also have the “semi-generic” variation on ∞∗ T to discuss.

Definition 20.8 (Semi-generic 2-multi-tournament). We define the
semi-generic 2-multi-tournament with components of specified type
T (an infinite homogeneous tournament) via the Fraïssé theory, by
the following constraints.

(a) The connected components for the relation 1−→ are of type T ;
(b) The parity constraint: between two pairs a1

1−→ a2 and b1
1−→ b2,

there are an even number of arcs a
2−→ b with a = a1 or a2 and

b = b1 or b2.

Lemma 20.9. The 2-multi-tournaments listed in Proposition 20.6
are all homogeneous.

Proof. Composition of homogeneous structures in disjoint lan-
guages preserves homogeneity.

For the case of the shuffled 2-multi-tournaments Q(n) and S(n), one
needs to know that a homogeneous local order remains homogeneous
in an expanded language giving a partition into dense subsets.

Skolem observed in Skolem [1920, §4, Sätze 2,3] that the proof of
ℵ0-categoricity for countable dense linear orders (Cantor) without
endpoints extends to the case of expansions of such a linear order by
a fixed number—possibly infinite—of dense subsets. He applied the
back and forth method as in Hausdorff’s exposition, whom Skolem
cites; this is a more flexible and transparent method than Cantor’s
original one. Exactly the same argument gives homogeneity as well.

It follows that the shuffled 2-multi-tournaments are homogeneous
in the language expanded by the corresponding unary predicates.
To see that they are homogeneous as 2-multi-tournaments requires
checking in addition that the equivalence classes can be freely per-
muted by automorphisms of the structure. This is a consequence of
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the uniqueness up to isomorphism, since permuting the classes gives
another structure of the same type.

The construction in the semi-generic case is handled by direct veri-
fication of the amalgamation property. It suffices to deal with 2-point
amalgamation problems A ∪ {a1}, A ∪ {a2} over A.

Suppose first that there are points b1, b2 in A in the same 1−→-
components as a1, a2. Then there are two cases: either b1, b2 lie in
the same 1−→-component and we amalgamate as in this component
(with no identification of points), or they lie in distinct components
and the parity constraint dictates the amalgam. In these cases, one
must check that the parity constraint is preserved.

If there is no such pair of points b1, b2 in A then one takes a1
2−→ a2

or the reverse, as one likes, and there is nothing left to be checked.
In the last case (generic imprimitive) we begin with a directed

graph n · T consisting of n unrelated copies of the infinite homo-
geneous tournament T , where 2 ≤ n ≤ ∞. One notes that T corre-
sponds to a strong amalgamation class, and thus n·T also corresponds
to a strong amalgamation class, so that generic de-symmetrization is
possible, with n held fixed. One may then take the Fraïssé limit. □

As one might expect, the proof of the classification stated in Propo-
sition 20.6 is lengthy, as it deals separately with the various cases
arising. We fix the following notation throughout the discussion.

Notation 20.10.
Let Γ be a homogeneous imprimitive 2-multi-tournament. We may

suppose that 1∼ gives an equivalence relation on Γ. The 1∼-classes,
with their induced structure, will be called the components of Γ.

Our standing hypothesis will be that Γ is not a composition, but
we take note of this hypothesis explicitly as we proceed. Let us agree
to consider the degenerate case as a composition: T = I[T ] where I
has no arcs but the language nonetheless contains a symobl for one
of the two arc relations. That is, we assume nondegeneracy as well,
but are not obliged to mention it separately.

Lemma 20.11. Let Γ be a homogeneous imprimitive 2-multi-tour-
nament, and not a composition. Then the components of Γ are infi-
nite, namely: one of the two local orders Q, S, or the generic tour-
nament T∞.
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Proof. By the classification of homogeneous tournaments, the al-
ternative is that the components of Γ are 3-cycles. If C is one such,
and a ∈ Γ \C, then a′ ∩C and′a∩C are homogeneous tournaments.
So one of them is empty, and Γ is a composition. □

A point to be kept in mind, as it tends to be invoked without
explicit mention, is the following.

Lemma 20.12. Let Γ be a homogeneous imprimitive 2-multi-tour-
nament, and not a composition. Let C1, C2 be two components, and
a /∈ C1, b /∈ C2. Then there is an automorphism Γ carrying (b, C2) to
(a,C1).

Proof. It suffices to treat the case in which we make a particular
choice for a,C1, leaving b, C2 to vary.

So as Γ is not a composition, we choose a,C1 so that a realizes both
possible types 2−→ and 2←− over C1. Then we fix b, C2, and c ∈ C2,
and carry (b, c) to (a, d) for a suitable choice of d ∈ C1. □

In dealing with local orders we generalize some notions associated
with linear orders. We have already had occasion to refer to density.
We also need the notion of convex set, and the related notion of
Dedekind cut.

There is more than one notion of convexity available in the context
of tournaments (notably, there is a notion of interval stricter than
the definition we use).

Definition 20.13. Let S be a tournament and I a subset. Then
I is convex if there is no triple a, b, c with a → b → c, a → c, and
a, c ∈ I, b /∈ I.

Lemma 20.14. Let S be a local order, I ⊆ S convex and proper.
Then I is linearly ordered by the arc relation.

Proof. Suppose there is a 3-cycle (a, b, c) in I. Then S is the
union of the intervals [a, b], [b, c], [c, a] defined by

a→ x→ b b→ x→ c c→ x→ a

and each of these is contained in I, so I = S. □

We remark also that for S a local order and a ∈ S, the sets a′ and
′a are convex.

Definition 20.15. Let S be a local order. A Dedekind cut in S is
an unordered pair of non-empty convex subsets whose union is S.

The Dedekind cut is proper if neither part has an endpoint.
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In the linear case the ordering itself distinguishes a “left” and “right”
side in the Dedekind cut. In the non-linear case a Dedekind cut corre-
sponds to two antipodal points in a natural completion, after making
appropriate conventions for cuts associated to existing elements. In
the proper case, neither of these points lies in the original structure.
In the case of S, the Dedekind completion may be identified with the
unit circle and S itself with any countable dense subset of the circle
containing no antipodal pairs of points, and with an arc relation de-
rived from an orientation of the circle. On the Dedekind completion
of S the arc relation gives a directed graph rather than a tournament;
antipodal pairs are not related by an arc.

The following generalizes the comparability of Dedekind cuts in the
linearly ordered case.

Lemma 20.16. Let S be a local order with two decompositions into
proper convex parts S = S1 ∪ S2 and S = S′

1 ∩ S′
2. Let i, j ∈ {1, 2}.

Then the following hold.
(a) Si ∩S′

j is a terminal or initial segment of Si (possibly empty, or
all of Si).

(b) If S = S is the generic local order, the sets S1, S2 have no end-
points, and {S1, S2} ̸= {S′

1, S
′
2}, then the segments Si ∩ S′

j are
proper subsets of Si and Sj.

Proof. We may suppose i = j = 1.
For the first point, if we suppose otherwise then it follows easily

that S1∩S′
1 is bounded below and above in S1, say by a, b respectively.

Then a, b ∈ S2 and by convexity S1 ∩ S′
1 ⊆ S2, so S1 ∩ S′

1 = ∅.
For the second point, in the contrary case we may suppose S1 ⊆ S′

1,
and that S1 is a proper initial segment of S′

1. Since S2 has no end-
point, we may take a→ b in S′

1 \S1 and extend to a 3-cycle (a, b, c).
Then c ∈ S′

2 ⊆ S2 so the 3-cycle (a, b, c) lies in S2, a contradic-
tion. □

20B.1. The shuffled case.

Definition 20.17. Let Γ be a homogeneous imprimitive 2-multi-
tournament.

1. Γ is said to be of shuffled type if the following hold.
— The components are dense local orders.
— For each component C and a /∈ C, the two sets a′∩C and ′a∩C

are convex and non-trivial (hence also proper subsets).
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2. Γ is said to be of general type if its components are infinite, and
for each component C and a /∈ C, we have a′ ∩ C, ′a ∩ C nonempty.
Furthermore, if the components are local orders then we require a′∩C
and ′a ∩ C to be dense in C.

Lemma 20.18. Let Γ be a homogeneous imprimitive 2-multi-tour-
nament, not a composition, with components of type Q or S. Then Γ
is either of shuffled type, or of general type.

Proof. Fix a component C and a /∈ C.
By Lemma 20.12, a′∩C and ′a∩C are both nonempty. So we may

suppose now that the components are local orders of type Q or S.

Claim 1. Either a′ ∩ C is convex, or ′a ∩ C is dense in C.

We suppose a′ ∩ C is not convex and fix b1, b2, c ∈ a′ ∩ C with
b1 → b2, b1 → c → b2, c → a. We show ′a ∩ C is dense in C. With
the exception of the point a, we now work inside C.

So fix x1, x2 ∈ C with x1 → x2 and consider the corresponding
interval (x1, x2) in C. We look for y ∈ (x1, x2) with y

2−→ a.
Take y1 → y2 in the interval (x1, x2). We may suppose a

2−→ y1, y2,
as otherwise we are done. By homogeneity some automorphism α
carries a, b1, b2 to a, y1, y2, and then α(c) lies in (y1, y2). This proves
the claim.

In particular, if a′ ∩ C is not convex, then since ′a ∩ C is a proper
subset of C, it is not convex either, and so by the dual of Claim 1
a′ ∩ C is also dense.

Thus a′ ∩ C is either convex or dense, and ′a ∩ C is either convex
or dense, and thus either both of these sets are convex, or both are
dense.

By Lemma 20.12 the same applies uniformly to all pairs (a,C).
Thus Γ is either shuffled or of general type. □

In the present subsection we consider the shuffled case. According
as the components are of type Q or S, we distinguish two cases.
(a) Type Q: for each component C and a /∈ C, a determines a

Dedekind cut in Q, consisting of an initial segment and a ter-
minal segment (not realized in C).

(b) Type S: for each component C and a /∈ C, a determines a parti-
tion of S into two linearly ordered convex subsets, without end-
points (a Dedekind cut, in the terminology of Definition 20.15).
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In the case of type Q, we would like to know which of the two
parts of the Dedekind cut corresponds to a′ ∩ C; up to a change
of language—specifically, we may reverse the relation 1−→—we may
suppose that a′ ∩ C is a terminal segment of C, and if this holds
for one such pair a,C it will hold for all. In the case of type S, the
situation is more symmetrical at the outset.

Definition 20.19. Let Γ be an imprimitive homogeneous 2-multi-
tournament of shuffled type. Then Γ will be said to be properly shuf-
fled if one of the following conditions applies.
(a) The components are of type Q, and for C a component, a /∈ C,

the set a′ ∩ C is a terminal segment of C.
(b) The components are of type S, and for C a component, a, b /∈ C,

if a 1−→ b then b′ ∩ C meets a′ ∩ C in a terminal segment.

Lemma 20.20. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of properly shuffled type, with components of type Q. Then
the relation → defined as 1−→ ∪ 2−→ is transitive.

Proof. We consider potential 3-cycles a → b → c → a according
to the number of 1∼-classes involved.

On each class, → coincides with 1−→, and is transitive.
On the union of two classes C1 ∪ C2, we may suppose a ∈ C1,

b, c ∈ C2, and the definition of proper shuffling applies.
Finally, suppose we have a 3-cycle

a1 → a2 → a3 → a1

with a1, a2, a3 in distinct 1∼-classes C1, C2, C3. Then we take b2 ∈ C2,
b3 ∈ C3 satisfying

a1 → b3 → b2

(Figure 9).
By transitivity of the relation → on C1 ∪ C3, C2 ∪ C3, and finally

C1 ∪ C2, we find, successively,

a3 → b3; a2 → b3; a2 → b2; a1 → b2.

Now take u ∈ C3 with

u→ a1, a2, b2

(these conditions define an initial segment of C3).
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a1 a2 a3

b2

b3

Figure 9. Transitivity

By homogeneity, there is an automorphism α carrying (a1, a2, u)
to (a1, b2, u). Set c3 = α(a3). Then

a1 → b2 → c3 → a1.

By transitivity on C2 ∪ C3 and C1 ∪ C3 we find successively

b3 → c3, b3 → a1,

a contradiction. □

Lemma 20.21. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of shuffled type, with components of type Q, and let n =

|Γ/ 1∼|. Then up to a change of language Γ ∼= Q(n), the generic shuffled
2-multi-tournament of type Q with n components.

Proof. As we have remarked, up to a change of language Γ is
properly shuffled. So we assume that this choice of language has been
made.

The relation → defined as 1−→ ∪ 2−→ gives a linear order on Γ. It
suffices to show that the 1∼-classes are dense in Γ.

Take three components C1, C2, C3, not necessarily distinct, and
u1 ∈ C1, u2 ∈ C2. We show the interval (u1, u2) meets C3.

Take a ∈ C3, v1 ∈ C1, v2 ∈ C2, with v1 → a→ v2. Take b ∈ C3 with
b→ a, u1, v1, u2, v2. There is an automorphism α taking (b, v1, v2) to
(b, u1, u2) and hence taking C1, C2, C3 to themselves. Then α(a) lies
in the desired interval.

As we mentioned previously, Skolem showed that there is a unique
structure of this type, in the language including unary predicates for
the components, so the reduct we are considering must be the shuffled
2-multi-tournament Q(n). □
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Now we turn to 2-multi-tournaments of shuffled type with compo-
nents of type S. We deal first with the properly shuffled cases, along
similar lines to the foregoing.

Lemma 20.22. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of shuffled type, with n components of type S, n ≥ 3. Then
for u ∈ Γ, u2 is an imprimitive homogeneous 2-multi-tournament of
shuffled type, with (n− 1) components of type Q.

We note that for n = 2, the notion of shuffled type would not make
sense for a tournament with (n−1) components; hence the restriction
n ≥ 3.

Proof. By hypothesis the components of u2 are of type Q and by
definition, for v ∈ u2, the sets v2 and v2

op meet each component of
u2 in a convex subset. What needs to be checked is that u2 is not
itself a composition.

Suppose on the contrary that u2 is a composition.
Fix a 1∼-class C of Γ.

Claim 1. The elements of C realize only two types over Γ \C.

Take 1∼-classes C1, C2 of Γ with C,C1, C2 distinct, and u ∈ C2. Let
v ∈ u2∩C. Then v2∩C1 either contains, or is disjoint from, u2∩C1. As
C1 decomposes over v into the two convex pieces v2∩C1 and v2

op∩C1,
these coincide in some order with u2∩C1 and u2

op ∩C1; Furthermore
for all v ∈ u2∩C, the order is the same. Thus for v1, v2 ∈ u2∩C, and
any 1∼-class C1 other than C or C2, the vertices v1 and v2 realize the
same type over C1. Replacing C,C1, C2 by C,C2, C1 gives the same
conclusion for C2.

This proves the claim.
The relation defined on Γ by “x, y lie in the same 1∼-class C, and

realize the same type over Γ \C” is invariant under AutΓ and thus
definable. Therefore the same relation restricted to a single class C
is definable in the language of C. But as C is primitive, this is a
contradiction. □

Lemma 20.23. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of properly shuffled type, with n components of type S. Then

Γ ∼= S(n)

the generic imprimitive 2-multi-tournament with the specified param-
eters.
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Proof. Given two 1∼-classes C1, C2, let Ĉ1, Ĉ2 be their Dedekind
completions (a point may be thought of as given locally by a Dedekind
cut in some convex linearly ordered part).

We define fC1,C2 : C1 → Ĉ2 by fC1,C2(a) = min(a′ ∩ C2). By the
definition of proper shuffling, this gives an isomorphic embedding of
C1 into Ĉ2. The image is dense, so we may use the same notation
for the extension fC1,C2 : Ĉ1

∼= Ĉ2. Composition fC2,C3 ◦ fC1,C2 gives
an isomorphism from Ĉ1 to Ĉ3. If this is distinct from fC1,C3 then
we get an automorphism of Ĉ1 and in particular a nontrivial embed-
ding α of C1 into Ĉ1. But for any elements a, b ∈ C1, the type of b
over a determines the type of b over α(a), so α is the identity, and
the family of isomorphisms is closed under composition and inverse.
Thus we may identify the Dedekind completions Ĉ and view Γ as
a dense subset of Ĉ with a distinguished equivalence relation with
dense classes.

Thus Γ ∼= S(n). □

Lemma 20.24. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of shuffled type, with components of type S. If there are at
least three components, then Γ is properly shuffled.

Proof. Supposing the contrary, fix three classes C1, C2, C3. Now
the maps

fC1,C2 : Ĉ1 → Ĉ2

considered in the previous argument are anti-automorphisms, and
the composition

fC3,C1 ◦ fC2,C3 ◦ fC1,C2

is an anti-automorphism of Ĉ1. In particular we have an anti-isomorphic
embedding α of C1 into Ĉ1 such that for a, b ∈ C1, the type of b over
a determines the type of b over α(a), and this is impossible. □

Lemma 20.25. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of shuffled type, with components of type S. Then Γ is properly
shuffled.

Proof. By Lemma 20.23 we may suppose that Γ has just two
components S1, S2, and we suppose it is improperly shuffled. Note
that by homogeneity there is an automorphism switching the two
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components and thus for either component C, when a, b /∈ C and
a

1−→ b then b′ ∩ C meets a′ ∩ C in an initial segment.
In this case the map fS2,S1 from S2 to the Dedekind completion

S̄1 of S1 is an anti-isomorphism. Thus we identify S1, S2 with dense
subsets of the Dedekind completion S̄1 of S1, with the arc relation on
S1 agreeing with that on S̄1, and the arc relation on S2 the opposite
of the arc relation on S̄1. Since we use the relation 2−→ to define this
embedding, it agrees with the arc relation on S̄1.

b

a

S1:

S2:

Figure 10. S̄1: b′ ∩ S1 initial segment of a′ ∩ S1

If we enrich Γ by unary predicates naming S1 and S2 then this
gives a unique structure, which is homogeneous.

However we will argue that in the language of 2-multi-tournaments
this structure is not in fact homogeneous, and specifically that the
two 1∼-classes S1, S2 are invariant under the automorphism group.

For this, fix points a ∈ S1 and b ∈ S2, and consider the isomorphism
type of the associated structures Γa = (A1, A

∗
1, A2, A

∗
2) and Γb =

(B∗
2 , B2, B1, B

∗
1) where

A1 = a1; A∗
1 = a1

op
; A2 = a2; A∗

2 = a2
op
.

B∗
2 = b1; B2 = b1

op
; B1 = b2; B∗

1 = b2
op
.

We have chosen the notation so that in terms of the arc relation on
S̄1 we have

A1 = a′ ∩ S1, A2 = a′ ∩ S2, A∗
1 =

′a ∩ S1, A∗
2 =

′a ∩ S2;

B1 = b′ ∩ S1, B2 = b′ ∩ S2, B∗
1 = ′b ∩ S1, B∗

2 = ′b ∩ S2,
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which makes things somewhat easier to keep track of after embedding
everything into S̄1.

Now an automorphism of Γ taking a to b would take Γa to Γb.
On the other hand Γa and Γb are variations on the 2-multi-tournament

of properly shuffled type Q(4) in which some of the arc relations have
been reversed. Ini S1, there are two a-definable ways to convert the
tournament relation to a linear order with dense subsets a′, ′a: re-
verse arcs between the two parts, or on the two parts. As the arc
relation on Γa is not induced directly by the arc relation on S̄1, we
have two variants of this rule for converting Γ1 into Q(4), and two
similar rules for Γb. We need to check that these are not the same
two ways.

We may represent the relevant data by a matrix with entries ±1,
where +1 means the arc relation in question is not reversed, and −1
means it is reversed. We include the labels of the rows and columns
of these matrices in our presentation of the matrix.

In matrix terms the re-orientations of Γa which result in a properly
shuffled tournament may be represented as

±



A1 A∗
1 A2 A∗

2

A1 1 −1 1 −1
A∗

1 −1 1 −1 1

A2 1 −1 −1 −1
A∗

2 −1 1 −1 −1


The rule corresponding to the positive sign, as given by the matrix,

is as follows. We reverse arcs between A1 ∪A2 (a′) and A∗
1 ∪A∗

2 (′a),
and within A2 or A∗

2 (S2).
In the case of Γb, if we labeled the columns and rows correspond-

ingly with B1, B
∗
1 , B2, B

∗
2 , we would have the same pair of matrices,

but as we have seen the order is different for Γb.
Thus in fact we get

±



B∗
2 B2 B1 B∗

1

B∗
2 −1 −1 −1 1

B2 −1 −1 1 −1
B1 1 −1 1 −1
B∗

1 −1 1 −1 1
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Considering for example the first row in each case, we see that these
are different. Thus a and b lie in different orbits of the automorphism
group and we have a contradiction. □

We may sum up as follows.

Lemma 20.26. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of shuffled type, with n components of type T = Q or S. Then
up to a change of language Γ is isomorphic to T (n).

20B.2. General type, with a finite quotient. The hypotheses
generally in use in the present subsection are the following.
(H1) Γ is an imprimitive homogeneous 2-multi-tournament with n <

∞ classes.
(H2) Γ is infinite, not a composition, and not of shuffled type.

Then Lemma 20.18 applies and Γ is of general type: if the compo-
nents are of type Q or S then for each 1∼-class C and each u /∈ C, u2
and u2

op meet C in dense subsets.
In this case, our goal is to show that Γ is the generic de-symmetrization

n∗T of the imprimitive directed graph n ·T . In other words, Γ is the
generic imprimitive homogeneous 2-multi-tournament with n compo-
nents, each of type T (Lemma 20.38).

We will derive this from an older classification result, the classifi-
cation of homogeneous n-partitioned tournaments for n finite.

20B.2.1. n-Partitioned tournaments.

Definition 20.27. An n-partitioned tournament is a structure T =
(T1, . . . , Tn) with unary predicates Pi (1 ≤ i ≤ n), binary relations
i−→ (1 ≤ i ≤ n), and a finite number of additional binary relations
i,j−−→k (1 ≤ i < j ≤ n) such that the following conditions hold.
(a) Pi defines Ti.
(b) (Ti,

i−→) is a tournament (and all pairs related by i−→ lie in Ti).
(c) The relations i,j−−→k partition Ti × Tj .

The classification of homogeneous n-partitioned tournaments is
given in Cherlin [1998], where they are called n-tournaments; we will
stick to our more explicit terminology here.

Our imprimitive 2-multi-tournaments with n classes (n finite) are
similar to the n-partitioned tournaments with just two relations i,j−−→k

per choice of i.j, 1 ≤ i < j ≤ n corresponding to 2−→ and 2←−, and
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with all components isomorphic, after a non-trivial change of lan-
guage: we expand the language by unary predicates for the individual
1∼-classes. This substantially reduces the automorphism group, killing
the permutations of the components, and splitting the relation 2−→
into many separate relations.

Our main task is to show that an imprimitive homogeneous 2-
multi-tournament with a finite number of classes remains homoge-
neous when the 1∼-classes are named, after which we will be able to
invoke our classification of the homogeneous n-partitioned tourna-
ments. It should be said that the classification of the homogeneous
n-partitioned tournaments is more straightforward in the case that
interests us, allowing only two “cross types” i,j−−→k per pair (i, j),
and—less importantly–requiring the components to be isomorphic.
But the nature of the relevant classification result seems clearer when
given in some generality. We will in fact recall the details in more gen-
erality than we need, but we will also set aside some issues irrelevant
to our intended application.

The general classification for homogeneous n-partitioned tourna-
ments involves a reduction from general finite n to the case n = 2.
This goes as follows (we rephrase it in a more explicit form).

Fact 20.28 (Cherlin [1998, Prop. 9]). For n > 2, a homogeneous
n-partitioned tournament is determined by its transversals and its
T -restrictions.

Here the transversals are simply transversals to the equivalence
relation with classes Ti, viewed as structures with the relevant rela-
tions i,j−−→k (here i, j will determined k). The 2-restrictions are the
2-partitioned tournaments with classes Ti, Tj and relations i−→, j−→,
i,j−−→k for any choice of i, j.
Where things become more complex, or at least more detailed, is

in the discussion of the homogeneous 2-partitioned tournaments. We
now jump to the case which becomes relevant when we deal with
homogeneous imprimitive 2-multi-tournaments of general type.

Fact 20.29 (Cherlin [1998, Props. 4,5]). Let T be a homogeneous
2-partitioned tournament with components T1, T2 of type Q or S and
suppose that for a ∈ T1 and any cross-type p, ap is dense in T2. Then
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T ∼= Γk(T1, T2) is the generic 2-partitioned tournament with k cross
types, for some k.

Here the components are not required to be isomorphic, but that
is the only case that will concern us.

For homogeneous 2-partitioned tournaments with components of
type T∞ things are somewhat more complicated. First of all, we
set aside diagonal type, in which one of the relations 1,2−−→k gives a
bijection between the components. The relevant classification runs
as follows—and this is where the extra generality of the setting will
lead us into a technical digression. We give the statement and then
explain the notation used.

Fact 20.30 (Cherlin [1998, Prop. 7]). Let T = (T1, T2) be a homo-
geneous 2-partitioned tournament, not of diagonal type, with T1, T2

∼=
T∞, and let P be the set of cross types in the language of T. Then
there is a partition

P = (P 0, P+, P−)

of P such that

T ∼= Γ(P)

up to a change of language.

We use the term “partition” loosely here: we allow some of the
specified sets to be empty.

The notation Γ(P ) refers to the following construction—but we
should say in advance that when |P | = 2 our partition P will be
(P, ∅, ∅) and Γ(P) will be the generic 2-partitioned tournament with
cross types in P , so this all falls away. The following definition is the
case of Cherlin [1998, Def. 3] which is of interest here.

Definition 20.31. Let P be a set of k ≥ 1 cross types (binary
relation symbols). Let P = (P 0, P+, P−) be a partition of P into
three sets, where P 0 is non-empty but P+, P− may be empty. Then

A(P)

denotes the class of finite 2-partitioned tournaments A = (A1, A2)
satisfying the following conditions.

1. Cross types come from P (every pair in A1×A2 satisfies a unique
relation in P ).
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2. There are no substructures of A of the form (a1, b
−
2 b

+
2 ) or (b−1 b

+
1 , a2)

with bi → ci and

tp(a1b
±
2 ) ∈ P± or

tp(b±1 a2) ∈ P±

In words: over a parameter a in T1 or T2, the points in the
other component related positively to a dominate those related
negatively to a.

With P 0 non-empty the class A(P) is an amalgamation class and
Γ(P) will denotes its Fraïssé limit. Γ(P) is simply the generic 2-
partitioned tournament with k = |P | cross types unless P+ and P−

are non-empty, and since we also require P 0 non-empty, this case first
occurs for k = 3. So it will not appear in our application here.

We give that application now.

Lemma 20.32. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament with n <∞ components, of general type. Suppose the follow-
ing conditions are satisfied.

1. If Γ+ is the expansion of Γ by names for the components of Γ,
then Γ+ is homogeneous.

2. Every tournament of order n embeds as a transversal into Γ.
3. Aut(Γ) induces the full symmetric group on the n components

of Γ
Then Γ is the generic imprimitive homogeneous 2-multi-tournament
with n components of type T1.

Proof. With a slight change of language Γ+ may be viewed as an
n-partitioned tournament, replacing the relations 1−→ and 2−→ by the
various relations induced on each pair of components (not necessarily
distinct).

By our second and third hypotheses, any tournament

A = (a1, . . . , an)

of order n embeds as a transversal into Γ with ai mapping to the i-th
component. In other words, every possible transversal occurs.

By Fact 20.28 it suffices to check that the 2-restrictions of Γ+ are
generic imprimitive with two components of type T1.

When the components are of type Q or S then Fact 20.29 applies
directly.

So suppose the components are of type T∞. We refer to Fact 20.30.
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In that result, the term diagonal type refers to the case in which
one of the cross relations defines a bijection β between the two com-
ponents. This cannot happen when we have just two cross types, as
we would have the three relations y = β(x), y 1−→ β(x), β(x) 1−→ y.

Furthermore, as there are only two cross types, the decomposition

P = P 0 ⊔ P+ ⊔ P−

with P 0 non-empty must have P+ or P− empty and thus Γ(P) is
the generic imprimitive homogeneous 2-partitioned tournament with
two classes.

The result follows. □

20B.2.2. Structure of u2.

Lemma 20.33. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament with n < ∞ components, of general type. Let C1, C2 be two
1∼-classes and let A ⊆ C1 be finite and transitive (a linear order). Let

A′ = {x ∈ Γ |x ∈ a′ (all a ∈ A)}.

Then A′ ∩ C2 is infinite.

Proof. Supposing the contrary, take a minimal counterexample
A. For any m <∞ set

Fm(A) = {C ∈ Γ/
1∼ |C ̸= C1, |A′ ∩ C| < m}

Choose m so that Fm(A) is nonempty.

Claim 1. For A1, A2
∼= A in C1, Fm(A1) = Fm(A2).

Take Bi
∼= A in C1 for i ∈ N such that Bi

1−→ Bj for i < j.
There is then i < j for which Fm(Bi) = Fm(Bj). If A1

1−→ A2 then
by homogeneity we conclude Fm(A1) = Fm(A2). In general, we take
A3
∼= A with A1, A2

1−→ A3 and apply the previous case. This proves
the claim.

Thus we may write Fm(C1) = Fm(A) for any choice of A within
C1. Then Lemma 20.12 implies that Fm(C1) consists of all classes in
Γ/

1∼ other than C1.
Now let A = A0 ∪ {a∗}, where A0

1−→ a∗. Fix a 1∼-class C ̸= C1.
Then A′

0 ∩ C is infinite.
Take a subset B of {b ∈ C1 |A0 → b} with |B| = m. For b ∈ B, by

hypothesis b′ ∩ (A′
0 ∩C2) is finite, so ′B ∩ (A′

0 ∩C2) is infinite. Take
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A∗ ⊆ ′B ∩ (A′
0 ∩C2) isomorphic to A. Then B ⊆ (A∗)′, |B| = m, but

C1 ∈ Fm(A∗), a contradiction. □

In the next lemma we use the fact that if the generic tournament
T∞ is partitioned into finitely many pieces then every finite tour-
nament embeds into one of the pieces—actually it is easy to show
that T∞ itself embeds into one of the pieces; this stronger property
is called indivisibility. Cf. El-Zahar and Sauer [1991], [1993].

Lemma 20.34. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of general type. Then for u ∈ Γ the components of u2 are
isomorphic to the components of Γ.

Proof. If the components of Γ are of type Q or S, then by as-
sumption the components of u2 are dense in the components of Γ,
and the result follows. So we may suppose the components of Γ are
of type T∞.

If the result fails, then there is a finite substructure A of T∞ which
does not embed in u2 for u ∈ Γ. Fix two 1∼-classes C1, C2 and take A
embedded into C2. Then ′A∩C1 is empty, that is, C1 is the union of
the sets a′∩C1 as a varies over A. As this is a finite union, one of the
sets a′ ∩C1 contains a copy A1 of A, and this is a contradiction. □

Lemma 20.35. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of general type. Suppose that |Γ/ 1∼| = n with 3 ≤ n < ∞.
Then for u ∈ Γ, the homogeneous 2-multi-tournament u2 is not a
composition.

Proof. If the lemma fails, fix a 1∼-class C and for x ∈ C let Tx be
the tournament induced on x2/

1∼ by 2−→.
By Lemma 20.12, x2 meets every 1∼-class other than C, so this gives

a corresponding (and isomorphic) tournament structure on (Γ \C)/
1∼.

Let T ∗
x denote the latter.

For any two elements x, y ∈ C, x2 ∩ y2 also meets every 1∼-class
other than C, by Lemma 20.33. It follows that T ∗

x = T ∗
y , and this

tournament may be denoted TC .
In particular for three distinct 1∼-classes C,C1, C2, no automor-

phism of Γ takes (C,C1, C2) to (C,C2, C1). With x ∈ C fixed, take

A1 = x2 ∩ C1; A2 = x2 ∩ C2;

B1 = x2
op ∩ C1; B2 = x2

op ∩ C2.
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If there are arcs (a1, b2) and (a2, b1) having the same orientation with
ai ∈ Ai, bi ∈ Bi, then there is an automorphism taking (x, a1, b2) to
(x, a2, b1), which then takes (C,C1, C2) to (C,C2, C1), for a contra-
diction. Thus the arcs between A1 and B2 have a fixed orientation,
which agrees with the orientation of arcs between B1 and A2. On the
other hand, the arcs between A1 and A2 also have a fixed orientation,
and as Γ is not a composition, these orientations are opposite.

Furthermore, if there are arcs of two orientations between B1 and
B2, then again we can find an automorphism carrying C to itself and
switching C1, C2.

We conclude that there are at just two types realized in C1 over C2,
namely those realized by points of A1, and those realized by points of
B1. As Γ/ 1∼ is finite, there are in fact only finitely many types realized
in C1 over the rest of Γ. But C1 is primitive, and so all points of C1

realize a single type over the rest of Γ, and Γ is itself a composition,
which is a contradiction. □

Lemma 20.36. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of general type, with components of type Q or S. Suppose that
|Γ/ 1∼| = n with n <∞. Then for any two 1∼-classes C1, C2, and any
finite transitive substructure L of C1, every 1-type over L is realized
in C2 (that is, every subset of L is of the form a′ ∩ L with a ∈ C2).

Proof. Take u ∈ C2 and use the density of c′ ∩ C1 and ′c ∩ C1

in C1 to find a transitive substructure L1 of C1 so that uL1 has the
desired isomorphism type.

Then take vertices c1 ∈ L′
1 ∩ C2 and c ∈ L′ ∩ C2, and take an

automorphism carrying c1L1 to cL. Then u goes to a realization of
the desired type in C2. □

Lemma 20.37. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of general type. Suppose that |Γ/ 1∼| = n with n < ∞. Then
for u ∈ Γ, u2 is of general type, with components as in Γ.

Proof. We dealt with the components in Lemma 20.34, and by
Lemma 20.35, u2 is not a composition.

So it suffices to show that u2 is not shuffled. In particular, we may
suppose the components of Γ are of type Q or S.
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We perform an amalgamation. Define

L = {u1, u2, u3, u4}, L transitive with u1
1−→ u2

1−→ u3
1−→ u4;

A0 = Lu, u
2−→ u1, u2, u4; u

2←− u3;

A1 = A0 ∪ {a1}, a1
2−→ u1, u2, u4, a1

2←− u3, a1
2−→ u or u

2−→ a1;

A2 = A0 ∪ {a2}, a2
2−→ u1, u3, u4, a2

2←− u2, a2
1−→ u or u

1−→ a2.

Note that the 1∼-classes involved here are L, a1, and a2u.
If A1, A2 embed into Γ then we amalgamate them over A0. Then

a1
2−→ a2 or a2

2−→ a1, and correspondingly

a1 → (a2, u1, u2, u4) or a2 → (a1, u1, u3, u4)

which will show that a′1 or a′2 is not convex.
So it remains to check that A1 and A2 embed into Γ.
Take three 1∼-classes C,C1, C2 and L ⊆ C. It suffices to realize the

type of a1 over L in C1, and to realize the types of a2 and u over L
in C2, using Lemma 20.36. □

20B.2.3. Identification: General type (finite quotient).

Lemma 20.38. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of general type, with components of type T (Q, S, or T∞).
Suppose that |Γ/ 1∼| = n with n <∞. Then Γ is the generic homoge-
neous 2-multi-tournament with n components of type T .

Proof. We will argue by induction on n.
For u ∈ Γ, u2 is of general type, with (n − 1) components of type

T , by Lemma 20.37. So we suppose that u2 is the generic imprimitive
homogeneous 2-multi-tournament with (n − 1) components of type
T .

Let Γ+ be the expansion of Γ by names for the components.

Claim 1. Γ+ is homogeneous.

We suppose α : A
∼=−→ B with A,B finite, by an isomorphism re-

specting the labels on the 1∼-classes. Then A and B meet the same
1∼-classes of Γ. We must find an automorphism of Γ leaving the com-
ponents invariant and taking A to B.
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We argue by induction on the number of 1∼-classes disjoint from
A in Γ. If A meets all 1∼-classes of Γ then any extension of α to an
automorphism of Γ will be an automorphism of Γ+.

Now suppose A does not meet the 1∼-class C of Γ. Take u ∈ C.
There is a copy of A ∪ B in u2 and hence there is some v ∈ Γ with
A∪B ⊆ v2. Replacing A,B by A1 = A∪{v}, B1 = B∪{v}, we reduce
the number of 1∼-classes disjoint from A1 and conclude by induction.

Claim 2. Every 2−→-tournament K of order n embeds as a transver-
sal into Γ.

Let a, b ∈ K, K0 = K \ {a, b}. Construct A0 = K1 ∪K2 ∪ {u} so
that

K1,K2
∼= K0, u

2−→ K1K2;

k1
1−→ k2 if the elements k1 ∈ K1 and k2 ∈ K2

correspond to the same element of K0.

Adjoin a1, a2 with

u
1−→ a1 u

2−→ a2;

tp(a1/K1) = tp(a/K0), tp(a2/K1) = tp(b/K0);

tp(a1/K2) = tp(b/K0), tp(a2/K2) = tp(a/K0).

Amalgamating A1 = A0 ∪ {a1} with A2 = A0 ∪ {a2} over A0 gives
a1

2−→ a2 or the reverse, with correspondingly

K1a1a2 or K2a2a1 ∼= K.

u

a1 a2

K1

K2

We claim that the factors A1, A2 embed into Γ. Note however that
at this point we cannot control which 1∼-classes of Γ the elements
corresponding to a, b lie in.

The factor A1 meets only (n− 1)
1∼-classes of Γ, so it embeds into

Γ.
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The factor A2 is of the form u
2−→ (a2K1K2) and a2K1K2 meets

only (n− 1)
1∼-classes of Γ. Hence A2 also embeds into Γ. Therefore

we can make the indicated amalgamation to embed K into Γ.
The claim follows.

Claim 3. AutΓ induces the full symmetric group on Γ/
1∼.

Let L = (a1, . . . , an) be a transitive tournament and T1, . . . , Tn an
enumeration of the components. Then we can embed L into Γ with ai
mapping to Ti, by sending a1 to u ∈ T1 and then applying induction
to u2. Call the image L1.

Similarly we can map L into Lσ ⊆ Γ so that ai goes into Tiσ

for any permutation σ. The isomorphism L1
∼= Lσ extends to an

automorphism of Γ which acts on the components like σ.
This proves the claim.
Now apply Lemma 20.32 to conclude. □

20B.3. Infinite quotients and the parity constraint. It re-
mains to classify the homogeneous 2-multi-tournaments with infinite
quotient. This case subdivides, as we have the semi-generic 2-multi-
tournaments with specified classes. So we adopt the following termi-
nology for the sake of brevity.

Definition 20.39. Let Γ be a homogeneous 2-multi-tournament.
1. Γ is of semi-generic type if Γ is of general type, Γ/ 1∼ is infinite,

and the parity constraint is satisfied.
2. Γ is of generic type if Γ is of general type, Γ/ 1∼ is infinite, and

the parity constraint is not satisfied.

Lemma 20.40. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of semi-generic type. Then for u ∈ Γ, u2 is not a composition.

Proof. Let C be the 1∼-class of u. Suppose u2 is a composition.
Take C1, C2 two more 1∼-classes with

u2 ∩ C1
2−→ u2 ∩ C2.

Set

A1 = u2 ∩ C1, A2 = u2
op ∩ C1, B1 = u2 ∩ C2, B2 = u2

op ∩ C2.
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Over u

C1 C2

u2: A1
2−→ B1

u2
op : A2 ? B2

If there are a1 ∈ A1, a2 ∈ A2, b1 ∈ B1, b2 ∈ B2 such that (a1, b2)
and (b1, a2) have the same orientation, then there is an automorphism
fixing u and interchanging C1, C2, which gives a contradiction.

It follows that A1 × B2 and A2 × B1 each realize one 2-type, and
these types are the same. In particular, any two points of A1 realize
the same type over B1 ∪B2 = C2.

Take a1, a2 ∈ A1 with a1
1−→ a2, and b1, b2 ∈ C1 with b1

1−→ b2.
Using the parity constraint it follows easily that there are c1, c2 ∈ C2

with a1, a2
2−→ c1, and b1, b2

2−→ c2. There is an automorphism taking
(a1, a2, c1) to (b1, b2, c2). As (a1, a2) realize the same type over C2,
the same applies to (b1, b2). Thus all a ∈ C1 realize the same type
over C2, Similarly all a ∈ C2 realize the same type over C1. But then
Γ is a composition. □

Lemma 20.41. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of semi-generic type. Then Γ is the semi-generic tournament
with components of the given type.

Proof. We will prove the following by induction on n.

If A is a finite imprimitive 2-multi-tournament with n
1∼-classes, and A satisfies the parity constraint, then
A embeds into Γ.

(∗n)

So we fix A with n
1∼-classes and we assume the claim holds when

fewer classes are involved.

Claim 1. Without loss of generality, A has at most one nontrivial
1∼-class.

We take a transversal K to A and view A as the amalgam of
structures AC = K ∪ C, with C varying over 1∼-classes in A. By the
parity constraint, A is the unique amalgam of these structures.

Now suppose the following.
(⋆) n = 2.
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If the components of Γ are of type Q or S then as u2 ∩ C and
u2

op ∩C are dense in C for u /∈ C, the claim follows. So suppose the
components of Γ are of type T∞.

We consider Γ∗ = (u2 ∩ C, u2
op ∩ C) for u /∈ C. This is a homo-

geneous 2-partitioned tournament with labeled parts, whose compo-
nents are of type T∞, and with at most two cross types. It suffices
to show that Γ∗ is generic with two cross types.

If there is just one cross type then u2∩C 1−→ u2
op∩C or the reverse.

But C ∼= T∞ has no such decomposition with nonempty parts. So
there are two cross types. Now apply Fact 20.30.

This disposes of the case n = 2, and the result to be proved is
trivial for n = 1. So we now suppose the following.
(⋆) n ≥ 3.

We have A = KC with K a 2−→-tournament and C a single 1−→-
class. Fix a, b ∈ K and let K0 = K \ {a, b}. Take K1C1,K2C2

∼= K0C
and form A0 = K1K2uv with

uvC1C2 a 1∼-class,

k1
1−→ k2 when k1, k2 correspond to the same element of K0,

and so that A0 satisfies the parity constraint.
Now amalgamate A1 = A0 ∪ {a1} with A2 = A0 ∪ {a2} over A0,

where

a1K1C1
∼= a2K2C2

∼= aK0C; a2K1C1
∼= a1K2C2

∼= bK0C;

a1
2−→ u, v, v

2−→ a2
2−→ u.

Now A1, A2 involve (n−1) 1∼-classes and satisfy the parity constraint,
hence embed into Γ.

In their amalgam, the points u, v force a1, a2 to lie in distinct 1∼-
classes. So a1

2−→ a2 or a2
2−→ a1, and correspondingly (a1a2K1C1)

or (a2a1K2C2) is isomorphic to KC = A. □

20B.4. Generic type: 2-restrictions. Now we consider the case
in which Γ is of generic type: that is, of general type, with an infi-
nite quotient, and not satisfying the parity constraint. We begin by
showing that the restriction of Γ to two components is a generic im-
primitive 2-multi-tournament with two classes (Lemma 20.45). But
this requires some preliminaries.

By Lemma 20.34 the components of u2 are as in Γ, for u ∈ Γ.



116 20. Imprimitive homogeneous 2-m.t.’s

Lemma 20.42. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type with components of type Q. Then for any
two 1∼-classes C1, C2 and any finite configuration (L1, L2) with two
transitive 1∼-classes, there is an embedding of L1L2 into Γ which takes
L1 into C1 and L2 into C2.

Proof. By amalgamations with unique solutions we reduce to the
case |L1| = |L2| = 2 and we adopt the notation

L1 = {a1, a2}, L2 = {b1, b2};

a1
1−→ a2, b1

1−→ b2.

Inserting u with a1
1−→ u

1−→ a2 and u
2−→ b1, b2, and determining

the type of (a1, a2) by an amalgamation, we reduce to the cases in
which a1

2−→ b1, b2 or a2
2−→ b1, b2.

Suppose for example a1
2−→ b1, b2. Consider (a′1 ∩ C1, a

′
1 ∩ C2),

a homogeneous 2-partitioned tournament with labeled parts having
components of type Q and two cross types. It follows that if a2 realizes
the same type over b1 and b2, this configuration is realized; similarly
if we begin with a2

2−→ b1, b2. Accordingly only four configurations
come into consideration.

(I) a1
2−→ b1, b2 : (IA) b2

2−→ a2
2−→ b1 (IB) b1

2−→ a2
2−→ b2

(II) a2
2−→ b1, b2 : (IIA) b1

2−→ a1
2−→ b2 (IIB) b2

2−→ a1
2−→ b1

Reversal of 1−→ interchanges (IA) and (IIA), as well as (IB) and
(IIB).

We now consider the two amalgamation diagrams shown.

a1

a2

b1

u

b2

(1)

a1

a2

b1

u

b2

(2)
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These force b1 → b2 and hence produce (IA) or (IB) respectively.
Consider their factors (Figure 12).

a1

a2

b1

u

(1.1)

a1

a2

u

b2

(1.2)

a1

a2

b1

u

(2.1)

a1

a2

u

b2

(2.2)

Figure 12. Factors

Suppose configuration (IB) embeds into Γ. The configuration (1.2)
is isomorphic to (IB). Viewing the configuration (1.1) as an amalga-
mation diagram with the type of (a1, u) left to be determined pro-
duces either the configuration (IA) or the factor (1.1). As the con-
figurations (1.1, 1.2) give (IA) by amalgamation, it follows that

(IB)=⇒ (IA);

that is, if (IB) embeds in Γ, then (IA) does as well.
Similarly, (2.2) can be viewed as an amalgamation diagram to de-

termine the type of (a1, u), and (2.1) is isomorphic to (IIA). So we
find

(IIA)=⇒ (IB).

Reversing 1−→, these relations become

(IIB)=⇒ (IIA); (IA)=⇒ (IIB).
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Now since Γ does not satisfy the parity constraint, one of the config-
urations (IA, IB, IIA, IIB) embeds into Γ, and it follows that they
all do. □

Lemma 20.43. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type with components of type S. Then for any two
1∼-classes C1 and any finite configuration (L1, L2) with two transitive
1∼-classes, there is an embedding of L1L2 into Γ which takes L1 into
C1 and L2 into C2.

Proof. Fix c1 ∈ C1 and c2 ∈ C2. Let Γc1,c2 = (U1, U2) with

U1 = c11 ∩ c2
op

2 ; U2 = c12 ∩ c2
op

1 .

This is a homogeneous 2-partitioned tournament with labeled com-
ponents of type Q, and two cross types, and it realizes both cross
types.

In fact, for u ∈ U2, as u2 and u2
op meet C1 in dense subsets, they

meet U1 in dense subsets. So Γc1,c2 is a 2-partitioned tournament of
generic type with components of type Q.

The result follows. □

Lemma 20.44. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type. Then for any two 1∼-classes C1, C2 and any
finite configuration (A,B) with two 1∼-classes, each embedding in the
components of Γ, there is an embedding of AB into Γ which takes A
into C1 and B into C2.

We do not yet claim that the restriction of Γ to two 1∼-classes is
homogeneous.

Proof. Let T be the type of the components. Lemma 20.42 han-
dles the case in which T = Q, so we suppose T is S or T∞.

By hypothesis the parity constraint is violated in C1 ∪C2. Up to a
change of language we may take a1, b1 ∈ C1 and a2, b2 ∈ C2 so that

a1
2−→ a2, b2, b2

2−→ b1
2−→ a2,

a1
1−→ b1.

Let p = tp(b2/a2), and set

Γ∗ = (U, V ) with U = (a11 ∩ b2
op

1 , V = a21 ∩ ap2).
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Claim 1. Γ∗ has components of type T if T = T∞, and type Q if
T = S.

We have b2
op

1 ∩ C1, a21 ∩ C2
∼= T , and we compute a11 or ap2 there.

Claim 2. Γ∗ realizes both cross types 2−→ and 2←− from U to V .

The type b2
2−→ b1 is realized by hypothesis.

The type b1
2−→ b2 corresponds to

a1, a2
2−→ b1, b2

If there is a ∈ a11 ∩ C1 with a2 ∩ a21 ∩ C2 containing two points,
this suffices. Assume the contrary. Fix c1, c2 ∈ a11 ∩ C1. Then with
at most two exceptions, for d ∈ a21 ∩ C2 we have d

2−→ c1, c2. Take
d1, d2 ∈ a21∩C2 with d1, d2

2−→ c1, c2. Take an automorphism carrying
d1, c1 to a1, d1. Then a2, d2 go to some u, v with

a1
1−→ v; d1

1−→ u; a1, v
2−→ d1, u.

This proves the claim.

Claim 3. Γ∗ is a generic 2-partitioned (labeled) tournament.

Since Γ∗ realizes both cross types, the only alternative, according
to Cherlin [1998], would be that the components of Γ∗ are local orders
and they are shuffled (cf. Facts 20.29 and 20.30 and the discussion in
§20B.2.1).

But by Lemma 20.43 every finite configuration (L1, L2) with L1, L2

transitive embeds into Γ. This gives a contradiction.
Now if T = T∞ then as Γ∗ has the same components as Γ, our

lemma is proved. So it remains to complete the analysis for the case

T = S.

Claim 4. Let (A,L) be finite with A, L 1−→-classes, A a local order
and L transitive. Then (A,L) embeds into Γ.

Define A∗ as the class

{A |A is a finite 1−→-local order and any finite extension (A,L)

with L a transitive 1−→-tournament and cross types 2−→, 2←−
embeds into Γ}



120 20. Imprimitive homogeneous 2-m.t.’s

Then A∗ is an amalgamation class containing all finite transitive
1−→-tournaments. Hence our claim reduces to the claim that

C3 ∈ A∗.

So we consider (C3, L) with C3 = (a, b, c) and L finite and transi-
tive. We make an amalgamation to determine the type of (a1, a2) in
a configuration a1a2uvL1L2 in which

a1
1−→ v

1−→ a2
1−→ u

1−→ a1; u
1−→ v; L1

1−→ L2;

aL ∼= a1L1
∼= a2L2; bL ∼= a2L1

∼= a1L2; cL ∼= uL1
∼= uL2.

a1 a2

u

v

L1

L2

1

1 1

11

Thus in the amalgam a1
1−→ a2 or a2

1−→ a1 and correspondingly
(a1a2uL1) or (a2a1vL2) will be isomorphic to C3L. So it suffices to
check that the factors omitting a2 or a1 embed into Γ, in some match-
ing forms (we have not yet settled the types of v over L1 or u over
L2).

The factor omitting a2 is the union of two transitive 1∼-classes and
embeds in Γ∗, hence in Γ. So it suffices to find a suitable form for the
factor omitting a1.

a2

u

v

L1

L2

1

1

1

We may obtain a suitable factor as an amalgam in which the type
of v over L1 remains to be determined. The factor omitting v is then
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a union of two linear classes, so this leaves us with the factor omitting
L1.

a2

u

v

L21

1

1

We view the diagram as an amalgamation in which the type of u
over L2 remains to be determined. Then both factors embed in Γ and
we may conclude. This proves the claim.

Claim 5. Let (A,B) be finite with A, B
1−→-classes, and each a

local order. Then (A,B) embeds into Γ.

We consider the class A∗∗ of finite A obeying the stated conditions
for general B. This is then an amalgamation class, and by the previ-
ous claim it contains all finite transitive 1−→-tournaments. It suffices
to show that it contains C3. So we know that any extension (A,L)
with A ∼= C3 and L transitive embeds into Γ and we need to deal
with (A,B) where B is a finite local order.

We repeat the amalgamation argument used in the previous claim,
replacing L1, L2 by B1, B2 and dropping the condition L1

1−→ L2 in
favor of: B1 ∪B2 is a local order. This goes as before.

The last claim completes the proof of the lemma in the last re-
maining case, namely when T = S. □

Lemma 20.45. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type and components of type T . Then for any two
1∼-classes C1, C2 the restriction of Γ to C1 ∪C2 is a generic 2-multi-
tournament with two components of type T .

Proof. By the previous lemma, it suffices to show that the re-
striction of Γ to C1 ∪ C2 is homogeneous.

Let A,B ⊆ C1 ∪ C2 be finite and f : A
∼=−→ B. If A meets C1 and

C2 then any automorphism of Γ extending f takes C1 ∪ C2 to itself.
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There remains the case in which A ⊆ C1 and B is contained in C1

or C2. Since we may interchange C1, C2 by an automorphism of Γ,
we may suppose B ⊆ C1.

Let L be finite and transitive so that (A,L) realizes every 1-type
involving 2−→,

2←− over A. Embed (A,L) into (C1, C2) as (A∗, L∗)
(Lemma 20.44).

Take c ∈ C2 and an automorphism α of Γ carrying (A, c) into
(A∗, L). Similarly find an automorphism β carrying (B, c) into (A∗, L).
Then α, β preserve C1 and C2 and α[A] = β[B]. So there is an auto-
morphism of C1 ∪ C2 taking A onto B.

The claim follows. □

20B.5. Generic type: Structure of u2.

Lemma 20.46. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type with components of type T .

Then for u ∈ Γ, u2 is not of shuffled type.

Proof. By Lemma 20.34 the components of u2 are of type T .
Thus it suffices to consider the cases T = Q or S.

Let L = {u1, u2, u3, u4} be transitive of order 4 with

u1
1−→ u2

1−→ u3
1−→ u4.

Take u, a1, a2 satisfying

u
2−→ u1, u2, u4, u3

2−→ u, u
1−→ a1 La1 ∼= Lu;

a2
2−→ u1, u3, u4, u2

2−→ a2 u,
2−→ a2 or a2

2−→ u.

u1

u2

u3

u4

u

a1 a2

In an amalgam of Lua1 with Lua2 over Lu, we have a1
2−→ a2 or

a2
2−→ a1 and correspondingly a1

2−→ (u1u2u4a2) or a2
2−→ (u1u3u4a1).
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It then follows that a′1 or a′2 is not of shuffled type. So it suffices to
show that the factors omitting a2 or a1 in this diagram embed into
Γ.

The factor omitting a2 has only two 1∼-classes and is afforded by
Lemma 20.45.

For the factor omitting a1 it suffices to realize the types of u and
of a2 over L in distinct 1∼-classes. Again by Lemma 20.45, after em-
bedding L into one such class, each of these types may be realized in
any other class. □

Lemma 20.47. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type and components of type T . Then for u ∈ Γ,
u2 is of generic type with components of type T .

Proof. By Lemma 20.34 the components of u2 are of type T .
Since u2 is not a composition or shuffled, it must be semi-generic
or of generic type. So suppose toward a contradiction that u2 is
semi-generic. In particular, any configuration satisfying the parity
constraint embeds into Γ.

Consider the following amalgamation.

u

a1

a2

a∗
2

b1

b2

u
2−→ a1, a2, b1, b2, a∗2

2−→ u;

a1
2−→ b1, b2, a2, a

∗
2

2−→ b1, b2
2−→ a2, a

∗
2.

In any amalgam a1, a2, b1, b2 will violate the parity constraint and lie
in u2. So it suffices to check that the factors omitting a1 or a2 embed
in Γ.

As a2, a
∗
2 realize the same type over b1, b2, the parity constraint

holds in the factor omitting a1.
The factor omitting a2 is obtained by amalgamating the subfactors

ua2b1b2 with a2a
∗
2b1b2 to determine the type of (u, a∗2). If a∗2

2−→ u
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we have the required factor and if u
2−→ a∗2 we violate the parity

constraint in u2.
Finally, the subfactors ua2b1b2 and a2a

∗
2b1b2 embed into Γ as both

satisfy the parity constraint. □

20B.6. Infinite quotient, generic type: conclusion.

Notation 20.48. Suppose that Γ is a homogeneous 2-multi-tourna-
ment of generic type with Γ/

1∼ infinite, with components of type T ,
and with associated amalgamation class A. Let A∗ be the class of all
A ∈ A such that

For all finite expansions A∪B of A by one additional
1∼-class B which embeds in T , we have

AB ∈ A

Notice that A∗ is again an amalgamation class. Let Γ∗ denote the
corresponding homogeneous 2-multi-tournament. By Lemma 20.45,
this has the same components as Γ.

A word of explanation: our expectation here is that A∗ = A, and
if we knew that this is the case, then the identification of Γ would
be trivial: it would follow by induction on the number of 1∼-classes
that a finite imprimitive structure with components embedding in T
must itself embed into Γ. The way we actually argue is to show that
A∗ is sufficiently like A to make this argument work. This idea of
induction over amalgamation classes goes back to the classification
of homogeneous graphs by Lachlan and Woodrow (and was key also
in Part 1).

Lemma 20.49. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type. Then the configuration A = (a, b) with a

2−→ b
lies in A∗.

Proof. We make an amalgamation of the form a1uB1B2 with
a2uB1B2 over uB1B2 with u

1−→ a1 and u
2−→ a2 so that (a1a2B1) or

(a2a1B2) is isomorphic to AB. The element u ensures that a1
2−→ a2

or a2
2−→ a1. We also take u

2−→ B1B2.
The factor omitting a2 has the two 1∼-classes (u, a1) and B1B2.

The factor omitting a1 consists of a2B1B2 in u2. As u2 is again of
generic type this factor embeds in Γ as well. □

Now we show that Γ∗ is not composite.
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Lemma 20.50. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type. Then the configuration A = (a1, a2, b) with
a1

1−→ a2 and a1
2−→ b

2−→ a2 lies in A∗.

a1

a2

b1

2

2

Figure 13. A (Lemma 20.50)

Proof. We consider an extension AB by an additional 1∼-class.
We set up an amalgamation as follows to force (a1a2uB1) or (a2a1vB2)
to be isomorphic to the given extension AB.

a1

u

a2

v

B1

B2

1 1
2 2

2

Now the factor omitting a1 is of the form A2B1B2 with A2 =
(u, v, a2). Here A2 ∈ A∗ since A∗ is an amalgamation class containing
all finite transitive 1−→-tournaments as well as the configuration of
Lemma 20.49. Thus it suffices to deal with the factor (a1uvB1B2).

We may treat this factor as an amalgamation problem in which
the type of uB2 is to be determined. Its factors are (a1vB1B2) and
(a1uvB1). The former we already know is embedded in Γ (Lemma
20.49).

For the factor (a1uvB1), we fix some b ∈ B1 and treat the configu-
ration as an amalgamation problem to determine the type of v over
B1 \ {b}. Again, the factor (a1uB1) presents no problem and we come
down to the factor (a1uvb). But this may be written as (vb)∪{a1, u}
and again Lemma 20.49 applies. □

Thus Γ∗ is not composite. Continuing in the same vein, we show
next that Γ∗ is not of shuffled type.
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Lemma 20.51. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type. Then the configuration A = (a1, a2, a3, b)

with a1
1−→ a2

1−→ a3 transitive and b
2−→ a1, a3 lies in A∗.

a1

a2

a3

b

Proof. We consider any extension AB of the desired type, and
make the following amalgamation, designed to force (u1a1u3a2B1)

or (a1u2u3a2B2) to be isomorphic to AB, according as a1
2−→ a2 or

a2
2−→ a1.

u1

a1

u2

u3

a2 B1

B2

It suffices to show that the factors embed in Γ.
The factor omitting a2 is in Γ by Lemma 20.45. The factor omit-

ting a1 is obtained by treating it as an amalgamation problem, to
determine the type of u3 over B1. (Figure 14).

In this amalgamation, the factor omitting u3 is covered by a vari-
ant of Lemma 20.50. The factor omitting B1 is constructed as an
amalgamation determining the type of u2 over B1. Both factors of
this last diagram embed in Γ. □

Lemma 20.52. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type. Then the associated homogeneous 2-multi-
tournament Γ∗ violates the parity constraint.
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u1

u2

u3

a2 B1

B2

Figure 14

Proof. Assume the contrary. Then by our results so far, Γ∗ is
semi-generic. In particular Γ contains any configuration which does
not violate the parity constraint, as long as the 1∼-classes embed in
the components of Γ.

Let A be the configuration (L1, L2) with L1 = {a1, a2}, L2 =
{b1, b2}, satisfying

a1
1−→ a2, b1

1−→ b2,

a1
2−→ b1, b2, b2

2−→ a2
2−→ b1.

It suffices to show that A belongs to A∗. So we fix an extension
AB of the desired type and consider the following amalgamation
diagram, designed to force one of (u1a1va2B1) or (a1u2va2B2) to be
isomorphic to AB.

u1

a1

u2

v

a2
B1

B2

The configuration (u1a1u2v) satisfies the parity constraint, vacu-
ously, and hence belongs to A∗ under our current hypotheses. So the
factor (u1a1u2vB1B2) embeds in Γ.
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The factor (u1u2va2B1B2) may be viewed as an amalgamation di-
agram determining the type of u2 over B1. Again (u1va2) belongs to
A∗ so we come down to the factor (u1u2va2B2). This may be viewed
as an amalgamation diagram determining the type of u1 over B2,
with factors (u1u2va2) and u2va2B2, both embedding in Γ. □

Now we may conclude.

Lemma 20.53. Let Γ be an imprimitive homogeneous 2-multi-tour-
nament of generic type with components of type T . Then Γ is the
generic imprimitive 2-multi-tournament with components of type T .

Proof. We show the following by a very formal induction on n.

Any finite 2-multi-tournament K with at most
n

1∼-classes whose components embed into T
embeds into Γ.

(∗n)

Furthermore we construe this as applying, with n fixed, to any im-
primitive homogeneous 2-multi-tournament of generic type.

We know this property already for n = 2, so we suppose that n ≥ 3

and the claim holds for fewer than n
1∼-classes.

Claim 1. Any finite 2-multi-tournament K of order (n− 1) whose
components embed into T lies in A∗.

We consider a configuration KB with B an additional 1∼-class. If
K has at most (n− 2)

1∼-classes then KB embeds into Γ by assump-
tion. So we may suppose the verticees of K lie in distinct 1∼-classes.
Fix a, b ∈ K distinct, and let K0 = K \ {a, b}. Form the usual amal-
gamation diagram ua1a2K1K2B1B2 so as to force (a1a2K1B1) or
(a2a1K2B2) to be isomorphic to KB, with

u
1−→ a1, u

2−→ a2K1K2B1B2.

It suffices to check that the factors omitting a2 or a1 embed into Γ.

u

a1 a2

K1

K2

B1

B2

1 2
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The factor omitting a2 has only (n−1) 1∼-classes, so embeds in Γ by
hypothesis. The factor omitting a1 has the form (u

2−→ a1K1K2B1B2)
and u2 is of generic type, so by the induction hypothesis, applied to
u2, this factor also embeds into Γ.

The claim follows.
It follows that Γ∗ is of general type with at least (n − 1) classes,

and does not satisfy the parity constraint. If Γ∗ has finitely many
classes then it is of generic type by our previous analysis. If Γ∗ has
infinitely many classes then our induction hypothesis applies and Γ∗

contains any configuration with (n− 1)
1∼-classes whose components

embed into T .
Hence in any case, if A is a configuration with (n − 1)

1∼-classes
whose components embed into T then A is in A∗, and hence AB
embeds in Γ, as required.

Thus condition (∗n) holds for all n, and Γ is generic. □

At this point, as we now verify, the classification of the imprimitive
homogeneous 2-multi-tournaments is complete.

Proof of Proposition 20.6. By Lemma 20.18, Γ is of shuffled
type or general type.

The classification of shuffled type is completed in Lemma 20.26.
For general type with Γ/

1∼ finite, the classification is given in
Lemma 20.38. When Γ/

1∼ is infinite, the classification is given in the
semi-generic case in Lemma 20.40 and in the generic case in Lemma
20.53. □

According to the general philosophy, or expectation, that the 3-
constrained structures are the key to classifying homogeneous struc-
tures for finite binary languages, the next point to consider is the
classification of the 3-constrained cases. We deal with this point in
the next chapter.





CHAPTER 21

3-CONSTRAINED HOMOGENEOUS
2-MULTI-TOURNAMENTS

With the classification of the imprimitive homogeneous 2-multi-
tournaments in hand, we turn to the primitive case. We take up the
following two points, which make up the first phase of a systematic
analysis.

(a) What are the 3-constrained homogeneous 2-multi-tournaments?
(b) Must every homogeneous 2-multi-tournament not in our catalog

have a pattern of forbidden triangles corresponding to some 3-
constrained amalgamation class?

(Cf. §18C.6.)
Recall that the 3-constrained homogeneous structures are those for

which the associated amalgamation class is determined by a class
of forbidden structures of order at most 3. In the case of multi-
tournaments their classification was dealt with very briefly, and with-
out proof, in the appendix to Cherlin [1998].

We will prove here that the table given in that reference is correct.
This involves three points.

(I) Demonstrating the existence of these structures;
(II) Giving natural interpretations of these structures, when we are

aware of them;
(III) Proving the completeness of the list given.

This last point—the full classification of these structures—requires
amalgamation arguments which are very much simplified by the as-
sumption that the structure is 3-constrained.

Conjecturally, essentially the same patterns of forbidden trian-
gles should be associated with any homogeneous 2-multi-tournament,
with known exceptions in the finite or imprimitive cases. This is our
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second problem, a much harder one. We take up in the next chapter,
and we do not fully resolve it.

Later we will see that in many cases the easy amalgamation ar-
guments of the present chapter can be replaced by more elaborate
ones leading to the same results. If the structure is 4-trivial in the
sense that every configuration of order 4 whose triangles embed in Γ
will itself embed in Γ, then most of the argument would run along
the same lines as in the 3-constrained case. Occasionally instances of
5-triviality are also required. We can work our way around the need
for 4-triviality but where 5-triviality is needed more severe difficulties
arise.

We remind the reader that a catalog of all known homogeneous
2-multi-tournaments is presented in §20A, and that this catalog is
complete as far as the degenerate, finite, or imprimitive cases are
concerned (Fact 20.4, Proposition 20.6). A more technical version of
the catalog, in terms of the minimal forbidden substructures, will be
given in our final Tables 22.1 (imprimitive case) and 22.2 (primitive,
non-free case).

Furthermore, in Part I we classified the homogeneous 2-multi-tour-
naments with a definable linear order. These were referred to in Part
I, interchangeably—for our purposes—as ordered graphs or as or-
dered tournaments, as discussed in Chapter 1 of Volume 1, §1C.

21A. Statement of the classification

We aim at the following.

Proposition 21.1. Up to a permutation of the language, the primi-
tive non-degenerate 3-constrained homogeneous 2-multi-tournaments
are the twelve shown in Table 18.1 together with the four free amalga-
mation classes which forbid only C3(1, 1, 1), or L3(1, 1, 1), or neither,
or both.

Since we deal with two asymmetric 2-types, the permutations of
the language considered here may switch the two labels and reverse
either or both 2-types.

The list given in Table 18.1 includes a finite 2-multi-tournament
and four infinite ones having definable linear orders. Since the finite
case and the case in which there is a definable linear order are also
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covered by complete classification results, at this point Proposition
21.1 reduces to the following (cf. §18C.6.1).

Proposition 21.2. Up to a permutation of the language, the primi-
tive non-degenerate 3-constrained homogeneous 2-multi-tournaments
with no definable linear ordering are the eleven shown in Table 21.1.

The entries in Table 21.1 are numbered 6 through 16. There entries
6 through 12 are the last seven entries of Table 18.1, and the addi-
tional entries are the free amalgamation classes. These structures are
divided into groups III–V with groups III and IV taken over from
Table 18.1 and with group V consisting of the free amalgamation
classes.

We will now discuss the classification as shown Table 21.1 in detail.
In particular we review the notation used for constraints, and the
“Type” descriptions of the individual cases.

The notation for constraints of order three was established in No-
tation 18.2, using the symbols C3, L3 for 3-cycles and transitive tour-
naments of order three, respectively, and the labels 1, 2 for the arc
colors (2-types). In particular the free amalgamation classes (group
V) are those with monochromatic constraints of one “color” only; we
may suppose that color is 1.

The main distinction in the table is between group III, where we
have a definable partial order (but, by hypothesis, no definable linear
order), and group IV, where we have no definable partial order, and
we do not have free amalgamation either.

In group III we may suppose the definable (strict) partial order
coincides with 1−→. In other words the relation 1−→ is transitive. This
condition corresponds to the three forbidden triangles listed as “Com-
mon Constraints” in this case. Further constraints are listed individ-
ually by case (except in group V where we have bundled the free
cases together, in an unspecified order, as we will not be examining
them in any detail).

Now we come to the entry under “Type.” Of the seven interesting
examples (numbered 6–12) we have sensible descriptions of three,
so we abandon the other four to the “exceptional” category.4 We

4Actually, the description of these structures in terms of forbidden partial sub-
structures in Lemmas 21.6 and 21.8 is more informative than the description in
terms of forbidden substructures given in the table, and makes the amalgamation
property relatively transparent.
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Primitive infinite 3-constrained homogeneous
2-multi-tournaments with no ∅-definable linear order

# Constraints Type

Group III: p.o. by 1−→, no ∅-definable linear order
Common Constraints, entries 6 and 7:
C3: 111, 112 L3: 112

Additional Constraints, entries 6 and 7:
6 C3: none L3: none P̃
7 C3: 221 L3: none Exceptional?

Group IV: Infinite, no ∅-definable partial order, not free
Constraints

8 C3: 111,112 L3: none Exceptional?
9 C3: 112 L3: 111 "

10 C3: 111,112 L3: 111 "
11 C3: 111,222 L3: 111,122,212 S̃(3)
12 C3: 111,112 L3: 121,211,221,222 S(4)

Group V: Free amalgamation classes
Constraints

13–16 C3 : 111 or none L3 : 111 or none Free

Table 21.1. Primitive infinite 3-constrained
homogeneous 2-multi-tournaments with no linear

order

will see however that the structures 8–10 have a weak kind of free
amalgamation, and an associated notion of Henson constraint, giving
rise to a larger family of homogeneous structures which are not 3-
constrained, but are standard in the sense of Definition 18.1.

The three structures that we do understand in a direct way are
labeled as follows.

1. P (without the tilde) is the generic partial order; this is a ho-
mogeneous directed graph.
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2. The structures S(n) will be introduced in Definition 21.10. S(2)
is S, S(3) is a homogeneous directed graph we have called the
myopic local order, and S(4) is a homogeneous 2-multi-tournament.
(The complexity of the language increases with n.)

3. The tilde is used to denote the operation of generic de-symmetri-
zation, and specifically, the operation which takes as input a
homogeneous directed graph whose associated amalgamation
class has strong amalgamation, and constructs the correspond-
ing homogeneous 2-multi-tournament in which the symmetric
non-edge relation of the directed graph is generically split into
an arc relation and its reverse.

Putting these conventions together we have the following identifi-
cations.

Entry #6 is the generically de-symmetrized generic partial or-
der;
Entry #11 is the generically de-symmetrized myopic local order;
Entry #12 is S(4); here S(n) is a homogeneous structure for a
binary language, and for n = 4 it is a 2-multi-tournament.

Entry #7 is a non-generic de-symmetrization of the generic partial
order, in which an additional constraint is imposed. In the context
of symmetric languages, we expect the additional constraints to be
Henson constraints in the sense that they involve types not needed
for amalgamation in the larger class; but it is not clear how one might
adapt this point of view to the anti-symmetric case.

This explains the meaning of our table. We claim that the listed
constraints define amalgamation classes, so that their Fraïssé limits
exist and are homogeneous 2-multi-tournaments; that the resulting
structures are as described, when we have a meaningful description;
and that this exhausts the class of infinite primitive non-degenerate
homogeneous 2-multi-tournaments with no definable linear order.

Notation 21.3. It will be convenient to have a notation for monochro-
matic 2-multi-tournaments; that is, having only one of the arc rela-
tions 1−→ or 2−→. If T is a finite tournament (typically, with arc relation
denoted →), then for i = 1 or 2 we let T i be the monochromatic 2-
multi-tournament derived from T by replacing the symbol for its arc
relation by the symbol i−→. So only the language changes; but there
are two possibilities and they need to be distinguished.

Occasionally we may use the variant notation T (
i−→) or even T (i).
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Note that this usage has nothing to do with the earlier Notation
20.1, Ai, extending the notation ai from points to configurations.
Fortunately that notation is not in use here.

21B. Existence

The first point to take up is the following.

Proposition 21.4. The classes specified by the various constraint
sets shown in Table 21.1 are amalgamation classes.

The cases which require attention are entries 7–10, where we check
amalgamation directly, and entries 6, 11, 12, where we must justify
the claim that the constraints shown characterize known structures
(and, in the case of 11–12, first make them known).

We may dispose of entry #6 at once. Certainly the generic de-
symmetrization of the generic partial order exists (that is, we desym-
metrize the incomparability relation), and by definition it is a homo-
geneous 2-multi-tournament. It is characterized by the transitivity of
the relation 1−→, which, as we have observed, amounts to forbidding
the three triangles listed.

So it remains to treat the exceptional cases by checking the amal-
gamation property, and to define the structures S(n), and also deter-
mine their defining constraints.

21B.1. The exceptional cases: 7–10. It is easy to check amal-
gamation for entry (7) by directly checking 2-point amalgamation;
one takes as the completing type the type 1−→ only if this is required
by transitivity, and otherwise one takes 2−→, taking some care to sat-
isfy the constraints. However we prefer to prove something a little
stronger, which is useful for other more combinatorial purposes, by
identifying the constraints for the partial substructures.

Definition 21.5. A partial 2-multi-tournament is a structure which
is equipped with two disjoint anti-symmetric binary relations 1−→ and
2−→.
We say that a partial 2-multi-tournament extends to a given 2-

multi-tournament A if it embeds into A as a weak substructure (i.e.,
as a substructure in the graph theoretic sense), adding vertices and
arcs.
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Lemma 21.6. A partial 2-multi-tournament extends to some struc-
ture of type (7) iff it satisfies the following two conditions.

1. every oriented cycle contains at least three arcs of type 2−→.
2. The transitive closure of 1−→ does not contain a pair with type

2−→.

Proof. The necessity is straightforward: to see that oriented cy-
cles with at most two occurrences of 2−→ are forbidden, apply the
transitivity of 1−→ to reduce to consideration of cycles of length 3 or 4
with two occurrences of 2−→. The former are forbidden by assumption
and the latter by inspection.

So we turn to sufficiency. Suppose we have a partial 2-multi-tourna-
ment (X,

1−→,
2−→) satisfying the stated conditions.

Then there is no non-trivial oriented closed walk (i.e., oriented
cycle, but allowing self-intersections) with fewer than three arcs of
type 2−→.

First replace 1−→ by its transitive closure. By our two assumptions,
this extension is consistent with the structure already present. The
first condition is maintained since any walk in the extended structure
gives rise to a walk in the original structure with the same endpoints
and the same number of occurrences of 2−→.

So we suppose that the relation 1−→ is transitive. As 1−→ will not
be further extended, the condition (2) is settled definitively at this
point.

Now we proceed by iterating the following algorithm. We will check
that it preserves our constraints.
(I) As long as there is a pair of vertices a, b whose type is not already

determined, for which there is an oriented path from a to b with
exactly one occurrence of 2−→, set a

2−→ b; By condition (1), the
extended relation 2−→ is anti-symmetric.

(II) If this stabilizes, and the structure is not complete, select one
undetermined pair (a, b) and set a

2−→ b; return to (1).
It is necessary to check that condition (1) is preserved throughout.

After an application of Step (I) any walk in the extended structure
corresponds to a walk in the original structure with the same number
of occurrences of the type 2−→. After an application of Step (II) any
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new cycle consists of the new arc a
2−→ b and a path in the previous

structure; if our condition were violated we would in fact be in Step
(I). □

Lemma 21.7. Entry (7) from Table 21.1 defines an amalgamation
class.

Proof. Given an amalgamation problem (A0 → A1, A2), we first
amalgamate A1, A2 freely over A0 to get a partial 2-multi-tournament
Â. It suffices to check the two conditions of Lemma 21.6. We know
that the transitive closure of 1−→ will not conflict with the structure
on A1 or on A2; this is the usual amalgamation of partial orders.

Let γ be an oriented cycle lying in the free amalgam Â. Suppose
that γ has at most two occurrences of 2−→, and that the length of γ
is minimized.

If γ meets A0 in at most one point then γ is contained in A1 or A2

and we have a contradiction. So we may take points u, v ∈ γ ∩ A0

and view γ as the oriented sum of two cycles γ1, γ2 contained in
γ ∪ {(u, v), (v, u)}. By our minimization both γ1 and γ2 contain at
least two arcs of type 2−→ other than (u, v) or (v, u). Thus γ contains
at least four such arcs, a contradiction. □

Lemma 21.8 (Structures #8–#10). Each of the classes of finite 2-
multi-tournaments determined by one of the following sets of forbid-
den triangles (numbered as in Table 21.1) is an amalgamation class,
with a weak form of free amalgamation: any amalgamation problem
can be completed using some combination of 2−→ and 2←−; in other
words, without using either form of 1−→.
(8) C3(1, 1, 1), C3(1, 1, 2).
(9) C3(1, 1, 2), L3(1, 1, 1).

(10) C3(1, 1, 1), C3(1, 1, 2), L3(1, 1, 1).

We note in passing that in this statement, case (10) is a special
case of case (8) or (9), since it differs only by an additional monochro-
matic constraint of type 1. The proof we give is uniform across all
three cases: what matters here is that we forbid C3(1, 1, 2) and some
monochromatic triangle of type 1 (that is, at least one).

Proof. We consider a 2-point amalgamation problem

(A0 ∪ {a}, A0 ∪ {b})
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The claim is that in any of the three cases we can complete the
diagram by either a 2−→ b or b 2−→ a without creating a 3-cycle of type
C3(1, 1, 2).

We can use a
2−→ b unless we have a configuration

b
1−→ x

1−→ a

with x ∈ A0, and we can use b
2−→ a unless we have a configuration

a
1−→ y

1−→ b

with y ∈ A0.
In other words, the claim holds unless we have a 4-cycle of type

1−→ of the form (a, x, b, y).
But in such a 4-cycle there would be no type available for the arc

between x and y, by inspection. □

Again, we can give a sharper version of the amalgamation property,
in terms of a characterization of partial substructures. The content
is very similar to the content of the preceding proof.

Lemma 21.9 (#8–#10: Partial substructures). For each of the classes
of finite 2-multi-tournaments determined by one of the following sets
of forbidden triangles (numbered as in Table 21.1), the correspond-
ing class of partial 2-multi-tournaments is given by the same set of
triangle constraints, plus an oriented 4-cycle of type 1−→.
(8) C3(1, 1, 1), C3(1, 1, 2).
(9) C3(1, 1, 2), L3(1, 1, 1).

(10) C3(1, 1, 1), C3(1, 1, 2), L3(1, 1, 1).

This also gives amalgamation, but for much the same reason as
originally given, now stated explicitly in terms of forbidden 4-cycles.

Proof.
Necessity: As noted in the previous proof, an oriented 4-cycle cannot
be extended by even one more arc so as to meet these constraints.
Sufficiency: If we have a pair of vertices a, b with no arc assigned
and an oriented path a

1−→ x
1−→ b between them, take a

2−→ b. This
cannot introduce any monochromatic configuration of type 1−→ (in
particular, no 4-cycle of this type) and it cannot introduce C3(1, 1, 2),
since there is no oriented 4-cycle of this type already present.
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Having deal with all such cases, fill in any additional arcs needed
as 2−→ with an arbitrary orientation. □

It is seems striking that the completion process is the same in all
three cases 8–10. We remark that in the symmetric case, canonical
completion processes tend to be variations on shortest path metrics
(for generalized metric spaces). It would be interesting to explore of
the 3-constrained structures and the completion algorithms for par-
tial substructures in richer languages with anti-symmetric relations,
but this lies well outside the scope of this volume.

Since we can amalgamate using only some form of the type 2−→ we
have an associated notion of Henson constraint. Namely, we can take
the constraints in case 8—C3(1, 1, 1) and C3(1, 1, 2), and in addition
forbid L1

n+1 for some fixed value of n ≥ 2 (recall Notation 21.3).
For n = 2 we get entry #10, while for larger values of n, or no

additional constraint, we get the same forbidden triangles as in entry
#8. We will refer to this case later as 3C8:n.

21B.2. The structures S(n) and entries 11 and 12. The issue
with regard to entries #11 and #12 is not so much the question
of existence (amalgamation) as the identification of these structures
with structures already known.

Definition 21.10. The structure S(n) is defined as follows, for
n ≥ 2. The points are the image of αQ in R/nZ where α is some
fixed irrational. For a point a and i ∈ Z/nZ set ind(a) = i if a− i has
a representative in (0, 1). We may call this the index of a in Z/nZ; it
will not be part of the language but will help with the definition of
2-types. Namely, the type of a pair of distinct elements a, b ∈ S(n) is
taken to be

ind(b− a)

and if this is i, we also write a i−→ b. Then S(n) consists of the specified
points together with the relations a

i−→ b.

We will show that for n ≥ 3 the structure S(n) is 3-constrained
and homogeneous (Lemma 21.14). For n = 2 it is also homogeneous—
S(2) = S is the generic local order—but not 3-constrained, and in fact
there are no constraints on triangles. This is an interesting example
of a primitive structure in a finite binary language not derived from
a 3-constrained amalgamation class by imposing Henson constraints.
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We were surprised to notice that the natural generalization of S is so
much tamer for n ≥ 3.

This structure can also be viewed as a generalized metric space in
the sense touched on in the Appendix to Volume I, with values in a
semigroup equipped with an involution ∗ and a relation ≤ which is
not actually a partial order but gives a reasonable meaning to the
triangle inequality. While the metric is not symmetric, the semigroup
is commutative—but the involution is nontrivial.

Lemma 21.11. S(n) has the following properties.

1. The relation a
i−→ b coincides with the relation b

−i−1−→ a.
2. If n is even then S(n) is an n/2-multi-tournament. If n is odd

then S(n) has (n − 1)/2 pairs of asymmetric 2-types and one
symmetric 2-type. In particular, S(3) is a directed graph and
S(4) is a 2-multi-tournament.

3. If a, b ∈ S(n) have index i, j respectively, then tp(a, b) will be
j − i or j − i− 1.

4. For a, b, c ∈ S(n) with a
i−→ b, b j−→ c, a k−→ c we have k equal to

i+ j or i+ j + 1, and both possibilities occur.

Proof.
Ad 1.

This simply means that ind(−x) = − ind(x)− 1, which is clear.
Ad 2.

This follows from (1).
Ad 3.

In view of (1) we may suppose i ≤ j. Then b−a has a representative
in the set of differences (j, j +1)− (i, i+1) ⊆ (j − (i+1), j +1− i),
and the claim follows.
Ad 4.

As c− a = (c− b) + (b− a) the condition on k follows from

(i, i+ 1) + (j, j + 1) = (i+ j, i+ j + 2).

It is easy to see by the same analysis that both possibilities for k
occur. □

The next step in our analysis of S(n) involves fixing a point and
describing the resulting structure in a modified language. This needs
to be done at a somewhat greater level of generality, for which we
give a definition.
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Definition 21.12. A structure in the language of S(n) is S(n)-like
if it satisfies the following three conditions.
(a) For each pair of distinct elements a, b exactly one of the relations

a
i−→ b holds.

(b) The reversal of the relation i−→ is the relation −i−1−→ .
(c) For any triangle (a, b, c) with a

i−→ b, b j−→ c, a k−→ c, we have

k = i+ j or i+ j + 1.

We have shown above that S(n) is S(n)-like.

Lemma 21.13. Suppose that n ≥ 3 and S is an S(n)-like structure.
Fix a point v∗ ∈ S and define x < y on S′ = S \ {v∗} by

∃i, j ∈ Z/nZ such that v∗
i−→ x, v∗

j−→ y, x j−i−→ y.

Then < is a linear order on S′.

Proof.

Claim 1. < is a tournament on S′.

Let a, b be distinct elements of S′ with v∗
i−→ a, v∗

j−→ b, a k−→ b.
Then b

−k−1−→ a. We have k = j− i or j− i− 1, and −k− 1 = i− j− 1
or i− j correspondingly. So < is a tournament.

Claim 2. < is transitive.

We take a, b, c distinct with v∗
i−→ a, v∗

j−→ b, v∗
k−→ c and a

j−i−→ b,
b

k−j−→ c.
As S is S(n)-like, by considering (a, b, c) we find that a

k−i−→ c or
a

k−i+1−→ c. Suppose toward a contradiction the latter occurs. Then we
have v∗

i−→ a
k−i+1−→ c and thus v∗

k+1−−−→ c or v∗
k+2−→ c as S is S(n)-like.

So k = k + 1 or k + 2. But n ≥ 3, so this is a contradiction. □

It is well known that this construction also works for S(2), which is
the generic local order, but for n = 2 every tournament is S(2)-like in
the sense of our definition, and in this case the construction requires
additional constraints on configurations of order 4.

Lemma 21.14. For n ≥ 3 the structure S(n) is a 3-constrained ho-
mogeneous structure. Furthermore, it is the only homogeneous struc-
ture for its language having the specified constraints on triangles.
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Proof. It is easily checked that the construction of the previous
lemma, when applied to S(n) and any chosen point a, produces the
generic n-partitioned linear order: that is, a copy of (Q, <) partitioned
into n dense classes. Since the latter is homogeneous for a language
with unary predicates for the classes and the order relation, it follows
that S(n) is homogeneous (this is the usual line of argument).

Since the same construction applies to any finite S(n)-like structure
S, after embedding the latter into the generic n-partitioned linear
order, this gives an embedding of S into S(n). It follows that S(n) is
3-constrained.

For the final statement, one has to see that the argument in the first
paragraph applies to any homogeneous structure Γ in the language
of S(n) having the same constraints on triangles. For this, we fix a
point a ∈ Γ and analyze the associated structure with n components.
each of which is a non-trivial homogeneous linear order, hence a copy
of (Q, <). One has to see that each of the classes is dense. But each
point in a given class determines a non-trivial splitting of the points
in any other class into two intervals, so the claim follows. (The rest
is essentially due to Skolem [1920], generalizing Cantor.) □

Lemma 21.15. The 3-constrained structures described in entries
#11 and #12 of Table 21.1 are S̃(3) and S(4) respectively.

Proof. It suffices to check the constraints after making a suitable
identification of the language.

Case 1. The structure S(3) and its generic de-symmetrization.
In its natural language, the structure S(3) has the 2-types 0−→, 0←−

(which is 2−→) and the symmetric relation 1 . The forbidden triangle
types, written in the order

(tp(a, b), tp(b, c), tp(a, c))

are (i, j, i + j − 1), where we may take i ≤ j and write 0op for 2,
giving the following.

(0, 0, 0op), (1, 0op, 0op), (0, 0op, 1), (1, 1, 1),
(0op, 0,op , 0), (0, 1, 0),

where the second row shows duplicates (up to the order of the ver-
tices).
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Now we relabel the types 0, 1 as 2, 1 and furthermore take the type
1 to be anti-symmetric (replacing the original amalgamation class by
its de-symmetrization).

Our constraints are then as follows, omitting the duplication; but
now the last triangle splits into two forms.

C3(2, 2, 2) L3(2, 1, 2) L3(1, 2, 2) C3(1, 1, 1)

L3(1, 1, 1)

which agrees with our previous description of this structure (#11).
Case 2. The structure S(4). Now we have the 2-types 0, 1, 2, 3 =
0, 1, 1op, 0op and the forbidden triangle types (i, j, k) with k ̸= i +
j, i+ j + 1. As there (i, j, k) is the same as (−j − 1,−i− 1,−k − 1)
we eliminate those duplicates and show the rest (where we also take
i ≤ j as elements of {0, 1, 2, 3}). We use labels in Z/nZ to make the
initial calculation clearer.

(0, 0, 2) (0, 0, 3) (0, 1, 0) (0, 1, 3) (0, 2, 0) (0, 2, 1)

(0, 3, 1) (1, 1, 0) (1, 1, 1) (1, 2, 1)

In terms of the types 0, 1, after eliminating the remaining duplicates
this translates, in order, to the configurations C3(0, 0, 1), C3(0, 0, 0),
L3(0, 1, 0), L3(1, 1, 0), L3(1, 0, 0), L3(1, 1, 1). If we replace the labels
0, 1 by 1, 2 respectively we get the constraints corresponding to entry
#12, as shown.

C3(1, 1, 2) C3(1, 1, 1)

L3(2, 2, 2) L3(2, 2, 1) L3(2, 1, 1) L3(1, 2, 1)
□

Proof of Proposition 21.4. In view of Lemma 21.15 the only
cases not identified with a known homogeneous 2-multi-tournament
are entries #7–10, and in these cases amalgamation is proved in Lem-
mas 21.7 and 21.8. □

21C. Completeness: The partially ordered case

Having dealt with the existence of the 3-constrained homogeneous
2-multi-tournaments given in Table 21.1, we still need to argue that
this list is complete: that is, that every primitive infinite 3-constrained
homogeneous 2-multi-tournament with no ∅-definable linear order
appears on this list.
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This may be stated as follows.

Proposition 21.16. Let Γ be an infinite primitive non-degenerate
homogeneous 3-constrained 2-multi-tournament on which there is no
∅-definable linear order. Then the set of forbidden triangles corre-
sponds to one of the entries in Table 21.1.

In more detail:
1. If the type 1−→ is transitive, then all triangle types are realized

which are compatible with that assumption, except, possibly,
one of the pair L3(2, 2, 1), C3(2, 2, 1).

2. If there is no transitive 2-type, then the following hold.
(a) If triangle types C3(1, 1, 1) and C3(2, 2, 2) are forbidden,

then up to a change of language the structure is S̃(3).
(b) If triangle type C3(1, 1, 1) is forbidden and triangle type

C3(2, 2, 2) is realized, then up to a change of language Γ is
determined by the constraints given in one of entries #8 or
#10 of our table, or Γ is S(4).

(c) If both triangle types C3(1, 1, 1) and C3(2, 2, 2) are realized,
then up to a change of language Γ is determined by the
constraints in entry #9 of our table.

Some of this may be proved more generally with approximately the
same amount of effort. We phrase the first case as follows.

Proposition 21.17. Let Γ be a primitive non-degenerate homoge-
neous 2-multi-tournament on which there is no ∅-definable linear or-
der. Suppose the type 1−→ is transitive, that is,

L3(1, 1, 2), C3(1, 1, 1), and C3(1, 1, 2) are forbidden.

Then the following triangle types are realized

L3(1, 1, 1) L3(1, 2, 1) L3(1, 2, 2) L3(2, 1, 1) L3(2, 1, 2)

L3(2, 2, 2) C3(2, 2, 2).

If (IC3)
2 or (C3I)

2 is realized in Γ then at least one of the trian-
gle types L3(2, 2, 1) or C3(2, 2, 1) is realized as well; this applies in
particular if Γ is 3-constrained.

Here IC3 denotes the tournament consisting a point dominating an
oriented 3-cycle, C3I is its reversal, and in accordance with Notation
21.3, (IC3)

2 or (C3I)
2 denotes the same tournament with the arcs

regarded as 2-arcs.
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Remark 21.18. In principle under the stated conditions Proposi-
tion 21.17 determines the triangle constraints on Γ, up to the three
possibilities corresponding to realizing at least one of L3(2, 2, 1) or
C3(2, 2, 1).

However, the triangle type L3(2, 2, 1), C3(2, 2, 1) correspond to one
another under the change of language which interchanges 1−→ with its
reverse. So up to a change of language the complete set of constraints
on triangles in Γ corresponds to entry #6 or #7 from our table.

In particular, taking Γ is itself to be 3-constrained, and in an appro-
priate language, it must then be isomorphic with the corresponding
entry.

The proof of Proposition 21.17 involves direct amalgamation argu-
ments and is broken up into a number of steps. First we deal with
the triangle types L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), and L3(2, 1, 2),
as well as L1

n (transitive of order n and arc type 1), and thus in
particular L3(1, 1, 1).

Notation 21.19. We now make amalgamation arguments illustrated
by diagrams. In our diagrams, 1-arcs are represented by ordinary ar-
rows, and 2-arcs by dotted arrows. (Some labels may also be shown,
but not systematically.)

Lemma 21.20. Suppose that Γ is a primitive non-degenerate ho-
mogeneous 2-multi-tournament in which 1−→ is transitive and there is
no ∅-definable linear order. Then for all n, L1

n is realized in Γ, and
the triangle types L3(1, 2, 2) and L3(2, 1, 2) are realized in Γ.

Proof. That L1
n is realized is straightforward: 1−→ is a partial order

and the relation is non-empty, so by homogeneity there is no maximal
element.

We turn to L3(1, 2, 2) and L3(2, 1, 2).

Claim 1. Γ realizes at least one of the triangle types L3(1, 2, 2) and
L3(2, 1, 2).

These triangle types involve a vertex which via the relation 2−→
either dominates or is dominated by a 1-arc.

In what follows, we write

x 2 y
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to mean that there is a 2-arc between x and y: x 2−→ y or y
2−→ x.

Similarly, x 2 y, z means that x 2 y and x 2 z.
Let u, v, w be a triangle in Γ of type L3(1, 1, 1). By primitivity the

reflexive extension of the relation 2 is not an equivalence relation, so
by homogeneity there is a ∈ Γ with a 2 u,w. As 1−→ is transitive we
find a 2 v. This gives us at least one of the triangle types L3(1, 2, 2)
or L3(2, 1, 2), by “majority vote” among the 2-arcs.

Thus the claim holds.
By symmetry (change of language) we may suppose the triangle

type L3(2, 1, 2) is realized, and we must show that L3(1, 2, 2) is real-
ized as well.

We make amalgamation arguments.
If the triangle type C3(2, 2, 1) is realized in Γ, we use the simple

amalgamation shown, with factors C3(2, 2, 1) and L3(2, 1, 2) (1-arcs:
black; 2-arcs: grey).

a1 a2

v

u

C3(2, 2, 1), L3(2, 1, 2)

Transitivity of 1−→ forces the completion to contain another 2-arc,
making a copy of L3(1, 2, 2).

If C3(2, 2, 1) is not realized, then as by hypothesis 1−→ ∪ 2−→ is not
linear, C3(2, 2, 2) must be realized. In this case we use the amalga-
mation with factors C3(2, 2, 2) and L3(2, 1, 2) shown as Figure 15

In this case as well an added 2-arc results, since C3(2, 2, 1) is for-
bidden, and furthermore the orientation is such as to give a copy of
L3(1, 2, 2). □

Lemma 21.21. Suppose that Γ is a primitive non-degenerate homo-
geneous 2-multi-tournament in which the relation 1−→ is transitive and
there is no ∅-definable linear order. Then the triangle types L3(1, 2, 1)
and L3(2, 1, 1) are realized in Γ.
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a1 a2

v

u

Figure 15

Proof. Since we assume primitivity, at least one of the triangle
types L3(1, 2, 1) or L3(2, 1, 1) must be realized. As our hypotheses
and conclusion are preserved by reversal of the type 1−→ we may
assume

L3(1, 2, 1) is realized,

and we aim at L3(2, 1, 1).
We may form the following amalgamation diagram with factors

L3(1, 2, 1) and L3(1, 2, 2).

a

u

v

w

(I)

If (u,w) is a 1-arc then the orientation is w
1−→ u and the configu-

ration L3(2, 1, 1) results. So we suppose that (u,w) forms a 2-arc in
the amalgam.

If w 2−→ u then we can form the following amalgam (Figure 16), in
which both factors are isomorphic to the configuration just obtained,
with tp(a1/uvw) = tp(a/uvw) and tp(a2/vwu) = tp(a/uvw).

In view of the transitivity of 1−→, the points u,w force any comple-
tion of this diagram to give (a1, a2) the type 2 in some orientation.
Then the point v produces a triangle of the desired type.
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a1

u

v

w

a2

Figure 16. Amalgamation (I) + (I)

Now suppose the result of amalgamation (I) has u
2−→ w. We

then consider the following amalgamation, with factors L3(2, 1.2) and
L3(1, 2, 1).

a2

u

v

w

(II)

If the resulting configuration has u
1−→ w then we have a copy of

L3(2, 1, 1). If it has u 2−→ w then this configuration may be combined
with the result of (I) in an amalgamation diagram much like the
above, apart from the orientation of some 2-arcs, and we conclude as
above.

Finally, if w 2−→ u then this is similar to our first case: we may form
an amalgamation diagram from two copies of this configuration, with
tp(a1/uvw) = tp(a2/vwu).

This completes the proof □

Now we take a slight detour before dealing with the triangle types
L3(2, 2, 2) and C3(2, 2, 2).

Lemma 21.22. Suppose that Γ is a primitive non-degenerate homo-
geneous 2-multi-tournament in which 1−→ transitive and there is no
∅-definable linear order, and that A is a finite configuration contained
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in Γ. Then there are elements a1, a2, a3 in Γ satisfying the following
conditions.

a1
1−→ A A

1−→ a2 a3
2 A

where 2 signifies some mixture of 2−→ and 2←−.

Proof. We first prove this for a1, by induction on |A|, taking as
the base case |A| = 2, in which case it is covered by Lemmas 21.20
and 21.21.

When |A| = n > 2 we take B ⊆ A of cardinality n− 1 and b
1−→ B

in Γ, then a ∈ Γ satisfying a
1−→ b, A \B to conclude.

We argue similarly for a2.
Now we turn to a3. With A fixed and a1, a2 chosen correspondingly,

we may find a3 with a3
2−→ a1, a2; thus a1, a2, a3 form a triangle of

type L3(2, 1, 2). This then forces a3
2 A for some choice of orienta-

tions. □

Lemma 21.23. Suppose that Γ is a primitive non-degenerate ho-
mogeneous 2-multi-tournament in which 1−→ is transitive and there is
no ∅-definable linear order.

Then the triangle type L3(2, 2, 2) is realized in Γ.

Proof. By the previous lemma, Γ contains an infinite tournament
of type 2−→. The result follows. □

Lemma 21.24. Suppose that Γ is a primitive non-degenerate ho-
mogeneous 2-multi-tournament in which 1−→ is transitive and there is
no ∅-definable linear order.

Then C3(222) embeds into Γ.

Proof. If one of the triangle types L3(2, 2, 1) or C3(2, 2, 1) is not
realized in Γ, then since neither 1−→ ∪ 2−→ nor 1−→ ∪ 2←− is transitive,
C3(222) must embed in Γ. So we will suppose that both of the triangle
types

L3(2, 2, 1), C3(2, 2, 1)

are realized in Γ.
We make an amalgamation with base

(u1, u2, u3, u4) ∼= L1
4

and with extensions by a1, a2 as shown.
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a1 a2

u1

u2

u3

u4

Here u1.u4 force the type of a1, a2 to be 2−→ in some orientation
and u2, u3 force C3(222) to be realized.

So it suffices to show that the factors of this diagram embed into Γ.
As 1−→ is transitive, this reduces to the various triangles containing
a1 or a2 and two consecutive elements ui:

a1u1u2 a1u2u3 a1u3u4;

a2u1u2 a2u2u3 a2u3u4.

These are of the form L3(121), L3(211), L3(122), L3(221), L3(212),
or C3(221).

These 2-multi-tournaments embed in Γ either by assumption or by
Lemmas 21.20 and 21.21, so the lemma follows. □

Recall now that IC3 is the tournament consisting a point dominat-
ing an oriented 3-cycle, C3I is its reversal, and (IC3)

2 or (C3I)
2 is

the same tournament with the arcs interpreted as 2-arcs.

Lemma 21.25. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which 1−→ is transitive and there is no ∅-definable
linear order. Suppose also that one of the configurations (IC3)

2 or
(C3I)

2 embeds in Γ. Then at least one of the triangle types L3(2, 2, 1)
or C3(2, 2, 1) is realized in Γ.

Proof. Suppose toward a contradiction that neither triangle type
is realized in Γ.

We consider the following amalgamation diagram, in which the
point w forces a1, a2 to be related by 2−→ in some orientation, and
then a1, a2 together with u or v give a copy of L3(2, 2, 1).

In the 3-constrained case we would be done at this point, as the
triangles involved in the diagrams are of types L3(1, 2, 1), L3(1, 2, 2),
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a1

u

v

w

a2

L3(2, 2, 2), and C3(2, 2, 2) and these are afforded by Lemmas 21.20,
21.21, 21.23, and 21.24.

To reach a contradiction in general, it remains to construct the
factors of this amalgamation diagram in Γ. These factors are shown
separately below.

a1

u

v

w

(1)

a2

u

v

w

(2)

The factor omitting a2 shown on the left may be considered as
an amalgamation diagram with the type of (u,w) to be determined.
The only solution compatible with our assumptions is the one shown:
u

2−→ w. As this diagram has subfactors L3(1, 2, 1) and L2(1, 2, 2) the
amalgam must exist, so this factor must exist.

The factor omitting a1, shown on the right, has the form u
2−→ C2

3 .
If (IC3)

2 is realized in Γ then the proof is complete, and if (C3I)
2 is

realized in Γ then we obtain the same result by reversing the orien-
tations of the two 2-types. □

Proof of Proposition 21.17. We assume 1−→ gives a partial or-
der on the primitive non-degenerate homogeneous 2-multi-tournament
Γ, and there is no ∅-definable linear order on Γ.

Then Lemmas 21.20, 21.21, 21.23, and 21.24, give respectively
L3(1, 1, 1), L3(1, 2, 2), L3(2, 1, 2); L3(1, 2, 1), L3(2, 1, 1), L3(2, 2, 2),
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and C3(222). If (IC3)
2 or (C3I)

2 is realized in Γ, then Lemma 21.25
gives L3(2, 2, 1) or C3(2, 2, 1) as well.

Under the hypothesis of 3-constraint, both (IC3)
2 and (C3)

2 are
realized in Γ. □

This analysis continues in greater generality in §22A.

21D. Completeness: No partial orders

We turn to the more complex, and less intuitive, case in which there
are no nontrivial ∅-definable partial orders: that is, 1−→ and 2−→ are
not transitive, and no union of 2-types is a linear order. In this case
Proposition 21.16 has three parts, which we now state separately.

Proposition 21.26 (NPO3c: S̃(3)). Suppose that Γ is an infinite prim-
itive non-degenerate homogeneous 3-constrained 2-multi-tournament
with no nontrivial ∅-definable partial order. Suppose that neither of
the triangle types

C3(1, 1, 1), C3(2, 2, 2)

is realized in Γ.
Then up to a change of language Γ satisfies the same triangle con-

straints as S̃(3).

Of course, in this case we expect Γ to be isomorphic with S̃(3)
after identifying the languages appropriately. This appears to be a
particularly tractable case for complete analysis, but we will not fol-
low up on such issues here, as they lie just outside the scope of our
discussion.

Proposition 21.27 (NPO3c: #8, #10, S(4)). Suppose that Γ is an
infinite primitive non-degenerate homogeneous 3-constrained 2-multi-
tournament with no nontrivial ∅-definable partial order, not associ-
ated with a free amalgamation class.

Suppose that the triangle type

C3(1, 1, 1)

is forbidden and the triangle type

C3(2, 2, 2)
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is realized. Then up to a change of language Γ is determined by the
constraints given in one of entries #8 or #10 of our table, or Γ is
S(4) (#12).

Proposition 21.28 (NPO3c: #9). Suppose that Γ is an infinite prim-
itive non-degenerate homogeneous 3-constrained 2-multi-tournament
in with no nontrivial ∅-definable partial order, and which does not
have free amalgamation. Suppose that the triangle types

C3(1, 1, 1), C3(2, 2, 2)

are both realized in Γ. Then up to a change of language, Γ is deter-
mined by the constraints in entry #9 of our table.

We give this as Table 21.2 below, in terms of the triangle constraints
involved.

I C3(111), C3(222) forbidden
#11, S̃(3) L3(111), L3(122), L3(212) forbidden

II C3(111) forbidden, C3(222) realized
#8 C3(112) forbidden
#10 C3(112), L3(111) forbidden

#12, S(4) C3(112), L3(121), L3(211), L3(221), L3(222) forbidden

III C3(111), C3(222) realized
#9 C3(112), L3(111) forbidden

Table 21.2. Primitive 3-constrained
2-multi-tournaments with no nontrivial ∅-definable
partial order, and without free amalgamation; with

some variants

21D.1. Proof of Proposition 21.26. We analyze infinite prim-
itive non-degenerate homogeneous 2-multi-tournaments with no non-
trivial ∅-definable partial order and with triangle types C3(1, 1, 1) and
C3(2, 2, 2) forbidden, assuming 3-constraint when needed (or conve-
nient).
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21.24: Target

Forbid L3(111), L3(122), L3(212), C3(111), C3(222).
Realize L3(112), L3(121), L3(211), L3(221), L3(222), C3(112),
C3(221).
1−→ is the de-symmetrized type.

Lemmas
Lemma Hypotheses Conclusion page

21.29.1 ¬C3(111), ¬C3(112) L3(112), C3(221) 155
21.29.2 ¬C3(111), ¬C3(112),

¬C3(222)
L3(111), L3(121),
L3(122), L3(211), L3(212)

155

21.30 ¬L3(122) or ¬L3(212) L3(222) 158
21.31 ¬C3(111), ¬C3(222),

3-constraint
C3(112), C3(221),
L3(112), L3(221)

159

21.32 ¬C3(111), ¬C3(222)
C3(221), C3(112)

(4 Cases: a, a', b, c) 160

21.33 ", 3-constraint Not (a') 161
21.34 ¬C3(111), ¬C3(222),

3-constraint
w.l.o.g.
¬L3(122), ¬L3(212),
L3(121), L3(211)

162

Prop
21.26 " S̃(3)-like 164

Table 21.3. Proof of Proposition 21.26

Table 21.3 above summarizes the steps involved (Lemmas 21.29–
21.34).

Lemma 21.29. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
and triangles of types

C3(1, 1, 1), C3(1, 1, 2)

are forbidden. Then the following hold.
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1. The triangle types

L3(1, 1, 2), C3(2, 2, 1)

are realized in Γ.
2. If the triangle type C3(2, 2, 2) is also forbidden, then the follow-

ing triangle types are realized.

L3(111), L3(121), L3(122), L3(211), L3(212).

Proof.

Ad 1.
Here we assume only that the triangle types C3(1, 1, 1) and C3(1, 1, 2)

are forbidden.
As 1−→ is not transitive, L3(1, 1, 2) must be realized.
Suppose C3(2, 2, 1) is forbidden. As 1−→ ∪ 2−→ is not a linear or-

der, C3(2, 2, 2) must embed in Γ. Then conclude via the following
amalgamation.

a1 a2

v

u

Ad 2.
Now we assume in addition that C3(2, 2, 2) is forbidden.

Claim 1. L3(1, 2, 2) embeds into Γ.

We use one of the following amalgamation diagrams.

a1 a2

v

u

(A)

a1 a2

v

u

(B)

a1 a2

v

u

(C)

a1 a2

v

u

(D)
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The factors are, respectively

(A) C3(2, 2, 1), L3(2, 1, 2) (B) L3(1, 1, 1), C3(2, 2, 1)

(C) L3(1, 2, 1), L3(2, 2, 1) (D) L3(1, 2, 1), C3(2, 2, 1)

If L3(2, 1, 2) or L3(1, 1, 1) embeds in Γ, we may use diagram (A) or
(B) respectively, which forces either a1

2−→ a2 or a2
2−→ a1, and thus

L3(1, 2, 2).
So suppose now that L3(2, 1, 2) and L3(1, 1, 1) are forbidden.
Considering two realizations of the type a 1−→ x shows that L3(1, 2, 1)

is realized.
Then diagram (D) can be constructed, and under our current as-

sumptions it forces L3(2, 2, 1).
Then under our current assumptions diagram (C) forces L3(1, 2, 2).
This proves the claim.

Our hypotheses are conserved under reversal of all arcs, and hence
by symmetry, we conclude that the triangle type

L3(212)

is also realized.
For reference we give a table of the constraints known or assumed

at this point, and those still to be dealt with.

Forbidden: C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 2)

Realized: C3(2, 2, 1), L3(1, 1, 2), L3(1, 2, 2), L3(2, 1, 2)

Targets: L3(1, 1, 1), L3(1, 2, 1), L3(2, 1, 1)

Claim 2. L3(1, 1, 1) embeds into Γ.

We use the following amalgamation.

a1 a2

v

u
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Claim 3. L3(1, 2, 1) embeds into Γ.

We use the following amalgamations.

a1 a2

u

v

(A)

a1 a2

u

v

(B)

a1 a2

u

v

(C)

a1 a2

u

v

(D)

These have the following factors.

(A) L3(1, 1, 2), L3(2, 2, 1). (B) L3(2, 1, 1), L3(1, 1, 2).

(C) L3(1, 1, 2), L3(2, 2, 2). (D) L3(1, 1, 2), L3(2, 1, 2).

If L3(2, 2, 1) embeds into Γ then diagram (A) forces L3(1, 2, 1). So
suppose L3(2, 2, 1) is forbidden.

If L3(2, 1, 1) embeds into Γ then diagram (B) forces L3(1, 2, 1)
or L3(2, 2, 1), and as we assume the latter is forbidden this gives
L3(1, 2, 1). So suppose L3(2, 1, 1) is also forbidden.

If L3(2, 2, 2) embeds into Γ then diagram (C) forces L3(1, 2, 1),
L3(2, 1, 1), or L3(2, 2, 1), and again we conclude.

Diagram (D) has factors known to embed in Γ, and forces either
a2

1−→ a1 or a2
2−→ a1, resulting in either L3(2, 2, 1) or L3(2, 2, 2). So

one of the previous cases applies and the claim follows.
Finally, by symmetry, L3(2, 1, 1) also embeds into Γ.
This completes the treatment of all of the stated triangle types. □
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Lemma 21.30. Let Γ be a primitive non-degenerate homogeneous
2-multi-tournament in which one of the triangle types L3(1, 2, 2) or
L3(2, 1, 2) is not realized.

Then the triangle type L3(2, 2, 2) is realized.
Proof. If Γ is finite this holds by inspection. If Γ is infinite and

primitive then for a ∈ Γ, a2 is also infinite, and the assumption
implies that the type 1−→ is not realized there, so the type 2−→ is
realized. This gives the result. □

Lemma 21.31. Suppose that Γ is a homogeneous primitive 3-con-
strained 2-multi-tournament in which there is no nontrivial ∅-definable
partial order, and triangles of types

C3(1, 1, 1), C3(2, 2, 2)

are forbidden.
Then triangles of types

L3(1, 1, 2), L3(2, 2, 1), C3(1, 1, 2), C3(2, 2, 1),

embed in Γ.
Proof. Our hypotheses are conserved under switching labels or

reversing the orientation of a 2-type, and this group of permutations
of the language acts transitively on the four triangle types listed. So
it suffices to show that the triangle type C3(1, 1, 2) is realized.

If it is not realized then Lemma 21.29 applies and gives realizations
of the triangle types L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1), L3(1, 2, 2),
L3(2, 1, 1), L3(2, 1, 2), and C3(2, 2, 1).

In the following amalgamation diagram the triangles occurring in
the factors are of types L3(1, 1, 2), L3(1, 2, 2), L3(2, 1, 2), C3(2, 2, 1)
and by 3-constraint these factors occur in Γ.

a1

u

v

w

a2

Our constraints force a2
2−→ a1 in the completion and then a1ua2

has type C3(1, 1, 2). □
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Lemma 21.32. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
and triangles of types

C3(1, 1, 1), C3(2, 2, 2)

are forbidden, while triangle types

C3(1, 1, 2), C3(2, 2, 1)

are realized.
Then up to a permutation of the language one of the following cases

applies.

(a) Forbidden Realized

L3(1, 2, 2) L3(2, 1, 2) L3(1, 2, 1) L3(2, 1, 1)

(a') Forbidden Realized

L3(1, 2, 1) L3(2, 1, 2) L3(1, 2, 2) L3(2, 1, 1)

(b) Forbidden Realized

L3(1, 2, 1) L3(1, 2, 2) L3(2, 1, 1) L3(2, 1, 2)

(c) Realized

L3(1, 2, 1) L3(1, 2, 2) L3(2, 1, 1) L3(2, 1, 2)

Proof. We are considering which of the following four triangle
types are realized in Γ.

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2).

We consider the group of permutations of the language generated by
switching the two labels 1, 2 and by reversing orientations of both 2-
types. This group acts transitively on this set of four triangle types,
and preserves the set of assumed constraints.

Claim 1. At least one triangle type out of each of the following
pairs of triangle types is realized in Γ.

L3(1, 2, 1), L3(1, 2, 2)

L3(2, 1, 1), L3(2, 1, 2)

We may suppose that L3(1, 1, 1) or L3(2, 2, 2) is realized, since oth-
erwise Γ would be finite, and one can check the classification in that
case. Supposing for example that L3(1, 1, 1) is realized, the following
amalgamation diagram gives one of the required triangle types.
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a1 a2

u

v

By the symmetry noted above, which also applies to the statement
of the claim, we may suppose that the triangle type L3(2, 1, 2) is real-
ized, in which case we claim that one of the triangle types L3(1, 2, 1)
or L3(1, 2, 2) is realized. For this we use the following amalgamation
diagram.

a1 a2

u

v

The claim follows.
Now up to a symmetry of the language we arrive at one of the cases

listed, depending on whether we realize two, three, or all four of the
specified triangle types. □

Lemma 21.33. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament in which there is no nontrivial ∅-definable
partial order. Suppose that triangles of types

C3(1, 1, 1), C3(2, 2, 2)

are forbidden, while triangle types

C3(1, 1, 2), C3(2, 2, 1)

are realized.
If triangle type L3(2, 1, 2) is forbidden, then triangle type L3(1, 2, 1)

is realized.

Proof. By Lemma 21.32 the case that needs to be eliminated has
the following constraints (case (a')).
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L3(1, 2, 1), L3(2, 1, 2) are forbidden.
L3(1, 2, 2), L3(2, 1, 1) are realized.

By considering the configuration aub with a
1−→ u and b

2−→ u,
our constraints force b

1−→ a or a
2−→ b and thus one of the types

L3(1, 1, 2) or L3(2, 2, 1) is realized. By symmetry we may suppose
that L3(1, 1, 2) is realized.

Then we use the following amalgamation diagram.

a1

u

v

w

a2

The triangles occurring in the factors are of types L3(1, 1, 2), L3(1, 2, 2),
L3(2, 1, 1), C3(1, 1, 2), and C3(2, 2, 1). By 3-constraint, these factors
occur in Γ. In any completion of the diagram, one of the vertices
u, v, w completes a triangle of type L3(1, 2, 1). □

Lemma 21.34. Suppose that Γ is a homogeneous primitive 3-constrained
2-multi-tournament in which there is no nontrivial ∅-definable partial
order and triangles of types

C3(1, 1, 1), C3(2, 2, 2)

are forbidden.
Then up to a permutation of the language we have

The triangle types L3(1, 2, 2) and L3(2, 1, 2) are forbidden.
The triangle types L3(1, 2, 1) and L3(2, 1, 1) are realized.

Proof. By Lemma 21.31 the following triangle types are realized.

L2(1, 1, 2) L3(2, 2, 1) C3(1, 1, 2) C3(2, 2, 1)

So Lemma 21.32 applies and provides four possibilities, labeled as
(a, a', b, c). The case indicated in the statement of the lemma is case
(a).
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With the assumption of 3-constraint, Lemma 21.33 eliminates Case
(a'). We must also eliminate cases (b, c), again assuming 3-constraint.
This is the subject of the next two claims.

Claim 1. Under the stated assumptions we cannot have

L3(1, 2, 1) is forbidden.
L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2) are realized.

We may suppose that Γ is infinite as otherwise the claim follows
by inspection. In particular for any vertex a we have at least two
vertices u, v in a1. By assumption the arc between u, v is a 1-arc and
therefore (a, u, v) has type L3(1, 1, 1). So this triangle type must be
realized.

We consider the following amalgamation diagram.

a1

u

v

w

a2

The triangle types involved are L3(1, 1, 1), L3(1, 1, 2), L3(2, 1, 1),
C3(1, 1, 2), and C3(2, 2, 1). By the hypothesis of 3-constraint the fac-
tors of this diagram occur in Γ and therefore there is a completion in
Γ.

If the arc between a1 and a2 is a 1-arc then vertex v or w provides
a copy of C3(1, 1, 1). If it is a 2-arc then u provides L3(1, 2, 1). So we
have a contradiction.

Claim 2. Under the stated assumptions we cannot have all of

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2),

realized.

Note that in view of the remarks above, this would mean that all
triangles which are not monochromatic are realized.

The argument involves our most elaborate amalgamation diagram
so far, with 6 vertices a, b, u1, u2, u3, u4, as follows. The structure on
u1, u2, u3, u4 is shown without orientations since they will not matter.
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a1 a2

u1

u2

u3

u4

Since there are no monochromatic triangles in this diagram, both
factors occur in Γ, by 3-constraint.

In a completion, the 4-cycles containing u1u2 or u3, u4 would force
either C3(1, 1, 1) or C3(2, 2, 2) to occur, for a contradiction. □

Proof of Proposition 21.26. We suppose that triangle types
C3(1, 1, 1) and C3(2, 2, 2) are forbidden, and we must show that the
language can be chosen so that the triangle constraints satisfied by
Γ are those of S̃(3).

Lemma 21.31 gives the realization of the other two oriented 3-
cycles, as well as L3(1, 1, 2) and L3(2, 2, 1). Then by Lemma 21.34,
up to a choice of language we may suppose that L3(1, 2, 2), L3(2, 1, 2)
are forbidden and L3(1, 2, 1), L3(2, 1, 1) are realized.

By Lemma 21.30 the triangle type L3(2, 2, 2) is also realized.
Claim 1. The triangle type L3(1, 1, 1) is not realized.
We consider the following amalgamation diagram.

a1

u

v

w

a2

This involves the triangle types L3(1, 1, 1), L3(2, 1, 1), L3(2, 2, 2),
C3(1, 1, 2), C3(2, 2, 1). As these are present in Γ, the amalgamation
diagram has a completion in Γ. But the point u forces a1, a2 to be
joined by a 2-arc and the points v, w prevent this.

This proves the claim.
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This completes the analysis of all triangle types. □

21D.2. Proposition 21.27.

Proposition 21.27 (NPO3c: #8, #10, S(4)). Suppose that Γ is an
infinite primitive non-degenerate homogeneous 3-constrained 2-multi-
tournament with no nontrivial ∅-definable partial order, not associ-
ated with a free amalgamation class.

Suppose that the triangle type

C3(1, 1, 1)

is forbidden and the triangle type

C3(2, 2, 2)

is realized. Then up to a change of language Γ is determined by the
constraints given in one of entries #8 or #10 of our table, or Γ is
isomorphic to S(4) (#12).

We repeat the relevant lines of the table.

#8 C3(111), C3(112) forbidden.
#10 C3(111), C3(112), L3(111) forbidden.

#12, S(4) C3(111), C3(112), L3(121), L3(211), L3(221), L3(222)
forbidden.

We organize the analysis as follows. When L3(2, 2, 1) is forbid-
den we identify S(4) (Proposition 21.35). When L3(1, 1, 1) is forbid-
den we identify entry #10 (Proposition 21.44). When L3(1, 1, 1) and
L3(2, 2, 1) are realized we identify entry #8 (Proposition 21.46).

Of course, when we assume 3-constraint, identifying the structure
reduces to identifying the triangles which embed in the structure. In
fact, in Proposition 21.44 we work more generally: without assuming
3-constraint, we determine the pattern of forbidden triangles.

21D.3. The case of S(4). Our target in this subsection is the
following.

Proposition 21.35. Suppose that Γ is a 3-constrained homogeneous
primitive 2-multi-tournament for which the triangle types

C3(1, 1, 1), L3(2, 2, 1)

are forbidden and the triangle type C3(2, 2, 2) is realized.
Then Γ is isomorphic to S(4).
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Lemma 21.36. Suppose that Γ is a homogeneous primitive 2-multi-
tournament. Suppose that the triangle types

C3(1, 1, 1), L3(2, 2, 1)

are forbidden and the triangle type C3(2, 2, 2) is realized.
Then the triangle types L3(1, 2, 2) and L3(2, 1, 2) are realized.

Proof. As the hypotheses are preserved by reversal of the orien-
tation of both 2-types, it suffices to treat the case of L3(1, 2, 2).

We suppose the contrary:

Triangle types L3(1, 2, 2), L3(2, 2, 1), and C3(1, 1, 1) are forbidden.
Triangle type C3(2, 2, 2) is realized.

Claim 1. Triangle type C3(2, 2, 1) is forbidden.

Otherwise we make the following amalgamation.

a1 a2

u

v

This has no completion consistent with the constraints, so the claim
follows.

As Γ is primitive and triangle types L3(1, 2, 2), L3(2, 2, 1), and
C3(2, 2, 1) are forbidden, the triangle type L3(2, 1, 2) must be real-
ized. Then we can form the following amalgamation diagram.

a1 a2

u

v

But this has no completion consistent with the constraints.
This completes the proof. □
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Lemma 21.37. Suppose that Γ is a homogeneous primitive 2-multi-
tournament. with no nontrivial ∅-definable partial order. Suppose that
the triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbidden and the
triangle type C3(2, 2, 2) is realized. Then the triangle type L3(1, 1, 2)
is realized.

Proof. Suppose the contrary. As the 2-type 1−→ is not transitive,
the triangle type C3(1, 1, 2) must be realized. Consider the following
amalgamation diagram.

a1 a2

u

v

As this has no completion consistent with the constraints the lemma
follows. □

Lemma 21.38. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no nontrivial ∅-definable partial order.
Suppose that the triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbid-
den and the triangle type C3(2, 2, 2) is realized. Then the triangle type
L3(1, 1, 1) is realized.

Proof. Assume the contrary. For any vertex a, if we consider two
vertices dominated by a, or dominating a, with respect to 1-arcs,
then we see that the triangle types

L3(1, 2, 1), L3(2, 1, 1)

must be realized.
Consider the following amalgamation diagram (Figure 20).
The triangles occurring in the factors are of the forms L3(1, 1, 2),

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), and L3(2, 1, 2).
In view of Lemmas 21.36 and 21.37 and the hypothesis of 3-constraint,

this diagram must have a completion in Γ. Vertices v, w force a1, a2
to be related by a 1-arc and then a1ua2 has the form L3(1, 1, 1).

This proves the lemma. □
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a1

u

v

w

a2

Figure 20

Lemma 21.39. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no nontrivial ∅-definable partial order.
Suppose that the triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbid-
den and the triangle type C3(2, 2, 2) is realized. Then the triangle type
C3(2, 2, 1) is realized.

Proof. Consider the following amalgamation diagram.

a1

u

v

w

a2

The triangles occurring in the factors are of types L3(1, 1, 2), L3(1, 2, 2),
L3(2, 1, 2), and C3(2, 2, 2), which are realized in Γ by Lemmas 21.36
and 21.37. So by 3-constraint this diagram has a completion in Γ. Any
completion would involve L3(2, 2, 1) or C3(2, 2, 1), and the former is
forbidden. The lemma follows. □

We take stock of the analysis so far.

Lemma 21.40. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no nontrivial ∅-definable partial order.
Suppose that the triangle types

C3(1, 1, 1), L3(2, 2, 1)

are forbidden and the triangle type C3(2, 2, 2) is realized.
Then S(4) embeds into Γ.



21D. The case of S(4) 169

Proof. The triangle types embedding in S(4) are

L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 2);

L3(2, 1, 2), C3(2, 2, 1), C3(2, 2, 2).

These are afforded by the hypothesis and by Lemmas 21.36, 21.37,
21.38, and 21.39. □

Lemma 21.41. Suppose that Γ is a 3-constrained homogeneous 2-
multi-tournament for which the triangle types C3(1, 1, 1) and L3(2, 2, 1)
are forbidden and S(4) embeds into Γ. Then at least one of L3(1, 2, 1)
or C3(1, 1, 2) is not realized in Γ

Proof. Consider the following amalgamation diagram.

a1 a2

u1

u2

u3

u4

The triangle types involved are L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1),
L3(1, 2, 2), L3(2, 1, 2), and C3(1, 1, 2).

As no completion satisfies the constraints and triangles of types
L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 2), L3(2, 1, 2) are realized in Γ, the
lemma follows. □

Lemma 21.42. Suppose that Γ is a 3-constrained homogeneous 2-
multi-tournament for which the triangle types C3(1, 1, 1) and L3(2, 2, 1)
are forbidden and S(4) embeds into Γ.

Then the triangle type C3(1, 1, 2) is not realized in Γ

Proof. Supposing the contrary, the triangle type L3(1, 2, 1) is for-
bidden by Lemma 21.41.

Claim 1. The triangle type L3(2, 1, 1) is forbidden.

Consider the following amalgamation diagram.
The triangle types involved are L3(1, 1, 1), L3(1, 1, 2), L3(2, 1, 1),

L3(2, 1, 2), and L3(2, 2, 1). All of these with the exception of L3(2, 1, 1)
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a1

u

v

w

a2

embed into Γ. But a completion in Γ would produce a triangle (u, a1, a2)
of type (1, 2, 1).

This proves the claim.
Now consider the following amalgamation diagram.

a1 a2

u

v

The completion has a 1-arc between a1 and a2, forming a triangle
of type L3(1, 2, 1) or L3(2, 1, 1), for a contradiction.

This proves the lemma. □

Lemma 21.43. Suppose that Γ is a 3-constrained homogeneous 2-
multi-tournament for which the triangle types C3(1, 1, 1) and L3(2, 2, 1)
are forbidden and S(4) embeds into Γ.

Then the triangle types L3(1, 2, 1), L3(2, 1, 1) and L3(2, 2, 2) are
not realized in Γ

Proof. We know that the triangle type C3(1, 1, 2) is forbidden by
Lemma 21.42.

Claim 1. The triangle types

L3(1, 2, 1), L3(2, 1, 1)

are forbidden

Consider the following amalgamation diagram.
This involves triangle types L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1), and

C3(2, 2, 1) and has no completion in Γ.
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a1

u

v

w

a2

Thus the triangle type L3(1, 2, 1) is forbidden. By symmetry, re-
versing both 2-types, the triangle type L3(2, 1, 1) is forbidden.

Finally, consider the following amalgamation diagram.

a1 a2

u

v

This has no completion in Γ and so L3(2, 2, 2) is forbidden. □

Proof of Proposition 21.35. By Lemma 21.40 every triangle
embedding in S(4) embeds into Γ.

By Lemmas 21.42 and 21.43 no other triangles embed into Γ. The
result follows. □

21D.4. Entry #10. In this subsection we aim at the following.

Proposition 21.44. Suppose that Γ is an infinite primitive homoge-
neous 2-multi-tournament for which the triangle types

C3(1, 1, 1), C3(1, 1, 2), L3(1, 1, 1),

are forbidden, and there is no ∅-definable linear order.
Then all other triangle types are realized, as in entry #10 of our

table.

Here there is a symmetry: our constraint set is preserved by revers-
ing both 2-types.

Lemma 21.45. Suppose that Γ is an infinite homogeneous primitive
2-multi-tournament for which the triangle types

C3(1, 1, 1), C3(1, 1, 2), L3(1, 1, 1)
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are forbidden.
Then the triangle types

L3(1, 1, 2), L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2), L3(2, 2, 2)

are realized.

Proof. The unique completion of the configuration a
1−→ u

1−→ b
is L3(1, 1, 2).

Fixing a point a in Γ and considering a1, a1op yields triangle types
L3(1, 2, 1) and L3(2, 1, 1). (Notation as in Notation 20.1, with respect
to 1−→ and 1←−.)

Since L3(1, 1, 1) is forbidden, L3(2, 2, 2) is realized.
It remain to consider triangle types L3(1, 2, 2) and L3(2, 1, 2).
The following amalgamation diagram gives triangle type L3(1, 2, 2).

a1 a2

u

v

Since our constraints are preserved by reversing the orientations of
both 2-types, we also have triangle type L3(2, 1, 2). □

Proof of Proposition 21.44. By Lemma 21.45, triangle types

L3(1, 1, 2), L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2),

L3(2, 2, 2),

are realized, leaving the triangle types

L3(2, 2, 1), C3(2, 2, 1), C3(2, 2, 2),

still to be dealt with.

Claim 1. Type C3(2, 2, 1) is realized.

Suppose C3(2, 2, 1) is forbidden. Since there is no ∅-definable linear
order, the triangle type C3(2, 2, 2) is realized.

But then it suffices to complete the following diagram to get trian-
gle type C3(2, 2, 1).

The claim follows.
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a1 a2

u

v

Now the following diagrams give L3(2, 2, 1) and C3(2, 2, 2).

a1 a2

u

v

a1 a2

u

v

□

21D.5. Entry #8.
In this subsection we aim at the following.

Proposition 21.46. Suppose that Γ is an infinite 3-constrained ho-
mogeneous primitive 2-multi-tournament for which the triangle types

C3(1, 1, 1), C3(1, 1, 2)

are forbidden, the triangle types

L3(1, 1, 1), L3(2, 2, 1), C3(2, 2, 1)

are realized, and there is no nontrivial ∅-definable partial order.
Then all other triangle types are realized, as in entry #8 of our

table.

Lemma 21.47. Suppose that Γ is an infinite homogeneous primitive
2-multi-tournament for which the triangle types

C3(1, 1, 1), C3(1, 1, 2)

are forbidden, the triangle types

L3(1, 1, 1), L3(2, 2, 1), C3(2, 2, 1)

are realized, and there is no nontrivial ∅-definable partial order.
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Then the triangle types

L3(1, 1, 2), L3(1, 2, 1), L3(2, 1, 1)

are realized.

Proof. As the 2-type 1−→ is not transitive, the type L3(1, 1, 2)
must be realized.

The following amalgamation diagram gives L3(1, 2, 1).

a1 a2

u

v

As our constraints are preserved by reversal of both 2-types, the
type L3(2, 1, 1) is also realized. □

Proof of Proposition 21.46. By Lemma 21.47 and the hypoth-
esis the following triangle types are realized.

L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1), L3(2, 1, 1), L3(2, 2, 1).

C3(2, 2, 1).

This leaves the following types to be considered.

L3(1, 2, 2), L3(2, 1, 2), L3(2, 2, 2), C3(2, 2, 2).

Consider the following amalgamation diagram.

a1

u

v

w

a2

The triangle types involved are L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1),
and L3(2, 1, 1), which are realized by Γ.
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The only possible completion has a2
2−→ a1 and thus L3(2, 1, 2) is

realized.
As the constraints are closed under reversal, also L3(1, 2, 2) is also

realized.
Now consider the following amalgamation diagram (Figure 22).

a1

u

v

w

a2

Figure 22

This involves triangle types L3(1, 1, 2), L3(1, 2, 2), L3(2, 1, 2), L3(2, 2, 1),
C3(2, 2, 1) and so has a completion in Γ, which must have a1

2−→ a2.
Thus L3(2, 2, 2) is realized.

Now consider the following amalgamation diagram.

a1

u

v

w

a2

Figure 23

This involves triangle types L3(1, 1, 2), L2(1, 2, 2), L3(2, 2, 1), and
L3(2, 2, 2) and so has a completion in Γ, which must have a2

2−→ a1.
Thus C3(2, 2, 2) is realized.

This completes the proof. □

21D.6. Proof of Proposition 21.27.
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Lemma 21.48. Suppose that Γ is a homogeneous primitive 3-constrained
2-multi-tournament. Suppose that the triangle type C3(1, 1, 1) is for-
bidden and the triangle types

L3(1, 1, 2), L3(2, 2, 1),

C3(1, 1, 2), C3(2, 2, 1), C3(2, 2, 2)

are realized.
Then the triangle types

L3(1, 2, 1), L3(2, 1, 1)

are also realized.

Proof. By symmetry it suffices to prove that L3(1, 2, 1) is real-
ized. Suppose on the contrary that this type is forbidden. Then easily
L3(1, 1, 1) is realized.

Consider the following amalgamation diagram.

a1

u

v

w

a2

This involves the triangle types L3(1, 1, 2), L3(2, 1, 1), C3(1, 1, 2),
and C3(2, 2, 2) and has no completion in Γ. Therefore the triangle
type L3(2, 1, 1) must also be forbidden.

In particular our hypotheses are now preserved by reversal of the
orientations of both 2-types.

Consider the following amalgamation diagram.

a1

u

v

w

a2
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This involves the triangle types L3(1, 1, 2), L3(2, 2, 1), L3(2, 1, 2),
C3(1, 1, 2), C3(2, 2, 1), and C3(2, 2, 2), and has no completion in Γ.
Therefore the triangle type L3(2, 1, 2) must also be forbidden. By
symmetry, L3(1, 2, 2) is also forbidden.

Then the following amalgamation diagram yields a contradiction.

a1 a2

u

v

This proves the lemma. □

Lemma 21.49. Suppose that Γ is a homogeneous 3-constrained 2-
multi-tournament for which the triangle type C3(1, 1, 1) is forbidden
and the triangle types

L3(1, 1, 2), L3(2, 1, 1), L3(2, 2, 1)

C3(1, 1, 2), C3(2, 2, 1)

are realized. Then the triangle type L3(2, 2, 2) is realized.

Proof. The following diagram involves only the realized triangle
types.

a1

u

v

w

a2

Any allowable completion will contain a triangle of type L3(2, 2, 2).
The lemma follows. □

Lemma 21.50. Suppose that Γ is a homogeneous primitive 3-constrained
2-multi-tournament not associated with a free amalgamation class.
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Suppose that the triangle type C3(1, 1, 1) is forbidden and the trian-
gle types

L3(1, 1, 2), L3(2, 2, 1)

C3(2, 2, 1), C3(2, 2, 2)

are realized.
Then the triangle type C3(1, 1, 2) is forbidden.

Proof. Suppose the triangle type C3(1, 1, 2) is realized. Then Lemma
21.48 shows that triangle types L3(1, 2, 1) and L3(2, 1, 1) are realized.
Then Lemma 22.25 shows that the triangle type L3(2, 2, 2) is also re-
alized.

As Γ is not associated with a free amalgamation class, at least one
of the triangle types L3(1, 2, 2) or L3(2, 1, 2) must be forbidden. By
symmetry we may suppose that

L3(1, 2, 2)

is forbidden.
Consider the following amalgamation diagram.

a1

u

v

w

a2

This involves the triangle types L3(1, 1, 2), L3(1, 2, 1) L3(2, 1, 1),
L3(2, 2, 1), C3(1, 1, 2), C3(2, 2, 2) and has no completion in Γ. This is
a contradiction. □

Lemma 21.51. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no non-trivial ∅-definable partial order,
with triangle types

C3(1, 1, 1), C3(1, 1, 2)

forbidden, and triangle type C3(2, 2, 2) realized.
Then after a suitable identification of the languages, Γ is isomor-

phic to entry #8, #10, or #12 of Table 21.1.
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Proof. If L3(2, 2, 1) is forbidden then Proposition 21.35 applies
and Γ ∼= S(4) under a suitable identification of the languages.

If C3(2, 2, 1) is forbidden then after reversing the 2-type 1−→ Propo-
sition 21.35 applies, and again Γ ∼= S(4) under a suitable identifica-
tion of the languages.

So we suppose that triangle types

L3(2, 2, 1), C3(2, 2, 1)

are realized.
At this point the finite case may be removed by inspection, so we

suppose Γ is infinite.
If triangle type L3(1, 1, 1) is forbidden then Proposition 21.44 ap-

plies and gives an identification with entry #10.
If triangle type L3(1, 1, 1) is realized then Proposition 21.46 applies

and gives an identification with entry #8. □

Proof of Proposition 21.27. We assume that the triangle type
C3(1, 1, 1) is realized and the triangle type C3(2, 2, 2) is forbidden. We
aim at one of entries 8, 10, 12 in our table. We consider four cases.

(a) If triangle type L3(2, 2, 1) is forbidden then Proposition 21.35
applies, and Γ is isomorphic to S(4).

(a′) If C3(2, 2, 1) is forbidden then after reversing 2−→ we fall under
the same case.

(b) If triangle type C3(1, 1, 2) is forbidden then Lemma 21.51 ap-
plies.

(b′) If L3(1, 1, 2) is forbidden then after reversing a 2-type the same
lemma applies.

Thus we arrive at the following case.

Triangle type C3(1, 1, 1) is forbidden.
Triangle types L3(1, 1, 2), L3(2, 2, 1), C3(1, 1, 2), C3(2, 2, 1),

and C3(2, 2, 2) are realized.

But by Lemma 21.50, this case does not arise. □

21D.7. Entry 9: Proposition 21.28. We now aim at the fol-
lowing.
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Proposition 21.28 (NPO3c: #9). Suppose that Γ is a homogeneous
primitive 3-constrained 2-multi-tournament with no nontrivial ∅-defin-
able partial order, and which does not have free amalgamation. Sup-
pose that the triangle types C3(1, 1, 1) and C3(2, 2, 2) are both real-
ized in Γ. Then up to a change of language, Γ is determined by the
constraints in entry #9 of our table: that is, triangle types C3(1, 1, 2)
and L3(1, 1, 1) are forbidden and all other triangle types are realized.

Lemma 21.52. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order, and not associated with
a free amalgamation class. Suppose that the triangle types

C3(1, 1, 1), C3(2, 2, 2)

are realized and the triangle type L3(1, 2, 1) is forbidden.
Then the triangle types

L3(1, 1, 1), L3(1, 1, 2), C3(1, 1, 2)

are realized.

Proof. We may deal with the finite case by inspection so we sup-
pose Γ is infinite. In that case as L3(1, 2, 1) is forbidden, the triangle
type L3(1, 1, 1) is realized.

By symmetry with respect to reversal of the type 2−→, it suffices now
to show that L3(1, 1, 2) is realized. So suppose toward a contradiction
that it is forbidden.

Claim 1. The triangle type C3(1, 1, 2) is realized.

If this type is forbidden then by primitivity the type L3(2, 1, 1) is
realized. But then the following diagram forces C3(1, 1, 2).

a1 a2

u

v

This proves the claim.

Claim 2. The triangle type C3(2, 2, 1) is realized.

The following diagram forces triangle type L3(2, 1, 1).
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a1 a2

u

v

Then the following forces C3(2, 1, 1).

a1 a2

u

v

This proves the claim.
Now the following diagram forces L3(1, 1, 2).

a1 a2

u

v

□

Lemma 21.53. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no ∅-definable partial order, and not
associated with a free amalgamation class. Suppose that the triangle
types

C3(1, 1, 1), C3(2, 2, 2)

are realized and the triangle type L3(1, 2, 1) is forbidden.
Then the triangle type

L3(2, 1, 1)

is forbidden.
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a1

u

v

w

a2

Proof. Consider the following amalgamation diagram.
With the exception of triangle type L3(2, 1, 1) the triangle types

involved in the factors are realized by hypothesis or by Lemma 21.52.
As this diagram has no completion in Γ, the lemma follows. □

Lemma 21.54. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order, and not associated with
a free amalgamation class. Suppose that the triangle types C3(1, 1, 1)
and C3(2, 2, 2) are realized and L3(1, 2, 1), L3(2, 1, 1) are forbidden.
Then the triangle types

L3(2, 2, 1), C3(2, 2, 1)

are realized.

Proof. By symmetry it suffices to deal with L3(2, 2, 1).
The following diagram forces triangle type L3(2, 2, 1) to be realized.

a1 a2

u

v

□

Lemma 21.55. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no ∅-definable partial order, and not
associated with a free amalgamation class. Suppose that the triangle
types

C3(1, 1, 1), C3(2, 2, 2)

are realized and triangle type L3(1, 2, 1) is forbidden.
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Then the triangle types

L3(1, 2, 2), L3(2, 1, 2)

are forbidden

Proof. By symmetry it suffices to deal with L3(1, 2, 2).
Consider the following amalgamation diagram.

a1

u

v

w

a2

The triangle types involved are L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 2),
and C3(1, 1, 1). Other than L3(1, 2, 2), these are afforded by hypoth-
esis and by Lemma 21.52. As this diagram has no completion in Γ
the lemma follows. □

Lemma 21.56. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no ∅-definable partial order, and not
associated with a free amalgamation class. Suppose that the triangle
types C3(1, 1, 1) and C3(2, 2, 2) are realized. Then the triangle types

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2)

are realized.

Proof. By symmetry, it suffices to treat the case of L3(1, 2, 1).
Suppose that the triangle type L3(1, 2, 1) is forbidden.
Then the triangle types L3(2, 1, 1), L3(1, 2, 2), L3(2, 1, 2) are also

forbidden by Lemma 21.53 and 21.55. It follows easily that triangle
type L3(2, 2, 2) is realized.

The following amalgamation diagram involves triangle types L3(1, 1, 1),
L3(1, 1, 2), L3(2, 2, 1), L3(2, 2, 2), C3(1, 1, 2), and C3(2, 2, 1). All of
these except L3(2, 2, 2) are afforded by Lemmas 21.53 and 21.54.

Any completion of this diagram contains a triangle of type L3(1, 2, 1)
or L3(2, 1, 1), giving a contradiction. The lemma follows. □

Lemma 21.57. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no ∅-definable partial order. Suppose
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a1

u

v

w

a2

that the triangle types

C3(1, 1, 1), C3(2, 2, 2)

are realized and the triangle type C3(1, 1, 2) is forbidden.
Then the triangle type

L3(1, 1, 2)

is realized.

Proof. By Lemma 21.56 the triangle types

L3(1, 2, 1) L3(1, 2, 2) L3(2, 1, 1) L3(2, 1, 2)

are realized.
Suppose toward a contradiction that the triangle type L3(1, 1, 2) is

forbidden. Then our hypotheses are preserved by reversal of the type
2−→.
Consider the following amalgamation diagram.

a1

u

v

w

a2

This has no completion, and involves triangle types L3(1, 2, 1),
L3(2, 1, 1), L3(2, 1, 2), L3(2, 2, 1), and C3(1, 1, 1). Therefore the tri-
angle type

L3(2, 2, 1)

must be forbidden.
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Reversing the type 2−→, the triangle type

C3(2, 2, 1)

is also forbidden.
Consider the following amalgamation diagram.

a1

u

v

w

a2

This involves triangle types

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2), C3(1, 1, 1),

but has no completion in Γ. This is a contradiction. □

Lemma 21.58. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no ∅-definable partial order. Suppose
that the triangle types

C3(1, 1, 1), C3(2, 2, 2)

are realized, and the triangle type C3(1, 1, 2) is forbidden.
Then the triangle type

L3(2, 2, 1)

is realized.

Proof. Suppose toward a contradiction that the triangle type

L3(2, 2, 1)

is forbidden.
Then switching the labels 1, 2 and reversing the 2-type 2−→ in

Lemma 21.57 we find that the triangle type

C3(2, 2, 1)

is realized.
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Claim 1. The triangle type L3(1, 1, 1) is realized.

If we suppose the contrary then the triangle type L3(2, 2, 2) is re-
alized.

Consider the following amalgamation diagram.

a1

u

v

w

a2

This involves the triangle types L3(1, 1, 2), L3(2, 1, 1), L3(2, 1, 2),
and L3(2, 2, 2). A completion must realize triangle type L3(1, 1, 1).
This proves the claim.

Claim 2. Triangle type L3(2, 2, 2) is realized.

Consider the following amalgamation diagram.

a1

u

v

w

a2

This involves the triangle types L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1),
and L2(2, 1, 2). The unique completion has a1

2−→ a2 and thus L3(2, 2, 2)
is realized.

Now we consider an amalgamation diagram with 6 points (Figure
24).

This does not involve the triangle types C3(1, 1, 2) or L3(2, 2, 1)
and all others are realized at this point. As there is no completion we
arrive at a contradiction. Thus the type L3(2, 2, 1) is realized.

This completes the proof. □
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a1 a2

u1

u2

u3

u4

Figure 24

Lemma 21.59. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order. Suppose that the trian-
gle types

L3(1, 1, 2), C3(2, 2, 2)

are realized, and the triangle type C3(1, 1, 2) is forbidden.
Then the triangle type

C3(2, 2, 1)

is realized.

Proof. The following diagram forces C3(2, 2, 1) to be realized.

a1 a2

u

v

The factors are triangles of types L3(1, 1, 2) and C3(2, 2, 2). □

Lemma 21.60. Suppose that Γ is a 3-constrained homogeneous prim-
itive 2-multi-tournament with no ∅-definable partial order, and not
associated with a free amalgamation class. Suppose that the triangle
types

C3(1, 1, 1), C3(2, 2, 2)
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are realized, and the triangle type C3(1, 1, 2) is forbidden.
Then the triangle type L3(1, 1, 1) is forbidden, and all remaining

triangle types are realized.

Proof. Lemmas 21.56–21.59 dispose of everything other than the
monochromatic triangles of types L3(1, 1, 1), L3(2, 2, 2). So we need
to show that the former is forbidden and the latter is realized.

Claim 1. The triangle type L3(2, 2, 2) is realized.

The following amalgamation diagram involves the triangle types
L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2), and C3(2, 2, 1).

a1

u

v

w

a2

Any completion has a 2-arc between a1 and a2 and thus realizes
the triangle type L3(2, 2, 2). This proves the claim.

Claim 2. The triangle type L3(1, 1, 1) is forbidden.

The following amalgamation diagram does not involve the triangle
type C3(1, 1, 2) and has no completion in Γ.

a1 a2

u1

u2

u3

u4

As the only triangle type involved which could be forbidden is
L3(1, 1, 1), this proves the claim.

This completes the proof of the lemma. □
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Proof of Proposition 21.28. We suppose that Γ realizes C3(1, 1, 1)
and C3(2, 2, 2).

By Lemma 21.56, Γ realizes the triangle types L3(1, 2, 1), L3(1, 2, 2),
L3(2, 1, 1), L3(2, 1, 2). As Γ can forbid at most one of L3(1, 1, 1) or
L3(2, 2, 2) and is not a free amalgamation class, it must forbid one of
the remaining triangle types

L3(1, 1, 2) L3(2, 2, 1) C3(1, 1, 2) C3(2, 2, 1)

Up to symmetry, that is, allowing the labels 1, 2 to be swapped and
the orientation of 2−→ to be reversed, we may suppose therefore that
Γ does not realize the type C3(1, 1, 2). Then Lemma 21.60 completes
the proof. □

21E. Proof of completeness (3-constrained case)

Proof of Proposition 21.16. Γ is infinite, primitive, homoge-
neous, and we assume it has no ∅-definable linear order and is not
associated with a free amalgamation class. We suppose also that Γ is
3-constrained. We claim then that it is listed in Table 21.1 as one of
entries 6–12.
(⋆) If there is a transitive 2-type we assume the type 1−→ is transitive.

We apply Proposition 21.17, proved on p. 152. As explained
following the statement of that proposition, this leads to entries
#6,7 in the table.

(⋆) If there is no transitive 2-type, then as we assume there is no
∅-definable linear order, we arrive at the case in which there is
no ∅-definable partial order. Depending on which of the trian-
gle types C3(1, 1, 1), C3(2, 2, 2) is realized, one of Propositions
21.26, 21.27, or 21.28 applies.
– If C3(1, 1, 1), C3(2, 2, 2) are both forbidden then Proposition

21.26, proved on p. 164, leads to entry #11 (S̃(3)).
– If exactly one of C3(1, 1, 1) and C3(2, 2, 2) is forbidden, we

may assume that C3(1, 1, 1) is forbidden. Then Proposition
21.27, proved on p. 179, leads to one of the entries #8, 10,
or 12 (S(4)).

– If both C3(1, 1, 1) and C3(2, 2, 2) are realized then Propo-
sition 21.28, proved on p. 189, applies, and leads to entry
#9.
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Thus all cases are covered. □

Proof of Proposition 21.2. This is Proposition 21.4, proved
on p. 144, plus Proposition 21.16, proved above. □

As noted at the outset, Proposition 21.1 follows.



CHAPTER 22

HOMOGENEOUS 2-MULTI-TOURNAMENTS:
FORBIDDEN TRIANGLES; CONCLUSION

Having identified the 3-constrained homogeneous 2-multi-tourna-
ments, the next question is the extent to which the constraints on
triangles found in a general homogeneous 2-multi-tournament agree
with these. In other words, if one looks only at the constraints on
triangles, do they already define an amalgamation class? (If so, the
next question is whether the original structure is determined by a set
of Henson constraints relative to the larger 3-constrained class.)

In the case in which 1−→ ∪ 2−→ is required to be a linear order (up
to a change of language) this question is settled by the explicit clas-
sification in Part I. Here we discuss the possible patterns of triangle
constraints in the remaining cases. Recall that this kind of analysis
is the customary prelude to an identification of exceptional examples
(in the case of homogeneous directed graphs, the exotic example P(3)
was found at this stage).

We aim here at the following partial result.

Proposition 22.1. Let Γ be an infinite, primitive, homogeneous 2-
multi-tournament not associated with a free amalgamation class.

If Γ has a ∅-definable linear order then it is found in the classifica-
tion in Part I, and is listed in Table 18.1, group II (entries 2–5).

If Γ has no ∅-definable linear order, then either
1. the set of forbidden triangles in Γ defines one of the known 3-

constrained 2-multi-tournaments listed in Table 21.1, or
2. one of the following four cases applies.

(a) Triangle types C3(1, 1, 1) and C3(2, 2, 2) are forbidden and
all other triangle types are realized.

(b) Triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbidden and
all other triangle types are realized.

191
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(c) Triangle type C3(1, 1, 2) is forbidden and all other triangle
types are realized.

(d) Triangle types C3(1, 1, 2) and L3(2, 2, 1) are forbidden and
all other triangle types are realized.

We conjecture that the four exceptional cases envisioned here do
not arise.

We proceed as follows. Proposition 22.2 deals with the case in which
there is a definable partial order, with no exceptional cases left over.
The remaining cases are subdivided as follows (assuming throughout
that there is no definable partial order).

1. If triangle types C3(1, 1, 1) and C3(2, 2, 2) are forbidden, we ar-
rive either at the restrictions associated with S̃(3), or the first
of our exceptional cases (Proposition 22.3 ).

2. If triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbidden, while
triangle type C3(2, 2, 2) is realized, we arrive either at the re-
strictions associated with S(4), or the second of our exceptional
cases (Proposition 22.19).

3. If the triangle types C3(1, 1, 1) and C3(1, 1, 2) are forbidden,
while the triangle types L3(1, 1, 1), L3(2, 2, 1), C3(2, 2, 1) are
realized, then all other triangle types are realized, as in entry
#8 (Proposition 22.27).

4. If the triangle types C3(1, 1, 1) and C3(2, 2, 2) are realized and
the triangle type C3(1, 1, 2) is forbidden, then all other trian-
gle types are realized except possibly L3(2, 2, 1) and L3(1, 1, 1)
(Proposition 22.28).

In §22G we check that these cases cover everything necessary to
derive Proposition 22.1—but actually, we also need a generalization
of Lemma 21.50, originally proved only in the 3-constrained case.
This is given as Lemma 22.26. The proof becomes considerably more
elaborate at this level of generality.

We make extensive use of explicit amalgamation arguments through-
out.5

5One can imagine substantial generalizations of the these results to richer lan-
guages, possibly with less ad hoc proofs, but even if that materializes it is very
probable that such arguments would begin with very similar lemmas proved by
amalgamation arguments (or, indeed, by some sort of induction with the type of
argument carried out here providing part of the base of the induction).
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We continue to make use of Notation 20.1 in conjunction with
the abbreviated notations 1, 2, 1op, 2op for 1−→, 2−→, 1←− and 2←−
respectively.

There is also some further use of Notation 21.3 below. Notably,
in the proof of Proposition 22.2 following, we have both v2 (as in
Notation 20.1) and L2

3 (as in Notation 21.3 ).

22A. The transitive case

Proposition 22.2. Suppose that Γ is a homogeneous primitive 2-
multi-tournament in which the relation 1−→ is transitive (that is, the
triangle types C3(1, 1, 1), C3(1, 1, 2), and L3(1, 1, 2) are forbidden)
and there is no ∅-definable linear order.

Then all other triangle types are realized, except possibly L3(2, 2, 1)
or C3(2, 2, 1); at least one of these is realized as well. Thus, up to a
change of language, the triangle constraints are as in entry #6 or #7
of Table 21.1.

Proof. With the exception of the triangle types

L3(2, 2, 1), C3(2, 2, 1),

this is all covered by Proposition 21.17. That is, we begin with the
following information.

Triangle types L3(1, 1, 2), C3(1, 1, 1), C3(1, 1, 2) are forbidden.
Triangle types L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 2, 1),

L3(2, 2, 2), and C3(2, 2, 2) are realized.

We assume that the conclusion fails.

Triangle types L3(2, 2, 1), C3(2, 2, 1) are forbidden.

In view of Lemma 21.25 we also have the following.

The configurations (IC3)
2 and (C3I)

2 are forbidden.

Consider the following amalgamation diagram (Figure 25).
Any completion will contain a triangle of type L3(2, 2, 1) or C3(2, 2, 1),

so it suffices now to embed the two factors into Γ.
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a1

u

v

w

a2

Figure 25

The factor omitting a1 is the unique completion of the following
diagram, since (C3I)

2 is forbidden.

a2

u

v

w

So it suffices to embed the factor omitting a2, or the configuration
obtained by reversing the orientation of all its arcs, into Γ.

a1

u

v

w

This may be viewed as a triangle of type L3(1, 2, 1) sitting in v2.
The reversal may be viewed as a triangle of type L3(2, 1, 1) sitting in
v2

op .
By Lemma 21.22 we may take a configuration aLb in Γ with

a
1−→ L

1−→ b; L ∼= L2
3.
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We may then take u ∈ Γ with

u
2−→ a; b

2−→ u.

We find that u is related to L by 2-arcs. Thus we may find c1, c2 ∈ L

with u
2−→ c1, c2 or c1, c2

2−→ u, and this gives either u
2−→ L3(1, 2, 1)

or L3(2, 1, 1)
2−→ u, as required.

This completes the proof. □

22B. No definable p.o.: Around S̃(3)

We take up the more complex case in which Γ has no non-trivial ∅-
definable partial order. The main division is according to how many
of the oriented 3-cycles C1

3 and C2
3 are realized, with the case in

which exactly one is realized branching off into three separate cases;
in total, these correspond to the five entries 8–12 of our table.

We aim now at the following.

Proposition 22.3 (NPO: S̃(3)). Suppose that Γ is an infinite homo-
geneous primitive 2-multi-tournament in which there is no ∅-definable
partial order and triangles of types C3(1, 1, 1), C3(2, 2, 2), are forbid-
den. Then one of the following two possibilities occurs.
(a) Up to a change of language, a triangle of type L3(1, 2, 1) is for-

bidden and all other triangle types are realized, as in the 3-
constrained case #11 (the structure S̃(3)).

(b) All other triangle types are realized in Γ.

The second alternative should not occur, but that is a difficult
point as the relevant amalgamation diagrams in the 3-constrained
case have factors of order 5.

Still, we get this far by making a close study of forbidden structures
of order 4.

22B.1. Notation: 2-multi-tournaments of order 4. We will
need to consider which configurations of order 4 embed into Γ. We
adopt the following notation for such configurations.

Notation 22.4. L4, C4, IC3, and C3I denote the four tournaments
of order 4, namely the transitive tournament, the tournament con-
taining a 4-cycle, and the two tournaments consisting of a vertex
which either dominates or is dominated by a 3-cycle, respectively.
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We label the vertices of these tournaments according to the following
conventions.

L4: 1→ 2→ 3→ 4;
C4: 1→ 2→ 3→ 4→ 1 and 1→ 3, 2→ 4.
IC3: 1→ (2, 3, 4), with 2→ 3→ 4→ 2 taken in any cyclic order.
C3I: (2, 3, 4)→ 1, similarly.

1 2

34

Figure 26. The tournament C4

1→ (2, 3)→ 4→ 1

We view any 2-multi-tournament as a tournament with arcs col-
ored. Accordingly we use the notation T (i1i2i3i4i5i6) for a 2-multi-
tournament of order 4, where T is the underlying tournament, and
i1, . . . , i6 are the colors (i.e., the labels 1, 2) according to some fixed
arrangement of pairs of vertices. We use the following convention.

L4: (1, 2), (2, 3), (3, 4); (1, 3), (2, 4); (1, 4)
C4: (1, 2), (2, 3), (3, 4), (4, 1); (1, 3), (2, 4)
IC3: (1, 2), (1, 3), (1, 4); (2, 3), (3, 4), (4, 2);
C3I: (2, 1), (3, 1); (4, 1); (2, 3), (3, 4), (4, 2).

1 2

34

1
2

3

4 5 6

Figure 27. The tournament C4(1, 2, 3, 4; 5, 6)

Furthermore, we apply this notation at present only to 2-multi-
tournaments which omit the 3-cycles C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 2).
Therefore, in cases where the underlying tournament is IC3 or C3I,
the 3-cycle involved must be C3(2, 2, 1); and we adopt the additional
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convention that

2
2−→ 3

2−→ 4
1−→ 2

in this case.
We therefore have the following notations, with some added punc-

tuation for the sake of legibility.

— L4(i1i2i3; j1j2; k);
— C4(i1i2i3i4; j1j2);
— IC3(ijk; 221); C3I(ijk; 221).

One must also keep track of the symmetries available (reversing
the orientation of both 2-types). These transform the configurations
as follows.

L4(i1i2i3; j1j2; k)↔ L4(i3i1i2; j2j1; k).
C4(i1i2i3i4; j1j2)↔ C4(i3i2i1i4; j2j1).
IC3(ijk; 221)↔ C3I(kji; 221).

22B.2. The triangle types L3(1, 1, 2), L3(2, 2, 1), C3(1, 1, 2),
and C3(2, 2, 1). We aim now to generalize Lemma 21.31, dropping
the hypothesis of 3-constraint. That is, we wish to show the following.

Lemma 22.5. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
and triangles of types C3(1, 1, 1), C3(2, 2, 2) are forbidden. Then the
triangle types

L3(1, 1, 2), L3(2, 2, 1), C3(1, 1, 2), C3(2, 2, 1)

are realized in Γ.

These four types correspond under changes of language, that is,
switching labels 1, 2 or reversing the orientation of 2-types. So it will
suffice to prove that a particular one of these types is realized in Γ,
and we focus on C3(1, 1, 2).

Thus we will spend some time exploring the consequences of forbid-
ding triangle types C3(1, 1, 1), C3(2, 2, 2), and C3(1, 1, 2). To begin
with, we review the relevant results from §21D.1.

Lemma 22.6. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
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and triangles of types C3(1, 1, 1), C3(1, 1, 2), and C3(2, 2, 2) are for-
bidden. Then the triangle types

L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1), L3(1, 2, 2),

L3(2, 1, 1), L3(2, 1, 2), C3(2, 2, 1)

are realized in Γ.

Proof. This is stated a little more generally in Lemma 21.29. □

Lemma 22.7. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
and triangles of types

C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 2)

are forbidden.
Then the following hold.
1. The configurations

C4(1112; 22), C4(2121; 22)

embed into Γ.
2. The configurations

C4(1212; 22), L4(111; 22; 2), L4(121; 21; 2), L4(121; 12; 2),

C4(2221; 22)

do not embed into Γ.

Proof.

Claim 1. The configuration C4(1112; 22) embeds into Γ.

This configuration may be viewed as an amalgamation determining
the type of the pair of vertices (1, 3). The factors C3(221) and L3(112)
embed in Γ and the unique possible amalgam is C4(1112; 22).

Claim 2. The configuration C4(1212; 22) does not embed in Γ.

Assuming the contrary, make the following amalgamation (Figure
28).

The factors are C4(1112; 22) and C4(1212; 22) (amalgamated over
vertices 2,4,1 or 4,1, 3 respectively). The parameters u, v, w forbid
(a1, a2) to have type 1−→, 1←− or 2←−, and 2−→, respectively.

This gives a contradiction and proves the claim.
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a1

u

v

w

a2

Figure 28

Claim 3. The configuration C4(2121; 22) embeds in Γ.

We view this configuration as an amalgam with the type of the
pair of vertices (1, 3) to be determined. The desired type is 1

2−→ 3.
It is also possible to complete the amalgamation by 3

2−→ 1, but
this would give C4(1212; 22).

Claim 4. The configurations

L4(111; 22; 2), L4(121; 21; 2), L4(121; 12; 2)

do not embed in Γ.

If L4(111; 22; 2) or L4(121; 21; 2) embeds in Γ we make use of one
of the following amalgamations.

a1

u

v

w

a2

(A)

a1

u

v

w

a2

(B)

These have factors

L4(111; 22; 2), C4(2121; 22), C4(2121; 22), L4(121; 21; 2)

respectively. In each case the parameters u, v, w prevent any comple-
tion by a 2-type for a1, a2.
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This disposes of the first two configurations, and by symmetry
L4(121; 12; 2) is also forbidden.

Claim 5. One of the configurations L4(221; 12; 2) or L4(211; 22; 2)
embeds into Γ.

We view L4(221; 12; 2) as an amalgamation diagram with the type
of (1, 2) to be determined. This has the following four solutions.

a1
1−→ a2: L4(121; 12; 2);

a1
1←− a2: L4(111; 22; 2);

a1
2−→ a2: L4(221; 12; 2);

a1
2←− a2: L4(211; 22; 2).

As the first two are forbidden, the claim follows.

Claim 6. The configuration C4(2221; 22) does not embed in Γ.

Assuming the contrary, and invoking the previous claim, we may
use one of the following amalgamations.

a1

u

v

w

a2

(A)

a1

u

v

w

a2

(B)

These have factors

L4(221; 12; 2), C4(2221; 22), L4(211; 22; 2), C4(2221; 22)

respectively, and neither has a consistent completion. This gives a
contradiction and proves the claim.

This completes the proof of the lemma. □

Lemma 22.8. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
and triangles of types C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 2), are forbid-
den. Then L3(222) embeds into Γ.
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Proof. We treat L4(111; 22; 2) as an amalgamation problem with
the type of the pair of vertices (3, 4) to be determined.

The possible solutions are

3
1−→ 4: L4(111; 22; 2)

3
1←− 4: L4(121; 21; 2)

3
2−→ 4 or 3

2←− 4: (1, 3, 4) has type L3(222).

By the previous lemma the first two possibilities are excluded. □

At this point we have shown that when C3(1, 1, 1), C3(1, 1, 2) and
C3(2, 2, 2) are forbidden, then all triangle types other than the three
forbidden 3-cycles, and possibly the configuration L3(221), embed
into Γ.

We summarize the information obtained up to this point in the
following table.

Forbidding C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 2)

3-types 4-types
Forbidden C3(111), C3(112),

C3(222)
C4(1212; 22), C4(2221; 22),
L4(111; 22; 2),
L4(121; 21; 2),
L4(121; 12; 2)

Realized C3(221), all L3 except
possibly L3(221)

C4(1112; 22), C4(2121; 22)

Now we deal with the remaining triangle type, L3(221). If this
triangle type is omitted, then we have an additional symmetry to
take into account.

Remark 22.9. Let τ operate on 2-types by replacing 1−→ by 2←−, and
2−→ by 1−→. Then τ permutes the four non-trivial 2-types cyclically,

and acts correspondingly on the class of all 2-multi-tournaments.
The constraint set C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 2), L3(2, 2, 1) is

invariant setwise under the action of τ .
Note that τ2 is the symmetry previously considered: reversal of

both orientations.

The next argument is not easy to find.

Lemma 22.10. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
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and triangles of types

C3(111), C3(112), C3(222)

are forbidden.
Then the triangle type L3(221) embeds in Γ.

Proof. For the duration of the argument we assume toward a
contradiction that L3(221) is forbidden.

Claim 1. The configuration L4(112; 22; 2) embeds into Γ.

We view this configuration as an amalgamation diagram with the
type of vertices (1, 4) to be determined.

Our additional constraint L3(221) prevents 1
1−→ 4 and thus the

only possible completion has a1
2−→ a2, giving L4(112; 22; 2).

Claim 2. The configuration C4(2121; 22) does not embed into Γ.

Assuming the contrary, use the following amalgamation (Figure
31).

a1

u

v

w

a2

Figure 31

The factors are C4(2121; 22) and L4(122; 22; 2), and there is no
consistent completion.

Claim 3. The configuration C4(1212; 22) embeds into Γ.

View this as an amalgamation diagram with the type of vertices
(1, 3) to be determined.

Any completion has a 2-arc between vertex 1 and 3.

• If 1 2−→ 3: this is the desired configuration C4(1212; 22).
• If 3 2−→ 1: this would be C4(2121; 22) which is forbidden by the

previous claim.
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Now consider the following amalgamation.

a1

u

v

w

a2

This has factors C4(1112; 22) and C4(1212; 22), and has no com-
pletion.

This gives a contradiction, and proves the lemma. □

Lemma 22.11. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
and triangles of types C3(111), C3(112), C3(222) are forbidden. Then
all other triangle types embed in Γ.

Proof. Lemmas 22.6, 22.8, and 22.10 cover all cases. □

After these lengthy preparations we can eliminate this subcase.
Proof of Lemma 22.5. We suppose the triangle types C3(1, 1, 1),

C3(2, 2, 2) are forbidden and we aim to show that the triangle types

L3(1, 1, 2), L3(2, 2, 1), C3(1, 1, 2), C3(2, 2, 1)

are realized.
As these four triangle types correspond under reversing one 2-type

or switching the labels 1, 2, in the contrary case we may suppose
toward a contradiction that

the triangle type C3(112) is forbidden.

Then by Lemma 22.11 all triangle types other than

C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 2)

embed into Γ.

Claim 1. The configuration C4(1112; 22) embeds into Γ.

Make the following amalgamation, with factors L3(221), L3(112).
The only completion has a1

2−→ a2 and is of type C4(1112; 22). This
proves the claim.
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a1 a2

u

v

Claim 2. The configuration C4(1212; 22) is forbidden.

The following amalgamation diagram has no completion consistent
with our restrictions.

a1

u

v

w

a2

The two factors of this diagram have the forms C4(1112; 22) and
C4(1212; 22), and the former embeds in Γ, so the latter must be
forbidden.

Claim 3. The configuration C4(2121; 22) embeds into Γ.

Make the following amalgamation, with factors C3(221), L3(122).

a1 a2

u

v

The possible completions have a1
2−→ a2 or a1

2←− a2, giving one
of the configurations C4(2121; 22) or C4(1212; 12). As the latter is
forbidden, the former is realized.
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Claim 4. The configurations L4(111; 22; 2) and L4(121; 12; 2) are
forbidden.

We consider the following pair of amalgamation diagrams. Neither
has a completion consistent with our restrictions.

a1

u

v

w

a2

(A)

a1

u

v

w

a2

(B)

The factors are as follows.
A: L4(111; 22; 2) and C4(2121; 22);
B: L4(121; 12; 2) and C4(2121; 22).
As C4(2121; 22) embeds into Γ, the other two factors, L4(111; 22; 2)

and L4(121; 12; 2), must be forbidden.

Claim 5. At least one of the configurations L4(211; 22; 2) or L4(221; 12; 2)
embeds into Γ.

Make the following amalgamation, with factors L3(212), L3(112).

a1 a2

u

v

This has the following four possible completions.

L4(111; 22; 2), L4(121; 12; 2), L4(211; 22; 2), L4(221; 12; 2).

By the previous claim, the first two possibilities are excluded and the
last two remain.
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Claim 6. The configuration C4(2221; 22) is forbidden.

We consider the following pair of amalgamation diagrams. Neither
has a completion consistent with our restrictions.

a1

u

v

w

a2

(A)

a1

u

v

w

a2

(B)

The factors are as follows.
A: L4(221; 12; 2) and C4(2221; 22);
B: L4(211; 22; 2) and C4(2221; 22).
By the previous claim, at least one of the factors of type L4 here

embeds into Γ, so the factor C4(2221; 22) must be forbidden.

Claim 7. The configuration C4(1222; 12) embeds into Γ.

Make the following amalgamation, with factors C3(221), L3(222).

a1 a2

u

v

The possible completions have the form C4(1222; 12) and C4(2221; 22).
As the latter is forbidden, the former embeds into Γ.

Claim 8. The configuration L4(221; 12; 2) is forbidden.

Consider the following amalgamation.
The factors are C4(1222; 12) and L4(221; 12; 2). The only possible

completion is C4(1212; 22).
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1 2 3 4

∗

By Claim 2, this diagram has no completion in Γ. But the factor
C4(1222; 12) embeds into Γ, so the factor L4(221; 12; 2) is forbidden.

Claim 9. The configuration L4(211; 22; 2) is forbidden.

Consider the following amalgamation.

1 2 3 4

∗

The factors are C4(1222; 12) and L4(211; 22; 2). The only possible
completion is L4(121; 22; 2).

By Claim 4 the diagram has no completion in Γ. But C34(1222; 12)
embeds in Γ, so the configuration L4(211; 22; 2) is forbidden.

Now to conclude the proof of the lemma, notice that Claims 5, 8,
and 9 give a contradiction. □

22B.3. Around S̃(3), continued. We are now dealing with the
following constraints on triangles.

Forbidden Realized
C3(111), C3(222) L3(112), L3(221),

C3(112), C3(221)

According to Lemma 21.32, when we consider the triangle types
L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 2), L3(2, 1, 1), up to a change of lan-
guage we arrive at the following four cases.
(a) Triangle types L3(1, 2, 2) and L3(2, 1, 2) are forbidden, while

L3(1, 2, 1) and L3(2, 1, 1) are realized.
(a') Triangle types L3(1, 2, 1) and L3(2, 1, 2) are forbidden, while

L3(1, 2, 2) and L3(2, 1, 1) are realized.
(b) Triangle type L3(1, 2, 1) is forbidden, while L3(1, 2, 2), L3(2, 1, 1),

L3(2, 1, 2) are realized.
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(c) Triangle types L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), and L3(2, 1, 2)
are all realized.

We eliminate case (a′).

Lemma 22.12. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order,
and that Γ satisfies the following constraints.

Triangle types L3(1, 2, 1), L3(2, 1, 2), and C3(1, 1, 1) are forbidden.
Triangle types L3(1, 1, 2) and L3(2, 1, 1) are realized.

Then Γ is finite.

Proof. Assume toward a contradiction that Γ is infinite.
Take a ∈ Γ and set

Γ+ = a1; Γ− = a1
op
.

Then (Γ−,Γ+) is homogeneous as a partitioned 2-multi-tournament.
Since Γ is primitive, infinite, and ℵ0-categorical, the two parts are
infinite.

Claim 1. (Γ+,
1−→) ∼= (Q, <). In particular the triangle type L3(1, 1, 1)

is realized.

As the triangle types L3(1, 2, 1) and C3(1, 1, 1) are not realized, Γ+

is an infinite homogeneous 1−→-tournament without oriented 3-cycles.
The claim follows.

Claim 2. Γ− realizes both 1−→ and 2−→.

In Γ this simply means that triangle types L3(1, 1, 1) and L3(2, 1, 1)
are realized.

Claim 3. For u ∈ Γ− there is a unique u+ ∈ Γ+ satisfying

u
2−→ u+.

Existence: This means that the triangle type L3(1, 1, 2) is realized
in Γ.

Uniqueness: This holds since the triangle type L3(2, 1, 2) is not
realized in Γ.

The claim follows.
Now write

f : Γ− → Γ+



22B. Reduction to cases (a, c) 209

for the function f(u) = u+. Define x ∼ y on Γ− by

f(x) = f(y).

As Γ+ realizes one pair of anti-symmetric 2-types and Γ− realizes
two such pairs, the relation ∼ is i∼ for some i = 1 or 2 (notation as
in Definition 20.5). We now adopt the notation {i, j} = {1, 2}.

Consider u, v ∈ Γ− with f(u)
1−→ f(v). Γ− is a composition in

which there are arcs of type j either from u/∼ to v/∼ or the re-
verse. This gives a triangle of type L3(j, i, j) in Γ, contradicting our
assumptions. □

22B.4. Reduction to cases (a, c). Our goal in the present sec-
tion is the following. The labels on the cases are carried over from
Lemma 21.32.

Lemma 22.13. Suppose that Γ is an infinite homogeneous primitive
2-multi-tournament in which there is no nontrivial ∅-definable partial
order and triangles of types

C3(1, 1, 1), C3(2, 2, 2)

are forbidden.
Then up to a permutation of the language one of the following cases

applies.
(a) Triangle types

L3(1, 2, 2), L3(2, 1, 2)

are forbidden, while triangle types

L3(1, 2, 1), L3(2, 1, 1)

are realized.
(c) Triangle types

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2)

are all realized.

In view of Lemmas 22.5, 21.32, and 22.12 there is only one case
other than the two listed that comes into consideration at this point,
namely the case in which the triangle type L3(1, 2, 1) is forbidden,
while triangle types

L3(1, 1, 2), L3(2, 2, 1), C3(1, 1, 2), C3(2, 2, 1),

L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2)
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are realized. So we restate our objective more concretely.

Lemma 22.14. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
and triangles of types

L3(1, 2, 1), C3(1, 1, 1), C3(2, 2, 2)

are forbidden and all other triangle types, except possibly the types
L3(1, 1, 1) or L3(2, 2, 2), are realized. Then Γ is finite.

We use our customary notation for 2-multi-tournaments of order
four (Notation 22.4). First we require the following.

Lemma 22.15. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order.
Suppose that triangle types

L3(1, 2, 1), C3(1, 1, 1), C3(2, 2, 2)

are forbidden and all other triangle types, except possibly types L3(1, 1, 1)
or L3(2, 2, 2), are realized.

Then the configuration C4(1112; 11) is forbidden.

1 2

34

Proof. We suppose toward a contradiction that the specified con-
figuration is realized in Γ.

Fix a ∈ Γ and define

Γ+ = a1; Γ− = a2
op
.

Then (Γ+,Γ−) is a homogeneous partitioned 2-multi-tournament.

Claim 1. Γ+ is a 1−→-tournament isomorphic with (Q, <).

As Γ does not realize the triangle type L3(1, 2, 1), Γ+ is a 1−→-
tournament.

As C4(1112; 11) is realized, L3(111) is realized and thus Γ+ is non-
trivial. As C3(1, 1, 1) is forbidden, Γ+ is transitive. Thus

Γ+ ∼= (Q, <).
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Now for u ∈ Γ− define

Iu = {v ∈ Γ+ | v 1−→ u}.

Schematically, the situation is as follows.

Γ− 2−→ a
1−→ Γ+

u
1←− Iu

Claim 2. Iu is an interval in Γ+.

If v1, v2 ∈ Iu and v1
1−→ v

1−→ v2, then as u, v ∈ v11 we have either
u

1−→ v or v 1−→ u. As v 1−→ v2
1−→ u we do not have u 1−→ v, so v

1−→ u.
Thus the interval (v1, v2) in Γ+ lies in Iu and the claim follows.

Claim 3. Iu is a non-trivial bounded interval in Γ+.

As we assume the configuration C4(1112; 11) is realized in Γ, it
follows that Iu contains at least two points.

As the triangle types L3(2, 1, 1) and L3(2, 1, 2) are realized in Γ, we
can find elements v1, v2 of Γ+ with u

1−→ v1 and u
2−→ v2. We claim

that v1, v2 are respectively an upper and a lower bound for Iu.
So take w ∈ Iu. Since w

1−→ u
1−→ v1 we do not have v1

1−→ w, so
w

1−→ v1. Similarly if w 1−→ v2 then (w, u, v2) has type L3(1, 2, 1), a
contradiction. Thus the claim holds.

Claim 4. If v1
1−→ v′1

1−→ v′2
1−→ v2 in Γ+ then there is u ∈ Γ− with

(v′1, v
′
2) ⊆ Iu ⊆ (v1, v2).

As the configuration (av1v
′
1v

′
2v2) realizes a unique 5-type it suffices

to find a single case in which this holds. For this, start with Iu and
then choose v1, v

′
1, v2, v

′
2 correspondingly. This proves the claim.

Now we may reach a contradiction. By considering the relation of
Iu1 to Iu2 for u1, u2 ∈ Γ−, the previous claim shows that there are at
least six non-trivial 2-types realized in Γ− over a. But there are at
most four such 2-types.

This contradiction proves the lemma. □

Proof of Lemma 22.14. We suppose toward a contradiction that
Γ is infinite. Then for a ∈ Γ, a1 is infinite. As L3(1, 2, 1) is not real-
ized, the triangle type L3(1, 1, 1) is realized.
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Claim 1. The configuration C4(2112; 11) is forbidden.

Consider the following amalgamation diagram.

a1

u

v

w

a2

As C3(2, 2, 2) and L3(1, 2, 1) are forbidden this has no completion
and therefore one of the factors is not realized in Γ.

But the factor a2uvw is the unique amalgam of uvw with ua2w
over u,w, since L3(1, 2, 1) is forbidden, and these triangles have types
C3(2, 2, 1), and C3(1, 1, 2), both of which are realized in Γ. So it is
the first factor a1uvw, of type C4(2112; 11), which must be forbidden.
This proves the claim.

Claim 2. The configuration IC3(211; 112) is realized.

Consider the following amalgamation diagram, with factors C3(1, 1, 2)
and L3(1, 1, 1).

1 2

34

By the previous claim, the completion cannot have 1
1−→ 2. As

L3(1, 2, 1) is forbidden, the completion must have 1
2−→ 2 or 2

2−→ 1.
If 1 2−→ 2 then the configuration is C4(1112; 11), contradicting Lemma
22.15.

So 2
2−→ 1 and the configuration is IC3(211; 112). The claim is

proved.
Now we use a variant of our first amalgamation diagram, as shown

below.
This time our previous claim gives the factor a1uvw, and the second

factor is the unique amalgam of uvw with ua2w over uw, involving
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a1

u

v

w

a2

triangle types L3(1, 2, 2) and L3(1, 1, 2). So this gives a contradiction.
□

22B.5. Case (a). Now the four cases introduced in Lemma 21.32
under the assumption that triangle types C1

3 and C2
3 are forbidden

have been reduced to two, namely cases (a, c) as originally enumer-
ated.

(a) Forbidden Realized

L3(1, 2, 2) L3(2, 1, 2) L3(1, 2, 1) L3(2, 1, 1)

(c) Forbidden Realized

L3(1, 2, 1) L3(1, 2, 2) L3(2, 1, 1) L3(2, 1, 2)

We deal next with case (a). Our goal is the following.

Proposition 22.16. Suppose that Γ is an infinite homogeneous prim-
itive 2-multi-tournament in which there is no nontrivial ∅-definable
partial order and triangles of types

L3(1, 2, 2), L3(2, 1, 2), C3(1, 1, 1), C3(2, 2, 2)

are forbidden. Then the triangle type L3(1, 1, 1) is also forbidden,
and all other triangle types are realized, as in S̃(3), entry #11, Table
21.2.

Lemma 22.17. Suppose that Γ is a homogeneous primitive 2-multi-
tournament in which there is no nontrivial ∅-definable partial order
and triangles of types

L3(1, 2, 2), L3(2, 1, 2), C3(1, 1, 1), C3(2, 2, 2)

are forbidden. Then the triangle type L3(1, 1, 1) is also forbidden.

Proof. We recall that triangles of types

L3(1, 1, 2), L3(2, 2, 1), C3(1, 1, 2), C3(2, 2, 1)
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must be realized (Lemma 22.5). We suppose toward a contradiction
that the triangle type L3(1, 1, 1) is also realized.

We consider the partitioned 2-multi-tournament Ta = (a2
op
, a2)

relative to some basepoint a. By our assumptions the components of
Ta are transitive tournaments ordered by 2−→ with type Q, so that
the type 1−→ occurs only as a cross type.

Claim 1. Every configuration on four points with the following
structure embeds into Γ.

3 4

1

2

We make the following amalgamation.

3 4

1

2

For any orientation of the 1-arcs, the factors are realized in Γ.
As L3(122) is forbidden, the unique completion has 1

2−→ 3. This
proves the claim.

Now we work toward the following diagram, in which the orienta-
tion of the arc between u and w will need to be determined.

a1

u

v

w

a2
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If we can construct the factors of this diagram in Γ then we arrive at
a contradiction, since any completion will involve one of the triangle
types L3(1, 2, 2) or L3(2, 1, 2).

To determine the orientation of the 1-arc between u and w, we per-
form the following amalgamation with factors C3(221) and L3(111).

a2

u

v

w

This then determines the matching factor required for our final
amalgamation.

a1

u

v

w

This has the structure referred to in our first claim, so embeds in
Γ.

Thus we construct the desired diagram and we reach a contradic-
tion. □

Proof of Proposition 22.16. By Lemmas 22.13 and 22.5 the
triangle types

L3(1, 1, 2), L3(1, 2, 1), L3(2, 1, 1), L3(2, 2, 1),

C3(1, 1, 2), C3(2, 2, 1)

are realized.
By Lemma 22.17 the triangle type L3(1, 1, 1) is forbidden, and as

Γ is infinite the triangle type L3(2, 2, 2) is realized.
This completes the proof. □
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22B.6. Case (c).

Proposition 22.18. Suppose that Γ is an infinite homogeneous prim-
itive 2-multi-tournament in which there is no nontrivial ∅-definable
partial order and triangles of types C3(111), C3(222), are forbidden,
and the triangle types

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2)

are all realized. Then all other triangle types are realized as well.

Proof. Lemma 22.5 covers all remaining types other than L3(1, 1, 1)
and L3(2, 2, 2). As Γ is infinite at least one of these triangle types is
realized in Γ. By symmetry, it suffices to treat the case in which

L3(2, 2, 2) embeds in Γ; and
L3(1, 1, 1) does not.

Claim 1. The configuration C3(2222; 11) is realized.

1 2

34

It suffices to view this configuration as an amalgamation diagram
with the type of (1, 3) to be determined (if 3 1−→ 1 then the vertices
should be relabeled).

Claim 2. The configuration C4(2121; 22) is forbidden.

The following diagram has no completion.

a1

u

v

w

a2

The factors are of the form C4(2121; 22) and C4(2222; 11), and as
the latter embeds in Γ, the former must be forbidden.
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Claim 3. The configuration L4(212; 21; 2) embeds in Γ.

1 2 3 4

Fix a vertex 1 as basepoint and view this configuration as a triangle
of type L3(121) embedding in 1 2. Since triangles of type L3(111) are
assumed forbidden, this configuration is realized.

Claim 4. The configuration C3I(221; 221) embeds in Γ.
Label the vertices 1, 2, 3, 4 with 1, 2, 3 the copy of C3(221). View the

configuration as an amalgamation diagram with the type of (1, 4) to
be determined. Since triangle type L3(1, 1, 1) is forbidden, the vertex
3 forces 1

2−→ 4 or 1
2←− 4. The vertex 2 determines the orientation.

Claim 5. The configuration C4(1212; 22) embeds into Γ.
We make use of the following amalgamation.

1 2 3 4

∗

The factor omitting vertex 3 has type C3I(221; 221) while the fac-
tor omitting vertex 1 has type L4(212; 21; 2). Thus both embed in
Γ.

In the completed diagram, the pair (1, 3) realize type 2 in some ori-
entation. The orientation 3

2−→ 1 gives the configuration C4(2121; 22),
contradiction Claim 2. So we are left with 1

2−→ 3 and C4(1212; 22).
Claim 6. The configuration L4(222; 11; 2) is realized.

1 2 3 4

Our hypotheses allow the symmetry in which 1−→ is replaced by its
reversal. Then Claim 5 translates into the stated claim.
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Now we may conclude. We consider the following diagram, which
has no completion. Its factors are of types

C4(1212; 22), L4(222; 11; 2),

which we have shown embed in Γ. Thus we have reached a contra-
diction. □

22B.7. Proof of Proposition 22.3.
Proof of Proposition 22.3, p. 195. Under the hypotheses of

the proposition, Lemma 22.13 describes two possible conclusions,
which following our earlier analysis are called cases (a) and (c).
Proposition 22.16 states that in case (a) we arrive at the same tri-
angle constraints as in S̃(3). Proposition 22.18 states that in case (c)
all triangle types are realized other than C3(1, 1, 1) and C3(2, 2, 2).

Thus we arrive at the two possibilities described in Proposition
22.3. □

22C. Around S(4)

Now we aim at the following.

Proposition 22.19 (S(4) dichotomy). Suppose that Γ is a homoge-
neous primitive 2-multi-tournament with no nontrivial ∅-definable
partial order, in which the triangle types

L3(2, 2, 1), C3(1, 1, 1)

are forbidden and the triangle type C3(2, 2, 2) is realized.
Then either Γ is isomorphic to S(4), or Γ realizes all triangle types

other than L3(2, 2, 1) and C3(1, 1, 1)

22C.1. Positive constraints.

Lemma 22.20. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no nontrivial ∅-definable partial order. Suppose that
the triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbidden and the
triangle type C3(2, 2, 2) is realized.

Then all triangle types realized in S(4) are realized in Γ, namely

L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 2), L3(2, 1, 2),

C3(2, 2, 1), C3(2, 2, 2).
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Proof. Lemmas 21.36 and 21.37 apply and give triangle types

L3(1, 1, 2), L3(1, 2, 2), L3(2, 1, 2).

Since we have type C3(2, 2, 2) by hypothesis we are concerned only
with the following two triangle types.

L3(1, 1, 1), C3(2, 2, 1).

Claim 1. The triangle type L3(1, 1, 1) is realized.

We consider the following amalgamation diagram.

a1

u

v

w

a2

The only possible completion has a1
1−→ a2 and thus a1, u, a2 has

type L3(1, 1, 1).
The factor a1uvw is the only possible amalgam of a1uv and a1vw

over a1v which does not itself contain L3(1, 1, 1), and the factor
a2uvw is the only possible amalgam of a2uv and uvw over uv which
does not itself contain L3(1, 1, 1). So by considering these amalgams
we either get L3(1, 1, 1) directly or the factors of our original diagram.

The triangles occurring as subfactors in this construction have
types L3(1, 2, 2), L3(1, 1, 2), and L3(2, 1, 1). The first two of these
are known to be realized in Γ, and if the typeL3(2, 1, 1) is not real-
ized in Γ, then easily the type L3(1, 1, 1) is realized.

This completes the proof of the claim in all cases.

Claim 2. The triangle type C3(2, 2, 1) is realized.

We consider the following amalgamation diagram, with the orien-
tation of the 2-arc between v and w to be determined.

All allowable completions involve a triangle of type C3(2, 2, 1) so it
suffices to find a form of this diagram whose factors embed in Γ.

We view the factor a2uvw as an amalgamation diagram with the
type of (v, w) to be determined. Then this is necessarily a 2-arc.
We consider the corresponding factor a1uvw with (v, w) realizing the



220 22. Homogeneous 2-m.t.’s: Forbidden triangles

a1

u

v

w

a2

same 2-type. This will result from one of the following two amalga-
mation diagrams.

a1

u

v

w

a1

u

v

w

More precisely, if the triangle type C3(2, 2, 1) does not occur in the
completion of the relevant diagram, then the required factor will be
obtained.

Thus the claim holds in any case, and with this the lemma is proved.
□

22C.2. A first dichotomy.

Lemma 22.21. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no nontrivial ∅-definable partial order. Suppose that
the triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbidden and the
triangle type C3(2, 2, 2) is realized. Then one of the following holds.

1. Γ is isomorphic with S(4).
2. Γ realizes the triangle types L3(1, 2, 1) and L3(2, 1, 1).

Proof. By Lemma 22.20, Γ realizes every triangle type realized
in S(4). If in addition the four triangle types

L3(1, 2, 1), L3(2, 1, 1), L3(2, 2, 2), C3(1, 1, 2)(∗)

are not realized in Γ then Γ and S(4) realize the same triangle types.
In this case, by Lemma 21.14, Γ must be isomorphic to S(4).
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Let us assume now that triangle types L3(1, 2, 1) and L3(2, 1, 1) are
not both realized. By symmetry, we may suppose that the triangle
type L3(1, 2, 1) is forbidden.

Then the following diagram has no completion in Γ.

a1 a2

u

v

As this is an amalgam of triangles of types L3(1, 1, 2) and L3(2, 1, 1)
and the triangle type L3(1, 1, 2) is realized in Γ, the triangle type
L3(2, 1, 1) is not realized.

Similarly, consideration of the diagram

a1 a2

u

v

shows that triangle type L3(2, 2, 2) must be forbidden, and consider-
ation of the diagram

a1 a2

u

v

shows that the triangle type C3(1, 1, 2) must be forbidden.
Thus the four triangle types listed in (∗) are forbidden, and Γ is

isomorphic to S(4). □
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While we will not eliminate the second case here, we will show that
it corresponds to a definite pattern of forbidden triangles, namely:
L3(2, 2, 1) and C3(1, 1, 1) forbidden and all others realized.

22C.3. The bad case. For reference we restate our point of de-
parture as a lemma, which we use without explicit mention.

Lemma 22.22. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no nontrivial ∅-definable partial order for which the
triangle types

L3(2, 2, 1), C3(1, 1, 1)

are forbidden and the triangle type

C3(2, 2, 2)

is realized, and that Γ is not isomorphic to S(4). Then Γ realizes all
other triangle types except possibly C3(1, 1, 2) and L3(2, 2, 2). That
is, Γ realizes the following triangle types.

L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2),

C3(2, 2, 1), C3(2, 2, 2)

Proof. Lemmas 22.20 and 22.21. □

Lemma 22.23. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no nontrivial ∅-definable partial order for which the
triangle types

L3(2, 2, 1), C3(1, 1, 1)

are forbidden and the triangle type

C3(2, 2, 2)

is realized, and that Γ is not isomorphic to S(4). Then Γ realizes the
triangle type C3(1, 1, 2).

Proof. We make a lengthy analysis of the contrary case. Thus we
suppose that the triangle types

L3(2, 2, 1), C3(1, 1, 1), C3(1, 1, 2)

are forbidden and that all others, with the possible exception of
L3(2, 2, 2), are realized. We first address that possible exception.
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Claim 1. The triangle type L3(2, 2, 2) is realized.

We consider the following diagram.

a1 a2

u

v

The factors have type L3(1, 1, 2) and L3(1, 2, 1) and any completion
in Γ will have a1

2−→ a2. The claim follows.

Claim 2. The configurations

IC3(2, 2, 2; 2, 2, 1), C4(2, 2, 2, 1; 2, 2)(22.1)

are forbidden.

We make use of the following amalgamation diagram, with the 2-
arc between u and w having either orientation.

a1

u

v

w

a2

Regardless of the orientation of the 2-arc between u and w, the fac-
tor a2uvw must embed in Γ: with u

2−→ w it is the unique completion
of the amalgam of a1uw with a2vw over a2w, and with w

2−→ u it is
the unique completion of the amalgam of a2uv with a2uw over a2u.
Thus both forms of the factor a1uvw are forbidden and this gives the
claim.

Claim 3. The configuration

IC3(1, 2, 2; 2, 2, 1)(22.2)

is realized.
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Consider the following amalgamation diagram.

1 2

34

Since the triangle type C3(1, 1, 2) is not realized, in the completion
we cannot have 1

1−→ 2. By Claim 2, the relations 2
2−→ 1 and 1

2−→ 2
are also forbidden,

Thus in the completion 2
1−→ 1 must hold, and hence IC3(1, 2, 2; 2, 2, 1)

is realized, as claimed.

Claim 4. The configuration L4(1, 1, 1; 1, 2; 2) is forbidden.

Consider the following amalgamation diagram, with factors a1uvw
and a2uvw of the forms IC3(1, 2, 2; 2, 2, 1) and L4(1, 1, 1; 1, 2; 2), re-
spectively.

a1

u

v

w

a2

The diagram has no completion consistent with the forbidden tri-
angles, and the first factor of the diagram is afforded by Claim 3, so
the claim follows.

Claim 5. The configuration L4(1, 1, 1; 1, 1; 2) is forbidden.

Consider the following amalgamation diagram, which has no al-
lowable completion consistent with the forbidden triangles (Figure
35).

The factor a2uvw is the unique amalgam of the triangles a2uw and
a2vw over a2w, and hence embeds into Γ.

As the factor a1uvw has the form L4(1, 1, 1; 1, 1; 2), the claim fol-
lows.
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a1

u

v

w

a2

Figure 35

After all these preparations, to reach a contradiction it suffices to
consider the following diagram.

1 2 3 4

The completion has type L4(1, 1, 1; 1, 1; 2) or L4(1, 1, 1; 1, 2, 2), which
contradicts Claim 4 or 5. □

Now we can complete the proof of our dichotomy.
Proof of Proposition 22.19. By Lemmas 22.22 and 22.23 we

may suppose that Γ forbids the triangle types

L3(2, 2, 1), C3(1, 1, 1)

and realizes all others, with the possible exception of L3(2, 2, 2), and
we must prove that in fact the type L3(2, 2, 2) is realized.

We assume toward a contradiction that the triangle type L3(2, 2, 2)
is forbidden.

Claim 1. The configuration L4(1, 2, 1; 1, 1; 2) is forbidden.

The following diagram shows that the configuration C4(1, 1, 1, 1; 2, 2)
is realized.

a1 a2

u

v
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Now consider the following amalgamation diagram.

a1

u

v

w

a2

This has no completion in Γ, and the factors are of the form
C4(1, 1, 1, 1; 2, 2) and L4(1, 2, 1; 1, 1; 2). The claim follows.

Claim 2. The configuration IC3(121; 112) is forbidden.

We show first that the configuration L4(1, 1, 1; 2, 2; 1) is realized.
We consider the following diagram.

1 2 3 4

Any completion has a 2-arc between vertex 1 and 2, and 2
1−→ 1

would give L3(1, 1, 1; 1, 1; 2), contradicting the previous claim. So the
completion has 1

1−→ 2 and thus the configuration L4(1, 1, 1; 2; 2; 1)
is realized.

Now consider the following diagram.

a1

u

v

w

a2

This has no completion in Γ and the factors are of the form L4(1, 1, 1; 2, 2; 1)
and IC3(1, 2, 1; 112). The claim follows.

Claim 3. The configuration L4(1, 2, 1; 1, 2; 2) is forbidden.

We show first that the configuration C3I(2, 2, 1; 2, 1, 1) is realized.
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This is the unique completion of the following diagram.

1 2

3

4

Now consider the following diagram.

a1

u

v

w

a2

This has no completion in Γ. One factor has the form C3I(2, 2, 1; 2, 1, 1)
and the other has the form L4(1, 2, 1; 1, 2; 2).

After these preparations we reach a contradiction as follows. We
consider the following diagram.

1 2 3 4

This has three possible completions. Each contradicts one of our
three claims.

This contradiction completes the proof of the proposition. □

22D. Generalizing Lemma 21.50

First we generalize Lemma 21.48.
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Lemma 22.24. Suppose that Γ is a homogeneous primitive 3-constrained
2-multi-tournament. Suppose that the triangle type C3(1, 1, 1) is for-
bidden and the triangle types

L3(1, 1, 2), L3(2, 2, 1),

C3(1, 1, 2), C3(2, 2, 1), C3(2, 2, 2)

are realized. Then the triangle types L3(1, 2, 1) and L3(2, 1, 1) are also
realized.

Proof. The hypotheses are preserved under reversal of 1-arcs.
Therefore it suffices to deal with the triangle type L3(1, 2, 1). So we
suppose toward a contradiction that the triangle types

C3(1, 1, 1), L3(1, 2, 1)

are both forbidden.
Then we still have a degree of symmetry: our hypotheses are pre-

served under reversal of 2-arcs.

Claim 1. The triangle type L3(2, 1, 1) is realized.

Consider any diagram of the following form, with orientation of the
2-arcs specified.

a1

u

v

w

a2

This has no completion in Γ.
On the other hand, if the appropriate triangles embed into Γ, then

the first factor (omitting a2) is the unique completion of the following
diagram (Figure 36).

In such cases it follows that the second factor is forbidden.
Then if the appropriate triangles embed into Γ this will force the

following diagram to have a unique solution, with the 2-arc between
u and v given the opposite orientation to that specified in the factor
(Figure 37).
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a1

u

v

w

Figure 36

a2

u

v

w

Figure 37

The relevant triangles for this argument are the four triangles
(a1, u, w), (u, v, w), (a2, u, w), and (a2, v, w). If we choose the ori-
entations

w
2−→ u

2−→ v, u
2−→ a2

2−→ w,

then these triangles have type L3(1, 1, 2), C3(2, 2, 1), C3(2, 2, 1), L3(2, 2, 1)
respectively, and thus are realized in Γ. Thus the following embeds
in Γ.

a2

u

v

w

This includes the triangle types L3(2, 1, 2) and L3(1, 2, 2). Thus our
initial analysis applies to all forms of the amalgamation diagram, and
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the first factor always embeds in Γ, with the second factor forbidden,
regardless of the orientation of the 2-arcs.

But as we have just shown, some form of the second factor must
embed in Γ. This proves the claim.

Claim 2. Either the configurations

C4(1, 1, 2, 2; 2, 2), C4(2, 1, 1, 2; 2, 2)

are both forbidden, or the configurations

C4(1, 2, 2, 2; 2, 1), C4(2, 2, 1, 2; 1, 2)

are both forbidden.

Considering the following diagram, in which the orientation of the
2-arc between a1 and w may be chosen in either way.

a1

u

v

w

a2

This has no completion in Γ and hence one of the factors must be
forbidden. The second factor is C4(1, 2, 2, 2; 2, 1) and the first factor
may be C4(1, 1, 2, 2; 2, 2) or C4(2, 1, 1, 2; 2, 2).

Under reversal of 2-arcs the two possibilities for the first factor are
interchanged and the second factor is transformed into the configu-
ration C4(2, 1, 1, 2; 2, 2). Thus either both forms of the first factor or
both forms of the second factor must be forbidden, and this is our
claim.

Claim 3. The configuration C4(2, 1, 1, 2; 1, 2) is forbidden.

We consider the following diagram, which has no completion in Γ
(Figure 38).

Both factors of this diagram are of the form C4(2, 1, 1, 2; 1, 2). So
the claim follows.

Now we may reach a contradiction. We consider the configuration
C4(2, 1, 1, 2; 1, 2) in two ways as an amalgamation problem (Figure
39).
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a1

u

v

w

a2

Figure 38

1 2

34

Figure 39

Namely, we may view this diagram either as the amalgam of the
two triangles (1, 3, 4) and (2, 3, 4), or the amalgam of the two tri-
angles (1, 2, 4) and (1, 3, 4). These triangles are of types C3(2, 2, 2),
L3(1, 1, 2), or C3(1, 1, 2), all of which are realized in Γ. With the
configuration C4(2, 1, 1, 2; 1, 2) excluded, in the first case the possi-
ble completions have 1 2 3 (in either orientation) and in the second
case they have 2 2 3, in either orientation. Thus one of each of the
following pairs of configurations must be realized.

C4(2, 1, 1, 2; 2, 2), C4(1, 1, 2, 2; 2, 2);

C4(2, 2, 1, 2; 1, 2), C4(1, 2, 2, 2; 2, 1).

But this contradicts our second claim, and this contradiction proves
the lemma. □

Lemma 22.25. Suppose that Γ is a homogeneous 3-constrained 2-
multi-tournament for which the triangle type C3(1, 1, 1) is forbidden
and the triangle types

L3(1, 1, 2), L3(2, 1, 1), L3(2, 2, 1),

C3(1, 1, 2), C3(2, 2, 1)

are realized. Then the triangle type L3(2, 2, 2) is realized.
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Proof. We suppose toward a contradiction that triangle types
C3(1, 1, 1) and L3(2, 2, 2) are both forbidden, and the specified tri-
angle types are realized. Our hypotheses are preserved by reversal of
2-arcs. We will refer to the 2-multi-tournament obtained from a given
one T by reversing its 2-arcs as its 2-reversal, and denote this by T ′.

In the following proof we make repeated reference to the following
configurations, which will be referred to by the abbreviated labels
indicated.

Label Structure, Label Structure

L1 L4(1, 1, 1; 2, 2; 1) C1 C4(1, 1, 1, 1; 2, 2)

L2 L4(1, 1, 1; 2, 2; 2) C2 C4(1, 1, 2, 1; 2, 2)

L3 L4(1, 1, 2; 2, 2; 1) C3 C4(1, 2, 2, 2; 1, 1)

L4 L4(1, 2, 1; 1, 1; 2) C4 C4(2, 2, 2, 2; 1, 1)

L5 L4(1, 2, 1; 1, 2; 2)

L6 L4(1, 2, 1; 2, 1; 2) D1 IC3(1, 2, 1; 1, 1, 2)

L7 L4(1, 2, 2; 1, 1; 2) D2 C3I(1, 1, 2; 2, 2, 1)

In some cases their 2-reversals are relevant, so we list these as well,
for reference.

Label Structure

L1′ C4(2, 1, 2, 1; 1, 1)

L2′ C4(1, 2, 1, 1; 2, 2)

L7′ C4(2, 1, 2, 1; 2, 1)

Now we begin our analysis, leading ultimately to a contradiction.
Our first three claims will take us to the conclusion that one of D1,
C3, or L5 is realized, and this will serve as our real point of departure.

Claim 1. C1 and C4 are realized.

For C1 use the following amalgamation

1 2

34
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and for C4 use the same construction with types 1−→, 2−→ inter-
changed. In both cases one must check that the triangles occurring
as factors are among those assumed realized in Γ; the same applies
to a number of similar constructions below (when the factors are in
fact triangles).

Claim 2. L4 is forbidden.

The following amalgamation diagram has no completion and the
factors are L4 and C1.

a1

u

v

w

a2

As C1 is realized, L4 must be forbidden.

Claim 3. One of D1, C ′
3, or L5 is realized.

We consider the following amalgamation problem.

1 2 3 4

Its completions are L4, D1, C3′, and L5. As L4 is forbidden the
claim follows.

The main line of analysis emerges in the case in which D1 is re-
alized. If we make this assumption, we lose the symmetry under 2-
reversal, but practically speaking the next lemma restores that sym-
metry.

Claim 4. If D1 is realized then L1 and L1′ are forbidden.

The following diagrams (Figure 40) have no completions in Γ.
They have the factors D1, L1 and L1′, D1 respectively. The claim

follows.
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a1

u

v

w

a2 a1

u

v

w

a2

Figure 40

Claim 5. If L1 is forbidden then L3 or L7 is realized.

The following diagram has completions L1, L4, L7, L3, and the
first two of these are forbidden.

1 2 3 4

Claim 6. If L3 is realized then D2 is forbidden. If L7 is realized
then C2 is forbidden.

We consider the following diagram in two forms, with either orien-
tation of the 2-arc between u and w (Figure 41).

a1

u

v

w

a2

Figure 41

If u 2−→ w the factors are L3 and D2. If w 2−→ u the factors are L7
and C2.

Claim 7. If C2 is forbidden then D2 is forbidden.
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First, if C2 is forbidden then as L4(111) is forbidden the following
diagram gives C4(2121; 12).

1 2

34

Then if D2 is realized the following diagram gives a contradiction.

a1

u

v

w

a2

Claim 8. If D2 is forbidden then L7 is realized and C2 is forbidden.
If D2 is forbidden then the following diagram gives L7.

1 2

3

4

Then Claim 6 applies.
In a certain sense the next claim tends to break the symmetry (and

leads eventually to a contradiction).
Claim 9. If C2 is forbidden then L7′ is forbidden.
If the following diagram (Figure 42) has a completion, then the

structure induced on vertices 1, 2, 3, 4 will be C2.
The factors are C1 and L7′. As C1 is realized, L7′ must be forbid-

den.
Claim 10. At least one of L1, L1′ is realized. In particular D1 is

forbidden.
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1 2

34

u

Figure 42

Suppose that both L1 and L1′ are forbidden. Then we still have
symmetry with respect to 2-reversals.

By Claims 5 and 6 we find that C2 or D2 is forbidden. By Claims
7 and 8 we find that both are forbidden, and L7 is realized. By
symmetry we also have L7′ realized. But this contradicts Claim 9.

Thus at least one of L1, L1′ is realized, and the second point follows
by Claim 4.

Now we show in two steps that L2 is realized.

Claim 11. If L2 is forbidden then L6 is realized and L2′ is forbid-
den.

The following diagram has completions L2, L6.

1 2 3 4

So if L2 is forbidden then L6 is realized.
The next diagram has no completion and has factors L6, L2′.

a1

u

v

w

a2

The claim follows.

Claim 12. L2 is realized.

Assuming the contrary, the following diagram has no completion.
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1 2 3 4

u

The factors are L6 and L1. By Claim 11 L6 is realized and thus
L1 is forbidden. But by Claim 6 L2′ is also forbidden and applying
symmetry we find L1′ is forbidden. This contradicts Claim 10.

Claim 13. L5 is forbidden and C3 is realized.

The following diagram has no completion.

a1

u

v

w

a2

Its factors are L2′ and L5. By the previous claim and symmetry,
L2′ is realized. So L5 is forbidden.

But by Claim 3 at least one of D1, C3′, or L5 is realized, and
by Claim 10 D1 is also forbidden. So C3′ is realized. But then by
symmetry C3 is realized.

Claim 14. L3 is realized.

The following amalgamation forces a realization of L3.

1 2 3 4

u

The factors are C3 and C4, both known to be realized.
Now we may reach a contradiction.



238 22. Homogeneous 2-m.t.’s: Forbidden triangles

By Claims 6 and 8, L7 is realized and C2 is forbidden. By symmetry
L7′ is also realized. This contradicts Claim 9.

This contradiction proves the lemma. □

Now we generalize Lemma 21.50.

Lemma 22.26. Suppose that Γ is a homogeneous primitive 2-multi-
tournament whose forbidden triangles do not define a free amalgama-
tion class. Suppose that the triangle type

C3(1, 1, 1)

is forbidden and the triangle types

L3(1, 1, 2), L3(2, 2, 1), C3(2, 2, 1), C3(2, 2, 2)

are realized.
Then the triangle type

C3(1, 1, 2)

is forbidden.

Proof. Suppose on the contrary that the triangle type C3(1, 1, 2)
is realized. Then Lemma 22.24 shows that triangle types L3(1, 2, 1)
and L3(2, 1, 1) are realized, and then Lemma 22.25 shows that the
triangle type L3(2, 2, 2) is realized. So at this point we have the fol-
lowing triangle types realized.

L3(1, 1, 2), L3(1, 2, 1), L3(2, 1, 1), L3(2, 2, 1), L3(2, 2, 2),

C3(1, 1, 2), C3(2, 2, 1), C3(2, 2, 2).

As the triangles forbidden by Γ are not associated with a free
amalgamation class, at least one of the triangle types L3(1, 2, 2) or
L3(2, 1, 2) must be forbidden.

Our hypotheses are invariant under reversal of both 2-types. So by
symmetry we may suppose that

L3(1, 2, 2) is forbidden.

In the course of our argument we will focus on the following config-
urations of order 4, and eventually bring in two more toward the end
of the argument. In some cases we also work with the 1-reversal of
the configuration. For a 2-multi-tournament A, the 1-reversal will be
denoted by A′. Note that our current hypotheses are invariant under
reversal of 1−→.
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I.D. Structure I.D. Structure 1-reversal

L1 L4(221; 11; 1) C1 C4(1111; 22)

L2 L4(221; 11; 2) C2 C4(1112; 12)

C3 C4(1112; 21) IC3(112; 112)

C4 C4(1112; 22)

C5 C4(2112; 11)

C6 C4(2212; 11) IC3(211; 221)

Claim 1. The configuration C1 is realized.

As previously, the following diagram, involving triangles of types
L3(1, 1, 2) and C3(1, 1, 2), suffices.

1 2

34

Claim 2. The configuration C4 is realized iff the configuration C6
is realized.

The following diagram has factors C6 and C1, and there is a unique
completion, with a1

2−→ a2.

a1

u

v

w

a2

This completion contains a copy of C4. Thus

C6=⇒C4.

If we consider the same diagram with the 1-arcs reversed in the 4-
cycle (u, 2, 3, 4), then the factors are C4 and C1, and in a completion
we again have 1

2−→ 3, and the configuration induced on (4, 1, 3, 2) is
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C6, so

C4=⇒C6.

The claim follows.

Claim 3. If the configuration C4 is forbidden then the configura-
tion C3 is realized.

We suppose the configuration C4 is forbidden.
The following diagram has as its factors triangles of type L3(1, 1, 2)

and C3(1, 1, 2).

1 2

34

As C4 is forbidden the completion does not have 1
2−→ 3. Therefore

the completion has 1
1−→ 3, and is C2.

Now we consider the following amalgamation diagram, with factors
C5 and C2.

a1

u

v

w

a2

As this has no completion, we conclude that C5 is forbidden.
Finally, consider the following diagram, with factors triangles of

type C3(1, 1, 2) and C3(2, 2, 1).

1 2

34
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In the completion since C5 is forbidden we have 3
1−→ 2 or 2

2−→ 3
and the result is then C3 or C6 respectively. But as C4 is forbidden,
C6 is also forbidden, and thus C3 is realized.

The claim follows.
Now we turn to a close consideration of the configuration L2.

Claim 4. If the configuration C6 is forbidden then the configura-
tion L2 is forbidden.

We first consider the following diagram, with factors C3 and C3′,
and no completion.

a1

u

v

w

a2

Thus at least one of the factors C3 or C3′ is forbidden.
As C6 is forbidden, also C4 is forbidden and C3 is realized. Then

C3′ is forbidden.
But then by the dual of Claim 3 under reversal of 1−→, the configura-

tion C4′ is realized; and then by the dual of Claim 2, the configuration
C6′ is realized.

The following diagram has factors C6′ and L2, and no completion.

a1

u

v

w

a2

Thus L2 is forbidden.

Claim 5. If C6 is forbidden then L2 is realized.

We suppose C6 is forbidden, so by Claims 2 and 3 C3 is realized.
The following diagram has factors C3 and L1, and no completion.
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a1

u

v

w

a2

Thus L1 is forbidden.
The following diagram has factors triangles of type L3(2, 1, 1) and

L3(2, 2, 1).

1 2

34

As C6 is forbidden the completion does not have 4
2−→ 1. Thus it

has 1
1−→ 4 or 1

2−→ 4, giving the configuration L1 or L2. But L1 is
forbidden and thus L2 is realized.

The previous two claims and Claim 2 now give the following.

Claim 6. The configurations C4 and C6 are realized.

We now work with two more configurations.

I.D. Structure 1-reversal

C7 C4(2112; 12) C4(1122; 21)

C8 C4(2112; 22) C4(2212; 12)

Claim 7. The configuration C7 is forbidden.

The following diagram (Figure 43) has factors C7 and C4 and no
completion.

The claim follows.

Claim 8. The configurations C8 and C8′ are realized.

The following diagram (Figure 44) has factors triangles of type
C3(1, 1, 2) and C3(2, 2, 2).

The completion may have 2
1−→ 3, 2 2−→ 3, or 3

1−→ 2 and thus the
completion may be C7, C8, or C7′ respectively. But C7 is forbidden,
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a1

u

v

w

a2

Figure 43

1 2

34

Figure 44

and by symmetry C7′ is also forbidden. So C8 is realized, and by
symmetry C8′ is also realized.

This proves the claim, and now to reach a contradiction it suffices
to consider the following diagram, with factors C8 and C8′.

a1

u

v

w

a2

This contradiction proves the lemma. □

22E. Around entry #8

Proposition 22.27. Suppose that Γ is an infinite homogeneous prim-
itive 2-multi-tournament for which the triangle types

C3(1, 1, 1), C3(1, 1, 2)
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are forbidden, the triangle types

L3(1, 1, 1), L3(2, 2, 1), C3(2, 2, 1)

are realized, and there is no nontrivial ∅-definable partial order.
Then all other triangle types are realized, as in entry #8 of our

table.

Proof. By Lemma 21.47, Proposition 22.3, and the hypothesis
the following triangle types are realized.

L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 1), L3(2, 1, 1), L3(2, 2, 1),

C3(2, 2, 1), C3(2, 2, 2).

That is, Lemma 21.47 and the hypotheses cover everything listed
other than triangle type C3(2, 2, 2), and if triangle type C3(2, 2, 2)
were omitted then Proposition 22.3 would give a contradiction.

This leaves the following types to be considered.

L3(1, 2, 2), L3(2, 1, 2), L3(2, 2, 2).

Claim 1. Triangle types L3(1, 2, 2) and L3(2, 1, 2) are realized.

As our hypotheses are closed under reversal of both 2-types, it
suffices to treat the case of L3(2, 1, 2). So suppose toward a contra-
diction that the triangle type L3(2, 1, 2) is also forbidden. If the type
L3(1, 2, 2) is realized then the following diagram gives a contradic-
tion.

a1 a2

u

v

So at this point we suppose we have the following forbidden triangle
types.

L3(1, 2, 2), L3(2, 1, 2), C3(1, 1, 1), C3(1, 1, 2).

Then the following diagram gives a contradiction.
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a1 a2

u

v

Claim 2. Triangle type L3(2, 2, 2) is realized.

From the following diagram we see that C4(1, 1, 1, 2; 2, 2) is realized.

1 2

34

A similar diagram forces C4(2, 2, 2, 2; 1, 1).
Then the following diagram forces L3(2, 2, 2).

a1

u

v

w

a2

These two claims prove the proposition. □

22F. Around entry #9

Now we aim at the following.

Proposition 22.28. Suppose that Γ is a homogeneous primitive 2-
multi-tournament with no ∅-definable partial order, whose forbidden
triangles do not define a free amalgamation class, in which the trian-
gle types

C3(1, 1, 1), C3(2, 2, 2)
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are realized and the triangle type C3(1, 1, 2) is forbidden.
Then all other triangle types are realized except possibly L3(2, 2, 1)

and L3(1, 1, 1).

Lemma 22.29. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order, whose forbidden trian-
gles do not define a free amalgamation class. Suppose that the triangle
types C3(1, 1, 1) and C3(2, 2, 2) are realized and L3(1, 2, 1) is forbid-
den.

Then the triangle type

L3(2, 1, 1)

is forbidden.

Proof.
We suppose the contrary and analyze the situation at length. By

Lemma 21.52 we then have the following conditions satisfied.

Forbidden: L3(1, 2, 1).
Realized: L3(1, 1, 1), L3(1, 1, 2), L3(2, 1, 1),

C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 2).

We observe that our conditions are preserved by reversal of 2−arcs.
We denote the 2-reversal of a 2-multi-tournament A by A′.

In what follows, we refer to the following specific configurations of
order 4.

I.D. Structure

L1 L4(1, 1, 1; 1, 1; 2)

L2 L4(1, 1, 1; 1, 2; 2)

C1 C4(1, 1, 1, 1; 1, 1)

C2 C4(1, 1, 1, 1; 1, 2)

C3 C4(1, 1, 1, 1; 2, 2)

C4 C4(1, 2, 1, 1; 2, 1)

Claim 1. Triangle types L3(2, 2, 1) and L3(2, 1, 2) are realized.

The following diagram has factors of type L3(2, 1, 1) and L3(1, 1, 2),
and forces triangles of types L3(2, 2, 1) and L3(2, 1, 2) to be realized.
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a1 a2

u

v

Claim 2. The triangle type L3(1, 2, 2) and the configurations L1
and C1 are realized.

The argument proceeds in a similar fashion in all cases. We first
discuss the cases of L3(1, 2, 2) and L1.

We fix a point a ∈ Γ and set Γ1 = a1, Γ2 = ap where the type p is
1←− if we aim at L3(2, 2, 1) or C1, and is 2−→ if we aim at L1.
It then suffices to find u ∈ Γ2, and distinct v1, v2 ∈ Γ1 with

v1, v2
2−→ u in the first case, v1, v2

1−→ u in the second case,
So suppose one of these fails. Then for some i = 1 or 2 we have a

function f : Γ2 → Γ1 defined by

u
i−→ f(u).

Let us check that this is well-defined, or in other words there is a
triangle (u, a, v) with u ∈ Γ2, a ∈ Γ1 and v

i−→ u for the appropriate
value of i. If i = 1 the desired triangle type is L3(1, 1, 2), while if
i = 2 then the desired triangle type is C3(1, 1, 2), and both of these
are realized.

Let ∼ be the equivalence relation on Γ2 defined by f(x) = f(y).
Then f gives a bijection between Γ2/ ∼ and Γ1. It follows easily
that ∼ is a congruence and for v1, v2 in distinct ∼-classes, the type
of (v1, v2) determines the type of (v1, f(v2)). But there are two such
2-types in Γ2 and three realized between u and elements of Γ1 other
than f(u), a contradiction.

This contradiction proves the claim in the first two cases.
In the third case, if we set Γ1 = a1 and Γ2 = a1

op , then we re-
quire v1, v2 in Γ2, u ∈ Γ1 with u

1−→ v1, v2. (Note that in this case
necessarily v1

2 v2.)
So if this fails then we have a function f : Γ1 → Γ2 defined by

u
1−→ f(u),
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and as Γ1 realizes only two non-trivial 2-types while Γ2 realizes four,
we have a contradiction.

Claim 3. The configuration L2 is realized.

The amalgamation diagram

1 2 3 4

has factors of type L3(1, 2, 2) and L3(1, 1, 2) and L2 is the unique
possible completion.

Claim 4. The configurations C2 and C2′ are forbidden.

The following diagram has factors L1 and C2, and no completion.

a1

u

v

w

a2

Thus C2 is forbidden, and by symmetry the same applies to C2′.

Claim 5. The configuration C3 is realized.

The following amalgamation diagram has factors of type C3(1, 1, 2)
and L3(1, 1, 2).

1 2

34

As the configurations C2 and C2′ are forbidden, we have 1 2 3 in
the completion. Thus C3 is realized.

Claim 6. The configuration C4 is forbidden.



22F. Around entry #9 249

The following amalgamation diagram has factors C3, C4 and no
completion.

a1

u

v

w

a2

The claim follows.
Now we arrive at a contradiction. The following amalgamation di-

agram has factors C1 and L2, which are realized.

a1

u

v

w

a2

In the completion a1
1−→ a2 and thus the configuration C4 must be

realized.
This contradiction completes the proof. □

Lemma 22.30. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order, whose forbidden trian-
gles do not define a free amalgamation class. Suppose that the triangle
types

C3(1, 1, 1), C3(2, 2, 2)

are realized and L3(1, 2, 1) is forbidden.
Then the triangle types

L3(1, 2, 2), L3(2, 1, 2)

are forbidden

Proof. By symmetry it suffices to deal with L3(1, 2, 2).
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So suppose toward a contradiction that the triangle type L3(1, 2, 2)
is realized.

Then by Lemmas 21.52, 21.54, and 22.29 we have the following
situation.

Forbidden: L3(1, 2, 1), L3(2, 1, 1).
Realized: L3(1, 1, 1), L3(1, 1, 2), L3(1, 2, 2), L3(2, 2, 1),

C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 1), C3(2, 2, 2).

Claim 1. The configuration IC3(1, 1, 1; 1, 1, 1) is forbidden and the
configuration C4(1, 1, 1, 1; 1, 1) is realized.

The following diagram has no completion. Here we do not specify
the orientations of the 2-arcs as they make no difference.

a1

u

v

w

a2

The second factor of this diagram is the unique completion of the
following.

a2

u

v

w

The factors may be taken to be e.g. L3(1, 1, 2) and L3(2, 2, 1). So
the first factor must be forbidden, and this is IC3(1, 1, 1; 1, 1, 1).

Now view the first factor as an amalgam of a1uw with vuw. Then
the completion must have u

1−→ v, and this gives C4(1, 1, 1, 1; 1, 1).
This proves the claim.
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Now we may reach a contradiction. The following diagram has no
completion.

a1

u

v

w

a2

The first factor is C4(1, 1, 1, 1; 1, 1). The second factor may be
viewed as the unique completion of the amalgam of a2uw and a2vw,
triangles of types L3(1, 1, 2) and L3(2, 2, 1). □

Lemma 22.31. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order, whose forbidden trian-
gles do not define a free amalgamation class, in which the triangle
types

C3(1, 1, 1), C3(2, 2, 2)

are realized.
Then the triangle types

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2)

are realized.

Proof. Our hypotheses are invariant under reversal of either 2-
type. By symmetry, it suffices to treat the case of L3(1, 2, 1). Suppose
toward a contradiction that the triangle type

L3(1, 2, 1)

is forbidden.
By Lemmas 21.52, 21.54, 22.29, and 22.30 we then have the follow-

ing

Forbidden: L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2).
Realized: L3(1, 1, 1), L3(1, 1, 2), L3(2, 2, 1),

C3(1, 1, 1), C3(1, 1, 2), C3(2, 2, 1), C3(2, 2, 2).
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As L3(2, 1, 2) is forbidden, also L3(2, 2, 2) is realized. Thus four tri-
angle types are forbidden and the rest are realized.

Now fix a ∈ Γ and let Γ1 = a1, Γ2 = a2. Note that Γ1 is a transitive
1−→-tournament.
By our assumptions for u ∈ Γ1 and v ∈ Γ2 the only possible rela-

tions are

u
1−→ v; v

2−→ u.

If we have u ∈ Γ1 and v1, v2 ∈ Γ2 with u
1−→ v1, v2 then (a, v1, v2) has

type L3(1, 2, 1), a contradiction. Therefore we may define f : Γ2 → Γ1

by

u
1−→ f(u).

Then the relations f(u)
1−→ v and f(u)

1←− v give distinct relations
between Γ2 and Γ1, but there is only one such relation.

This contradiction proves the lemma. □

Lemma 22.32. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order whose triangle constraints
are not associated with a free amalgamation class. Suppose that the
triangle types C3(1, 1, 1) and C3(2, 2, 2) are realized and the triangle
type C3(1, 1, 2) is forbidden.

Then the triangle type

L3(1, 1, 2)

is realized.

Proof. Suppose the contrary.
We consider the following diagram, with the orientation of the arc

between v and w to be determined.

a1

u

v

w

a2
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This has no completion. If we consider the first factor as an amal-
gam of a1uv with a1uw then the orientation of the arc between v and
w will be determined. We then consider the second factor.

a2

u

v

w

If v 1−→ w then this is the unique amalgam of a2uv with a2vw. If
w

1−→ v then this is the unique amalgam of a2uw with a2vw.
The triangles involved are of types L3(1, 2, 1), L3(2, 1, 2), or L3(1, 2, 2).

These are afforded by Lemma 22.31.
Thus we have a contradiction and the proof is complete. □

Lemma 22.33. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order. Suppose that the trian-
gle types C3(1, 1, 1) and C3(2, 2, 2) are realized and the triangle type
C3(1, 1, 2) is forbidden. Then the triangle type

C3(2, 2, 1)

is realized.

Proof. Lemmas 22.32 and 21.59. □

Lemma 22.34. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order, whose forbidden trian-
gles do not define a free amalgamation class. Suppose that the triangle
types

L3(2, 2, 1), C3(1, 1, 1), C3(2, 2, 2)

are realized and the triangle type

C3(1, 1, 2)

is forbidden.
Then the triangle type

L3(2, 2, 2)

is realized
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Proof. By Lemmas 22.31, 22.32, and 22.33 we have the following.

Forbidden: C3(1, 1, 2).
Realized: L3(1, 1, 2), L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2),

L3(2, 2, 1), C3(1, 1, 1), C3(2, 2, 1), C3(2, 2, 2).

Assume toward a contradiction that the triangle type L3(2, 2, 2) is
forbidden.

Claim 1. The configuration IC3(1, 1, 2; 2, 2, 2) is realized.

This is forced by the following amalgamation, with factors C3(2, 2, 2)
and L3(2, 2, 1), since the triangle types C3(1, 1, 2) and L3(2, 2, 2) are
forbidden.

2 3

4

1

Claim 2. The configuration C4(2, 2, 2, 2; 1, 1) is realized.

This is forced by the following amalgamation, with factors C3(2, 2, 1)
and L3(2, 1, 1), since the triangle type L3(2, 2, 2) is forbidden.

1 2

34

Now we reach a contradiction. The following amalgamation (Fig-
ure 45) has factors IC3(1, 1, 2; 2, 2, 2) and C4(2, 2, 2, 2; 1, 1), and no
completion.

This completes the proof. □

Lemma 22.35. Suppose that Γ is a homogeneous primitive 2-multi-
tournament with no ∅-definable partial order, whose forbidden trian-
gles do not define a free amalgamation class, in which the triangle
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a1

u

v

w

a2

Figure 45

types

C3(1, 1, 1), C3(2, 2, 2)

are realized and the triangle type C3(1, 1, 2) is forbidden.
Then the triangle type L3(2, 2, 2) is realized.

Proof. We dealt in the previous lemma with the case in which
the triangle type L3(2, 2, 1) is realized, so now we suppose that type
is forbidden. Assuming toward a contradiction that

Triangle types L3(2, 2, 1), L3(2, 2, 2), C3(1, 1, 2) are forbidden.
Triangle types C3(1, 1, 1), C3(2, 2, 2) are realized.

Then as the triangle type L3(2, 2, 2) is forbidden the type L3(1, 1, 1) is
realized, and all other triangle types are realized as well, by Lemmas
22.31, 22.32, and 22.33.

We work here with the following configurations and their reversals,
which we denote by ′.

I.D. Structure I.D. Structure

L1 L4(1, 1, 2; 2, 2; 2) C1 C4(1, 2, 2, 2; 1, 2)

L2 L4(1, 2, 2; 1, 2; 1) C2 C4(1, 1, 2, 2; 2, 2)

L3 L4(1, 2, 2; 1, 2; 2) D1 IC3(1, 1, 1; 2, 2, 2)

L4 L4(2, 1, 2; 2, 2; 2) D2 IC3(2, 2, 2; 2, 2, 1)

Claim 1. The configuration C2 is realized.

We use the following amalgamation with a unique solution (Figure
46).

Claim 2. The configuration D1 is forbidden.
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1 2

34

Figure 46

We use the following amalgamation, with factors D1 and C2.

a1

u

v

w

a2

As this has no completion the claim follows.
Claim 3. The configuration L2 is realized.
We use the following amalgamation.

2 3

4

1

Since D1 is forbidden we have 2
2−→ 4 in the completion, and the

claim follows.
Claim 4. The configuration D2 is forbidden.
We use the following amalgamation, with factors L2 and D2 (Fig-

ure 47).
Since there is no completion, the claim follows.
Claim 5. The configuration L1 is forbidden.
We use the following amalgamation, with factors L1 and L2 (Figure

48).
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a1

u

v

w

a2

Figure 47

a1

u

v

w

a2

Figure 48

Since there is no completion, the claim follows.

Claim 6. The configuration L4 is forbidden.

We use the following amalgamation, with factors L2 and L4.

a1

u

v

w

a2

Since there is no completion, the claim follows.

Claim 7. The configuration L3 is realized.

Consider the following amalgamation (Figure 49).
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1 2 3 4

Figure 49

In the completion we must have 1
1−→ 2, 2 1−→ 1, or 1

2−→ 2, which
gives one of the configurations L1, L3, or L4, respectively. The claim
follows.

Claim 8. The configuration C1 is realized.

We use the following amalgamation.

2 3

4

1

Since the configuration D2 is forbidden, the completion has 4 1−→ 1,
which gives C1.

Now we reach a contradiction. We know C1 is realized and by
symmetry also the reversal C1′ is realized.

But the following amalgamation has factors L3 and C1′, and has
no completion.

a1

u

v

w

a2

This contradiction completes the proof. □

Combining these results, Proposition 22.28 follows.
Proof of Proposition 22.28. Lemmas 22.31, 22.32, 22.33, and

22.35. □
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22G. Forbidden Triangles: analysis so far, and what remains

We now have everything in place to prove Proposition 22.1. We
repeat the statement.

Proposition 22.1. Let Γ be an infinite, primitive, homogeneous 2-
multi-tournament not associated with a free amalgamation class. If
Γ has a ∅-definable linear order then it is found in the classification
in Part I. If not, then either the set of forbidden triangles in Γ defines
one of the known 3-constrained 2-multi-tournaments, or one of the
following four cases applies.

1. Triangle types C3(1, 1, 1) and C3(2, 2, 2) are forbidden and all
other triangle types are realized.

2. Triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbidden and all
other triangle types are realized.

3. Triangle type C3(1, 1, 2) is forbidden and all other triangle types
realized.

4. Triangle types C3(1, 1, 2) and L3(2, 2, 1) are forbidden and all
other triangle types realized.

Proof. If there is a ∅-definable linear order on Γ then Part I of
this text completes prior work to give the full classification.

If there is no ∅-definable linear order but there is some ∅-definable
partial order, then we may assume that the relation 1−→ is transitive,
and Proposition 22.2 applies. Thus, up to a change of language, the
triangle constraints are as in entry #6 or #7 of Table 21.1.

Now suppose that there is no ∅-definable linear order on Γ. We
consider which of the triangle types C3(1, 1, 1), C3(2, 2, 2) is realized.
Case 1. Both triangle types C3(1, 1, 1) and C3(2, 2, 2) are forbidden
in Γ.

Then by Proposition 22.3, either the same triangles are forbidden
as in S̃(3), up to a change of language, or else we have exceptional
case (1): triangle types C3(1, 1, 1) and C3(2, 2, 2) are forbidden and
all other triangle types are realized.
Case 2. Exactly one of the triangle types C3(1, 1, 1), C3(2, 2, 2) is
forbidden.

We assume

C3(1, 1, 1) is forbidden; and
C3(2, 2, 2) is realized.
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Then we must consider a number of subcases.

(2a) If the triangle type L3(2, 2, 1) is forbidden: then by Proposition
22.19 either Γ is isomorphic to S(4) or we have exceptional case
(2):

Triangle types C3(1, 1, 1) and L3(2, 2, 1) are forbidden
and all other triangle types are realized.

The case in which the triangle type C3(2, 2, 1) is forbidden is
the same, up to the choice of language.

(2b) Now suppose the triangle types L3(2, 2, 1) and C3(2, 2, 1) are
both realized. Then Lemma 22.26 implies that at least one of
the triangle types L3(1, 1, 2) or C3(1, 1, 2) is forbidden.

Suppose first that C3(1, 1, 2) is forbidden. Then one must con-
sider further whether L3(1, 1, 1) is realized.
— If L3(1, 1, 1) is forbidden then Proposition 21.44 shows that

the remaining triangle types are realized, as in entry #10.
— If L3(1, 1, 1) is realized then Proposition 22.27 shows that

we have the same forbidden triangles as in entry #8.
If on the other hand L3(1, 1, 2) is forbidden, then we have the

same situation, up to a change of language.

Case 3. Both C3(1, 1, 1) and C3(2, 2, 2) are realized.
Then Lemma 22.31, p. 251 shows that triangle types

L3(1, 2, 1), L3(1, 2, 2), L3(2, 1, 1), L3(2, 1, 2)

are realized.
As Γ is not associated with a free amalgamation class, and cannot

forbid both L3(1, 1, 1) and L3(2, 2, 2), it follows that up to a change
of language Γ may be supposed to forbid the triangle type C3(1, 1, 2).

By Proposition 22.28 all other triangle types are realized with the
possible exceptions of L3(2, 2, 1) and L3(1, 1, 1).

If the triangle type L3(2, 2, 1) is also realized then the triangle
constraints are as in the 3-constrained entry #9, with the possible
exception of L3(1, 1, 1), which should be forbidden as well. If this is
not the case then we have the exceptional case (3): the triangle type
C3(1, 1, 2) is forbidden and all other triangle types realized.

There remains the case in which C3(1, 1, 2) and L3(2, 1, 1) are both
forbidden and all other triangle types are realized with the possi-
ble exception of L3(1, 1, 1). But if L3(2, 1, 1) is forbidden then easily
L3(1, 1, 1) is realized.
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So this gives us the fourth and last exceptional case: the triangle
types C3(1, 1, 2) and L3(2, 2, 1) are forbidden and all other triangle
types realized.

This concludes the analysis. □

The four exceptional cases remaining are those whose treatment,
under the assumption of 3-constraint, required consideration of amal-
gamation diagrams of order six.

In the cases where amalgamation diagrams of order five were suf-
ficient, we concluded the argument by a careful consideration of the
possible structures of order four occurring in Γ. The remaining four
cases are more demanding, but one anticipates that arguments of the
same kind would be adequate. Broadly speaking, the question divides
roughly into two parts:

(I) Show that any configuration of order 4 which does not have a
forbidden triangle is itself realized (4-triviality);

(II) Reach a contradiction somewhat as in the cases just treated by
considering which factors of order 5 are realized in Γ, rather
than factors of order 4.

Having brought the analysis of triangle constraints down to this
point, we leave it there. In our final subsections we review where this
leaves us, relative to the general classification problem for homoge-
neous 2-multi-tournaments.

22H. 2-Multi-tournaments: Conclusion

22H.1. Triangle Constraints: An overview. At this stage, we
know the imprimitive homogeneous 2-multi-tournaments and we have
a classification of the primitive 3-constrained homogeneous 2-multi-
tournaments which can serve as a point of departure for a more gen-
eral analysis of the pattern of forbidden triangles in an arbitrary
primitive infinite homogeneous 2-multi-tournament.

Proposition 22.1 brings that analysis down to four delicate cases
remaining to be eliminated. Once that has been achieved, according
to each possible set of forbidden triangles which is not compatible
with some form of free amalgamation, one wants a particular classi-
fication theorem. Some of these have already been given in Part I.
Another was given in §22C.
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This remains a large subject. But we can now see clearly what needs
to be done to reduce the classification problem to that in which the
pattern of forbidden triangles is consistent with free amalgamation.
This would still not bring us down to the “generic” case, but covers the
bulk of the exceptional cases. One must also deal with the five families
of homogeneous 2-multi-tournaments without triangle constraints,
and without free amalgamation, noted in Table 22.2.

We next review the current catalog of known examples in detail.
22H.2. Triangle Constraints: The catalog. As the catalog of

known homogeneous 2-multi-tournaments is extensive, we conclude
this chapter by presenting that catalog once more in a completely ex-
plicit form organized according to the constraints of order 3 involved.

First, we give a list of the various classes of examples which occur
in a natural order, moving from the most constrained to the least
constrained types. We will then present these examples in terms of
the minimal constraints. For this purpose, it will be convenient to
give each example, or class of examples, a brief symbolic name.

We give the list up to a permutation of the language.

Known homogeneous 2-multi-tournaments.

1. Degenerate type: 2−→ is forbidden.
(i–v) The homogeneous tournaments I, C3, Q, S, T∞. Labels:

I, C,Q, S,∞.
2. Imprimitive with equivalence 1∼: forbid C3(1, 1, 2), L3(1, 1, 2),

L3(1, 2, 1), L3(2, 1, 1).
(a) Composition T2[T1] (T1, T2 of type C3, Q, S, or T∞): 16

cases. Additional constraints derived from T1 and T2 sepa-
rately. Labels L2[L1].

(b) Shuffled
(i) Q(n), 2 ≤ n ≤ ∞ properly shuffled of type Q. Label Qn.
(ii) S(n), 2 ≤ n ≤ ∞, properly shuffled of type S. Label Sn.

(c) General type
(i) Semi-generic (parity constraint) with component of type

T = Q, S, T∞. Label ∞∗̂T .
(ii) Generic of type T with 2 ≤ n ≤ ∞ classes. Label n ∗ T .

3. Primitive with 3-constraints involving both types.
(a) Pentagon. Label 5.
(b) 1−→ a partial order.
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(i) Generic permutation. Label Q ∗Q.
(ii) Linear extension of generic partial order. Label P ⊆ Q.
(iii) Generically ordered S. Label Q ∗ S.
(iv) Generically ordered Henson or random graph. Label

Q ∗Hn (n ≤ ∞).
(v) Non-generically de-symmetrized partial order forbidding

C3(2, 2, 1). Label P̃− or 3C7.
(vi) Generically de-symmetrized partial order. Label 3C6 or

P̃.
(c) No 2-type transitive.

(i) Both C3(1, 1, 1) and C3(2, 2, 2) forbidden.
(A) De-symmetrized myopic local order.

Forbid C3(1, 1, 1), C3(2, 2, 2), L3(1, 1, 1), L3(1, 2, 2),
L3(2, 1, 2). Label: 3C11 or S̃(3).

(ii) C3(1, 1, 1) forbidden, C3(2, 2, 2) realized.
(A) Forbid C3(1, 1, 1), C3(1, 1, 2), L1

n+1 (2 ≤ n ≤ ∞).
Label 3C8:n. (For n = 2: also called 3C10.)

(B) 4-Myopic local order S(4)
Forbid C3(1, 1, 1), C3(1, 1, 2), L3(1, 2, 1), L3(2, 1, 1),
L3(2, 2, 1), L3(2, 2, 2). Label 3C12 or S(4).

(iii) C3(1, 1, 1), C3(2, 2, 2) realized.
(A) Forbid C3(1, 1, 2), L3(1, 1, 1). Label 3C9.

(d) Free product T1 ∗ T2 or T1 ∗ G with Ti tournaments, G a
graph, and T1 = S or T∞ (else listed earlier).
(i) S ∗ S. Label S ∗ S.
(ii) S ∗Hn (3 ≤ n ≤ ∞). Label S ∗Hn.
(iii) T∞ ∗Hn. Label ∞∗Hn.

4. No non-monochromatic triangles forbidden.
(a) De-symmetrized local partial order. Label P̃(3).
(b) Free amalgamation class: includes de-symmetrized Henson

or random graph. Label H̃n.

Now we give the list again in terms of forbidden substructures.
When there are constraints of order greater than 3 (required or op-
tional) we discuss this afterward. We omit the degenerate cases. Our
conventions for assigning the 2-type labels 1, 2 are as follows.

(a) In imprimitive structures: put 1−→ within the equivalence classes,
and 2−→ between them.
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(b) In free products of strong amalgamation classes Ka ∗Kb:
— if Ka,Kb are classes of finite tournaments with edge rela-

tions a−→, and b−→, respectively then
1−→ is a−→ &

b−→;
2−→ is a−→ &

b←−.

— If Ka is a class of tournaments and Kb is a class of graphs
with edge relations a−→ and b , respectively, then

1−→ is a−→ & b ;
2−→ is a−→ &¬ b .

(c) In a de-symmetrized directed graph, 1−→ is the original arc re-
lation in the digraph and 2−→ is the de-symmetrized non-arc
relation.

The first two tables below specify the triangle constraints in the
imprimitive and primitive cases, respectively. The third table de-
scribes additional constraints where appropriate. The constraints of
order greater than 3 are associated with forms of S, P(3), imprimi-
tive graphs with a finite number of equivalence classes (at least 3),
the parity constraint in the semi-generic case, and free amalgamation
classes.
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Imprimitive Cases
3-cycles L3 More

I.D. 111 112 221 222 111 112 121 122 211 212 221 222
C[C] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

C[Q] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

C[S] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

C[∞] ✗ ✗ ✗ ✗ ✗ ✗ ✗

Q[C] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Q[Q] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Q[S] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Q[∞] ✗ ✗ ✗ ✗ ✗ ✗ ✗

S[C] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

S[Q] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

S[S] ✗ ✗ ✗ ✗ ✗ ✗ ✓

S[∞] ✗ ✗ ✗ ✗ ✗ ✗ ✓

∞[C] ✗ ✗ ✗ ✗ ✗ ✗ ✗

∞[Q] ✗ ✗ ✗ ✗ ✗ ✗ ✗

∞[S] ✗ ✗ ✗ ✗ ✗ ✗ ✓

∞[∞] ✗ ✗ ✗ ✗ ✗ ✗

Qn ✗ ✗ ✗ n = 2 ✗ ✗ ✗ ✗ n = 2 ✓

Sn ✗ n = 2 ✗ ✗ ✗ ✗ n = 2 ✓

∞∗̂Q ✗ ✗ ✗ ✗ ✗ ✗ ✓

∞∗̂S ✗ ✗ ✗ ✗ ✗ ✓

∞∗̂∞ ✗ ✗ ✗ ✗ ✗ ✓

n ∗Q ✗ ✗ ✗ ✗ ✗ ✗ ✓

n ∗ S ✗ ✗ ✗ ✗ ✗ ✓

n ∗∞ ✗ ✗ ✗ ✗ ✗ ✓

111 112 221 222 111 112 121 122 211 212 221 222
3-cycles L3

Table 22.1. Constraints for imprimitive
homogeneous 2-multi-tournaments
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Primitive Cases
3-cycles L3 More

I.D. 111 112 221 222 111 112 121 122 211 212 221 222
5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Q ∗Q ✗ ✗ ✗ ✗ ✗ ✗

P ⊆ Q ✗ ✗ ✗ ✗ ✗

Q ∗ S ✗ ✗ ✗ ✗ ✓

Q ∗Hn ✗ ✗ ✗ ✗ n = 2 ✓

3C6:P̃− ✗ ✗ ✗ ✗

3C7:P̃ ✗ ✗ ✗

3C11:S̃(3) ✗ ✗ ✗ ✗ ✗

3C12:S(4) ✗ ✗ ✗ ✗ ✗ ✗

3C8:n (3C10) ✗ ✗ n = 2 ✓

3C9 ✗ ✗

S ∗ S ✓

S ∗Hn ✓

∞∗Hn ✓

P̃(3) ✓

H̃T ✓

Table 22.2. Constraints for non-free, primitive
homogeneous 2-multi-tournaments
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I.D. Non-triangle constraints
C[S], Q[S], ∞[S] (IC3)

1, (C3I)
1

S[C], S[Q], S[∞] (IC3)
2, (C3I)

2

S[S] (IC3)
1, (C3I)

1, (IC3)
2, (C3I)

2

Qn Order (n+ 1)
2−→-tournaments (2 < n <∞)

Sn Order (n+ 1)
2−→-tournaments (2 < n <∞), (IC3)

1

∞∗̂Q, ∞∗̂S, ∞∗̂∞ IC3(212; 221), L4(212; 21; 2), C4(2121; 22), C3I(221; 212)

n ∗Q, n ∗ S, n ∗∞ Order (n+ 1)
2−→-tournaments

Q ∗ S IC3(
b−→), C3I(

b−→), where b−→ is 1−→ ∪ 2←−
Q ∗Hn Order (n+ 1) tournaments in b−→ (as above)
3C8–n Ln+1(1)

S ∗ S IC3, C3I for the relations a−→=
1−→ ∪ 2−→ and b−→=

1−→ ∪ 2←−
S ∗Hn IC3, C3I for 1−→ ∪ 2−→, order (n+ 1) for 1−→ ∪ 2←−
∞ ∗Hn Order (n+ 1) for 1−→ ∪ 2←−
P̃(3) Same as P(3)
H̃T T (same as HT )





CHAPTER 23

OPEN PROBLEMS AND SOME RECENT RESULTS

The discussion in Appendix A, at the end of Volume I, deals mainly
with recent advances relating in various ways to the material of Vol-
ume I. Here our focus shifts to open problems (or recent advances) in
the theory of homogeneous structures generally, and related subjects.

We do not address the very rich theory of finite covers of countably
categorical theories. An excellent source for an extended discussion
of a number of problems in the theory of homogeneous structures is
Macpherson [2011].

We also say very little about the highly developed interaction be-
tween Fraïssé theory and the algorithmic study of constraint satisfac-
tion problems. A very comprehensive treatment of model theoretic,
algebraic, and algorithmic approaches in the study of constraint sat-
isfaction problems, notably constraint satisfaction problems with ℵ0-
categorical templates, is found in Bodirsky [2021], which contains a
list of 59 open problems in that area.

For a discussion of the classification of homogeneous structures in
a language with finitely many linear orders, and for further remarks
on the classification of metrically homogeneous graphs, and its rela-
tionship to the theory of generalized metric spaces, see Appendix A
in Volume I. We also dealt there with some combinatorial problems
arising from the study of automorphism groups, purely from the com-
binatorial side. Here we review the connections of the combinatorial
work with the study of the automorphism groups, as it constitutes an
essential part of the general theory as well as the primary motivation
for much of the recent work on the combinatorial side.

269
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Our discussion here is keyed to the following list of topics.
• Model theoretic problems (23A)
23A.1 Structural Ramsey theory, partial structures, and applica-

tions
23A.2 The finite case
23A.3 Model theoretic simplicity, pseudo-planes
23A.4 Homogeneous structures in ternary languages
23A.5 The finite model property; finite axiomatizability
23A.6 Homogenizability
23A.7 n-Cardinal properties
23A.8 Partial orders of width n: model companion.
• Automorphism groups (23B)
23B.1 Normal subgroup structure, the twisted automorphism group
23B.2 Dynamical properties: extreme amenability, amenability, unique

ergodicity, EPPA, ample generics and consequences
23B.3 Borel complexity, reconstruction
23B.4 Regular actions.
• Algorithmic problems (23C)
23C.1 Constraint satisfaction problems
23C.2 Decision problems for finitely constrained classes
• Miscellaneous (23D)
23D.1 Locally finite generalized n-gons
23D.2 Stable countably categorical groups
23D.3 Transitivity and homogeneity conditions for permutation

groups

23A. Model theoretic problems

23A.1. Structural Ramsey theory, partial substructures,
and applications. For structural Ramsey theorists, amalgamation
is both a strong consequence of the Ramsey property (under mild
hypotheses) and a tool for the proof of structural Ramsey theorems
(Nešetřil [1979]).6

6The usual Ramsey theorem is a uniformization property for colorings of finite
ordered sets; one may ask whether a similar property is shared by other classes
of structures. I heard Erdős raise this question in its most concrete instance for
triangle free graphs in a lecture in the spring of 1966, or thereabouts, though it
was quite some time before I realized what he was getting at.
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23A.1.1. Existence of Ramsey expansions. The outstanding ques-
tion in this vein is the following, from Bodirsky, Pinsker, and Tsankov
[2013], Melleray, Nguyen Van Thé, and Tsankov [2016].

Problem 17. Given an amalgamation class in a finite language de-
termined by finitely many constraints—
17.1 Is there another such amalgamation class in an expanded lan-

guage, with the Ramsey property?
17.2 —and is there a model theoretic or algorithmic computation

providing a canonical expansion of this type?

A similar question makes a good deal of sense, a priori, for count-
ably categorical theories as well. But this formulation turns out to
have a very interesting refutation at that level of generality, using
Hrushovski amalgamation Evans, Hubička, and Nešetřil [2019]. This
tends to suggest the more restricted formulation is also dubious, and
at best elusive. But as it holds in all known cases, even if it does turn
out to be false in general there is something to be accounted for.

Taking a very different approach, the preprint Hrushovski [2020]
shows that any theory admits a canonical minimal Ramsey expan-
sion. In principle this would appear to offer a valuable perspective on
the question. Whether it can actually be brought to bear concretely
on these problems remains to be seen.

In a different direction, the following problem has a similar flavor.

Problem 18. Given an amalgamation class in a finite language de-
termined by finitely many constraints, is there an expansion by a
finite number of sorts with elimination of imaginaries? If so, can the
expansion be found in a straightforward, or at least algorithmic, man-
ner?

23A.1.2. Combinatorial methods. There are a number of practi-
cal techniques for establishing the Ramsey property in concrete cases
(and, more recently, not so concrete cases, as well). One such is the
so-called partite method. A sort of “user interface” to the method can
be found in Hubička and Nešetřil [2019]. Namely, if one can find a
suitable presentation of the structure (involving the choice of lan-
guage and possibly the addition of new sorts) and establish a certain
general finiteness property, then the partite method can be invoked
as a “black box.”

A quite special case of this is the finiteness property we discussed
in the appendix to Volume I, involving partial substructures. In view
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of its importance as an illustration of the general theory we repeat
the relevant definitions.

In the combinatorial point of view the focus is on amalgamation
classes A of finite structures rather than their Fraïssé limits, and,
in practice, more particularly the associated classes Â of partial sub-
structures (for model theorists, “weak substructures”) where one may
cut down not only the domain of the structure but the relations
imposed—a practice which is normal in graph theory, less normal in
working with linear orders. Then what is of interest is not so much
the characterization of A by forbidden induced substructures, but
the characterization of Â by forbidden partial substructures.

In the metric setting, we characterize the class A by the triangle
inequality; we characterize the class Â by forbidding non-metric cy-
cles of arbitrary length. Fortunately if the set of distances involved is
finite, then the lengths of the cycles are bounded a priori and there
are again a finite number of constraints. (On the other hand if one
specializes the metric case further, e.g. to the ultra-metric case, this
is no longer the case.)

To verify the stated characterization of Â one gives a completion
procedure: e.g., one may extend a partial metric space of diameter at
most δ to a metric space of diameter at most δ by the shortest path
metric truncated to δ, and one can then read off the forbidden partial
substructures as the obstructions to success of the algorithm (failure
consists of an alteration of one of the values of the partial metric as
given initially).

The finiteness condition imposed in Hubička and Nešetřil [2019] is
considerably more flexible than the one we have just given, but the
simple version stated here suffices for many applications; in particular
it is applicable to most of the known metrically homogeneous graphs
of generic type, as discussed in detail in Volume I. We should note
that we are also restricting ourselves here to strong amalgamation
classes, though this condition is weakened (by allowing for algebraic
closure) in Hubička and Nešetřil [2019].

As we discussed in Volume I, early work toward the finiteness prop-
erty for known metrically homogeneous graphs of generic type formed
a part of the thesis Coulson [2019], under substantial numerical re-
strictions on the numerical parameters associated with the graph.
A breakthrough in Aranda, Bradley-Williams, Hng, Hubička, Kara-
manlis, Kompatscher, Konečný, and Pawliuk [2021] gave more or less
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the general result. This is slightly confusing; our citation refers to
the short published version, where for the sake of simplicity some
numerical restrictions were still imposed, but were not essential. The
full version (at 57 pages) giving the general case was written about
the same time, but remains a preprint (Aranda, Bradley-Williams,
Hubička, Karamanlis, Kompatscher, Konečný, and Pawliuk [2017]).
It includes some subtle variations as far as the applications are con-
cerned, in extreme cases. In what follows we refer to the extended
preprint, and not all points mentioned are touched on in the pub-
lished version.

So the core issue, modulo general theory, is to find an explicit com-
pletion procedure for partial structures, which should also be canon-
ical (invariant under isomorphism). Only later did it appear that
these completion procedures could be interpreted as “shortest path
completion” (generalized path metric) in the context of generalized
metric spaces with values in an exotic partially ordered commuta-
tive semigroup. Such generalized metric spaces had been studied in
the linearly ordered case by Conant, beginning with Conant [2015],
[2017], and in the case of lattices in Braunfeld [2016]; the spaces in
the latter case are generalized ultra-metric spaces in a sense known
previously in computer science, and occasionally used elsewhere.

The idea that the conventional metric spaces afforded by metrically
homogeneous graphs are better viewed as generalized metric spaces
is unexpected and immensely clarifying. A forerunner is in Konečný
[2019a] in the older language (where the details are checked in all
cases, without unnecessary numerical restrictions) and the new point
of view is exploited throughout in Konečný [2019b]. One hopes to
see a systematic account in Hubička, Konečný, and Nešetřil [2020] as
well, when available.

Viewing metrically homogeneous graphs as generalized metric spaces
involves putting an exotic semigroup structure on the set of distances
[δ]. In retrospect addition truncated to [δ], i.e., a⊕ b = min(a+ b, δ),
is an example of this. In that particular case the associated partial
ordering is the usual total ordering. Typically the addition is con-
siderably stranger and the ordering is not even total. We discussed
these examples in Volume I.

For further reference see Evans, Hubička, Konećný, and Li [2019],
where the subject involves stationary independence relations and the
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canonical completion process (as an amalgamation procedure) is very
much at the heart of the matter.

There are some indications that the theory of generalized met-
ric spaces can explain the structure of infinite primitive homoge-
neous binary structures with symmetric 2-types (and I suppose there
should be a variant allowing anti-symmetry, though this is a mys-
tery). Konečný made some computer explorations but this is a sub-
ject that is not very clear. One problem is that the representation
by generalized metric spaces is far from canonical (as illustrated by
the discussion of the “neutral” parameter in the appendix to Volume
I) and we have no idea how to make it canonical. If one were go-
ing to prove something one imagines it would involve some canonical
construction.

More precisely, there are two questions.

Problem 19.
19.1 Classify the 3-constrained homogeneous structures in finite bi-

nary symmetric relational languages.
19.2 Classify the infinite primitive homogeneous structures in finite

binary symmetric languages.

One imagines that the answer to the first question might involve
generalized metric spaces and one can conjecture that the known
method for going from the 3-constrained case to the general case via
a suitably general notion of Henson constraint explains the rest.

23A.1.3. Applications. Ramsey’s original theorem was the trans-
lation into combinatorial terms of a definability theorem for the ratio-
nal order, proved with a view to its application to a decision problem.
Structural Ramsey theoretic results provide a useful and versatile tool
for model theorists and complexity theorists in many areas: dynami-
cal and descriptive set theoretic properties of automorphism groups of
homogeneous structures, the classification of reducts of homogeneous
structures, and the complexity of constraint satisfaction problems.
In addition, the completion procedures for partial structures which
come into play in proving finiteness theorems for forbidden partial
structures have important applications to the study of automorphism
groups which do not pass through the Ramsey theory.

As we will discuss properties of automorphism groups and some al-
gorithmic issues later, for the present we focus on the classification of
reducts. Actually, this is also a problem about automorphism groups
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as well: we want to classify reducts up to first order definability,
which amounts to classifying closed overgroups of the automorphism
group within the full symmetric group, viewed as a Polish group.
Furthermore, with some modifications the topic has applications to
algorithmic problems, as well.

Simon Thomas has asked the following.

Problem 20. Does every homogeneous structure in a finite rela-
tional language have finitely many reducts up to interpretability?

Many instances of this are known. The most effective approach, in
general, is to find a Ramsey expansion and then solve the “harder”
problem of finding all reducts of that expansion explicitly. Or, more
precisely, try to identify the join irreducibles in the lattice of reducts
first, and then argue that all reducts are in fact joins of these.

Here one does, in fact, work with automorphisms, and one uses a
Ramsey theoretic argument to canonize their form. A survey of that
approach may be found in Bodirsky and Pinsker [2011].

The details of the analysis become quite elaborate. One has, for
example, 39 reducts of the random permutation (Linman and Pinsker
[2015]), 42 reducts of the random ordered graph (Bodirsky, Pinsker,
and Pongrácz [2015]), and 116 distinct reducts of the rational order
when a constant is added naming one element (Junker and Ziegler
[2008]).

We have mentioned (in Volume I) a different approach to the prob-
lem in the context of homogeneous multi-orders due to Simon [2020].
When applicable, it is considerably less onerous to carry through.

When one comes to algorithmic problems, the issue shifts to the
classification of reducts up to positive existential interdefinability, as
this is relevant to complexity reductions. Ramsey theoretic methods
apply in that setting as well.

23A.2. The finite case. Lachlan developed an influential theory
which can be viewed either as the classification of the finite homoge-
neous structures in a fixed finite relational language, or the classifi-
cation of the stable homogeneous structures in such a language. The
finite ones arrange themselves in finitely many families associated
with certain numerical invariants, and the stable ones allow some or
all of these parameters to go to infinity. (For a generalization beyond
the homogeneous context, also suggested by Lachlan, see Cherlin and
Hrushovski [2003].)
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Every finite structure is homogeneous for a finite relational lan-
guage. This amounts to looking at structures from the point of view
of permutation group theory, in terms of their automorphism groups
and the invariant relations under these groups.

One may view the restriction to finite relational languages in Lach-
lan’s theory as imposing two constraints: a bound on the relational
complexity of the structure (or permutation group), which is the least
value r such the structure is homogeneous for a relational language
with relations in at most r variables, is bounded, along with a bound
on the number of relations of that complexity.

The relational complexity is an interesting parameter on its own—
an invariant of permutation groups which is absent from the classical
theory, and with some not very precise relationship to other classical
invariants. To arrive at tractable questions on relational complexity
one tends to focus on primitive structures.

I conjectured, on the basis of some computations made in the Cay-
ley system (a forerunner of GAP) back in 1989, that the homogeneous
finite primitive structures with a binary relational language are the
following.7

(a) p-Cycles for p prime (both oriented and symmetric);
(b) Affine planes equipped with an anisotropic quadratic form; and
(c) The set with no structure (as a permutation group, this is the

symmetric group acting naturally).
This has just now been completely proved via elaborate developments
involving a close look at primitive actions of almost simple permuta-
tion groups.

The work in Cherlin [2016], Wiscons [2016] reduces the problem
to the almost simple case. The cases of sporadic, alternating, or Lie
rank 1 socle are treated in Dalla volta, Gill, and Spiga [2018], Gill
and Spiga [2016], Gill, Hunt, and Spiga [2017]. This leaves exceptional
Lie type and the various Aschbacher classes associated with classical
groups, now the subject of a monograph by by Gill, Liebeck, and
Spiga [2021]. There is an erratum associated with the reduction to
the almost simple case, which should appear in that monograph as
well.

There remain a wide variety of group theoretic and combinato-
rial problems associated with the subject of relational complexity,

7I believe my first public mention of the conjecture was in 2000, in Cherlin
[2000].
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qualitative and quantitative. In particular one has questions of the
following types.

1. Determine the relational complexity exactly, or within close bounds,
for particular actions of interest.

2. Characterize families of primitive actions modulo a bound on
relational complexity (loosely).

3. Give a good heuristic for predicting relational complexity of
primitive actions. Classify those with an unusually high or low
complexity modulo the heuristic.

4. Find the mathematical content of the canonical language for
structures of interest.

The second question is simply the most extreme and possibly the
most attractive special case of the third question.

23A.2.1. Calculating relational complexity. I’ve been working with
Josh Wiscons, off and on, on various aspects of this problem, includ-
ing the development of software tools in GAP for evaluating rela-
tional complexity in small structures (typically of size less than 200).
As there are built-in libraries of primitive actions, this generates quite
a bit of data, which I think is revealing, but this is not the place to
go into the details.

One thing we noticed is that in addition to the relational complex-
ity the relational complexity spectrum can be interesting and clari-
fying as well. Namely, the relational complexity is the largest r for
which (r − 1)-types do not determine r-types in a straightforward
way (this should not be confused with notions like (r − 1)-closure).
The associated spectrum is the set of all such r. Working out the re-
lational complexity precisely is likely to involve methods relevant to
the determination of the spectrum, and the latter may explain more
fully what one finds—in the most straightforward cases the spectrum
is an interval, but where there are gaps there are sometimes various
mechanisms in play at different points.

The precise computation of relational complexity in actions in-
volving symmetric groups tends to lead to quite specific problems in
combinatorics (other cases may lead to similar problems, but in linear
algebra). An early and spectacular computation of such a computa-
tion concerns wreath products of symmetric groups acting naturally
(with the product action). We may call this nd, or perhaps [n]d, with
d the number of factors, n the degree of the symmetric group. This
is given in Saracino [1999], [2000]. The precise result is hard to state
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explicitly (this has probably never been attempted in public). We
can however give the problem in an equivalent form for which the
statement remains technical but reasonable. Namely, one views the
relational complexity r as a function of a fixed n and a variable d,
increasing with d, and one asks (more or less) for the value of d
which first produces a given value of r, calling this value δ(r, n). The
formula for δ is tricky—it measures which of several possible con-
structions is most efficient in a given case, Since the formula for δ
is delicate, giving an explicit formula for r—essentially, the inverse
function—is troublesome. We will not even reproduce the formulas
for δ here—they may be found in Saracino’s papers, along with a
more precise and slightly more subtle definition of the function in
question.

There are many other interesting questions involving wreath prod-
ucts, and one hopes that Saracino’s methods will some day be de-
veloped farther to answer them, exactly or qualitatively. The most
obvious instance would involve the action of a wreath product of
symmetric groups on

[
n
k

]d, where
[
n
k

]
refers to k-sets in [n]. A consid-

erably more accessible question in this vein would be the relational
complexity (or actually, the associated spectrum) for the natural ac-
tion of a wreath product of alternating groups on the product space
[n]d.

The relational complexity of the action of symmetric or alternating
groups on k-sets is known precisely. The next natural case would
be the action on partitions of fixed shape, which is challenging (and
seems to require a better understanding of wreath product actions on
k-sets). With Wiscons we have worked out the relational complexity
for the case of shape n×2 (meaning there are n pieces, each of size 2),
for the symmetric group and the alternating group—n in the former
case, and n − 1, n, or n + 1 in the latter case. On the other hand
we have not managed to work out the relational complexity of the
action of Sym(2n) on partitions of shape 2× n. We offer some data.
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Shape Degree R.C.
2× 2 3 2
2× 3 10 3
2× 4 35 5
2× 5 126 4
2× 6 462 6
2× 7 1716 ≥ 5; ̸= 6

This is non-monotonic in n and it is reasonable to think that
parity—or even the binary representation of n—is significant.

Passing momentarily to linear algebra, the relational complexity of
the general linear group acting naturally in dimension d is usually
d+ 1 (the field of order 2 provides an exception) and this is entirely
to be expected. On the other hand the relational complexity of the
affine orthogonal group acting naturally in the anisotropic case is 2,
as the values of a quadratic form on differences of vectors determines
everything, including all linear relations. (Over finite fields there are
not so many examples but this all makes sense over infinite fields, as
well, allowing infinite structures and an infinite language.)

The 1-dimensional affine semi-linear group AΓL(1, q) acting natu-
rally raises a delicate question as to its precise relational complexity.
Given the low dimension, it presents few issues qualitatively (though
the Galois action on the field complicates matters). One can show on
quite general grounds that in fact the relational complexity in such
cases is 3 or 4, and for many purposes we will not much care which it
is. However actually settling this last point seems to involve obscure
Galois theoretic complications. One should note in this connection
that for affine groups, the relational complexity is more closely con-
nected with the dimension when the group is viewed as a semilinear
group rather than as a linear group (and certainly the dimension over
the prime field is not very relevant).

The only values for which the relational complexity of AΓL(1, q)
is known at present to be 3 are q = pd with p prime and d ≤ 3,
and q = 2d with, mysteriously, d = 4, 6, 7, or 11. We have checked
that the relational complexity is 4 for p > 2 and d = 4, and also in
the remaining individual cases up to 214, 39, and 56 (using inefficient
methods in the last cases, which are group theoretic rather than field
theoretic, but have the merit of being readily available).
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Similar problems affect precise computations of the relational com-
plexity of higher dimensional affine semi-linear groups, but qualita-
tively, the relational complexity is close to the dimension.

23A.2.2. Estimating relational complexity; exceptional cases. We
consider our second and third points together. To estimate the rela-
tional complexity presumably should involve taking the O’Nan-Scott-
Aschbacher theory as a point of departure and developing a different
theory for each major case. But as far as primitive actions of almost
simple groups are concerned, it seems to me that a plausible heuristic
for the relational complexity is something like the following, which
provides an upper bound.

2+ the width of the subgroup lattice of the stabilizer of a point.

Here we add 1 to account for the passage to a point stabilizer, and
then take the width plus 1 of the associated subgroup lattice as a
general bound for relational complexity of any action. What we are
saying is that typically, after passing to a point stabilizer, there is no
reason to expect the relational complexity to be much lower than the
maximal possible value. Of course the point stabilizer itself may be
much smaller than the ambient group. For all but the nicest actions,
we would not expect the width of the subgroup lattice of the ambient
group to be relevant. A more relevant lattice for the group as a whole
is the lattice of all pointwise stabilizers, but we are looking for purely
algebraic invariants. And what we are suggesting is that in many case
the lattice of point stabilizers inside the stabilizer of one point will
be very rich.

Given such a heuristic, one then wants to look not only at the case
of bounded relational complexity, but more generally at the case of
relational complexity much less than the value provided by the heuris-
tic. To say anything more requires going into the various families of
actions (and possibly modifying the lattice of subgroups considered
in some geometrically natural cases). In principle there is also a “high
side” if one uses a heuristic which serves as an upper bound. One does
not expect it to be achieved, or even approximated, very often, so ex-
ceptional cases may be of interest. Given the strong possibility that
the group and the point stabilizer have the same relational complex-
ity, one should probably start with the case of near equality (within
1).
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When the actions are geometrically natural the stabilizer subgroups
are geometrically natural as well, and the estimate would be signif-
icantly reduced by taking this sort of thing into account. So, as we
have mentioned, one should certainly refine this by taking the O’Nan-
Scott-Aschbacher classification into account at the outset. Perhaps at
this point the permutation theorists should weigh in, and take over,.

In fact, this is what has transpired in the binary case. That work
takes advantage at certain points of some rather extreme conse-
quences of binarity. Other parts of the analysis amount to the es-
timation of relational complexity in natural families where the value
tends to infinity for more or less transparent reasons. In such cases
this already gives information about bounded relational complexity—
it is less clear how much one can say at present about heuristics for
the qualitatively correct value.

What one would hope to see in the case of bounded relational com-
plexity is: small members of natural families (e.g., low dimensional
actions), arbitrary actions with small point stabilizers, and perhaps a
handful of interesting families. The first case may look like a subcase
of the second, but we are measuring in one case by something like
dimension, and in the other case with something more like the width
of the full subgroup lattice.

In the binary case, we would view the anisotropic affine orthogonal
groups and the natural actions of symmetric groups as falling in the
third, interestingly exceptional, category. This is obscured by the
bound on dimension in the orthogonal case. But one does not actually
have to restrict oneself to finite permutation groups and finite fields,
and then the family has unbounded dimension.

For the symmetric groups acting naturally, the low relational com-
plexity really is a property of the structure. For the very similar
action of the alternating group, the complexity jumps to n− 2—and
the kinds of invariants we would like to worth with do not make much
distinction between the two groups.

If one wants a very specific description of primitive ternary groups,
then as mentioned the 1-dimensional semi-linear groups present ap-
parently delicate questions, but we would just place these on the
low-dimensional side and look for more significant families of excep-
tional cases.
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We mention also that in the very particular case of binary permu-
tation groups, it is not clear that a classification necessarily requires
primitivity.

On the one hand, we have the difficulty that the imprimitive binary
case will not reduce in any direct way to the primitive binary case.
For example, every regular action of a group is binary, and every
transitive action is a quotient of a regular one.

But, on the other hand, there may still be a structural analysis
incorporating primitive and regular actions as building blocks lying
at opposite extremes. This subject lies outside the usual range of
permutation group theory but is normal enough for model theory.
Algebra aims mainly to understand the basic structures, and model
theory tends to study how they can interact. I don’t expect model
theory to account for the structure of an arbitrary finite group, but
if one adds the regular actions of finite groups to the list of “basic
geometries” one can then look farther.

The base case for this would be height 2 in the sense that the
quotient by a minimal invariant equivalence relation is primitive. As
we have no information on the quotient, a priori, this seems like a
large problem. Consider the simplest case of degree 2p with p prime.
Then for p > 3 there are 11 known examples arising from primitive
and regular groups by taking compositions and products; and also
a further example for p ≡ 1 (mod 4) arising from a sort of twisted
isomorphism of between components. For primes p ≤ 13 there are
no other transitive binary structures of order 2p and it is not un-
reasonable to expect this to hold for general p, and, in general, for
some structural description in the general case of transitive binary
structures. One has to take into account at least the possibilities of
forming compositions, possibly twisted by automorphisms up to a
permutation of the language, and products.

23A.2.3. Invariant relations. The subject of telational complex-
ity concerns a general form of invariant theory. For example, for the
natural action of the general linear group (or its affine version if we
insist on primitivity), the relations relevant to the determination of
the relational complexity are the linear relations, while for the or-
thogonal group the linear relations may be dropped when the form
is anisotropic. In the case of the projective line the relational com-
plexity is 4, and this is witnessed by the invariant relation given by
the cross ratio.
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One can also work out the relational complexity and corresponding
invariant relations for interesting actions of sporadic groups, and the
question remains as to whether they have mathematically meaningful
content, notably in highly transitive cases.

23A.3. Model theoretic simplicity, pseudoplanes.

Problem 21 (Koponen [2016]). Is every simple homogeneous struc-
ture for a finite relational language supersimple of finite rank?

Theorem 23.1 (Koponen [2016]). A simple homogeneous structure
in a finite binary language is supersimple of finite rank.

Theorem 23.2. 1. (Koponen [2017]) A primitive homogeneous bi-
nary structure with a simple theory is a random structure.

2. (Palacín [2017]) Any 2-transitive finitely homogeneous struc-
ture with a supersimple theory satisfying a generalized amalgamation
property is a random structure.

An obstacle to stating a more general conjecture as a problem is
the difficulty in accounting for interpretations and homogenizable
reducts, particularly the latter.

Problem 22. Is there a Lachlan pseudo-plane which is homoge-
neous for a finite relational language?

Theorem 23.3 (Thomas [1998]). There is no Lachlan pseudo-plane
which is homogeneous for a finite binary relational language.

23A.4. Ternary languages. Part I was sparked by Nguyen Van
Thé’s hope that some interesting examples relating to Ramsey theory
might turn up; given the difficulties of systematic classification, this
was indeed a natural place to look, though it does smack of looking
for one’s keys under the lamp rather than where they were lost.

If possible, one would like to search systematically for homogeneous
structures in a ternary language in which no binary relations are
definable.

We indicate two directions which seem natural.
23A.4.1. 3-Hypergraphs and 3-hypertournaments. We may fix a

ternary predicate T (x, y, z) and require irreflexivity: T (x, y, z) im-
plies x, y, z are distinct. It is natural to impose one of the following
symmetry conditions:
(S) Tx⇐⇒ Txσ (σ ∈ Sym(3))—symmetry: the 3-hypergraph con-

dition;
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(A) Tx⇐⇒ ¬Txσ (σ /∈ Alt(3))—anti-symmetry: we call this the
3-hypertournament condition

Some steps toward consideration of homogeneous 3-hypergraphs
are found in Akhtar and Lachlan [1995]. Bearing in mind that the
classification of homogeneous graphs is more elaborate than the clas-
sification of homogeneous tournaments, one might prefer to start on
the anti-symmetric side.

Problem 23. Classify the homogeneous 3-hypertournaments (or, an-
alogously, t-hypertournaments, with a similar definition of an anti-
symmetric t-place relation).

I looked at the finite case and found the following. The finite homo-
geneous t-hypertournaments, for t ≥ 2, are just the trivial ones (on
fewer than t vertices), the canonical t-hypertournament on (f + 1)
vertices with automorphism group Alt(t+1) (the 3-cycle, for t = 2),
and a 3-hypertournament on 8 vertices with automorphism group
AΓL(1, 8). This relies on Kantor [1972].

I also looked at the infinite 4-constrained homogeneous 3-hypertour-
naments. There are only three 3-hypertournaments of order 4, and
four infinite 4-constrained homogeneous 3-hypertournaments. Three
of these come quickly to mind: the generic circular order, the generic
3-hypertournament, and the generic “even” 3-hypertournament, mean-
ing that on any ordered 4-tuple an even number of increasing triples
lie in the relation. The fourth one is defined by a forbidden 4-type and
an amalgamation procedure, neither of which immediately suggests
an interpretation of the object (though presumably there is one).

These examples have in fact served as fodder for a Ramsey theoretic
investigation (where they are described more fully) Cherlin, Hubička,
Konečný, and Nešetřil [2021]. My contribution was pointing out that
they exist; one of them appears to be quite interesting.

Problem 24. Are there infinitely many homogeneous t-hypertourna-
ments for some t (notably, for t = 3)?

For t ≥ 3, are there any that are not (t+ 1)-constrained?

No doubt the problem of classifying the (t + 1)-constrained ho-
mogeneous t-hypertournaments is attractive, useful, and tractable as
well.
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If one wants to tackle the characterization of the generic homoge-
neous 3-hypertournament under the assumption that all 3-hypertour-
naments of order 4 embed, or some stronger hypothesis as appropri-
ate, then one would begin by thinking about the Lachlan Ramsey-
theoretic method. It seems inapplicable here. One makes use there of
the characteristic feature of binary structures, namely that in order
to determining the type of some elements over an arbitrary set A of
parameters, when the 1-types over A are already known, is a matter
of settling the types of the new elements among themselves, and the
base set plays no further role. One can certainly contemplate making
some adjustment of the method to avoid this point, but at the essen-
tial step where one uses Ramsey’s theorem to control the structure
of an amalgam, this seems implausible.

23A.4.2. Homogeneous families of linear orders. A structure (A, T )
with T ternary and irreflexive may be viewed as a family (A \ {a}, Ta)
with the parameter a varying over A, where Ta(x, y) ⇐⇒ T (a, x, y).
In particular a cyclic order is a 3-hypertournament (A, T ) for which
the associated relations Ta are linear orders.

Setting aside the trivial case (|A| < 3), a homogeneous cyclic order
is universal (dense).

Now instead of 3-hypertournaments let us consider irreflexive ternary
structures (A, T ) for which the corresponding structures (A \ {a}, Ta)
are linear orders. We call such a structure a family of linear orders
(FLO).8

Problem 25. Classify the homogeneous FLOs.
We have the generic cyclic order, and at the opposite extreme, the

generic FLO. We will see that there are uncountably many homoge-
neous FLOs, which does not necessarily preclude their classification.

There are two isomorphism types of FLO of order 3, corresponding
to the isomorphism types of tournaments of order 3: we call them
linear or cyclic correspondingly. The cyclic orders are the ones omit-
ting the linear 3-type; the ones omitting the cyclic 3-type also form
an amalgamation class, so there is a generic anti-cyclic FLO.

Now we describe uncountably many homogeneous FLOs.
8In connection with Ramsey theory it is natural to consider ternary structures

(A, T ) which are generic subject to the restriction that the structures (A \ {a}, Ta)
lie in a fixed strong amalgamation class. One then expects FLOs to play a role in
the Ramsey theory; but one must also have a global linear order defined without
parameters.
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Definition 23.4. A ternary relation R is cyclically invariant if it
is invariant under cyclic permutations of the variables (hence, on each
triple, either fully symmetric or anti-symmetric).

The cyclically invariant part Tcyc of a ternary relation T is the
largest cyclically invariant relation contained in T .

Let F be a family of finite ternary structures (A,R) with R ir-
reflexive and cyclically invariant. An FLO Γ = (X,T ) will be said to
be F-free if (X,Tcyc) does not contain any structure in F as a weak
substructure.

Let F be a set of irreflexive cyclically invariant ternary structures
(A,R) which are irreducible in the sense that every pair of vertices
belongs to a triple in R, Then we claim that the class of finite F-
free FLOs is an amalgamation class. We also claim that there are
uncountably many amalgamation classes of this form.

To check amalgamation, we consider a 2-point amalgamation prob-
lem A0 ∪ {a1, a2} where the structure of A1 = A0 ∪ {a1} and A2 =
A0 ∪ {a2} is given. For a ∈ A0 we amalgamate the orders <a defined
on A1 \ {a} and A2 \ {a}, arbitrarily. We also set

A0 <a1 a2 A0 <a2 a1

This construction ensures that no cyclically invariant edge containing
a1 and a2 appears, so if a structure in F weakly embeds in the cyclic
part of the amalgam, it must embed in a factor. Thus this class has
amalgamation.

Finally, we require an infinite antichain (with respect to weak
embedding) of finite cyclically invariant irreflexive and irreducible
ternary structures. For any tournament T let T+ = T ∪{a} be given
the cyclically invariant ternary structure generated by triples (a, x, y)
with (x, y) an arc of T .

Then T+ is irreflexive, cyclically invariant, and irreducible. Since
every triple in T+ contains a, if we have a weak embedding of T+

1

into T+
2 with |T1| ≥ 3 then this induces an embedding of T1 into T2.

As there is an infinite antichain of tournaments we have the desired
infinite antichain of ternary structures.

The following is a natural first question concerning the range of
this construction.

Problem 26. If a homogeneous FLO is anti-cyclic (i.e., has trivial
cyclic part) is it the generic anti-cyclic FLO?
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23A.5. The finite model property and finite axiomatizabil-
ity. A structure has the finite model property if it is a model of the
theory of all finite structures. Such structures are called pseudofinite.

The following interesting problem is long-standing, and represen-
tative of a wide range of problems.

Problem 27. Is the generic triangle free graph pseudo-finite?

The broader problem is the following.

Problem 28. Give an algorithm to determine whether a homoge-
neous structure determined by a specified finite set of minimal con-
straints is pseudo-finite.

In Cherlin [2011b] we pointed out some very concrete instances of
the question of pseudo-finiteness of the generic triangle free graph
which had resisted analysis. One of these questions was quickly an-
swered by Even-Zohar and Linial [2015] using a construction previ-
ously considered in connection with Ramsey theory. The other ques-
tions of this type, very similar in flavor, remain untouched.

At the opposite extreme from pseudo-finiteness is finite axiomatiz-
ability. More generally one may consider quasi-finite axiomatizability,
which allows an axiom of infinity (or perhaps several) in addition to
finitely many first order axioms.

Problem 29 (Macpherson [1991]). Does every finitely axiomatizable
countably categorical theory have the strict order property?

The problem is also of interest when specialized to homogeneous
structures for finite relational languages.

Theorem 23.5 (Macpherson [1991]). Every quasi-finitely axioma-
tized complete theory with trivial algebraic closure either has the strict
order property or is a definable expansion of the theory of equality.

A natural strengthening of the finite model property is the finite
submodel property. The theory of the successor function (or successor
relation) on Z illustrates the distinction.

Problem 30 (Macpherson [2011, 3.2.2]). Is there a pseudo-finite, count-
ably categorical theory which does not have the finite submodel prop-
erty?
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23A.6. Homogenizability. A relational structure Γ in a finite
language is homogenizable if it has a definable expansion by finitely
many relations to a homogeneous structure.9

Covington gives a sufficient condition for homogenizability in Cov-
ington [1990]. The subject crops up in various places but might ben-
efit from more systematic investigation.

In the study of reducts of homogeneous structures, in addition to
structural Ramsey theory it seems that their classification by Ramsey
theoretic methods depends on the reducts being homogenizable. How-
ever, as was pointed out by Macpherson and mentioned by Thomas
in Thomas [1991], not all such reducts are themselves homogenizable
(in a finite relational language). A natural example of this is pro-
vided by a countable existentially complete bowtie-free graph, which
becomes homogenizable when expanded by a suitable linear order (a
remark of Rehana Patel and Jan Hubička, and one which is fortu-
nate from the point of view of Ramsey theory). In this particular
case the source of the phenomenon appears to lie in the difference
between algebraic closure and definable closure, in the absence of a
linear order.

Problem 31. Let C be a finite set of connected structures and let
Γ be an existentially complete C-free structure. When is Γ homoge-
nizable?

The prior question of course is when is the structure ℵ0-categorical.
This question is intimately connected with questions on the existence
of countable universal graphs. We know at this point that in most
cases the existentially complete structures in such a class are not in
fact ℵ0-categorical, and hence not homogenizable, but the range of
cases in which these structures are ℵ0-categorical is broad enough to
make the homogenization problem interesting. There are probably
very few cases indeed in which such graphs are homogenizable. The
first non-trivial case in some sense, after the case of forbidden paths,
is the case of the forbidden bow-tie, where already the structure is
not homogenizable.

There is an extensive literature on the topic. We mention the sur-
vey Komjáth and Pach [1991], the general theory relating universal
graphs and algebraic closure given in Cherlin, Shelah, and Shi [1999],
and the case studies in Cherlin and Tallgren [2007]. There is more to

9A mild abuse of language, perhaps.
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the theory and perhaps one can arrive at a quick answer to Problem
31 by putting it into that context.

One can state the problem equally well for other classes of struc-
tures of combinatorial interest, or more broadly. Due to the connec-
tion with the study of universal graphs the focus has been on the
graph theoretic setting. The presence of an ordering would certainly
change the flavor of the problem, and bring it closer to the prob-
lem of ℵ0-categoricity as such. One should certainly look into these
questions for directed graphs.

The questions about universality remain interesting for uncount-
able structures, but take on a different character. Shelah and his
collaborators have had a good deal to say about that.

23A.7. n-Cardinal properties. The problem is to determine re-
lations between the sizes of definable subsets in arbitrary structures
elementarily equivalent to a given homogeneous structure Γ.

Relatively little is known. In Cherlin and Thomas [2002] the case of
the random graph was treated, and some glib and inaccurate remarks
made about other homogeneous graphs (I thank Nate Ackerman for
catching this).

The accurate part has been considerably generalized.

Theorem 23.6 (Ackerman [2012]). Let T be the theory of a homo-
geneous structure Γ for a finite relational language whose associated
amalgamation class has strong amalgamation. Let p1, . . . , pn be the
complete quantifier-free types in one variable. Then for any infinite
λ, and any sequence of cardinals (λ1, . . . , λn) with

λ ≤ λi ≤ 2λ

there is a model of T in which pi defines a set of cardinality λi.

Note that the condition of strong amalgamation guarantees that
the sets defined by the pi are infinite.

Now it is evident that there are also cases in which cardinalities
are not related at all. But other questions arise, as illustrated by the
following.

Problem 32. Let Γ be the generic triangle free graph and let Γa,b

be Γ with two vertices a, b named, where (a, b) is a non-edge. What
are the possible sequences of cardinalities arising as above for models
of the theory of Γa,b?
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As the sets A,B defined by x a, x ̸ b and by x b, x ̸ a
respectively are not connected by edges to the set defined by x a, b,
it is to be expected that a gap of two exponentials can arise, some-
thing which would certainly not occur in the setting of the random
graph.

There may be a completely satisfactory analysis of the general case
as well, assuming strong amalgamation, but this is all that we know
at present.

23A.8. Partial orders of width n: model companion. The
following more isolated problem is not closely related to our topic,
as far as we know, but the solution may involve similar ideas. We
state it mainly because it is simple, natural, and has been open for
a considerable time, in spite of evoking some interest.

Problem 33 (Bonato and Delić [1997/98]). Does the theory of par-
tial orders of width at most n have a model companion? If so, is it
homogenizable?

Bonato and Delić prove that the model companion exists for n = 2.
The rest lies in shadow.

23B. Automorphism groups of homogeneous structures

For the automorphism group as a permutation group, one natural
line concerns the study of the twisted automorphism group as a finite
extension. We have said what we have to say about that in the ap-
pendix to Volume I, since the case of metrically homogeneous graphs
provides an interesting case study and there is as yet no general the-
ory.

For the automorphism group as an abstract group, the emphasis is
on simplicity and more generally on the normal subgroup structure.
In principle, another topic under this heading would be the cofinality
of the group (and some related issues); but these tend to be more
appropriately treated along with descriptive set theoretic properties
of the group as a Polish group.

As far as the Polish group structure is concerned, we have both
the descriptive set theory (notably, generic or ample automorphisms)
and the topological dynamics (notably, extreme amenability or more
generally metrizability of the universal minimal flow).
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All of these matters are very rich and well documented subjects
with broad connections and work actively ongoing. As mentioned in
the appendix to Volume I, many problems in this area were solved in
the case of (most) metrically homogeneous graphs mainly by pass-
ing through a canonical completion process inspired by the theory
of generalized metric spaces. But at that point we had put aside the
precise relationship of the combinatorial work to its intended appli-
cations, which is part of the general theory. So we will come back to
that here.

See Macpherson [2011, §4] for a comprehensive survey of the topic,
which has provided much of the motivation for recent work in the
area, since the appearance of Kechris, Pestov, and Todorcevic [2005].

An up-to-date and comprehensive survey of the combinatorial work,
insofar as it bears on the case of metrically homogeneous graphs and
a broad range of similar cases, is found in the introduction to Hu-
bička’s habilitation (Hubička [2019]).

23B.1. Simplicity, or normal subgroup structure. This topic
can be approached via a direct study of conjugacy classes in the au-
tomorphism group (which has its own interest, notably in connection
with the theory of Borel complexity). Another line of attack is devel-
oped in Tent and Ziegler [2013b], [2013a]. This approach is motivated
by stability theoretic methods used by Lascar which were transferred
to free amalgamation classes in Macpherson and Tent [2011] and then
given a more abstract and flexible formulation based on the existence
of canonical amalgamation; one route to this is to treat it as a special
case of canonical completion of partial structures.

In the presence of anti-symmetric relations, notably in the simple
case of linear orders, this notion is not available in its current sense.

When the notion is available, one expects to find canonical amal-
gamation used in the proof of the amalgamation property. But in the
case of metrically homogeneous graphs the existence of a “canonical
amalgamation” was considerably less clear than the amalgamation
property itself. It was supplied in an algorithmic form in Aranda,
Bradley-Williams, Hubička, Karamanlis, Kompatscher, Konečný, and
Pawliuk [2017].

A general result given in Evans, Hubička, Konećný, and Li [2019],
from the point of view of generalized metric spaces, covers the known
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primitive metrically homogeneous graphs of generic type. The im-
primitive case consists of bipartite and antipodal graphs. In the bi-
partite case one has the normal subgroup fixing the partition; that
is, one should name the two parts. In the antipodal case we no longer
have strong amalgamation and we may not have canonical comple-
tion either. These cases merit further consideration but do not seem
to fall neatly under the general theory.

Problem 34. Is the automorphism group of a known metrically ho-
mogeneous bipartite graph of generic type, with the parts named, a
simple group?

Is the quotient of the automorphism group of a known metrically
homogeneous graph of antipodal type by its center a simple group?

The usual notion of stationary independence relation has a strong
symmetry axiom which will fail in many natural cases. A non-symmetric
version with similar applications is considered in Li [2019].

23B.2. Dynamical properties: extreme amenability, amen-
ability, unique ergodicity, EPPA, ample generics and conse-
quences. Interest in the study of automorphism groups of homoge-
neous structures as topological groups has been invigorated by the
connections between topological dynamics, model theory, and com-
binatorics brought out in Kechris, Pestov, and Todorcevic [2005] and
has sparked a good deal of subsequent work, notably on the combi-
natorial side. A useful source of additional key results and notions is
Kechris and Rosendal [2007].

Here we review some key notions and connections with combina-
torics that come into play generally. In particular this provides mo-
tivation for the combinatorial investigations in the case of metrically
homogeneous graphs described in the appendix to Volume I (as does
the material of the previous section on simplicity of the automor-
phism group, via a different line of thought). It is a very rich and
actively developing topic, so we enter into some detail.

We being by recalling the combinatorial notions, then move on to
some applications.

23B.2.1. Combinatorial properties. Here, via the Fraïssé theory,
the focus is on amalgamation classes A of finite combinatorial struc-
tures, putting us squarely in the domain of finite combinatorics. The
key notions are the Ramsey property and the extension property for
partial automorphisms.
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Definition 23.7. Let A be an amalgamation class of finite struc-
tures.

1. A has the Ramsey property if for A,B in A there is C ∈ A with
satisfying the condition (in “Hungarian” notation)

C → (B)Ar .

That is, a coloring of copies of A in C results in a copy of B in
C on which the coloring is uniform (monochromatic).

2. A has the extension property for partial automorphisms (EPPA)
if for ever A ∈ A there is a “symmetrized” B ∈ A containing A,
so that every isomorphism between parts of A is induced by an
automorphism of B.

We apply the same terminology indiscriminately to the Fraïssé
limit of A, for the sake of brevity.

It should be noted that the Ramsey property requires a definable
linear ordering on the Fraïssé limit, for reasons which are clearest
via relations with topological dynamics, discussed below. In partic-
ular in the context of primitive metrically homogeneous graphs of
generic type one will work with the generic expansion by a linear
order (though there are similar conditions applicable to the auto-
morphism group of the graph itself). In any case the combinatorial
analysis required to prove the desired property does not entail such
an expansion.

For each of these properties, the combinatorial challenge of estab-
lishing that it holds in particular cases of interest has its own exten-
sive literature. As far as structural Ramsey theory is concerned, one of
the leading methods of proof is the so-called partite method of Nešetřil
and Rödl. The study of EPPA (sometimes called the Hrushovski prop-
erty) was initiated by Hrushovski. Here as well there are a number
of approaches in use.

Systematic approaches to both subjects—surprisingly similar in
terms of the key finiteness conditions imposed—are found in Hubička
and Nešetřil [2019], Hubička, Konečný, and Nešetřil [2020], couched in
terms of passage from a class with the desired property to a suitably
nice subclass. Both papers serve also as surveys and mention some
additional striking open problems.
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As we mentioned in the appendix to Volume I, a convenient route
to a very strong and simple version of the appropriate finiteness con-
dition on forbidden weak substructures is via a suitable completion
algorithm for partial structures. We recall the terminology.

A partial substructure (or a weak substructure, for model theorists)
is obtained by taking a subset of the universe of a relational struc-
ture along with a subset of each relation. For graphs this is the graph
theoretic notion of substructure (the model theoretic notion of sub-
structure translates to induced subgraph in this context). The Fraïssé
theory deals with a class A closed under taking induced substruc-
tures; the combinatorics goes into the associated class Â obtained by
taking partial substructures. In particular we may impose the quite
strong (and often satisfied) requirement that there be finitely many
minimal forbidden partial substructures, and this gives a structural
Ramsey theorem.

One route to such a finiteness condition, discussed in some de-
tail in a concrete case in the appendix to Volume I, is the analysis
of a completion algorithm for partial substructures (leading us back
eventually to generalized metric spaces, in that particular case). More
precisely, the minimal forbidden partial substructures appear as ob-
stacles to the completion process. If the completion process is suitably
canonical, one arrives at the finiteness condition required for EPPA.

In the case of primitive metrically homogeneous graphs of generic
type (and a number of imprimitive ones), the preprint Aranda et al.
[2017] gives the completion procedure and its application to struc-
tural Ramsey theory and EPPA. Subsequently the connection to gen-
eralized metric spaces appeared, and a treatment of EPPA general-
ized metric spaces is found in Conant [2019].

Once the combinatorial side is under control, primarily in the form
of structural Ramsey theory or EPPA, one can pass to the more
concrete study of the automorphism group of the Fraïssé limit as a
Polish group.

23B.2.2. Automorphism groups as Polish groups. The focus here
is on the dynamical properties and the descriptive set theoretic prop-
erties of the automorphism group of a countable homogeneous struc-
ture, with the Polish topology associated with its action as a permu-
tation group on a countable set.
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On the dynamical side one considers flows, i.e continuous actions
of the group in question on compact topological spaces, more partic-
ularly minimal flows, with no invariant subflows, and the universal
minimal flow (a minimal flow covering all others), whose uniqueness
can be established. This has a tendency to be quite large in general
(like the Stone-Čech compactification). However it may reduce to a
point. This is a fixed point property; every flow has a fixed point.
Groups with this fixed-point property are called extremely amenable,
and tend to be considered exotic.

A key result from Kechris, Pestov, and Todorcevic [2005] estab-
lishes the equivalence of extreme amenability and the Ramsey prop-
erty for the associated amalgamation class. One of the relevant flows
is the action of the automorphism group on the compact space of all
possible linear orderings of the structure; a fixed point is a definable
linear ordering, accounting for our earlier remark on this point.

Thus Aut(Q,≤) is extremely amenable by the classical Ramsey
theorem. On the other hand Aut(Q) (or Sym(ω), if one prefers),
lacking a linear order, turns out to have the space of all linear orders
as its universal minimal flow. In general when one has a suitable
expansion with a structural Ramsey theorem the universal minimal
flow is the action on all possible expansions of the same type. The
characteristic feature of this situation is metrizability of the universal
minimal flow, a topic taken up with satisfying results in Melleray,
Nguyen Van Thé, and Tsankov [2016], Ben Yaacov, Melleray, and
Tsankov [2017].

On the descriptive set theoretic side, following the line laid down
in Kechris and Rosendal [2007], one considers mainly ample generics
(or, as this concerns an automorphism group, ample generic auto-
morphisms from the point of view of the structure). This strengthens
the requirement of a generic automorphism (a comeager conjugacy
class in Aut(Γ)) to a comeager Aut(Γ)-orbit on n-tuples of automor-
phisms. Nothing actually depends on the group being an automor-
phism group, and other cases are of interest, but our interest here is
of course the case of automorphism groups.

This is more or less (i.e., usually) a consequence of EPPA; the ques-
tion is whether we can move from the category of structures to the
category of structures equipped with a sequence of automorphisms.
In particular if the EPPA is derived from a canonical completion al-
gorithm then one gets ample generics. From this a variety of useful
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properties follow in various contexts—at the level of automorphism
groups of ℵ0-categorical structures, and sometimes more broadly.

Consequences include automatic continuity, the small index prop-
erty, and uncountable cofinality (the last not actually involving the
topology, a priori). There is a rich prior history, also covered in the
comprehensive paper of Kechris and Rosendal, and for an explana-
tion of these topics, and some others as well, we refer the reader to
that source.

To recapitulate: in Volume I, we saw that for the known primitive
metrically homogeneous graphs of generic type there is a theory of
canonical completion of partial structures which leads to finiteness
properties and then to the Ramsey property and EPPA for appro-
priate classes of finite structures, at which point the general theory
takes over to give a wide variety of applications; and much the same
applies to stationary independence relations, though it took a little
longer to derive the corresponding applications.

The state of affairs for the known metrically homogeneous graphs
as of Aranda et al. [2017] was as follows. First if Γ is one of Macpher-
son’s tree-like graphs Tm,n, then there is no suitable (pre-compact)
Ramsey expansion, EPPA fails, and there is no stationary indepen-
dence relation in the strict sense. Leaving that case aside brings us
to the generic case (or something similar, in diameter at most 2). In
this case the results are as follows (for some reason the restriction
“3-constrained” crept into the statement of Theorem 1.1; see however
the comment on page 8 regarding Henson constraints)

Theorem 1.1: Ramsey expansions: They exist and are natural.
In the primitive case, a generic linear order suffices; in the

bipartite case one names the parts; in the antipodal case one
adds a generic linear order convex with respect to the antipo-
dality relation—but in the bipartite antipodal case with odd
diameter one should take the order induced on antipodal pairs
to correspond to an ordering on the parts.

Theorem 1.2: EPPA: This holds except possibly in some antipo-
dal cases, where it holds after a further expansion of the lan-
guage splitting antipodal pairs by an equivalence relation with
two classes.

Theorem 1.4: Stationary independence: In the primitive case,
a stationary independence relation exists. In the imprimitive
case there are subtleties—we give further details below.
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The first difficulties connected with stationary independence canon-
ical amalgamation over an empty base (direct sum). In the bipartite
case clearly there is no canonical way to correlate the two sides in a
direct sum. In the antipodal and not bipartite case, the question is
how to form the direct sum of two pairs of antipodal points. If (and
only if!) δ is even one may use the distance δ/2 as the (symmetric)
“default.” In this case, use of the corresponding completion procedure
produces a stationary independence relation.

On the other hand, this obstacle aside, there tends to be a (local)
stationary independence relation. The exceptions come in two types
of antipodal graphs: bipartite of even diameter, or non-bipartite of
odd diameter. Both of these require some symmetry-breaking even
over a non-empty base.

The missing cases of EPPA are resolved, favorably, in Konečný
[2020], following on Evans, Hubička, Konečný, and Nešetřil [2020].

In the appendix to Volume I we also discussed why we think it likely
that all of the metrically homogeneous graphs are in fact known, so
that these results would settle a number of the central problems in
the area.

In connection with EPPA the following notorious problem also de-
serves particular mention here. There is quite a general theory but
some elementary cases escape, for now.

Problem 35. Does the class of tournaments have EPPA?

23B.3. Descriptive set theory and Polish groups. From a
descriptive set theoretic point of view the following problem is also
very natural.

Problem 36. What is the Borel complexity of the conjugacy rela-
tion in the automorphism group of a known metrically homogeneous
graph?

One may also ask whether the automorphism group determines
the structure in the spirit of Mati Rubin’s theory of reconstruction
(Rubin [1994]).

Of course, we highlight the case of metrically homogeneous graphs,
where we seem, at this point, to have all the tools one would want
for a good understanding of the automorphism groups.

23B.4. Regular actions. Now we look in a different direction.
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Cameron has raised the question as two which homogeneous struc-
tures Γ can be “Cayley objects” for a given group G; that is, G should
act regularly on Γ.

Theorem 23.8 (Henson [1971]). The random graph and the ge-
neric triangle free graph admit regular Z-actions. The Henson graphs
Γn for 4 ≤ n <∞ do not.

Many groups can act regularly on the random graph. Cameron and
Johnson give a sufficient condition for a representation of a group G
as a group of automorphisms acting regularly on the random graph
in terms of non-principal square root sets

√
g = {a | a2 = g},

where we require g ̸= 1. Namely:

The group G is not covered by finitely many
translates of non-principal square root sets.(P ′)

Theorem 23.9 (Cameron and Johnson [1987]). A countable group
satisfying condition P ′ has a regular action on the random graph.

They made the following remark.
It is possible to derive a necessary and sufficient condition on
the countable group G for G to be embeddable as a regular
subgroup of Aut (F). However, the condition is complicated
to state, and we have no example to show that it really is
more general than (P’).

Problem 37. Is there a countably infinite group, not satisfying the
condition P ′, and acting regularly on the random graph?

The purely permutation group theoretic question they asked was
whether every countably infinite group has some representation as a
regular subgroup of a primitive but not doubly transitive permutation
group (in other words, acting regularly on a primitive structure with
at least two non-trivial 2-types). A concrete instance of the problem
is the following.

Problem 38 (Cameron and Johnson [1987]). Let G be the semidi-
rect product Z⋊Z4 with a generator of Z4 acting by inversion. Does
G have a representation as a regular subgroup of a primitive but not
doubly transitive group?
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In the present state of knowledge, one may even ask whether this
particular group has a regular action on the random graph—one
would expect this, at least, to be tractable.

This touches the surface of what could be a very broad subject.
E.g.:

Problem 39 (Cameron, Vershik Cameron [2000]). Which elementary
abelian groups act regularly on the Urysohn graph (integer Urysohn
space)?

Theorem 23.10 (Cameron and Vershik [2006]). An elementary
abelian 2-group can act regularly on integer Urysohn space. An ele-
mentary abelian 3-group cannot.

23C. Algorithmic problems

We have alluded to the use of model theoretic methods in the
study of algorithmic problems (specifically, constraint satisfaction
problems) above, and we return to this briefly in the present sec-
tion.

But here we focus mainly on the reverse direction—the algorithmic
side of combinatorial model theory (this is not entirely the reverse
direction—the use of model theoretic methods in the theory of con-
straint satisfaction problems also leads to the consideration of specific
model theoretic decision problems).

23C.1. Constraint satisfaction problems. Ramsey theoretic
methods are also relevant to the problem of determining whether
or not a constraint satisfaction problem is NP -hard, allowing here
for the case of certain infinite templates (Bodirsky [2015]). Here the
important notion of definability is primitive positive existential de-
finability, and in the presence of the Ramsey property one can show
that the problem of determining whether a given relation is definable
in this sense from finitely many others in a quantifier-free definable
reduct of a given structure becomes decidable (Bodirsky, Pinsker,
and Tsankov [2013]).

Fortunately, there is now a comprehensive treatment of the inter-
action of complexity theory, universal algebra, Ramsey theory, and
the model theory of ℵ0-categorical theories, in particular, the Fraïssé
theory and the general theory of core structures, in the subject of
constraint satisfaction problems (Bodirsky [2021]), to which we refer
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both for the theory and for a detailed discussion of a wide variety of
open problems. The decision problems in question depend on a fixed
“template” structure, often taken classically to be finite. The question
is then whether a given finite structure in a specified language maps
homomorphically into the template. For example, with template Kk

this is k-colorability, since the edge relation in Kk is irreflexive (in
fact, since the edge relation is the complement of equality, the ef-
fect of the choice of language is to introduce a positive symbol for a
negative relation).

The dichotomy conjecture of Feder and Vardi states that every
constraint satisfaction problem with finite template is either in P or
is NP-complete. Positive solutions have been announced by Bulatov
and by Zhuk.

As explained in Bodirsky [2021], a generalization of this conjecture
to ℵ0-categorical templates would be excessive. A central conjecture
for the case of infinite templates is the following.

Conjecture 2 (Bodirsky, Pinsker; Infinite-domain dichotomy). For ev-
ery reduct of a finitely bounded homogeneous structure, the corre-
sponding constraint satisfaction problem is either in P or is NP-
complete.

Here the notion of finitely bounded (or finitely constrained) refers to
the condition that the associated amalgamation class of finite struc-
tures should be defined by finitely many forbidden substructures (in
the model theoretic sense: i.e., forbidden embeddings). This condition
is a very natural one to impose in an algorithmic context.

As may be seen in Bodirsky [2021], a very large body of theory goes
over from the case of finite templates to the case of reducts of finitely
bounded homogeneous structures, or even, quite often, to the case of
ℵ0-structures. Among other things, once the template is infinite then
the topology on the automorphism group plays a role; and as the
universal algebraic approach involves not only automorphisms but
endomorphisms and even polymorphisms, these too must be viewed
topologically.

And we refer the reader to Bodirsky’s monograph for a substantive
discussion of the subject.

23C.2. Decision problems for finitely constrained classes.
This subject seems to us seriously underdeveloped, though in certain
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particular contexts—notably, the theory of permutation patterns—
a substantial amount of work has been done (cf. Ruškuc [2005]).
It would be interesting to develop this material systematically for
combinatorial structures of general type.

The setting for this, as is standard in the theory of permutation
pattern classes, and already mentioned in connection with constraint
satisfaction problems—is a class of finite structures characterized by
finitely many minimal forbidden structures. Model theory often fo-
cuses on amalgamation classes (or Hrushovski variants) but we can
study the finite models of a universal sentence as a combinatorial
setting given by finitely many forbidden substructures, and look at
properties of the existentially complete models, notably when their
theory is ℵ0-categorical.

The theory is simplest when the class of interest is closed under
passing to partial substructures, that is the constraints may be taken
to be forbidden partial substructures (e.g., graphs and subgraphs
rather than graphs and induced subgraphs).

Permutations are best viewed as sets equipped with two linear
orders; since the class of linear orders is not closed under partial
substructure, the class of permutations is not closed under partial
substructure either.

In what follows one is free to interpret the problems in either sense,
though possibly with different outcomes in the two cases (dealing
with either hereditary or monotone classes, in the combinatorial lan-
guage).

A fundamental question at the outset, and a sufficiently difficult
one, is the problem of determining when such a class has the joint
embedding property.

Problem 40 (Joint embedding decision problem). Given a finite set
of forbidden substructures. determine whether the associated class of
finite structures has the joint embedding property.

This is open, and very interesting, for the case of permutation
patterns, cf. Ruškuc [2005, p. 6].

For the case of finitely constrained hereditary graph classes (that
is, with forbidden induced subgraphs) the problem is undecidable,
and the same applies to the joint homomorphism property (Braun-
feld [2019]). Furthermore, joint embedding is undecidable for finitely
constrained hereditary classes of 3-multi-orders. But permutation
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pattern classes correspond to 2-multi-orders, so, as noted, this case
remains open.

The joint embedding problem is also undecidable for universal Horn
sentence in binary languages (announced in Bodirsky, Rydval, and
Schrottenloher [2021]), via a connection with decision problems for
context-free languages (exploited also in Bodirsky, Knäuer, and Ry-
dval [2021] to study the amalgamation property).

If A is a hereditary class of finite relational structures, the usual
model theoretic approach is to consider existentially complete models
of the corresponding universal theory. In the case of amalgamation
classes, we arrive at the Fraïssé limit in this way. In general, the
desirable case is that in which the class of existentially complete
models is axiomatizable; in that case, the corresponding theory is
called the model companion. A good setting for algorithmic model
theory is the case in which the initial class is finitely constrained,
and, in addition, the model companion exists; we then have a range of
decision problems corresponding to desirable properties of the model
companion.

In particular, completeness of the model companion corresponds to
the joint embedding property in the initial class of finite structures.

So one has, among others, the following natural decision problems,
generally with several variations possible in the nature of the con-
straint and the level of generality (graphs, tournaments, permuta-
tions, general structures, etc.).

Problem 41. Is there an algorithm which determines, for a finitely
constrained collection of finite structures with the joint embedding
property, whose theory has a model companion T , whether the fol-
lowing properties hold?

(A) T is countably categorical;
(B) T is small (the universality problem, see below);
(C) T is stable, simple, . . . ;
(D) T has elimination of imaginaries.

The universality problem we have in mind is the following: if A is a
class of finite structures (e.g., graphs) let Ā be the class of countable
structures whose finite induced substructures lie in A. The problem
is to determine whether Ā contains a universal structure Γ, that is, a
structure which contains an isomorphic copy of each such structure
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as an induced substructure. This requires that A at least have the
joint embedding property.

This problem has been studied in considerable detail in the con-
text of graphs. One imposes finitely many constraints (forbidden sub-
graphs, or possibly forbidden induced subgraphs). To ensure joint
embedding holds one may require the constraints to be connected.
For classes A determined by finitely many forbidden induced sub-
graphs the decision problem for the existence of a universal model is
undecidable (Cherlin [2011a]). But it may well be decidable in the
context of finitely many forbidden (and connected) subgraphs. There
is an extensive theory relating to this case, which is given in Cherlin,
Shelah, and Shi [1999], and has been extensively applied.

In the case of finitely many forbidden subgraphs, the associated
model companion T always exists, and the universality problem is
equivalent to the existence of a countable saturated model of the
theory T . Theories with a countable saturated model are called small.
Thus we rejoin a version of problem (C) above. The general theory is
somewhat more concerned with problem (B), which is more natural
from a model theoretic point of view.

Within the class of small theories, the ℵ0-categorical ones are a
very special subclass. But it turns out that on the one hand there
is a good characterization of ℵ0-categoricity of the theories T which
arise in this setting in terms of model theoretic algebraic closure,
and on the other hand it also appears, very fortunately, that for
the theories under consideration here the gap between smallness in
general and ℵ0-categoricity is small. To illustrate: if one looks at
classes of graphs defined by forbidding a single tree F as a subgraph,
the case in which the associated model companion T is ℵ0-categorical
is the case in which the tree in question is a path, while the case in
which the theory T is small (so a universal C-free graph exists) is
that in which the forbidden tree F can be obtained from a path by
adding at most one more leaf.

Permutation pattern classes are similar in some ways to classes
of finite graphs determined by forbidden subgraphs, and are a very
natural setting for algorithmic problems. Unlike classes of graphs,
permutation pattern classes cannot be closed under taking weak sub-
structures, and as a result in the case of permutation pattern classes
we do not have a theory at all similar to the theory for graphs with
forbidden subgraphs. In fact the problem in this setting may be
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more closely analogous to the wilder theory for forbidden induced
subgraphs, but this is not known to be the case either.

It would be very good to have a theory of permutation pattern
classes allowing countable universal (and, more particularly, ℵ0-cate-
gorical) limit models, as such classes should be very well behaved. At
present, in this direction we have, mainly, Cameron’s classification
of the homogeneous permutations in Cameron [2002/03)], which is a
natural first step in this direction.

In the literature on permutation pattern classes, one finds the very
different question as to whether the finite permutations in the class
coincide with the restrictions of one infinite permutation. This is
very far from universality: for universality, we consider all countable
permutations whose finite restrictions are in the given class, and look
for one countable permutation in which they all embed. Unlike the
purely finitistic version, this should be a powerful and restrictive
condition.

Here are two problems—or two variations on a theme—which would
arise naturally in this context.

Problem 42. If a hereditary class of finite permutations allows a
countable universal limit permutation Γ, are the two orders on Γ
dense?

Problem 43. How does one calculate the algebraic closure opera-
tion in an existentially closed A-permutation, where A is a hereditary
class of finite permutations?

I hesitate to tackle model theoretic decision problems in the con-
text of forbidden induced structures as they have a tendency to be
undecidable. But there is a lot of concrete work in that direction,
notably on the Erdős-Hajnal conjecture in graph theory (and a little
bit, by analogy, in the context of tournaments).

When problems are decidable, whether trivially or for subtle rea-
sons, complexity theoretic questions arise—such as the complexity
of the classification of 3-constrained structures, which is of concrete
concern.

23D. Old Chestnuts

The first two problems below have only loose connections with
our topic: the first via Ramsey’s theorem, the second via Hrushovski
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constructions. But they are old chestnuts on the interface between
model theory and combinatorial constructions.

23D.1. Locally finite (semifinite) generalized n-gons.

Problem 44. Is there an infinite generalized n-gon with finite lines?
In particular, can this occur for n = 4?

Theorem 23.11 (Cherlin [2005]). A generalized quadrangle with at
most 5 points per line is finite.

The proof is typically model theoretic, relying on the existence of
a model with an infinite sequence of indiscernible lines.

For the case of generalized hexagons see Bishnoi and De Bruyn
[2016]. This seems difficult, and while one might expect some sort
of analog of the model theoretic approach used for 4-gons—certainly
one can start with generation by indiscernibles and various associated
permutations—there is no obvious analog of even the first step in that
analysis.

Strictly speaking, one can separate out two questions. In the case
of 4-gons, one can define a general notion of free generation by indis-
cernibles. The bulk of the analysis in known cases shows there is no
freely generated structure with the specified parameters. Some lem-
mas show that generation by indiscernibles implies sufficient freeness
to make the argument general. So one might focus on the question
of existence of generalized quadrangles with 6 points per line freely
generated by indiscernibles, which is mainly a question about the
group Sym(6)—not an easy one, it appears, but one that can also be
approached via machine computation.

23D.2. Stable countably categorical groups.

Problem 45. Is there a stable countably categorical group which is
not abelian by finite?

Theorem 23.12 (Felgner [1978], Baur, Cherlin, and Macintyre [1979]).
Countably categorical stable groups are nilpotent by finite.

See also Baginski [2009].
23D.3. Transitivity conditions. For the large subject of ho-

mogeneity through the lens of permutation group theory we refer to
Cameron [1990] and much of Macpherson [2011]. But we take note
of two specific problems on degrees of homogeneity. Here the termi-
nology is group theoretic: t-transitivity is transitivity on ordered sets
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of distinct elements, and t-homogeneity is transitivity on unordered
sets of distinct elements.

Problem 46 (Cameron [1990, p. 64]). For k ≥ 5, is there a (k+1)-
homogeneous and (k−1)-transitive but not k-transitive permutation
group?

Theorem 23.13 (Macpherson [1986]). For k > 3, a (k+3)-homo-
geneous, not k-transitive permutation group is a subgroup of the group
D preserving a separation relation.

Problem 47 (Peter Neumann, 1995). (see Mazurov and Khukhro
[2014, 11.69]) A group G acting on a set Ω is said to be 1-{2}-
transitive if it acts transitively on the set

Ω1,{2} = {(α, {β, γ}) |α, β, γ distinct}
Thus G is 1-{2}-transitive if and only if it is transitive and a sta-
bilizer Gα is 2-homogeneous on Ω \ {α}. The problem is to classify
all (infinite) permutation groups that are 1-{2}-transitive but not
3-transitive.
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