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ABSTRACT

Volume I
Part I: A complete classification of homogeneous ordered graphs is

given: up to a change of language each is either a generically ordered
homogeneous graph or tournament, or a generic linear extension of a
homogeneous partial order.

Part II: A catalog of the currently known metrically homogeneous
graphs is given, with proofs of existence and some evidence for the
completeness of the catalog. This includes a reduction of the problem
to what may be considered the generic case, and some tools for the
analysis of the generic case.

Some related developments are discussed in an appendix.

Volume II
Here the impact of the results of Parts I and II and of related

work in Amato, Cherlin, and Macpherson [2021] on the classification
of homogeneous structures for a language with two anti-symmetric
2-types or with 3 symmetric 2-types is worked out in detail.

An appendix to Volume II discusses some further advances in re-
lated areas, and a wide variety of open problems.

An extensive bibliography of related literature and a quick survey
of that literature, organized by topic, will be made available online
(Cherlin [2021]).

The method used in Part I of Volume I is due to Alistair Lachlan.
The method used in Part II of Volume I and throughout Volume II
is a direct application of Fraïssé’s theory of amalgamation classes.

2020 Mathematics subject classifications. Primary 03C15. Sec-
ondary 03C10, 03C13, 05C12, 05C55, 05C63, 06F99, 20B27.
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PREFACE

The notion of homogeneity that concerns us here was first noticed
by Urysohn in a metric context, a few days before his tragic death
in a swimming accident in 1924. As transcribed by his companion
Alexandrov into German for the benefit of Hausdorff, and into French
for the benefit of the mathematical public (Hušek [2008], Urysohn
[1925]), Urysohn’s remark goes roughly as follows.

U is homogeneous in this sense: the finite and congruent sets
A,B (lying in U) being arbitrarily chosen, there is an isomet-
ric map of U onto itself transforming A into B.1

One can trace the notion back further, since it amounts to saying
that the Euclidean viewpoint and Felix Klein’s coincide on finite con-
figurations. Indeed, this is more or less the point of view taken by
Freudenthal in a survey of work on two-point homogeneity (Freuden-
thal [1956]), which places the issue firmly in the context of ideas of
Riemann, Helmholtz, and Lie on the foundations of geometry.

In an algebraic or combinatorial context we speak of isomorphism
rather than congruence or isometry; and to be precise, we require
that any given isomorphism extend to an automorphism.

Erdős and Rényi remarked in 1963, with what I take to be some
bemusement, that infinite structures with rich automorphism groups
appear as natural limits (in a probabilistic sense) of rigid finite struc-
tures.

1“U est homogène en ce sens que, les ensembles finis et congruents A et B
(situés dans U) étant quelconques, il existe une représentation isométrique de U
sur lui-même transformant A en B.”
“ . . . eine recht starke Homogenitätsbedingung . . . letzterer besteht darin, daß
man den ganzen Raum (isometrisch) so auf sich selbst abbilden kann, daß dabei
eine beliebige endliche Menge M in eine ebenfalls beliebige, der Menge M kon-
gruente Menge M1 übergeführt wird.”

xiii



xiv Preface

Thus there is a striking contrast between finite and infinite
graphs: while „almost all" finite graphs are asymmetric, „al-
most all" infinite graphs are symmetric. Erdős and Rényi [1963]

Fraïssé’s theory of amalgamation classes from the 1950s would sug-
gest a more extreme example of the same phenomenon: the rational
order is the Fraïssé limit of the finite orderings. Fraïssé pointed out
the role of the amalgamation property as the counterpart at the finite
level of the rich automorphism group in the infinite limit, giving one
possible answer to the question implicit in the remark of Erdős and
Rényi.

The automorphism group of a homogeneous structure carries a
natural topology, and with this topology the automorphism group
of the ordered set Q has a remarkable fixed-point property : any
continuous action on a compact set has a fixed point. Pestov pointed
out in 2002 that this property is equivalent to Ramsey’s theorem.

Meanwhile, Nešetřil had observed that under mild conditions, the
generalized Ramsey property for a class of finite structures implies
that the homogeneous Fraïssé limit exists (Nešetřil [1989], cf. Nešetřil
[2005]). And in 2005 Kechris, Pestov, and Todorcevic closed this cir-
cle of ideas by showing that for homogeneous structures, the fixed
point property for the automorphism group is equivalent to struc-
tural Ramsey theory for the finite substructures. Presumably Erdős
and Rényi would have found all this very illuminating.

Since then, things have been generally lively, and a good deal of
young talent has taken up the subject from a bewildering multiplicity
of points of view. We will revisit a little of that in the Appendices to
Volumes I and II.

In the 1970’s Henson observed that Fraïssé’s method gave more
examples than one would necessarily want to have2, notably an un-
countable family of homogeneous directed graphs. In the 1980’s Lach-
lan and Woodrow developed techniques based on Fraïssé’s theory,
sometimes using the classical Ramsey theorem as well, to classify
homogeneous structures for restricted languages, showing that all
homogeneous graphs and tournaments were known.

In the 1990’s I decided to put Henson’s examples together with
the Lachlan/Woodrow technique in a cage match, uncountably many

2“This book tells me more about penguins than I wanted to know.”



Preface xv

against classification, and the latter won:3 the homogeneous directed
graphs can be classified, and in fact most of them are the ones Hen-
son originally constructed—that is, the full list contains countably
many additional structures (Cherlin [1998]). In the appendix to that
work I took a very tentative look at the classification problem for ho-
mogenous structures in slightly more complicated languages, having
either two anti-symmetric 2-types, or three symmetric 2-types, and
later I classified the imprimitive examples of the latter kind.

Volume I

In recent years, I have taken up two more classification problems
for homogeneous structures that struck me as of particular interest,
which are the subject of the first volume of this monograph.

The first of these problems is the classification of the homogeneous
ordered graphs, which was suggested to me in 2012 by Lionel Nguyen
Van Thé as a natural problem from a Ramsey theoretic point of view,
and potentially the source of interesting new examples. The second
problem is the classification of metrically homogeneous graphs (equip-
ping a connected graph with its path metric,4 and requiring metric
homogeneity). This problem was noted in passing in Moss [1992] and
more explicitly by Cameron, in terms that I find memorable:

The theory of infinite distance-transitive graphs is open. Not
even the countable metrically homogeneous graphs have been
determined. —Cameron [1998]

The complete solution to our first problem, the classification of the
homogeneous ordered graphs, will be found in Part I.

The second problem is not yet completely solved. A catalog and
a corresponding conjecture as to the classification of the metrically
homogeneous graphs will be found in Part II, together with a reduc-
tion of the problem to what I call “generic type,” and some general
structural results which apply in the case of generic type.

3This was unexpected. Chapter IV of Cherlin [1998] provides a missing link
between the case of homogeneous graphs and the case of homogeneous digraphs
which might perhaps have altered my expectations if it had been known before-
hand. That chapter is also the main source of the strategy for Part I of this
monographs.

4Such a structure is called a distanced graph, in L.Moss’ terminology. Thus a
metrically homogeneous graph is a homogeneous distanced graph.
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In the conjectured classification, the class of 3-constrained metri-
cally homogeneous graphs plays a leading role; these are the metri-
cally homogeneous graphs whose finite induced metric substructures
can be characterized by forbidden metric triangles. I give a com-
pletely explicit classification in the 3-constrained case, and somewhat
more. The main classification conjecture amounts to a reduction of
the classification to the 3-constrained case, in a sense to be discussed
below.

Other results in Part II concern the treatment of the bipartite case
and the case of infinite diameter: if all metrically homogeneous non-
bipartite graphs of finite diameter are in our catalog, then in fact all
metrically homogeneous graphs are known.

Not given in this monograph, but very relevant to it, is the ver-
ification of the conjectured classification in the case of diameter 3,
which was carried out jointly with Amato and Macpherson in Amato,
Cherlin, and Macpherson [2021]. That work uses a certain amount
of material from the present monograph, but only for the sake of
convenience—the general theory supplies some initial reductions which
would not be difficult in diameter 3, and that theory also predicts—
and explains—the classification found.

Later we realized that one can take the diameter 3 treatment as an
indication of an inductive approach to a full proof of the classification
conjecture (and then the full content of Chapters 13, 14 of the present
work also becomes relevant, beyond the 3-constrained case). This new
approach is being actively explored and is discussed further in the
Appendix to this volume, in §18B.1.

That appendix discusses four directions in which there has been
substantial recent progress, and which are connected fairly directly
to the material of this volume. The reader interested in a broader
view of open problems in the area of homogeneity and related parts
of model theory will no doubt want to explore the appendix to Volume
II as well.

The first two topics dealt with in the appendix to Volume I concern
classification problems: namely, the classification of the homogeneous
“multi-orders,” also called finite-dimensional permutation structures,
by Braunfeld and Simon, and the ongoing classification project for
metrically homogeneous graphs and its relationship to the strategy
developed in Amato, Cherlin, and Macpherson [2021], the latter al-
ready mentioned.
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The other two topics discussed there involve the closer study of the
automorphism groups of metrically homogeneous graphs of generic
type. One of the goals of a classification project is to uncover inter-
esting, and possibly exotic, examples which are suitable for further
study. Certainly the known metrically homogeneous graphs of generic
type fall under that heading.

There is now a very rich general theory relating the study of the
automorphism groups of homogeneous relational structures to finite
combinatorics, following on a breakthrough in the seminal paper by
Kechris, Pestov, and Todorcevic [2005]. There is another very in-
teresting line coming from Tent and Ziegler [2013]. Typically these
theories reduce the study of automorphism groups of homogeneous
structures, viewed as abstract groups, as topological groups, or as
permutation groups, to combinatorial problem concerning the asso-
ciated classes of finite structures.

As far as the theory of automorphism groups of metrically homo-
geneous graphs is concerned, we confine ourselves in the appendix
to Volume I to the combinatorial side of the problem. That is, we
discuss the relevant combinatorial properties of finite substructures
of metrically homogeneous graphs. These properties relate to com-
pletion procedures for partial metric spaces embedding in metrically
homogeneous graphs.

The desired completion procedures lead to exotic notions of short-
est path completion in generalized metric spaces which promise to
reshape the whole theory of metrically homogeneous graphs concep-
tually. Among the sources for this material are Aranda et al. [2017],
Konečný [2019a], [2019b]; the first two articles mentioned do not use
the language of generalized metric spaces, while the third exploits
that point of view enthusiastically, but gives less detail for the case
of metrically homogeneous graphs. The published version of Aranda
et al. [2017] is Aranda et al. [2021]; this is rather compressed and
does not give the most general form of the results.

Finally, we revisit a question of Cameron and Tarzi on splitting
the group of “twisted automorphisms” over the group of ordinary
automorphisms, taking up the question in the context of metrically
homogeneous graphs. The result found in that case provides an in-
teresting, though anecdotal, counterpart to their prior results. What
form such results might take in a more general setting, and how broad
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such a setting should be, remains unclear. But this is an area which
invites further investigation.

The first two chapters of Volume I present an overview of the re-
sults obtained and the methods used in Parts I and II. That is, the
first chapter presents the results of Parts I and II in detail, and the
second chapter discusses the methods used in both parts. Thus read-
ers who have a definite interest in just one of the two topics treated
should read these two chapters selectively; depending on their needs
or interests, they may then possibly be spared reading the rest of the
monograph—but will certainly want to look at the appendix, and
very likely at the appendix to Volume II as well.

Volume II
At the end of my earlier monograph on homogeneous directed graphs
(Cherlin [1998]) the logical next phase of that project was briefly
considered: the classification project for homogenous structures in
languages with two pairs of anti-symmetric 2-types, or with three
symmetric 2-types. We will refer to structures of the first kind as
2-multi-tournaments and to structures of the second kind as 3-multi-
graphs. With a little computer assistance (specifically, a home com-
puter of 1990s vintage), the 3-constrained 2-multi-tournaments and
3-multi-graphs were found, and were listed in tabular form in Cher-
lin [1998], with some trivial cases omitted.

The work presented in Part I of the present volume falls wholly
within the first (anti-symmetric) setting, while the work in Amato,
Cherlin, and Macpherson [2021] falls wholly within the second (sym-
metric) setting. So it is natural to ask how far this work advances
us toward a solution of either of those more general classification
problems. The answer is not immediate.

In fact, this question is the subject of Volume II. To be clear, we do
not seek a solution to these classification problems in the near term,
but rather a road map and an understanding of where the current
results actually leave us with respect to the broader problems.

Our experience in Part II of this volume strengthens our sense that
the study of 3-constrained cases is an important part of the classifica-
tion process in its cataloguing phase. In a systematic approach to the
classification problem for all homogeneous structure in a fixed, small,
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binary relational language, one expects to proceed according to the
following scheme, which has some theoretical justification (mostly
conjectural).

1. Identify the 3-constrained structures.
2. Show that with few exceptions the triangle constraints in a ho-

mogeneous structure agree with those in some 3-constrained
structure.

3. Classify the homogeneous structures whose triangle constraints
do not define a free amalgamation class.

4. Classify the homogeneous structures whose triangle constraints
do define a free amalgamation class.

For the last two points, one expects to encounter Henson con-
straints (suitably understood) as well as some truly exceptional or
even sporadic cases.

See §18.B in Volume II for a fuller discussion of this.
For our purposes point (1) is part of the pre-history, and the present

volume (and related work) bears on instances of (3). It seems that
something has been skipped!

The missing point (2) turns out to be challenging. The whole of
Volume II attempts to address it. That is, we attempt to find all
patterns of forbidden triangles in homogeneous 2-multi-tournaments
or 3-multi-graphs, with the known classification in the 3-constrained
case providing the target for the analysis. At the end, certain re-
calcitrant cases remain open, which we believe can be eliminated,
ideally with some further computer assistance of a more substantial
(interactive) type.

Chapter 18 (the first chapter of Volume II) surveys the results
obtained on this problem in considerable detail. This chapter serves
as an extended introduction to the whole volume.

In chapter 19 we give a satisfactory treatment of point (2) in the
case of homogeneous 3-multi-graphs. We know the possible patterns
of triangle constraints, and we find in fact that an unknown homoge-
neous 3-multi-graph must be infinite and primitive and have triangle
constraints compatible with free amalgamation. In other words, we
arrive at the start of what should be the generic case, with all of the
obvious special cases treated. It is very convenient for our purposes
that the imprimitive case has been analyzed separately in earlier
work.
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Homogeneous 2-multi-tournaments are more recalcitrant. We do
not have a prior classification in the imprimitive case, so we next
address that point, in Chapter 20. The analysis there is similar to
what was done previously in the case of imprimitive homogeneous
digraphs.

Next we give the classification of the 3-constrained homogeneous
2-multi-tournaments in detail, without relying on computer compu-
tations. Indeed, if we wish to work out the general patterns of con-
straints on triangles which are compatible with homogeneity, then we
need to have such a treatment as a point of departure. So this is the
subject of Chapter 21.

Finally in Chapter 22 we arrive at the problem of the determina-
tion of the possible triangle constraints for homogeneous 2-multi-
tournaments. This is incompletely resolved. Four cases which do
not correspond to 3-constrained examples remain elusive. We believe
these cases can be excluded with substantial computer assistance, or
possibly by a very elaborate line of argument, which we investigated
just far enough to see that it has some promise. One would probably
do best to combine the approaches: the individual steps of such an
analysis are of a type which lends itself to proof by computer, with a
lucid proof resulting as output, via a tree search which is very tedious
by hand, and has no a priori bound on depth, though in practice the
depth seems very small, while the width is exponentially large. These
cases are eliminated in the 3-constrained case using amalgamation
diagrams of order 6 (factors of order 5). They are the only cases in
which the class defined by the constraints allows amalgamation of all
diagrams of order at most 5, but is not an amalgamation class.

The numerical point here is that 6 = 4+2 with 4 being the number
of 2-types. In the case of the known metrically homogeneous graphs
of generic type, of any diameter, amalgamation up to order 5 implies
amalgamation. But in general one expects to need amalgamation up
to order r + 2, where r is the number of 2-types.

An appendix to Volume II considers, very broadly, some open prob-
lems in the theory of homogeneous structures, with references to other
similar surveys. This may be viewed as a continuation of the appen-
dix to Volume I. This appendix began its life as a short note intended
for graduate students, but has evolved since.
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We will elaborate further on the contents of Volume II, and on
the classification of binary homogeneous structures generally, in a
separate introduction to Volume II.

Each volume has its own biliography and index (the latter with
few cross references across volumes).

General Remarks

As combinatorialists occasionally remind me, their concern is not so
much with the classification of homogeneous structures of a particular
kind, but rather with the identification of novel examples.

From that point of view, Part I is a failure (or, if one prefers,
it is only due diligence)—there is nothing new to be found in that
direction. Part II on the other hand is very successful from that point
of view. It contains a rich catalog of new examples and this catalog
has itself been studied and to a degree explained by a considerable
body of combinatorial work already alluded to.

As we observed, the main feature of this catalog—as such—is the
classification of the 3-constrained metrically homogeneous graphs of
generic type, and the associated variants with Henson constraints.
In practice the Henson variations do not much complicate matters,
and the main combinatorial issues arise already in the study of the
3-constrained structures.

Apparently the assumption of 3-constraint is not in itself useful
combinatorially, and what is useful is the reinterpretation of the
classification of the 3-constrained metrically homogeneous graphs in
terms of a theory of generalized metric spaces with values in a par-
tially ordered semigroup, as a step toward the characterization of the
partial (i.e., weak) substructures of a given 3-constrained metrically
homogeneous graph. For the moment, at least, this conceptual de-
scription still depends on an explicit classification by direct methods.

So the lesson I would take from this, currently, is that one should
focus more on understanding the 3-constrained case in general (pos-
sibly under a hypothesis of strong amalgamation and perhaps also
primitivity).

One tantalizing feature of recent developments is that the proofs of
the amalgamation property under suitable (and quite arcane) condi-
tions given in Chapter 12 have since been reinterpreted as a shortest
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path completion in a generalized metric space with values in a par-
tially ordered semigroup. We say more about this point of view in
the appendix to this volume.

With reference to the arcane numerical conditions (called “admissi-
bility”) which turn out to be equivalent to the amalgamation property
for 3-constrained classes, an ex post facto justification of a sort can be
found in Hubička, Konečný, and Nešetřil [2020a], which may provide
a useful heuristic for the classification of 3-constrained homogenous
binary structures in other contexts. (From another point of view,
these conditions are the result of applying quantifier elimination to a
formula in Presburger arithmetic; this accounts for their general form
but does not elucidate their content.) While clarifying, this interpre-
tation in terms of generalized metric spaces does not immediately
provide a precise explanation of all of the conditions found, though
many of them are required for the construction of the semigroups
Dδ

M,C described in the appendix, and all of them come in eventually
in the treatment of the completion procedure (inevitably).

My motivation for the work in Parts I and II is touched on again in
the acknowledgments below, and is expanded on in Chapter 1. While
I had not expected to return to the broader classification problems
considered in Part III after taking up these problems, it now seems
very natural to do so—-at least, now that the work in Amato, Cherlin,
and Macpherson [2021] is complete.

Fans of the Ramsey theoretic approach5 to the classification of
homogeneous structures will be pleased to see it carrying the burden
of the argument in Part I. I had thought it might come in also to the
general classification project for metrically homogeneous graphs, but
it seems not (see the appendix to this volume for current thinking on
this point).

Part II introduces a new family of metrically homogeneous graphs.
This family was described in Cherlin [2011], but not actually proved
to exist there. Here at last the existence proof is given (Chapter 12),
along with some useful general theory.

The rest of Part II makes a start on the problem of showing that the
catalog of metrically homogeneous graphs found is complete, that is,

5It deserves more fans—or practitioners; the method is very powerful. Though
it may lend itself more easily to machine-assisted work.
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that the catalog is exhaustive. We carry out reductions of the clas-
sification problem to what we call generic type, as well as to the
non-bipartite and finite diameter cases (under suitable inductive hy-
potheses). We also develop, and apply, some general methods of local
analysis, by which we mean the study of the substructures induced
on the locus of a 1-type relative to a fixed parameter (basepoint).
The immediate prospects for completion of the classification project
are discussed in the appendix.

To close, I add a few words about the development of the material
presented here.

I began working seriously on the classification of metrically ho-
mogeneous graphs in 2006, starting on the side of what I now call
exceptional local type. The classification for exceptional local type was
given in Cherlin [2011] along with the catalog for generic type, includ-
ing a statement of the classification in the 3-constrained case and a
description of the amalgamation procedure. For reasons of space (not
to mention a deadline) I did not include the proof that the amalga-
mation procedure works for the classes in question, nor that these
classes exhausted the 3-constrained ones of generic type.

The question addressed in Part I came up in Summer 2012, and
it occurred to me soon afterward that the method of Chapter IV of
Cherlin [1998] was very likely applicable. The details were worked
out in 2013.

At the time, it seemed reasonable to put these two projects together
into one monograph, with (as I thought) two Parts, a project initiated
in 2015. A third part (now a second volume) made its appearance in
2016. The monograph was submitted in 2017, but from time to time I
revisited the third part. That part became both more intelligible but
also longer as the results were completed and the proofs somewhat
expanded, partly in response to remarks by referees.

Ultimately a projected chapter on homogeneous 2-multi-tournaments
became three chapters. In parallel, the treatment of the diameter
three case of metrically homogeneous graphs jointly with Amato and
Macpherson also expanded, and then led to further developments dis-
cussed in the appendix. At present there is good reason to think that
we are on the right track for a full proof of the metrically homoge-
neous graphs, building on the methods used in diameter 3.
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The state of knowledge has shifted considerably over this period.
This is most visible in the discussion of open problems, whose per-
spective is mainly that of 2016, with modest revisions in 2020–21,
mainly with respect to our new approach to the proof of the classifi-
cation of the metrically homogeneous graphs.

The division into volumes, each with its own appendix, is a late de-
cision. There may well be some remarks in the text more reminiscent
of 2016 than of 2021, but in any case these would concern matters
that remain to be settled.

Princeton, August 2021
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CHAPTER 1

RESULTS

1A. Introduction

We deal with structures in a relational language (often, but not
always, a finite language). The problem that concerns us is the clas-
sification of the countable homogeneous structures in some natural
cases. The two cases discussed here are the following.

⋆ Countable homogeneous ordered graphs.
⋆ Countable metrically homogeneous graphs.

Everything will be countable, and it is tempting to drop out that
word throughout, but we will try to resist the impulse.

A structure in a relational language is called homogeneous (or ultra-
homogeneous, for emphasis) if every isomorphism between finite sub-
structures is induced by an automorphism. An ordered graph is a
graph with a linear ordering; there are no additional constraints.

A metrically homogeneous graph is a connected graph with the
property that the associated metric space is a homogeneous metric
space. The associated metric space has the vertices as points, with
distance the minimal path length connecting two vertices.

Metrically homogeneous graphs of diameter 2 are just connected
homogeneous graphs. The main examples were given in Henson [1971]
using Fraïssé’s method, and Lachlan and Woodrow showed that they
were indeed the main examples (Lachlan and Woodrow [1980]), by
completing the classification of the countable homogeneous graphs,
building on a prior classification of the finite ones by Sheehan and
Gardiner (Sheehan [1974], Gardiner [1976]). The Lachlan/Woodrow
classification plays a fundamental role in our analysis (see §1D).

In Part I we will give an explicit, and surprisingly simple, clas-
sification of the countable homogeneous ordered graphs. The main

1
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ingredient of the proof was found (hidden) in Cherlin [1998, Chap-
ter IV]. In addition, one of the three cases that must be treated was
covered in its entirety by Dolinka and Mašulović [2012].

In Part II we will give an explicit, and not particularly simple (but
still simple enough), conjecture concerning the classification of the
countable metrically homogeneous graphs. This conjecture has al-
ready been discussed in Cherlin [2011], but we got ahead of ourselves
there, stating a good deal more than we proved, for reasons of space
and balance—our earlier discussion was intended to be a broad one,
though it evolved in a more technical direction. Here we give a full
account of the conjecture, which to begin with requires that we prove
that the family of new examples described in Cherlin [2011] actually
exists, after which we present a number of results which provide some
support for the conjecture that our explicitly given list of examples
is complete, or very nearly so.

In this introductory chapter we will state our main results on both
of these classification problems in detail, and in the next chapter
we will indicate the main lines of argument used. Much of the work
involved in problems of this kind lies in finding a suitable inductive
framework for the proof, and then working out the scaffolding of
supporting lemmas on which the argument ultimately depends. This
definitely requires a top-down approach, so in the next chapter we
will begin at the top.

Before describing the results to be obtained, we review the Fraïssé
theory, on which everything done here depends—both the existence
of many of the structures in question, as well as their classification.

1B. Fraïssé limits and amalgamation classes

Fraïssé theory plays a fundamental role in classifications of homo-
geneous structures. We recommend Macpherson [2011] for a survey
in the modern spirit. We now give a synopsis of that theory.

Fraïssé observed that a countable homogeneous structure is uniquely
determined by the isomorphism types of its finite substructures, and
gave an explicit recipe for deriving the structure as a kind of limit of
its finite substructures, now called the Fraïssé limit. This limit struc-
ture occasionally has a probabilistic interpretation (or more than
occasionally, if one forces matters as in Petrov and Vershik [2010],
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Ackerman, Freer, and Patel [2016], Ackerman, Freer, Nešetřil, and
Patel [2016]).

The main property required for the construction is the amalga-
mation property: there must be an amalgamation procedure which
extends any diagram

f1, f2 : A0 ↪→ A1, A2

involving embeddings of structures in the given class to an amalgam
Â, also in the given class, and embeddings g1, g2 : A1, A2 ↪→ Â,
making a commutative diagram.

A0

A1

A2

A

The fact that the amalgamation property holds for the class of
finite structures embedding into a given homogeneous structure is an
elementary but useful fact. In both Parts we will use many explicit
amalgamation arguments.

In the context of structures of combinatorial type (e.g., purely re-
lational structures), Fraïssé correlates countable homogeneous struc-
tures with amalgamation classes of finite structures. These classes
are characterized by the following properties.

• Closure under isomorphism and substructure;
• Joint embedding: any two embed in a third;
• Amalgamation over an arbitrary base;
• Only countably many isomorphism types are represented.

The last condition is superfluous when the relational language is
finite.

The structure associated by Fraïssé’s construction to an amalgama-
tion class is called its Fraïssé limit. We note some examples of Fraïssé
limits, some of which have natural probabilistic constructions.

— Finite linear orders: limit, the rational order;
— Finite graphs or tournaments: limit, the random graph (also

called the Rado graph) or tournament;
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— Finite ordered graphs or ordered tournaments: limit, the ran-
domly ordered random graph or tournament.

— Finite graphs with no n-clique: limit, the generic Kn-free graph
(the Henson graph Hn);

— Finite ordered graphs with no ordered n-clique: limit, the generic
K⃗n-free graph.

— Pairs of linear orders on a single finite set: limit, the generic
permutation;

— All partial orders: limit, the generic partial order;
— All finite structures consisting of a partial order and a linear

extension of it: limit, the generic linear extension of a generic
partial order;

— All integer valued finite metric spaces: limit, the homogeneous
universal connected graph with respect to embeddings preserv-
ing the path metric (Urysohn graph)

— All integer valued finite metric spaces containing no triangles
of odd perimeter: limit, the homogeneous universal connected
bipartite graph with respect to embeddings preserving the path
metric.

A technique introduced by Lachlan and Woodrow makes use of a
special kind of induction over amalgamation classes to prove classifi-
cation theorems. This technique was subsequently modified by Lach-
lan in a way that brings the Ramsey theorem to bear. This method
builds on the Fraïssé theory, and provides a systematic approach to
the proof of classification theorems for homogeneous structures, no-
tably those whose associated amalgamation class has some form of
free amalgamation. Lachlan’s version of this method plays an essen-
tial role in Part I.

In Cherlin [1988] we gave a streamlined account of Lachlan’s orig-
inal application of his method to the classification of homogeneous
tournaments. This provides a detailed introduction to the method in
a context less encumbered by exceptional cases.

For the construction of homogeneous ordered structures, the notion
of strong amalgamation is useful. Strong amalgamation is a sharper
version of the amalgamation property, in which we require that ev-
ery amalgamation problem A→ A1, A2 have a completion (or “amal-
gam”) in which the images of A1 and A2 are disjoint modulo the base.
In other words, at the level of the underlying sets, the amalgamation
process should be free amalgamation.
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Since the amalgamation procedure at the level of the underlying
sets is canonical, this condition allows a number of strong amalga-
mation classes to be combined into one. In particular, the class of
finite linear orders is a strong amalgamation class, and hence any
other countable homogeneous structure whose associated amalgama-
tion class has strong amalgamation can be equipped with a generic
linear order, with the result being unique up to isomorphism.

For similar reasons, any countable homogeneous graph whose amal-
gamation class has strong amalgamation can be generically oriented
to give a canonical homogeneous directed graph which when sym-
metrized gives back the original graph.

Strong amalgamation for an amalgamation class is equivalent to a
condition on the Fraïssé limit known as triviality of algebraic closure.
We will not elaborate here; see Cameron [1990, (2.15), p. 37]. In fact,
we will avoid this terminology, and say in this case that the structure
has strong amalgamation—an abuse of language, and a confusion of
categories.

In another direction, strong amalgamation also permits the proba-
bilistic representations mentioned above (Petrov and Vershik [2010],
Ackerman, Freer, and Patel [2016], Ackerman, Freer, Nešetřil, and
Patel [2016]).

Finite homogeneous structures with more than one element cannot
have strong amalgamation; and since a finite linear order is rigid, a
finite homogeneous structure cannot be expanded to a homogeneous
structure in the language with an additional linear order unless it
was rigid to begin with.

Being homogeneous, infinite Fraïssé limits of finite structures of
combinatorial type tend to have very rich automorphism groups (with
some exceptions when the language is infinite). We have noted the
example (Q, <), the Fraïssé limit of finite linear orders, a limit of rigid
structures with a rich automorphism group, as well as the example of
the random graph, remarked on by Erdős and Rényi (see the Preface).

Some of the graphs we consider in Part II have infinite diameter,
and are considered as metric spaces in the path metric. This takes
us out of the comfortable setting of finite relational languages, ℵ0-
categorical structures, and oligomorphic permutation groups.

Combinatorially, a metric space is an edge labeled complete graph
with some constraints. Model theoretically, a metric space is a re-
lational structure with one relation for each possible distance—and
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with every pair carrying a unique label. As we do not allow unlabeled
edges, this class of structures is not axiomatizable.

Fortunately, the Fraïssé theory does not rely on axiomatizability;
but one must pay attention to the requirement that there are only
countably many finite structures. In the context of metric spaces, it
suffices to restrict the values of the metric to a countable set— this
is why Urysohn built his universal complete separable metric space
as the completion of a rationally valued metric space. As the metric
spaces considered here are integer valued, no difficulties arise from
this quarter.

1C. The classification of countable homogeneous ordered
graphs
Homogeneous ordered graphs are homogeneous ordered tournaments,
but ordered homogeneous graphs are not ordered homogeneous tour-
naments.

One of the motivations for studying homogeneous structures of
combinatorial type is that they tend to be associated with classes
for which a structural Ramsey theorem holds, or in dynamical terms,
structures whose automorphism groups are extremely amenable.

More precisely, these structures tend to have metrizable universal
minimal flows, which can typically be realized as the space of ex-
pansions of the structure by predicates required for the structural
Ramsey theorem to hold. Thus the universal minimal flow for the
random graph is the space of its linear orders, and the class of finite
ordered graphs has the Ramsey property. The existence of a defin-
able order is necessary for the Ramsey property, and frequently a
Ramsey theorem is obtained by adjoining a suitable ordering—but
not always, and it is unclear what one can say in general about the
required expansion.

In the case of homogeneous graphs or homogeneous directed graphs,
the natural expansions to Ramsey classes have been found by a sys-
tematic study of all cases. The question naturally arises, and was put
by Nguyen Van Thé in conversation in the summer of 2012, whether
a systematic classification of homogeneous ordered graphs would un-
cover any “sporadic” cases not familiar to Ramsey theorists. As it
turns out—perhaps surprisingly, given past experience—all homoge-
neous ordered graphs have been noticed already (though not always
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explicitly given as ordered graphs). The task of Part I is to prove
this.

Our present task is merely to state the result to be proved, in a
form that suggests the general structure of the proof.

For our purposes, the categories of ordered graphs and ordered
tournaments are interchangeable, as we will now explain.

If a structure Γ carries two binary relations R1 and R2, then the
structure (Γ, R1, R2) is equivalent to the structure (Γ, R′1, R2) where
R′1 is the symmetric differenceR1∆R2. If the second relation R2 gives
Γ the structure of a tournament, then (Γ, R′1) will be a graph if
and only if (Γ, R1) is a tournament. This trivial change of language
preserves the automorphism group and takes homogeneous structures
to homogeneous structures.

In particular, a linear order on Γ defines a tournament, so with
R2 given by <, this transformation gives an equivalence between the
classification of homogeneous ordered graphs and the classification of
homogeneous ordered tournaments.

Similarly, the replacement of a tournament by its reversal, or a
graph by its complement, preserves homogeneity. In translating be-
tween ordered tournaments and ordered graphs we will actually com-
bine these two transformations, taking a tournament to the graph
complement of the symmetric difference with the order (or, in the
other direction, reversing the tournament relation obtained). In more
explicit terms, this means that the translation between ordered graphs
and tournaments used here is the following.

Definition 1.1.
(a) If (Γ,→, <) is an ordered tournament, then the associated or-

dered graph (Γ, , <) has edge relation defined by

x y ⇐⇒ → and < agree on x, y

(b) If (Γ, , <) is an ordered graph, then the associated ordered
tournament (Γ,→, <) has arc relation defined by

x→ y ⇐⇒ x y and x < y, or x > y and x ̸ y

.
For example, the cyclic tournament C3 of order 3 has two ordered

forms, C⃗
+

3 and C⃗
−
3 , while as ordered graphs, these are a path and its

complement. Compare Figure 1 below, which shows the translation
between a pair of ordered oriented cycles, and the corresponding pair
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consisting of an ordered path on three vertices and its graph com-
plement. When taken as constraints (forbidden structures), either as
ordered graphs or as ordered tournaments, they will play an impor-
tant role in the case division to be presented below. At early stages
of the analysis it will be useful to view them as ordered tournaments,
and later it will be more convenient to view them as ordered graphs.

C⃗
+

3 C⃗
−
3

P⃗3 P⃗ c
3

Figure 1. Ordered Tournaments and
Ordered Graphs

So for our purposes, homogeneous ordered tournaments may be
viewed as homogeneous ordered graphs, and conversely. But in gen-
eral, ordered homogeneous tournaments are not ordered homoge-
neous graphs! We next address this point.

A natural way to produce examples of homogeneous ordered graphs
is to begin with a homogeneous graph or a homogeneous tournament
with strong amalgamation, and then generically add a linear ordering;
in terms of Fraïssé theory, we replace a given strong amalgamation
class A by all ordered forms of the structures in A.

The homogeneous ordered graphs arising from homogeneous graphs
or homogeneous tournaments in this way are not the same, though
there is a little overlap: generically ordering a random tournament or
a random graph gives the same structure, up to a change of language.

In addition to these two sources of examples, there is a third and
less obvious source of homogeneous ordered graphs. If Γ is a homoge-
neous partial order, then we may take a generic linear extension of the
partial order—again, under the hypothesis that the corresponding
amalgamation class has strong amalgamation. The resulting struc-
ture will be homogeneous, and may be viewed as an ordered graph.
The graph structure is obtained by symmetrizing the partial order,
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in other words the edge relation is comparability in the ordering; con-
versely, the partial order is the intersection of the linear order with
this edge relation.

We may also pass to the complementary graph. For examples of
the first two kinds, this corresponds to taking the complement of
the original graph, or the reversal of the original tournament; so this
gives nothing new. But if we take complements of examples of the
third kind, we get a fourth kind.

The classification theorem states that we have now described all
homogeneous ordered graphs.

Theorem 1.2 (Classification of Homogeneous Ordered Graphs).
The countable homogeneous ordered graphs are the following, up to a
change of language.

(a) (Γ,≺, <) with (Γ,≺) a countable homogeneous partial order with
strong amalgamation and < a generic linear extension of ≺;

(b) (Γ,→, <) with (Γ,→) a countable homogeneous tournament with
strong amalgamation and < a generic linear ordering of it;

(c) (Γ, , <) with (Γ, ) a countable homogeneous graph with strong
amalgamation and < a generic linear ordering of it.

We can easily make this statement more explicit, since there are
known classification results for countable homogeneous partial orders,
graphs, and tournaments. Indeed, we must make the statement more
explicit in order to prove it, since our method of proof involves an
exhaustive treatment of all possibilities.

We then arrive at the catalog shown below as Table 1.1, which is
organized according to the natural order of proof, in terms of the
complexity of the minimal forbidden structures for the structure.

The Type label refers to the four types of structures involved: EPO
and EPOc stand for linear extensions of homogeneous partial orders,
and their complementary graphs (once these structures are coded as
graphs); LT and LG stand for generic linear extensions of homoge-
neous tournaments or graphs, with the ambiguous case noted. Sub-
scripts on EPO refer to the particular partial order involved—details
are given in the text, in §3B. The notations for the minimal con-
straints in the Forbidden column are also described in that section.
From the ordered graph theoretic point of view, the symbol A ⊥ B
represents a disjoint sum, with A preceding B.
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I Graphs Omitting I⃗2 or K⃗2

Label Structure Forbidden Type
I.1 |Γ| = 1 K⃗2, I⃗2 Triv
I.2 (Q, <) = K⃗∞ I⃗2 EPO0, LT, LG

I.2c (Q, >) = I⃗∞ K⃗2 EPO0, LT, LG
II Graphs containing I⃗2 and K⃗2, but not both C⃗

+

3 and C⃗
−
3

Label Structure Forbidden Type
II.1 Q[Qop] = K⃗∞[I⃗∞] C⃗

+

3 ,I⃗1 ⊥ K⃗2, and EPO⊥
K⃗2 ⊥ I⃗1, C⃗

−
3

II.2 Generic permutation C⃗
+

3 , C⃗
−
3 LT

II.3n I⃗n ∗ K⃗∞ dense, with each class C⃗
+

3 , [I⃗1, I⃗2], [I⃗2, I⃗1] EPO→
dense (n ·Q, shuffled); n ≥ 2 and I⃗n+1 (if n <∞)

and K⃗n+1 (if n <∞)
II.4 P⃗=Generic linear extension C⃗

+

3 EPOg

of generic p.o.

II.1c Qop[Q] = I⃗∞[K⃗∞] C⃗
+

3 ,[I⃗1, I⃗2], [I⃗2, I⃗1], C⃗
−
3 EPOc

⊥
II.3cn K⃗n ∗ I⃗∞ dense, with each class C⃗

−
3 , I⃗1 ⊥ K⃗2, K⃗2 ⊥ I⃗1 EPOc

→
dense

II.4c Reversal (complement) of II.4 C⃗
−
3 EPOc

g

III Graphs containing both C⃗
+

3 and C⃗
−
3

Label Structure Forbidden Type
IIIA S⃗(2) = Generically [I1, C3] and [C3, I1] LT

ordered S(2) (all ordered forms)
IIIBn H⃗n = Generically ordered K⃗n+1 LG

Henson graph (n <∞)
IIIBc

n H⃗c
n I⃗n+1 LG

IIIC Γ⃗∞ = Generically ordered none LT, LG
random graph

Table 1.1. Homogeneous Ordered Graphs
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We remark that our notational conventions thoroughly mix nota-
tions for ordered tournaments (C⃗

±
3 ) with notation for ordered graphs

(I⃗1 ⊥ K⃗2, [I⃗1, I⃗2], etc.), In particular, even when we adopt the point
of view of ordered tournaments, the illustrations are more legible
when presented as ordered graphs, because fewer edges are required
(the order, left-to-right, is implicit).

One remarkable byproduct of our analysis is that the classification
of countable homogeneous tournaments is closely related to the classi-
fication of countable homogeneous graphs. The main point in the clas-
sification of homogeneous tournaments is the fact that a countable
homogeneous tournament which is not a local order is the random
tournament. If we restrict our attention to homogeneous structures
corresponding to strong amalgamation classes, this may be proved
as follows: add a linear order generically and then see that we fall
under one of the cases (IIIB,C) in Group (III). By inspection, one
may show that the only one of these with a homogeneous tournament
underlying it is the generically ordered random graph, and that the
relevant tournament is the random tournament.

We will describe the proof of this classification theorem in more
detail in §2A. But everything in groups (I, II) is either covered by
Dolinka and Mašulović [2012], or is reducible to it by passing to the
complement. The odd-looking entry at (II.2), the generic permuta-
tion, is most naturally thought of as the generic linear extension of
the tournament (Q, <), and is classified as type LT. But it happens
to be a linear extension of a non-homogeneous partial order (namely,
the intersection of the two orders) and as such is picked up by Dolinka
and Mašulović [2012].

So the main points are how to organize matters so as to take ad-
vantage of the case covered by Dolinka and Mašulović [2012]—via
complementation this gives two cases—and how to deal with and to
distinguish the two kinds of examples that both fall under Group
(III). Indeed, the four cases in the catalog correspond to distinct
portions of the analysis, with no overlap between them.

We will return to the discussion of the methods used to classify
the homogeneous ordered graphs in §2A. In the remainder of this
chapter we will describe the results to be obtained in Part II on
the classification of countable metrically homogeneous graphs. This
requires a lengthier presentation, spanning four sections.
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1D. Countable metrically homogeneous graphs
of known type: a catalog and a conjecture

The main goals of Part II are to present a conjecture on the clas-
sification of the countable metrically homogeneous graphs and some
supporting evidence. In this section we discuss the conjecture, and
in the following sections, the supporting evidence. Then in the final
section of this chapter we will describe a body of results of a more
general character on which our more concrete results depend, which
fall under the heading of local analysis.

The main conjecture may be stated as follows, using some notation
which requires elucidation.

Conjecture 1 (Metric Homogeneity Classification Conjecture). The
countable metrically homogeneous graphs are the following.

1. In diameter δ ≤ 2: the connected homogeneous graphs, classified
by Lachlan and Woodrow Lachlan and Woodrow [1980]; Fact
1.4.

2. In diameter δ ≥ 3:
(a) The finite ones, classified by Cameron Cameron [1980]; Fact

1.7.
(b) Macpherson’s regular tree-like graphs Tm,n with m,n ≤ ∞,

m,n ≥ 2; §1D.3.
(c) The Fraïssé limits of amalgamation classes of the form

A3 ∩ AH

with A3 3-constrained and AH of Henson type or antipodal
Henson type; §§2B, 1D.5.

This formulation is compact, but also unintelligible without further
explanation. We will make the conjecture completely explicit on a
line-by-line basis. It will turn out that the meaning of clauses (1)
and (2c) is essential throughout Part II, while the meaning of clauses
(2a, b) is entirely irrelevant.

The Lachlan/Woodrow classification remains important through-
out, because we can use it to formulate a simple notion of metrically
homogeneous graph of generic type (Definition 1.17), and then prove
a classification theorem for all metrically homogeneous graphs which
are not of generic type—these are the graphs of types (2a, b) and
some of the graphs of type (1). The non-generic classification was
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completed in Cherlin [2011], and the upshot is that our classification
conjecture becomes the following (as we will explain in more detail
below).

Conjecture 2. (Metric Homogeneity Classification Conjecture for
Generic Type). The countable metrically homogeneous graphs of gen-
eric type are the Fraïssé limits of amalgamation classes of the form

A3 ∩ AH

with A3 3-constrained, and with AH of Henson type or antipodal
Henson type.

So once we state precisely what we mean by the terms generic type
and 3-constrained (Definition 1.10), and the two forms of Henson
type, (given by Henson constraints in the sense of Definition 1.14) we
will know precisely what the subject matter of Part II is.

The rest of the present section is devoted to elucidation of the
following points.

— The classification of homogeneous graphs.
— The classification of finite metrically homogeneous graphs.
— Macpherson’s regular tree-like graphs.
— 3-constrained amalgamation classes.
— Henson constraints and antipodal Henson constraints.
— The notion of generic type.
Once these points are dealt with, we will clarify how, exactly, Con-

jecture 1 reduces to Conjecture 2.
But before going into this, we should clarify one further point of

language. A metrically homogeneous graph can be viewed either as
a graph or as a metric space. On a technical level we usually need to
view these structures as metric spaces (since that is what is required
to formulate and to apply the homogeneity condition). But since
these structures can also be viewed as graphs, we use graph theoretic
terminology freely as well, with an eye out for the occasional conflicts
of language that might result.

In particular, given a metrically homogeneous graph—as a graph—
we immediately view it as a metric space in the path metric. The con-
verse direction is also important: the edges of the graph are defined
metrically by the condition

d(x, y) = 1.
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In particular, in the construction of metrically homogeneous graphs
alluded to above, the Fraïssé theory is applied to classes of finite
metric spaces and yields a homogeneous integer valued metric space.
But we are of course claiming more: namely, that the underlying
graph with edge relation “d(x, y) = 1” has the given metric as its
path metric, and is therefore a metrically homogeneous graph. For
this, the following is critical, but elementary. It is given in greater
generality, in a form applying to connected distance transitive graphs,
in Cameron [1998, Prop. 5.1].

Fact 1.3. Let Γ be a homogeneous integer valued metric space of
diameter δ (possibly infinite), and let Γg be the graph on the points of
Γ with edges given by the relation “d(x, y) = 1.” Then the following
are equivalent.

1. The graph Γg is metrically homogeneous.
2. For any finite d ≤ δ there is a geodesic path (a0, . . . , ad) of

length d (i.e., a path in Γg with d(a0, ad) = d in Γ).
3. The metric on Γ is the path metric associated to the graph Γg.

What matters for us here is the equivalence of the first two points;
for us, the third point is more properly part of the proof.

1D.1. Homogeneous graphs and the graph Γ1. The finite ho-
mogeneous graphs were classified in Sheehan [1974], Gardiner [1976],
and the infinite ones in Lachlan and Woodrow [1980]. We refer to the
full classification as the Lachlan/Woodrow classification.

Fact 1.4. A countable homogeneous graph falls into one of the fol-
lowing categories.
(a) Degenerate: complete or edgeless.
(b) Imprimitive: a disjoint union of at least two complete graphs of

fixed size, or the complement of such a graph, which is complete
multipartite.

(c) Finite, primitive, and nondegenerate: a pentagon or a certain
self-complementary graph K3□K3 of order 9 (called the carte-
sian product in graph theoretic terminology), the latter repre-
sentable also as the 2-dimensional vector space F2

3 equipped with
an anisotropic quadratic form Q and edge relation Q(x−y) = 1.6
Another description (in graph theoretic terminology) of K3□K3

6If F3 is replaced by any finite field, this remains homogeneous for a finite
binary relational language—but not in the language of graphs
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which is of some interest is as the line graph of the complete bi-
partite graph K3,3; here it is interesting that the line graph of
Kn,n is not homogeneous in any binary relational language for
n > 3.

(d) Infinite, primitive, and nondegenerate: a Henson graph Hn (the
generic graph omitting an n-clique) with n ≥ 3, or its comple-
ment; or the random graph, which is self-complementary.

A metrically homogeneous graph of diameter at most 2 is a ho-
mogeneous graph (and the converse holds for connected graphs); so
the problem remains of classifying the countable metrically homo-
geneous graphs of diameter δ ≥ 3. The Lachlan/Woodrow result
remains highly relevant also in this case, because of the following.

Definition 1.5. Let Γ be a countable metrically homogeneous
graph, v∗ a basepoint, and let Γ1 = Γ1(v∗) be the metric space in-
duced on the set of neighbors of v∗ in Γ.

This is well-defined, up to isomorphism, independent of the base-
point.

If Γ is a countable metrically homogeneous graph, then Γ1 is a ho-
mogeneous metric space with distances 1, 2, and may also be viewed
as a homogeneous graph with edges given by d(x, y) = 1. This is
worth recording in the following form.

Lemma 1.6. If Γ is a countable metrically homogeneous graph,
then Γ1 has of one of the following forms.
(a) Finite or imprimitive;
(b) Infinite, complete or edgeless;
(c) A Henson graph Hn or its complement Hc

n, with 3 ≤ n <∞
(d) The random graph G∞.

This gives us an important invariant to consider as a point of de-
parture for any analysis, namely, the isomorphism type of Γ1, and as
we go through the list of metrically homogeneous graphs of known
type, we should consider what values this invariant takes on.

1D.2. Finite metrically homogeneous graphs. The finite met-
rically homogeneous graphs were classified in Cameron [1980].

Fact 1.7. The finite metrically homogeneous graphs of diameter at
least 3 are of the following two forms.

1. An n-cycle with n ≥ 6 (δ = ⌊n⌋).
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2. Diameter 3: An antipodal double cover of one of the graphs
(a) C5,
(b) K3□K3, or
(c) In (an independent set of order n ≥ 2).

The antipodal double cover of a graph G is defined as follows.
Take two copies of G, say G and G′, and for v ∈ G let v′ denote the
corresponding element of G′. Add two vertices ∗, ∗′ and form a graph
Γ(G) on the vertex set

G ∪G′ ∪ {∗, ∗′}

with the following edge relation.
— The induced graphs on G and G′ are the given copies of G.
— The neighbors of ∗ are the vertices of G; for ∗′, the neighbors

are the vertices of G′.
— For g ∈ G, h′ ∈ G′, we have g adjacent to h′ iff (g, h) is a

non-edge with g ̸= h.
These graphs are called antipodal because each vertex v is paired

with a unique vertex v′ at distance 3. In addition, they satisfy the
following “distance-reversing” condition.

d(u, v′) = 3− d(u, v)

Notice that the antipodal double cover of In is the bipartite com-
plement of a perfect matching between two sets of order n+ 1.

For our purposes, antipodality is defined in general as follows.

Definition 1.8. A graph Γ of finite diameter δ ≥ 3 will be called
antipodal if for each vertex v there is a unique vertex v′ satisfying

d(v, v′) = δ

This definition would also be meaningful in diameter 2 but not very
helpful there. The related notion of antipodality which is adopted in
the theory of finite distance transitive graphs is broader than the one
we use here.

As we have mentioned, we will be paying attention to the structure
of Γ1 as we proceed. In the present case this reads as follows.

Structure of Γ1: finite, and in case (2), isomorphic to G.
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1D.3. Tree-like graphs Tm,n.

Definition 1.9. For 2 ≤ m,n ≤ ∞, the graph Tm,n is a regular
tree-like graph in which the blocks are cliques of order n and every
vertex is a cut vertex, lying in precisely m blocks.

Alternatively, consider the bi-regular tree T (m,n) in which vertices
have degree m or n, alternately, and consider the vertices of degree
m7 with edge relation

d(x, y) = 2

This is a concrete realization of Tm,n. The vertices of degree n then
represent the blocks.

Using the fact that the tree T (m,n) is homogeneous when equipped
with a labeled partition (A,B) into vertices of degree m and n respec-
tively, one can show that A is homogeneous in the induced metric,
and after rescaling by a factor of 1/2, A becomes Tm,n in the path
metric. Thus Tm,n is metrically homogeneous.

These graphs have infinite diameter. We will argue later that our
classification conjecture can be reduced to the case of finite diameter.

With Γ = Tm,n, we find that Γ1 = m ·Kn−1, where ∞− 1 = ∞.
Thus Γ1 tends to be imprimitive, except when n = 2 and Tm,n is a
regular tree, in which case Γ1 is an independent set of order m.

If Γ1 is an infinite independent set, then it provides an excessively
weak invariant, as it does not distinguish the tree T∞,2 from more
typical metrically homogeneous graphs encountered as Fraïssé limits
elsewhere in the catalog. Thus in the definition of generic type below
(Definition 1.17), we will need to look beyond the structure of Γ1.

1D.4. 3-constrained amalgamation classes. A constraint (or
forbidden subspace) for a metric space Γ is a finite metric space A
which does not embed isometrically into Γ. In particular, a minimal
constraint is a constraint A for which every proper subspace of A
does embed into Γ.

According to the Fraïssé theory, a countable homogeneous metric
space is determined up to isomorphism by the isomorphism types
of its minimal constraints; and in practice, this is a useful way to
describe such spaces.

7If m = n, one should say more properly, of the first kind.
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At the level of amalgamation classes A, the conditions are that
A /∈ A, and B ∈ A for B any proper induced subspace of A.

Definition 1.10. A metrically homogeneous graph is k-constrained
if all of its minimal constraints have order at most k; similarly for
amalgamation classes.

The 3-constrained amalgamation classes play a major role in the
classification conjecture. We say that they are determined by forbid-
den triangles. This terminology neglects the point that a bound on
the diameter involves constraints of order 2. But we generally treat
the diameter as fixed in advance.

Every triple of points in a metrically homogeneous graph is a tri-
angle in the metric sense. The type of a triangle (a, b, c) is the triple
of distances (i, j, k) occurring between its vertices (taken in any or-
der). A triangle in the graph theoretic sense is a metric triangle of
type (1, 1, 1). The term “triangle” will customarily refer to metric
triangles here.

As a metrically homogeneous graph Γ is connected, it follows that
every geodesic triangle (i.e., metric triangle with the longest edge
length the sum of the other edge lengths) whose diameter is at most
the diameter δ of Γ embeds into Γ. Therefore the only triangle con-
straint relevant to the structure of Γ1 is the triangle of type (1, 1, 1).
In particular, for a 3-constrained metrically homogeneous graph, ei-
ther Γ1 is the random graph, or it is an independent set.

While our formulation of the classification conjecture in terms of
the notion of 3-constraint is efficient, it leaves aside the question as
to what metrically homogeneous 3-constrained graphs actually exist.
We will settle this point. This allows us to present a completely ex-
plicit version of the classification conjecture, which however requires
considerably more space to lay out.

We will have a good deal more to say about this in the present
chapter, and throughout much of Part II.

1D.5. Henson constraints and antipodal variants. The Hen-
son graphs Hn are the generic Kn-free graphs; and their complements
are the generic In-free graphs, with In an independent set.

We will generalize this concept and arrive at a notion of Henson
metrically homogeneous graph. We discuss the motivation first.

The Henson graphs are associated with notions of free amalgama-
tion. Free amalgamation of graphs is usually taken to mean free join
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with no added edges. In metric terms this means that pairs of points
not in one of the two factors of the amalgamation are given distance
2. As the numbers 1,2 play no distinguished role here, one can equally
well consider the complementary notion of free amalgamation, where
such pairs are given distance 1.

In the first case, if we forbid an n-clique in the factors, it will
not appear in the free amalgam. In the second case, if we forbid an
independent set of size n in the factors, it will not appear in the free
(or “anti-free”) amalgam.

Accordingly we will call an n-clique, or an independent set of size
n, a Henson constraint (relative to one or the other notion of free
amalgamation of graphs); and a Henson graph is the generic graph
associated with a free amalgamation class and an associated Henson
constraint.

Here we work with metric variants of these graph theoretic notions.
A metric clique Kn is a set of points with mutual distance 1, while
a metric independent set In is a set of points at mutual distance
2. But when we pass to diameter δ ≥ 3, we replace the notion of
independent set by the notion of anticlique or δ-clique, namely a set
of points mutually at distance δ.

More generally, when we have δ ≥ 3, the situation becomes more
symmetrical and we will also consider finite metric spaces in which
both distances 1 and δ may occur, but no others, as Henson con-
straints. Namely, once we take δ ≥ 3, most 3-constrained amalgama-
tion classes have an amalgamation procedure which avoids creating
new pairs at either of the extreme distances 1 or δ, and so in such
case we may forbid an arbitrary set of finite (1, δ)-spaces. In the sim-
plest case, for δ = 3, we may amalgamate by giving all pairs not
lying in one of the factors the distance 2, and we again have a notion
of free amalgamation. On the other hand, if δ ≥ 4, then the trian-
gle inequality forces more care to be taken, but one may still avoid
the extreme values of the metric. Further variations on the notion
of Henson constraint occur in the antipodal case, of a slightly more
technical nature, but a very similar character.

Now we give the precise definitions.

Definition 1.11. Suppose δ ≥ 3.
A (1, δ)-space is a metric space in which all distances are 1 or δ;

thus the relation d(x, y) ≤ 1 is an equivalence relation, and the classes
lie at mutual distance δ.



20 1. Results

A (1, δ)-space will also be called a Henson constraint (or more
precisely, an ordinary Henson constraint).

Fact 1.12. For any δ ≥ 3 and any set S of (1, δ)-spaces, the col-
lection AS of finite S-free metric spaces of diameter at most δ is an
amalgamation class.

It is enough to check that any amalgamation problem in the cat-
egory of finite metric spaces of diameter δ has a solution in which
no additional points are given distance 1 or δ. This is easily checked,
and is discussed in more detail in Cherlin [2011].

Thus, we do not encounter any difficulties in understanding the
range of possibilities afforded by the use of Henson constraints. When
we combine this construction with a set of triangle constraints, the
issue must be reexamined, but again it turns out to be straightfor-
ward.

There is another way to impose Henson constraints which applies
only when the graph in question is antipodal.

Definition 1.13. Let δ ≥ 4.
1. For A a finite metric space of diameter at most δ, an antipodal

companion of A is a metric space A∗ obtained by replacing a subset
B of A by the set B′ = {b′ | b ∈ B} in the following way:

— A∗ = (A \B) ∪B′

— The metric on A \B is the metric in A.
— B′ is isometric with B under b′ 7→ b.
— d(a, b′) = δ − d(a, b) for a ∈ A \B and b ∈ B.
2. The class

Aδ
a,n

is defined as the set of finite metric spaces A of diameter δ which
satisfy the antipodal law

d(a, b) = δ=⇒ d(b, x) = δ − d(a, x) for all x

and the following antipodal Henson constraint of order n:

A contains no copy of an antipodal companion of Kn.

This constraint forbids certain (1, δ − 1)-spaces.

Here the subscript a stands for the antipodal law. In terms of nu-
merical parameters, one can show that for metrically homogeneous
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graphs the antipodal law is equivalent to the conditions C = 2δ + 1,
C ′ = 2δ + 2. The point of the special notation used here is that the
notion of Henson constraint differs in this case from the usual notion.

For reference, we record here the two definitions of Henson con-
straint.

Definition 1.14. For δ ≥ 3, a δ-Henson constraint of ordinary
type is a finite (1, δ)-space.

For δ ≥ 4, a δ-Henson constraint of antipodal type is an antipodal
companion of a finite 1-clique.

These are referred to also as ordinary δ-Henson constraints and an-
tipodal δ-Henson constraints. When the diameter δ is fixed, reference
to δ may be omitted.

The antipodal companions of Kn have the form Kn1,n2 , consisting
of two cliques of orders n1, n2 with n1+n2 = n, at distance δ− 1. In
particular they are (1, δ − 1)-spaces rather than (1, δ)-spaces.

It was shown in Cherlin [2011, Theorem 14] that the class Aδ
a,n is

an amalgamation class for δ ≥ 4.

Definition 1.15. The Fraïssé limit of the class Aδ
a,n is denoted

Γδ
a,n

Again, Γδ
a,n is defined as a homogeneous metric space, but may be

viewed as a metrically homogeneous graph.
The only influence of Henson constraints or antipodal Henson con-

straints on the invariant Γ1 arises when a clique Kn+1 occurs among
the minimal constraints for Γ. Then Γ1 is the corresponding Henson
graph Hn.

This is a point well worth recording.

Remark 1.16. Let Γ be a countable metrically homogeneous graph
which when viewed as a metric space is the Fraïssé limit of a class of
the form

A3 ∩ AH

with A3 3-constrained and AH governed by Henson constraints or
antipodal Henson constraints. Then Γ1 is either an independent set,
a Henson graph, or the random graph.

Note the symmetry-breaking: the complement Hc
n of a Henson

graph Hn does not occur here.
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1D.6. Generic type. We have now encountered all of the known
types of metrically homogeneous graphs, though in the case of 3-
constrained classes our description is still formal and vague at this
point. We have also taken note of the associated invariants of the
form Γ1 arising.

A review of these graphs shows that the various special cases which
arise have Γ1 imprimitive, finite, complete, or an infinite independent
set, the last when Γ is a regular tree of infinite degree, while the
Fraïssé limits of classes

A3 ∩ AH

have Γ1 a Henson graph, a random graph, or an infinite independent
set.

We have settled on the following as a clean (and useful) way of
separating the special cases from the rest.

Definition 1.17. Let Γ be a countable metrically homogeneous
graph of diameter δ ≥ 2.

1. The local type of Γ is the isomorphism type of Γ1.
2. Γ is of exceptional local type if Γ1 is finite, imprimitive, or com-

plete.
3. Γ is of generic type if Γ1 is primitive, and for any vertex v

at distance 2 from the basepoint, the set of neighbors of v in Γ1

contains an infinite independent set. In particular, Γ1 contains an
infinite independent set.

This definition is justified by the following result, which builds on
a body of prior work. We rely on the Lachlan/Woodrow classification
to read off the situation in diameter 2.

Fact 1.18 (Cherlin [2011, Theorem 10, Lemma 8.6]). Suppose that
Γ is a countable metrically homogeneous graph (in particular, Γ is
connected). Then one of the following applies.
(a) Γ is finite.
(b) Γ is complete multipartite with at least two classes (possibly

complete).8
(c) Γ is the complement Hc

n of a Henson graph with 3 ≤ n <∞.
(d) Γ is one of the tree-like graphs Tm,n.
(e) Γ is of generic type.

8The edgeless case is excluded as we consider only connected graphs.
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In particular, if Γ is infinite and of finite diameter δ ≥ 3, then Γ is
of generic type.

This statement includes the claim that Γ1 cannot be the comple-
ment of a Henson graph when δ ≥ 3, which is a point that is estab-
lished separately along the way.

Corollary 1.18.1. Conjecture 1 is equivalent to Conjecture 2.

Thus we are concerned here with understanding the case of generic
type.

As we shall see in Chapter 15, the definition of generic type is
precisely what we need to begin the higher level “local analysis” of
metrically homogeneous graphs, which involves the study of the met-
ric spaces Γi induced on the set of vertices at fixed distance i from
the basepoint, for all i ≤ δ—mainly in the case in which Γi contains
at least one edge of Γ.

1E. Part II: 3-Constraint
We take up trigonometry

In Part II we will take the first steps in the direction of a proof
of the conjectured classification of countable metrically homogeneous
graphs, or so we hope. Rather late in the development of this mono-
graph, that hope became substantially more concrete, a point we
leave for the preface and Appendix 18B.1, both of which were put in
final form substantially later than the bulk of the text.

Another way to view the results given here would be as due dili-
gence: we examine some of the points where examples missed in the
construction of the catalog might be suspected to lurk, and we find
nothing unexpected. One of the steps in this “due diligence” is the
classification in the 3-constrained case, and in fact we did find some
unexpected items there, but early enough to include them in our first
published catalog. Thus on the first pass our “due diligence” led to
an improved version of the conjecture, and since then nothing unex-
pected has turned up.

The main points to be established in Part II are the following.

(I) The precise description of the 3-constrained metrically homoge-
neous graphs (Chapters 12, 13, and 14).
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(II) The classification of the bipartite metrically homogeneous graphs
and the metrically homogeneous graphs of infinite diameter, un-
der a suitable inductive hypothesis (Chapters 16 and 17).

(III) Some fundamental results of local analysis (Chapter 15).
The first step toward the classification of 3-constrained metrically

homogeneous graphs is the explicit definition of a family of such
graphs as Fraïssé limits of certain amalgamation classes depending
on five numerical parameters (δ,K1,K2, C0, C1), and denoted accord-
ingly Γδ

K1,K2,C0,C1
(for the graphs) or Aδ

K1,K2,C0,C1
(for the amalga-

mation classes). This definition will be given shortly. The first point
is the following.

Theorem 1.19. Let A be a 3-constrained amalgamation class of
integer metric spaces, corresponding to some countable metrically ho-
mogeneous graph of generic type. Then A = Aδ

K1,K2,C0,C1
for some

values of the numerical parameters

δ,K1,K2, C0, C1,

with C0 even and C1 odd.

The precise description of the 3-constrained metrically homoge-
neous graphs is fairly complicated, and the theorem does not say that
these parameters can be chosen randomly; this formulation leaves en-
tirely open the question as to which of the classes Aδ

K1,K2,C0,C1
are

amalgamation classes, and only in such cases can we speak of the
Fraïssé limit Γδ

K1,K2,C0,C1
. Given the possibility of mixing triangle

constraints with Henson constraints, to put this in a more satisfac-
tory form we must solve both of the following problems.

Problem.
(I) Determine the 3-constrained amalgamation classes;

(II) Determine the pairs A3, AH with A3 a 3-constrained amalgama-
tion class and AH a Henson or antipodal Henson amalgamation
class, so that

A3 ∩ AH

is an amalgamation class.

Fortunately, while the solution to the first part is complicated,
the solution to the second part of the problem follows quickly from
the solution to the first part. In fact, this is the point of Henson
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constraints—they allow an existing amalgamation procedure to be
applied without further adjustment.

Now we pass to the main technical point, the explicit definition of
the classes

Aδ
K1,K2,C0,C1

in terms of the given numerical parameters. (Afterward, we will pro-
vide a variety of concrete examples.)

This 5-parameter family began life as a 2-parameter family in
Cameron [1998], with one parameter the diameter, and the other
parameter suggested by one of the results from Komjáth, Mekler,
and Pach [1988]. Taking into account another parameter suggested
by reading farther in Komjáth, Mekler, and Pach [1988], I thought
this 2-parameter family should really be a 3-parameter family, and
my initial formulation of the classification conjecture (unpublished)
took that form. That formulation turned out to be wrong, and af-
ter further mitosis I arrived at a 5-parameter family which covers all
possibilities. Since one parameter, the diameter δ, is just along for
the ride, the phylogenetic branching is not so much 2 7→ 3 7→ 5 as
1 7→ 2 7→ 4.

The 3-parameter version of the family was denoted

Γδ
K,C

while the 5-parameter version of the family is denoted

Γδ
K1,K2,C0,C1

.

As we know, the parameter δ controls the diameter. The 4 remain-
ing parameters control the set of forbidden triangles

T (δ,K1,K2, C0, C1)

(among all metric triangles of diameter at most δ, with integral sides).
The corresponding class of structures

Aδ
K1,K2,C0,C1

consists of all finite integral metric spaces of diameter at most δ in
which the forbidden triangles (those in T (δ,K1,K2, C0, C1)) do not
embed. This may or may not be an amalgamation class. When it is
an amalgamation class, then the Fraïssé limit may be called

Γδ
K1,K2,C0,C1

.
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There are four points to deal with.

1. What is the set T (δ,K1,K2, C0, C1) corresponding to a given
choice of parameters?

2. What are the relevant values of the numerical parameters?
3. What are the numerical conditions on these parameters ensuring

that Aδ
K1,K2,C0,C1

has the amalgamation property, and thus that
Γδ
K1,K2,C0,C1

exists (at least, as a metric space)?
4. Is this metric space, given as a Fraïssé limit, in fact the metric

space associated to its underlying graph, with edges defined as
usual by “d(x, y) = 1”?

The fourth point is dealt with by invoking Fact 1.3 and observing
that all metric triangles embedding into a geodesic path in the sense
of that fact are themselves geodesic triangles, and are not among the
forbidden triangles in the set T (δ,K1,K2, C0, C1). In fact it will be
seen that no triangle of even diameter at most 2δ is forbidden.

So we now turn to the answers to the first three questions, and
in particular we place ourselves in the context of metric spaces (and
mainly finite metric spaces).

Definition 1.20. Let (δ,K1,K2, C0, C1) be given. Then

T (δ,K1,K2, C0, C1)

is the set of triangles whose edge lengths (i, j, k) satisfy one of the
following conditions, writing p = i + j + k for the perimeter of the
triangle.

p < 2K1 and p is odd p > 2K2 + 2min(i, j, k) and p is odd
p ≥ C0 and p is even p ≥ C1 and p is odd

In other words, a finite integral metric space A of diameter at most
δ will be in the class Aδ

K1,K2,C0,C1
if and only if all of its triangles have

types (i, j, k) satisfying the following conditions, where p = i+ j+ k.

p ≥ 2K1 + 1 if p is odd; p < 2K2 + 2min(i, j, k) if p is odd;
p < C0 if p is even; p < C1 if p is odd.

Note that with p odd, the alternative p = 2K2 + 2min(i, j, k) is
excluded.



1E. Part II: 3-Constraint We take up trigonometry 27

This definition only makes good sense for certain parameter se-
quences

(δ,K1,K2, C0, C1),

called acceptable sequences.
This definition always struck me as a little puzzling (notably the

way the parameter K2 involves not just the perimeters but all the side
lengths). This point has been somewhat elucidated by combinatorial
investigations since then, offering at least two reasonable interpre-
tations of these conditions (Hubička, Konečný, and Nešetřil [2020b],
Hubička, Kompatscher, and Konečný [2018], Hubička, Konečný, and
Nešetřil [2020a]). As we will see, the parameter K1 controls the length
of the shortest cycle of odd length. The other parameters can also be
interpreted naturally in terms of forbidden cycles, and some of the
inequalities become more transparent. But all of this—apart from
the meaning of K1–lies outside the scope of our discussion here.

Definition 1.21. A sequence of parameters (δ,K1,K2, C0, C1) is
acceptable if it satisfies the following conditions.
• 3 ≤ δ ≤ ∞;
• 1 ≤ K1 ≤ K2 ≤ δ, or K1 =∞ and K2 = 0;
• 2δ < C0, C1 and C0, C1 ≤ 3δ+2; here C0 is even, and C1 is odd;
• If K1 =∞ (the bipartite case) then C1 = 2δ + 1.

We could allow δ = 2 as well, but this would bring more exceptional
cases into the theory.

The conditions on K1,K2 are transparent, except for the possibility
K1 =∞ and K2 = 0, which we use to specify the bipartite case (no
triangles of odd perimeter). Another way to code this case would be
with K1 = δ + 1 and K2 = 0.

The upper bounds on C0, C1 refer to the fact that the largest possi-
ble perimeter is 3δ, and that we need to have values of C0 or C1 avail-
able which correspond to the absence of the corresponding restriction
on the perimeter. The lower bound reflects the fact (discussed later)
that geodesic triangles can have any even perimeter up to 2δ, while
the possibilities for triangles of small odd perimeter are controlled in
another way by K1 and K2.

With these notions in hand, we can address the main issue: among
the acceptable sequences, which ones correspond to amalgmation
classes?
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Theorem 1.22 (Admissibility). Let (δ,K1,K2, C0, C1) be an ac-
ceptable sequence of parameters (in particular, δ ≥ 3). Then the as-
sociated class Aδ

K1,K2,C0,C1
is an amalgamation class if and only if

one of the following three groups of conditions is satisfied, where we
write C for min(C0, C1) and C ′ for max(C0, C1).

(I) K1 =∞ (the bipartite case; so K2 = 0 and C1 = 2δ + 1).
(II) K1 <∞, C ≤ 2δ +K1 and

— C = 2K1 + 2K2 + 1;
— K1 +K2 ≥ δ; and
— K1+2K2 ≤ 2δ−1. Furthermore, one of the following applies.

(IIA) C ′ = C + 1 or
(IIB) C ′ > C + 1, K1 = K2, and 3K2 = 2δ − 1.

(III) K1 <∞, C > 2δ +K1 and
— K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ;
— if K1 + 2K2 = 2δ − 1 then C ≥ 2δ +K1 + 2;
— if C ′ > C + 1 then C ≥ 2δ +K2.

A sequence of acceptable parameters (δ,K1,K2, C0, C1) will be
called admissible iff it satisfies one of the three sets of conditions
enumerated in Theorem 1.22.

Now it may be useful to see some examples of admissible param-
eters. We begin with a table of examples for the case δ = 3, from
Amato, Cherlin, and Macpherson [2021, Table 2], given as Table 1.2.
This table includes a specification of Henson constraints in the final
column, which may be set aside for the present.

In Table 1.2 we see in type (I) some bipartite graphs with a bound
on the perimeters of triangles; that bound may be vacuous. In Type
(II) we see very little, just the generic antipodal graph. In particular
we miss type (IIB) entirely. Indeed, this type requires

δ ≡ 2 (mod 3)

K1 = K2 = (2δ − 1)/3

C = 4K1 + 1 = 2δ +K1

And for δ = 3 one sees that the upper and lower bounds associated
with type (IIA) force K1 = 1, K2 = 2.

Similarly, in type (III) we see no examples with C ′ > C + 1, as
this would require both C ≤ 8 and C ≥ 6 + K2, leading quickly to
K2 = 2, K1 = 1, and then C ≥ 2δ +K1 + 2 for a contradiction.
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Type Case K1 K2 C C ′ S
Bipartite (I) ∞ 0 7 8 or 10 empty
Antipodal (II) 1 2 7 C + 1 empty
Primitive (III) 1 2 9 or 10 C + 1 cliques and anticliques

" (III) 2 2 9 or 10 C + 1 anticliques
" (III) 1 3 8, 9, or 10 C + 1 If C = 8 then S is

empty.
" (III) 2 3 9 or 10 C + 1 anything not involv-

ing K3

" (III) 3 3 10 C + 1 empty

Table 1.2. Admissible parameters for δ = 3

To illustrate the cases with C ′ > C + 1, in both types (II) and
(III), we add the minimal examples in larger diameter.

Type δ K1 K2 C C ′

(IIB) 5 3 3 13 16

(III) 4 1 or 2 3 11 14

We make one further remark on the complexity of the explicit def-
inition of admissibility, from the point of view of logic: logicians may
note that this definition consists of a quantifier-free set of condi-
tions in the language of Presburger arithmetic (the theory of Z as
an ordered group, enriched with the function “x mod n” for each n,
separately). We explore this line of thought a little farther, as follows.

Definition 1.23. Let A be a class of finite structures closed under
substructure and isomorphism, and k ≥ 1.

Then A is a k-amalgamation class iff every amalgamation problem
A0 → A1, A2 in A with |A1 ∪A2| ≤ k has a completion in A.

Remark 1.24. Suppose that F is a uniformly definable family of
sets of finite metric spaces in the language of Presburger arithmetic;
that is, for some finite k,m there is a formula µ(d,n) in the language
of Presburger arithmetic, with the variables d = (di,j | 1 ≤ i, j ≤ k)
and n = (ni | 1 ≤ i ≤ m), such that

F = {F(n) |n1, . . . , nm ≥ 0}
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where F(n) is the set of metric spaces A of order at most k such that
in some enumeration, the distances di,j between the i-th and j-th
points of A satisfy the condition µ(d,n). (E.g., n = (δ,K1,K2, C0, C1)
and F = T .) Correspondingly, let A(n1, . . . , nm) be the class of fi-
nite metric spaces defined by forbidding all substructures lying in the
constraint set F(n1, . . . , nm).

Then for fixed k, the set of parameter sequences n for which

A(n) is a k-amalgamation class.

is definable in Presburger arithmetic by some formula ϕk(n) (namely,
write out what this means, quantifying over the distances occurring
in the relevant amalgamation diagrams of order at most k).

In particular, the property that A(n1, . . . , nm) is an amalgama-
tion class will be definable in Presburger arithmetic iff for all classes
A(n1, . . . , nm) the amalgamation property is equivalent to k-amalga-
mation.

In our 3-constrained case with F = T the analysis gives the bound
on k explicitly.

Theorem 1.25. For any choice of parameters (δ,K1,K2, C0, C1)
the following conditions are equivalent.

1. Aδ
K1,K2,C0,C1

is an amalgamation class.
2. Aδ

K1,K2,C0,C1
has the 5-amalgamation property.

We deal with the characterization of 3-constrained metrically ho-
mogeneous graphs in Chapters 12, 13, and 14, and at the same time
we take care of the related issue of characterizing the amalgamation
classes of the form

A3 ∩ AH

with A3 3-constrained, and AH one of the two possible variations on
the Henson construction.

1F. Part II: The bipartite case, and infinite diameter

It remains to discuss the content of Chapters 15–17. We first present
the two concrete results of Chapters 16 and 17, and later return to
the more foundational material of Chapter 15.
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In Chapter 17 we reduce the classification of metrically homoge-
neous graphs of infinite diameter to the case of finite diameter, in the
following sense.

Theorem 1.26. Let Γ be a countable metrically homogeneous graph
of infinite diameter and suppose that every countable metrically ho-
mogeneous graph of finite diameter is of known type (according to
the catalog given in §1D). Then Γ is of known type.

Thus, to show that the conjectured classification is in fact correct,
it would suffice to prove it for graphs of finite diameter. This opens
up the possibility of proceeding inductively throughout the analysis.

Of course, some additional examples may turn up in small finite
diameter without drastically altering the character of the conjecture.
In that case, the proof of Theorem 1.26 would need to be reexamined,
and adapted to a larger context.

The main result of Chapter 16 is a similar reduction theorem for
the case of metrically homogeneous bipartite graphs. We would like a
similar result for imprimitive metrically homogeneous graphs in gen-
eral. In the case of distance transitive graphs, the point of departure
for the treatment of imprimitive graphs is called Smith’s Theorem.

Fact 1.27 (cf. Alfuraidan and Hall [2006, Theorem 2.2]). Let Γ be
a connected distance transitive graph of diameter δ ≥ 3, with vertex
degrees at least 3, and let E be a nontrivial congruence of Γ.

1. E is either the relation E2 defined by “d(x, y) is even,” or the
relation Eδ defined by “d(x, y) is a multiple of δ” (i.e., 0 or δ,
with δ finite).

2. If E = E2, then Γ is bipartite

In the context of distance transitive finite graphs, the second alter-
native above is called the antipodal case. We have defined this term
in a more restrictive way, but in the metrically homogeneous context
the distinction is moot, in view of the following.

Fact 1.28 (Cherlin [2011, Theorem 11]). Let Γ be a countable met-
rically homogeneous graph, of diameter δ ≥ 3. Suppose that the re-
lation

d(x, y) ∈ {0, δ}
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defines an equivalence relation on Γ. Then for each vertex u ∈ Γ,
there is a unique vertex u′ ∈ Γ at distance δ from u, and we have the
“antipodal law”

d(u, v) = δ − d(u′, v) for u, v ∈ Γ

In particular, the map u 7→ u′ is a central involution in Aut(Γ).

The distinction between primitive and imprimitive cases generally
represents a major dividing line in the classification of infinite homo-
geneous structures of combinatorial type, so one of the issues that
one might like to deal with early on is the verification of the classifi-
cation conjecture in the imprimitive case (under a suitable inductive
hypothesis).9

In the context of finite distance transitive graphs, there are good
inductive approaches to both the bipartite and the antipodal cases.
Unfortunately, the reduction used in the antipodal case leaves the
category of metrically homogeneous graphs. But the reduction used
in the bipartite case is available. This goes as follows

Definition 1.29. Let Γ be a countable metrically homogeneous
bipartite graph. Then BΓ is the graph induced on either part of Γ
by the edge relation

d(x, y) = 2

The resulting path metric is the induced metric on that part of Γ,
rescaled by a factor of 1/2. Clearly the isomorphism type of BΓ is
independent of which part is used. As the induced metric structure
is again homogeneous, and coincides with the path metric of BΓ up
to a scale factor, the graph BΓ is metrically homogeneous and of
diameter at most δ/2.

Theorem 1.30 (Bipartite Classification). Let Γ be a countable met-
rically homogeneous bipartite graph and suppose that BΓ is of known
type (according to the catalog given in §1D). Then Γ is of known type.

Note that this is a reduction from diameter δ to diameter ⌊δ/2⌋, if
δ is finite, and the result is satisfactory as stated.

On the other hand, if Γ is a bipartite graph of infinite diameter,
then we avoid difficulties by invoking Theorem 1.26 in a careful way.

9Our current thinking divides the problem up a little differently. See Appendix
18B.1.
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Namely, in the proof of Theorem 1.26, the proof first treats the non-
bipartite case. Then for Γ bipartite of infinite diameter, rather than
tackling the problem directly, first Theorem 1.26 is applied to BΓ,
and then Theorem 1.30 may be applied to Γ to conclude. Thus the
two theorems combine to give a satisfactory reduction of all bipartite
cases to cases of smaller diameter.

One important ingredient in the proof of Theorem 1.30 is the fol-
lowing, which we quote in a compressed form from Cherlin [2011].

Fact 1.31 (Cherlin [2011, Theorem 13]). Let Γ be a connected, bi-
partite, and metrically homogeneous graph of generic type, of vertex
degree at least 3. Then either (BΓ)1 is isomorphic to the random
graph, or BΓ and Γ are in the catalog, with Γ of diameter at most 5.

We do not have a similar treatment of the antipodal case.

Problem 1. Complete the treatment of the imprimitive case un-
der suitable inductive hypotheses by similar results for antipodal
graphs.10

There are some good prospects for a direct inductive argument in
this case, except in one case: δ even with K1 = δ/2. To see where the
problem lies, we need to discuss local analysis, the subject of Chapter
15.

1G. Part II: Toward a proof of the classification conjecture

Before taking up the reductions of the bipartite and infinite di-
ameter cases to smaller diameter in Chapters 16 and 17, we aim in
Chapter 15 to provide some broadly useful results applicable in the
generic type case. These results concern local analysis.

Local analysis refers to the study of the metric space Γi induced on
the set of vertices of Γ at distance i from a fixed basepoint. This is a
homogeneous metric space, and when there are points at distance 1
in Γi, then Γi inherits a graph structure from Γ.

Until quite recently there was no clear strategy for proving the
completeness of the catalog described above. But the catalog itself,

10Our current thinking does not make a sharp separation between this special
case and the general classification project; see §18B.1.
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together with the reduction to the case of generic type and the re-
duction of infinite diameter to finite diameter, provides the broad
framework for an approach to the problem.

Problem 2. Under an appropriate inductive hypothesis, show the
following for finite diameter δ ≥ 3.

(a) A countable metrically homogeneous graph of generic type and
diameter δ has as its set of forbidden triangles one of the collec-
tions

T (δ,K1,K2, C0, C1)

with admissible parameters;
(b) If the forbidden triangles of a countable metrically homogeneous

graph of generic type and diameter δ are those in

T (δ,K1,K2, C0, C1)

then the other minimal constraints are Henson constraints, or
(in the antipodal case) antipodal Henson constraints.

This two-step approach has been completed in the case of diameter
3, in Amato, Cherlin, and Macpherson [2021], with the second step
the more difficult one by far, in that case.

Local analysis is our point of departure for the treatment of these
problems. The classification conjecture implies that Γi should carry
very useful information about Γ when Γi contains an edge, and the
goal of local analysis is to verify some of the relevant properties of
Γi.

For i < δ/2, if Γi contains an edge then it is of smaller diameter
and turns out to be a metrically homogeneous graph in its own right,
so one may assume inductively that Γi is of known type. This relies
on the following point.

Theorem 1.32. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ, and suppose i ≤ δ. Suppose that
Γi contains an edge. Then Γi is a countable metrically homogeneous
graph (and, in particular, is connected).

Furthermore, Γi is primitive and of generic type, apart from the
following two cases.
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1. i = δ;
K1 = 1; {C0, C1} = {2δ + 2, 2δ + 3};
Γδ is an infinite complete graph (hence not of generic type).

2. δ = 2i;
Γ is antipodal (hence Γi is imprimitive, namely antipodal).

The case in which Γδ is complete is not inherently exceptional, but
as complete graphs do not fall under our definition of generic type,
this case must be listed separately.

For this result to be useful, we need to be able to identify cases
in which Γi contains an edge. The classification conjecture implies a
good deal more than we can prove at present along these lines. But
the following is a step in that direction.

Proposition 1.33. Let Γ be a countable metrically homogeneous
graph of diameter δ ≥ 3. Suppose

K1 ≤ 2.

Then for 2 ≤ i ≤ δ−1, Γi contains an edge, unless i = δ−1, K1 = 2,
and Γ is antipodal.

This completes our extended presentation of the contents of the
present monograph. We had intended to end with a more detailed
discussion of the prospects for a general proof (which originally ran
into some difficulties already in diameter 4) but in view of recent
developments suggesting that the natural line of attack flows out of
Amato, Cherlin, and Macpherson [2021], we defer this discussion to
the updated Appendix 18 found at the end of this Volume.

We will not summarize the results of Volume II here, leaving that
to the first chapter of Volume II, but we have touched on this in the
preface.





CHAPTER 2

METHODS

This chapter is devoted to an overview of the methods used to
prove the results described in the previous chapter. The details as
presented in Parts I and II are lengthy.

In the previous chapter we described the classification of the ho-
mogeneous ordered graphs, and then, at considerably greater length,
what we know about the classification of the metrically homogeneous
graphs. We proceed similarly in this chapter. Thus §2A concerns
the methods used in the classification of the homogeneous ordered
graphs, and the methods used to analyze metrically homogenous
graphs are discussed in the remaining three sections of the chap-
ter. The material in the first section is independent of the remainder.
Similarly, the treatments in Parts I and II are self-contained and
independent.

2A. Homogeneous ordered graphs vs. ordered homogeneous
graphs

The classification of the homogeneous ordered graphs begins with
the case completely treated in Dolinka and Mašulović [2012] and ends
with an application of Lachlan’s Ramsey theoretic argument along
lines sketched in a different context in Cherlin [1998, Chapter IV].
Along the way we vary the choice of language used, according to
the particular identification we are aiming at: if we are aiming to
show we have an expansion of a homogeneous tournament, we use
the language of ordered tournaments, and if we are aiming to show
that we have an expansion of a homogeneous graph, we switch to
the language of ordered graphs; we then have to reread some of our
earlier lemmas in the new language.

37
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To begin with, we consider homogeneous ordered graphs which are
expansions of a partial order by a linear order extending it, a case
treated fully in Dolinka and Mašulović [2012]. We need only settle
where exactly this classification fits in to the analysis in general, when
viewed as an ordered graph.

In such cases, the initial partial order will be the intersection of
the edge relation in the graph with the order. Since we require this
relation to be transitive, this means that there should be no path
of length 2 occurring as an induced graph, with the midpoint of the
path in the middle of the order.

The graph complement of a homogeneous ordered graph is also a
homogeneous graph, so we get a second family of examples by taking
the graph complements of the ordered graphs associated to linear
extensions of partial orders. So this corresponds to forbidding the
graph complement of a path of length 2, with an ordering putting
the isolated vertex in the middle.

Thus, in view of Dolinka and Mašulović [2012], we begin our analy-
sis with the assumption that these two specific ordered graphs of or-
der 3 do occur in our homogeneous structure. Under this hypothesis,
we will see that we have either a generically ordered homogeneous
tournament or a generically ordered homogeneous graph (both fall
under Group (III) in Table 1.1).

We work first in the language of tournaments.
There are three infinite homogeneous tournaments: the rational or-

der Q, the generic local order S, and the random tournament T = T∞.
Two of these cases may be set aside: a generically ordered copy of
(Q, <) (the “generic permutation” ’) already occurs as a linear exten-
sion of a partial order (namely, the intersection of the two orders),
while the random tournament will reappear later on in the guise of
the (ordered) random graph, up to a change of a language. So at this
point we aim at a characterization of a generically ordered copy of S
(Chapter 4). Once we dispose of this case, we will find it convenient
to return to the language of ordered graphs.

The generic local order S is characterized, within the class of homo-
geneous tournaments which are not linearly ordered, by the absence
of a certain tournament of order 4, and its dual; so the generically
ordered copy of S should be characterized by the omission of all (or,
equivalently—we may hope—one) of the ordered versions of these
two constraints.
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We will have a lengthy series of lemmas at that point showing
that the absence of one particular form of these ordered tournaments
implies the absence of all of them. As there are some symmetries,
each constraint gives rise to 8 ordered forms rather than 24, for a
total of 16 configurations (or 8 complementary pairs).

It should not much matter which of these 16 configurations we
select as our starting point, but for the sake of the proof we do need
to select one, and treat its presence or absence as the principal case
division at this stage.

The conclusion takes the following form. The notations used here
for specific ordered tournaments are arcane, but not of great impor-
tance just now.11

Lemma 2.1 (4.14, §4D). Let Γ be a homogeneous ordered tourna-
ment which contains I⃗3, C⃗

+

3 , and C⃗
−
3 , but does not contain (C⃗

+

3 → 1).
Let A be an ordered tournament of order at most 4. Then A embeds
into Γ if and only if the underlying tournament of A is a local order.

It then remains to be checked that under the indicated constraints,
we arrive at S with a generic ordering. All of this is done by direct
amalgamation arguments, and it is clear throughout what is needed.
Once we reach this point, we can argue much as in the case of ho-
mogeneous permutations (where S is replaced by Q), as treated in
Cameron [2002/03)].

Once past this stage of the classification, we assume that one spe-
cific ordered tournament of order 4 which is not a local order embeds
into our homogeneous ordered tournament Γ; and we switch to the
language of ordered graphs.

2A.1. Recognizing the underlying homogeneous graphs.
Now we aim to show that the underlying graph is one of those
found by Lachlan and Woodrow in their classification of homogeneous
graphs. That is, we must now reprove their classification theorem
with an order in place. As their argument made use of the symmetry
of the edge relation, this presents some difficulties, in principle.

But as it happens, I gave another approach to their result in Cher-
lin [1998, Chap. IV], intended to illustrate the methods used in the
classification of homogeneous directed graphs; the approach taken is
a symmetrized form of an analysis originally carried out in an asym-
metric setting (with its roots in the classification of homogeneous

11Just bleep right over them—Linus, 1964
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tournaments), and so it turns out to be well suited for our present
purpose. Thus we proceed by de-symmetrizing the symmetrized ver-
sion of an older argument in a way that gives a new result.

It seems clear a priori that any method which can be used to clas-
sify the homogeneous directed graphs ought to be applicable to the
symmetric case as well—for one thing, if a homogeneous graph has
the strong amalgamation property, then it has a “generically oriented”
variant which is a homogeneous directed graph. Chapter IV of Cher-
lin [1998] (the last chapter written) worked out the symmetrized ver-
sion of the argument given in subsequent chapters of that monograph.
At the time my sense of the argument was expressed as follows.

“The proof given here is more complex than the one given [by
Lachlan and Woodrow ], but it generalizes . . . ”

While the generalization I had in mind was to the context of di-
rected graphs, there is a more direct generalization, to the context of
ordered graphs—once we have eliminated the cases leading to exten-
sions of partial orders or a generically ordered local order.

The details as presented in Part I of this volume take up consider-
ably more space than the corresponding treatment of homogeneous
graphs, particularly in the preparatory phase. One has first to build
a library of small configurations known to occur before one can really
begin.

But after some lengthy preliminaries, we run closely parallel to
the line of Chapter IV of Cherlin [1998]. One has to make various
refinements of the main definitions to incorporate the effect of the
order. We then transfer to our setting an elaborate inductive frame-
work which requires the simultaneous proofs of nine propositions, of
which the last four are proved with some elegance on formal grounds
(these are the points where one sees that the basic definitions have
been made in a useful way). Each of the first five propositions re-
quires additionally work, much of it brute force. The last of these
five propositions brings us back, finally, to the setting where Lach-
lan’s Ramsey argument is the only tool available—after some further
reductions.

To quote scripture: “All of this has happened before, and all of this
will happen again.” Lachlan’s methods, as applied in the last stage
of our analysis, involve three distinct technical ideas that play well
together, to which one must add a fourth which does not appear in
the context of tournaments. These ideas may be described as follows.
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1. Auxiliary amalgamation classes Ar.
2. The Ramsey argument, reducing to 1-point extensions of “stacks.”
3. A shift to partitioned structures (called ordered 2-graphs).
4. A “1-2 punch” in the space of types that occurs just at the end,

to set up the final amalgamation argument.

These four points were the main points in Cherlin [1998], both in
the context of the classification of the homogeneous directed graphs,
as well as the symmetrized version given in Chapter IV. They remain
the main points of our Part I as well. So we will describe them in
detail here.

While these points underly the inductive strategy outlined in Chap-
ter 5 below, some are more in evidence than others in the presentation
there: namely, the first and third points are built into the inductive
framework explicitly, while the second and fourth points will appear
as a punch line in Chapter 10.

2A.2. The inductive framework. We begin our discussion with
the inductive framework shown in Table 2.1 below. We make use of
the following notation: H = (H1, H2) is a homogeneous 2-partitioned
ordered graph, i.e., an ordered graph with a partition into two labeled
pieces H1 and H2, with H homogeneous in that language.

There are a number of additional notations and some unfamiliar
terminology which will require elucidation. The 2-graph H is sup-
posed to be ample, which means that certain finite configurations of
the form (∅, A2) or (a1, A2) embed in H. In the latter case, we sup-
pose a1 < A2 and we call such a configuration (or its isomorphism
type over A2) an initial 1-type over A2.

We pay a price for moving to the category of ordered 2-graphs—
first we pay a price to get into that category, and then our state-
ments become more ambitious when interpreted in that category. To
see why that price is worth paying, we examine the transition from
Propositions IVn and Vn (the last of our concrete propositions) to
Proposition VIn (the first of our more general assertions).

Before entering into this, we discuss some additional points of no-
tation and terminology occurring in these propositions. We have the
inductive parameter n and correspondingly a family of finite ordered
graphs A(n). The effect of the parameter n is to include an ordered
n-clique in the family A(n). There is also a kind of “direct sum” or
“stacking” operator (an ordered disjoint union) at work in both of
Propositions Vn and VIn. Namely, K⃗n ⊥ K⃗n is the ordered disjoint
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(I) If a ∈ Γ then the ordered 2-graph Ha = (a⊥−, a⊥+) is
ample.

(IIn) If all elements of A(n) embed in Γ, and B = baK satisfies
– K ∼= K⃗n

– b < a < K
– a ⊥ bK
– B does not contain K⃗n+1

then B embeds in Γ.
(III) If p = (x, A) is an H-constrained initial 1-type with A ∈

A(2), then p is realized in H.
(IVn) If A ∈ A(n) and p = (x, A) is an initial 1-type over A

which is realized in H with x ∈ H1, A ⊆ H2, then the
ordered 2-graphs (Ap, A⊥−) and (Ap, A⊥+) are ample.

(Vn) If p = (x, K⃗n ⊥ K⃗n) is an H-constrained initial 1-type,
then p is realized in H.

(VIn) If p = (x, A) is an H-constrained initial 1-type with A ∈
⊥A(n), then p is realized in H.

(VIIn) Suppose that Γ contains every configuration in A(n). If
B = A ∪ {b} does not contain K⃗n+1, and b < A, with
A ∈ ⊥A(n), then Γ contains B.

(VIIIn) Suppose Γ contains every configuration in A(n). If A does
not contain K⃗n+1 then A embeds into Γ.

(IXn) If p = (x, A) is an H-constrained initial 1-type and A does
not contain K⃗n+1, then p embeds into H.

Table 2.1. Propositions (I)–(IX)

union of two ordered n-cliques, with the first one preceding the sec-
ond in the ordering, while ⊥A(n) is the family consisting of all finite
ordered sums of configurations in A(n).

The main case in Proposition VIn arises when A is an ordered sum
of a finite number of n-cliques. Proposition IVn states that we can do
induction on the length of the sum. Proposition Vn says that when
the length of the sum is 2, the statement in Proposition VIn is correct.
Proposition VIn is then immediate by induction on the length of the
sum, as long as we work in the category of ordered 2-graphs. This
argument will not work in the category of ordered graphs. This is the
reason—the only reason—we change categories.
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Part of the (modest) price we pay for this change in viewpoint is the
need to prove Proposition I, which gives us the transition from ho-
mogeneous ordered graphs to ample homogeneous ordered 2-graphs.
Here a⊥− and a⊥+ are two specific a-definable sets.

a⊥− = {x ∈ Γ | a ⊥ x, x < a}

a⊥+ = {x ∈ Γ | a ⊥ x, a < x}

The notation “a ⊥ x” means that (a, x) is not an edge.
Proposition II is of a similar nature, and can be interpreted as a

statement about the associated ordered 2-graph Ha.
At this point, we have accounted for technical point (3) above (the

shift to partitioned structures), and indicated that Propositions I–V
are the concrete results that must be proved before an argument of
any generality gets underway. After the transitional argument from
Proposition V to Proposition VI, the main ideas emerge in the proofs
of the remaining propositions. Here Proposition VII is just a variant
of Proposition VI in the category of ordered graphs, and the last two
propositions are two forms of our main theorem (limited to cases cov-
ered by the parameter n), again covering both categories. Here we
deal first with the category of homogeneous ordered graphs, which is
all we care about, ultimately, but we continue on in the final proposi-
tion to deal with ordered 2-graphs again: to keep the induction going
we must stay in that category to the end.

The transition from Proposition VIn to Proposition VIIn contains
the two main technical points, namely (1, 2) above. The first of these
originates with the Lachlan/Woodrow argument, the second with
Lachlan’s treatment of countable homogeneous tournaments. We carry
over the latter treatment to our setting with no substantial alteration.

The connection between VIn and VIIn is not evident, so we go into
this here.

First, if A is an amalgamation class of ordered graphs, and r is a
2-type (an isomorphism type of ordered graphs of order 2), we will
say that an ordered graph L is r-Ramsey if it can be labeled in such
a way that any pair of elements has the specified 2-type. This means
that L is either an ordered clique or an ordered independent set (and
we arrange its elements in increasing or decreasing order; but we may
suppose that they are arranged in increasing order). Admittedly there
is something strange about ordering an already ordered set, but this
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notion also makes sense in contexts in which no ordering is provided
in advance.

We let Ar be the subset of A defined by the following condition.
A is in Ar iff every extension of A by a finite r-Ramsey or-
dered graph L with L < A belongs to A.

Points to observe:
— On formal grounds, Ar is again an amalgamation class, and is

contained in A.
— If we are minimally optimistic—that is, if we believe the theorem

we are trying to prove—then Ar should be A for some choice of
r.

This means that it is reasonable to try to prove that any assump-
tions we have made about A will apply to Ar, for some choice of
r. The relevant assumptions are that certain special configurations
belong to A, such as n-cliques for some definite value of n.

At this point, we are in the vicinity of the Lachlan/Woodrow argu-
ment, except that they manufactured a different class A∗ to play the
role of Ar in the case of symmetric graphs, and the Ramsey theoretic
construction we are now describing was introduced later, by Lachlan,
along with the following point, which makes it work.

We stack up multiple copies of n-cliques, and some other special
ordered graphs, and study extensions of such stacks by single vertices.

Lemma 2.2. Let A be an amalgamation class of ordered graphs.
Suppose a finite set of finite ordered graphs A′ has the following prop-
erty.

For any finite ordered sum A ∈ ⊥A′, and any further exten-
sion B = A∪ {b} of A by one additional vertex, B belongs to
A.

Then A′ ⊆ Ar for some 2-type r.

For the proof, one takes a long sum Â = A1 ∪ · · · ∪ An and a
large number of 1-point extensions a1, . . . , aN , and one amalgamates
all structures Âi = Â ∪ {ai} over the base Â. If N is large enough.
then Ramsey’s theorem gives a large Ramsey ordered graph of some
type r (with the ordering on it coinciding either with the one we
began with or its reversal). Since we know this, we can set up the
1-point extensions in advance so that whatever the amalgam results,
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the structure obtained includes a copy of A ∪ L, for any (specific)
desired extension of that type.

This argument is not in itself sufficiently uniform to prove the
lemma as stated, with a fixed choice of r, but as there are only finitely
many possibilities for r, one of them will work uniformly, regardless
of the size of L.

This is the short version. We will give a more detailed exposition
in the text. But this is the main technical point in Lachlan’s classi-
fication of the countable homogeneous tournaments and it remains
the main technical point in Cherlin [1998], ultimately shaping the
form of the inductive argument, which aims at giving this argument
a place to operate.

Further difficulties arise in the proof of Proposition V, the last
of the propositions whose proofs rely on direct amalgamation argu-
ments, rather than artfully constructed definitions. And this is where
the last of our four points comes into play. Recall the statement of
Proposition V.

Let H be a countable ample homogeneous ordered 2-graph
and p = (x, K⃗n ⊥ K⃗n) an H-constrained initial 1-type. Then
p is realized in H.

A similar statement is given as Lemma 8.7, for the case n = 2 (and
more than two copies of K⃗2, but the argument reduces quickly to the
case of two copies). The main ingredients of the argument for general
n occur already in the proof of Lemma 8.7.

We now discuss the version of the argument needed for the proof
of Proposition V.

Let us write K⃗1, K⃗2 for the two ordered n-cliques, and Pi for
(x, K⃗i). (So p = P1 ⊥ P2, in a certain sense.) The hypothesis of
H-constraint means that P1 and P2 both embed into H. We must
realize the type p in H, relying in the critical cases on explicit amal-
gamation arguments.

The comparatively simple asymmetrical case in which P1 ̸= P2

can be handled by fairly direct methods and some extension of the
inductive framework to take into account the number of initial 1-types
occurring in H over K⃗n. So we come down quickly to the symmetric
case p = P + P , that is P1 = P2 = P .

The treatment of this symmetrical case is delicate, and the fourth of
our key technical points mentioned at the outset emerges only at this
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x1 x2

n n− 1 n− 2 n− 1

U a V b W V ′

x1/U, aV, bV
′ = Q,P, P

x2/U, abW = P, P

stage of the analysis. Our discussion of this occupies the remainder
of the present subsection.

Another way to see what is at stake here would be to examine the
special case of these arguments which occurs in the lengthy prepara-
tion for the proof of Proposition III in §8C, alluded to above.

In order to see how we proceed at this point, it is necessary to
begin with the final amalgamation argument which produces a real-
ization of the type p, and then to back up several steps to see what
conditions are required to ensure that suitable factors of this final
diagram embed into H.

The concluding amalgamation argument that we have in mind
looks as follows (Lemma 10.8). Certain features of the factors are
determined as the diagram is constructed. Others are either given in
advance or are constructed in preliminary lemmas.

This represents an amalgamation problem in the category of or-
dered 2-graphs, with the components H1 and H2 arranged as hori-
zontal layers.

The base of the amalgamation consists of everything except the
two circled vertices a and b, and the amalgam will determine the
structure of the pair (a, b).

In this diagram, we have the following specifications.

— The type of x1 over aV or bV ′, and the type of x2 over U or
abW , is the given type P .

— The type of x1 over U is an as yet unknown type Q, which we
will need to construct carefully, once we have worked out the
properties required of it.

— The type of x1 over W is not specified and will be worked out
in our concluding argument.
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— The type of x2 over aV or bV ′ will also be worked out in the
concluding argument, but the type of x2 over a or b is already
determined.

In the amalgamation diagram, once it is completed, as a < V < b,
we must have a < b. So the question to be settled by amalgamation
is whether or not (a, b) is to be an edge.

The factors have been constructed to ensure that in either case,
a copy of the type p = P + P appears. If (a, b) is not an edge,
then (x1, aV, bV

′) will be of type p, while if (a, b) is an edge, then
(x2, U⊥abW ) will be of type p.

So we see how we intend to complete the argument. Now it is nec-
essary to work out how the two (compatible) factors of this diagram
are to be constructed so as to ensure that each of them embeds into
H, and what properties the type Q must have to make this possible.

The fact that we have two elements x1, x2 to deal with in the
first component would appear to pose a separate problem, but the
Lachlan Ramsey argument will give us a choice r of 2-type for (x1, x2)
which in some cases allows us to reduce to the consideration of x1, x2
separately. We do not dwell on this point now, as it is one that will
have been dealt with well before we reach this configuration, along
lines which are typical of Lachlan’s approach.

Now assuming for the moment that we know both the type of
(x1, x2), and what the more mysterious type Q should be, we would
proceed as follows to construct the factors of the diagram shown
above.

Stage 1: Determination of the type of (x1,W ):
Just amalgamate.

x1

a b
n− 2

W

(I)

There is not much to this, as the necessary factors of this amalga-
mation diagram may be obtained by induction.
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Stage 2: Determination of the type P ∗ of (x2, aV ):

This is a major stage in the argument. For later parts of the argu-
ment to succeed, we must choose P ∗ in accordance with the following.

Claim. Let r be the type of x1, x2. Then there is an initial 1-type
P ∗ over aV extending P ↾ a so that any configuration of the form
(R,UaVWV ′) with the following properties embeds into H.
(i) R is r-Ramsey;
(ii) x1/UaVW , x2/UaW as specified above;
(iii) (x2, aV1) realizes P ∗;
(iv) (x2, V

′) any type realized in H.

We take R = {x1, x2} when the claim is applied.
One proves such claims by trying all possibilities for P ∗ and record-

ing a counterexample for each choice of P ∗, then putting an ordered
sum of all the counterexamples into a single diagram, and amalga-
mating once more to determine a value of P ∗ consistent with each of
the putative counterexamples.

As one works through this part of the construction, one encounters
a condition on the type Q. That is, the type Q must be chosen at the
outset so as to make this part of the argument work. The precise con-
ditions on the type Q are given by Lemma 10.7 (summarized loosely
below, mainly in terms of a diagram extracted from the treatment of
this stage in the proof of Lemma 10.8).

Stage 3: Determination of (x2, V ′):
This is much like Stage 1, but the factors are considerably more

complicated (Figure 2).

x1 x2

n n− 1 n− 2 n− 1

U V b W V ′

Figure 2. (x1/U, V, bW, bV ′) = Q,P, (I), P
(x2/U, V, bW ) = P, P ∗ ↾ V, P

(III)
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To show that both factors embed into H, we again make use of the
properties of Q and the type of x1, x2.

At the end of this stage, we have proved the existence of a particular
form of the second factor in our amalgam, and in the process we have
determined the first factor up to isomorphism. Now the only question
is whether this first factor embeds into H. For this, we may quote the
defining conditions on P ∗.

Now we have not been very forthcoming about the necessary prop-
erties of Q, as one needs to inspect the relevant diagrams more closely
to see them in detail. But in a general way, the goal is to force cer-
tain configurations into H whatever their particular form may be. We
quote the two relevant lemmas, but omit the detailed verbal specifica-
tions which amount to descriptions of the diagrams that arise in the
course of the argument just outlined; these specifications are repre-
sented by the accompanying pictures. We stress that we cannot know
the precise form of these pictures in advance, only their general prop-
erties, as the details are determined via a series of amalgamations in
the final argument.

Recall that a 1-type p over a set A is initial if its realizations precede
A in the order. In the context of ordered 2-graphs, a 1-type is a cross
type if its parameter set lies on one side, and its realization on the
other; our convention is that H = (H1, H2), A ⊆ H2, and x ∈ A1.

Lemma (10.6). Let n ≥ 3, and assume Proposition IXn−1. Let H
be an ample homogeneous ordered 2-graph. Let p be an initial cross
type.

Then there is an initial cross type q with the following property.

Assume [something appropriate, suggested by Figure 3 below,
which shows only H2; here Q1, Q2, Q3 are the types over yK,
A, B.]

Then

Q1 ⊥ Q2 ⊥ Q3 is realized in H

Lemma (10.7). Let H be an ample homogeneous 2-graph and P a
1-type over K⃗n realized in H. Let r be a Ramsey 2-type for HP over
A(n− 1), and q any initial cross type. Then there is a 1-type Q over
K⃗n whose restriction to a = min K⃗n is q, with the following property.
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⋆
y K a

p
A \ {a} B

q

Figure 3

(⋆) For any[thing like the picture below . . . , where both sides are
shown, as top and bottom,]
H contains the configuration (R, K⊥A) where [etc. . . . ]

x0
R

K

Q,P

A

When applied, Lemma 10.6 supplies a useful type q of the form
(x, y), and then Lemma 10.7 provides a useful extension of q to a
type Q of the form (x, K⃗n) with y = min K⃗n.

2B. 3-Constrained metrically homogeneous graphs

In Part II, our analysis requires less substantial machinery than
was required in Part I.

The treatment of the case of diameter 2 by Lachlan and Woodrow
required a clever induction on amalgamation classes (either the origi-
nal Lachlan/Woodrow argument, or as in the approach via Lachlan’s
Ramsey argument sketched above).

On the other hand, in Amato, Cherlin, and Macpherson [2021] we
show that the case of diameter 3 succumbs to a series of direct amal-
gamation arguments with no special technical apparatus, because the
triangle inequality comes into play to limit the ways in which amal-
gamation problems can be completed. Our treatment of the bipartite
case in Part II uses similar arguments, in a more straightforward
manner, as one can “simplify” configurations by reducing the size of
one side (choosing arbitrarily which is the favored side). The prob-
lem in general is to arrive at a notion of simplification which does not
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involve reducing the total number of vertices involved. Very possibly
something similar will work in general: cf. Appendix 18B.1.

Our first objective in Part II is the classification of the 3-constrained
countable metrically homogeneous graphs of generic type, that is, the
ones which are determined solely by constraints on triangles. Actu-
ally, the hypothesis of 3-constraint is unnecessarily strong, and we
will revisit that below. But we keep that hypothesis in view for the
present.

The natural approach to the problem is the following.
1. Let T be the set of triangles which do not occur in the class A.

Calculate parameters δ,K1,K2, C0, C1 from T .
2. Prove that T (δ,K1,K2, C0, C1) = T ; so A = Aδ

K1,K2;C0,C1
by

3-constraint.
3. Work out necessary conditions on the parameters δ,K1,K2, C0, C1

for Aδ
K1,K2;C0,C1

to be an amalgamation class.
4. Show that the conditions obtained are sufficient to makeAδ

K1,K2;C0,C1

an amalgamation class.
We extract the numerical parameters as follows.

Definition 2.3. Let A be a class of finite integral metric spaces.
We define the parameters δ,K1,K2, C0, C1 associated with A as fol-
lows.

— δ is the largest distance occurring, or ∞;
— K1,K2 are respectively smallest, and largest, so that triangles

of types (K1,K1, 1) and (K2,K2, 1) occur in A (where the type
of a triangle is the triple of edge lengths involved);

— C0, C1 are the least even and odd numbers greater than 2δ such
thatA contains is no triangle of perimeter C0 or C1, respectively.

When A = Aδ
K1,K2,C0,C1

, this definition gives the correct values
for the parameters. We will need to prove that the definition is
useful also when A is associated with a metrically homogeneous
graph of unknown type. In particular, when A is associated with
a 3-constrained amalgamation class, with forbidden triangle set T ,
we wish to prove first that A = Aδ

K1,K2,C0,C1
, or equivalently that

T = T (δ,K1,K2, C0, C1); for this, we make use of a number of ex-
plicit amalgamation arguments. These amalgamation arguments are
very direct, and none of the factors occurring in the amalgamation
diagrams involved has order greater than 4.
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Once we have shown that A = Aδ
K1,K2,C0,C1

, we must also derive
the various inequalities given in the statement of Theorem 1.22. For
example, the first of these is the following.

Lemma (14.3). Let A be a 3-constrained amalgamation class of
finite metric spaces corresponding to a metrically homogeneous graph
of diameter δ with associated parameters K1,K2. Then one of the
following holds.

1. K1 +K2 ≥ δ + 1;
2. K1 = 1, K2 = δ − 1;
3. K1 > 1, K1 +K2 = δ, and C0 = 2δ + 2.

Actually, the statement of results of the type of Lemma 14.3 will
be given under a weaker hypothesis than 3-constraint, which we call
4-triviality. We come back to this point below.

For the proof of Lemma 14.3 one makes another explicit amal-
gamation argument, under the assumption that none of the three
alternatives listed applies. Again, the factors occurring in the amal-
gamation argument have order at most 4.

The notion of admissibility involves many such numerical con-
straints. Thus in arguing from the amalgamation property to ad-
missibility we must give a wide variety of explicit amalgamation ar-
guments.

Arguing in the reverse direction, from the numerical constraints
to the amalgamation property, also requires the treatment of a large
number of cases, but according to a different scheme. Namely, we be-
gin by specifying a complicated but explicit amalgamation strategy,
involving a computation of several possible values for the distance
that remains to be determined in the amalgam (in the case of a 2-
point amalgamation problem over the base), and a comparison of
these values with K1 or K2.

The explicit amalgamation strategy is given in Table 2.2, p. 54.
We write C = min(C0, C1) and C ′ = max(C0, C1). In most cases,
our amalgamation strategy makes use of one of the canonical values
r+, r−, r̃ described in the caption.

It has also been observed since that one can make this procedure
more canonical by first choosing a “default” value M (typically M =
max(⌈δ/2⌉,K1) is one suitable choice) and then taking the required
distance to be the closest value to M compatible with the lower
bound r− and the upper bounds r+, r̃. This is not the procedure
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we follow, but the two approaches naturally have a good deal in
common—any valid amalgamation procedures are going to agree to
some extent. This point of view leads to interesting developments
outside the scope of this volume, but discussed in the Appendix.

We prove on a case by case basis that in each case indicated, follow-
ing the amalgamation procedure introduces no forbidden substruc-
tures. Having done that, we will also want to consider the effect of
Henson constraints. With few exceptions, the value chosen by the
amalgamation strategy is neither 1 nor δ; this means that the stated
procedure tends to be compatible, as it stands, with the imposition
of additional Henson constraints. There are some exceptional cases
which require further analysis to avoid extreme values.

This description of our analysis follows the approach taken to iden-
tify the 3-constrained amalgamation classes in the first place: first, de-
termine the necessary numerical conditions on the parameters, then
show that the conditions found are sufficient.

But in our presentation, we will take matters in the reverse order.
We have already written out appropriate conditions on the parame-
ters; we will show first that they suffice for amalgamation (Chapter
12), then that they are necessary (Chapters 13, 14).

As we have mentioned, in the portion of the analysis given in
Chapters 13 and 14 we actually work with a notion broader than
3-constraint, which we call 4-triviality. So now we will describe the
broader setting for these results.

Definition. LetA be an amalgamation class of finite metric spaces
corresponding to some metrically homogeneous graph Γ of diameter
δ. We say that A, or Γ, is 4-trivial if A contains every metric space
M on 4 vertices satisfying the following two conditions.
(a) M contains no forbidden triangle for Γ; and
(b) M is not an ordinary or antipodal δ-Henson constraint.

Since we expect all metrically homogeneous graphs of generic type
to be 4-trivial, this is a more satisfactory assumption than 3-constraint.

Thus the first goal in a full proof of the classification conjecture for
metrically homogeneous graphs of generic type would be to remove
4-triviality entirely from this part of the argument, or rather, to prove
the relevant instances of 4-triviality. This first stage would then show
that the triangle constraints and Henson constraints occurring in an
arbitrary metrically homogeneous graph of generic type are those
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(I) If K1 =∞:
Use the value r− in this case.; or any value between r−

and min(r+, r̃, δ) of the correct parity except possibly δ.
(II) If K1 <∞ and C ≤ 2δ +K1:

(a) If C ′ = C + 1 then:
(i) If r+ ≤ K2 let d(a1, a2) = min(r+, r̃). Otherwise:
(ii) If r− ≥ K1 let d(a1, a2) = r−. And otherwise:
(iii) Let d(a1, a2) = K2.

(b) If C ′ > C + 1 then:
(i) If r+ < K2 let d(a1, a2) = r+. Otherwise:
(ii) If r− > K2 let d(a1, a2) = r−. Otherwise:
(iii) Take d(a1, a2) = K2 − ϵ with ϵ = 0 or 1 defined by

ϵ =

1 if there is x ∈ A0 with d(a1, x) = d(a2, x) = δ,

0 otherwise

(III) If K1 <∞ and C > 2δ +K1:
(a) If r− > K1, let d(a1, a2) = r−.
(b) Otherwise:

(i) If C ′ = C + 1:
(A) If r+ ≤ K1 let d(a1, a2) = min(r+, r̃). Other-

wise:
(B) Let d(a1, a2) = K1+ ϵ; ϵ = 0 or 1 is defined by

ϵ =


1 if there is x ∈ A0 with d(a1, x) = d(a2, x) = δ,

and K1 + 2K2 = 2δ − 1;

0 otherwise

(ii) If C ′ > C + 1:
If r+ < K2 let d(a1, a2) = r+.
Otherwise, let d(a1, a2) = min(K2, C − 2δ − 1).

Here r+, r− are the maximal and minimal values for the dis-
tance consistent with the triangle inequality, and r̃ is a variant
of r+ taking into account the perimeter bounds. When none
of these values is suitable, values close to K1 or K2 suffice.

Table 2.2. Amalgamation Strategy
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which occur in a (unique) metrically homogeneous graph of known
type, and also that the triangles realized in the given graph and its
twin of known type are the same.

The second stage would be the identification of the amalgamation
class A, namely A = Aδ

K1,K2,C0,C1,S , where S is the class of minimal
Henson constraints (or antipodal Henson constraints) for S.

In the treatment of the diameter 3 case in Amato, Cherlin, and
Macpherson [2021], the first stage goes very quickly, while the second
stage is long and delicate.

At an early stage in the identification of the triangle constraints in
a 4-trivial amalgamation class, we derive a property which we call the
Interpolation Property (Definition 13.11). This has as a consequence
that all triangles of even perimeter at most 2δ are realized, and thus
justifies the focus on odd perimeter below that bound (Lemma 13.12).

2C. Reduction theorems for metrically homogeneous graphs

Now we consider the two reduction theorems discussed in the final
chapters of this Memoir.

2C.1. The bipartite case. The first of these theorems concerns
the bipartite case. If Γ is a homogeneous bipartite graph, equipped
with the path metric, then each half of Γ can be viewed as a graph
with edge relation given by d(x, y) = 2. The effect of this in metric
terms is to rescale the metric by a factor of 1/2, and then each half of
Γ becomes a metrically homogeneous graph of diameter ⌊δ/2⌋, called
BΓ. (This notation comes from the study of finite distance transitive
graphs.)

Theorem (Theorem 1.30). Let Γ be a countable bipartite metri-
cally homogeneous graph. Suppose that BΓ is one of the graphs in
our catalog. Then Γ is also in our catalog. In particular, if Γ is of
generic type, then Γ has the form

Γδ
∞,0,2C0,δ+1,S

with admissible parameters (δ,∞, 0, C0, 2δ + 1,S). Here C0, C1 are
to be omitted if δ =∞.

This is an interesting trial run at the general classification theorem.
In the general case, we can always try to make some use of inductive
information (perhaps more usefully once we have δ ≥ 5, and Γ2 may
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be assumed to be of known type, if it contains an edge). There are
specific features of the bipartite case which make the details much
easier to handle than the general case, but one sees some elements of a
general strategy. And in the cases treated so far, direct amalgamation
arguments suffice.

In the bipartite case, we treat the cases of finite or infinite diam-
eter together, since this analysis precedes the reduction of infinite
diameter to finite diameter, and plays a role in the latter. An initial
reduction (Fact 1.31) takes us down to the case in which

(BΓ)1 is isomorphic to the random graph G∞

So we come down to the following.

Proposition (Proposition 16.2). Let Γ be a countable bipartite met-
rically homogeneous graph for which

(BΓ)1 is the random graph G∞

Suppose that BΓ is of known type. Then Γ is generic bipartite, sub-
ject to a bound on perimeter and some δ-Henson constraints, i.e.

Γ ∼= Γδ
∞,0,C0,2δ+1,S

for some even C0 with 2δ + 2 ≤ C0 ≤ 3δ + 2. (Here C0, C1 are to be
omitted if δ =∞.)

The first step, which is easy, is to work out the parameters of BΓ
in terms of the parameters of Γ, and to invoke the assumption that
BΓ is of known type to identify it explicitly.

The rest of the analysis consists of a direct proof of an embedding
theorem for Γ—in other words, we determine the associated amalga-
mation class explicitly. Call a finite metric space A “Γ-constrained”
if it embeds into the homogeneous bipartite graph Γ∗ with the same
parameters. The embedding theorem states that every finite Γ-con-
strained metric space embeds into Γ, which is a more convenient way
of making the claim Γ ∼= Γ∗. This must first be proved for triangles
(i.e., we need to know first that the forbidden triangles are as the
parameter values would suggest), and then in general.

The proof of the embedding theorem proceeds by induction on a
particular measure of complexity for the configurations we are trying
to embed into Γ, one which pays particular attention to the pairs
at distance 1 or δ. Similar measures of complexity are used in the
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treatment of the corresponding embedding theorem in the diameter
3 case, as well.

2C.2. The case of infinite diameter. In Chapter 17, we take
up the reduction of the infinite diameter case to the finite diameter
case. That reduction theorem reads as follows.

Theorem (Theorem 1.26). Suppose that every metrically homoge-
neous graph of finite diameter is of known type. Then every metrically
homogeneous graph is of known type.

Since the bipartite case (K1 =∞) has already been reduced to the
opposite case K1 = 1, we may assume here that K1 is finite. Then
by inductive arguments of a general kind, the proof reduces quickly
to the following specific point of local analysis.

Lemma (Lemma 17.2). Suppose that every metrically homogeneous
graph of finite diameter is of known type. Let Γ be a metrically
homogeneous graph of infinite diameter, with K1 < ∞. Let K =
max(K1, 2). Suppose that ΓK contains a triangle of type (K1,K1, 1).
Then Γ is of known type, specifically of the form

Γ∞K1,∞,∞,S

with S either empty or consisting of one clique.

To prove that ΓK does contain a triangle of type (K1,K1, 1), we
again make use of explicit amalgamation arguments.

2D. Local analysis of metrically homogeneous graphs

Now we take up the main results of local analysis, which are applied
in the proofs of the results sketched above, and are also useful in the
case of diameter 3 (though more useful in large diameter). This is
the point where the definition of generic type enters directly into the
proofs.

We recall the statements of the two main results.

Theorem (Theorem 1.32). Let Γ be a countable metrically homo-
geneous graph of generic type and of diameter δ, and suppose i ≤ δ.
Suppose that Γi contains an edge. Then Γi is a countable metrically
homogeneous graph (and, in particular, is connected).

Furthermore, Γi is primitive and of generic type apart from the
following cases.
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(a) If δ = 2i, and Γ is antipodal, then Γi is imprimitive (antipodal);
(b) If i = δ, and C0, C1 ≤ 2δ + 3, then Γδ is a complete graph, and

either K1 = 1 or Γ is antipodal.

Proposition (1.33). Let Γ be a countable metrically homogeneous
graph of diameter δ. Suppose

K1 ≤ 2.

Then for 2 ≤ i ≤ δ−1, Γi contains an edge, unless i = δ−1, K1 = 2,
and Γ is antipodal.

The proof of Theorem 1.32 takes place in three stages.
1. Assuming Γi is connected, show that it is metrically homoge-

neous (easy) and either of generic type, or falls under one of the
exceptional cases mentioned (Lemma 15.1).

2. Show that if Γi contains an edge then it is connected (Lemma
15.7).

3. Deal with the issue of primitivity (Lemma 15.10).
We now discuss the second stage of the proof of Theorem 1.32,

the proof of connectedness, which makes good use of the hypothe-
sis of generic type and uses arguments typical of our approach to
local analysis. We will say no more at this stage about the proof of
Proposition 1.33.

In the proof of connectedness, we would like to proceed by induc-
tion on i, but for small i the hypothesis concerning the existence
of edges is unlikely to hold, so this appears to be challenging. We
can deal with this difficulty by first proving an analogous but much
weaker statement, which does hold uniformly.

Lemma (Lemma 15.4). Let Γ be a metrically homogeneous graph
of generic type and diameter δ. Suppose i ≤ δ, and suppose also that
if i = δ then K1 > 1. Then the metric space Γi is connected with
respect to the edge relation defined by

d(x, y) = 2

Because we can argue inductively, the proof of this Lemma is very
short, but it does rely on the hypothesis of generic type.

Another very useful principle is the following.

Lemma (Lemma 15.5). Let Γ be a metrically homogeneous graph
of generic type. Suppose 1 ≤ i ≤ δ. Then for u ∈ Γi±1, the set
Γ1(u) ∩ Γi is infinite, unless i = δ − 1 and Γ is antipodal.
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Apart from one special case, the hypothesis of generic type trivi-
alizes the proof of Lemma 15.5, by considering vertices at distance 2
lying in Γi±1. But the case

i = δ

requires direct attention, with a more combinatorial proof.
Assuming these results, the proof that Γi is connected when Γi

contains an edge breaks up into a simple “main line” and various
exceptional cases requiring special attention.

In the main line, we suppose that the connected components of
Γi are not complete; that is, they contain pairs at distance 2. Then
one argues easily that for u ∈ Γi−1, the set Iu of neighbors of u in
Γi is contained wholly within a unique connected component of Γi,
and that for u, u′ ∈ Γi−1 at distance 2, one gets the same connected
component. Then connectedness of Γi−1 with respect to the relation
d(x, y) = 2 gives the uniqueness of the connected component in Γi.

So we need only consider the case in which
(⋆) the connected components of Γi are complete.
We may divide this case into three subcases.

(a) i < δ, K1 = 1; or
(b) K1 > 1; or
(c) K1 = 1, i = δ.
In the first subcase, where i < δ and K1 = 1, the contradiction

is immediate: it is easy to see that Γi contains a copy of Γ1, so its
connected components are not complete.

In the second subcase, with K1 > 1 and the connected components
of Γi complete, these components must have order 2.

This very special case is analyzed in the proof of Lemma 15.8, ar-
riving in this case at the conclusion that Iu = Iu′ for u, u′ ∈ Γi−1
at distance 2, and hence by connectivity with respect to the relation
d(x, y) = 2, the set Iu is independent of u, which gives a contradic-
tion.

In the third and last subcase, we have K1 = 1 and i = δ. This is
analyzed separately in Lemma 15.9, along the following lines.

First, it is easy to show in this case that Γδ−1 contains an edge,
and hence by a case already treated, Γδ−1 is connected.

Now for u ∈ Γδ−1 we consider, in addition to the set Iu of neighbors
of u in Γδ, the set Îu consisting of all vertices lying in the same
connected component of Γδ as some vertex in Iu.
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If Iu = Îu for u ∈ Γδ−1, one finds easily that Γ is imprimitive; but
Γ is not bipartite, and if Γ is antipodal then Γδ, consisting of one
vertex, is certainly connected.

So for u ∈ Γδ−1, we may suppose Iu ̸= Îu, and as the connected
components of Γδ are complete we find that

Îu = {v ∈ Γδ | d(u, v) ≤ 2}

One can then show that for u, u′ adjacent in Γδ−1, we have Îu =

Îu′ , and then by connectivity of Γδ−1, the set Îu is independent of
the choice of u. Thus Îu = Γδ; that is, the only distances occurring
between Γδ−1 and Γδ are 1 and 2.

This is a very special configuration. Denote by δ′ the diameter of
Γ3. Our assumptions lead quickly to δ′ ≤ 3 and δ′ = δ. As δ ≥ 3 we
arrive at

δ′ = δ = 3

Now a close look at the resulting configuration reveals a contradic-
tion, as follows.

Let v∗ be the basepoint of Γ (that is, Γ3 = Γ3(v∗)). Let u1, u2 be
at distance 3 in Γ3. Then v∗, u2 are two points in Γ3(u1) with the
property that the connected component of u2 in Γ3(u1) is contained
in Γ3(v∗).

Cycling (u1, v∗, u2) by homogeneity, we conclude that u1, u2 have
the property that the connected component of u2 in Γ3 is contained
in Γ3(u1). But for any neighbor u of u1 in Γ2, Iu meets the connected
component of u2 in Γ3, and this is a contradiction.
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CHAPTER 3

THE CATALOG OF HOMOGENEOUS ORDERED
GRAPHS

3A. Preliminaries

We now begin the classification of the countable homogeneous or-
dered graphs. In Chapters 1 and 2 we have discussed the statement
of the classification theorem, our motivation for taking up the prob-
lem, and the general methodology of the proof (and its antecedents).
In particular we discussed the resulting catalog of homogeneous or-
dered graphs (Table 1.1), but we have not yet explained all of the
notations used there. We add a few general remarks before returning
to a discussion of the catalog.

None of the examples in the catalog are exotic.
There is some relatively recent work that can be interpreted as ini-

tiating their classification. First, as Cameron pointed out, the model
theoretic notion of a permutation is a structure with a pair of lin-
ear orders (the corresponding 2-dimensional pictures are one popular
representation of permutations in the area of permutation patterns,
as they give a good sense of the pattern—the isomorphism type of
the permutation). Cameron took up the very natural problem of the
classification of homogenous permutations in Cameron [2002/03)].
Since we can trade in one of the two orders for a symmetric relation
(by taking its symmetric difference with the other), we can think of
these also as homogeneous ordered graphs.

A revisionist reading of Cameron’s classification would be the fol-
lowing: homogeneous permutations arise naturally from two sources,
namely—

• Generic linear extensions of homogeneous partial orders;
• Generic linear orderings of homogeneous tournaments.

63
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In this particular context, the homogeneous partial orders are just
disjoint copies of Q, or dually, a linearly ordered family of indepen-
dent sets, while the only relevant tournament is the rational order—so
this is not the first interpretation of these results that would come to
mind.

Any pair of linear orders can be viewed as a structure equipped
with one partial order and a linear extension of it; the partial or-
der is their intersection and the order can be either one of the given
ones. This motivated Dolinka and Mašulović to classify all the homo-
geneous structures of that type: a partial order with a linear order
extending it ( Dolinka and Mašulović [2012]). This includes both the
case of a homogeneous partial order with strong amalgamation which
is expanded by a generic linear extension, as well as the generic per-
mutation.

This class of homogeneous structures can also be interpreted as a
particular kind of homogeneous ordered graph, namely one in which
there is no induced path of length 2 ordered with its “midpoint” in
the middle of the order; passing to the graph complement gives a
dual class of examples.

Our classification theorem states that every countable homoge-
neous graph arises in one of the following ways: either in the manner
studied in Dolinka and Mašulović [2012] or as the graph complement
of such an ordered graph, or else as a generically ordered homoge-
neous tournament or a generically ordered homogeneous graph.

There are very few homogeneous countably infinite tournaments:
the rational order Q, the generic local order S, and the random
tournament T∞ (Lachlan [1984]). Since the rational order falls under
the classification in Dolinka and Mašulović [2012], and the generically
ordered random tournament is a transform of the generically ordered
random graph, the only homogeneous ordered graph that will need to
be considered explicitly as a homogeneous ordered tournament here
is the one associated with the generic local order S.

But that one will indeed take some detailed attention.

3B. The catalog

The proof of Theorem 1.2 works tales up various cases which we
present in a catalog which gives the following information about each
the structures expected to occur.
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(a) What the natural interpretation of the structure is, as a homo-
geneous structure;

(b) how its amalgamation class is characterized by its minimal con-
straints—namely, the minimal finite ordered graphs which do
not embed in the given structure;

(c) which of the three broad families of homogeneous structures
(partial orders, tournaments, or graphs) are the source of the
structure, and how the linear order is chosen.

We have the following four types of homogeneous ordered graphs,
which we claim are exhaustive (though overlapping).

EPO Generic linear extensions of homogeneous partial orders with
strong amalgamation.

EPOc Graph complements of graphs falling under EPO.
LT Generic linear orderings of homogeneous tournaments with

strong amalgamation.
LG Generic linear orderings of homogeneous graphs with strong

amalgamation.
The trivial ordered graph (on one vertex) falls under any of these
classes indifferently—we will assign it to its own class Triv.

While these classes are not disjoint, each one contains at least one
example not found in any of the others.

We will first list the possibilities explicitly, according to the divi-
sion into types, before arranging them in a table according to the
constraints determining them.

Triv: There is just one trivial structure.
EPO: The nontrivial homogeneous partial orders with strong amal-

gamation are the following.
(a) n ·Q with 1 ≤ n ≤ ∞: the disjoint union of a number of copies

of Q.
(b) Q[I⃗∞] , the result of replacing each point of (Q, <) by an infinite

independent set.
(c) The generic partial order P.
The generic linear extension of n ·Q will be denoted n ∗Q; it can

be viewed as (Q, <) equipped with an equivalence relation having n
classes, with each class dense. For n = 1 this is a degenerate case of
either EPO or LT.
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The generic linear extension of Q[I⃗∞] is a homogeneous permuta-
tion, after a change of language, as described above. (Actually two
homogeneous permutations, as the change of language may include
reversing the order.)

The generic linear extension of the generic partial order is the
Fraïssé limit of the entire class of finite linear extensions of partial
orders.

EPOc: The complementary class is not very intelligible in its own
right. These are the ordered graphs for which the complement be-
comes a homogeneous partial order when viewed as a directed graph,
with the orientation given by the ordering. To classify these graphs
we will simply classify their complements under the previous heading.

This will be seen more clearly in the table below.

LT: The homogeneous tournaments with strong amalgamation are
the three infinite homogeneous tournaments: the rational order (Q, <),
a tournament S which is the generic “local order,” characterized by
the condition that for any vertex v its out-neighbors v+ and its in-
neighbors v− are linearly ordered, and the generic or random tour-
nament.

—The generic linear extension of (Q, <) by a second linear order
appears as the generic permutation in Cameron’s classification.

—The generic linear extension of S occupies a distinguished po-
sition as the most complex of the “special cases” that need to be
considered in our analysis, before passing to the main case;

—The generic linear extension of the random tournament, when
viewed as an ordered graph, becomes the generic linear extension of
the random graph, and will be treated under that heading.

So what we have here is one case which was thoroughly covered by
Cameron, one case that will be handled under a different heading, and
just one case that we need to deal with ourselves under the present
heading.

This class is closed under reversal of the ordering, which amounts
to reversal of the tournament relation. In terms of graphs, this is the
operation of graph complementation.

LG: The homogeneous graphs with strong amalgamation fall into
two types, along with their complements. The first class consists of
equivalence relations with n ≤ ∞ infinite classes, where the edge
relation in the graph is the equivalence relation, or its complement.
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The generic linear extension of such an equivalence relation appears
above as n∗Q. Namely, view the equivalence relation as a tournament
by viewing it first as a graph and then taking the orientation from the
linear order. This gives n ·Q, and now the order is a linear extension
of this. This example is in EPO, and the complement is in EPOc.

The second and main class of homogeneous ordered graphs with
strong amalgamation are the Henson graphs Hn, characterized among
homogeneous graphs by the minimal forbidden structure Kn (a com-
plete graph on n vertices), together with their complements, charac-
terized similarly; and also the random graph Γ∞, which is the univer-
sal homogeneous graph and the Fraïssé limit of the class of all graphs.
The complement of this graph is the same graph, up to isomorphism,
since the complement of a graph is a graph.

The Henson graphs and their complements, with a generic linear
order, appear only under the heading LG. The random graph appears
also as the random tournament, but under the present heading we
can treat Henson graphs and the random graph simultaneously.

We have encountered Table 3.1 already in §1C (p. 68). But some
of the notation used remains to be explained here.

We subdivide the class EPO according to the type of underlying
partial order P as follows:
EPO0: P is linear or a set of incomparable elements;
EPO⊥: incomparability is a nontrivial equivalence relation;
EPO→: comparability is a nontrivial equivalence relation;
EPOg: P is the homogeneous universal partial order.

The labels in the table keep track of graph complementation: e.g.,
II.1c is the graph complement of II.1 (or its reversal, if we use the
language of ordered tournaments). Similar notation is employed in
the list of forbidden substructures, given next.

Note that the definitions of Groups I, II, III given in the catalog,
in terms of specific structures which are either required or forbidden,
are mutually exclusive and exhaustive, and correspond fairly well to
a meaningful division of the classification problem.

It remains to go over the notation for the constraint graphs which
is used in the third column of the table.
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I Graphs Omitting I⃗2 or K⃗2

Label Structure Forbidden Type
I.1 |Γ| = 1 K⃗2, I⃗2 Triv
I.2 (Q, <) = K⃗∞ I⃗2 EPO0, LT, LG
I.2c (Q, >) = I⃗∞ K⃗2 EPO0, LT, LG
II Graphs containing I⃗2 and K⃗2, but not both C⃗

+

3 and C⃗
−
3

Label Structure Forbidden Type
II.1 Q[Qop] = K⃗∞[I⃗∞] C⃗

+

3 ,I⃗1 ⊥ K⃗2, K⃗2 ⊥
I⃗1, and C⃗

−
3

EPO⊥

II.2 Generic permutation C⃗
+

3 , C⃗
−
3 LT

II.3n I⃗n ∗ K⃗∞ dense, with each
class dense (n · Q, shuffled);
n ≥ 2

C⃗
+

3 , [I⃗1, I⃗2], [I⃗2, I⃗1]

and I⃗n+1 (if n <∞)
EPO→

II.4 P⃗=Generic linear
extension of generic p.o.

C⃗
+

3 EPOg

II.1c Qop[Q] = I⃗∞[K⃗∞] C⃗
+

3 ,[I⃗1, I⃗2], [I⃗2, I⃗1],
C⃗
−
3

EPOc
⊥

II.3cn K⃗n ∗ I⃗∞ dense, with each
class dense

C⃗
−
3 , I⃗1 ⊥ K⃗2, K⃗2 ⊥

I⃗1 and K⃗n+1 (if n <
∞)

EPOc
→

II.4c Reversal (complement) of
II.4

C⃗
−
3 EPOc

g

III Graphs containing both C⃗
+

3 and C⃗
−
3

Label Structure Forbidden Type
IIIA S⃗=Generically ordered S [I1, C3] and [C3, I1] LT

(all ordered forms)
IIIBn H⃗n=Generically ordered

Henson graph (n <∞)
K⃗n+1 LG

IIIBc
n H⃗c

n I⃗n+1 LG
IIIC Γ⃗∞=Generically ordered

random graph
none LT, LG

Table 3.1. The Homogeneous Ordered Graphs
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Notation 3.1 (Constraint Graphs, Ordered and Unordered).

1. C⃗
+

3 and C⃗
−
3 are the two ordered forms of the tournament C3,

which is a 3-cycle. Both may be represented as (a, b, c) with a < b < c,
where we take a → b → c → a in the positive orientation, while
c → b → a → c in the negative orientation. Viewed as graphs, C⃗

+

3

becomes an oriented path P⃗3 with a, b adjacent to c, and C⃗
−
3 becomes

its graph complement P⃗ c
3 .

C⃗
+

3 C⃗
−
3

P⃗3 P⃗ c
3

Ordered Tournaments and Ordered Graphs

2. I⃗n and K⃗n are an ordered independent set and an ordered clique
of order n, respectively. When n =∞, the order is generally assumed
to be of type (Q, <).

3. When A,B are ordered tournaments, [A,B] denotes the disjoint
union of A and B with A < B and A → B, while A ⊥ B denotes
the disjoint union of A and B with A < B and B → A. In terms of
ordered graphs, these conventions translate to the following: A ⊥ B
is the disjoint union of A and B with A < B and no additional edges,
and [A,B] denotes the disjoint union of A and B with A < B and
all pairs in A×B or B ×A added as edges.

4. In addition to C⃗
+

3 and C⃗
−
3 , the graphs I⃗1 ⊥ K⃗2, K⃗2 ⊥ I1, and

their complements [I⃗1, I⃗2], [I⃗2, I⃗1] are important constraints, either
as forbidden or required substructures.

5. We also use the notations [I1, C3] and [C3, I1] for the unordered
tournaments consisting of the disjoint union I1∪C3 with I1 dominat-
ing or dominated by C3, respectively. Each of these corresponds to 8
distinct ordered forms. Similarly, we write I1 +K2 for the unordered
disjoint union of I1 and K2. This has three ordered forms, namely
I⃗1 ⊥ K⃗2, C⃗

−
3 , and K⃗2 ⊥ K⃗1.
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6. The reversal of an ordered graph is the same graph with the or-
der reversed. When we view ordered graphs as ordered tournaments,
this operation corresponds to reversing both the order and the tour-
nament relation (arcs). If we reverse only the order in an ordered
tournament, this would correspond to taking the graph complement.

7. In the context of ordered tournaments, Q denotes (Q, <,<) and
Qop denotes (Q, <,>). This is not the “reversal” of Q in the sense we
have just introduced, and this particular notation will only be used
in the catalog.

The classification corresponding to groups (I, II) is known, though
not typically thought of as a class of ordered graphs. The character-
ization of Case (IIIA) will be handled by direct means, at consid-
erable length. Once we get completely clear of that case we will find
ourselves in the generic case, where on the one hand the language of
ordered graphs is natural, and on the other hand Lachlan’s develop-
ment of the Lachlan/Woodrow technique applies. The treatment of
this case will occupy the bulk of Part I; it begins in Chapter 5.

3C. Homogeneous ordered graphs omitting C⃗
+

3 or C⃗
−
3

The result of Dolinka and Mašulović [2012] reads as follows, when
formulated in the language of ordered tournaments, and including
the complementary case.

Proposition 3.2. Let Γ be a countable homogeneous ordered tour-
nament omitting C⃗

+

3 or C⃗
−
3 . Then Γ falls into groups (I) or (II) of

the catalog.

In the language of ordered graphs, C⃗
+

3 is a naturally ordered path
on three vertices, denoted P⃗3 since there are three vertices, and C⃗

−
3

is the graph complement P⃗ c
3 . Since the class of homogeneous ordered

graphs is closed under graph complementation, it suffices to consider
the case in which Γ omits C⃗

+

3 .
The ordered tournament C⃗

+

3 is as shown below, where the order
goes from left to right.

We give the representation both as an ordered tournament and as
an ordered graph.
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C⃗
+

3 P⃗3

To omit C⃗
+

3 is to say that the relation ≺ given by the intersection
of the tournament relation with the ordering is transitive (C⃗

+

3 depicts
a failure of transitivity). As ≺ is irreflexive and asymmetric, it is then
a partial order. Thus Γ is a homogeneous linear extension of some
partial order.

The classification of such structures is the subject of Dolinka and
Mašulović [2012], giving the corresponding part of the list under
Groups I and II, with the remaining entries obtained by graph com-
plementation. The homogeneous permutations occupy Group I and
positions (II.1), (II.2). The entries under (II.3n), and (II.4) are
characterized in Dolinka and Mašulović [2012].

Within these two groups, only the generic permutation needs to be
viewed as an ordered expansion of a homogeneous tournament; up
to complementation, all the other cases in the first two groups are
expansions of homogeneous linear orderings.

With these two groups disposed of, we see that the only obstacle left
before returning to the language of ordered graphs is the generically
ordered local order.





CHAPTER 4

THE GENERICALLY ORDERED LOCAL ORDER

4A. Statement of the problem

The goal of the present section is the following.

Proposition 4.1. Let Γ be a countable homogeneous ordered tour-
nament containing C⃗

+

3 , C⃗
−
3 , and I⃗3, and not containing I⃗1 ⊥ C⃗

+

3 .
Then Γ is the generically ordered local order S⃗.

We go over the notation and terminology used here.
We write In for an independent set of n vertices (I1 will be our

usual name for the trivial graph), and I⃗n is our notation for the
ordered version (note that this is rigid). In terms of ordered tourna-
ments, the arc relation on I⃗n is the reverse of the ordering, or in other
words this is the permutation in reverse order. Its graph complement
K⃗n corresponds to the identity permutation in which the order and
tournament relations coincide.

Definition 4.2. A local order is a tournament such that for every
vertex v∗, the vertices dominating, or dominated by, v∗ are linearly
ordered by the arc relation. In other words, the tournament must
omit the two tournaments

(I1 → C3) and (C3 → I1)

of order 4 in which a vertex dominates, or is dominated by, a cyclic
tournament of order 3 (Figure 4).

We recall that the notation A ⊥ B denotes the ordered disjoint
sum of two ordered graphs, and in terms of tournaments this means
that B dominates A. When we want to emphasize the tournament
structure we write A← B for this.

73
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IC3 C3I

Figure 4. Forbidden tournaments

The structure “ I⃗1 ⊥ C⃗
+

3 ” has two other natural names, one when
viewed as an ordered graph and one when viewed as an ordered tour-
nament: namely, “I1 ⊥ P⃗3” as an ordered graph, and “1← C⃗

+

3 " as an
ordered tournament. Our preferred notation “ I⃗1 ⊥ C⃗

+

3 ” mixes these
two points of view.

1 2 3 4

I1 ⊥ P⃗3

1 2 3 4

I1 ← C⃗3

In the statement of Proposition 4.1, the hypothesis that I⃗3 is present
is innocuous. As Γ is nontrivial, ordered, and homogeneous, it is in-
finite, and therefore contains either K⃗∞ or I⃗∞. By symmetry we are
free to assume the latter—but we do not need to assume so much,
and I⃗3 will suffice. Without that assumption, we would have to con-
sider the generically ordered complement of the generic triangle free
graph at this point, which is irrelevant since that ordered graph will
be covered later by a characterization of its complement.

We may convert the homogeneous ordered tournament S⃗ to a ho-
mogeneous ordered graph by the usual process of taking as edges
those pairs (a, b) for which the order and the tournament structure
agree. One way of gauging the complexity of this graph is to ask for
the minimal language which makes it homogeneous.

We now rephrase Proposition 4.1 in more concrete terms.

Definition 4.3. Let S be the set of all finite ordered tournaments
which embed into every homogeneous ordered tournament which con-
tains C⃗

+

3 , C⃗
−
3 , and I⃗3, and omits I⃗1 ⊥ C⃗

+

3 .
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Proposition 4.1 can be restated as follows: S consists of all finite
ordered tournaments for which the underlying tournament is a lo-
cal order—for which “S” would be a very natural notation; at the
moment our choice of notation expresses some optimism.

We will now begin to work toward the proof of Proposition 4.1
in the form just stated. That is, we will show that various ordered
tournaments belong to S.

4B. Permutations

Our first objective is the following, to be reached by stages.

Lemma 4.4. Every finite permutation belongs to S.

We recall that permutations are structures with two orders.
The next lemma is the first in a series of explicit amalgamation

arguments. We will be moving away from a pictorial representation
of such arguments to a tabulation of their combinatorial content,
but here we mix the two approaches so as to illustrate both styles
of argument. We will take a more pictorial approach in Part II, but
in the present part the arguments are too lengthy for that style of
presentation, until we reach the more substantial arguments relating
to Propositions I-V below.

After working through the next lemma we will arrive at a more
compact way of representing such arguments.

The pictures are most easily drawn (and understood) as ordered
graphs.

Lemma 4.5. I⃗1 ⊥ [I⃗2, I⃗1] belongs to S.

Proof. We use a series of explicit amalgamations. We begin with
the following; the notation is explained below.

In tabular form this reads as follows.

Label Non-edge Edge Label Non-edge Edge

(∗) (adbe) # (cadb) □ (A) (cade) (∗)1 (fcae) □

(A1) (A)1 (∗)1 (B) # (∗)2
We pause to explain the graphical and tabular conventions, after

which we will be in a position to continue the analysis, and fill in the
details.
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c a d b e

(∗)

f c a d e

A

f c a d

A1

c d b e

B

A2 . . .

Explanation:
Each diagram shows a 2-point amalgamation problem. The two

points whose type is to be determined are circled.
The order goes from left to right, e.g. (c < a < d < b < e) in (∗);

the order between a and b is one of the points to be determined in
the amalgam, but in the majority of cases there will be a point in
the base in between, as here, so the order is not actually in doubt.

The edges represent an ordered graph; one may recover the tourna-
ment description from the edges and the order. The graph notation is
more legible, but in our context it is more natural to think of these di-
agrams as an efficient representation of certain ordered tournaments.

Now consider the first diagram (∗). The base of the amalgamation
is cde to which we add the points a and b to get the factors (acde)
and (bcde) of the amalgam, subsequently denoted by (∗)1 and (∗)2.

If we suppose that the factors (∗)1 and (∗)2 are present in Γ, then
some amalgam of them is also present, as Γ is homogeneous. In this
amalgam (a, b) is a non-edge or an edge, or possibly a = b (though,
as here, this is rarely a viable option).

In the first line of the accompanying table the entry for (∗) contains
two pieces of information (2nd and 3rd columns).

• If (a, b) is a non-edge then (adbe) gives a contradiction: namely,
it has the form I⃗1 ⊥ C⃗

+

3 .
• If (a, b) is an edge then (cadb) gives the configuration which is

the subject of the lemma—namely, I⃗1 ⊥ [I⃗2, I⃗1].

The possibility a = b is eliminated by inspection of the vertex d, and
is not mentioned in the table.

At this point, the diagram (∗), or the first entry in the table, shows
that it is sufficient to embed (cade) and (cdbe) as shown in (∗) into
Γ to conclude the proof. These two configurations, which we call (∗)1



4B. Permutations 77

and (∗)2 respectively, are the subject of diagrams (A) and (B), which
show two further amalgamation problems, each with its own factors.

The annotation for (A) in the table indicates that a non-edge pro-
duces the first factor of (∗), while an edge produces the configuration
which is the subject of the lemma. Either will suffice at this point.
The annotation for (B) indicates that the amalgam produces either
a contradiction or the required (second) factor of (∗).

It remains to be checked that the factors of the diagrams (A,B) are
embeddable in Γ. The factors of (B) are of order 3 and are present
in Γ by hypothesis, so the table offers no further discussion of this
point.

This leaves the factors of (A) for further consideration, and the
analysis continues.

The diagram (A1) shows the amalgam that produces the first factor
of (A) (or else the first factor of (∗), which is even better). Since the
relevant piece of (A1) in each case is the whole of (A1), we do not
need to specify this piece in the table. Again, the factors of (A1) are
available by hypothesis.

This leaves us with the second factor of (A) to consider. The nota-
tion (A2 . . . ) means that this will be treated below.

In the vast majority of cases, but not all, the two vertices whose
relation is to be determined in our diagrams are separated in the
order by at least one vertex; therefore the order relation between
them is known, and in particular they cannot be made equal. When
this is not the case, we must consider the order of the pairs as well as
the presence or absence of an edge; and also verify that some element
in the base prevents them from being identified.

We have seen from these diagrams and the notes in the table that
to complete the proof it will be sufficient to show either that the
factor (A2) = (fcde) of (A) is present in Γ, or else that the first
factor (∗)1 or the target configuration I⃗1 ⊥ [I⃗2, I⃗1] is present.

We may now proceed with the analysis, as follows, arriving again
at a configuration that requires further attention (A2.1.2) (see Figure
7, Table 4.1).

The table should provide adequate commentary on the pictures,
in the manner described above. Diagram A2 will produce either the
second factor A2, or the factor (∗)1 itself, and the second factor of di-
agram A2 is to be produced by the simple amalgam shown as (A2.2).
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f c d e g

A2

f c d h g

A2.1

f d e g

A2.2

f c d h

A2.1.1

f c h g i

A2.1.2

Figure 7. A2

Label Non-edge Edge Label Non-edge Edge

(A2) (fceg) (∗)1 (fcde)
(A2)

(A2.1) (fcdg) (∗)1 (fcdg)
(A2)1

(A2.2) (A2)2 (∗)1

(A2.1.1) (∗)1 (A2.1)1 (A2.1.2) (fchi) # (fchf)
(A2.1)2

Table 4.1. Amalgamation: A2

The first factor (A2.1) = (fcdg) of A2 requires more attention. It
will be obtained from the diagram A2.1, or else (∗)1 will be obtained
directly. The two factors of A2.1 are to be produced by the amal-
gams shown in (A2.1.1) and (A2.1.2). The factor (A2.1.1) requires
no further discussion, but now both factors of (A2.1.2) require further
consideration: (fcgi) and (chfi).

These two configurations are dealt with by the two sets of diagrams
set out below, with justifications indicated in the accompanying ta-
bles (we have abbreviated the identifying labels, which are keyed to
the diagram as previously).

One noteworthy point is that in the amalgamation indicated in
entry (fcgi− 2), below, the order type of the pair (i, j) is not deter-
mined, but these two elements must remain distinct in the amalgam.
As a result the table has two entries for this diagram, one for the
case (i < j), the other for the case (j < i).
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f c g j i

(fcgi)

f c g k j

(fcgi)1

c g j i

(fcgi)2

f c g k

(fcgi)1.1

f c k j

(fcgi)1.2; see (fcgi)2

Label Non-edge Edge Label Non-edge Edge

(fcgi) (fcgi) = (fcji) (∗)1 (−1) (fcgj) = (fcgj) =

(A2.1.2)1 (A2.1.2)1 (fcgi)1

(−2) (fcgi)2 # (−2) (A)2 □

(j < i) (i < j)

(−1.1) (A)2 (fcgi− 1)

c g h g i

(chgi)

c j g i

(chgi)1

j h g i

(chgi)2

Label Non-edge Edge Label Non-edge Edge

(chfi) (A)2 (A2.1.2)2

(−1) (g < i) (chfi)1 # (−1) (i < g) (A2)2 □

(−2) (A2)2 (chfi)2

As these last cases illustrate, we are exploring a tree of possibilities,
and some possible outcomes climb back toward the root rather than
to the immediate parent.

This completes the analysis. □

We will continue to argue in this style, mixing diagrams and some
tabulated documentation, throughout most of this part.

Lemma 4.6. If a homogeneous ordered tournament contains both
(C⃗
−
3 → 1) and C⃗

+

3 , then Γ contains I⃗1 ⊥ C⃗
+

3 .
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Proof. The construction is summarized as follows.

c a d b e

(∗)

c a d e f

A . . .

c f d b e

B

c f b e

B.1

f d b e

B.2

Label Non-edge Edge Label Non-edge Edge

(∗) (adbe) □ (cabe) □

(A) (cade) (∗)1 (cdef) □ (B) (cdbe) □ (cdbe) (∗)2
(B.2) # (B)2

Here we must notice that (B.1) is given by Lemma 4.5; more pre-
cisely, if we suppose toward a contradiction that Γ does not contain
I⃗1 ⊥ C⃗

+

3 , then Lemma 4.5 applies.
As the diagram indicates, we must still consider the two factors of

(A), namely (A)1 = (cade) and (A)2 = (cdbe). And each will take
some attention.

The configuration (A)1 = (cade)
We consider two approaches to this factor, which we designate by

(A1a) and (A1b). Both are shown below.

c a d g f

A1a

c a d g

A1a.1

c a d g f

A1b

h c a d g

A1b.1

c a g f

A1b.2

A1a.2 . . .
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Label Non-edge Edge Label Non-edge Edge

(A1a) (cadf) (∗)1 (cadf) (A)1 (A1a− 1) (∗)1 (A1a)1

(A1b) (∗)1 (A)1

(A1b.1) (hcdg)
(A1a)2

(cadg)
(A1b)1

(A1b.2) (A1a)2 (A1b)2

The amalgamation beginning with (A1a) succeeds if the factor
(cagf) (not shown) is present in Γ.

On the other hand the amalgamation beginning with (A1b) either
succeeds, or produces that factor. So we do not need to follow up
on the missing diagram (A1a.2), as either way the analysis along the
branch beginning at (A)1 is complete.

The configuration (A)2 = (cdef).

c d e f g

A2

c e f g

A2.2

c d h e g

A2.1

c i d h e

A2.1.1

i d h e

A2.1.1.2

A2.1.2 . . .

Label Non-edge Edge Label Non-edge Edge

(A2) (defg) □ (cdef)
(A)2

(A2.2) □ (A2)2

(A2.1) (cdeg)
(A2)1

(dheg)
(A2)1

(A2.1.1) (cidh) □ (cdhe)
(A2.1)1

(A2.1.1.2) (A2.1)1 (A2.1.1)2

Since diagram (A2.2) has factors in Γ by hypothesis, we are con-
cerned only with (A2.1), and we will treat the second factor (cheg)

of (A2.1) below. One factor of (A2.1.1) is (cihe) ∼= C⃗
−
3 → 1, which

is assumed to embed into Γ. So there remains only (A2.1.1.2), whose
factors also embed into Γ.
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Thus we need only consider the configuration (A2.1)2 = (cheg),
handled as shown.

c h e i g

A2.1.2

h e i g

A2.1.2.2

Label Non-edge Edge Label Non-edge Edge

(A2.1.2) (ceig) □ (cheg)
(A2.1)2

(A2.1.2.2) □ (A2.1.2)2

The first factor (chei) of (A2.1.2) is handled by Lemma 4.5 as
before, hence is not shown separately.

This completes the analysis. □

Lemma 4.7. If the homogeneous ordered tournament Γ contains
I⃗3, C⃗

+

3 , and C⃗
−
3 , but not C⃗

+

3 → 1, then Γ contains I⃗2 ⊥ K⃗2.

Proof. By the previous lemma Γ does not contain (C⃗
−
3 → 1).

Hence for a ∈ Γ, the ordered tournament induced on

a⊥+ = {v ∈ Γ | v → a, a < v}

does not contain C⃗
+

3 or C⃗
−
3 and must be a homogeneous permutation.

By Lemma 4.5 the ordered tournament on a⊥+ also contains [I⃗2, I⃗1],
which as a permutation is the pattern (2, 1, 3), i.e. the first order is
1 < 2 < 3 and the second order is 2 < 1 < 3. By the classification
of homogeneous permutations, a⊥+ is either the permutation of type
Q[Qop] or the generic permutation. In particular, a⊥+ must contain
[I⃗1, I⃗2], the pattern (1, 3, 2), and thus Γ contains I⃗1 ⊥ [I⃗1, I⃗2].

Now we perform explicit amalgamations. We begin as follows.

Label Non-edge Edge Label Non-edge Edge

(∗) (cabe) □ (cabe) # (A) # (∗)1
(B) (fdbe) # (cdbe) (∗)2 (B1) (B)1 (∗)2
(B2) (fcbe) (B)2 (gfce) #
Now we must provide the factors for the diagram (B2), namely

(B2)1 = (gfcb) and (B2)2 = (gfbe).
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c a d b e

(∗)

c a d e

A

f c d b e

B

f c d b

B1

g f c b e

B2 . . .

g f c b e

B2

g f c b h

B2.1

g f c h

B2.1.1 . . .

f c b h

B2.1.2

g f b e

B2.2

Label Non-edge Edge Label Non-edge Edge

(B2) (fcbe) (B)2 (gfce) # (B2.1) (gcbh) □ (gfcb)
(B2)1

(B2.1.2) (B)2 (B2.1)2 (B2.2) □ (B2)2

The configuration (B2.1.1) ∼= I⃗1 ⊥ [I⃗2, I⃗1] is given by Lemma 4.5.
□

Proof of Lemma 4.4. By Lemma 4.6, Γ does not contain the
configuration (C⃗

−
3 → 1).

Take a ∈ Γ, and consider the homogeneous ordered tournament

a⊥+ = {v | a < v, a ⊥ v}

By assumption, this ordered tournament omits C⃗
+

3 and C⃗
−
3 , hence is

a homogeneous permutation.
By Lemma 4.5, a⊥+ contains [I⃗2, I⃗1]. By Lemma 4.7, a⊥+ contains

I⃗1 ⊥ K⃗2. By the classification of homogeneous permutations, a⊥+ is
the generic permutation, hence contains every finite permutation. So
the same applies to Γ. □
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4C. I1 → C3 and C3 → I1

The generic local order S may be characterized variously as the
homogeneous tournament which contains C3 and omits I1 → C3 (or
its dual C3 → I1; or—more naturally—both of these).

The tournament C3 has the two ordered forms C⃗
±
3 . The tourna-

ments I1 → C3 and C3 → I1 each have eight ordered forms. A con-
venient notation for these ordered tournaments, 16 in all, is

i→ C⃗
±
3 , C⃗

±
3 → i

respectively, where i ∈ {1, 2, 3, 4}. Here i denotes the position within
the four vertices of the vertex which corresponds to I⃗1. For example,
I⃗1 ⊥ C⃗

+

3 is (C⃗
+

3 → 1), as we noted earlier.
Now in the language of ordered tournaments, the operations of re-

versal of the tournament relation or the ordering give an action of
the Klein 4-group on this set of 16 ordered tournaments; in terms of
ordered graphs, the group is generated by reversal and graph comple-
ment. We need to keep track of these actions in terms of our notation
and also to check the translation procedure between tournaments and
graphs, since for the present we will continue to use the language of
ordered tournaments while displaying diagrams in the visually more
compact language of ordered graphs.

We give this information in tabular form, taking the case of a tour-
nament of the form i → C⃗

+

3 as an example. We also write i′ for the
“opposite” of i, namely i′ = 5− i.

Transformations of i→ C⃗
+

3

Transform Result Ordered Graph Version

(→, <) (i→ C⃗
+

3 ) (Original)
(→op, <) (C⃗

−
3 → i) Graph Complement

(→, <op) (i′ → C⃗
−
3 ) Reversal of Complement

(→op, <op) (C⃗
+

3 → i′) Reversal

1 2 3 4

1→ C⃗
+

3

1 2 3 4

C⃗
−
3 → 1

4 3 2 1

4→ C⃗
−
3

4 3 2 1

C⃗
+

3 → 4
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Note also that after reversal of the order, the vertex “1” is renamed
to “4,” because it is in last position in the order. But in our diagrams
the vertex marked 1 is the same one throughout. Also, the third
diagram may look like the reversal of the second, because it is drawn
as a graph rather than as a tournament (cf. the third column of the
table).

The goal of this subsection is to show that if I⃗3, C⃗
+

3 , and C⃗
−
3 all

occur, and (C⃗
+

3 → 1) does not, then none of the ordered forms of
I1 → C3 or C3 → I1 occur. In particular this forces the underlying
tournament to be a local order, and we begin to come within strik-
ing range of an explicit identification of our homogeneous ordered
tournament as a generically ordered local order.

Lemma 4.8. Let Γ be a countable homogeneous ordered tourna-
ment. Then Γ contains (C⃗

+

3 → 1) if and only if Γ contains (4→ C⃗
+

3 ).

Proof. If Γ does not contain C⃗
−
3 then this follows from the clas-

sification in groups (I, II). So we suppose

Γ contains C⃗
−
3(4.1)

We show that if

Γ contains (4→ C⃗
+

3 )(4.2)

then Γ contains (C⃗
+

3 → 1). The converse then follows by duality (i.e.,
reversing the edge relation →).

If Γ omits (C⃗
+

3 → 1) then Lemma 4.4 says that

Γ contains all permutations.(4.3)

So we may assume that this holds as well.
Now argue as shown.
c e

Label Non-edge Edge Label Non-edge Edge

(∗) (cadb) □ (cdbe) □ (A) (cade) □ (cade) (∗)1
(A1) □ (A)1 (B) (dfbe) □ (cdbe) (∗)2
The factor (A)2 = (cafe) is the permutation (4132) and the factor

(B)2 = (cfbe) is the permutation (4231), so these are afforded by
Lemma 4.4. The factor (B)1 = (cdfb) is present by hypothesis. □
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c a d b e

(∗)

c a d f e

A

c a d f

A1

c d f b e

B

For the next lemma, recall that the reversal as an ordered graph
is obtained by reversing both the order and the tournament relation.
We will denote this operation by Xop−og.

Corollary 4.8.1. Let X be a finite ordered tournament which is in
S. Then the reversal Xop−og is also in S.

Lemma 4.9. Let Γ be a countable homogeneous ordered tournament
which contains I⃗3, C⃗

+

3 , and C⃗
−
3 , and does not contain (C⃗

+

3 → 1).
Then Γ does not contain any of the following.

(a) (C⃗
−
3 → 1), (4→ C⃗

−
3 );

(b) (3→ C⃗
+

3 ), (C⃗
+

3 → 2);
(c) (3→ C⃗

−
3 ), (C⃗

−
3 → 2)

Proof. These are listed in pairs, with the second configuration
being the reverse of the first one. So it suffices to consider the first
entry in each pair. We will suppose that Γ contains one of the three
configurations

(C⃗
−
3 → 1), (3→ C⃗

+

3 ), (3→ C⃗
−
3 )

and show that Γ then contains (C⃗
+

3 → 1)—or, equivalently, that Γ

contains a copy of (4→ C⃗
+

3 ).
If Γ contains the first configuration shown in any of clauses (a, b, c)

above, then the relevant amalgamation is shown in the corresponding
line of the following.
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a c d b e

(a)

c b d e

aB

c a d b e

(b)

c a d f e

(bA)

c a d f

bA1

c a d b e

(c)

c a d e

cA

Label Non-edge Edge Label Non-edge Edge

(a) (abcd) (abde)

(4→ C⃗
+

3 )
#

(aB) (4→ C⃗
+

3 )
#

(a)2

(C⃗
+

3 → 1)
#

(b) (cadb) (cabe) (bA) (cade) (b)1

(C⃗
−
3 ⊥ I⃗1)

(a)
(C⃗

+

3 → 1)
#

(C⃗
−
3 ⊥ I⃗1)

(a)

(bA1) (4→ C⃗
+

3 )
#

(∗)1

(c) (cadb) (adbe) (cA) (4→ C⃗
+

3 )
#

(c)1

(4→ C⃗
+

3 )
#

(C⃗
+

3 → 2)
(b)

This requires additional commentary.
Case (a). The amalgam (a) yields (C⃗

+

3 → 1) or (4 → C⃗
+

3 ), and
a contradiction. The factor (a)1 = (acde) is (C⃗

−
3 → 1), which is

assumed present in case (a).
Case (b). We assume we do not fall under Case (a) and therefore

neither (C⃗
−
3 → 1) nor (C⃗

−
3 ⊥ I⃗1) embeds in Γ. Where one form of the
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amalgam leads back to case (a) that is marked in the accompanying
table above.

The factor (b)1 = (cdbe) is (3 → C⃗
+

3 ) which is assumed present
in Case (b). The factor (bA)2 = (cafe) is the permutation (4231),
present in Γ.

Case (c). We may suppose we are not in case (a) or (b). The factor
(c)2 = (cdbe) is (3→ C⃗

−
3 ), given by the case hypothesis.

This completes the proof. □

We tabulate the cases we have treated so far as follows: if Γ is a
homogeneous ordered tournament containing I⃗3, C⃗

+

3 , and C⃗
−
3 , but

not (C⃗
+

3 → 1), then each of the following eight configurations is
omitted.

(1) C⃗
±
3 → 1 or 2; (2) 3 or 4→ C⃗

±
3

If we also had their graph complements, this would give all the
configurations of type I1 → C3 or C3 → I1. To get closure under
complementation (as for reversal) it would suffice to show that the
configuration (C⃗

+

3 → 1)c = (1 → C⃗
−
3 ) can be added to this list of

excluded ordered tournaments. But we do not see a very direct route
to this particular claim, so we proceed much more gradually.

Lemma 4.10. Let Γ be a countable homogeneous ordered tourna-
ment which contains I⃗3, C⃗

+

3 , and C⃗
−
3 , and does not contain (C⃗

+

3 →
1). Then Γ does not contain any of the following.

(a) (C⃗
−
3 → 3) or (2→ C⃗

−
3 )

(b) (2→ C⃗
+

3 ) or (C⃗
+

3 → 3)

Proof. Again we give these in pairs, with the second configuration
the reverse of the first. We assume that Γ is a homogeneous ordered
tournament containing I⃗3, C⃗

+

3 , and C⃗
−
3 , and one of the configurations

(C⃗
−
3 → 3) or (2→ C⃗

+

3 ), and we derive one of the eight configurations
(C⃗
±
3 → 1, 2) or (3, 4→ C⃗

±
3 ).

By Lemma 4.4, Γ contains every finite permutation.

(a) : We begin by assuming (C⃗
−
3 → 3) is in Γ.
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c a d e f b

(a)

c a d e f

aA

c d e f b

aB

c d f g b

aB2

c d f g

aB2.1

Label Non-edge Edge Label Non-edge Edge

(a) (aefb) = (cadb) = (aA) (cadf) = (cadf) =

(C⃗
+

3 → 2)
#

(C⃗
−
3 → 1) (C⃗

−
3 → 1)

#
(a)1 #

(aA)1 Permutation: (3241) (aA)2 (C⃗
−
3 → 3)

(aB) (cdef) = (cefb) = (aB)1 Permutation: (3412)
(a)2 (C⃗

+

3 → 2)

(aB2) (cdfb) = (cdfb) =

(4→ C⃗
−
3 ) (aB)2

(aB2.1) (4→ C⃗
−
3 ) (aB2)1 (aB2)2 Permutation (4231)

(b): Now we may suppose that (2 → C⃗
+

3 ) is present, and that we
are not in case (a).

a c d e b

(b)

c d f e b

bB

c f e b

bB2

Label Non-edge Edge Label Non-edge Edge

(b) (adeb) (acdb) (b)1 (2→ C⃗
+

3 )

(C⃗
+

3 → 1)
#

(C⃗
−
3 → 3)

#
(bB) (dfeb)

(C⃗
+

3 → 1)

(cdeb) (b)2 (bB)1 Permutation: (4312)

(bB2) (C⃗
+

3 → 1) (bB)2 □
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Our list of known forbidden configurations now runs as follows,
with 12 entries.

1. C⃗
±
3 → 1, 2, 3;

2. 2, 3, 4→ C⃗
±
3 .

Lemma 4.11. Let Γ be a countable homogeneous ordered tourna-
ment which contains I⃗3, C⃗

+

3 , and C⃗
−
3 , and does not contain (C⃗

+

3 →
1). Then Γ does not contain (C⃗

+

3 → 4) or (1→ C⃗
+

3 ).

Proof. We suppose that Γ contains I⃗3, C⃗
−
3 , and (C⃗

+

3 → 4). We
will show that Γ contains (C⃗

+

3 → 1). This proves the first point and
the dual follows as usual by reversal. By Lemma 4.4, Γ contains every
finite permutation.

a c b d e

(∗)

a c f d e

A

a f d e

A2

Label Non-edge Edge Label Non-edge Edge

(∗) (abde) (acbe) (A) (acde) (∗)1 (acde)

2→ C⃗
+

3 # (2 → C⃗
+

3 )
#

(2 → C⃗
+

3 )
#

(A)1 Permutation: (2431) (A2) (A)2 (∗)1
(∗)2 (C⃗

+

3 → 4) □

Lemma 4.12. Let Γ be a countable homogeneous ordered tourna-
ment which contains (1→ C⃗

−
3 ) and the permutation (3124). Then Γ

contains (2→ C⃗
−
3 ).

Proof. We perform the following construction.

a c b d e

(∗)

a c f d e

A

a f d e

A2
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Label Non-edge Edge Label Non-edge Edge

(∗) (acbe)

(2 → C⃗
−
3 )

#

(acdb)

(2 → C⃗
−
3 )

#
(∗)1 Permutation: (2314) (∗)2 (1→ C⃗

−
3 ) □

Lemma 4.13. Let Γ be a countable homogeneous ordered tourna-
ment containing I⃗3, C⃗

+

3 , and C⃗
−
3 , and not containing (C⃗

+

3 → 1).
Then Γ contains none of the ordered forms of the tournaments I1 →
C3 or C3 → I1.

Proof. Putting together Lemmas 4.9, 4.10, and 4.11 excludes ev-
erything of the forms

(C⃗
±
3 → 1, 2, 3) or 2, 3, 4→ C⃗

±
3

as well as (1→ C⃗
+

3 ), (C⃗
+

3 → 1).
Since (2→ C⃗

−
3 ) is omitted, it follows from Lemma 4.12 that (1→

C⃗
−
3 ) is also omitted, hence also its graph complement (C⃗

−
3 → 1).

This accounts for all 16 ordered forms of I1 → C3 and C3 → I1. □

Corollary 4.13.1. Suppose that the finite ordered tournament X
belongs to S. Then the same applies to the graph complement Xc

(as an ordered tournament, the order is kept the same, but the tour-
nament relation is reversed.

Proof. By Lemma 4.13, the constraints defining S may be taken
to be closed under graph complementation, and the claim follows. □

4D. Characterization of the generically ordered local order

We will soon complete the proof of Proposition 4.1, characterizing
Γ as the generic ordered tournament whose underlying tournament
is a local order. The following lemma gives the basis for an induc-
tive analysis via forced amalgamations (amalgamations with a unique
admissible solution).

Lemma 4.14. Let Γ be a countable homogeneous ordered tourna-
ment which contains I⃗3, C⃗

+

3 , and C⃗
−
3 , but does not contain (C⃗

+

3 → 1).
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Let A be an ordered tournament of order at most 4. Then A embeds
into Γ if and only if the underlying tournament of A is a local order.

Proof. Recall that the local orders are the tournaments not con-
taining either of the tournaments I1 → C3 or C3 → I1. We have al-
ready shown that the underlying tournament of Γ is a local order.
Thus it suffices to show that

any ordered local order with at most 4 vertices embeds into Γ

For ordered linear orders (permutations) the claim holds by Lemma
4.4. Accordingly we may restrict our attention to proper local orders
A of order equal to 4, that is, those containing an oriented 3-cycle
C3.

Without the order, there is just one proper local order on 4 vertices,
up to isomorphism, which may be described in “standard form” as
having vertices 1, 2, 3, 4 with 1→ 2 and

(1, 2)→ 3→ 4→ (1, 2)

1 2 3 4 1

2

3

4

S1234

We will label this configuration (S1234), when the order is the
natural one: 1 < 2 < 3 < 4.

When there is another order on this tournament we assign the
labels (1, 2, 3, 4) according to the tournament structure, e.g., (1, 2)
denotes the edge which dominates one vertex and is dominated by
the other. We thus have 24 variations Sσ labeled by the permutations
σ of the vertices 1, 2, 3, 4; that is the order of the vertices is given by
the label σ.

We must show that the 24 configurations of this type all embed
into Γ.

Suppose first that at least one of the pairs (1, 4) or (2, 3) are non-
adjacent in the ordering, as is already the case in the standard form
(S1234) with the pair (1, 4). Then we claim that treating the diagram
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as an amalgamation problem with the ordering and tournament re-
lations to be determined between the pair in question, there is a
unique completion to an ordered local order. For example in the case
of (S1234) we are considering the following.

1 2 3 4

S1234

Here the vertices (1, 4) are separated by a third vertex—in fact,
by both of the remaining vertices. Hence their order is determined:
1 < 4. Furthermore, taking (1→ 4) would produce the configuration
(1) → (2, 3, 4) with (2, 3, 4) a 3-cycle. As the amalgam must be an
ordered local order, we conclude that 4 → 1 and the amalgam is
unique.

Similarly if (2, 3) are nonadjacent in the order then the correspond-
ing amalgamation is unique, as reversal of the edge (2, 3) would pro-
duce (1, 3, 4)→ (2).

Thus Sσ embeds in Γ whenever at least one of the pairs (1, 4) or
(2, 3) is separated in σ. This leaves only 8 of the original 24 possibil-
ities to be considered.

σ σop

(S2314) (S1423)

(S3241) S(4132)

(S2341) (S1432)

(S3214) (S4123)

If these configurations are viewed as ordered graphs, then the right
hand column contains the graph complements of the left hand col-
umn, and the second row contains the reversals (as ordered graphs)
of the first row. The configurations in the third and fourth rows are
invariant under reversal.

Therefore it suffices to prove that Γ contains the three configura-
tions (S2314), (S2341), and (S3214).

We begin with (S2314) (Figure 24).
We proceed as shown.
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2 1 3 4

Figure 24. S2314

a 2 3 1 4

(∗)

a 2 3 1

A

Label Non-edge Edge Label Non-edge Edge

(∗) (a234)

(4 → C⃗
+

3 )
#

(S2314) □

A (4 → C⃗
+

3 )
#

(∗)1 (∗)2 Permutation (4132)

Now we consider (S2341).

2 a 3 4 1

(∗)

a 3 4 1

B

Label Non-edge Edge Label Non-edge Edge

(∗) (2341)

(C⃗
+

3 → 1)
#

(2341)
(S2341) □

(∗)1 Permutation: (3241) (B) (C⃗
+

3 → 1)
#

(∗)2

And now we deal with (S3214).

3 2 1 4 a b

(∗)

2 1 4 a b

B
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Label Non-edge Edge Label Non-edge Edge

(∗) (34ab) (2341)
(S3214) □

(1 → C⃗
+

3 )
#

(∗)1 Permutation: (43251) (B) (24ab) or
(14ab):

(∗)2

(1 → C⃗
+

3 )
#

This concludes the proof. □

Having disposed of all configurations with at most 4 vertices, we
now treat the general case.

Proof of Proposition 4.1. We must show that all finite or-
dered local orders embed into Γ (or in our earlier notation, S is the
class of all finite ordered local orders).

We know that this holds if the ordered tournament in question has
at most four vertices.

We show that any ordered local order on 5 points is the unique
outcome by a forced amalgamation of tournaments on 4 points. In
other words, we claim the following.

If S is a local order on 5 points, and < is a linear order of S,
then there is an edge a→ b in S with the following properties.
• a, b are nonadjacent in the order;
• Reversal of the edge a → b produces a copy of I1 → C3

or of C3 → I1.
Given this claim, the result then follows by induction on the order
of S. Actually, we only need the claim for proper local orders, as we
have already treated arbitrary permutations. But we will prove the
claim as stated.

First, if S is a linear order, let its vertices be labeled 1, 2, 3, 4, 5 in
increasing order according to the tournament order →. If one of the
pairs (1, 3), (1, 4), or (2, 4) is nonadjacent with respect to the order
relation < on S, then the order relation on that pair is determined,
and so is the tournament relation: reversal of that edge in the tour-
nament would produce a copy of C3 → I1 with the vertex 5 playing
the role of I1.
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On the other hand, if all of these pairs are adjacent in the order <
then 5 is not adjacent to both 2 and 3, and reversal of (2, 5) or (3, 5)
produces 1→ C3 (with some ordering).

So now suppose that S is a proper local order, that is,

S contains an oriented 3-cycle C3

Then either S is a composition S = C3[A,B,C], in which the points
of C3 are replaced by tournaments A,B,C which are themselves lin-
ear orders and together have a total of 5 vertices, or else S is the tour-
nament with vertex set Z/5Z and edge relation {(i, j) | j − i = 1 or 2},
which we will denote by S5. Suppose first that S = C3[A,B,C] with
|A| ≥ 2. Let a1, a2 ∈ A with a1 → a2. Then reversal of an edge
(c, a1) with c ∈ C produces [a1, C3] and reversal of an edge (a2, b)
with b ∈ B produces [C3, a2]. So a1 must be adjacent in the order <
to all elements of C, and a2 must be adjacent to all elements of B.

If |A| = |B| = 2 then viewing S as C3[A,B,C] and also as C3[B,C,A]
we get the following adjacencies, where we set A1 = {a1, a2}, B1 =
{b1, b2}, C = {c}:

Vertex Adjacent to: Vertex Adjacent to:

a1 c b1 a1, a2

a2 b1, b2 b2 c

The adjacencies ca1, a1b1, b1a2, a2b2, b2c form a cycle, so there is
no such order.

If |A| = 3 and |B| = |C| = 1 then our notation becomes A =
{a1, a2, a3}, B = {b}, C = {c}, and the adjacencies are

Vertex Adjacent to: Vertex Adjacent to: Vertex Adjacent to:

a1 c a2 c, b a3 b

Furthermore, reversal of the edge (a1, a3) turns [A,B] into [C3, B],
so we must also have a1, a3 adjacent in the order, completing the
cycle a1ca2ba3a1.

So in all these cases our claim follows, and there remains the case

S = S5

In this case reversal of any edge (i, i + 1) produces [C3, i] so all of
the pairs i, i + 1 (i ∈ Z/5Z) must be adjacent with respect to the
ordering, and again we have a cycle.

Thus the claim holds in all cases. □
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The preceding lemma completes the proof of Proposition 4.1. We
may now turn our attention to the generic case, which will occupy
the remainder of this Part.





CHAPTER 5

ORDERED HOMOGENEOUS GRAPHS:
PLAN OF THE PROOF, PROPOSITIONS (I–IX)

At this point, we adopt the language of ordered graphs rather than
ordered tournaments.

The goal of the remainder of this Part is the following, which will
complete the proof of Theorem 1.2.

Proposition 5.1. Let Γ be a countable homogeneous ordered graph
containing I⃗k for all k < ∞, as well as I⃗1 ⊥ C⃗

+

3 and C⃗
−
3 . Then Γ is

either a generically ordered Kn-free graph for some n, or the generic
ordered graph.

We follow the method used to treat the unordered case in Cherlin
[1998, Chap. 4].

In this chapter we lay out the plan of the proof. We proceed by
induction on n. At each stage, what we must show is the following.

If the countable homogeneous ordered graph in question con-
tains K⃗n, then it contains any ordered configuration whose
underlying graph is present in the corresponding Henson graph—
that is, any finite K⃗n+1-free ordered graph.

The strategy at stage n is to accumulate enough special cases of
the stated result to prove the general claim by formal arguments
dependent on the finite Ramsey theorem (Lachlan’s Ramsey theoretic
method).

The goal of the present section is to present the plan of the proof
and to give the formal part of the argument. It is in the formal part of
the argument that most of the ideas are found. Though we will begin
our treatment with this part of the argument (in §5B), it makes up
the second half of the proof, as will be clear from our outline.

Later chapters will prove the five preparatory propositions on which
the second half of the proof depends. These are proved by explicit

99
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amalgamation arguments. At first, these amalgamation arguments
are little more than explicit computations in the manner of the pre-
vious section. Eventually they become more substantial, in ways that
are visible also toward the end of Cherlin [1998, Chap. 4].

As usual, we write P⃗3 for a naturally ordered path on three vertices,
and P⃗ c

3 for its ordered graph complement.

P⃗3 P⃗ c
3

These ordered graphs correspond to the ordered tournaments C⃗
+

3

and C⃗
−
3 .

On the other hand, the notation of ordered tournaments is more
appropriate for most of the structures of order 4 which we have de-
noted by (i → C⃗

±
3 ) and (C⃗

±
3 → i); so we will retain that notation,

even though we now consider these structures as ordered graphs.
In particular, we will no longer need to translate diagrams into the

language of ordered tournaments: the diagrams represent the actual
structures under consideration.

Definition 5.2. For n ≥ 2, A(n) is the following set of finite
ordered graphs.

{I⃗1 ⊥ P⃗3, P⃗
c
3 , K⃗n} ∪ {I⃗k | k <∞}

Proposition 5.1 will be proved in the following form.

Theorem 5.3. Let Γ be a countable homogeneous ordered graph
containing copies of all the elements of A(n) as induced ordered sub-
graphs. Let X be a finite K⃗n+1-free graph. Then Γ contains a copy of
X.

The proof of this theorem will be lengthy, proceeding by induction
on n, with a number of auxiliary statements to be proved by simul-
taneous induction on the parameter n. Theorem 5.3 may be stated
more explicitly as follows.

Corollary 5.3.1 (Generic Case). Let Γ be a countable homogeneous
ordered graph containing P⃗3, P⃗ c

3 , and some ordered form of I⃗1 + P3,
I⃗1 + P c

3 , [I1, P3] or [I1, P
c
3 ]. Then Γ is one of the following.
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(a) The generic K⃗n-free ordered graph, for some n.
(b) The generic I⃗n-free ordered graph, for some n.
(c) The generic ordered graph.

Proof. It is clear that Γ is infinite. By Ramsey’s theorem we may
suppose that Γ contains an infinite independent set, passing to the
complement if necessary. That is, we may suppose that all I⃗k embed
into Γ for k <∞.

According to Proposition 4.1, if Γ does not contain I⃗1 ⊥ P⃗3, then Γ
embeds into the generically ordered local order, and hence contains
no ordered form of [I1, C3] or [C3, I1], which in the notation of ordered
graphs means that Γ contains none of the ordered forms of I1+P3, I1+
P c
3 or their complements [I1, P

c
3 ], [I1, P3], violating our hypothesis.

So in fact Γ contains I⃗1 ⊥ P⃗3. Thus Γ contains all elements of the
set A(2).

If for some n, the ordered graph Γ does not contain K⃗n, then
Theorem 5.3 states that the finite structures embedding into Γ are
precisely those whose underlying graph is Kn-free. In this case we
have the generic K⃗n-free ordered graph.

If the ordered graph Γ does contain K⃗n for all n then Theorem 5.3
states that all finite ordered graphs embed into Γ. In this case, we
have the generic ordered graph. □

So it remains to prove Theorem 5.3. We first lay out our general
strategy for the proof.

5A. A simultaneous induction

The method used follows Lachlan’s method introduced in the clas-
sification of the homogeneous tournaments in Lachlan [1984] and
applied to the classification of the homogeneous directed graphs in
Cherlin [1998]. More precisely, the method used is a variant of the
method presented in Cherlin [1998, Chap. 4].

In Cherlin [1998, Chap. 4], the classification of the countable homo-
geneous graphs is derived by specializing the argument for directed
graphs back to the undirected setting. The argument for directed
graphs was based in turn on the method used by Lachlan to clas-
sify homogeneous tournaments, which added new ingredients to the
method originally used by Lachlan and Woodrow for graphs.
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We found that by first generalizing Lachlan’s later method to di-
rected graphs, and then specializing it back to the case of graphs, we
got a second proof of the classification of homogeneous graphs. This
is the proof which we are now generalizing in a different direction, to
the case of ordered graphs.

Broadly speaking, all versions of Lachlan’s scheme follow the same
lines. An introduction to the method may be found in the simpli-
fied account of Lachlan’s treatment of tournaments given in Cher-
lin [1988], where the method was implemented in a more efficient
way which reduced the mass of auxiliary lemmas required.

In our introductory chapter we mentioned four technical points
that occur in the present version of the proof. We now single out
two of these, one of which governs the structure of our inductive
approach, while the other provides the critical link between particular
embedding lemmas and the general results we aim at.

For our present purposes the characteristic features of the Lachlan
method are these two.
• A use of Ramsey’s theorem at a critical juncture (Lachlan’s

Ramsey method).
• A change of categories, from structures with transitive automor-

phism group to structures with two orbits on vertices.
A consequence of these two points is that one is forced by the

method to prove a substantial number of instances of the general
embedding theorem which is our target, before inductive methods
can be brought to bear. And here we find that the Ramsey argument
not only reduces the problem to relatively concrete statements, but
helps again in the proofs of those statements.

We require the following notations and definitions, for reasons
sketched in the introductory chapters, and which will now be made
completely explicit.

Definition 5.4.
1. An ordered 2-graph is a structure H = (H1, H2) with H1, H2 a

partition of the vertices of an ordered graph.12 In other words,
the vertex set of H is H = H1 ∪H2, and the relations consid-
ered on H are an order <, a symmetric edge relation , and
predicates picking out the sets H1, H2.

12As the term 2-graph is often used in another sense elsewhere, one might prefer
the term 2-partitioned graph here, but it is cumbersome.
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2. A 1-type p = xA is an isomorphism type of extension of a finite
ordered graph A by an additional vertex x. When A is a subset
of a given homogeneous ordered graph Γ, we are interested in
the set Ap of realizations of the type in Γ (that is, elements b ∈ Γ
for which bA is isomorphic to xA over A).

We may speak similarly of 1-types xA in ordered 2-graphs. In
this context we will generally consider only 1-types for which A
lies in the second component of the ordered 2-graph, and we will
have to specify which component x is to lie in. We will usually
require x to lie in the first component. In this case we generally
use the notation (x,A) rather than xA.

In practice, therefore, the notation “xA” is typically reserved
for 1-types in ordered graphs (occurring either on their own, or
as the second component of a homogeneous ordered 2-graph).

3. When A is a finite ordered graph contained in the homogeneous
ordered graph Γ and p is a 1-type over A, we view Ap as an
ordered graph. By homogeneity, the isomorphism type of Ap is
independent of which copy of A we take in Γ, and Ap is itself
homogeneous. Sometimes we will use two distinct 1-types p, q,
and get a homogeneous ordered 2-graph (Ap, Aq) as a result. We
may proceed similarly with ordered 2-graphs, in which case we
will always use two distinct 1-types and stay in the category of
2-graphs—which is the main virtue of this category.

4. The 1-types of interest here are usually initial 1-types xA, mean-
ing x < A. By working with initial 1-types we will be able to
keep our analysis close to the unordered case. Sometimes we
switch to terminal 1-types Ax (A < x), but by symmetry all
results proved in one case apply in the other.

5. We introduce notation for particular 1-types over a point in or-
dered graphs: a⊥+, a⊥− denote the types of elements x ⊥ a with
a < x or x < a respectively. Similarly a→ and a← denote the
types of elements x with x a and a < x or x < a respectively.
We will generalize this notation to sets A (in place of a) and to
1-types over A, as well.

6. An ordered 2-graph H = (H1, H2) is ample if its second com-
ponent contains I⃗1 ⊥ P⃗3, P⃗ c

3 , and all I⃗k for k < ∞, and if the
first component realizes all initial 1-types (b, I) of the following
form:
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I ∼= Ik is a finite independent subset of H2, and one of
the following holds:
(i) b ⊥ I;
(ii) b→ I; or
(iii) |I| = 2.

Later we will see that these conditions force all 1-types (b, I⃗k)
over an independent set to be realized.

7. A 1-type p of the form (x,A) in a homogeneous ordered 2-graph
is said to be H-constrained if the restriction of p to every com-
plete subgraph of A is realized in H1.

8. If A is a set of finite ordered graphs, then ⊥A denotes the
closure of A under the operation ⊥, that is ⊥A contains all
structures ⊥n

i=1Ai with Ai ∈ A.

In Table 5.1 below we formulate nine statements that we will prove
by simultaneous induction on the parameter n, where n ≥ 2. Entries
(I) and (III) do not actually involve the parameter n, and all of the
first four have a relatively concrete character).

These statements make use of the following conventions and nota-
tion.

— Γ is a homogeneous ordered graph containing all the configura-
tions in A(2).

— H is an ample homogeneous ordered 2-graph such that all con-
figurations in A(n) embed into the second component H2 (where
n is a parameter occurring in the statement of the proposition).

— Configurations denoted A or B are assumed to be finite.

We now discuss how the nine propositions shown in Table 5.1 may
be proved by simultaneous induction.

The base case for our inductive argument is the case n = 2. The
hypothesis at stage n > 2 is that (VIIIm) and (IXm) hold for m < n,
and that everything earlier on the list holds for the given value of n.
We will be more explicit about these dependencies as we go along.

Propositions I–V will be proved by various amalgamation argu-
ments. They are special cases of (V III, IX) apart from some addi-
tional “localization” of the claims to specific ordered 2-graphs H, via
the concept of H-constraint. Thus the point of the more formal part
of the proof will be to reduce the general results required to a limited
number of special cases.
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(I-V) Five Concrete Embedding Results
(I) If a ∈ Γ then the ordered 2-graph (a⊥−, a⊥+) is ample.

(IIn) If all elements of A(n) embed in Γ, and B = baK satisfies
— K ∼= K⃗n

— b < a < K
— a ⊥ bK
— B does not contain K⃗n+1

then B embeds in Γ.
(III) If p = (x,A) is an H-constrained initial 1-type with A ∈ A(2),

then p is realized in H.
(IVn) If A ∈ A(n) and p = (x,A) is an initial 1-type over A which is

realized in H with x ∈ H1, A ⊆ H2, then the ordered 2-graphs
(Ap, A⊥−) and (Ap, A⊥+) are ample.

(Vn) If p = (x, K⃗n ⊥ K⃗n) is an H-constrained initial 1-type, then p
is realized in H.

(VI-IX) Four general embedding results
(VIn) If p = (x,A) is an H-constrained initial 1-type with A ∈ ⊥A(n),

then p is realized in H.
(VIIn) Suppose that Γ contains every configuration in A(n). If B =

A ∪ {b} does not contain K⃗n+1, and b < A, with A ∈ ⊥A(n),
then Γ contains B.

(VIIIn) Suppose Γ contains every configuration in A(n). If A does not
contain K⃗n+1 then A embeds into Γ.

(IXn) If p = (x,A) is an H-constrained initial 1-type and A does not
contain K⃗n+1, then p embeds into H.

Table 5.1. Propositions (I-IXn)

Indeed, Propositions VI–IX will be seen to be formal consequences
of the preparatory results (I–V ), with some use of Ramsey’s theorem
and the general theory of amalgamation classes.

We take up the latter set of arguments first.
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5B. From (I–V) to (VI–IX)

The formal part of the argument taking us from Propositions I–V
to Propositions VI–IX contains the bulk of the conceptual ingredients
of the proof.

Proposition 5.5. Let n ≥ 2. Assume statements (I, III, IIn, IVn,
Vn). Then statements (VIn–IXn) follow. More precisely, we have the
following.

1. (VIn) follows from (III, IVn, Vn)
2. (VIIn) follows from (I, IIn, VIn)
3. (VIIIn) follows from (VIIn)
4. (IXn) follows from (VIIn, VIIIn)

The most instructive arguments are the last two. We dispose of the
first two points immediately.

Lemma 5.6. Let n ≥ 2.
1. (VIn) follows from (III, IVn, Vn).
2. (VIIn) follows from (I, IIn, VIn).

Proof.
(VIn): H is an ample homogeneous ordered 2-graph, and p = (x,A)

is an H-constrained initial 1-type with A ∈ ⊥A(n). We must show
that p is realized in H.

We write A = ⊥k
i=1Ai with Ai ∈ A(n), and proceed by induction

on k. Let pk = p ↾ Ak.
If k = 1 then (III) applies if A is in A(2), and otherwise A is

complete and the assumption of H-constraint applies directly.
If k > 1 let H(Ak) = (Apk , A⊥−k ). That is, the first component

H1(Ak) consists of the realizations of the type pk over the set Ak,
which lie in the first component of H, while the second component
H2(Ak) consists of the vertices in H2 which precede all vertices in Ak

in the ordering, and are not joined to any point of Ak by an edge.
By (IVn), the ordered 2-graph H(Ak) is ample.
Let A′ = ⊥k−1

i=1 Ai and let p′ be the restriction of p to A′. Our claim
is that p′ is realized in H(Ak).

By induction on k, it suffices to check that the restriction of p to A′

is H(Ak)-constrained. So let K be a complete ordered subgraph of A′.
Our claim is that H contains a realization of the 1-type (x,K ⊥ Ak).
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Let q be p ↾ K, and pass to the ordered 2-graph H(K) = (Kq,K⊥+).
By (IVn) this is ample, and our claim is that H(K) realizes pk. By
(III) it suffices to check that pk is H(K) constrained, or in other
words we may take Ak to be complete. Then (Vn) applies.

(VIIn): We suppose that Γ contains every configuration in A(n),
and that B = A∪{b} is a finite configuration which does not contain
K⃗n+1, where b < A and A ∈ ⊥A(n). We claim that Γ contains B.

Take a ∈ Γ and consider the ordered 2-graph H = (a⊥−, a⊥+). We
will show that (b, A) embeds in H, and hence B embeds in Γ.

By (I), H is ample.
By (IIn), the configuration (b, A) is H-constrained.
By (V In), the configuration (b, A) embeds in H. □

The remainder of the proof of Proposition 5.5 takes some further
preparation.

5C. Ramsey theoretic arguments

Turning to the second half of the proof of Proposition 5.5, we will
make use of Lachlan’s Ramsey theoretic argument. Some additional
notation will be useful.

Notation 5.7.
1. By a 2-type we mean the isomorphism type of an ordered graph

on two vertices a, b with a < b. This amounts to much the same
thing as a terminal 1-type over a single element a, and we use
our customary notation for the two possibilities: ⊥+, →.

2. If r is a 2-type then an r-Ramsey ordered graph is an ordered
graph in which every pair of elements a, b with a < b realizes
the type r.

3. If n ≥ 2, r is a 2-type, and A is an amalgamation class of finite
ordered graphs, then Ar

n is the set of all finite ordered graphs A
with the following property.

If R ∪ A is a finite extension of A for which R < A, R
is r-Ramsey, and for all v ∈ R the configuration {v}∪A
does not contain K⃗n+1, then R ∪A ∈ A.

4. We make a similar definition for amalgamation classes A of or-
dered 2-graphs, but without the parameter n. In this case Ar

will again be a collection of finite ordered graphs, now construed
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as subgraphs of the second component. We consider extensions
(R,A) taking R in the first component and A in the second com-
ponent, with the property that each of the configurations (b,K)
with b ∈ R and K ⊆ A complete belongs to A, and modify the
previous definition accordingly.

Lemma 5.8. Let A be an amalgamation class of finite ordered graphs
or of finite ordered 2-graphs, let r be a 2-type, and let n ≥ 2. Then
Ar

n (respectively, Ar) is an amalgamation class.

Proof. We give this first in the notation of ordered graphs.
Supposing the contrary, we have some A1, A2 ∈ Ar

n such that there
is no amalgam of A1 with A2 over their common part which lies in
Ar

n.
In that case, let B1, . . . , BN be a list of all possible amalgams of

A1 and A2, and for each i = 1, . . . , N let Ri∪Bi be a finite extension
of Bi by an r-Ramsey ordered graph Ri such that Ri < Bi, and for
all v ∈ Ri {v} ∪Bi, does not contain K⃗n+1, but with

Ri ∪Bi /∈ A
Let R be the union of all Ri with R1 < · · · < RN , extended to an

r-Ramsey graph. Let R∪A1, R∪A2 induce Ri∪A1, Ri∪A2 for each
i. Then R ∪ A1, R ∪ A2 agree on their common part, and {v} ∪ Aℓ

does not contain K⃗n+1 for v ∈ R, ℓ = 1, 2. So R ∪A1, R ∪A2 are in
A, and they have an amalgam R ∪B over their common part which
lies in A.

Necessarily B = Bi for some i. Then R ∪ B contains Ri ∪ Bi and
this contradicts our choice of Ri ∪Bi.

In the context of ordered 2-graphs the argument is the same, but
one writes (R,Aℓ) rather than R ∪Aℓ. □

Lemma 5.9. Let Γ be a countable homogeneous ordered graph and
suppose that Γ contains every configuration of the form A ∪ {b} for
which b < A and A ∈ ⊥A(n), with A∪{b} not containing K⃗n+1. Let
A be the class of finite ordered graphs isomorphic with substructures
of Γ.

Then for one of the two possible types r of pairs (a, b) of distinct
vertices with a < b, Ar

n contains A(n).
Proof. This has nothing to do with A(n) per se, so we will set
B = A(n) and merely assume that B is a set of finite configurations
for which the corresponding assumption holds when A ∈ ⊥B.
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Suppose our claim fails. Then for each of the relevant 2-types r =
⊥+ or →, we may select a counterexample Ar ∈ B with Ar /∈ Ar

n.
So fix a finite extension Rr ∪ Ar of Ar by an r-Ramsey graph Rr

satisfying the following three conditions.
— Rr < Ar

— {v} ∪Ar does not contain K⃗n+1, for any v ∈ Rr

— Rr ∪Ar /∈ A.
We let K = max(|Rr| | r is ⊥+ or →). We may suppose for conve-

nience that K = |Rr| for each of the types r.
Now we argue toward a contradiction.
Pick two large numbers N,N ′ whose values will be set a little later,

and perform the following construction.

Construction.
V = {vi | i = 1, . . . , N} is a set of vertices.
A = A⊥+ ⊥ A→
Ai is a copy of A for i = 1, . . . N ′ and Bj is a copy of A for

j = 1, . . . , N . Set A∗ = ⊥iAi, B∗ = ⊥j Bj , and C = A∗ ⊥ B∗. We
think of this as a “stack” of copies of A.

Let Cj = C∪{vj} for j = 1, . . . , N , with some additional structure
which will be chosen very carefully below. We will take vj < C. For
the rest, we need to see first where we are headed.

Once this construction is complete, we intend to amalgamate all of
the configurations Cj over their common part C, and the remainder
of the construction is designed to ensure the following three points.
(a) The configurations Cj are all in A, and hence some amalgam of

them is also in A.
(b) The vertices vj realize distinct types over B∗, and hence remain

distinct in the amalgam.
(c) Some K of the vertices v ∈ V constitute a copy of Rr, for one

of the two possible choices of r, and those K vertices together
with one of the copies of Ar in A∗ give a copy of Rr ∪Ar.

Since at this point we may conclude that Rr∪Ar ∈ A, we will have
the desired contradiction.

We now return to the specification of {v} ∪ C for v ∈ V , and the
determination of the numbers N and N ′.

First, make the types of the vertices v ∈ V over B distinct by
making the type of vj over Bj distinct from the types of the other vj′
over Bj . And we do so using configurations vjBj and vj′Bj which do
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not contain K⃗n+1—say, by putting in one edge to vj and no edges to
the other vj′ .

Now we look toward our third condition. We choose N large enough
to guarantee that in any amalgam of the Cj over C, the N distinct
vertices V contain some subset R with |R| = K for which the induced
structure is an r-Ramsey graph, for one of the two possible values of
r. We then let N ′ =

(
N
K

)
, and for convenience relabel the Ai as AR,

with R varying over the K-subsets of V . Here AR is A⊥+,R ⊥ A→,R

with Ar,R a copy of Ar.
To complete the construction, let vAR be chosen for v ∈ R so that

if R is r-Ramsey, then vAr,R has the structure induced by RAr on
vAr. For v /∈ R just take v ⊥ AR.

As we went along, point (a) was taken care of. We also ensured
at the outset that all the v ∈ V realize distinct types over B. So we
need only check point (c).

After performing our amalgamation to get a configuration V C, the
value of N ensures the existence of a subset R of V such that the
induced structure on R is a copy of Rr for one of the two possible
values of r. Then RAr,R is a copy of Rr∪Ar, and we have the expected
contradiction. □

We now state the analogous lemma for ordered 2-graphs.

Lemma 5.10. Let H be a countable homogeneous ordered 2-graph.
Suppose that H contains every configuration of the form (b, A) for
which b < A and A ∈ ⊥A(n), such that (b, Ai) embeds in H for
each summand Ai of A. Let A be the class of finite ordered 2-graphs
associated with H.

Then for one of the two possible types r of pairs (a, b) of distinct
vertices with a < b, Ar contains A(n).

The proof is the same, but now using the definitions for 2-graphs
and the notation Ar rather than Ar

n. In particular if H omits K⃗n+1

in the second component, it is still possible that H contains a form
of K⃗n+1, namely (b, K⃗n) with b < K⃗n.

Lemma 5.11. Let n ≥ 2.
1. (VIIIn) follows from (VIIn).
2. (IXn) follows from (VIn) and (VIIIn).

Proof.
From (VIIn) to (VIIIn):
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It is now convenient to rephrase (VIIIn) directly in terms of amal-
gamation classes. It then reads as follows.

Suppose that A is an amalgamation class of ordered graphs
containing A(n). Then for any finite ordered graph A which
does not contain K⃗n+1, A belongs to A.

We will prove this by induction on k = |A|. For k = 1 it is clear. So
suppose |A| = k > 1 and let A be any amalgamation class containing
A(n).

If Γ is the homogeneous ordered graph associated with the class A,
then (VIIn) states that Γ contains every configuration B = A ∪ {b}
satisfying the following conditions.

— A ∈ ⊥A(n);
— b < A;
— B does not contain K⃗n+1.
We apply Lemma 5.9, which says that there is then a 2-type r

so that Ar
n contains A(n). Now remove the vertex v = minA from

the configuration A to obtain a configuration A′. By our inductive
hypothesis, A′ must belong to the amalgamation class Ar

n. Now A =
{v} ∪ A′ is a finite initial extension of A′ by an r-Ramsey ordered
graph (namely the singleton {v}), and by hypothesis the extension
does not contain K⃗n+1. So by the definition of Ar

n, we have A ∈ A,
as claimed.

From (VIn, V IIIn) to (IXn):
We consider an ample homogeneous ordered 2-graph H and an H-

constrained initial 1-type p = (x,A) such that A does not contain
K⃗n+1. We claim that p is realized in H. We let A be the associated
amalgamation class of finite ordered 2-graphs.

By (VIn) the hypotheses of Lemma 5.10 are satisfied, and thus
there is a 2-type r for which Ar contains A(n). By (VIIIn), the amal-
gamation class Ar must contain the configuration A. Then any H-
constrained configuration (R,A) with R r-Ramsey occurs in H, and
this applies in particular when R is a singleton. □





CHAPTER 6

ORDERED HOMOGENEOUS GRAPHS:
PROPOSITION I

To complete the classification of the homogeneous ordered graphs,
it remains to provide the first five ingredients of our proof that the
remaining countable homogeneous graphs in Group III of our catalog
are generically ordered expansions of homogeneous graphs. These in-
gredients consist of Propositions I through V in the previous chapter.
Certain challenges arise along the way, notably in connection with the
proof of Proposition V.

We will take these five propositions in order, so here we deal with
Proposition I. The general character of the proof in this chapter will
be that of a verification by computation. We recall the statement to
be proved.

Proposition (I). Let Γ be a countable homogeneous ordered graph
such that all configurations in A(2) embed isomorphically in Γ. For
any a ∈ Γ, the associated ordered 2-graph (a⊥−, a⊥+) is ample.

Recall that A(2) is

{I⃗1⊥P⃗3, P⃗
c
3 , K⃗2} ∪ {I⃗k | k <∞}

and that as K⃗2 is superfluous we may replace this for all practical
purposes by

A(2) = {I⃗1⊥P⃗3, P⃗ c
3} ∪ {I⃗k | k <∞}.

Since the definition of ampleness involves two conditions that will
be treated separately, let us phrase Proposition I more explicitly as
follows.

Proposition (IA, IB). Let A be an amalgamation class that con-
tains A(2). Then

113
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(IA): For any A ∈ A(2), I⃗1 ⊥ A belongs to A(2).
(IB): For any configuration of the form B = baI with I ∼= I⃗k, k <∞,

and b < a < I, a ⊥ bI, for which one of the following holds, we
have B ∈ A.
— b ⊥ I; or
— b→ I; or
— |I| = 2.

The conditions in (IB) are quoted from the definition of ampleness,
rephrased in terms of the parameter a. In the present section we
will prove along the way that the condition of ampleness implies the
stronger form of (IB) in which there are no restrictions on the type
of b over I, other than b < I. In a slightly convoluted way we will
wind up verifying this stronger, and simpler, form of condition (IB).

Taken together, (IA) and (IB) will prove the ampleness of the
ordered 2-graph (a⊥−, a⊥+).

6A. Proof of Proposition (IA)

Lemma 6.1. Let X be a finite ordered graph and let n ≥ 2. Sup-
pose that every amalgamation class containing A(n) also contains
X. Then the same applies to the ordered graph obtained from X by
reversing its ordering.

Proof. Any amalgamation class containing A(n) for fixed n ≥ 2

also contains the ordered graph P⃗3⊥I⃗1, by Lemma 4.8. Therefore we
may replace A(n) by A(n)∪{P⃗3⊥I⃗1}, which is closed under reversal,
and the claim follows. □

Lemma 6.2. Let A be an amalgamation class containing P⃗ c
3 and

I⃗1⊥P⃗3. Then A contains I⃗1⊥P⃗ c
3 .

Proof. We perform the amalgamation (∗) shown, with factors
(∗)1 = (cade) and (∗)2 = (cdbe).

Label Non-edge Edge Label Non-edge Edge

(∗) (adbe) □ (cadb) □ (A) (cade) (∗)1 (cafd) (∗)1
(B) □ (cdbe) (∗)2
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c a d b e

(∗)

c a f d e

A

c d b e

B

c a f e

A1 (S3214)

Thus it suffices to show that the factors of (A) embed in Γ, and
as the factor (A)2 = (afde) is I⃗1⊥P⃗3, this comes down to (A)1 =
(cafe) ∼= (S3214).

Thus if Γ is a counterexample to the lemma, then it omits the
configuration

(∗)1 = (cade) = (3→ C⃗
−
3 )

as well as (A)1 ∼= (S3214). So we will suppose the following for the
remainder of the argument, aiming at a contradiction.

Γ contains I⃗1⊥P⃗3 and P⃗ c
3 ;(6.1)

Γ omits I⃗1⊥P⃗ c
3 , (3→ C⃗

−
3 ), and (S3214).(6.2)

I1⊥ P⃗ c (3→ C⃗
−
3 ) S3214

Now we try the following amalgamation, where (c, e) may be an
edge or a non-edge.

c d a e b

(I)

c d a e

IA1

c d a e

IB1

c d e b

I2
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Label Non-edge Edge

(I) (cdab)
(S3214)

(cdab)

(3→ C⃗
−
3 )

We will refer to the variant with (c, e) a non-edge as (IA), and the
variant with (c, e) an edge as (IB), and to the corresponding factors
(cdae) or (cdeb) as (IA)1, (IB)1, (IA)2, (IB)2 correspondingly.

The factor (IA)1 (shown above) is I⃗1 ⊥ [I⃗2, I⃗1]. To see that this is
realized in Γ we fix a vertex c and consider

Γ0 = c⊥+ = {v | c ⊥ e, c < e}

where “c ⊥ e” is our notation for non-edges.
Now by hypothesis Γ0 realizes P⃗3 and omits P⃗ c

3 , or as an ordered
tournament contains C⃗

+

3 and omits C⃗
−
3 . This falls under groups

(II.3cn) and (II.4c) in our catalog. In both cases the configurations
[I⃗2, I⃗1] must be realized in Γ0 and thus I⃗1 ⊥ [I⃗2, I⃗1] is realized in Γ.

On the other hand in the amalgamation labelled (IB1) above, if
(d, e) is a non-edge then we have (3 → C⃗

−
3 ) and a contradiction, so

(d, e) must be an edge and therefore Γ contains (IB)1.
Thus it will suffice to have a factor of the form (IA)2 or (IB)2 to

conclude. The diagram (I2) shows an amalgamation which produces
the required factor. □

Lemma 6.3. Let A be an amalgamation class containing I⃗1⊥P⃗3

and I⃗4. Then A contains I⃗2⊥P⃗3.

Proof. The class A contains I⃗1⊥P⃗ c
3 by Lemma 6.2.

Let Γ be the corresponding homogeneous ordered graph.
Suppose toward a contradiction that

Γ does not contain I⃗2⊥P⃗3

Fix a ∈ Γ. Then a⊥+ contains P⃗3, P⃗ c
3 , and I3, but not I⃗1 ⊥ P3. By

Proposition 4.1, a⊥+ must be the tournament S(2) equipped with a
generic linear order.

So if A is any finite ordered tournament whose underlying tourna-
ment is a local order, then the corresponding ordered graph embeds
into a⊥+ and thus

I⃗1⊥A
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embeds into Γ. This remark will simplify the construction of suitable
amalgamation diagrams. Furthermore, if A is a finite ordered tourna-
ment which is not a local order, then the ordered graph corresponding
to I⃗1 ⊥ A does not embed into Γ.

Suppose now that Γ contains P⃗3⊥I⃗2, the reversal of the desired
configuration. Then a⊥− contains P⃗3⊥I⃗1 and hence contains I⃗1⊥P⃗3

by Lemma 4.8. In other words, a⊥+ would then contain P⃗3⊥I⃗1, which
is not a local order.

So we may also suppose

Γ does not contain P⃗3⊥I⃗2

By Lemma 4.8 again, Γ contains P⃗3⊥I⃗1. Thus the hypotheses and
conclusion of the lemma are both invariant under reversal. We exploit
this in the following amalgamation.

This amalgamation will produce a contradiction if the factors can
be found in Γ.

c a d e d ′ a ′ c′

(∗)

c a d e d ′ c′

A

c a d e c′

1

a d e d ′ c′

2

Label Non-edge Edge Label Non-edge Edge

(∗) (aded′a′) (caea′c′) (A) (caded′)

I⃗2⊥P⃗3 #
(∗)1

I⃗1⊥P⃗ c
3⊥I⃗1

#
I⃗1⊥P⃗3⊥I⃗1
#

The reversal of (A) is an amalgamation diagram which produces
either a contradiction or a copy of (∗)2. By our earlier remarks it suf-
fices to show that the factors of (A) occur in Γ; then we get the same
for the reversal, and thus the factors of (∗), giving a contradiction.

The factors of (A) are shown above: namely, (1) I⃗2 ⊥ [I⃗1, I⃗2] and
(2) I⃗1 ⊥ (S4231). As these are of the form I⃗1⊥S⃗ with S⃗ an ordered
local order, these factors are available. □
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Corollary 6.3.1. Let A ∈ A(2). Then any amalgamation class con-
taining A(2) contains I⃗1 ⊥ A and A⊥I⃗1. In particular, Proposition
(IA) holds.

Proof. A(2) consists of

{I⃗1⊥P⃗3, P⃗
c
3 , K⃗2} ∪ {I⃗k | k <∞}

and we are free to drop K⃗2 here as it is contained in either of the
first two.

We derive I⃗1 ⊥ A for A = I⃗1⊥P⃗3 and P⃗ c
3 from Lemmas 6.3 and 6.2

so our claim follows as far as I⃗1 ⊥ A is concerned.
By Lemma 6.1, the same applies to the reversal A⊥I⃗1. □

Before turning to Proposition (IB), we prove the analog of Corol-
lary 6.3.1 for A(n) for all n ≥ 2, within an inductive framework.

Lemma 6.4. Let A be an amalgamation class containing A(n). If
n > 2, assume Proposition (V IIIn−1). Then I⃗1⊥K⃗n is in A.

Proof. We have dealt with the case n = 2, so we assume here
that n ≥ 3.

This is the first of our amalgamation arguments which goes be-
yond a single, small configuration. So the description will be more
elaborate. We will make use of some configurations U, V isomorphic
respectively to K⃗n−2 and K⃗n−1, and let

v = minV , V ′ = V \ {v}

We can then present the amalgamation argument as follows.

c a U b V

v

(∗)

c a U V

v

U : n− 2; V : n− 1
(∗)1

c U b v V ′

B

We remark that (c, v) is the only edge between c and V here.
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Label Non-edge Edge Label Non-edge Edge

(∗) (abV ) □ (caUb) □

(∗)1 K⃗n-free—(VIIIn−1) (B) (cbV )

I⃗1⊥K⃗n

(cUvB)
(∗)2

This brings us down to the factors of (B): (B)1 = (cUbV ′) and
(B)2 = UbV . Now (cUbV ′) omits K⃗n so Proposition (V IIIn−1) ap-
plies. Thus we are left with (B)2 = (UbV ) to consider. We treat this
as follows.

v

U x b V

B2

v

U x V

B2

x b v V ′

B2.2

Label Non-edge Edge Label Non-edge Edge

(B2) Contains
I⃗1⊥K⃗n

Is (B)2

(B2)1 (UxV ) Omits K⃗n (B2.2) □ (B2)2

The distinction in (B2) is between amalgamations with at least one
non-edge (u, b), and the amalgamation with Ub a clique. □

Corollary 6.4.1. Let n ≥ 2, and if n > 2 assume that (V IIIn−1)
holds. Let X be a finite ordered graph which belongs to every amal-
gamation class containing A(n). Then I⃗1 ⊥ X and X⊥I⃗1 have the
same property.

Proof. By Corollary 6.3.1, the previous lemma, and Lemma 6.1,
this holds if X is in A(n). The general case follows easily. □

6B. Some small configurations

Now we return to the business at hand, and we take up the proof
of Proposition (IB).

The next step is to accumulate some consequences of the configu-
rations in A(2), that is we identify a number of small configurations
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which can be obtained by amalgamation from A(2) and which are
useful as ingredients in various amalgamation arguments.

We first take stock of what we know about A(2) and what we
intend to show in the next few lemmas. We give this in tabular form.

Consequences of A(2)
Reference Claim

Def. 5.2 (simplified) A(2): I⃗1⊥P⃗3; P⃗ c
3 ; I⃗k (k <∞)

Lemma 6.1 Closed under reversal
Corollary 6.3.1 Closed under I⃗1 ⊥ X, X⊥I⃗1
Lemma 6.5 At most one edge
Lemma 6.6 [I⃗1, I⃗2]

Lemma 6.7 P⃗4, (C⃗
−
3 → 2), (S2314), (S4321).

Lemma 6.5. Let A be an amalgamation class which contains A(2).
Then A contains any finite ordered graph with at most one edge.

Proof. This holds by definition if there are no edges, so we sup-
pose there is a unique edge (a, b) with a < b.

By repeated use of Corollary 6.3.1, we may suppose the configura-
tion has the form aIb with a < I < b and unique edge ab. We argue
by induction on k = |I|. We may suppose k ≥ 2.

Let J be an independent set of (k − 2) vertices. We analyze the
following amalgamation.

a ′ a j J j ′ b b ′

(∗)

a ′ a j J j ′ b′

A

a ′ a J b ′

A1

a ′ j J j ′ x b′

A2′
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Label Non-edge Edge Label Non-edge Edge

j J x b (∗) (a′aJbb′) □ (ajJj′b) □ (A) (a′ajJb′),
(a′aJj′b′)
□

(∗)1

The two factors of (∗) are symmetric and (A) aims at giving the
first; for the second we would use the reversal of (A). So it suffices to
check that the factors of (A) embed into Γ. These are (A)1 = (a′aJb′)
and (A)2 = (ajJj′b′).

The factor (a′aJb′) is covered by our induction hypothesis since
|aJ | < |I|. The factor (ajJj′b′) = (a) ⊥ (jJj′b′). By Corollary 6.4.1
it suffices to show that the configuration (A)′2 = (jJj′b′) embeds into
Γ. This is what diagram (A2′) aims at (with the extraneous vertex a
indicated but not actually part of the diagram).

The factors of diagram (A2′) are (jJj′x), which is an indepen-
dent set, hence in Γ, and (jJxb′), which is covered by the induction
hypothesis since |Jx| < |I|. □

Lemma 6.6. If A is an amalgamation class of finite ordered graphs
which contains A(2), then A contains [I⃗1, I⃗2].

Proof. Amalgamate as follows.

c a d b

(∗)

Then either (cab) or (adb) will be [I⃗1, I⃗2]. □

Lemma 6.7. If A is an amalgamation class of finite ordered graphs
which contains A(2), then A contains the following configurations.

1. The ordered path P⃗4;
2. The configuration (C⃗

−
3 → 2);

3. The ordered local order (S2314);
4. The ordered local order (S4321).

Proof.

Ad 1: The path P⃗4.



122 6. Ordered Homogeneous Graphs: Prop. I

P⃗4 C⃗
−
3 → 2

S2314 S4321

c a d b e

(P⃗4)

Here (cadb) or (cabe) will be P⃗4 and the factors are P⃗3⊥I⃗1 and
I⃗1⊥P⃗3.

Ad 2: The configuration (C⃗
−
3 → 2).

c a d e b

(∗)

Label Non-edge Edge Label Non-edge Edge

(∗) (caeb) □ (adeb) □

(∗)1 P⃗3⊥P⃗1 (∗)2 1 Edge

Ad 3. The ordered local order (S2314).

c a d e b

(∗)

Here (adeb) or (caeb) will be (S2314) and the factors are P⃗3⊥I⃗1
and I⃗1⊥P⃗ c

3 .
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a c b d e

(∗)

a c d e

A

Ad 4: The ordered local order (S4321).

Label Non-edge Edge Label Non-edge Edge

(∗) (abde) □ (acbd) □

(A) □ (∗)1 (∗)2 1 Edge
□

c a d e b

(∗)

6C. Four vertices and two edges

Next we deal with [I⃗1, I⃗3], and then all configurations of order 4
that contain at most 2 edges (Lemmas 6.9 and 6.13). We take these
in the following order.

Further Consequences of A(2)
Reference Claim

Lemma 6.9 [I⃗1, I⃗3]

Lemmas 6.10, 6.11, 6.12 K⃗2⊥K⃗2, (S2431), (S3124)
Lemma 6.13 4 Vertices, 2 Edges

Working toward [I⃗1, I⃗3], we begin as follows.

Lemma 6.8. If A is an amalgamation class of finite ordered graphs
which contains A(2), then A contains at least one of the following
configurations.
(a) The ordered local order (S3421);
(b) [I⃗1, I⃗3].
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S3421 [I1, I3]

c a d b e

(∗)

c a d e f

A

c a d f

A1

Proof. We use the following amalgamation.

Label Non-edge Edge Label Non-edge Edge

(∗) (cadb)

[I⃗1, I⃗3] □
(cabe)
(S3421) □

(A) (cade) (∗)1 (cdeff)

[I⃗1, I⃗3] □
(∗)2 (Lemma 6.6, Cor. 6.3.1)

(A1) [I⃗1, I⃗3] □ (A)1 (A)2 (S4321) □

Lemma 6.9. If A is an amalgamation class of finite ordered graphs
which contains A(2), then A contains [I⃗1, I⃗3].

Proof. By Lemma 6.8 we may suppose

A contains (S3421)

We consider the following amalgamation.

c a d b e f

(∗)

c a x d e f

A

c a x x ′ e f

A1

a x x ′ e f

A1.2
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Label Non-edge Edge Label Non-edge Edge

(∗) (cadb) □ (abef) □

(A) (cadef)
(∗)1

(adef) □ (∗)2 Lemma 6.6,

Corollary 6.3.1
(A1) (caxef) (caxx′) □ (A)2 Corollary 6.3.1

or
(cax′ef):
(A)1

(A1)1 (S3421) (assumed) (A1.2) (A1)2 (ax′ef) □

(A1.2)1 (S4321) (A1.2)2 I⃗4
□

Lemma 6.10. If A is an amalgamation class of finite ordered graphs
which contains A(2), then A contains K⃗2⊥K⃗2.

K2⊥K2

Proof. We use the following amalgamation.

a c b d e f

(∗)

a c d e f

A

c b d e f

B
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Label Non-edge Edge Label Non-edge Edge

(∗) (acbd) □ (abef) □

(A) (acef) □ (∗)1 (B) (bdef) □ (∗)2
(A)1, (A)2 Corollary 6.3.1

(B)1 Corollary 6.3.1 (B)2 (C⃗
−
3 → 2),

reversed □

Lemma 6.11. If A is an amalgamation class of finite ordered graphs
which contains A(2), then A contains the ordered local order (S2431).

S2431

Proof. We use the following amalgamation.

c d a e b f

(∗)

c d a e f

A

c d e b f

B

Label Non-edge Edge Label Non-edge Edge

(∗) (cdab) □ (aebf) □

(A) (cdaf) □ (∗)1 (B) (debf) □ (∗)2
(A)1 Corollary 6.3.1 (A)2 (C⃗

−
3 → 2) reversed

□

Lemma 6.12. If A is an amalgamation class of finite ordered graphs
which contains A(2), then A contains the ordered local order (S3124).

S3124



6C. Four vertices and two edges 127

Proof. We use the following amalgamation.

a c d e b f

(∗)

a c d e x f

A

c d e b f

B

Label Non-edge Edge Label Non-edge Edge

(∗) (adbf) □ (aceb) □

(A) (acef) □ (∗)1 (B) (∗)2 (cdbf) □

(A)1,2 1 Edge (B)1,2 (S2431)

□

Lemma 6.13. Let A be a finite ordered graph with at most four ver-
tices and two edges. Then A is in any amalgamation class containing
A(2).

Proof. If there is at most one edge then this holds by Lemma
6.5. So we may suppose there are exactly two edges and four vertices
a < b < c < d.

The cases in which a or d lies on no edge are covered by Corollary
6.3.1 together with Lemmas 6.6 and 6.1.

If (a, d) is an edge then up to reversal the configuration is one of
(C⃗
−
3 → 2), (S4321), or (S3124), which are covered by Lemmas 6.7

and 6.12.
So we may suppose that a, d lie on distinct edges. Then up to

reversal the configuration is (S2314), K⃗2⊥K⃗2, or (S2431), covered
by Lemmas 6.7, 6.10, and 6.11. □

Lemma 6.14. If A is an amalgamation class of finite ordered graphs
which contains A(2), then A contains the ordered local order

(C⃗
−
3 → 3).
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C⃗
−
3 → 3

Proof. We use the following amalgamation.

a c b d e

(∗)

Label Non-edge Edge Label Non-edge Edge

(∗) (abde) □ (acbe) □ (∗)1, (∗)2 2 Edges □

6D. An ample ordered 2-graph

Proposition I concerns the ordered 2-graph (a⊥−, a⊥+) where a ∈ Γ
and Γ is a countable homogeneous ordered graph. We will first deal
with the ordered 2-graph (a←, a⊥−), in Lemma 6.17 below.

Lemma 6.15. Any amalgamation class which contains A(3) con-
tains [I⃗1, P⃗

c
3 ].

[I1, P⃗
c]

Proof. We use the following amalgamation.

c a d b e

(∗)

c a d e f

A

c a d y f

A1
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c x d b e

B

c a y f

A1.2

Label Non-edge Edge Label Non-edge Edge

(∗) (cabe) □ (adbe) □

(A) (caef) □ (cade) (∗)2 (B) (cdbe) (∗)2 (cdbe) □

(A1) (cadf) (A)1 (cadf) (∗)1 (A)2 C⃗
−
3 → 3

(A1)1 Corollary 6.3.1 (A1.2) (A1)2 □

(B)1 4 Vertices, 2 Edges (B)2 1 Edge □

Lemma 6.16. Any amalgamation class of finite ordered graphs which
contains A(2) contains the configurations [I⃗1, I⃗k] for all k <∞.

Proof. Fix k <∞.
We divide the proof into two cases.

Case I: A contains A(∞) = {I⃗1⊥P⃗3, P⃗
c
3} ∪ {I⃗k, K⃗k | k <∞}.

By Lemma 6.4, any amalgamation class containing A(∞) must
contain I⃗1⊥K⃗k.

By Lemma 6.15, any amalgamation class containing A(∞) con-
tains [I⃗1, P⃗

c
3 ] = (I⃗1⊥P⃗3)

c, and hence contains Ac for all A ∈ A(∞).
Hence for any finite configuration X which belongs to all amalgama-
tion classes containing A(∞), the same applies to Xc. In particular
(I⃗1⊥K⃗k)

c = [I⃗1, I⃗k] is in every amalgamation class containing A(∞).
This completes the treatment of Case I.

Case II: A does not contain K⃗n for some n.
Let Γ be the homogeneous ordered graph corresponding to A, and

fix a ∈ Γ. Then the ordered graph induced on a→ = {b | a < b, a b}
is homogeneous and nontrivial, hence infinite, and it does not contain
K⃗n. By Ramsey’s Theorem, a→ contains I⃗∞. So Γ contains [I⃗1, I⃗∞]

and A contains [I⃗1, I⃗k] for all k <∞. □

Lemma 6.17. Let Γ be a countable homogeneous ordered graph con-
taining all configurations in A(2). Let c ∈ Γ and set H = (c←, c⊥−).
Then H is ample.
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Proof. We consider initial 1-types (b, I) with I ∼= I⃗k, satisfying
one of the following conditions, and we show they are realized in H.

b ⊥ I: This corresponds to bIc with unique edge bc, given by
Lemma 6.5.

b→ I: This corresponds to bIc = [I⃗1, I⃗k+1], given by Lemma 6.16.
|I| = 2: We may suppose that bI contains exactly one edge,

and thus bIc has 2 edges, and is covered by Lemma 6.13.

□

6E. 1-types over I⃗k; Proposition (IB)

We will show shortly that in any ample homogeneous ordered graph
all initial 1-types over I⃗k are realized (k <∞).

Lemma 6.18. Let H be a countable homogeneous ordered 2-graph
such that H2 contains all configurations in A(2) and H realizes the
initial 1-types (b, I) with I ∼= I⃗2 and at most one edge. Then H realizes
the initial 1-type (b, I) with I = acd ∼= I⃗3 and with unique edge bc.

b a c d

H

Proof. Amalgamate as follows.

b a ′ a c d

(∗)

b a ′ x c d

A

b a ′ e x d

A1

b a ′ x d

A1.1

b x e d

A1.1.2

b x c d

A2
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Label Non-edge Edge Label Non-edge Edge

(∗) (b, acd) □ (b, a′ad) □

(A) (b, a′cd) □ (b, a′cd)
(∗)1

(∗)2 H2: 1 Edge

(A1) (b, exd)
(A)1

(b, a′ex) □ (A2) □ (A)2

Label Non-edge Edge Label Non-edge Edge

(A1.1) (A1)1 (A)1 (A1)2 H2: 2 Edges
(A1.1)1 Assumed (A1.1.2) □ (A1.1)2

(A1.1.2)1 Assumed (A1.1.2)2 Assumed
(A2)1 Assumed (A2)2 H2: I⃗3□

Lemma 6.19. Let k, ℓ ≥ 0. Let H be a countable homogeneous or-
dered 2-graph satisfying the following conditions.
(a) Every configuration in A(2) embeds in H2;
(b) H contains every initial 1-type (b, I) with I an independent set

of vertices, for which one of the following holds:
— |I| = k and b ⊥ I; or
— |I| = ℓ and b→ I; or
— |I| = 2 and there is one edge between b and I.

Then H realizes every initial 1-type over Ik+ℓ for which there are
exactly k edges and ℓ nonedges.

Proof. We proceed by induction on k + ℓ.
If k or ℓ is 0, or if k = ℓ = 1, this holds by hypothesis.
So suppose

k, ℓ ≥ 1, and k + ℓ ≥ 3

Set a = min I and p = tp(b/a). Our assumptions are symmetrical in
the cross types ⊥, →, so we may suppose that

b ⊥ a

Let H′ be the homogeneous ordered 2-graph induced on

(a⊥− ∩H1, a
⊥+ ∩H2)

Claim. The ordered 2-graph H′ realizes the 1-type (b, I) with |I| =
ℓ and b→ I.
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We claim that H realizes the configuration baI with b < a < I ∼= Iℓ,
b ⊥ a, b→ I.

Let c = max I and I ′ = I \ {a, c}. We perform the following amal-
gamations of ordered 2-graphs.

b a ′ a I ′ c

(∗)

b a ′ I ′ c

A

Label Non-edge Edge Label Non-edge Edge

(∗) (b, aI ′c) □ (b, a′aI ′) □

(A) □ (∗)1 (∗)2 H2: 1 Edge
(A)1 Induction to (1, ℓ− 1) (A)2 Assumed
This proves the claim.

If k = 1, then the configuration (b, Ik+ℓ) is b ⊥ a, b → I ′, and our
claim applies. So we may suppose from now on that

k ≥ 2.

Now to conclude, it will suffice to prove the following, and apply
induction.

Claim. H′ satisfies the same hypotheses as H, with (k, ℓ) replaced
by (k − 1, ℓ).

By Corollary 6.4.1, every configuration in A(2) embeds into H ′2.
So it suffices to check the appropriate 1-types (b, I) for H.
By hypothesis H′ realizes the initial 1-type (b, I) with b ⊥ I and

I ∼= Ik−1, and our first claim takes care of the 1-type (b, I) with b→ I
and I ∼= Iℓ.

To complete the proof, it suffices to check that H′ realizes the two
configurations (b, cd) with b < c < d, and either
(I) b→ c, b ⊥ d, or

(II) b→ d, b ⊥ c.
In terms of H, we must realize the configurations (b, acd) with unique
edge
(I) bc, or

(II) bd.
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Since k ≥ 2, Lemma 6.18 yields the configuration (b, acd) with
unique edge bc (variant I).

The final configuration to be considered, namely (II), is (b, acd)
with unique edge bd.

b a c d

(II)

For this we amalgamate as follows.

b c′ d a e

(∗)

b c d e

A

Label Non-edge Edge Label Non-edge Edge

(∗) (b, dae) □ (b, cda) □

(A) □ (∗)1 (∗)2 1 Edge
(A)1, (A)2 Assumed
This completes the proof. □

Corollary 6.19.1. Let H be an ample homogeneous ordered 2-graph.
Then H realizes every initial 1-type (b, I) with I an independent set
of vertices.

Corollary 6.19.2. Let H be an ample homogeneous 2-graph, a ∈
H2, and p an initial 1-type over a realized in H1. Then (ap, a⊥±) is
ample.

Proof. Combine Corollaries 6.3.1 and 6.19.1. □

Now we prove the strong form of Proposition (IB) (equivalent to
the original form in view of Lemma 6.19.1).

Proposition (IB). Suppose Γ is a homogeneous ordered graph which
contains all configurations in A(2). Then Γ realizes all initial 1-types
over an independent set.
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Proof. Let A = bI be an initial 1-type with I an independent
set. Let k = |I|. We argue by induction on k. Let c = max I and
I ′ = I \ {c}.

If we have b ⊥ c then by Corollary 6.3.1 this reduces to bI ′ with
|I ′| = k − 1, and induction applies.

If we have b → c then Lemma 6.17 applies, and (b, I ′) is realized
in (c←, c⊥−). □

This completes the proof of Proposition I.



CHAPTER 7

ORDERED HOMOGENEOUS GRAPHS:
PROPOSITION II

Before entering into the proof of Proposition II, we establish two
useful lemmas. The first of these is a closure condition for the oper-
ation K⃗2 ⊥, on the class A(2).

7A. Closure under K⃗2 ⊥ X

Our first objective is the following.

Lemma 7.1. Let n ≥ 2 and let X be a finite ordered graph which
belongs to every amalgamation class of finite ordered graphs contain-
ing A(2). Then K⃗2 ⊥ X and X ⊥ K⃗2 also belong to every such
amalgamation class.

By a formal reduction, it suffices to treat the cases in which X
belongs to A(2).

Lemma 7.2. Let A be a finite ordered graph of the form

A1 ⊥ A2 ⊥ · · · ⊥ AN

where each Ai is either an independent set or a clique of order 2.
Then any amalgamation class of finite ordered graphs which contains
A(2) must contain A.

Proof. It suffices to treat the case in which all Ai are cliques of
order 2. We proceed by induction on N .

Let A be the amalgamation class under consideration, Γ the cor-
responding homogeneous ordered graph, and view A1 as embedded
in Γ. If A⊥+1 contains all configurations in A(2) then by induction
A2 ⊥ · · · ⊥ AN embeds in A⊥+1 and our claim follows.

135
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By Corollary 6.4.1 and Lemma 6.10, A⊥+1 contains all K⃗2 ⊥ I⃗k for
k <∞.

Suppose now that A⊥+1 does not contain A(2). Then either A⊥+1
must lie in the catalog in Group II, in which case it follows by inspec-
tion that A embeds in A⊥+1 and hence in Γ, or else A⊥+1 must omit
(I⃗1 ⊥ P⃗3), and then Proposition 4.1 says that A⊥+1 is S⃗(2), which
also contains all of the desired configurations. □

Lemma 7.3. Let A be an amalgamation class of finite ordered graphs
containing A(2). Then K⃗2 ⊥ P⃗ c

3 is in A.

K⃗2⊥ P⃗ c
3

Proof. We use the following amalgamation.

c d e a f b g h

(∗)

c d h e a f g

A

c d e f b g h

B

Label Non-edge Edge Label Non-edge Edge

(∗) (eabgh) □ (cdafb) □

(A) (cdhfg) □ (cdeafg)
(∗)1

(B) (cdbgh) □ (∗)2

(B)1 Corollary 6.3.1 (B)2 Lemma 7.2

So to conclude, we must show that if K⃗2 ⊥ P⃗ c
3 is not in A, then

the factors (A)1 = (c d h e a f) and (A)2 = (c h e a f g) of (A) both
embed into Γ.
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Now the factor (A)1 is covered by Lemma 7.2. The factor (A)2 =
(cheafg) = (c) ⊥ (heafg), so it suffices to treat the factor (A)′2 =
(heafg). We proceed as follows.

i h e a j f g

A2′

i h e x a j

A2′.1′

e a j f g

A2′.2′

i h e x j

A2′.1′.1

Label Non-edge Edge Label Non-edge Edge

(A2′) (ihjfg) □ (heafg)
(A)′2

(A2′.1′) (iheaj) □ (iheaj)
(A2′)′1

(A2′.2′) □ (A2′)′2

(A2′.1′.1) □ (A2′.1′)1 (A2′.1′)2 Corollary 6.3.1
Here the factors of (A2′) are (A2′)1 = (iheajf) = (iheaj) ⊥ (f)

and (A2′)2 = (ieajfg) = (i) ⊥ (eajfg). These reduce by Corol-
lary 6.3.1 to (A2′)′1 = (iheaj) and (A2′)′2 = (eajfg), dealt with by
(A2′.1′) and (A2′.2′) as shown.

After the analysis shown it suffices to check that the factors of
(A2′.1′) and (A2′.2′) are in A. The factor (A2′.1′)1 = (ihexaj) is
dealt with in (A2′.1′.1), whose factors are in A by Corollary 6.3.1
and Lemma 7.2; and similarly the other factor of (A2′.1′) and both
factors of (A2′.2′) are in A. □

Lemma 7.4. Let A be an amalgamation class of finite ordered graphs
containing A(2). Then K⃗2 ⊥ [I⃗1, I⃗2] is in A.

K⃗2⊥[I⃗1, I⃗2]
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Proof. We amalgamate as follows.

c d a e f b b′

(∗)

c d a e f g h

A

c d e f b b′

B

Label Non-edge Edge Label Non-edge Edge

(∗) (aefbb′) □ (cdaeb) or
(cdaeb′) □

(A) (cdfgh) □ (∗)1 (B) (cdfbb′) □ (∗)2
(A)1 Lemma 7.2 (B)1, (B)2 Corollary 6.3.1
This leaves us with the factor (A)2 = (d) ⊥ (aefgh) to consider,

and by Corollary 6.3.1, this reduces to (A)′2 = (aefgh). The following
amalgamation gives either the target I⃗2 ⊥ [I⃗1, I⃗2] or the factor (A)′2,
and has subfactors in A.

a e f g h

A2 □

Lemma 7.5. Let A be an amalgamation class of finite ordered graphs
containing A(2). Then K⃗2 ⊥ P⃗3 is in A.

K⃗2⊥ P⃗3

Proof. Assuming the contrary, there is a homogeneous ordered
graph Γ containing the configurations of A(2) but not containing
K⃗2 ⊥ P⃗3. In this case for K ∼= K⃗2 in Γ, the ordered graph induced on
K⊥+ does not contain P⃗3 but does contain P⃗ c

3 and [I⃗1, I⃗2]. It follows
that K⊥+ is the generic linear extension of a generic partial order,
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in other words generic omitting P⃗3. So any configuration omitting P⃗3

belongs to Γ.
We amalgamate as follows.

c d e a f g b

(∗)

c d e f g b

(∗)

Label Non-edge Edge Label Non-edge Edge

(∗) (eafgb) □ (cdeab) □

(∗)1 Omits P⃗3 (B) (cdfgb) □ (∗)2
(B)1 Omits P⃗3 (B)2 Corollary 6.3.1 □

Now we can prove closure under K⃗2 ⊥ and ⊥ K⃗2 for the structures
present in every amalgamation class containing A(2).

Proof of Lemma 7.1. Let X be a finite ordered graph belonging
to every amalgamation class containing A(2). Our claim is that X ⊥
K⃗2 and K⃗2 ⊥ X also belong to every amalgamation class containing
A(2). By symmetry (Lemma 6.1) it suffices to treat the case of

K⃗2 ⊥ X.

It suffices to verify this claim in the special case where X is one of
the configurations in A(2):

X = (I⃗1 ⊥ P⃗3), P⃗ c
3 , or I⃗k with k <∞

By Lemma 4.8 we may take P⃗3 ⊥ I⃗1 in place of I⃗1 ⊥ P⃗3. Then the
desired configuration is K⃗2 ⊥ P⃗3 ⊥ I⃗1, which we have by Lemma 7.5
and Corollary 6.4.1.

We have K⃗2 ⊥ P⃗ c
3 by Lemma 7.3, and K⃗2 ⊥ I⃗k by Corollary 6.4.1.

This completes the proof. □

7B. A(n) and [I⃗1,A(n− 1)]

In this subsection we prove a lemma relating A(n) and A(n − 1)
inductively, as follows.
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Lemma 7.6. Let n ≥ 3, and assume Proposition VIII2 holds. Let
X be a finite ordered graph which belongs to every amalgamation class
containing A(n−1). Then [I⃗1, X] belongs to every amalgamation class
containing A(n).

We begin with the case n = 3.

Lemma 7.7. Assume Proposition VIII2 holds, and let X be a finite
ordered graph which belongs to every amalgamation class containing
A(2). Then [I⃗1, X] belongs to every amalgamation class containing
A(3).

Proof. Let A be an amalgamation class containing A(3), and let
Γ be the homogeneous ordered graph corresponding to A. Let a ∈ Γ
and let Γ′ = a⊥+. We must show that Γ′ contains X. It suffices to
show that Γ′ contains each configuration in A(2).

By Lemma 6.16, Γ′ contains all I⃗k for k <∞. By Lemma 6.15, Γ′

contains P⃗ c
3 . It remains to check that Γ′ contains I⃗1 ⊥ P⃗3.

Suppose Γ′ does not contain I⃗1 ⊥ P⃗3. We know Γ′ does contain P⃗ c
3

and all I⃗k, by Lemma 6.15 and Corollary 6.3.1. So Γ′ must be in our
catalog, under group (II) or entry (IIIA). In particular Γ′ contains all
complete ordered graphs K⃗k for k <∞, so Γ contains these as well.

Thus Γc contains all I⃗k for k <∞, and in view of Lemma 6.15, Γc

contains A(3).
By Lemma 6.15 and Corollary 6.4.1, Γc contains I⃗1 ⊥ [I⃗1, P⃗

c
3 ] and

thus Γ contains (I⃗1 ⊥ [I⃗1, P⃗
c
3 ])

c = [I⃗1, I⃗1 ⊥ P⃗3], as claimed. □

Proof of Lemma 7.6. It suffices to show that for X ∈ A(n−1),
we have [I⃗1, X] in every amalgamation class of finite ordered graphs
which contains A(n).

For X ∈ A(2) this holds by Lemma 7.7. For X = Kn−1 we have
[I⃗1, X] = K⃗n ∈ A(n). Our claim follows. □

Corollary 7.7.1. Assume Proposition VIII2 holds. If m+k+m′ = n
and X ∈ A(k), then any amalgamation class of finite ordered graphs
containing A(n) contains the ordered graph [K⃗m, X, K⃗m′ ].

Proof. Proceed by induction on m+m′.
If m = m′ = 0 the claim is vacuous.
If m > 0 we view X as [minX,X ′], apply induction to conclude

that X ′ is in every amalgamation class containing A(n−1), and apply
Lemma 7.6 to conclude.
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If m′ > 0 we may apply the dual (under reversal) to reduce m′ and
n. □

7C. Proof of Proposition II

Lemma 7.8. Let n ≥ 2, and if n ≥ 3 assume Proposition VIIIn−1
holds. Let B = baK be an ordered graph with b < a < K, bK com-
plete of order n, and a ⊥ bK. Then any amalgamation class of finite
ordered graphs containing A(n) contains baK.

b a K

baK

Proof. This is clear if n = 2. So suppose n ≥ 3. Let c = maxK,
and let K ′ be another copy of K. Set K ′′ = K \ {c}. Note that K ′′

is nonempty. Amalgamate as follows.

b a K ′ K ′′ c

(∗)

b a K ′′ c

A

The outcome of the amalgamation either involves some non-edge
(b, k) with k ∈ K ′, or makes bK ′ a clique. This accounts for the first
line below.

Label Non-edge Edge Label Non-edge Edge

(∗) (bkK) □ (baK ′) □

(A) baK □ (∗)1 (∗)2 Proposition VIIIn−1
For the last line, note that |K ′| = |K| = n− 1, and n ≥ 3. □

Formally speaking, Proposition IXn contains Proposition VIIIn. In
the next proposition, and others of a similar character, the hypothesis
“Proposition IXn−1” is best understood as “Propositions VIIIn−1 and
IXn−1 hold.”
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Proposition 7.9 (IIn). Let n ≥ 2, and if n > 2 assume Proposition
IXn−1 holds. Let Γ be a homogeneous ordered graph. If all elements
of A(n) embed in Γ, and B = baK satisfies the conditions

— K ∼= K⃗n,
— b < a < K,
— a ⊥ bK,
— B does not contain K⃗n+1,

then B embeds in Γ.

b a K

baK

Proof. If b ⊥ K then baK is I⃗2 ⊥ K⃗n and Corollary 6.4.1 suffices.
By hypothesis we do not have b→ K. Therefore we may suppose that
b is related to K by both edges and nonedges. Take u, v ∈ K adjacent
(in the ordering) with

b ⊥ u and b→ v

Set x = min(u, v), z = max(u, v), and let K̂ = K ∪{y} with x < y <
z.

Let K− = {k ∈ K | k < x} and K+ = {k ∈ K | k > z}. Let

K0 = {k ∈ K− ∪K+ | (b, k) is an edge}

We form the following amalgamation, in which K̂ is a clique with
one edge removed, namely (x, z)

b a K− x y z K+

(∗)

Then in the amalgam, either (baK−xyK+) or (b, aK−yzK+) will
be a copy of the desired configuration (baK), depending on whether
(b, y) is a non-edge or an edge (and similarly, on which applies to
(b, u) and to (b, v)).
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So it suffices to check that the factors of this amalgamation problem
lie in Γ.

Factor (∗)1: (baK−xzK+):
If n = 2 this is baxz with a unique edge, and is covered by Lemma

6.5. So suppose for the present that

n > 2, and Proposition IXn−1 holds.

Let H = (a⊥−, a⊥+). By Proposition (I) (= Proposition 6) H is
ample. We claim that the configuration (b,K−xzK+) embeds in
H. By Proposition IXn−1 it suffices to check that the configuration
(b,K−xzK+) is H-constrained. As (x, z) is not an edge, this means
that (b,K−xK+) and (b,K−zK+) embed into H.

Now K−xK+ and K−zK+ are complete graphs of order n−1 and
unless b → K−vK+, the corresponding configurations baK−xK+

and baK−zK+ occur in Γ by induction. And the exceptional case
baK−vK+ with b→ K−vK+ is covered by Lemma 7.8.

Factor (∗)2: aK−xyzK+ = I⃗1 ⊥ [K−, P⃗3,K
+]:

By Corollary 6.4.1 it suffices to consider the configuration [K⃗−, P⃗3, K⃗
+].

Here Corollary 7.7.1 applies. □





CHAPTER 8

ORDERED HOMOGENEOUS GRAPHS:
PROPOSITION III

8A. Ramsey 2-types

We make use of the following terminology.

Definition 8.1. Let H be an ordered 2-graph and let r be one
of the two possible types of pairs a, b ∈ H1 with a < b (an ordered
edge or an ordered non-edge). Let X be a finite ordered graph which
embeds in H2. We say that r is a Ramsey 2-type for H over X if the
following holds.

For any finite r-Ramsey graph R and any finite ordered 2-
graph A = (R,⊥k X) with R < X, if every configuration
of the form (a,Xi) which occurs in A embeds into H, where
a ∈ R and Xi is one of the summands of ⊥k X, then the
configuration A also embeds into H.

In practice, the way we find Ramsey 2-types is by an application
of Ramsey’s Theorem in the following context.

Lemma 8.2. Let H be a homogenous 2-graph and X a finite ordered
graph. Suppose that the following holds.

For any initial 1-type p = (a,⊥k X) over an ordered sum of
copies of X for which the restrictions (a,Xi) to individual
summands are realized in H, the full 1-type p is realized in H.

Then there is a Ramsey 2-type for H over X.

Proof. This is a more precise formulation of Lemma 5.10, with
the same proof (i.e., following the proof of Lemma 5.9). □

Proposition III concerns the realization of 1-types over configura-
tions in A(2). As preparation for its proof we will first need to prove

145
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the existence of a Ramsey 2-type over K⃗2. This goal also requires
extensive preparation. We begin as follows.

Lemma 8.3. Let H be an ample homogeneous ordered 2-graph. Then
there is a Ramsey 2-type for H over I⃗1.

Proof. By Lemma 8.2 it suffices to check that any H-constrained
initial 1-type over I⃗k is realized in H. This is Corollary 6.19.1. □

8B. An inductive principle

We aim to treat 1-types over a base consisting of an ordered disjoint
union of copies of K⃗2 by induction on the number of copies of K⃗2 in
the base, with the case of two copies as the base case. The following
result will give us a way of organizing this induction.

Lemma 8.4. Let H be an ample homogeneous ordered 2-graph and
P = (a,K) an initial 1-type over K ∼= K⃗2 which is realized in H.
Then the ordered 2-graph H′ = (KP ,K⊥±) is ample.

The proof of Lemma 8.4 will rely on the next two preparatory
lemmas.

Lemma 8.5. Let H be an ample homogeneous ordered 2-graph. Then
any H-constrained initial 1-type p over I⃗1 ⊥ K⃗2 or K⃗2 ⊥ I⃗1 is realized
in H.

As the next proof is more delicate than our earlier amalgamation
arguments, and the method will remain important afterward, we will
write out the argument in considerable detail.

Proof. Suppose first that

p = (a, bc1c2)

is a 1-type over I⃗1 ⊥ K⃗2 with the 1-types p1 = tp(a/I⃗1) and Q =

tp(a/K⃗2) realized in H.
Take a Ramsey 2-type r over I⃗1 for H, and let R = {x1, x2} have

the type r. Amalgamate as shown below.
This picture represents an amalgamation argument which is more

demanding, but also more flexible, than the ones we have been con-
sidering up to this point, and one in which the order of steps is less
transparent. Our previous amalgamation arguments could be dia-
grammed as a search through a tree of possibilities, where the order
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x1 x2

c a d b

x1/adb = p; x2/cab = p

(∗)

of the search is of no importance, but one must remember all the
ancestors of a given node.

As always, the task is to ensure that both factors of the diagram
are available. Usually in such cases the main difficulties are concen-
trated in one factor; here we must keep an eye on both factors as the
argument proceeds.

For this reason, our initial description of the amalgamation diagram
is not yet complete. To complete our specifications requires carrying
out the steps in a definite order, and retaining parts of the solution
to one amalgamation problem when setting up the next.

What the picture shows us is the set R sitting on one side of H
(here represented as the top half), and some vertices c, a, d, b sitting
on the other side. It is assumed that

x1 < x2 < c < a < d < b.

That is, R and cadb are ordered as shown, and in the present con-
text we are taking R < cadb, though this point is not shown in the
diagram.

Whether R contains an edge is determined by the type r, and does
not need to be indicated. Any edges present in H2 will be indicated
(of course, the type of the pair (a, b) will only be determined by
completing the amalgamation diagram).

The relations between R and (cadb) remain to be specified. Our
annotations (under the diagram) give the relationship of x1 to a, d, b
and of x2 to c, a, b. This should not be taken too literally, since the
structure of (a, b) is unsettled at this point. What we really mean
here is that the relations of x1 to a, d, b or of x2 to c, a, b are as
specified by the type p, so that in particular if (a, b) is a non-edge
then (x1, adb) really will realize the type p, while if (a, b) is an edge
then (x2, cab) will realize the type p. In particular, any amalgamation
diagram of this type will force a copy of the type p to occur in H,
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as desired—once we ensure that the two factors of such a diagram
embed into H.

In the factors, what remains unspecified at this point is the nature
of (x1, c) and of (x2, d):

Are (x1, c), (x2, d) edges or non-edges?

We will not have a definite diagram until this information is supplied.
Our goal now is to fill in the missing data in such a way that the
factors of the amalgamation diagram occur in H. If we succeed in
this, the proof is complete.

One proceeds by analyzing the factors further and filling in the
data as needed along the way. And it is here that the order of the
steps becomes important; it will be different from the natural order
of analysis.

What has been said so far applies generally to constructions of this
type, which will be seen again. Now let us consider the specific case
at hand. We are concerned with the following factors.

x1 x2

c a d

(1)

x1/c =?

x1 x2

c d b

(2)

x2/d =?

The question is whether we can find a suitable choice of relations
on (x1, c) and (x2, d) (edge or non-edge), consistently, so that each
factor embeds into H.

The factor (1) is the easier of the two to deal with. Here (c, a, d)

is an independent set and R is r-Ramsey over I⃗1, so as long as the
types realized by x1 and x2 over (c, a, d) are realized in H, this factor
will be present in H. By Corollary 6.19.1, this is no constraint at all.

So we are left with the much simpler task of finding some form of
factor (2) in H. This argument is a little too easy: a similar argument
at a crucial point in the proof of Proposition V will require more
attention to what precisely needs to be copied from factor (2) into
factor (1), when there are some restrictions to be observed.
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But in the present case, we need only concern ourselves with the
factor (2). Once we have determined the type of (x1, c), we will arrive
at this factor by a 2-point amalgamation which determines the type
of x2, as shown below.

x1 x2

c d b

x1/c =?

B

Here the factors in this amalgamation diagram are (B)1 = (R, cb)
and (x1, cdb). Again, by the choice of R, either possible form of (R, cd)
will be available in H, so now we have only to choose the type of
(x1, c) so as to have (x1, cdb) available in H. This will be settled by
the corresponding amalgamation, as shown.

x1

c d b

B2

This last diagram has a factor (x1, db) still to be considered. But
that configuration is contained in the H-constrained type p, so by
definition it is realized in H.

This concludes our analysis, but it is worth while to recapitulate.
The actual order of events in our construction begins with the last
amalgamation diagram shown (B2). This is to be completed in H to
determine whether (x1, c) should be an edge or a non-edge. Then we
proceed similarly with the amalgamation represented in (B) above
to determine whether (x2, d) is an edge or not. After that one may
go back to the beginning of the proof, knowing precisely what the
configuration (∗) represents, after which the argument falls back into
the line of those we carried out earlier.
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We have also the second half of the claim to deal with, concerning
initial 1-types over (K⃗2⊥I⃗1). This claim does not quite follow by
symmetry on formal grounds, but in fact a symmetrical argument
will work. One works with an amalgamation of the following form,
and one argues as above.

x1 x2

a c b d

(∗)
□

Lemma 8.6. Let H be an ample homogeneous 2-graph. Then any
H-constrained initial 1-type p = (a, IKJ) over a configuration of the
form I⃗k ⊥ K⃗2 ⊥ I⃗ℓ is realized in H.

Proof. We proceed by induction on k + ℓ. Let P denote the re-
striction of p to K⃗2. By hypothesis P is realized in H.

If k = ℓ = 0 there is nothing to prove. If k > 0 we take b ∈ H2,
let p1 be the type of a over the first element of I, and consider the
homogeneous ordered 2-graph H′ induced on

(bp1 , b⊥+)

where bp1 ⊆ H1 and b⊥+ ⊆ H2.
By Corollary 6.19.2, H′ is again ample, and so by induction it

suffices to check the following.

The restricted 1-type (a, I ′KJ) is H′-constrained
(where I ′ = I \ {min I}).

In terms of H, this amounts to considering restrictions of p to con-
figurations X ∼= I⃗2 or I⃗1 ⊥ K⃗2. These restrictions are obtained from
ampleness of H and Lemma 8.5.

If k = 0 and ℓ > 0 we work from the other end. □

After these preparations, Lemma 8.4 may be treated as a corollary.
Proof of Lemma 8.4. Recall that H′ = (KP ,K⊥±) with K ∼=

K⃗2, and our claim is that H is ample. Here K⊥± refers to either one
of the sets K⊥+ or K⊥−, taken separately.
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By Lemma 7.1, the second component H ′2 = K⊥± contains the
configurations of A(2).

By Corollary 6.19.1, H realizes all initial 1-types over all I⃗k, and
by out hypothesis H also realizes the type P . Thus any initial 1-type
extending P over a configuration K⊥J or J⊥K with J an indepen-
dent set will be H-constrained. By Lemma 8.6, H realizes all such
1-types and H′ realizes all 1-types over an independent set. □

8C. Ramsey 2-types over K⃗2

We are working toward the following.

Lemma 8.7. Let H be an ample homogeneous ordered 2-graph. If
p = (a,⊥n K⃗2) is an H-constrained initial 1-type over an ordered
direct sum of copies of K⃗2, then p is realized in H.

As we explained at the beginning of the present section, this lemma
then has the following useful corollary.

Corollary 8.7.1. Let H be an ample homogeneous ordered 2-graph.
Then there is a Ramsey 2-type for H over K⃗2.

The proof of Lemma 8.7 involves something more substantial than
the kind of direct amalgamation arguments used earlier. Indeed, when
generalized from K⃗2 to K⃗n, this will become a key argument for the
completion of the analysis, as discussed in detail in §2A.

The main difficulty will be the verification of our claim in the case
of 1-types over

K⃗2 ⊥ K⃗2.

We will make use of the following notational conventions.

Notation 8.8.
1. We use P,Q and the like to denote initial 1-types over K⃗2 in the

ordered 2-graph setting, that is

(a,K) with K ∼= K⃗2 and a < K.

2. If P,Q are initial 1-types over K⃗2 then

P⊥Q

is the corresponding initial 1-type over K⃗2 ⊥ K⃗2, with restrictions
P,Q to the individual summands.
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Lemma 8.9. Let H be an ample homogeneous ordered 2-graph, and
let P1, P2 be 1-types over K⃗2 which are realized in H. Then for some
1-type Q over K⃗2, the 1-types P1⊥Q and Q⊥P2 are both realized in
H.

Proof. Let A ∼= B ∼= K ∼= K⃗2, with A = {a, a′} and B = {b, b′}.
Let AKB be A⊥K⊥B with possibly one additional edge (a, b). Amal-
gamate as follows.

x

A K B

x1/A,B = P1, P2

(∗)

Here we show the undetermined type of the pair (a, b) as a dotted
line. We also specify that the types (x/A) and (x/B) should agree
with P1 and P2, respectively. So in the amalgam, whatever type Q is
realized by x over K will be as required.

It remains to be seen whether the factors of this diagram can be
obtained in H, assuming that the type of the pair (a, b) is chosen
judiciously.

We first form the factor (x,AB) by an amalgamation determining
the type of (a, b).

x

A B

x/A,B = P1, P2

(1)
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Here we require the subfactors (x,Ab′) and (x, a′B) which are af-
forded by Lemma 8.5. The result of the amalgamation (1) will deter-
mine whether (a, b) is an edge or not, and hence determine the form
of the corresponding factor of (∗).

A K B

(2)

So it will suffice to obtain the two possible forms of the factor (2),
with (a, b) an edge or a non-edge.

If a⊥b in (2) then Lemma 7.2 applies. So we may suppose

a b

holds in the completion of diagram (1) and the target is diagram (2)
with an edge (a, b). We take an indirect approach to this.

Set

p = tp(a/B);

H′ = (Bp, B⊥−).

Claim. H′ is ample.

Take c ∈ H2 and let H(c) = (c⊥−, c⊥+). By Proposition I

H(c) is ample.

Observe that the type p is realized in H(c): in terms of H2 the required
configuration is (acB) with four vertices and two edges, namely (a, b)
and (b, b′), and this is covered by Lemma 6.13.

Since the type p is realized in H(c), the 2-graph H′(c) = (Bp, B⊥−),
computed inside H(c), is again ample, by Lemma 8.4. But this 2-
graph is contained in H′, so H′ is ample.

Now our claim that (2) embeds in H amounts to the claim that
there is a realization of the initial 1-type (a, a′K) in H′, where a′K ∼=
I⃗1 ⊥ K⃗2 (Figure 74).

By Lemma 8.5 this reduces to the 1-types (a, a′) and (a,K) in the
ordered 2-graph H′. Now we reinsert B and view these configurations
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a

a ′ K

p

⊥−

B

Figure 74. H′

as (AB) and (aKB). So it will suffice to find those configurations in
H.

A B

(AB)

a K B

(aKB)

Now by hypothesis the configuration (AB) was already produced,
with the edge (a, b) included, within the result of amalgamation (1).

For (aKB), consider the 2-graph

H∗ = (b′
←
, b′
⊥−

).

We require the terminal 1-type (b, aK) with aK ∼= I⃗1 ⊥ K⃗2 in H∗. By
the dual of Lemma 8.5, this reduces to (b, a) and (b,K) (in H∗). Thus
in H2, (aKB) may be obtained from the two factors (aB) = P⃗+

3 and
(KB) = K⃗2⊥K⃗2, both of which are available.

This completes the argument. □

Now we will need to refine our inductive approach, using the fol-
lowing parameter.

Definition 8.10. If H is a homogeneous ordered 2-graph and X
is a finite ordered graph embedding in H2, let s(H, X) be the number
of initial 1-types realized by elements of H1 over X.

Lemma 8.11. Let H be an ample homogeneous ordered 2-graph.
Suppose that for every ample homogeneous ordered 2-graph H′ for
which s(H′, K⃗2) < s(H, K⃗2) there is a Ramsey 2-type over K⃗2. Let
P,Q be 1-types over K⃗2 realized in H. Suppose that Q⊥Q is realized
in H. Then P⊥Q is realized in H.
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Proof. Suppose P⊥Q is not realized in H. Let K be a copy of
K⃗2 in H2 and consider the homogeneous ordered 2-graph

HQ = (KQ,K⊥−).

Our hypotheses are that

Q is realized in HQ, and P is not.

Now HQ is ample by Lemma 8.4. As HQ does not realize the type
P we have s(HQ, K⃗2) < s(H, K⃗2), so by hypothesis there is a Ramsey
2-type for HQ over K⃗2.Take a pair R = (x1, x2) of type r.

By Lemma 8.9 there is a 1-type Q∗ over K⃗2 such that

both P⊥Q∗ and Q∗⊥Q are realized in H.

We amalgamate as follows, with A ∼= B ∼= K ∼= K⃗2, and A = (a, a′),
B = (b, b′). The type of x2/ab is left open initially.

x1 x2

a a ′ b b′ K

x1/A,B,K = P,Q,Q∗

x2/ab,K = P,Q

(∗)

x1 x2

a a ′ b b ′ K

(1)

x1 x2

a b b ′ K

(2)

As usual, the condition “x2/ab = P ” should not be taken too liter-
ally: it determines the type of x2 over a, b in such a way that if the
pair (a, b) forms an edge in the amalgam, then x2ab has the type p.

Any solution to the amalgamation problem (∗) will have x1/AB or
x2/abK realizing the type P⊥Q, according as (a, b) is a non-edge or
an edge. So as always, the problem is to build the two factors (1, 2)
inside H in such a way that they agree on the structure of (x2/a′b′).

We first focus our attention on the factor (2).
We begin with the following amalgamation.
The factors here are (x2, bK) and (bb′K) = K⃗2⊥K⃗2. To see that

the factor (x2, bK) occurs in H, it suffices to check that it is H-
constrained, by Lemma 8.5. In other words, we need to check (x2, b)
and (x2,K). But the type of x2/K is Q, which by assumption occurs
in H.



156 8. Ordered Homogeneous Graphs: Prop. III

x2

b b ′ K

B-1

Thus the diagram (B–1) can be completed in H and determines the
type of the pair (x2, b

′). At this stage, the factor (2) is completely
determined, and we must show that it occurs in H.

To see that the factor (2) occurs in H, it suffices to show that it
occurs in HQ. By the choice of r and R, it suffices to check that for
i = 1, 2 the following holds.

The types (xi, a), (xi, B), and (xi,K) all occur in HQ.

As HQ is ample the types (xi, a) are certainly realized in HQ.
The types of x1 over B and K are respectively Q and Q∗. These

are both realized in HQ.
The type of x2 over K is also Q. Finally, the type of x2 over B is

the result of the amalgamation (B–1), which puts that type into HQ.
Thus the factor (2) embeds in HQ, hence in H.

Now we take up the factor (1).
At this point the type of (x2, b′) has been determined, and is given

by the factor (2).
We amalgamate as follows.

x1 x2

a a ′ b K

A

x1 x2

a b K

A1

x1

a a ′ b K

A2

We claim that the factor (A1) can be found in HQ, hence in H. For
this, it suffices to check the types of x1 and x2 over K, and these are
Q∗ and Q.
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The factor (A2) is covered by Lemma 8.6. It suffices to check the
individual types (x1, A), (x1, b), (x1,K). These are all known to be
realized in H. □

At this point, in a suitable inductive context, our concern is the
realization of types of the form P⊥P over K⃗2 ⊥ K⃗2. These are more
challenging and require some further preparation.

Lemma 8.12. Let H be an ample homogeneous ordered 2-graph and
P a 1-type over K⃗2 realized in H, such that the following holds.

The 1-type P⊥P is not realized in H.

Then there is a cross type q0 (the type of a pair (a, b) with a ∈ H1

and b ∈ H2) such that every configuration (x, I⊥A⊥I ′⊥B) satisfying
the following conditions embeds into H, if (x,B) does:

(a) I, I ′ are finite independent sets;
(b) A,B ∼= K⃗2;
(c) (x,A) ∼= P ;
(d) (x,minB) ∼= q0.

I P I ′ Q

Proof. While there are only two possible cross types, the main
point here is that there is more than one possibility for q0, and we
have to eliminate the possibility that none of them is suitable. The
argument will be written in a very general form that does not depend
on the precise number of cross types involved.

Suppose the desired cross type q0 does not exist. Then for each cross
type q we may choose a counterexample consisting of the following.

• Finite independent sets Iq, I
′
q, and 1-types over them:

pq = (x, I1), p′q = (x, I ′q);
• A 1-type Qq over Bq

∼= K⃗2, with Bq ↾ minK = q;

such that

Qq is realized in H, but pq⊥P⊥p′q⊥Qq is not realized in H.
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Now perform the following amalgamation. Order the cross types q
in some definite order. Let

I = ⊥
q
Iq I ′ = ⊥

q
I ′q

p = ⊥
q
pq p′ = ⊥

q
p′q

Thus p, p′ are 1-types over the independent sets I, I ′ respectively.
Take Bq = {b, bq} a copy of K⃗2 with b < bq; here the vertex b is com-

mon to all Bq and we take an ordering on the points bq correspond-
ing to the ordering on the cross types. Let J = {bq | q varies}. Then⋃

q Bq = [b, J ] with J an independent set. Let QJ = ⊥q(Qq ↾ bq), the
1-type over J defined by the various Qq.

Let A ∼= K⃗2 be an additional pair of points, and take (x,A) ∼= P .
Then amalgamate as follows to determine a cross type q = (x, b).

x

I A I ′ a J

(∗)

The type q of (x, b) contradicts the choices of pq, p′q, and Qq, since
the type of x over {IqAI ′qBq} is pq⊥P⊥p′q⊥Qq.

So it suffices to show that the factors (x, IAI ′J) and (IAI ′bJ) of
this amalgamation occur in H.

By Lemma 8.6, to get the factor (x, IAI ′J) it suffices to check that
(x,A) is realized; and this type is P .

By Lemma 7.1, the configuration (IAI ′bJ) reduces to the configu-
ration (bJ) = [b, J ]. The latter is afforded by Lemma 6.16. □

Lemma 8.13. Let H be an ample homogeneous ordered 2-graph and
let P be a 1-type over K⃗2 realized in H, such that the 1-type P⊥P
is not realized in H. Let HP be the homogeneous 2-graph (KP ,K⊥+)

where K ∼= K⃗2 is contained in H2. Suppose that r is a Ramsey 2-type
for HP over I⃗1. Let q be a cross type.

Then there is a 1-type Q over K ∼= K⃗2 such that Q ↾ minK is q,
and any configuration (R, IK) with the following properties embeds
into H.
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(a) R = x1x2 is of type r;
(b) I is an independent set of vertices;
(c) x1, x2 have the types Q and P respectively, over K

. . .

x1 x2

I K

Q,P

(∗)

Proof. We suppose the contrary, and for each extension Q = [q, p]
of q to a 1-type over K we select an independent set IQ and 1-types
p1Q, p

2
Q over IQ so that H does not realize the configuration (R, IQK)

with xi of type piQ over IQ, and of types Q,P respectively over K.
We set I = ⊥Q IQ and piI = ⊥Q piQ, and amalgamate as follows, with
K = ab.

. . .

x1 x2

I K

q, P

A

Any completion of this amalgamation problem will define a 1-type
Q = (x,K) whose restriction to a is q, and for which we have included
a configuration which cannot be so extended in H. So this will give
a contradiction. It suffices to show that the factors

(R, Ia) and (x2, IK)

embed into H.
Now R is r-Ramsey where r is a Ramsey 2-type for HP over I⃗1,

and as Ia is an independent set it follows by ampleness of HP that
(R, Ia) embeds into HP and hence into H.

For the factor (x2, IK), by Lemma 8.5 it suffices to check H-
constraint. The type of x2 over K is P , so this is available. □
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Now we may bring this all together to prove Lemma 8.7, concerning
1-types over disjoint sums of copies of K⃗2.

Proof of Lemma 8.7. Let H be an ample homogeneous ordered
2-graph. Our claim is that any H-constrained initial 1-type p = (a,A)

over A ∼= ⊥k K⃗2 is realized in H, where A is contained in H2.
We prove this by induction on s(H, K⃗2). So by Corollary 8.7.1

(suitably localized to an inductive setting) we know that there is a
Ramsey 2-type over K⃗2 for any ample homogeneous ordered 2-graph
H′ satisfying s(H′, K⃗2) < s(H, K⃗2). Thus Lemma 8.11 applies to H.

We will prove our claim by induction over the number of summands
occurring in A, denoted by k above. If k = 1 the claim is vacuous.
Suppose

k > 1.

Let K be the first copy of K⃗2 in A, and let P be the restriction
of p to K. We consider the homogenous 2-graph (KP ,K⊥+). This
is ample by Lemma 8.4. It suffices to show that the restriction p′ =
p ↾ (A \K) is realized in H′. If p′ is H′ constrained, this follows by
induction on k.

So it remains to check that p′ is H′ constrained, which means that
we may replace p′ by each of its restrictions to a summand of A other
than K, and effectively take

k = 2.

In other words, returning to H, we are now dealing with 1-types of
the form P⊥Q with P,Q 1-types over K⃗2 which are realized in H. By
Lemma 8.11 we may suppose that P = Q, and the type in question
is

P⊥P

with P realized in H. So suppose H does not realize the type P⊥P .
Let r be a Ramsey 2-type for HP over I⃗1.

We select a cross type q in accordance with Lemma 8.12. Then for
all 1-types p, p′ over independent sets I, I ′, and for every 1-type Q

over K ∼= K⃗2 whose restriction to minK is q, the 1-type p⊥P⊥p′⊥Q
is realized in H.

We select a 1-type Q over K ∼= K⃗2 whose restriction to minK is
q, in accordance with Lemma 8.13. Then any configuration (R, IK)
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p P p′ Q
q0

(∗)

with R = x1x2 of type r, I independent, K ∼= K⃗2, and x1, x2 realizing
the types Q and P respectively over K, will embed in H.

x1 x2

I K

Q,P

(∗)

Now we amalgamate as follows. We take R = x1x2 of type r, with r

a Ramsey 2-type for HP over I⃗1, and A ∼= B ∼= K ∼= K⃗2 with A = ca,
B = db. In what follows, the type of x2 over cd will be determined
as we proceed.

x1 x2

c a d b K

x1/ABK = PPQ; x2/abK = PP

(∗)

If (a, b) is a non-edge then (x1, AB) is P⊥P , while if (a, b) is
an edge, then (x2, abK) is P⊥P . So it suffices to find the factors
(R, cadK) and (R, cdbK) in H.

We consider the factor (R, cadK).
We first define a configuration (R, I) with I ∼= I⃗2. We set I =
{d1, d2} and we take

x1/di ∼= P ↾ maxK.
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We take x2/d1, x2/d2 to realize both possible cross types. We are
going to replace the vertex d by the pair I.

Thus we amalgamate as follows, with (R, I) as described (Figure
78).

x1 x2

c a I K

x1/AK = PQ; x2/K = P

Figure 78. A

The factor (R, aIK) embeds into H by the choice of the type Q. The
factor (x1, AIK) embeds into H by the choice of the type q. Therefore
some completion of this amalgamation problem can be found in H.

If we restrict the result of this amalgamation to (R,AdK) with
d = d1 or d2, we get two possible forms of (R,AdK) with (x2, c) as
specified by the amalgam.

We consider the factor (R, cdbK).
Here the type of (x2, c) is copied over from (R, caIK), and the type

of (x2, d) remains to be determined. So now we make the correspond-
ing amalgamation.

x1 x2

c d b K

x1/BK = PQ; x2/K = P

B

Again, the factor (R, cbK) is afforded by the choice of the type Q,
and the factor (x1, cBK) is afforded by the choice of q.

To recapitulate, the sequence of amalgamations is as follows. First,
from (A), we determine the type tp(x2/c). Then from (B) we deter-
mine tp(x2/d). We then restrict the result of (A) by selecting out
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the vertex d ∈ I for which x2 realizes the correct cross type, to get a
compatible factor for the diagram (∗). □

8D. Proof of Proposition III

Proposition (III). Let H be an ample homogeneous ordered 2-
graph. If p = (x,A) is an H-constrained initial 1-type with A ∈ A(2),
then p is realized in H.

We remark that we could equally well state this for A ∈ A(n), any
n, as the claim is vacuous when A is complete.

Lemma 8.14. Let H be an ample homogeneous ordered 2-graph. If
p = (x,A) is an H-constrained initial 1-type with A ∼= P⃗ c

3 , then p is
realized in H.

Proof. Take a Ramsey 2-type r for H over I⃗1. Let R = (x1, x2)
have type r.

Amalgamate as follows, leaving the type of x1c and x2d to be de-
termined as we proceed. For any set of three vertices u < v < w we
will write “(xi, uvw) = p” to mean that x realizes the correct type
over each vertex, whether or not the triple (uvw) is a copy of P⃗ c

3 .

x1 x2

a c b d

(x1, abd) = p;(x2, acb) = p

(∗)

The amalgamation is designed to produce a realization of p either
as (x1, abd) or as (x2, acb), so it suffices to show that the two factors
(R, acd) and (R, cbd) embed in H. The second factor (R, cbd) will be
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realized in any case by the choice of R, so it suffices to find some
form of the first factor in H.

x1 x2

a c d

(x1, ad) = p ↾ (ad);(x2, ac) = p ↾ (ac)

(1)

Since we need to determine the type of (x1, c) and (x2, d), we pro-
ceed as follows.

x1 x2

a c d

A1

x1

a c d

A2

We complete the first diagram to find a suitable type for (x1, c),
and then take the result of this amalgamation as the second factor
of our second diagram, and amalgamate to determine the type of
(x2, d). So it suffices to show that the two factors of (A1) and the
first factor of (A2) embed into H.

The factors of (A1): (x1, ad) and (acd).
The factor (x1, ad) exists since p is H-constrained. The factor (acd) ∼=

P⃗ c
3 .
The factor (R, ac) of (A2).
Here ac is an independent set and R is r-Ramsey with r a Ramsey

2-type for I⃗1 in H, so this factor is realized in H. □

Lemma 8.15. Let H be an ample homogeneous ordered 2-graph. If
p = (x,A) is an H-constrained initial 1-type with A ∼= P⃗3, then p is
realized in H.

Proof. By Corollary 8.7.1, there is a Ramsey 2-type r for H over
K⃗2.
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Let R = (x1x2) have type r. Amalgamate as follows, leaving the
types of (x1, d) and (x2, c) to be determined as we proceed.

x1 x2

a c d b

(x1, acb) = p; (x2, abd) = p

(∗)

Since this amalgamation is designed so that any completion must
satisfy either (x1, abd) = p or (x2, acb) = p, it suffices to show that
the two factors

(R, acd) and (R, cdb)

embed into H.
The following pair of amalgamations will construct the second fac-

tor, (R, cdb).

x2

a c b d

B1

x1 x2

c b d

B2

First the amalgamation given as (B1) determines the type of (x2, c).
The factors of this are (x2, abd) and the path (acbd). The path is given
by Lemma 6.7.

The factor (x2, abd) is a 1-type over I⃗1⊥K⃗2 and by Lemma 8.5 it
suffices to check that its type is H-constrained, in other words that
(x, bd) embeds in H, which is part of our assumption on the type p.

Thus diagram (B1) has a completion in H. We take (x2, cbd) from
this diagram as the second factor in (B2). We must show that the
first factor of (B2), namely (R, cb), also embeds into H. By the choice
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of R it suffices to check (x1, cb) and (x2, cb) separately. Now (x1, cb) is
given by the hypothesis on p, and (x2, cb) is part of the second factor
just constructed. So the amalgamation (B2) may be completed in H.

Now we return to the corresponding factor of the form

(R, acd),

where the types of x1 and x2 over cd are taken as in the second factor.
Note that

(acd) ∼= K⃗2⊥I⃗1.
So by the choice of R, it suffices to prove that each 1-type (x1, acd),
(x2, acd) is realized separately in H. By Lemma 8.5 it suffices to
check that these 1-types are H-constrained; in other words we must
consider their restrictions (x1, ac) and (x2, ac). Now (x1, ac) is given
by the hypothesis on p, and (x2, ac) occurred in the completion of
diagram (B1) in H.

This completes the construction. □

Lemma 8.16. Let H be an ample homogeneous ordered 2-graph. If
p = (x,A) is an H-constrained initial 1-type with A ∼= I⃗1 ⊥ P⃗3, then
p is realized in H.

Proof. Let a = minA and pa = p ↾ a. We pass to H′ = (ap, a⊥+).
This is ample by Corollary 6.19.2, and it suffices to prove that p′ =
p ↾ A \ {a} is realized in H′. By Lemma 8.15, it suffices to check that
p′ is H′-constrained. Thus we may replace p′ by its restrictions to
complete subgraphs. In terms of H, this means that we may replace
p by its restrictions to graphs of the form I⃗1 ⊥ K⃗2.

By Lemma 8.5, it suffices to check that these restrictions are H-
constrained. Since the original type p was H-constrained, this holds.

□

Proof of Proposition III. H is an ample homogeneous ordered
2-graph and A ∈ A(2). We claim that any H-constrained initial 1-
type over A is realized in H.

For A ∼= I⃗1 ⊥ P⃗3, P⃗ c
3 , or I⃗k with k < ∞, this is Lemma 8.16 or

8.14, or Corollary 6.19.1, respectively. □



CHAPTER 9

ORDERED HOMOGENEOUS GRAPHS:
PROPOSITION IV

Our next goal is the following.

Proposition (IVn). Let n ≥ 2, and if n ≥ 3 assume Proposition
(V IIIn−1). Let H be an ample homogeneous ordered 2-graph such
that each configuration in A(n) embeds into H2. If A ∈ A(n) and
p = (x,A) is an initial 1-type over A which is realized in H with
x ∈ H1, A ⊆ H2, then the ordered 2-graphs (Ap, A⊥−) and (Ap, A⊥+)
are ample.

This divides into two parts.

Proposition 9.1 (IVn–A). Let n ≥ 2, and if n ≥ 3 assume that
Proposition (V IIIn−1) holds. Let X,Y be finite ordered graphs which
belong to every amalgamation class containing A(n). Then X ⊥ Y
has the same property.

Proposition 9.2 (IVn–B). Let H be an ample homogeneous ordered
2-graph such that each configuration in A(n) embeds into H2. Let
A ∈ A(n), and let p be an initial 1-type over A realized in H. Then
(Ap, A⊥±) realizes every 1-type over I⃗k, for k <∞.

We begin by treating the case n = 2.

9A. Proof of Proposition (IV2)

We deal quickly with the proof of Proposition IV2–B, then deal
with Proposition IV2–A by a number of explicit amalgamation argu-
ments.

167
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Lemma 9.3 (IV2–B). Let H be an ample homogeneous ordered 2-
graph and let p = (x, IAJ) be an H-constrained 1-type with A ∈ A(2),
IJ an independent set, and A ⊥ IJ . Then p is realized in H.

Proof. We proceed by induction on k = |IJ |.
If k = 0 this is Proposition III, proved in §8D. Suppose

k > 0

If J is nonempty let a = max J , J ′ = J \ {a}, q = p ↾ a, p′ =
p ↾ IAJ ′, and H′ = (ap, a⊥−). If J is empty then I is nonempty,
and we set a = min I, I ′ = I \ {a}, q = p ↾ a, p′ = p ↾ I ′AJ , and
H′ = (ap, a⊥+).

In either case H′ is ample by Corollary 6.19.2 and our claim is
that p′ is realized in H′. By induction, it suffices to show that p′ is
H′-constrained.

In terms of H, this comes down to checking that the restriction of
p to any configuration K⃗2 ⊥ I⃗1 or I⃗1 ⊥ K⃗2 is realized in H. This is
covered by Lemma 8.5. □

Lemma 9.4. Let A be an amalgamation class of finite ordered graphs
containing A(2). Then P⃗ c

3 ⊥ P⃗ c
3 is in A.

Proof. We amalgamate as follows.

a c d b e f g h

Then either (acdbef) or (acbegh) will be a copy of P⃗ c
3 ⊥ P⃗3. We

must show that the two factors

(acdefgh) and (cdbefgh)

are in A.

The factor (acdefgh):
We amalgamate as follows. Then either (acdefh) is P⃗ c

3 ⊥ P⃗ c
3 , or

the resulting amalgam is the desired factor of (∗).
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a c d e f g h

(A)

The subfactors of diagram (A) have the form

(acdefg) ∼= (P⃗ c
3 ⊥ I⃗3) (acefgh) ∼= (I⃗2 ⊥ efgh)

By Corollary 6.3.1, these two configurations reduce to the single con-
figuration (efgh), with four vertices and two edges, which is covered
by Lemma 6.13.

The factor (cdbefgh) = (c) ⊥ (dbefgh):
By Corollary 6.3.1, the second factor reduces to (d b e f g h).

d b e f g h

We amalgamate as follows.

d b i e f g h

(B)

d b i e f g j

(B1)

b i e f g h j

(B2)

The completion of diagram (B) gives either (dbiegh) ∼= (P⃗ c
3 ⊥ P⃗ c

3 ),
or a copy of the second factor of (∗). So it suffices to show that the
factors

(B)1 = (dbiefg) and (B)2 = (biefgh)

are in A.
For (B)1 = (dbiefg): Diagram (B1) completes either to (dbifgj) ∼=

P⃗ c
3 ⊥ P⃗ c

3 or to the factor (dbiefg) in (B).
The subfactors here are (dbiegj) ∼= (P⃗ c

3 ⊥ I⃗3) and (diefgj) ∼=
(K⃗2 ⊥ I⃗1 ⊥ P⃗ c

3 ). These are afforded by Lemma 7.1.
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For (B)2 = (biefgh): Either the completion of diagram (B2) com-
pletes is (B)2, or else (bieghj) ∼= P⃗ c

3 ⊥ P⃗ c
3 .

We must show that the two subfactors

(B2)1 = (bifghj) and (B2)2 = (i) ⊥ (efghj)

are in A. Here (B2)2 reduces to (B2)′2 = (efghj), by Corollary 6.3.1.
For these subfactors we use the following amalgamations.

b i f g h j

(B2.1)

e f g h j k l

(B2.2)

h k l

From (B2.1) we get either (bifghj) is P⃗ c
3 ⊥ P⃗ c

3 or that the com-
pletion of the diagram is the factor (B2)1. The subfactors here are
(bifgh) ∼= I⃗5 and (bighj) ∼= I⃗2 ⊥ P⃗ c

3 , which are in A.
In (B2.2), if the completion contains a non-edge (x, j) with x = f

or x = g, then (exhjkl) is P⃗ c
3 ⊥ P⃗3, while if (f, j) and (g, j) are both

edges then the required configuration (efghj) results. The subfactors
here are (efghkl) ∼= (efgh) ⊥ I⃗2 and (ehjkl) ∼= K⃗2 ⊥ P⃗ c

3 . These are
afforded by Corollary 6.3.1 and Lemma 7.1, and Lemma 6.13. □

Lemma 9.5. Let A be an amalgamation class of finite ordered graphs
which contains A(2), Then A contains the ordered path P⃗6 with 6 ver-
tices.

Proof. Amalgamate as follows.

a b c d e f g

(∗)
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Then (abcdef) or (abcefg) will be the desired path. The factors
have the form P⃗4 ⊥ K⃗2 and K⃗2 ⊥ P⃗4, which are available by Lemma
7.1. □

Lemma 9.6. Let A be an amalgamation class of finite ordered graphs
containing A(2). Then P⃗3 ⊥ P⃗ c

3 is in A.

Proof. We amalgamate as follows.

c d e f a g h b

(∗)

Then either (efaghb) or (cdeahb) will be a copy of P⃗3 ⊥ P⃗ c
3 . So

it suffices to show that the factors (cdefagh) = (cdefag) ⊥ (h) and
(cdefghb) embed into H, and these reduce to

(cdefag) and (cdefghb)

c d e f a g

(1′)

c d e f g h b

(2)

The factor (cdefag) :
We amalgamate as follows.

c d e f a g i

(A′)

e f a g i j k

(A′.2)

In the completion of diagram (A′) either (cdeagi) is P⃗3 ⊥ P⃗ c
3 ,

or (cdefag) is the required factor. So it suffices to show that the
subfactors of this diagram are in A.
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The subfactor (cdefai) is P⃗6, dealt with in Lemma 9.5.
The subfactor (cefagi) = (cefagi) reduces to (efagi). Here we use

diagram (A′.2), whose completion produces either (efaijk) ∼= P⃗3 ⊥
P⃗ c
3 or the required configuration (efagi).

The factor (cdefghb) :
We amalgamate as follows.

c d e f g h b

(B)

This produces either (cdeghb) ∼= P⃗3 ⊥ P⃗ c
3 or (cdefghb) is the re-

quired factor. The subfactors (cdefhb) ∼= (cdef) ⊥ I⃗2 and (cefghb) ∼=
(I⃗1 ⊥ K⃗2 ⊥ P⃗ c

3 ) are in A, the latter by Lemma 7.1. □

Lemma 9.7. Let A be an amalgamation class of finite ordered graphs
containing A(2). Then P⃗3 ⊥ P⃗3 is in A.

Proof. We amalgamate as follows.

c d e f a g b h

(∗)

Then (efagbh) or (cdeabh) will be a copy of P⃗3 ⊥ P⃗3. So it suffices
to show that the factors (∗)1 = (cdefagh) and (∗)2 = (cdefgbh) are
in A, and the former reduces to (cdefag).

For these we amalgamate as follows.

c d e f a i g

(A′)

c d e f g b h

(B)
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Then (A′) produces either (cdeaig) ∼= P⃗3 ⊥ P⃗3, or the factor (∗)1,
while (B) produces either (cdegbh) ∼= P⃗3 ⊥ P⃗3, or the factor (∗)2.

So it suffices to show that the various subfactors involved are in A.
These are

(cdefai) ∼= P⃗6 (cefaig) ∼= I⃗1 ⊥ P⃗5

(cdefbh) ∼= P⃗4 ⊥ K⃗2 (cefgbh) ∼= I⃗1 ⊥ K⃗2 ⊥ P⃗3

These are all available in A (with P⃗6 covered by Lemma 9.5). □

Now we can assemble these ingredients to get a more general result.

Lemma 9.8. Let X,Y be finite ordered graphs which belong to ev-
ery amalgamation class of finite ordered graphs which contains A(2).
Then X ⊥ Y belongs to every amalgamation class of finite ordered
graphs which contains A(2).

Proof. It suffices to prove the claim for X,Y ∈ A(2).
If X or Y has the form I⃗k with k < ∞ then this follows from

Corollary 6.3.1. So we may suppose that X,Y ∈ {I⃗1 ⊥ P⃗3, P⃗
c
3}.

If Y = P⃗ c
3 then the claim follows from Lemmas 9.6 and 9.4, and

Corollary 6.3.1.
Now we take up the case Y = I⃗1 ⊥ P⃗3. Let Γ be a homogeneous

ordered graph embedding the configurations of A(2), and take Y =

I⃗1 ⊥ B ⊆ Γ with B ∼= P⃗3. We claim that all configurations in A(2)
embed into B⊥−; it then follows that X ⊥ I⃗1 embeds into B⊥− and
hence X ⊥ (I⃗1 ⊥ B) = X ⊥ Y embeds into Γ.

So we must show that all configurations A ⊥ P⃗3 with A ∈ A(2)
embed into Γ. As above, this is known for A of the form I⃗k, and
follows from Lemma 9.7 and Corollary 6.3.1 when A = I⃗1 ⊥ P⃗3.
Suppose lastly that A = P⃗ c

3 . In this case the configuration A ⊥ P⃗3 is
given by the dual of Lemma 9.6 under reversal.

This covers all cases. □

Proof of Proposition (IV2). We have H an ample homoge-
neous ordered 2-graph, and A ∈ A(2) embedded into H2, with p =
(x,A) an initial 1-type over A realized in H. We claim that H′ =
(Ap ∩H1, A

⊥+ ∩H2) is ample.
By Lemma 9.8, H ′2 = A⊥+ ∩H2 contains A(2).
By Lemma 9.3, H′ realizes every 1-type over an independent set.
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The claim is proved. □

9B. Proof of Proposition (IVn–A): Closure under ⊥

In this subsection we will deal with Proposition (IVn-A) for n ≥ 3.
That is, we aim at the following.

Lemma 9.9 (IVn–A). Let n ≥ 3 and assume Proposition (V IIIn−1).
Let X,Y be finite ordered graphs which belong to every amalgamation
class of finite ordered graphs which contains A(n). Then X ⊥ Y has
the same property.

Our main goal is to show that any amalgamation class containing
A(n) also contains K⃗n ⊥ K⃗n, but we will need to work up to this by
stages. Namely, we deal with K⃗n ⊥ K⃗ℓ with ℓ ≤ n, with a big gap
between the cases ℓ < n and ℓ = n, as we shall see.

Lemma 9.10. Let n ≥ 3. Suppose Proposition (V IIIn−1) holds,
that ℓ < n, and that K⃗n ⊥ K⃗ℓ belongs to every amalgamation class of
finite ordered graphs which contains A(n). Then for any finite ordered
graph X which belongs to every amalgamation class containing A(n),
the ordered graph X ⊥ K⃗ℓ has the same property.

Proof. We fix X, and a homogeneous ordered graph Γ such that
every configuration in A(n) embeds into Γ. We must embed X ⊥ K⃗ℓ

into Γ.
We fix a copy K of K⃗ℓ in Γ and let Γ′ = K⊥−. We must show

that Γ′ contains X. For this it suffices to check that Γ′ contains all
configurations A in A(n). This holds for A = K⃗n by hypothesis. It
remains to consider the configurations A in A(2). Then A ⊥ K⃗ℓ is
K⃗n-free and the claim follows by Proposition (V IIIn−1). □

Lemma 9.11. Let n ≥ 3, and assume Proposition (V IIIn−1) holds.
Let A be an amalgamation class of finite ordered graphs which con-
tains A(n). Then K⃗n ⊥ K⃗n−1 is in A.

n n− 1



9B. Proof of Proposition (IVn–A): ⊥-Closure 175

Proof. We show inductively that for ℓ < n, K⃗n ⊥ K⃗ℓ is in A. The
inductive hypothesis is that K⃗n ⊥ K⃗ℓ−1 lies in every amalgamation
class containing A(n), so Lemma 9.10 applies to ℓ− 1.

We fix complete graphs U, V,W,X of orders n − 1, n − 2, ℓ − 1,
and ℓ, and set c = maxU , d = minX. We take vertices a, b with
U < a < V < b < W < X and with a adjacent to U , V , and b
adjacent to V , W . We add one additional edge cd, and amalgamate
as follows.

U a V b W X
n− 1 n− 2 ℓ− 1 ℓdc

(∗)

Then either UabW or aV bX will be a copy of K⃗n ⊥ K⃗ℓ. So it
suffices to show that the factors (UaVWX) and (UV bWX) are in
A.

The factor (UV bWX) is K⃗n-free and thus is afforded by Proposi-
tion (V IIIn−2). So it remains to discuss the factor

(UaVWX)

We will set U ′ = U \ {c} and X ′ = X \ {d}. We amalgamate so as
to determined the type of cd, with subfactors

(UavWX ′) and (U ′aVWX)

Again, (U ′aVWX) is K⃗n-free so we come down to the subfactor

(UaVWX ′) ∼= (UaV ⊥W ⊥ X ′)

U a V W X′

n− 1 n− 2 ℓ− 1 ℓ− 1

By Lemma 9.10 this configuration reduces to UaV .

U a V
n− 1 n− 2

For this we amalgamate as follows. For v ∈ V , let Kv be a complete
ordered graph of order ℓ−1 and let K = ⊥v∈V Kv. We let V K be the
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ordered graph with V < K and with additional edges vx for v ∈ V ,
x ∈ Kv. Thus vKv is a complete graph of order ℓ. We add a vertex e
with a < e < V .

U a e V K

n− 1 n− 2 ℓ− 1 ℓ− 1 ℓ− 1 . . .

So if there is some v ∈ V with (a, v) a non-edge, then (UavKv) ∼=
(K⃗n ⊥ K⃗ℓ), while otherwise (UaV ) is the desired configuration. So
it suffices to show that the configurations (UaeK) and (UeV K) are
in A.

The configuration (UeV K) ∼= (K⃗n−1 ⊥ I⃗1 ⊥ V K) is K⃗n-free and
is afforded by Proposition (V IIIn−2). The other configuration

UaeK ∼= (K⃗n ⊥ I⃗1 ⊥ [K⃗ℓ−1 ⊥ · · · ⊥ K⃗ℓ−1])

is afforded by Lemma 9.10.
This completes the construction. □

Lemma 9.12. Let n ≥ 3 and assume Proposition (V IIIn−1) holds.
Let A be an amalgamation class of finite ordered graphs which con-
tains A(n). Then P⃗3 ⊥ K⃗n belongs to A.

n

Proof. Let bU and eV be complete ordered graphs of order n,
with

b < U < e < V

We amalgamate as follows.

c a d b U
n− 1 n− 1

e V

(∗)

In the resulting amalgam, either (cadbU) or (cabeV ) will be P⃗3 ⊥
K⃗n. So it suffices to show that the factors (∗)1 = (cadUeV ) and
(∗)2 = (cdbUeV ) = (c) ⊥ (dbUeV ) are in A.
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The factor (cadUeV ):
We amalgamate as follows.

c a d U
n− 1 n− 1

e V

(A)

This produces either (cadeV ) ∼= P⃗3 ⊥ K⃗n or a copy of (∗)1. The
subfactors here are

(cadUV ) which is K⃗n-free, and (caUeV ) ∼= (K⃗2 ⊥ K⃗n−1 ⊥ K⃗n)

The first factor is available by Proposition (V IIIn−2), the second by
Lemmas 9.11 and 9.10.

The factor (dbUeV ):
Let u = minU and U ′ = U \ {u}. Amalgamate as follows.

d b u U′

n− 2
e V

n− 1

(B′)

Here we determine the relations between b and U ′. If there is some
non-edge (b, u′) with u′ ∈ U” then (buu′eV ) ∼= P⃗3 ⊥ Kn, and oth-
erwise we have the factor (dbUeV ). So it suffices to show that the
subfactors

(B′)1 = (dbueV ) and (B′)2 = (dUeV )

are in A.
For these we amalgamate as follows.

f g d b u e V
n− 1

(B′1)

f g d u U′

n− 2
e V

n− 1

(B′2)
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In each case we get either P⃗3 ⊥ K⃗n directly, or the desired factor.
So it suffices to show that the subfactors are in A. These are

(fgdbuV )

(fgbueV ) ∼= (K⃗2 ⊥ K⃗2 ⊥ K⃗n)

(fgdUV )

(fgUeV ) ∼= K⃗2 ⊥ K⃗n−1 ⊥ K⃗n

which either omit K⃗n or are available by Lemma 9.10. □

Lemma 9.13. Let n ≥ 3 and assume Proposition (V IIIn−1) holds.
Let A be an amalgamation class of finite ordered graphs. Then P⃗ c

3 ⊥
K⃗n belongs to A.

n

Proof. Let a < U < b < V < c with aU , Ub, bV c complete of
orders n− 1, n− 1, and n, respectively. Amalgamate as follows.

d e f g h a U
n− 2

b V
n− 2

c

(∗)

This produces either (ghabV c) ∼= P⃗ c
3 ⊥ K⃗n or (defaUb) ∼= P⃗ c

3 ⊥
K⃗n. So it suffices to show that the factors

(∗)1 = (defghaUV c) and (∗)2 = (defghUbV c)

are in A.
The factor (defghaUvC) is K⃗n-free, hence afforded by Proposition

(V IIIn−1). So we consider the factor

(defghUbV c)

We may view this as an amalgamation diagram with the type of (f, c)
to be determined, resulting either in (defbV c) ∼= P⃗ c

3 or in the desired
factor. So we come down to the subfactors

(defghUbV c) and (deghUbV ) ∼= (I⃗4 ⊥ UbV c)
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Here (defghUbV ) is K⃗n-free while (deghUbV ) reduces to UbV c.
So it suffices to consider

(UbV c)

U
n− 2

b V
n− 2

c

(B2′)

For this we amalgamate as follows.

i j U
n− 2

k b V
n− 2

c

(B2′)

If a non-edge (u, b) results with u ∈ U then (ijubV c) is P⃗ c
3 ⊥ K⃗n,

and otherwise we have the configuration (B2′). So it suffices to show
that the factors (ijUkV c) and (ijkbV c) ∼= I⃗3 ⊥ K⃗n are in A. The
first omits K⃗n and the second is known. □

Now we can put this together and get, essentially, “everything ex-
cept K⃗n ⊥ K⃗n.”

Lemma 9.14. Let n ≥ 3, and assume Proposition (V IIIn−1). Let
X be a K⃗n-free finite ordered graph, and let Y be a finite ordered graph
which belongs to every amalgamation class of finite ordered graphs
which contains A(n). Then X ⊥ Y belongs to every amalgamation
class of finite ordered graphs which contains A(n).

Proof. By Proposition (V IIIn−1), X belongs to every amalga-
mation class of finite ordered graphs which contains A(n− 1). So it
suffices to our prove our claim in the special case

X ∈ A(n− 1), Y ∈ A(n)

Now if Y ∈ A(2) then X ⊥ Y is K⃗n-free and our claim follows. So
we suppose Y = K⃗n.

If X = I⃗k (some k <∞), I⃗1 ⊥ P⃗3, or P⃗ c
3 , then Corollary 6.4.1 and

Lemmas 9.12, 9.13 suffice.
If X = K⃗n−1, then Lemma 9.11 applies.
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□

And after these preparations we can also get K⃗n ⊥ K⃗n.

Lemma 9.15. Let n ≥ 3, and assume Proposition (V IIIn−1). Let
A be an amalgamation class of finite ordered graphs which contains
A(n). Then A contains K⃗n ⊥ K⃗n.

n n

Proof. Let a < U < c < b < W,V < d < e < X with U, V,W of
order n− 2, X of order n− 1, and aUc, aV , bV , bWd, eX complete.
Adjoin edges ce, de and amalgamate as follows.

a U c b V W d e X
n− 2 n− 2 n− 2 n− 1

(∗)

Then either (aUcbWd) or (abV eX) is K⃗n ⊥ K⃗n. So it suffices to
show that the factors

(aUcVWdeX) and (UcbVWdeX)

are in A.

The factor (aUcVWdeX):

a U
n− 2

c V
n− 2

W
n− 2

d e X
n− 1

(1)

We look at this as a 2-point amalgamation problem with the type
of (c, e) to be determined. Then either (aUceX) is K⃗n ⊥ K⃗n or the
desired configuration results. So it suffices to show that the subfactors

(aUcVWdX) = (aUcV ⊥Wd ⊥ X) ∼= ([I⃗1, UcV ] ⊥ K⃗n−1 ⊥ K⃗n−1)

(aUVWdeX) = (aUV ⊥WdeX)

are in A.
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Now Lemma 9.14 reduces these factors to

[I⃗1, UcV ] and (Wdex)

The configuration [I⃗1, UcV ] is afforded by Lemma 7.6 and Proposi-
tion (V IIIn−1). Thus it will suffice now to consider the configuration

(Wdex)

For this we amalgamate as follows, interpolating one additional
vertex g, to determine the ordering in the amalgam.

b W
n− 2

d g e X
n− 1

(bB′)

The factors are afforded by Lemma 9.10.

The factor (UcbVWdeX):

U c b V W d e X
n− 2 n− 2 n− 2 n− 1

(2)

Here we interpolate a vertex f between d and e, with no additional
edges, and treat the diagram as an amalgamation problem with the
type of (d, e) to be determined. This produces either (bWdeX) ∼=
(K⃗n ⊥ K⃗n) or the desired configuration. So it suffices to show that
the factors

(UcbVWdfX) ∼= (Uc ⊥ bV Wdf ⊥ X);

(UcbVWfeX)

are in A.
The configuration

(Uc ⊥ bV Wd ⊥ (f) ⊥ X) ∼= (K⃗n−1 ⊥ bV Wd ⊥ I⃗1 ⊥ K⃗n−1)

reduces to
(bV Wd) ∼= [I⃗1, V Wd]
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which is afforded by Lemma 7.6 and Proposition (V IIIn−1).
So we come down to

(UcbVWfeX)

For this we amalgamate as follows.

g U c b V W f e X
n− 2 n− 2 n− 2 n− 1

(B)

This produces either (gUceX) ∼= (K⃗n ⊥ K⃗n) or the desired config-
uration. So it suffices to show that the subfactors

(gUcbV WfX) ∼= (gUc ⊥ bV W ⊥ (f) ⊥ X) ∼= (K⃗n ⊥ bV W ⊥ I⃗1 ⊥ K⃗n−1);

(gUbVWfeX) ∼= (gU ⊥ bV W ⊥ (f) ⊥ eX) ∼= (K⃗n−1 ⊥ bV W ⊥ I⃗1 ⊥ K⃗n)

are in A. This follows from Lemma 9.14.
□

Proof of Lemma 9.9. We fix n ≥ 3. It suffices to show that
for X,Y ∈ A(n), the finite ordered graph X ⊥ Y belongs to every
amalgamation class containing A(n).

If X or Y is in A(n−1) this is covered by Lemma 9.14. So we may
suppose X,Y = K⃗n, and Lemma 9.15 applies. □

9C. Proof of Proposition (IVn–B)

Before completing the proof of Proposition (IVn–B), we will prove
the following special case of Proposition (Vn).

Proposition (Vn-A). Let n ≥ 3 and assume Proposition (IXn−1).
Let H be an ample homogeneous ordered 2-graph. Let ℓ < n, A =

K⃗n ⊥ K⃗ℓ or K⃗ℓ ⊥ K⃗n, and let p be an H-constrained initial 1-type
over A. Then p is realized in H.

Lemma 9.16. Suppose that Proposition (IXn−1) holds, and that H
is an ample homogeneous 2-graph for which H2 contains a complete
graph of order n − 1. Then there is a Ramsey 2-type for H over the
generic K⃗n-free graph; or equivalently, over any finite K⃗n-free graph.
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Proof. We take the second formulation: so let X be a finite K⃗n-
free graph. We recall the criterion given in Lemma 8.2.

For any initial 1-type p = (a,⊥k X) over an ordered sum of
copies of X for which the restrictions (a,Xi) to individual
summands are realized in H, the full 1-type p is realized in
H.

The hypothesis on p implies that p is H-constrained, and ⊥k X is
K⃗n-free, so this is a special case of (IXn−1). □

Lemma 9.17. Let H be an ample homogeneous ordered 2-graph,
and n ≥ 3. Assume that (IXn−1) holds (hence also (V IIIn−1)). Let
A,B be complete ordered graphs with |B| < |A| = n, and let P,Q
be initial 1-types over A,B realized in H. Suppose that some initial
1-type Q# over a complete graph of order less than n is not realized
in H. Then P ⊥ Q is realized in H.

x

A B

P Q

Proof. We proceed by induction on ℓ = |B|.
Let C be a complete graph of minimal order for which there is an

initial 1-type Q# over C not realized in H. Set k = |C|. By Lemma
9.16 there is a Ramsey 2-type r for H over the generic K⃗n-free graph.

As usual, we take R = (x1x2) of type r and form a suitable amal-
gamation. Let U,W, V be complete graphs of orders n−1, k−2, ℓ−1
respectively, and let a, b be additional vertices with aU , aW , bV , bW
complete. We take R < a < U < W < b < V . Denote aU , bV , aWb
by Û , V̂ , Ŵ respectively. We will amalgamate as follows, with the
precise form of the factors to be determined as we proceed.

As usual the conditions on x1, x2 are not intended to impose any
conditions on the base sets. But they ensure that if (a, b) is a nonedge
then (x1, Û ⊥ V̂ ) will in fact be a realization of P ⊥ Q, and if
(a, b) is an edge then (x2, Ŵ ) will be a realization of Q#; and since
the second possibility is ruled out by hypothesis, this will suffice to
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x1

%put(25,45)x2

a U
n− 1

W
k − 2

b V
ℓ− 1

x1/Û V̂ = P ⊥ Q; x2/Ŵ = Q#

(∗)

prove the lemma. So it suffices to construct suitable factors for this
amalgamation. That is, we require factors of the form
(1) (R, aUWV );
(2) (R,UWbV )

in A which satisfy the specified constraints, and which agree on their
common part (R,UWV ),

To begin with we construct a suitable form of factor (1). For this
purpose we introduce a vertex b′ similar to b in that W < b′ < V
and Wb′, b′V are complete, but specifying additionally that (a, b′) is
a non-edge.

We determine x1/Wb′, and in particular x1/W , by the following
amalgamation.

x1 x2

a U
n− 1

W
k − 2

b′ V
ℓ− 1

x1/ÛV = P ⊥ (Q ↾ V )

(I)

We must show that the factors (x1, aUV ) and (∅, aUWb′V ) occur
in H. As (aUV ) ∼= (K⃗n ⊥ K⃗ℓ−1), the factor (x1, aUV ) is available by
induction on ℓ. The configuration (aUWb′V ) = ([a, UW ] ⊥ b′V ) is
available by Lemma 9.10 and Lemma 7.6.
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So we may complete the diagram shown in H. Now we determine
the type of x2 over UV by a further amalgamation.

x1 x2

a U W b′ V
n− 1 k − 2 ℓ− 1

(II)

Here we require the factor omitting x2 to be the one just con-
structed, while the structure of (x2, aWb′) is to be that of (x2, aWb),
that is agreeing with Q# as far as x2 is concerned. Furthermore in
this diagram we have specified that (a, b′) is not an edge.

We must show that the factor (R, aWb) embeds into H. By the
choice of R, this reduces to the two configurations (xi, aWb) for i =
1, 2. For i = 1 this is part of the factor already constructed in H. The
configuration (x2, aWb′) is H-constrained since k was chosen minimal
and (a, b′) is a non-edge. By Proposition (IXn−2) this configuration
occurs in H.

Therefore we may complete this diagram to get a configuration
(R, aUWb′V ). We take (R, aUWV ) as factor (1) in our amalgama-
tion diagram (∗).

Now we cannot take the second factor (R,UWbV ) to be simply
a copy of (R,UWb′V ) since the type of x1 over b must be given by
the type Q. So we form (R,UWbV ) by adjusting (R,UWb′V ) by
correcting the type of (x1, b). We must show that the result is in H.

Note that (UWbV ) is K⃗n-free, so by the choice of R it suffices to
check that (x1, UWbV ) and (x2, UWbV ) occur in H. The configura-
tion (x2, UWbV ) coincides with (x2, UWb′V ) which was constructed
by amalgamating in H. There remains

(x1, UWbV )

By Proposition (IXn−1) it suffices to check that this is H-constrained.
In other words, we must check

(x1, U), (x1,Wb), and (x1, bV )

Now the first and third of these agree with P and Q, realized in H.
As |Wb| = k − 1, the minimality of k gives us the second as well.
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This completes the construction. □

We recall once more that Proposition (IXn−1) includes Proposition
(V IIIn−1), which simplifies the statement of the following.

Lemma 9.18. Let n ≥ 3 and assume Proposition (IXn−1). Let H be
an ample homogeneous ordered 2-graph. Let A,B be complete ordered
graphs with |B| < |A| = n, and let P,Q be initial 1-types over A,B
realized in H. Suppose that every initial 1-type Q# over a complete
graph of order less than n is realized in H. Then P ⊥ Q is realized in
H.

x

A B

P Q

Proof. We proceed by induction on ℓ = |B|.
Take R = x1x2 realizing a Ramsey type r over the generic K⃗n-free

graph in H. Then we amalgamate as follows.

x1 x2

a U c U′ b V d V′

n− 2 n− 2 ℓ− 1 ℓ− 1
?

x1/aUc, bV = P ⊥ Q,
x2/aU

′b, dV ′ = P ⊥ Q

(∗)

Then one of the two configurations involved will be P ⊥ Q, de-
pending on the type of the pair (a, b).

Here U,U ′ have order n−2, and V, V ′ have order ℓ−1. Furthermore

(aUc), (aU ′b), (bV ), (dV ′)

are complete (of orders n or ℓ) apart from the fact that in (aU ′b) the
status of the pair (a, b) remains to be determined. In addition, the
type of c over U ′d is unsettled and will be dealt with in the course
of the construction.
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So we must construct compatible factors (∗)1 = (R, aUcU ′V dV ′)
and (∗)2 = (R,UcU ′bV dV ′) meeting our constraints, in H.

The second factor will present no difficulties. Once we settle the
structure of the first factor, the structure of the second factor will be
fully determined, and its second component

(UcU ′bV dV ′)

will be K⃗n-free. By the choice of R and Proposition (IXn−1) it then
suffices to check that the types (xi, UcU ′bV dV ′) are H-constrained.
By the hypothesis of the lemma any such 1-type is H-constrained.

So we need only concern ourselves with the construction of a suit-
able factor

(R, aUcU ′V dV ′)

x1 x2

a U c U′ V d V′

n− 2 n− 2 ℓ− 1 ℓ− 1
?

x1/aUc, V = P ⊥ (Q↾V ); x2/aU ′, dV ′ = (P ↾aU ′) ⊥ Q

(1)

We will determine the relation of c to (U ′d) by the following amal-
gamation, inserting an additional vertex e separating c from U ′.

x1 x2

a U c e U′ V d V′

n− 2 n− 2 ℓ− 1 ℓ− 1

x1/aUc, V = P ⊥ (Q↾V )
x2/aU

′, dV ′ = (P ↾aU ′) ⊥ Q

(A)

We must show that the factor (R, aUceV V ′) and (R, aUeU ′V dV ′)
embed into H. In the second factor, the second component (aUeU ′V dV ′)

is K⃗n-free so again there is no difficulty.
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So we come down to the factor

(R, aUceV V ′) ∼= (R, K⃗n ⊥ I⃗1 ⊥ K⃗ℓ−1 ⊥ K⃗ℓ−1)

x1 x2

a U c e V V′

n− 2 ℓ− 1 ℓ− 1

x1/aUc, V = P ⊥ (Q↾V )
x2/aV

′ = (P ↾a) ⊥ (Q↾V ′)

For this we amalgamate in two stages as follows, first determining
the type of x1 over eV ′, then the type of x2 over UceV .

x1

a U c e V V′

n− 2 ℓ− 1 ℓ− 1

(A1)

x1 x2

a U c e V V′

n− 2 ℓ− 1 ℓ− 1

(A2)

So it suffices to show that the factors of these amalgamations are
available in H.

The factors in diagram (A1) are

(A1)1 = (x1, aUcV ) ∼= (x1, K⃗n ⊥ K⃗ℓ−1)

(A1)2 = (∅, AUceV V ′) ∼= (K⃗n ⊥ I⃗1 ⊥ K⃗ℓ−1 ⊥ K⃗ℓ−1)

The factor (A1)1 is available by induction on ℓ. The factor (A1)2
is available by Lemma 9.9.

In diagram (A2) the factor omitting x2 is the one resulting from
diagram (A1) by amalgamation in H. So it suffices to consider the
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factor
(R, aV ′)

By the choice of R it suffices to check that the configurations (xi, aV ′)
are H-constrained for i = 1, 2, and as (aV ′) is K⃗n-free this is imme-
diate. □

Proof of Proposition (Vn-A). If some 1-type over a complete
graph of order less than n is not realized in H, then the result is given
as Lemma 9.17, and otherwise it holds by Lemma 9.18. □

We now return to Proposition (IVn–B). As we have already dealt
with the case n = 2, we assume n ≥ 3 and Proposition (IXn−1)
holds.

Proof of Proposition (IVn–B), n ≥ 3. We work in a homoge-
neous ordered 2-graph H.

We fix A ∈ A(n), and p be an initial 1-type over A realized in H.
We claim that (Ap, A⊥±) realizes every 1-type over I⃗k, for k <∞. It
will suffice to treat (Ap, A⊥+). If A ∈ A(2) then Proposition (IV2–B)
applies, so we may suppose A ∼= K⃗n.

In terms of H, we are considering a configuration (b, A ⊥ I) with
I ∼= I⃗k, k < ∞. We proceed by induction on k. We may take k > 0.
Set i = max I, q = tp(b/i).

We work in H′ = (iq, i⊥−), which is ample. It suffices to show that
this configuration contains (b, AI \ {i}). This follows by induction on
k if p is realized in H′. In other words, we have reduced to the case
k = 1.

Now the claim is given by Proposition (V -A), since 1 < n. □

This completes the proof of Proposition (IVn).
It is useful to derive a variant applying directly to homogeneous

ordered graphs.

Lemma 9.19. Let n ≥ 2 and assume Propositions (IIn, IVn). Let
Γ be a homogeneous ordered graph containing all configurations in
A(n), let A ∈ A(n), and let P be a 1-type over A realized in Γ, other
than the type x→ K⃗n. Then (AP , A⊥±) is ample.

Proof. Take c ∈ Γ and consider H = (c⊥−, c⊥+). Then H is am-
ple. It suffices to show that P is realized in H1 over A ⊆ H2, as then
Proposition (IVn) applies. By Proposition (III) (proved in §8D), if
A ∈ A(2) we may reduce to complete ordered subgraphs of A. Thus
we may take A to be complete.
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Expressed in terms of Γ, our claim is that the type acA is realized
in Γ, where a < c < A, A is complete of order at most n, and c ⊥ aA.
As acA omits K⃗n+1 this is given by Proposition (IIn). □



CHAPTER 10

ORDERED HOMOGENEOUS GRAPHS:
PROPOSITION V

The main result of this section is the following.

Proposition (Vn). Let H be an ample homogeneous ordered 2-graph,
and n ≥ 2. If n > 2, assume also that Proposition IXn−1 holds. If
p = (x, K⃗n ⊥ K⃗n) is an H-constrained initial 1-type, then p is realized
in H.

We have observed that Proposition IXn−1 includes Proposition
VIIIn−1, and we have shown that it implies Proposition IIn (Propo-
sition 7.9).

We divide the proof into two parts. We have p = P ⊥ Q for some
1-types P,Q over K⃗n. In the first part of the proof we show that we
may take P = Q. In the second part of the proof we treat that case.

10A. An auxiliary type

The main result of the next subsection states that under appro-
priate inductive hypotheses the proof of Proposition (Vn) reduces to
the consideration of 1-types of the form P ⊥ P . Here we make some
preparations for that proof (Lemma 10.3 below).

Lemma 10.1. Let n ≥ 3 and assume Proposition IXn−1 holds. Let
A be an ordered graph, b = minA, and suppose that A \ {b} is K⃗n-
free. Then A belongs to any amalgamation class A containing A(n).

Proof. Let Γ be the ordered graph corresponding to the amalga-
mation class A. Take a ∈ Γ and let H = (a⊥−, a⊥+). By Proposition
I, H is ample.

Set A′ = A \ {b}. It suffices to show that the 1-type (b, A′) embeds
into H. Now A′ is K⃗n-free so we may apply Proposition IXn−1. It

191
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suffices to show that each configuration (b,K) contained in (b, A′)
with K complete embeds into H.

In Γ, the configuration (b,K) corresponds to baK, with

b < a < K and a ⊥ bK, |K| < n

Recall that Proposition IXn−1 implies Proposition IIn. By Proposi-
tion IIn, baK embeds in Γ. Our claim follows. □

Now we require another very explicit configuration.

Lemma 10.2. Let n ≥ 3 and assume Proposition VIIIn−1 holds.
Let abK be an ordered graph with bK ∼= K⃗n, a ⊥ K, a → b. Then
abK belongs to every amalgamation class of finite ordered graphs con-
taining A(n).

n− 1

Proof. Amalgamate as follows, with V of order n− 3, U of order
n− 2, and aV , V d, and dbU complete.

c a V
n− 3

d b U
n− 2

(∗)

Here (dbU) is complete of order n, and (aV db) is complete of or-
der n apart from the pair (a, b), whose type is to be determined.
Thus in the amalgam either (adbU) or (caV db) will be the desired
configuration. So it suffices to show that the factors

(caV dU) and (cV dbU)

are in A.
The factor (caV dU) is K⃗n-free, hence is inA by Proposition (V IIIn−1).

Thus it suffices to consider (cV dbU) = (c ⊥ V dbU), which reduces
to

(V dbU)

Here (V db) is complete of order n − 1 and (dbU) is complete of
order n.

We consider this diagram as an amalgamation in which the relation
of V to b remains to be determined.
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V
n− 3

d b U
n− 2

(V dbU)

V
n− 3

d b U
n− 2

If for some v ∈ V , the pair (v, b) is a non-edge, then the configura-
tion (vdbU) is isomorphic to the original configuration (abK) desired.
On the other hand if all pairs (v, b) with v ∈ V are edges, we have
the required configuration (V dbU). □

Lemma 10.3. Let n ≥ 3 and assume Propositions (IIn) and (IXn−1)
hold. Let H be an ample homogeneous ordered 2-graph. Let P and Q

be initial 1-types over K⃗n realized in H. Then there is an initial 1-type
Q# such that both P ⊥ Q# and Q# ⊥ Q are realized in H.

Proof. We consider the following amalgamation, in which the
point x realizes the type P over aU and Q over bV . Then Q# will be
the type realized by x over W .

x a U W b V
n− 1 n n− 1

(∗)

In this diagram, the relationship of x to W remains to be deter-
mined. We will need to decide as we go along whether (a, b) is taken
to be an edge or not. It suffices to prove that there is a diagram of
this type with both factors (x, aUbV ) and (∅, aUWbV ) embedding
in H.

The factor (x, aUbV ):
We obtain a suitable factor (x, aUbV ) from an amalgamation de-

termining the type of (a, b).

x a U b V
n− 1 n− 1

(A)
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So it suffices to show that the factors (x, aUV ) and (x, UbV ) embed
into H. This follows from Proposition (Vn)-A (§9C).

The factor (aUWbV ) in H2:

a U W b V
n− 1 n n− 1

(B′)

Here we must deal with both possible forms of this configuration.
If (a, b) is a non-edge, then this is afforded by Lemma 9.9. So we

suppose (a, b) is an edge, which means more specifically that

In the factor (x, aUbV ), the pair (a, b) is an edge.

We pass temporarily to consideration of the 2-ordered graph

H(bV ) = ((bV )pa , (bV )⊥−)

where pa is the type realized by a (namely, a→ b, a ⊥ V ). Then our
goal is to find the configuration (a, UW ) in H(bV ).

By Lemma 9.9 and Proposition (Vn-A) we find that H(bV ) is am-
ple, and its second component contains all graphs in A(n). Therefore
by Proposition (Vn-A) applied to H(bV ), in order to realize the con-
figuration (a, UW ) it suffices to realize the configurations (a, U) and
(a,W ) in H(bV ).

Now we return to H; we have reduced our problem to the construc-
tion of the configurations

(aUbV ) and (aWbV )

Now (aUbV ) was obtained as part of the factor (x, aUbV ). So it
suffices to consider (aWbV ).

a W b V
n n− 1

(B′.2)

Now we pass briefly to consideration of the 2-ordered graph

H′(V ) = (V←, V ⊥−)
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Here← is taken because it is the type of b over V , and we are looking
for the 1-type

(b, aW )

in H(V ), which is now a terminal 1-type (one may also reverse the
ordering on H(V ) to stay within the framework of initial 1-types).

As above, working in H(V ) we see that the configuration (b, aW )
reduces to (b, a) and (b,W ), and we return to H2. Thus our problem
now is to find

(abV ) and (WbV )

in H2.
The configuration (abV ) is afforded by Lemma 10.2, and (WbV ) ∼=

(K⃗n ⊥ K⃗n) is afforded by Lemma 9.15. □

This lemma gives us one of the essential ingredients for an amal-
gamation construction.

We will also make use of the Ramsey theory, as follows.

Lemma 10.4. Let H be a homogeneous ordered 2-graph, and n ≥
2. Suppose that for each homogeneous 2-graph H′ contained in H,
Proposition (Vn) is valid in H′. Then there is a Ramsey 2-type for H
over A(n).

Proof. By Lemma 5.10 it suffices to show that for A = ⊥iAi with
Ai ∈ A(n), and for P = ⊥i Pi an H-constrained initial 1-type over
A, we have P realized in H. We proceed by induction on the number
of factors Ai. Working over A1 we may reduce this number by 1, and
it suffices show that the associated ordered 2-graph H′ = (AP1

1 , A⊥+1 )
realizes the same 1-types over elements of A(n) as H does. In other
words, we reduce to the case in which there are two factors, A =
A1 ⊥ A2.

Applying Proposition III (proved in §8D) we come down to the
case in which A1 and A2 are complete, with H replaced by a homo-
geneous ample ordered 2-subgraph, and this is given by Proposition
Vn applied to such 2-subgraphs of H. □

10B. A reduction

Now we may make the promised reduction of our problem to the
“symmetric” case p = P ⊥ P .
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Lemma 10.5. Let n ≥ 3 and assume Proposition (IXn−1). Let H be
an ample homogeneous ordered 2-graph. Assume that for any homo-
geneous ordered 2-graph H′ with s(H′, K⃗n) < s(H, K⃗n), Proposition
(Vn) is valid for H′. Let P and Q be initial 1-types over K⃗n realized
in H. Suppose that P ⊥ P and Q are both realized in H. Then P ⊥ Q
is realized in H.

Recall that Proposition IXn−1 implies Propositions VIIIn−1 and
IIn.

Proof. Suppose the contrary.
Take K ⊆ H2, K ∼= K⃗n, and form HP = (KP ,K⊥+). Then in HP

the type Q over K⃗n is omitted and therefore

s(HP , K⃗n) < s(H, K⃗n)

So by hypothesis Proposition (Vn) is valid for HP , and for any ho-
mogeneous ordered 2-graph contained in HP .

By Lemma 10.3 there is an initial 1-type Q# so that

P ⊥ Q# and Q# ⊥ Q are both realized in H

By Lemma 10.4 there is a Ramsey 2-type r for HP over A(n). Let
R = (x1x2) have type r.

We amalgamate as follows.

x1 x2

U a V b V′ W
n n− 1 n− 1 n− 2

x1/U, aV, bV
′ = Q#, P,Q;

x2/U, abW = P,Q

(∗)

As usual the specification of the type of x2/abW speaks only about
the relation of x2 to the points of abW , and not to the structure of
abW . But when the diagram is completed these conditions ensure
that either (x1, aV bV ′) or (x2, UabW ) will be a realization of P ⊥ Q.

There remain unspecified relations between the vertices of R and
those in the second component, which will be determined as we pro-
ceed.
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So it suffices to show that two compatible factors

(R,UaV V ′W ) and (R,UV bV ′W )

can be found in H.

x1 x2

U a V V′ W
n n− 1 n− 1 n− 2

(1)

x1 x2

U bV V′ W
n n− 1 n− 1 n− 2

(2)

In particular we must determine the types of

(x1/W ) and (x2/V V ′)

along the way.

We begin by determining the type of x1 over W via the following
amalgamation.

x1

U a′ V b V′ W
n n− 1 n− 1 n− 2

(I)

Here the vertex a′ is similar to the vertex a, but a′ is not adjacent
to the vertices of V . Still, we require that the type of x1 over a′V
should be P in the usual weak sense that the type of x1 over a′ and
over V should be as in P .

Claim 1. The factors (x1, Ua′V bV ′) and (∅, Ua′V bV ′W ) embed
into H.

We consider the first factor

(x1, Ua′V bV ′)
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Here we may pass to H(bV ) = ((bV ′)Q, (bV ′)⊥−) where we are looking
for the configuration

(x1, Ua′V )

Here H(bV ′) is ample and the type we wish to realize is

Q# ⊥ (P ↾ a′) ⊥ (P ↾ V )

As |{a}|, |V | < n, by repeated applications of Proposition (Vn)-A
in H(bV ′) it suffices to check that the configurations (x1, U), (x1, a′),
and (x1, V ) all embed into H(bV ′). In H this means we must check

(x1, UbV ′), (x1, a′bV ′), (x1, V bV ′)

Now applying Proposition (Vn)-A in H, the second and third config-
urations reduce to their constituents (x1, a

′), (x1, V ), and (x1, bV
′)

which are found within P and Q. As (x1, UbV ′) realizes the type
Q# ⊥ P , the choice of Q# gives this configuration as well.

This disposes of the factor (x1, Ua′V bV ′). Now we must show that

(Ua′V bV ′W )

belongs to any amalgamation class containing A(n).
By Lemma 9.9 this reduces to the configuration (a′V bV ′W ).

a′ V b V′ W
n− 1 n− 1 n− 2

Working over V , that is in H′(V ) = (V ⊥−, V ⊥+), we require the
configuration (a′, bV ′W ) which reduces to (a′, bV ′) and (a′,W ). In
terms of H2 this means that we require

(a′V bV ′) ∼= (a′ ⊥ V ⊥ bV ′) and (a′VW )

The first is given by Lemma 9.9 so we are left with (a′VW ), which
is K⃗n-free.

This disposes of the second factor and proves the claim.
Thus we may form the diagram I in H, and take the amalgam to

determine
(x1,W )

Next we determine the type of x2 over V V ′. First we determine
the type of x2 over V by the following amalgamation.

The factors here are easily seen to embed into H.
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x2

U a V
n n− 1

(II)

Now we complete the determination of the factor (R,UV bV ′W )
by the following amalgamation, which determines the type of x2 over
V ′.

x1 x2

U bV V′ W
n n− 1 n− 1 n− 2

(III)

Claim 2. The factors

(R,UV bW ) and (x1, UV bV ′W )

of diagram (III) embed into H.

The factor (x1, UV bV ′W ) is copied over from the result of the first
amalgamation (diagram (I) above). So it suffices to consider

(R,UV bW )

We will show that this configuration embeds even into HP . By the
choice of R, it suffices to check that the configurations (xi, UV bV ′)
are HP -constrained. In other words, we must show that the following
occur in HP .

(x1, U) = Q#, (x1, V ), (x1, bW ),
(x2, U) = P , (x2, V ), (x2, bW )

First we deal with the types over V and bW . As |V |, |bW | < n,
Proposition (Vn)-A applies and in order to show that these embed in
HP it suffices to check that they embed in H.

Now (x1, V ) is a restriction of P and (x1, bW ) is afforded by di-
agram I, hence occurs in H. Similarly (x2, V ) is afforded by II and
(x2, bW ) is a restriction of Q.
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It remains to be checked that Q# and P occur in HP , equivalently
that

(P ⊥ Q#) and (P ⊥ P )

occur in H. This holds by the choice of Q# and by hypothesis, re-
spectively.

Thus our claim is proved, and we may use the diagram III to de-
termine the factor (R,UV bV ′W ).

Now we require a compatible factor in H of the form

(R,UaV V ′W ).

x1 x2

U a V V′ W
n n− 1 n− 1 n− 2

(1)

Again, we prove something stronger.

Claim 3. The factor (R,UaV V ′W ) embeds into HP .

By the choice of R, this means that we must show that the types
of x1 and x2 over U , aV , V ′, and aW are realized in HP .

We begin with the types of x1 and x2 over V ′ and aW . As |V ′|, |aW | <
n, it suffices to check that these types are realized in H, applying
Proposition (Vn)-A.

The types of x1 over V ′ and aW are a restriction of Q and the
result of I, respectively. Thus these occur in H. (Note that here we
finally make use of the presence of the vertex a′ in I.)

The types of x2 over V ′ and aW are the result of III and a restric-
tion of Q, respectively. Thus these occur in H.

The types of x1 over U is Q#, which was chosen to be realized in
HP .

The type of x1 over aV or of x2 over U is P , which is realized in
HP by hypothesis.

The type of x2 over aV results from Diagram II, where x2 realizes
the type P over U , and thus this type is also realized in HP .

This proves our claim.
Now our analysis is complete. We have constructed compatible fac-

tors for the initial diagram (∗), so we conclude. □
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At this point, we have reduced the treatment of Proposition (Vn)
to the consideration of a crucial case: 1-types of the form P ⊥ P ,
where P is realized in H. We will treat this case in the next two
subsections.

10C. Final preparations

We must make some further preparations for the last stage in our
analysis.

An initial cross type in an ordered 2-graph H is the type of some
pair (a, b) with a ∈ H1 and b ∈ H2, and a < b. Thus this is either
⊥+ or →, in our context.

Lemma 10.6. Let n ≥ 3, and assume Proposition (IXn−1). Let H
be an ample homogeneous ordered 2-graph. Let p be an initial cross
type. Then there is an initial cross type q with the following property.

Assume C = K ⊥ A ⊥ B, y = minK, and a = minA satisfy

K ∼= K⃗n, a→ A \ {a}, and A omits K⃗n+1, B omits K⃗n

and Q1 ⊥ Q2 ⊥ Q3 is a 1-type over C with

Q1 ↾ y = q, Q2 ↾ a = p

with Q1, Q2, Q3 realized in H.
Then

Q1 ⊥ Q2 ⊥ Q3 is realized in H.

y
K a A \ {a} B

q
C

Proof. Supposing the contrary, for each initial cross type q choose
a counterexample Cq = Kq ⊥ Aq ⊥ Bq, Q(q) = Q1(q) ⊥ Q2(q) ⊥
Q3(q) and form the amalgamated ordered sum

K∗ ⊥ A∗ ⊥ B∗

where B∗ = ⊥q Bq and in K∗ and A∗ the respective minimum ele-
ments yQ, aQ are identified with initial elements y, a respectively. Set
K∗ = yK ′, A∗ = aA′.
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By our construction, the following amalgamation problem has no
solution in H.

. . . . . . . . .

x

y K′ a A′ B∗

(∗)

So to get a contradiction it suffices to show the following.

Claim. The factors

(x,K ′A∗B∗) and (∅,K∗A∗B∗)

of diagram (∗) are in H.

We first consider (∅,K∗A∗B∗).
By Lemma 9.9 the configuration (K∗A∗B∗) = ([y,K ′] ⊥ [a,A′] ⊥

B∗) reduces to its three constituents

[y,K ′], [a,A′], and B∗

By Proposition (V IIIn−1) and Lemma 7.6, these constituents embed
into H2.

So we need only consider the factor

(x,K ′A∗B∗)

We first work over K ′A∗, that is we consider the associated 2-
ordered graph

H(K ′A∗) = ((K ′A∗)px , (K ′A∗)⊥+)

where px is the type realized by x. We look for a realization of (x,B∗).
By Proposition (IXn−1) it suffices to consider the restrictions of

this type of the form (x,KB) with KB ⊆ B complete, and thus
|KB| < n. Thus in terms of H, we may replace B∗ by the complete
graph KB and consider

(x,K ′A∗KB).

We may work similarly over K ′aKB and consider the configuration
(x,A′). In this way we may reduce A′ to a complete subgraph KA of
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. . . . . .

x

K′ a A′ KB

A′q = Aq \ {a}, and thus in H we are now considering.

(x,K ′aKAKB).

. . .

x

K′ a KA KB

Similarly, over K ′ this last configuration becomes (x,KAKB) which
reduces to the individual constituents (x, aKA) and (x,KB), or in
terms of H, the following.

(x,K ′aKA) and (x,K ′KB)

Here the components of K ′ are complete of order n− 1, KB is com-
plete of order less than n, and aKA is complete of order at most
n.

These then reduce in a similar fashion to (x,K ′), (x,KA), and
(x,KB), all of which are present in H. □

Lemma 10.7. Let H be an ample homogeneous 2-graph and P a
1-type over K⃗n realized in H. Let r be a Ramsey 2-type for HP over
A(n− 1), and q any initial cross type. Then there is a 1-type Q over
K⃗n whose restriction to a = min K⃗n is q, with the following property.

• For any finite configuration (R,A) realized in H such that R
is r-Ramsey and A omits K⃗n, if x0 = minR, then H contains
the configuration

(R,K ⊥ A)

where (R,A) is as given, K ∼= K⃗n, and

tp(x0/K) = Q

tp(x/K) = P for x ∈ R, x > x0
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x0 R

K

Q,P

A

Proof. Supposing the contrary, for each 1-type Q over K⃗n realized
in H and extending the given cross type q, choose counterexamples

AQ = (RQ, AQ)

Form the ordered r-sum R∗ = ΣQRQ with all copies of x0 iden-
tified with an initial element x0 (using the 2-type r, so that R∗ is
r-Ramsey), and correspondingly set

A∗ = ⊥
Q

′AQ

with all aQ = minAQ identified with an initial element a.
Let R′ = R∗ \ {x0}. Let K ∼= K⃗n and let y = minK, K ′ = K \ {y}.

Then the following amalgamation problem, in which we determine
the relation of x to K ′, has no solution in H.

x R′

y K ′

Q,P

A∗

To reach a contradiction, we will show that the factors

(R∗, yA∗) and (R′, yK ′A∗)

occur in H.

The factor (R∗, yA∗):

R∗

y

q, p

A∗

Now yA∗ omits K⃗n and R∗ is r-Ramsey for A(n−1), so to get this
factor it suffices to check that the individual types x/KA are realized
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in HP for x ∈ R∗ and KA ⊆ yA∗ complete. And as yA∗ omits Kn, it
suffices to realize these types in H.

For K ⊆ A∗ this is given, and the types (x, y) for x ∈ R∗ are
restrictions of P or of a type Q realized in H.

Thus the factor (R∗, yA∗) embeds in HP and hence in H.

The factor (R′, yK ′A∗):

R′

y K ′

Q,P

A∗

For this factor we will work over K = yK ′, that is we consider
HP = (KP ,K⊥+), and we claim that the configuration (R′, A∗) is
realized there.

Again, it suffices to check the types (x,KA) where KA ⊆ A∗ is
complete. In H this corresponds to 1-types of the form P ⊥ tp(x/KA)
with |KA| < n, which we have by Proposition (V -A).

This completes the argument. □

10D. Proof of Proposition V

Now we may pull the pieces together.

Lemma 10.8. Let H be an ample homogeneous ordered 2-graph and
n ≥ 3. Assume Proposition (IXn−1) and let P be an initial 1-type
over K⃗n realized in H. Then P ⊥ P is realized in H.

Proof. We first establish our notation.

• P = tp(x/K), K ∼= K⃗n.
• r is a Ramsey 2-type for HP over A(n− 1).
• R = (x1x2) with tp(x1x2) = r.
• U ∼= K⃗n; V1, V2

∼= K⃗n−1; W ∼= K⃗n−2
• a = minK, p = P ↾ a
• q is an initial cross type given by Lemma 10.6 applied to p.
• Q is a 1-type over K⃗n extending q, given by Lemma 10.7
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x1 x2

U a V b W V′

n n− 1 n− 2 n− 1

x1/U, aV, bV
′ = Q,P, P ;

x2/U, abW = P, P

(∗)

Now we amalgamate as follows.
In particular, in the amalgam we will have the following.

Either (x1, aV bV ′) or (x2, UabW ) is P ⊥ P

The types
x1/UW and x2/V V ′

remain to be determined in the course of the construction.
We must show that compatible factors

(R,UaVWV ′) and (R,UV bWV ′)

satisfying our conditions can be found in H.

Stage 1: Determination of x1/W :
We begin with the following amalgamation to determine the type

of x1 over W .

x1

a b W
n− 2

(I)

Observe that the factor (abW ) omits K⃗n, so is available in H2.

Stage 2: Determination of x2/aV :
This will take some work, and depends on the specific choices of

the types q and Q.

Claim 1. There is an initial 1-type P ∗ over aV extending P ↾ a so
that any configuration of the form (R,UaVWV ′) as above, with the
following properties, embeds into H.
• x1/UaVW , x2/UaW as specified above;
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• (x2, aV1) realizes P ∗;
• (x2, V

′) any type realized in H.

Suppose the claim fails. Then for each type P ∗ over aV which ex-
tends P ↾ a and which is realized in H we may choose a configuration

A(P ∗) = (R,UaVWV ′(P ∗))

where V ′(P ∗) is a copy of K⃗n−1, so that the type (x2, V
′(P ∗)) is

realized in H, but the configuration A(P ∗) is not realized in H.
We vary P ∗ over all types over aV realized in H and form the

ordered sum
V ∗ = ⊥

P ∗
V ′(P ∗)

Then the following amalgamation has no solution in H.

. . .

x1 x2

U a V W V∗

n n− 1 n− 2 n− 1 n− 1

(∗)

We must show that the factors

(R,UaWV ∗) and (x1, UaVWV ∗)

do embed into H.

We first deal with the factor (R,UaWV ∗).

. . .

x1 x2

U a W V∗

n n− 2 n− 1 n− 1

Recall that we require the type of x1 over U to be Q, and the type
of x2 over U must be P . Now by the choice of the type Q, in order to
embed the factor (R,UaWV ∗) in H, it suffices to embed the factor
(R, aWV ∗).

We will show that this last configuration embeds into HP . Now
(x1, x2) realizes a Ramsey 2-type for HP overA(n−1), so it will suffice
to check the types of x1 and x2 over aW and over the components
V ′(P ∗) which make up V ∗. As the base sets involved have order less
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. . .

x1 x2

a W V∗

n− 2 n− 1 n− 1

than n, to show that these types are realized in HP it suffices to show
that they are realized in H.

The type of x1 over V ′(P ∗) is the restriction of P to this set. The
type of x2 over V ′(P ∗) is some type realized in H, by hypothesis.

The type of x1 over aW results from diagram I and is therefore
realized in H.

The type of x2 over aW is the restriction of P to this set.
So (R, aWV ∗) embeds in HP , and in particular embeds in H.

Now we must deal with the factor (x1, UaVWV ∗).

. . .

x1

U a V W V∗

n n− 1 n− 2 n− 1 n− 1

Here we will make use of the choice of the cross type q.
Recall that

the type of (x1,minU) is q,
the type of (x1, a) is p = P ↾ a,

and that q was chosen in terms of p using Lemma 10.6.
In the notation of that lemma we are taking A = aVW and B =

V ∗. So A omits K⃗n+1 and B omits K⃗n. By the choice of q, the
configuration (x1, UaVWV ∗) reduces to the three configurations

Q1 = (x1, U), Q2 = (x1, aV W ), and Q3 = (x1, V
∗)

Now the type of Q1 is Q, and the type of Q3 is the sum of the
1-types of x1 over the various sets V ′(P ∗), which are realized in H.
Since these sets have order less than n, this suffices. So we need only
consider Q2, that is

(x1, aV W )

We work over a, that is we pass to the 2-connected graph H(a) =
(ap, a→). Here we require the configuration

(x1, V W )
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This configuration reduces to (x1, V ) and (x1,W ) separately, so re-
turning to H we find that we require the two configurations

(x1, aV ) and (x1, aW )

The type of x1 over aV is P , and the type of x1 over aW was
constructed in diagram I.

This completes the proof of the claim.
We choose the type P ∗ of x2 over aV in accordance with Claim 1.

Stage 3: Determination of x2/V ′:
Now we form an amalgamation diagram which produces the factor

(R,UV bWV ′)

and settles the type of x2 over V ′.

x1 x2

U bV W V′

n n− 1 n− 2 n− 1

x1/U, V, bW, bV ′ = Q,P, (I), P ;
x2/U, V, bW = P, (P ∗ ↾ V ), P

(III)

Claim 2. The factors

(R,UV bW ) and (x1, UV bWV ′)

of this amalgamation diagram embed in H.

We begin with
(R,UV bW )

This has the form (R,U ⊥ B) with B = V bW omitting K⃗n. Fur-
thermore we require x1 and x2 to realize the types Q and P respec-
tively over U . So by the choice of the type Q, it suffices to consider

(R,B) = (R, V bW )

We will show that this is realized in HP .
By the choice of R, it suffices to check that the configurations

(xi, V ) and (xi, bW ) are realized in HP for i = 1, 2. As |V |, |bW | < n,
it suffices to check that they are realized in H.

The type of x1 over V , or of x2 over bW , is a restriction of P .
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The type of x2/V was constructed in H at Stage 2.
The type of x1/bW was constructed in H at Stage 1.
This disposes of the factor (R,UV bW ). Now we take up the factor

(x1, UV bWV ′)

First we work over UV b, so that we are considering the configu-
ration (x1,WV ′). This reduces to (x1,W ) and (x1, V

′), so in H we
reduce to the configurations

(x1, UV bW ) and (x1, UV bV ′)

As |V |, |bW | < n, configuration (x1, UV bW ) is available in H. So
we consider

(x1, UV bV ′)

Working over U , we are considering the configuration (x1, V bV ′)
which reduces to (x1, V ) and (x1, bV

′); so in H, this reduces to

(x1, UV ) and (x1, UbV ′)

Again |V | < n so only the second configuration, (x1, UbV ′), requires
attention.

Write UbV ′ = U ⊥ B with A = bV ′ and apply the choice of q.
Note that x1 realizes the type q over minU and p over b. So the
configuration (x1, UbV ′) reduces to (x1, bV

′), which is P .
This proves Claim 2, so we can form the diagram III and determine

the type of x2 over V ′. In particular, we have constructed the second
factor of the diagram (∗).

At this point, we should return to the first factor

(R,UaVWV ′)

which is now fully specified.
We have constructed the 1-type P ∗ in Stage 2 so that modulo the

previous specification of x1/UaVW , x2/UaW , and taking x2/aV to
realize P ∗, in order to embed (R,UaVWV ′) into H it suffices to
verify that (x2, V

′) embeds into H. But this configuration is part of
the configuration (R,UV bWV ′) just constructed. □

With this, the proof of Proposition (Vn) is complete. We repeat the
statement, and review the proof.

Proof of Proposition (Vn). For n = 2 this is Lemma 8.7, so
suppose n > 2.
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We proceed by induction on the parameter N = s(H, K⃗n), the
number of initial 1-types realized over K⃗n in H. By Lemma 10.5 it
suffices to treat 1-types of the form P ⊥ P where P is an initial
1-type over K⃗n realized in H.

This is covered by Lemma 10.8.
□

This completes the inductive proof of Proposition V, and thus by
simultaneous induction we may prove Propositions I–IX, and thus
also Proposition 5.1. With this, the proof of Theorem 1.2 is complete.
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CHAPTER 11

METRICALLY HOMOGENEOUS GRAPHS:
PRELIMINARIES

We now take up the classification problem for metrically homo-
geneous graphs, that is, connected graphs which are homogeneous
when viewed as metric spaces, under the path metric associated with
the graph. We have described the main results to be proved in some
detail in Chapters 1 and 2. In particular we have stated a conjecture
which may be put in a completely explicit form as to what the final
classification should be.

For ease of reference we collect some of the main points set out in
our earlier discussion, including some key definitions and useful facts,
in the present chapter.

11A. The main conjecture

We may summarize the conjectured classification of the (countable)
metrically homogeneous graphs as follows (§1D), using the notion
of generic type (Definition 1.17) and the notions of a 3-constrained
amalgamation class and an amalgamation class defined by Henson
constraints.

Conjecture (Cf. Conjectures 1, 2, §1D). The metrically homogeneous
graphs are the following.

(a) Non-generic type (exceptional local type or a regular tree of
infinite degree);

(b) Diameter δ ≤ 2 (Lachlan/Woodrow classification);
(c) Generic type, δ ≥ 3: Fraïssé limit of

A = A3 ∩ AH

213
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with A3 a 3-constrained amalgamation class, and AH an amal-
gamation class given by Henson constraints.

A body of work, much of it to be presented here, gives this con-
jecture the form of an explicit list of a few families of examples. It is
not necessary to dwell on the definition of generic type here (it comes
back into prominence in Chapter 15). The explicit classification of
the metrically homogeneous graphs of non-generic type is known,
and was given in §1D as Facts 1.7 and 1.18. It is convenient to give
that again here, for reference (Table 11.1).

n-gons;
antipodal, diameter 3, double covers;
tree-like (Tm,n).

Table 11.1. Metrically homogeneous graphs of
non-generic type

On the other hand, the elucidation of the content of the conjecture
for the case of generic type will occupy all of Chapters 12, 13, and 14.
Once this work is complete, the conjecture can be viewed as proposing
an explicit classification of the graphs in question (Theorems 1.19,
1.22).

We recall some terminology used in the generic type case.
An amalgamation class is 3-constrained if the minimal structures

not in the class have order at most 3. We say loosely that it is “given
by forbidden triangles,” which presupposes that the diameter δ is
fixed in advance.

The Henson classes are given by Henson constraints, and these can
be of two kinds—an awkward point, as there is a typical kind and a
variant arising only in the antipodal case.

What we usually mean by Henson constraint is a (1, δ)-space, with
δ the diameter; this means that only the distances 1 and δ may occur
in the constraint. But in the antipodal setting, an antipodal Henson
constraint is a family of forbidden graphs consisting of an n-clique
together with all of its antipodal companions, arising by replacing a
subset of the vertices v by their antipodal vertices v′; in particular,
these are (1, δ − 1)-spaces.
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Thus we have (ordinary) Henson constraints and antipodal Henson
constraints. When we wish to specify the diameter δ these will be
called δ-Henson constraints and δ-antipodal Henson constraints.

As we have said, we will be occupied for three chapters with the
problem of classifying, completely and explicitly, all metrically ho-
mogeneous graphs arising as Fraïssé limits of classes A of the form

A3 ∩ AH

with A3 3-constrained and AH one of the two flavors of Henson con-
straint. There is no trouble classifying the possibilities for AH ; there
is considerable trouble classifying the possibilities for A3; and one
must at least pay attention to the question, which possibilities for
A3 and AH actually fit together (i.e., if A3 and AH are amalgama-
tion classes, does the same hold for the intersection)? But once one
understands the two types separately, analyzing their interaction is
straightforward.

The purpose of this chapter is to set up the framework for that
analysis in detail, reviewing and completing the discussion of §2B.

Once this classification is complete, and the general classification
conjecture is in a completely explicit form, in the last three chapters
of this Part we will take up some first steps toward a proof of com-
pleteness of the classification in generic type, as outlined in §§2C, 2D,
namely the local analysis of the induced homogeneous metric spaces
Γi, when an edge is present, and the reduction of the bipartite and
infinite diameter cases to cases of smaller diameter.

See Chapter 1 for a more detailed discussion of these results.

11B. The graphs Γδ
K1,K2,C0,C1,S

We review the notation introduced in §1E.

Definition (Def. 1.21). The sequence of numerical parameters

(δ,K1,K2, C0, C1)

is acceptable if it satisfies the following conditions.
(a) 3 ≤ δ ≤ ∞;
(b) 1 ≤ K1 ≤ K2 ≤ δ, or K1 =∞ and K2 = 0;
(c) 2δ < C0, C1 ≤ 3δ + 2; C0 is even, and C1 is odd;
(d) If K1 =∞ (i.e., the bipartite case) then C1 = 2δ + 1.
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Definition (Def. 1.20). Let (δ,K1,K2, C0, C1) be given. Then

T (δ,K1,K2, C0, C1)

is the set of triangles whose edge lengths (i, j, k) (with 1 ≤ i, j, k ≤ δ)
satisfy one of the following conditions, where p = i+ j + k.

p < 2K1 + 1 and p is odd; p > 2K2 + 2min(i, j, k) and p is odd;
p ≥ C0 and p is even; p ≥ C1 and p is odd.

Definition 11.1. For an acceptable sequence of parameters

(δ,K1,K2, C0, C1)

let

Aδ
K1,K2,C0,C1

denote the class of all finite integral metric spaces of diameter at
most δ in which none of the triangles in the set T (δ,K1,K2, C0, C1)
embed isometrically.

When Aδ
K1,K2,C0,C1

is an amalgamation class, then let

Γδ
K1,K2,C0,C1

denote its Fraïssé limit, as a metric space.

In the next definition we will require δ ≥ 3, though it is not nec-
essary at this point. Since that condition will be imposed later, we
build it in from the beginning.

Definition 11.2 (Cf. Theorem 1.22). An acceptable sequence of
parameters (δ,K1,K2, C0, C1) with δ ≥ 3 is admissible iff it satisfies
one of the following three sets of conditions.
(I) K1 =∞ (the bipartite case; so K2 = 0 and C1 = 2δ + 1).

(II) K1 <∞, C ≤ 2δ +K1 and
— C = 2K1 + 2K2 + 1;
— K1 +K2 ≥ δ;
— K1 + 2K2 ≤ 2δ − 1;

(IIA) C ′ = C + 1 or
(IIB) C ′ > C + 1, K1 = K2, and 3K2 = 2δ − 1.

(III) K1 <∞, C > 2δ +K1 and
— K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ;
— If K1 + 2K2 = 2δ − 1 then C ≥ 2δ +K1 + 2;
— If C ′ > C + 1 then C ≥ 2δ +K2.
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These are the main definitions, but we extend them further by con-
sidering Henson constraints in addition to constraints on triangles.

Definition 11.3. The sequence of parameters

(δ,K1,K2, C0, C1,S)
is acceptable if
(a) (δ,K1,K2, C0, C1) is an acceptable sequence of numerical pa-

rameters.
(b) S is a set of Henson constraints, i.e., a set of (1, δ)-spaces if

C1 > 2δ + 1 or C0 > 2δ + 2, and a set of antipodal Henson
constraints if C1 = 2δ + 1 and C0 = 2δ + 2.

(c) S is irredundant in the sense that no constraint in S contains
another constraint or one of the triangles in T (δ,K1,K2, C0, C1),
and every constraint in S has order at least 4.

Acceptability has the following consequences.
— If K2 < δ then S contains no space involving both distance 1

and δ; hence S consists of at most one clique (mutual distance
1) and one anticlique (mutual distance δ);

— If K1 > 1, then the connected components (with respect to the
edge relation d(x, y) = 1) of spaces in S have at most 2 vertices;

— If δ has parity ϵ = 0 or 1, and Cϵ ≤ 3δ, then the spaces in S are
unions of at most two cliques;

— If C1 = 2δ + 1 and C0 = C1 + 1, then S consists of cliques;
— If K1 =∞, then

(i) S is empty if δ is odd, or if δ is even with C0 ≤ 3δ;
(ii) S is a set of anticliques (empty, or a singleton, by irredun-

dancy) if δ is even and C0 = 3δ + 2.

Definition 11.4. Let (δ,K1,K2, C0, C1,S) be an acceptable se-
quence of parameters, where S is a set of δ-Henson constraints or
δ-antipodal Henson constraints. Let C = min(C0, C1) and C ′ =
max(C0, C1). The sequence is admissible if

1. The sequence (δ,K1,K2, C0, C1) is admissible.
2. If C = 2δ + 1, K1 < ∞, and S is nonempty, then δ ≥ 4 and S

consists of a clique and its antipodal companions; and otherwise,
S consists of ordinary Henson constraints. (Note here that for
C = 2δ + 1 we are in case (II), with K1 + K2 = δ, and then
Case (IIB) is excluded; that is, C ′ = 2δ + 2 and this reduces to
the antipodal case.)
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3. If K1 <∞ and C > 2δ +K1 (case (III)), then
— If K1 = δ then S is empty;
— If C = 2δ + 2 then S is empty.

11C. 4-Triviality

Our intent in the next three chapters is to give an explicit classi-
fication of the 3-constrained amalgamation classes A3 which corre-
spond to metrically homogeneous graphs of generic type, conducting
the analysis in such a way that it also gives the classification of the
classes

A3 ∩ AH

with A3 3-constrained and AH of Henson type, and somewhat more.
We claim of course that these are the classes

Aδ
K1,K2,C0,C1,S

with admissible parameters.
We show in Chapter 12 that admissibility is a sufficient condition

for the amalgamation property.

Proposition 11.5. Let (δ,K1,K2, C0, C1) be an admissible sequence
of parameters (in particular, δ ≥ 3). Then the associated class

Aδ
K1,K2,C0,C1

is an amalgamation class.

For the converse, we introduce the notion of 4-triviality, or more
generally k-triviality, as follows.

Definition 11.6. A metrically homogeneous graph Γ is k-trivial
if any graph of order k which does not embed in Γ contains either
a forbidden triangle, or a Henson constraint (in the antipodal case,
this means an antipodal Henson constraint).

We apply similar terminology to classes of finite structures.

The point is that our classes Aδ
K1,K2,C0,C1,S are k-trivial for all k,

and that for k = 4 this property, which is broader than 3-constraint,
is already sufficient for a portion of the analysis.
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Proposition 11.7 (Strong Converse to 11.5). IfA is a 4-trivial amal-
gamation class corresponding to a metrically homogeneous graph,
then the set of triangles excluded by A is T (δ,K1,K2, C0, C1) for
some admissible sequence of parameters.

From this point of view, the two points that would need to be
proved in order to arrive at a complete classification of the metrically
homogeneous graphs are the following.

Problem (cf. §1G).
(I) Show that a countable metrically homogeneous graph of generic

type is 4-trivial.
(II) Show (with the assistance of Proposition 11.7) that a 4-trivial

countable metrically homogeneous graph is k-trivial for all k.

One can reduce (I) further by considering the ways in which 4-
triviality is actually applied here. We do not use the full force of that
hypothesis.

To conclude this section, we repeat the conjectured classification of
metrically homogeneous graphs of generic type, in its most explicit
form.

Generic Type (Explicit Form)

The following are the known (and conjecturally, all) graphs of
generic type.

⋆ The antipodal graphs of Henson type Γδ
a,n with δ ≥ 4 and

3 ≤ n <∞ (Definition 1.15).
⋆ The graphs Γδ

K1,K2,C0,C1,S with (δ,K1,K2, C0, C1,S) an admis-
sible sequence of parameters.

The antipodal graphs without antipodal Henson constraints fall
into the second class, which includes the case δ = 3.

And we restate the various results to be proved in Chapters 12, 13,
14, as follows.

Theorem 11.8. The amalgamation classes of the form

A3 ∩ AH

with A3 a 3-constrained amalgamation class and AH of Henson type
are those listed above.
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The point is that any such class is 4-trivial, and we show that the
triangle and Henson constraints corresponding to a 4-trivial amalga-
mation class are those we have described. In particular, classes with
no other minimal constraints must lie in our catalog.

11D. Imprimitive metrically homogeneous graphs (Smith’s
Theorem)

A metric space, graph, or other type of structure is said to be im-
primitive if it carries a nontrivial congruence (an equivalence relation
invariant under automorphisms). In connection with the classifica-
tion of homogeneous structures, one sometimes places the imprimi-
tive cases on the non-generic side of the coin. That is not the case
when we deal with metrically homogeneous graphs, since for certain
values of the parameters, our graphs Γδ

K1,K2,C0,C1,S may be bipartite
or antipodal. But the distinction between the primitive and imprim-
itive cases is useful, and much of Chapters 15, 16 is taken up with it,
in one way or another.

As it turns out, there are only two kinds of imprimitive metri-
cally homogeneous graphs. This holds in the finite case under the
weaker hypothesis of distance transitivity, where the result is called
Smith’s theorem (Smith [1971], Alfuraidan and Hall [2006]). While
much of this is not specifically tied to the finite, when we move to
the infinite setting and impose the stronger hypothesis of homogene-
ity, along with the condition δ ≥ 3, and vertex degree at least 3,
we get a slightly sharper conclusion. This point has already been
discussed in Cherlin [2011] as well as in unpublished notes by Am-
ato and Macpherson, a forerunner of the work reported in Amato,
Cherlin, and Macpherson [2021].

To begin with, distance transitivity already suffices for the fol-
lowing, mentioned as Fact 7.1 in Cherlin [2011], in slightly different
terms.

Fact (Theorem 1.27). Let Γ be a connected distance transitive graph
of diameter δ ≥ 3, with vertex degrees at least 3, and let E be a non-
trivial congruence of Γ.

1. E is either the relation E2 defined by “d(x, y) is even,” or the
relation Eδ defined by “d(x, y) is a multiple of δ” (i.e., 0 or δ,
with δ finite).
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2. If E = E2 then Γ is bipartite

The cases excluded here, namely diameter 2 or with vertex degree 2,
give some obvious additional examples: complete multipartite graphs
and cycles of composite order.

In the case of infinite diameter, this means that we have only the
bipartite case. Graphs of finite diameter δ in which the relation Eδ

defines a nontrivial congruence are called antipodal. In the metri-
cally homogeneous case, in diameter δ ≥ 3, the equivalence classes in
question have order 2 (Fact 1.28, repeated below).

The topic of Chapter 15 is local analysis: what can be said about
the structure of Γi when Γ is metrically homogeneous of generic type
and Γi contains at least one edge? We will show that this graph
is metrically homogeneous (and in particular, connected), of generic
type, and primitive, with certain obvious exceptions (Theorem 1.32,
§1G). In this analysis, it is naturally very helpful to understand what
the imprimitive possibilities actually are (Smith’s Theorem).

In Chapter 16 we take up the reduction of the bipartite case to
simpler cases (Theorem 1.30, §1F), which is in a sense half of the
imprimitive case, but the easier half.

It would of course be very nice to complete the treatment of the
imprimitive case, under a suitable inductive hypothesis, by dealing
similarly with the antipodal case. But we do not expect a direct
reduction of the kind found in the bipartite case (or in the antipodal
case of finite distance transitive graphs).

Some information about each of the imprimitive cases is found in
Cherlin [2011]. We will recall what is known in the bipartite case in
Chapter 16. We recall for the reader’s convenience the basic facts
concerning the antipodal case, quoted as Fact 1.28 in Chapter 1.

Fact (Cherlin [2011, Theorem 11]). Let Γ be a metrically homoge-
neous and antipodal graph of diameter δ ≥ 3. Then for each vertex
u ∈ Γ, there is a unique vertex u′ ∈ Γ at distance δ from u, and we
have the “antipodal law”

d(u, v) = δ − d(u′, v) for u, v ∈ Γ.

In particular, the map u 7→ u′ is a central involution in Aut(Γ).

The classification of the antipodal graphs of diameter 3 is known,
and will be useful to us later, as it diverges from the case of larger
diameter. This is given both in Cherlin [2011] and in unpublished
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notes of Amato and Macpherson which cover a number of aspects of
the case of diameter 3, including Smith’s Theorem and the treatment
of the antipodal case.

Fact 11.9 (Cherlin [2011, Theorem 15]). Any countable metrically
homogeneous antipodal graph of diameter 3 is an antipodal double
cover of one of the following.
(a) The pentagon (5-cycle);
(b) The product K3□K3 of two 3-cliques;
(c) An independent set In (n ≤ ∞)
(d) The random graph G∞.

We next turn to the issue of the existence of amalgamation classes
with admissible parameters.

11E. Metrically homogeneous graphs: status

In view of Fact 1.18, p. 22, and the structure of the known metri-
cally homogeneous graphs of generic type, the problem of classifying
the metrically homogeneous graphs reduces to the following.

Problem 3. Complete the classification of the countable metrically
homogeneous graphs of generic type: show that they are defined ei-
ther by an admissible mixture of triangle and ordinary Henson con-
straints with C > 2δ+1, or by a mixture of triangle constraints and
antipodal Henson constraints with C = 2δ + 1.

This problem then breaks up into two pieces.

Problem (Problem 2, p. 33). Let A be an amalgamation class as-
sociated with a countable metrically homogeneous graph of generic
type. Show the following.
(I) The triangle constraints associated with A are those of some

amalgamation class Aδ
K1,K2,C0,C1

, and . . .

(II) in fact A = Aδ
K1,K2,C0,C1,S for the associated class of Henson

constraints S.

We now know that the natural approach to the first part is to aim at
4-triviality, or at the instances of 4-triviality used in our arguments.

The approach to be taken to the second part is less clear. It has
been worked out here in the bipartite case, and is given in Amato,
Cherlin, and Macpherson [2021] in the diameter 3 case.
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Recently the line of Amato, Cherlin, and Macpherson [2021] has
suggested a concrete approach to the problem in general which in-
volves not only induction on the diameter of the graph in question,
but induction on the diameter of the particular configurations one
seeks to embed in that graph. We will discuss our current view of
this in the appendix (§18B.1).





CHAPTER 12

ADMISSIBILITY ALLOWS AMALGAMATION

In the previous chapter we gave a catalog of the known metrically
homogeneous graphs. However, we have not yet proved the existence
of all of the graphs in our catalog. That point will be dealt with in
the present chapter.

Theorem 12.1 (Main Thm., Part I (Existence)). For each
choice of admissible parameters δ,K1,K2, C0, C1,S, the correspond-
ing family of finite metric spaces

Aδ
K1,K2,C0,C1,S

has the amalgamation property.

In the following two chapters we will also prove a strong converse
to this statement.

When we first worked out the precise definition of admissibility
we began with the converse problem. More precisely, we first stud-
ied the families Aδ

K1,K2,C0,C1
determined by constraints on triangles,

and worked out the numerical conditions which follow from the as-
sumption of amalgamation. After finding various explicit necessary
numerical conditions we then looked for an amalgamation procedure
for the corresponding classes.

The notion of admissibility involves three distinct cases divided
into a number of distinct subcases, and the procedure we use to
amalgamate within a class Aδ

K1,K2,C0,C1
varies similarly, though not

according to precisely the same case division.
An amalgamation strategy calculates the distance r which should

be used to complete a 2-point amalgamation problem, in terms of the
metric structure of the two factors.

We will give an overview of all possible amalgamation strategies for
finite metric spaces generally, then single out three strategies which
are particularly useful, and finally arrive at a general amalgamation

225
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strategy for the classes of interest here, specified in most cases by
indicating which of the alternatives should be adopted in each case,
or in some cases, using one of the parameters K1 or K2 (or something
similar) as the appropriate value of a distance, when these parameters
are particularly well placed relative to the other potential candidates.
(Later combinatorial work focuses on more canonical amalgamation
and completion procedures, discussed in the Appendix to this vol-
ume.)

Let us first establish our general frame of reference.

12A. 2-Point amalgamation in finite metric spaces

The amalgamation property reduces to the following, which is much
easier to check in practice.

Definition 12.2. A 2-point amalgamation problem consists of a
triple of metric spaces A0, A1, A2 and isometric inclusions A0 ⊆ Ai

for i = 1, 2, where Ai \A0 consists of a single point ai for i = 1, 2.
A class A of finite metric spaces has the 2-point amalgamation

property if any 2-point amalgamation problem in A has an amalgam
in A.

We observe that since A is closed under isomorphism and sub-
structure, the 2-point amalgamation property for A implies the full
amalgamation property, as any isometric embedding may be treated
as an inclusion, and one may amalgamate in stages.

Furthermore, any solution to a 2-point amalgamation problem may
be taken to consist of the union A1∪A2 with some distance r assigned
to the pair a1, a2, with the proviso that this distance may be 0, in
which case the points a1, a2 are to be identified (i.e., if A1 and A2

are isometric over A0, then we may identify them).
So everything comes down to the determination of an appropriate

value for r = d(a1, a2), which in practice will need to lie between cer-
tain upper and lower bounds, and possibly satisfy a parity constraint;
these conditions must be shown to be compatible. An amalgamation
strategy is thus a formula for an appropriate value (or, more generally,
a range of values) for r in terms of the structure of A1 and A2.

One first makes an overview of all amalgamation strategies in the
category of finite metric spaces. The following is easily verified.
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Lemma 12.3. Let δ, P be fixed. Let A0, A1, A2 be a 2-point amalga-
mation problem with all distances bounded by δ and with the perime-
ters of all triangles bounded by P . Set

r+ = min
x∈A0

(d(a1, x) + d(a2, x));

r− = max
x∈A0

(|d(a1, x)− d(a2, x)|);

r̃ = min
x∈A0

(P − [d(a1, x) + d(a2, x)])

Then
1. r− ≤ r+ and r̃; r− < δ; r+ > 1.
2. For r ∈ R, the following are equivalent.

(a) The extension of the metrics to A1 ∪ A2 by d(a1, a2) = r is
a pseudo-metric space with all distances bounded by δ and
perimeter bounded by P

(b) r− ≤ r ≤ min(r+, r̃, δ).

In particular, if we ignore the bound on δ and on P , then d(a1, a2)
can take on any value in the interval from r− to r+. In the presence
of Henson constraints, we prefer to avoid using the values r = 1 or
r = δ. Here the relations r− < δ and r+ > 1 are helpful.

Proof. Most of this is well known and all of it is straightforward.
We will confine ourselves to a discussion of the role of the parameter
P .

We first show r− ≤ r̃. So we consider x, y ∈ A0, and we claim

d(a1, x)− d(a2, x) ≤ P − (d(a1, y) + d(a2, y))

Indeed, we have

d(a2, y)− d(a2, x) ≤ d(x, y) ≤ P − (d(a1, x) + d(a1, y))

which amounts to the same thing.
Now evidently the inequality r ≤ r̃ is precisely what is needed to

bound the perimeters of triangles containing the pair a1, a2, and as
far as P is concerned, the rest is clear. □

We note that a possible value of P associated with parameters
(K1,K2, C0, C1) will be max(C0, C1) − 2. In particular when C0, C1

differ by 1, we would take P = min(C0, C1)− 1. On the other hand,
in the bipartite case (when we forbid all triangles of odd perimeter)
the relevant bound is P = C0 − 2.
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12B. The amalgamation strategy and the bipartite case

An amalgamation strategy for the class Aδ
K1,K2,C0,C1,S has been

presented as Table 2.2 in §2B. This will be given again explicitly in the
statement of Proposition 12.14, which deals with the case S = ∅. The
proposed strategy is not completely sound when S is nonempty, so
we will discuss separately the slight variations which arise in certain
cases.

Recall that admissible parameter sequences come in three types:
(I) bipartite; (II) C ≤ 2δ+K1; (III) C > 2δ+K1. In cases (II,III)
we may speak of C as “low” or “high” respectively. We tend to think
of the high case as the less extreme case (the antipodal case is the
most extreme of the low cases).

In showing that the amalgamation strategy is sound (at least when
S is empty), the bipartite case is easily dealt with in full with no
restriction on S, while the other two types are best handled together,
even though the details of the strategy vary according to the type.

In the bipartite case, that is, the case in which there are no triangles
of odd perimeter (Type I), there is very little to check.

We assume that there are no triangles of odd perimeter. So the
only parameters of interest are δ, C0, and also S. The upper bound
P on perimeters of triangles is C0−2. Furthermore, if S is nonempty,
then it consists of a δ-anticlique.

We fix a 2-point amalgamation problem (A0, A1, A2) with Ai =
A0 ∪ {ai} for i = 1, 2. As there are no triangles of odd perimeter, it
is easy to see that the parity ϵ of the expression

d(a1, x) + d(a2, x)

is independent of the choice of x ∈ A0, and in particular r− and r+

both have this parity.
As long as r has the parity of r− and lies in the range

r− ≤ r ≤ min(r+, δ, r̃)

the amalgam with d(a1, a2) = r (identifying vertices if r = 0) will
have no triangles of odd perimeter, and will satisfy the constraints
imposed by δ and C0. If S is nonempty, then S consists of a δ-
anticlique, so we impose the condition r < δ in this case.

In particular, the value d(a1, a2) = r− is always suitable for amal-
gamation in Type I.

Thus we have the following.
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Lemma 12.4 (Theorem 12.1, Bipartite Case). Suppose that

(δ,∞, 0, C0, C1,S)

is an admissible sequence of parameters. Then Aδ
∞,0,C0,C1,S is an

amalgamation class, so the corresponding metrically homogeneous
graph Γδ

∞,0,C0,C1,S exists; this is the generic bipartite graph of di-
ameter δ with all triangles having perimeter at most C0 − 2.

We recall that the phrase “the corresponding metrically homoge-
neous graph” is a little glib: what clearly exists is the Fraïssé limit,
which is a metric space rather than a graph. But it is the metric
space associated with the path metric in the distance 1 graph. The
notation Γδ

K1,K2,C0,C1,S will be used for either of these structures. In
any context where the technical details matter, the metric point of
view is to be preferred.

The treatment of amalgamation in Cases (II) and (III) is much
more complex.

12C. Statements of the main lemmas

The essential calculations regarding the amalgamation property
come into the proofs of the following nine lemmas. Here we give
only the statements of these lemmas. In the next subsection we will
make the necessary calculations which prove these lemmas, and then
summarize everything in tabular form so that we can trace through
our amalgamation procedure on the basis of these lemmas.

It will be convenient to write

Aδ
K1,K2,C,C′ for Aδ

K1,K2,C0,C1

with C = min(C0, C1), C ′ = max(C0, C1)). We also use the following
abbreviated forms.

Aδ
K1,K2,C for Aδ

K1,K2,C,C+1; and

Aδ
K1,K2

for Aδ
K1,K2,3δ+1,3δ+2.

Correspondingly we will call a parameter sequence

(K1,K2, C, C
′), (K1,K2, C), or (K1,K2),

admissible if the corresponding sequence

(K1,K2, C0, C1), (K1,K2, C, C + 1), or (K1,K2, 3δ + 1, 3δ + 2)
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(respectively) is admissible. Note in particular that when we write

Aδ
K1,K2,C,C′

rather than Aδ
K1,K2,C0,C1

, we have C < C ′ with C,C ′ of differing
parity.

Lemma 12.5. Let A = Aδ
K1,K2

with 1 ≤ K1 ≤ K2 ≤ δ. Let Ai =

A0 ∪ {ai} (i = 1, 2) be a 2-point amalgamation problem in A, A =
A1 ∪A2, and di the metric on Ai. Suppose that

r+ ≤ K2.

Let d be the symmetric extension of d1 ∪ d2 to A defined by

d(a1, a2) = r+.

Then (A, d) ∈ A.

Lemma 12.6. Let A = Aδ
K1,K2,C,C′ with 1 ≤ K1 ≤ K2 ≤ δ. Let

Ai = A0 ∪ {ai} (i = 1, 2) be a 2-point amalgamation problem in A,
A = A1 ∪A2, and di the metric on Ai. Suppose that

r+ < K2 and C ≥ 2δ +K2.

Let d be the symmetric extension of d1 ∪ d2 to A defined by

d(a1, a2) = r+.

Then (A, d) ∈ A.

Lemma 12.7. Let A = Aδ
K1,K2,C,C′ , with admissible parameters

δ,K1,K2, C, C
′, and K1 < ∞. Let Ai = A0 ∪ {ai} (i = 1, 2) be a

2-point amalgamation problem in A, A = A1 ∪A2, and di the metric
on Ai. Suppose that one of the following holds.
A. r− ≥ K1 and C ≤ 2δ +K1; or
B. r− > K1.

Let d be the symmetric extension of d1 ∪ d2 to A defined by

d(a1, a2) = r−.

Then (A, d) ∈ A.

Lemma 12.8. Let A = Aδ
K1,K2,C

with admissible parameters δ,K1,K2, C, C
′,

with K1 <∞ and C = 2K1 + 2K2 + 1. Let Ai = A0 ∪ {ai} (i = 1, 2)
be a 2-point amalgamation problem in A, A = A1 ∪ A2, and di the
metric on Ai. Suppose that

r̃ ≤ min(K2, r
+).
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where r̃ is defined using the bound on perimeter P = C − 1. Let d be
the symmetric extension of d1 ∪ d2 to A defined by

d(a1, a2) = r̃.

Then (A, d) ∈ A.

Lemma 12.9. Let A = Aδ
K1,K2,C

with admissible parameters δ,K1,K2, C

(so C ′ = C + 1). Let Ai = A0 ∪ {ai} (i = 1, 2) be a 2-point amalga-
mation problem in A, A = A1∪A2, and di the metric on Ai. Suppose
that one of the following holds.

1. r+ ≤ K2 and C = 2K1 + 2K2 + 1;
2. r+ ≤ K1 and C > 2δ +K1;
3. r+ < K2 and C ≥ 2δ +K2.

Let d be the symmetric extension of d1 ∪ d2 to A defined by

d(a1, a2) = min(r+, r̃),

where r̃ is defined using the bound on perimeter P = C − 1.
Then (A, d) ∈ A.

Lemma 12.10. Let A = Aδ
K1,K2,C

with admissible parameters δ,K1,K2, C,
and with C = 2K1 + 2K2 + 1. Let Ai = A0 ∪ {ai} (i = 1, 2) be a
2-point amalgamation problem in A, A = A1 ∪A2, and di the metric
on Ai. Suppose that

K1 ≤ min(r+, r̃) and r− ≤ K2

where r̃ is defined in terms of the bound P = C − 1 on perimeters.
Then

max(K1, r
−) ≤ min(r+, r̃, 2K2 − r−, δ),

and for any r between these two bounds, if d is the symmetric exten-
sion of d1 ∪ d2 to A defined by

d(a1, a2) = r

then (A, d) ∈ A.

Lemma 12.11. Let A = Aδ
K1,K2,C,C′ with K1 = K2, C = 4K2+1 =

2δ + K2. Let Ai = A0 ∪ {ai} (i = 1, 2) be a 2-point amalgamation
problem in A, A = A1 ∪A2, and di the metric on Ai. Suppose that

r− ≤ K2 ≤ r+.
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Let d be the symmetric extension of d1 ∪ d2 to A defined by

d(a1, a2) =

K2 − 1 if there is v ∈ A0 with d(a1, v) = d(a2, v) = δ;

K2 otherwise.

Then (A, d) ∈ A.

Lemma 12.12. Let A = Aδ
K1,K2,C

with admissible parameters sat-
isfying

C > 2δ +K1

Let Ai = A0 ∪ {ai} (i = 1, 2) be a 2-point amalgamation problem in
A, A = A1 ∪A2, and di the metric on Ai. Suppose that

r− ≤ K1 < r+

Let d be the symmetric extension of d1 ∪ d2 to A defined by

d(a1, a2) =


K1 + 1 if K1 + 2K2 = 2δ − 1, and there is

some v ∈ A0 with d(a1, v) = d(a2, v) = δ;

K1 otherwise

Then (A, d) ∈ A.

Lemma 12.13. Let A = Aδ
K1,K2,C,C′ with admissible parameters

satisfying

C > 2δ +K1, C ≥ 2δ +K2, and if 3K2 = 2δ then C > 2δ +K2.

Let Ai = A0 ∪ {ai} (i = 1, 2) be a 2-point amalgamation problem in
A, A = A1 ∪A2, and di the metric on Ai. Suppose that

r− ≤ K1 and

min(K2, C − 2δ − 1) ≤ r+.

Let d be the symmetric extension of d1 ∪ d2 to A defined by

d(a1, a2) = min(K2, C − 2δ − 1).

Then (A, d) ∈ A.
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12D. Proofs of the main lemmas

We prove Lemmas 12.5 through 12.13 here. We will briefly recall
the hypotheses and the proposed amalgamation procedure in each
case.

One point to observe as we go along is that the assigned distance
r = d(a1, a2) should be bounded by δ. In most cases, the choice of
r specified, and the hypotheses in force, give either r ≤ r− or the
bound r ≤ K2, so in such cases we have r ≤ δ.

The exceptions to this are found in Lemmas 12.10 and 12.12. In
Lemma 12.10 we give a range of values for r with the upper bound δ
included explicitly. In Lemma 12.12 we have r = K1 or K1 + 1, with
the case r = K1+1 occurring only when K1+2K2 = 2δ−1, so again
r ≤ δ.

Lemma 12.5
Hypothesis: r+ ≤ K2.
Amalgamation: d(a1, a2) = r+.

Proof of Lemma 12.5. We must check that for any u in A0, the
triangle (a1, a2, u) is permitted. The only constraints in force here are
those associated to the parameters K1 and K2, which concern only
triangles of odd perimeter.

Let j = d(a1, u), k = d(a2, u), and set pu = r++j+k, the perimeter
of the triangle (a1, a2, u). We may suppose that the perimeter pu is
odd.

Fix v ∈ A0 with

r+ = d1(a1, v) + d2(a2, v)

Set rℓ = d(aℓ, v) for ℓ = 1, 2. Then r+ = r1+ r2 and the perimeter of
(a1, u, a2, v) is again pu, which is odd. Therefore one of the triangles
(a1, u, v) or (a2, u, v) has odd perimeter, at most pu. We may suppose
the triangle in question is (a1, u, v).

a1 a2

v

u

r 1
r2

j k
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As the perimeter of (a1, u, v) is odd, it is at least 2K1 + 1. Hence
pu ≥ 2K1 + 1. So it suffices to check the inequalities corresponding
to K2, namely:

(1) r+ + j ≤ 2K2 + k; (2) r+ + k ≤ 2K2 + j; (3) j + k ≤ 2K2 + r+.

(1,2): By assumption r+ ≤ K2. Since j ≤ r+ + k we have

r+ + j ≤ 2r+ + k ≤ 2K2 + k,

and similarly r+ + k ≤ 2K2 + j.
(3): As the triangle (a1, u, v) has odd perimeter, we have the con-

straint

j + d(u, v) ≤ 2K2 + r1

and therefore

j + k ≤ j + d(u, v) + r2 ≤ 2K2 + r1 + r2 = 2K2 + r+

and the final inequality holds as well. □

Lemma 12.6
Hypotheses: C ≥ 2δ +K2; r+ < K2.
Amalgamation: d(a1, a2) = r+.
Proof of Lemma 12.6. By Lemma 12.5 we have (A, d) ∈ Aδ

K1,K2
.

On the other hand for u ∈ A0 and pu the perimeter of (a1, a2, u),
we have

pu ≤ 2δ + r+ < 2δ +K2 ≤ C

and our claim follows. □

Lemma 12.7
Hypotheses: Either

(A) r− ≥ K1 and C ≤ 2δ +K1; or
(B) r− > K1.
Amalgamation: d(a1, a2) = r−.
Proof of Lemma 12.7. If r− = 0 we identify a1 and a2. So we

may suppose that r− > 0 and thus d is a proper metric.
We must show that all resulting triangles (a1, a2, u) with u ∈ A0 are

permitted. This relies heavily on the numerical constraints (admissi-
bility), and as there are a number of cases to consider the verification
will be relatively long.
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We fix v ∈ A0 with r− = |d(a1, v)− d(a2, v)|. We may suppose

r− = d(a1, v)− d(a2, v)

We write rℓ for d(aℓ, v), for ℓ = 1, 2.
Set j = d(a1, u), k = d(a2, u), pu = r− + j + k. Let pℓ be the

perimeter of (aℓ, u, v) for ℓ = 1, 2. Note that

pu ≡ p1 + p2 (mod 2).

a1 a2

v

u

r 1
r2

j k

I. The constraints corresponding to C0, C1.
We show first that pu < Cℓ where ℓ = 0 or 1 is the parity of pu.

Now

r− ≤ r̃

where r̃ is defined relative to the bound C − 1 if C ′ = C + 1, or the
bound C ′ − 1 if C ′ > C + 1. Thus we have pu < C ′ in any case, and
pu < C if C ′ = C + 1. So we need to show that in the case

pu ≡ C (mod 2);

C ′ > C + 1,

we also have pu < C.
Since the parameters are admissible, there are two possible cases

in which we have C ′ > C + 1, as follows.

K1 = K2, C = 4K2 + 1 = 2δ +K2; or(12.1)
C ≥ 2δ +K2 and C > 2δ +K1(12.2)

Then

pu = r1 − r2 + j + k ≤ r1 + d(u, v) + j = p1

If p1 < C then pu < C. If p1 ≥ C, then we have p1 ≡ C ′ ̸≡ C
(mod 2). Since p1 + p2 ≡ pu ≡ C (mod 2), the perimeter p2 is odd.

Also, from p1 ≥ C we get

2δ +K2 ≤ C ≤ p1 ≤ 2δ + d(u, v)
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and thus

d(u, v) ≥ K2

Now since p2 is odd, the triangle (a2, u, v) satisfies the constraint
correspoinding to K2, namely

k + d(u, v) < 2K2 + r2.

Thus

k − r2 < 2K2 − d(u, v) ≤ K2.

Then

pu = r1 − r2 + j + k < r1 + j +K2 ≤ 2δ +K2 ≤ C

and we have the required bound on the perimeter in this case as well.
This completes the verification of the constraints corresponding to

C0, C1.

II. The constraints corresponding to K1,K2.
For the relevant constraints, see Definition 1.20.
Now we check that the triangle (a1, a2, u) is in Aδ

K1,K2
. We may

suppose that the perimeter pu is odd. Then pu ≥ 2r− + 1. As we
assume r− ≥ K1, it follows that pu ≥ 2K1+1. So it remains to check
the inequalities corresponding to K2.

(1) r− + j ≤ 2K2 + k; (2) r− + k ≤ 2K2 + j; (3) j + k ≤ 2K2 + r−.

We begin with the last.
(3): If C ≤ 2δ +K1, then by admissibility C = 2K1 + 2K2 + 1 is

odd and therefore as shown above pu < C. Since r− ≥ K1, we have

j + k ≤ 2K1 + 2K2 − r− ≤ 2K2 + r−.

If on the other hand C > 2δ +K1, then K1 + 2K2 ≥ 2δ − 1, and in
this case we have assumed r− > K1, so

j + k ≤ 2δ ≤ K1 + 2K2 + 1 ≤ 2K2 + r−.

We turn to the inequalities (1, 2). As pu is odd, either p1 or p2
is odd, and then the corresponding triangle (aℓ, u, v) satisfies the
constraints imposed by K2. We treat these possibilities separately.
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If p1 is odd—
Then

r− + j = r1 + j − r2 ≤ 2K2 + d(u, v)− r2 ≤ 2K2 + k;

r− + k = r1 + k − r2 ≤ r1 + d(u, v) ≤ 2K2 + j.

Thus (1, 2) both hold in this case.

If p2 is odd—
(2): We have

r− + k + d(u, v) ≤ r− + 2K2 + r2

= 2K2 + r1 ≤ 2K2 + d(u, v) + j′

r− + k ≤ 2K2 + j.

(1): Here we have several combinations of admissible parameters
to consider, as follows.
(A) C = 2K1 + 2K2 + 1; C ′ = C + 1; or
(B) K1 = K2, C = 4K2 + 1 = 2δ +K2; or
(C) C > 2δ +K1 and K1 + 2K2 ≥ 2δ − 1.

Suppose first that

C = 2K1 + 2K2 + 1; C ′ = C + 1(A)

Then as p2 is odd, we have p2 ≥ 2K1+1, and as p1 is even we have
p1 ≤ 2K1 + 2K2, so we take the difference, getting

p1 − p2 = (r1 + j)− (r2 + k) = r− + j − k

≤ (2K1 + 2K2)− (2K1 + 1) = 2K2 − 1;

r− + j < 2K2 + k.

Now suppose that

K1 = K2, C = 4K2 + 1 = 2δ +K2.(B)

As p2 ≥ 2K1 + 1 = 2K2 + 1 we have r2 + k ≥ p2/2 > K2. Hence

r− + j = r1 + j − r2 ≤ 2δ − r2 = 3K2 + 1− r2 < 2K2 + k.

Finally, suppose that

C > 2δ +K1 and K1 + 2K2 ≥ 2δ − 1.(C)
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As p2 ≥ 2K1 + 1 and r− < δ we find

r2 + k ≥ p2/2 > K1;

r− + j ≤ 2δ − 1 ≤ K1 + 2K2

≤ 2K2 + (K1 + 1)− r2 ≤ 2K2 + (r2 + k)− r2 = 2K2 + k.

This completes the verification of inequality (1) for p2 odd. □

Lemma 12.8
Hypotheses: C = 2K1+2K2+1, C ′ = C +1 and r̃ ≤ min(K2, r

+).
Amalgamation: d(a1, a2) = r̃.
Proof of Lemma 12.8. We have

r− ≤ r̃ ≤ r+

by hypothesis, and thus d is at least a pseudo-metric. As usual we
may suppose that r̃ > 0 and thus we have a metric. In view of the
definition of r̃ and the hypothesis C ′ = C + 1, our metric respects
the bound on perimeters.

So we must show that all resulting triangles (a1, a2, u) with u ∈ A0

are in Aδ
K1,K2

. Set j = d(a1, u), k = d(a2, u), pu = r̃+ j+ k. We may
suppose that pu is odd.

Choose v ∈ A0 so that

r̃ = C − 1− [d(a1, v) + d(a2, v)]

let rℓ = d(aℓ, v) for ℓ = 1, 2.

a1 a2

v

u

r 1
r2

j k

As the perimeter C − 1 of (a1, a2, v) is even, and pu is odd, the
perimeter of (a1, u, a2, v) is odd. Hence one of the triangles (a1, u, v)
or (a2, u, v) has odd perimeter. We may suppose that (a1, u, v) has
odd perimeter.

We show first that

pu ≥ 2K1 + 1.
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As (a1, u, v) has odd perimeter, we have the constraint

r1 + d(u, v) ≤ 2K2 + j.

Hence

(C − 1)− r̃ = r1 + r2 ≤ r1 + d(u, v) + k ≤ 2K2 + j + k;

C − 1 = 2K1 + 2K2 ≤ 2K2 + r̃ + j + k;

2K1 ≤ pu,

which suffices as pu is odd.
Now we deal with the inequalities

(1) r̃ + j ≤ 2K2 + k; (2) r̃ + k ≤ 2K2 + j; (3) j + k ≤ 2K2 + r̃.

Since r̃ ≤ K2, inequalities (1, 2) are immediate as in the proof of
Lemma 12.5.
(3): As the triangle (a1, u, v) has odd perimeter we have

r1 + j ≤ 2K2 + d(u, v).

The triangle (a2, u, v) has perimeter less than C, so

(C − r̃) + j + k = 1 + r1 + r2 + j + k

≤ 1 + 2K2 + d(u, v) + r2 + k

≤ 2K2 + C,

and thus j + k ≤ 2K2 + r̃, as required. □

Lemma 12.9
Hypotheses: C ′ = C + 1, and one of the following holds.
A. r+ ≤ K2 and C = 2K1 + 2K2 + 1;
B. r+ ≤ K1 and C > 2δ +K1;
C. r+ < K2 and C ≥ 2δ +K2.
Amalgamation: d(a1, a2) = min(r+, r̃).
Proof of Lemma 12.9. Let r = min(r+, r̃). As r ≤ r̃, all trian-

gles in the amalgam A = (A1 ∪ A2, d) have perimeter less than C.
So it suffices to show that A belongs to Aδ

K1,K2
. If r = r+, then as

r+ ≤ K2, this holds by Lemma 12.5.
In particular, if C > 2δ + r+ then r+ ≤ r̃ and our claim follows.

This covers the cases (B,C), so we need only consider case (A), under
the assumption

r̃ < r+.

In this case Lemma 12.8 applies. □



240 12. Admissibility allows amalgamation

Lemma 12.10
Hypotheses: C = 2K1 + 2K2 + 1, K1 ≤ min(r+, r̃), and r− ≤ K2.
Amalgamation: d(a1, a2) lies between

max(K1, r
−) and

min(r+, r̃, 2K2 − r−, δ)

(and the interval is in fact nonempty).
Proof of Lemma 12.10. In general we have r− ≤ min(r+, r̃, δ)

and K1 ≤ K2, so the required inequality

max(K1, r
−) ≤ min(r+, r̃, 2K2 − r−, δ)

follows from our hypotheses.
Suppose now that r = d(a1, a2) lies between the stated bounds. As

usual we may suppose that r > 0 and thus d is a proper metric. As
r ≤ r̃, the metric d respects the bound on perimeters.

It remains to show that all triangles (a1, a2, u) with u ∈ A0 are
in Aδ

K1,K2
. Set j = d(a1, u), k = d(a2, u), pu = r + j + k. We may

suppose that pu is odd.
As r ≥ K1 we have pu ≥ 2K1 + 1. So it suffices to check the

inequalities

(1) r + j ≤ 2K2 + k; (2) r + k ≤ 2K2 + j; (3) j + k ≤ 2K2 + r.

We have j − k ≤ r− ≤ 2K2 − r and hence

r + j ≤ 2K2 + k.

Similarly r + k ≤ 2K2 + j. Finally, as r ≤ r̃ we have

r + j + k ≤ C − 1 = 2K2 + 2K1 ≤ 2K2 + 2r,

and this concludes the proof. □

Lemma 12.11
Hypotheses: K1 = K2, C = 4K2+1 = 2δ+K2, and r− ≤ K2 ≤ r+.
Amalgamation: d(a1, a2) = K2 − 1 if there is some v ∈ A0 with

d(a1, v) = d(a2, v) = δ, and d(a1, a2) = K2 otherwise.
Proof of Lemma 12.11. Set r = d(a1, a2) = K2 − ϵ with ϵ = 0

or 1.
We must first verify the condition

r− ≤ r ≤ r+
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in the case in which r = K2 − 1. So suppose v ∈ A0 and

d(a1, v) = d(a2, v) = δ.

By assumption r− ≤ K2, and we claim in this case that r− ̸= K2.
Assuming the contrary, we may suppose we have u ∈ A0 with

d(a1, u) − d(a2, u) = K2. Set rℓ = d(aℓ, u) for ℓ = 1, 2, so that
r1 = r2 +K2. Let pℓ be the perimeter of the triangle (aℓ, u, v).

a1 a2

u

v

r 1
r2

δ δ

Then p1 is

δ + d(u, v) + r1 = δ + d(u, v) +K2 + r2 ≥ δ +K2 + d(a2, v)

= 2δ +K2.

As p1 ≥ 2δ +K2 = C and C is odd, it follows that p1 is even.
Now p1 + p2 ≡ r1 + r2 + 2δ ≡ K2 (mod 2) is odd since 4K2 + 1 =

2δ+K2. Hence p2 is odd. Therefore the triangle (a2, u, v) must satisfy
the constraint

δ + d(u, v) ≤ 2K2 + r2

and as p2 is odd the inequality is strict. Thus

δ + d(u, v) < 2K2 + r2 = K2 + r1;

2δ − r2 ≤ δ + d(u, v) < K2 + r1;

2δ < r1 +K2 + r2 = 2r1,

a contradiction.
Thus r− ≤ r ≤ r+ and we have a pseudo-metric d. We may suppose

that r > 0, and thus d is a metric.
It remains to show that the amalgam A = (A1 ∪ A2, d) contains

no forbidden triangles (a1, a2, u) with u ∈ A0. Let j = d(a1, u),
k = d(a2, u), pu = r + j + k. Here

j + k ≤ 2δ − (1− ϵ).

We first check the bound on perimeters.
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We have

pu = r + j + k ≤ r + (2δ − 1 + ϵ) < 2δ +K2 − 1 < C,

so the bound on perimeter is respected.
Next we consider the constraints associated with the parameters

K1,K2. Recall that K1 = K2; but as we have two sets of constraints
to consider, we will continue to use both notations, bearing in mind
that we may also write r = K1 − ϵ. We may suppose that pu is odd.

We claim first that pu ≥ 2K1 + 1. If r = K1 this is clear. If r =
K1 − 1, then we must consider the possibility

j + k = K1.

We have an element v ∈ A0 with d(a1, v) = d(a2, v) = δ, and our
assumptions imply that K1 = K2 is odd. Thus the perimeter j+ k+
2δ = K1 + 2δ of (a1, u, a2, v) is odd. Hence the perimeter of one of
the triangles (aℓ, u, v) is odd.

We may suppose that the triangle (a1, u, v) has odd perimeter.
Then

d(u, v) + d(a1, v) ≥ d(a2, v)− k + d(a1, v)

= 2δ − k = 2δ −K2 + j = 2K2 + 1 + j > 2K2 + j,

and the triangle (a1, u, v) is forbidden, a contradiction.
It remains to check the inequalities

(1) r + j ≤ 2K2 + k; (2) r + k ≤ 2K2 + j; (3) j + k ≤ 2K2 + r.

Now

r + j ≤ 2r + k ≤ 2K2 + k

and similarly r + k ≤ 2K2 + j.
(3): For the last inequality we have

j + k ≤ 2δ − 1 + ϵ = 3K2 − ϵ = 2K2 + r.

□
Lemma 12.12

Hypotheses: C > 2δ +K1 and r− ≤ K1 < r+.
Amalgamation: d(a1, a2) = K1 + 1 if K1 + 2K2 = 2δ− 1 and there

is some v ∈ A0 with d(a1, v) = d(a2, v) = δ; and d(a1, a2) = K1

otherwise.
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Proof of Lemma 12.12. We must show that for any u in A0,
the triangle (a1, a2, u) belongs to Aδ

K1,K2,C,C′ . Let

r = d(a1, a2) = K1 + ϵ; j = d(a1, u), k = d(a2, u);

pu = r + j + k.

We first check the bound on perimeters.
Now pu ≤ 2δ +K1 + 1 ≤ C, so to violate the bound on perimeter

would require d(a1, u) = d(a2, u) = δ, and r = K1 + 1. The latter
entails K1 + 2K2 = 2δ − 1 and then by admissibility we have

C > 2δ +K1 + 1,

so even in this case we have pu < C.
Now we check the constraints relating to K1 and K2. We may

suppose pu is odd.
Since r ≥ K1, we have pu ≥ 2K1 + 1. So it suffices to check the

inequalities

(1) r + j ≤ 2K2 + k; (2) r + k ≤ 2K2 + j; (3) j + k ≤ 2K2 + r.

.
(1,2): We claim that r ≤ K2. This is clear if r = K1, while if

r = K1 + 1 then we have K1 + 2K2 = 2δ − 1 and by admissibility
also 3K2 ≥ 2δ, so K2 > K1 and again r ≤ K2.

Thus

r + j ≤ 2r + k ≤ 2K2 + k

and similarly r + k ≤ 2K2 + j.
(3): We have

j + k ≤ 2δ ≤ 2K2 +K1 + 1 ≤ 2K2 + r + 1

and hence j + k ≤ 2K2 + r unless

j + k = 2δ = 2K2 +K1 + 1 = 2K2 + r + 1.

In this case we have

j = k = δ;

K1 + 2K2 = 2δ − 1;

r = K1,

but the first two conditions imply r = K1 + 1. □
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Lemma 12.13
Hypotheses:
1. C > 2δ +K1 and C ≥ 2δ +K2.
2. If 3K2 = 2δ then C > 2δ +K2.
3. r− ≤ K1.
4. min(K2, C − 2δ − 1) ≤ r+.
Amalgamation: d(a1, a2) = min(K2, C − 2δ − 1).
Proof of Lemma 12.13. Set r = min(K2, C − 2δ − 1). We have

r− ≤ K1 ≤ r ≤ r+

and thus d is a pseudo-metric on A. We may suppose as usual that
r > 0 and thus d is a metric.

For u ∈ A0 we must show that the triangle (a1, a2, u) belongs to
Aδ

K1,K2,C,C′ . Let j = d(a1, u), k = d(a2, u), and pu = r + j + k.
We have the required bound on perimeter:

pu ≤ 2δ + r < C.

So it suffices to check the constraints imposed by K1 and K2. We
may suppose that pu is odd.

As r ≥ K1 we have pu ≥ 2K1 + 1. Thus it suffices to check the
inequalities

(1) r + j ≤ 2K2 + k; (2) r + k ≤ 2K2 + j; (3) j + k ≤ 2K2 + r.

(1, 2): We have

r + j ≤ 2r + k ≤ 2K2 + k

and similarly r + k ≤ 2K2 + j.
(3): If 2K2+r ≥ 2δ then the inequality j+k ≤ 2K2+r is immediate.

So we will suppose

2K2 + r < 2δ

By admissibility K1 + 2K2 ≥ 2δ − 1, so

2δ − 1 ≤ 2K2 +K1 ≤ 2K2 + r < 2δ

and therefore

2K2 +K1 = 2δ − 1 and r = K1

By admissibility 3K2 ≥ 2δ, so the first equation implies that K2 >
K1. Hence r = C − 2δ − 1 and the second equation gives

r = C − 2δ − 1 = K1;
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in other words

C = 2δ +K1 + 1.

But C ≥ 2δ +K2, so K2 = K1 + 1 and C = 2δ +K2. Also

3K2 = 2K2 +K1 + 1 = 2δ,

and our second condition on the parameters is violated. □
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For ease of reference, we reproduce the gist of Lemmas 12.6 through
12.13 in tabular form (Tables 12.1).

Lemma Hypotheses Value

Lemma 12.6 r+ < K2, C ≥ 2δ +K2 r+

Lemma 12.7 Either
(A) r− ≥ K1 and C ≤ 2δ +

K1; or
(B) r− > K1.

r−

Lemma 12.8 C = 2K1+2K2+1, C ′ = C+1
and r̃ ≤ min(K2, r

+)
r̃

Lemma 12.9 C ′ = C + 1, and one of the
following holds.
(A) r+ ≤ K2 and

C = 2K1 + 2K2 + 1;
(B) r+ ≤ K1 and C > 2δ +
K1;
(C) r+ < K2 and C ≥ 2δ +
K2.

min(r+, r̃)

Lemma 12.10 C = 2K1 + 2K2 + 1,
K1 ≤ min(r+, r̃),
and r− ≤ K2

max(K1, r
−)

≤ r ≤
min(r+, r̃, 2K2 − r−, δ)

Lemma 12.11 K1 = K2, C = 4K2 + 1 =
2δ +K2,
and r− ≤ K2 ≤ r+

K2 − ϵ

Lemma 12.12 C > 2δ +K1 and r− ≤ K1 <
r+

K1 + ϵ

Lemma 12.13 C > 2δ+K1 and C ≥ 2δ+K2;
If 3K2 = 2δ then C > 2δ +
K2;
r− ≤ K1;
min(K2, C − 2δ − 1) ≤ r+

min(K2, C − 2δ − 1)

Table 12.1. Amalgamation Lemmas 12.6 to 12.13
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12E. The Main Theorem: Part I (amalgamation)

Now we will verify the correctness of our general amalgamation
strategy. We first consider the situation with no Henson constraints,
setting aside Type I, which has been dealt with earlier.

Proposition 12.14. Let A = Aδ
K1,K2,C,C′ with an admissible choice

of parameters, and with K1 <∞. Then A is an amalgamation class.
Furthermore, for any 2-point amalgamation problem Ai = A0∪{aℓ}

(ℓ = 1, 2) in A, a suitable extension d of d1 ∪ d2 to A = A1 ∪ A2 is
given by the following.

1. If C ≤ 2δ +K1:
(a) If r− ≥ K1 then take d(a1, a2) = r−.

Otherwise:
(b) If C ′ = C + 1 then:

(i) If r+ ≤ K2 then take d(a1, a2) = min(r+, r̃)
(ii) If r− < K1 and K2 < r+ then take d(a1, a2) = r̃ if

r̃ ≤ K2 and d(a1, a2) = K1 otherwise.
(c) if C ′ > C + 1 then:

(i) If r+ < K2 then take d(a1, a2) = r+;
(ii) If r− < K2 ≤ r+ then take

d(a1, a2) =

K2 − 1 if there is v ∈ A0 with d(a1, v) = d(a2, v) = δ

K2 otherwise

2. If C > 2δ +K1:
(a) If r− > K1 then take d(a1, a2) = r−;

Otherwise:
(b) If C ′ = C + 1 then:

(i) If r+ ≤ K1 then take d(a1, a2) = min(r+, r̃);
(ii) If r+ > K1 then take

d(a1, a2) =


K1 + 1 if there is v ∈ A0 with d(a1, v) = d(a2, v) = δ, and

K1 + 2K2 = 2δ − 1;

K1 otherwise

(c) If C ′ > C + 1 then:
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(i) If r+ < K2 then take d(a1, a2) = r+;
(ii) If r+ ≥ K2 then take d(a1, a2) = min(K2, C − 2δ − 1).

Proof of Proposition 12.14. We dealt previously with Type
(I). We turn to types (II) and (III).

We give the proof in tabular form, with the hypotheses in effect
listed first, then the relevant lemma and the value of r used to com-
plete the amalgam. Modulo those lemmas, we argue as follows.

Type (II): suppose

C ≤ 2δ +K1.

We subdivide this case further according to the hypotheses shown
in Table 12.2.

Amalgamation, Type II: C ≤ 2δ +K1 (so C = 2K1 + 2K2 + 1)
Label Hyp. 1 Hyp. 2 Hyp. 3 Lemma r

(IIA) r− ≥ K1 12.7 r−

(IIB) r− < K1, C ′ = C + 1:
(IIB.1) " r+ ≤ K2 12.9 (A) min(r+, r̃)

(IIB.2) " r+ > K2:
(IIB.2a) " " r̃ ≤ K2 12.8 r̃

(IIB.2b) " " r̃ > K2 12.10 K1

(IIC) r− < K1, C ′ > C + 1:
(IIC.1) " r+ < K2 12.6 r+

(IIC.2) " r+ ≥ K2 12.11 K2 − ϵ

Table 12.2. Amalgamation, Case II

Here we will rely on admissibility to verify some of the hypotheses
of the relevant lemmas. In case (IIB) we use the relation

C = 2K1 + 2K2 + 1.

In case (IIC) we use the various relations imposed by admissibility
(notably in connection with Lemma 12.11).

It suffices to check that the quoted lemmas apply in each case.
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Now we present Type (III), that is the case C > 2δ + K1. This
will require a little more explanation.

Type III: C > 2δ +K1

Label Hyp. 1 Hyp. 2 Lemma r

(IIIA) r− > K1 12.7 (B) r−

(IIIB) r− ≤ K1, C ′ = C + 1:
(IIIB.1) " r+ ≤ K1 12.9 (B) min(r+, r̃)

(IIIB.2) " r+ > K1 12.12 K1 + ϵ

(IIIC) r− ≤ K1, C ′ > C + 1:
(C ≥ 2δ +K2)

(IIIC.1) " r+ < K2 12.6 r+

(IIIC.2) " r+ ≥ K2 12.13 min(K2, C − 2δ − 1)

Table 12.3. Amalgamation, Case III

In Case (IIIC) we again apply admissibility. First, admissibility
gives the inequality C ≥ 2δ +K2 in this case. Additionally, to apply
Lemma 12.13 we require the following condition.

If 3K2 = 2δ then C > 2δ +K2.

But if C = 2δ +K2, then since C > 2δ +K1, we have K2 > K1. On
the other hand, by admissibility we have

K1 + 2K2 ≥ 2δ − 1

If K1 + 2K2 = 2δ − 1, then C ≥ 2δ +K1 + 2

Now if 3K2 = 2δ with K2 > K1, then the first inequality becomes

K1 + 2K2 = 2δ − 1 and K1 = K2 − 1.

Then the condition C ≥ 2δ + K1 + 2 becomes C > 2δ + K2, as
required. □
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Now we can prove Theorem 12.1.

Theorem (Theorem 12.1—Main Theorem, Part I). Suppose that

δ,K1,K2, C, C
′,S

is an admissible sequence of parameters. Then Aδ
K1,K2,C,C′,S is an

amalgamation class. Furthermore, if S is nonempty, then any amal-
gamation diagram can be completed without adding new pairs at
distance 1 or δ.

Proof. Recall that admissibility (as used here) includes the hy-
pothesis

δ ≥ 3.

Furthermore, we dealt with the bipartite case in Lemma 12.4. So
we will suppose that

K1 <∞.

In other words, of the three types requiring consideration under the
definition of admissibility (Definition 11.2), we are left with types
(II) and (III).

When S is empty, Proposition 12.14 applies. So we will also suppose
that

S is nonempty.

Under this hypothesis, the definition of admissibility imposes the
following additional conditions on the parameters.
Type (II) (C ≤ 2δ +K1): C ≥ 2δ+3 (as C is odd and greater than

2δ + 1).
Type (III) (C > 2δ +K1): K1 < δ, C > 2δ + 2.

It suffices to show that any 2-point amalgamation problem may
be completed without introducing a distance which occurs in the
constraint set S.

We will use the amalgamation procedure given in Proposition 12.14,
with one exception which will appear at the end, when our stan-
dard procedure gives d(a1, a2) = 1, but we substitute the value
d(a1, a2) = 2 to meet our additional constraints.

We begin by summarizing once more the values for r = d(a1, a2)
given by our standard amalgamation procedure. We include the per-
tinent Lemma, and any relevant inequalities (or equations) imposed.
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When the values shown are different from both 1 and δ, there are no
difficulties.

(Type II) C ≤ 2δ +K1

Lemma Value Bound

12.6 r+ < K2

12.7 r− ≥ K1

12.8 r̃ ≤ K2

12.9 (A) min(r+, r̃) ≤ K2

12.10 K1 ≤ K2

12.11 K2 − ϵ = (2δ−1)
3 − ϵ

(Type III) C > 2δ +K1

Lemma Value Bound

12.6 r+ < K2

12.7 (B) r− > K1

12.9 (B) min(r+, r̃) ≤ K1

12.12 K1 + ϵ

12.13 min of K2

and C − 2δ − 1

We first take up the desired upper bound

r < δ.

We have

K2 ≤ δ, r− < δ, and (2δ − 1)/3 < δ.

In Type (II), admissibility requires K1 + 2K2 ≤ δ − 1, and thus
K2 < δ. Thus in all cases falling under Type (II), the bound r < δ
is satisfied.

In Type (III) we have K1 < δ, so we need only consider the last
two cases listed, which involve Lemmas 12.12 and 12.13.

In the case of Lemma 12.12, if r = δ then we have the following
conditions.

ϵ = 1

r = K1 + 1 = δ.
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But the definition of ϵ entails

K1 + 2K2 = 2δ − 1,

and as K2 ≥ K1 this is a contradiction. So the value r = δ does not
actually occur in this case.

In the case of Lemma 12.13, under the assumption r = δ we have
the following conditions.

r = K2 = δ.

Furthermore one of the hypotheses of Lemma 12.13 is

C ≥ 2δ +K2,

and thus C ≥ 3δ. It follows that C ′ = C + 1 in this case. Notice
however that in the proof of Proposition 12.14, Lemma 12.13 was
only applied in cases which satisfy additionally

C ′ > C + 1

(see the chart for the treatment of Type (III)). So in each case where
this value of r was used, we have r < δ.

This completes the verification of the upper bound r < δ in all
instances of the standard amalgamation strategy. Now we must con-
sider the desired lower bound

r > 1.

We claim that, with one exception, this constraint holds if we follow
our standard amalgamation procedure, and that in the exceptional
case, the value r = 2 may be substituted.

We must consider Types (II) and (III) separately, for the most
part, and in detail. But we may omit the cases in which r = r+ as
r+ ≥ 2 by definition.

Type (II), Lower Bound:
If K1 = 1, then as we are in Type (II) we have C = 2δ + 1. But

as noted above, this would force S to be empty. So we will suppose

K1 > 1.

So we may set aside the cases falling under Type (II) which cor-
respond to Lemma 12.6, 12.7, or 12.10. In the third and fourth cases
listed, which correspond to Lemmas 12.8 and 12.9 (A), we must then
examine the possibility

r = r̃ = 1.
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But as r̃ ≥ (C − 1)− 2δ, we find that

C ≤ 2δ + 2,

whereas, as noted above, this would force S to be empty.
The last case to consider within Type (II) corresponds to an ap-

plication of Lemma 12.11. and gives the relations

r = 1 = K2 − ϵ = (2δ − 1)/3− ϵ.

As (2δ − 1)/3 is odd, it follows that ϵ = 0 and δ = 2, which we do
not allow here.

So we have the lower bound r > 1 throughout Type (II), following
our standard amalgamation procedure.

Type (III), Lower Bound:
Here the cases in which r = r+ or r > K1 may be set aside. Also,

as above, the case r = r̃ = 1 leads to C ≤ 2δ+2, which would require
S to be empty.

So within Type (III), we are left with just the last two cases, which
correspond to Lemmas 12.12 and 12.13, respectively.

We first consider the last case, which corresponds to Lemma 12.13.
Here we have

r = min(K2, C − 2δ − 1) = 1.

As we suppose C > 2δ + 2 this becomes

r = K2 = 1.

But by admissibility 3K2 ≥ 2δ, so this case is excluded.
So we come down to the consideration of what turns out to be the

critical case, which corresponds to Lemma 12.12. Here we may be
forced to deviate from our standard amalgamation procedure.

So we suppose that we are in this case, with the following conditions
applying.

r = K1 + ϵ = 1.

Then evidently ϵ = 0 and K1 = 1.
In this case we modify the choice of r:

r = 2.

Recall that in this case r− ≤ K1 = 1, and thus the value r = 2
at least gives us a metric d′ on the amalgam. As we are supposing
C > 2δ + 2, the bound on perimeter is respected by this choice of r.
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It remains to show that the resulting amalgam (A1∪A2, d
′) satisfies

the constraints corresponding to K1 and K2. But K1 = 1, so the only
such constraints are the inequalities associated with the parameter
K2.

Now fix u ∈ A0 and let j = d(a1, u), k = d(a2, u). Then the
constraints to be checked are as follows.

(1) 2 + i ≤ 2K2 + j; (2) 2 + j ≤ 2K2 + i; (3) i+ j ≤ 2K2 + 2.

By admissibility, we have K1 + 2K2 ≥ 2δ − 1. As K1 = 1, we find

K2 ≥ δ − 1.

So the inequality (3) is immediate.
For (1) we have

2 + i ≤ 2 + δ ≤ 2(δ − 1) + 1 ≤ 2K2 + j,

and (2) follows similarly.
This completes the proof of Part I of the main theorem: that is, the

metrically homogeneous graphs Γδ
K1,K2,C0,C1,S exist, for admissible

values of the parameters. □



CHAPTER 13

TRIANGLE CONSTRAINTS AND 4-TRIVIALITY

13A. The Main Theorem, Part II: 4-triviality

Having disposed of the existence question in the previous section,
we now come to a kind of converse.

We aim at a classification theorem whose simplest form is the fol-
lowing.

Theorem 13.1 (Main Theorem, Part II). Let Γ be a countable met-
rically homogeneous graph of diameter δ ≥ 3 which is determined by
a set of forbidden metric triangles. Then Γ is in our catalog, either
as one of the exceptional graphs, or as one of the Γδ

K1,K2,C0,C1
with

δ,K1,K2, C0, C1 admissible.

In working out the classification of the 3-constrained metrically ho-
mogeneous graphs, one identifies the numerical constraints which are
summarized in the definition of admissibility for the case in which
S is empty. Once one has those numerical constraints, it is straight-
forward to tweak the definition to allow for a non-empty set of con-
straints of Henson type. Of course, one only knows that the analysis
is complete when one can also prove the converse result, given in the
previous chapter, that the relevant constraints actually do correspond
to amalgamation classes.

Once the amalgamation classes Aδ
K1,K2,C0,C1,S incorporating Hen-

son constraints are also identified, it is more sensible to prove a
stronger version of Theorem 13.1 which allows for their presence.
The most direct formulation of this would then be the following (we
will vary it further below).

Theorem 13.2 (Main Theorem, Part II—Variant 1). Let Γ be a
countable metrically homogeneous graph of diameter δ ≥ 3 deter-
mined by a set of forbidden metric triangles and constraints of Henson

255
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type, i.e., (1, δ)-spaces if C > 2δ+1, and antipodal Henson constraints
if C = 2δ + 1. Then Γ is of the form

Γδ
K1,K2,C0,C1,S

for some admissible parameter sequence

δ,K1,K2, C0, C1,S.

One of the conjectures suggested by our catalog is that for any
amalgamation class of finite metric spaces associated with a metri-
cally homogeneous graph of generic type, if one considers only the
forbidden triangles, then this gives a set of constraints which by them-
selves define an amalgamation class. Here we check, among other
things, that this is correct for amalgamation classes of the expected
form Aδ

K1,K2C0,C1,S .
Now the result we would really want—the main conjecture—is that

the same result applies to any amalgamation class corresponding to a
countable metrically homogeneous graph of generic type. That claim
is much sharper than anything we will prove here, but an examina-
tion of the proof of Theorem 13.2 shows that the hypothesis actu-
ally needed for the proof can be substantially restricted, in a useful
way. Namely, the critical configurations to consider in our arguments
never involve more than 4 points; that is, the diagrams may contain
5 points, but the factors required to set up the diagrams contain at
most 4 points.13

So we make the following definition.

Definition 13.3. Let A be an amalgamation class of finite met-
ric spaces corresponding to some countable metrically homogeneous
graph Γ of diameter δ. We say that A, or Γ, is 4-trivial if A contains
every metric space M on 4 vertices satisfying the following conditions.
• M contains no forbidden triangle for Γ, and
• M is not an ordinary or δ-antipodal Henson constraint (p. 215).

The proof of Part II of the Main Theorem can be interpreted as
a determination of the possible classes of triangles which can be for-
bidden in a 4-trivial countable metrically homogeneous graphs. Of
course, if we do not know that the class in question is fully deter-
mined by triangle constraints and Henson constraints, then even if

13For the current optimistic view of prospects for more general results, see
Appendix 18B.1.
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we know it is 4-trivial, this would not give us a determination of the
class. But knowing what patterns of triangle constraints are possi-
ble would be a major first step toward the proof of the classification
conjecture in general. .

We state our preferred variation on the Main Theorem (Part II) as
follows.

Theorem 13.4 (Main Theorem, Part II, Variant 2). Let Γ be a 4-
trivial countable metrically homogeneous graph of diameter δ ≥ 3,
and let A be the associated amalgamation class of finite metric spaces.
Then the following hold.

(II-A) For some acceptable sequence of parameters (δ,K1,K2, C0, C1,S),
the classes A and Aδ

K1,K2,C,C′,S contain the same triangles and
the same (1, δ)-spaces.

(II-B) The sequence of parameters (δ,K1,K2, C0, C1) is admissible, and
the same applies to the parameters (δ,K1,K2, C0, C1,S) if all
constraints are either triangles or Henson constraints (normal
or antipodal).

Note that Theorem 13.4 does indeed imply Theorem 13.2. This is
the formulation we will work with throughout.

The present chapter deals with the proof of part (II-A).
We will rarely refer explicitly to the non-generic/generic type dis-

tinction in what follows, but the 4-trivial amalgamation classes all
fall on the side of generic type, and this is occasionally useful (as we
shall see shortly). So we deal with this point formally.

Lemma 13.5. Any 4-trivial metrically homogeneous graph Γ of di-
ameter δ ≥ 3 is of generic type.

Proof. If Γ is an n-gon with n ≥ 6, or one of the tree-like graphs
Tm,n, then let A be a 4-gon. As Γ omits A, but contains a geodesic
triangle of type (1, 1, 2), A should be a Henson constraint: but a
Henson constraint cannot contain a geodesic triangle.

By the classification in non-generic type (Table 11.1, §11A), the
alternative is that Γ is an antipodal double cover, of diameter 3. In
particular it is finite. Let n be minimal so that Γ omits a 2-anticlique
I
(2)
n of order n. Then by 4-triviality, either n = 3 and I

(2)
3 is a for-

bidden triangle, or n > 3 and I
(2)
n is a Henson constraint. But I

(2)
n

can only be a Henson constraint if δ = 3 and I
(2)
n is the antipodal



258 13. Triangle Constraints and 4-Triviality

companion of a clique of order n, which would force n = 2, for a
contradiction.

So we are left with the possibility that Γ omits I(2)3 . But if we take a
geodesic (u1, u2, u3) of type (1, 1, 2), and replace u2 by the antipodal
vertex u′2, we get a triangle of type (2, 2, 2). □

13B. Recovering the parameters

We begin by associating suitable parameters δ,K1,K2, C0, C1,S
with any countable metrically homogeneous graph right from the
start, without making any substantial assertions about these values
at the outset. Then parts (II-A) and (II-B) of the Main Theorem will
take on a more concrete meaning. Of course, it will be clear from the
beginning that if the class in question is of the form Aδ

K1,K2,C0,C1,S ,
then our particular choice of definitions does at least recover the
parameters correctly.

Definition 13.6. Let A be a class of finite integral metric spaces.
1. δ is the supremum of the distances realized by a configuration

in A (possibly ∞).
2. K1 is the least k such that A contains a triangle of type (1, k, k)

and K2 is the greatest such, if there is such a triangle. Otherwise,
we set K1 =∞ and K2 = 0.

3. If δ is finite, then C0 is the least even number greater than 2δ
such that no triangle of perimeter C0 is in A; and C1 is the
least such odd number. If δ is infinite, then C0, C1 are undefined
(they can be set equal to ∞ for more uniformity of notation).

4. C = min(C0, C1) and C ′ = max(C0, C1).
5. S is the collection of minimal Henson constraints S such that

— S is forbidden, i.e. not a member of A;
— S does not contain a forbidden triangle of Aδ

K1,K2,C0,C1
; and

— If C1 > 2δ + 1 or C0 > 2δ + 2, then S is a (1, δ)-space;
if C1 = 2δ + 1 and C0 = 2δ + 2, then S is an antipodal
companion of a clique.

In particular the spaces in S have order at least four, and are
either (1, δ)-spaces or (1, δ − 1)-spaces.

When δ is finite, then C0, C1 are always well-defined, and are at
most 3δ + 2.
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Furthermore, with the exception of the case K1 =∞, K2 = 0, and
C1 = 2δ + 1, we have by definition

1 ≤ K1 ≤ K2 ≤ δ.

So with these definitions the following holds.

The parameters (δ,K1,K2, C0, C1,S) are acceptable.

Since we make these definitions in full generality, it may be useful
to keep track of their values when A is not of the form Aδ

K1,K2,C0,C1,S ,
but is rather the amalgamation class of finite metric spaces associated
with a metrically homogeneous graph of non-generic type. We will
discuss this in §13I.

13C. The interpolation property

In what follows, we begin to use a variety of amalgamation argu-
ments involving amalgams of two factors of order 4, and we apply
4-triviality to ensure that the factors are present in our amalgama-
tion class. For this, we must mainly check that the triangles occurring
in these diagrams are in the class. However, one must pay attention
as we go along to the verification that neither factor is a Henson con-
straint of normal or antipodal type. For this, the following criteria
are convenient.

Remark 13.7. Let A be a Henson constraint of normal or antipodal
type. Then the following hold.
(a) At most two lengths occur in A.
(b) No geodesics occur in A.

Definition 13.8. The type of a triangle (a, b, c) is the triple of
lengths

(d(a, b), d(a, c), d(b, c)),

which may be taken in any order (most often, nondecreasing). Thus
the type represents the isomorphism type of the metric triangle.

The type of any triangle is a triple (i, j, k) with i, j, k ∈ N, i, j, k ≥
1, satisfying the triangle inequality, and generally we have a bound
i, j, k ≤ δ with the diameter δ given. When we refer to a triangle
type (i, j, k), in principle this means that the triangle inequality and
any relevant bound are assumed. If the necessary inequalities have
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not been established, we speak of a triple rather than a triangle type.
For triples in general, as well as for triangle types, we attach no
significance to the order of the entries.

The following general principle will be very useful throughout.

Lemma 13.9 (Interpolation Property). Let A be a 4-trivial amal-
gamation class of finite metric spaces corresponding to a countable
metrically homogeneous graph of diameter δ ≥ 3.

Suppose that A contains triangles of the types

(i− 1, j − 1, k) and (i− 1, j + 1, k)

where

2 ≤ i ≤ δ, 2 ≤ j < δ, and 1 ≤ k ≤ δ.

Then A contains a triangle of type (i, j, k).

We prepare for the proof with a result which gives us a very small
supply of specific triangles known to be realized, from the beginning.

Lemma 13.10. Let Γ be a metrically homogeneous graph of diam-
eter δ ≥ 3, with vertex degree at least 3, and suppose

i < δ.

Then Γ contains a triangle of type (2, i, i).

Proof. We first run over the possibilities for Γ of non-generic type,
from Table 11.1, §11A.

If Γ is finite, then it is antipodal of diameter 3, and the relevant
values of i are 1 and 2. For i = 1 we have the geodesic of type (1, 1, 2),
which certainly embeds into Γ, and if we replace the midpoint v by
the antipodal vertex v′ we get a triangle of type (2, 2, 2).

If Γ is a tree-like graph Tm,n, then it contains the regular tree Tm,2,
and the claim follows.

Thus we may suppose that Γ is of generic type.
As i < δ, we may take u1 ∈ Γi−1, u2 ∈ Γi+1 with d(u1, u2) = 2.

As Γ is of generic type, u1 and u2 have two common neighbors v1, v2
with d(v1, v2) = 2. Then v1, v2 ∈ Γi, so the triangle (v∗, v1, v2), with
v∗ the basepoint, is of type (i, i, 2). □
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Proof of Lemma 13.9. We will need to apply Lemma 13.10, so
let us recall that 4-triviality implies generic type (Lemma 13.5), and
in particular vertex degree at least 3.

We make use of the following amalgamation.

a1 a2

u1 u2

c

1

1

i

j −
1

j
+
1

k
i−

1 i−
1

2

Let us check that the factors ca1u1u2 and ca2u1u2 are present in
A, by 4-triviality.

Each factor contains a geodesic, so neither factor is a Henson con-
straint (Remark 13.7).

The nongeodesic triangles involved in the factors have types

(2, i− 1, i− 1), (i− 1, j − 1, k), and (i− 1, j + 1, k).

The first of these triangles is in A by Lemma 13.10, and the other
two are in A by assumption.

By 4-triviality, the two factors of the amalgamation are in A, and
thus our diagram has a completion in A. Then the vertices u1, u2
force

d(a1, a2) = j

So the triangle (a1, a2, c) has type (i, j, k). □

Definition 13.11. An amalgamation classA of finite metric spaces
of maximal diameter δ has the Interpolation Property if it satisfies the
conclusion of Lemma 13.9. That is, whenever A contains triangles of
the types

(i− 1, j − 1, k) and (i− 1, j + 1, k)

with

2 ≤ i ≤ δ 2 ≤ j < δ 1 ≤ k ≤ δ,

then A contains a triangle of type (i, j, k).
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So each of the following conditions implies the next.
(a) minimal forbidden structures are triangles and Henson constraints;
(b) 4-triviality;
(c) the Interpolation Property.

13D. Small even perimeter.

Lemma 13.12. Let Γ be a countable metrically homogeneous graph
of diameter δ ≥ 3 and vertex degree at least 3, and A the associated
amalgamation class of finite metric spaces. Suppose that A has the
Interpolation Property. Then all triangles of even perimeter p ≤ 2δ
are in A.

Proof. We consider triangles of type (i, j, k) with perimeter p =
i + j + k even and bounded by 2δ, and i ≤ j ≤ k ≤ δ. We proceed
by induction on i.

If the triangle is a geodesic, then it lies in A by hypothesis.
Suppose that the triangle is not a geodesic, so

k < i+ j

As i+ j+ k is even, it follows that k ≤ i+ j− 2 and i ≥ 2. Therefore
both of the following triples satisfy the triangle inequality.

(i− 1, j − 1, k); (i− 1, j + 1, k)

As their perimeters are even and bounded by 2δ, and the minimal
entry in each is i− 1, by induction both triangles are in A.

The Interpolation Property yields the claim. □

13E. An inductive lemma.

We now state a general inductive “all-or-nothing” principle. For the
most part our classes Aδ

K1,K2,C0,C1
follow the rule that all or none of

the triangles of a given perimeter occur. But since the parameter K2

breaks that rule, we must make do with a more limited version of the
principle, in which we fix both the perimeter and the length of the
shortest side.

Lemma 13.13. Let A be an amalgamation class of diameter δ, with
the Interpolation Property. Let m,N ∈ N be fixed with m ≥ 2.
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Suppose that
All triangles of perimeter N − 2 and minimal edge
length at least m− 1 are in A.

Then the following hold.
(a) If some triangle of perimeter N and minimum edge length at

least m is in A, then all such triangles are in A;
(b) If some triangle of perimeter N and minimum edge length ex-

actly m − 1 is in A, then any triangle of perimeter N whose
minimum edge length is at least m − 1 and with at most one
edge length equal to m− 1 also belongs to A.

Proof. If N ≤ 2δ is even, then by Lemma 13.12 all such triangles
are in A, and there is nothing to prove. So we may suppose that

N is odd, or N > 2δ.

In particular no geodesic triangles come into consideration.
As the proof takes several steps we indicate the steps which lead

to part (a), given as Claim 4 below. The argument for (b) is similar,
and makes use of the same ingredients.

We consider triangle types (i1, j1, k1) and (i2, j2, k2) satisfying our
conditions, with i1 ≤ j1 ≤ k1, i1,≤ j2 ≤ k2, and i1 ≤ i2.

We first consider the special cases where the triangle type (i2, j2, k2)
is either (i1, j1 + 1, k1 − 1) or (i1 + 1, j1, k1 − 1), and we show that
triangles of the first type occur if and only if triangles of the second
type occur (Claims 1,2). The we can argue inductively to prove part
(a), first considering the case i2 = i1, then reducing the case i2 > i1
to this one (Claims 3,4).

To begin with, we invoke the Interpolation property, as follows.
Suppose (i, j, k) is the type of a triangle with

i+ j + k = N(13.1)
m ≤ i, j; m− 1 ≤ k(13.2)
i, k ≤ δ; j < δ(13.3)
k ≤ i+ j − 2(13.4)

Then (i−1, j−1, k) is a triangle type, and by hypothesis (i−1, j−1, k)
is in A. If there is also a triangle of type (i− 1, j+1, k) in A then by
the Interpolation Property there is one of type (i, j, k). In symbols

(i− 1, j + 1, k)=⇒ (i, j, k)
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under the stated conditions on i, j, k.

Claim 1. Suppose

i+ j + k = N ;

i ≤ j ≤ k ≤ i+ j, j ≤ i+ k − 2;

i ≥ m− 1, j ≥ m, k > m;

j < δ.

Then there is a triangle of type (i, j, k) in A if and only if there is a
triangle of type (i, j + 1, k − 1) in A. In other words,

(i, j, k) ⇐⇒ (i, j + 1, k − 1)

under the stated conditions.

Take (i′, j′, k′) to be (j + 1, k − 1, i) or (k, j, i). After verifying the
conditions (1− 4) above for (i′, j′, k′) we will have

(j, k, i)=⇒ (j + 1, k − 1, i) and (k − 1, j + 1, i)=⇒ (k, j, i)

and the claim will follow.
Condition (1) for (i′, j′, k′) is clear in both cases. Conditions (2)

and (3) come down to

m ≤ j, k − 1; m− 1 ≤ i; k ≤ δ; and j < δ

which were assumed.
Condition (4) comes down in both cases to

i ≤ j + k − 2

which holds as i ≤ j ≤ j + k − 2.
Thus the Interpolation Property applies as described above.

Claim 2. Suppose

i+ j + k = N ;

m ≤ i ≤ j ≤ k ≤ i+ j;

m+ 1 ≤ k;

k ≤ δ; i < δ.

Then there is a triangle of type (i, j, k) in A if and only if there is
one of type (i+ 1, j, k − 1) in A.
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Take (i′, j′, k′) to be (i+1, k−1, j) or (k, i, j) and verify conditions
(1–4) above for i′, j′, k′. Condition (1) is clear, and conditions (2, 3)
come down to m ≤ i, k − 1 and i, k − 1 < δ, which all hold by
hypothesis. Claim (4) states that k′ ≤ i′+ j′−2, which in both cases
means

j ≤ i+ k − 2.

This holds since j ≤ k ≤ (i− 2) + k.
So the Interpolation Property gives

(i, k, j)=⇒ (i+ 1, k − 1, j) and (k − 1, i+ 1, j)=⇒ (k, i, j).

Claim 3. For ℓ = 1, 2 let (i, jℓ, kℓ) be triples satisfying

i+ jℓ + kℓ = N ;

i ≤ jℓ ≤ kℓ ≤ i+ jℓ;

i ≥ m− 1, jℓ ≥ m, kℓ ≥ m+ 1.

Then there is a triangle of type (i, j1, k1) in A if and only if there is
one of type (i, j2, k2) in A.

We may suppose that j1 ≤ j2 and proceed by induction on j2− j1.
If j1 = j2 then k1 = k2 and our claim holds. So suppose that j1 < j2.

Then k2 < k1 and thus j1 + 1 ≤ j2 ≤ k2 < k1, j1 + 1 ≤ k1 − 1.
In particular j1 < k1 and it will suffice to treat the case j2 = j1 + 1,
k2 = k1 − 1, and then conclude by induction.

We invoke Claim 1 for (i, j1, k1). We require

j1 < δ and j1 ≤ i+ k1 − 2.

We have j1 < j2 ≤ δ and j1 ≤ k1 − 2 ≤ i+ k1 − 2.

Claim 4. For ℓ = 1, 2 let (iℓ, jℓ, kℓ) be triples satisfying

iℓ + jℓ + kℓ = N ;

m ≤ iℓ ≤ jℓ ≤ kℓ ≤ iℓ + jℓ.

Then there is a triangle of type (i1, j1, k1) in A if and only if there is
one of type (i2, j2, k2) in A.

We will suppose i1 ≤ i2 and proceed by induction on i2 − i1.
If k1 = i1 then N = 3i1 and hence

N = 3i1 ≤ 3i2 ≤ i2 + j2 + k2 = N
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forcing i2 = j2 = k2 = i1 and there is nothing to prove. So we will
suppose

k1 > i1

In particular k1 > m.
The case i1 = i2 is covered by Claim 3. So suppose

i1 < i2

Then Claim 2 applies, and a triangle of type (i1, j1, k1) is in A if and
only if one of type (i1+1, j1, k1−1) is in A. So we replace i1 by i1+1
and conclude by induction on i2 − i1

Now Claim (4) is part (a) of the Lemma. We turn to part (b).
We suppose that a triangle of type (i, j, k) is in A, where

i+ j + k = N ;

i = m− 1 ≤ j ≤ k ≤ i+ j.

If N < 3m − 1 then the second part of the lemma is vacuous. So
suppose

N ≥ 3m− 1.

Claim 5. Some triangle of type (i, j, k) with i = m−1 and j, k ≥ m,
i+ j + k = N belongs to A.

Supposing the contrary, our triangle of type (i, j, k) with

i = m− 1 ≤ j ≤ k, i+ j + k = N

must satisfy

j = m− 1;

k = N − 2(m− 1);

≥ (3m− 1)− 2(m− 1) = m+ 1.

We will show that a triangle of type (m, k−1,m−1) is in A, proving
the claim.

Notice that conditions (13.1–13.4) above are satisfied by this tri-
angle type, taking i′ = m, j′ = k − 1, k′ = m − 1. So by the Inter-
polation Property it suffices to show that there is a triangle of type
(i′ − 1, j′ + 1, k′) in A. But

(i′ − 1, j′ + 1, k′) = (m− 1, k,m− 1)

which is the type we have assumed is in A. This proves the claim.
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Now that Claim 5 gives us one triangle of the desired form we can
argue as in the proof of part (a). Namely, we claim next that for any
triangle types (i, jℓ, kℓ) (ℓ = 1, 2) with

i+ jℓ + kℓ = N ;

i = m− 1 ≤ jℓ ≤ kℓ ≤ i+ jℓ;

jℓ, kℓ ≥ m,

we have a triangle of type (i, j1, k1) in A if and only if we have one
of type (i, j2, k2). This follows as before from Claim 1, taking j1 ≤ j2
and applying induction on j2 − j1.

This completes the proof of part (b) as far as triangle types with
minimum distance exactly m− 1 are concerned. In particular we are
done if N < 3m.

Suppose

N ≥ 3m

In view of part (a) of the lemma, it will now suffice to find one triangle
type (i, j, k) with

i+ j + k = N ;

m ≤ i ≤ j ≤ k ≤ i+ j,

which is represented in A.
We begin with some triangle type (i, j, k) represented in A with

i + j + k = N , i = m − 1 < j ≤ k ≤ i + j, i + j + k = N . Observe
that k ≥ (N − i)/2 > m.

We consider the triple (i′, j′, k′) = (m, j, k − 1). We apply the In-
terpolation Property.

Note first that (m, j, k−1) satisfies the triangle inequality. It suffices
therefore to check thatA contains triangles of the types (m− 1, k − 2, j)
and (m− 1, k, j); but we already have the second one.

So consider the triple (m − 1, k − 2, j). This satisfies the triangle
inequality and has perimeter N − 2, and minimal entry m − 1. So
such a triangle is in A by hypothesis. □

13F. Triangles of even perimeter

Lemma 13.14. Let A be a 4-trivial amalgamation class of diameter
δ. Then a triangle of type (i, j, k) with even perimeter p = i + j + k
is in A if and only if p < C0.
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Proof. Here C0 is minimal such that

C0 is even, C0 > 2δ, and there is no triangle of perimeter C0 in A.

Let C ′0 be minimal even such that there is some triangle of perimeter
C ′0 which does not occur in A. Then C ′0 ≤ C0, and by Lemma 13.12,
C ′0 > 2δ.

If p < C ′0 is even, then by definition all triangles of perimeter p are
in A.

Now suppose p = C ′0, and let m = p − 2δ ≥ 2. Every triangle
of perimeter p has minimal length at least m. Apply Lemma 13.13.
Either all such triangles of perimeter p are in A, or none are. As
p = C ′0 the conclusion is that none are, and thus C ′0 = C0. So we
have the following.

For even p less that C0, all triangles of perimeter p are in A.
For p = C0, no triangles of perimeter p are in A.

It remains to show that for even p greater than C0, no triangles of
perimeter p are in A.

We proceed inductively. So suppose that p > C0, that no triangle
of perimeter p−2 is in A, but that some triangle of type (i, j, k) with
i+ j + k = p even, i ≤ j ≤ k is in A.

Define

i′ = (−i+ j + k)/2;

j′ = (i− j + k)/2;

k′ = (i+ j − k)/2.

As p > C0 ≥ 2δ + 2 we have p ≥ 2δ + 4 and hence k′ ≥ 2 and
i ≥ 4. It follows that all lengths in the following 2-point amalgamation
problem lie in the interval [1, δ].

a1 a2

u1 u2

c

k
′ −

1

1

i−
1

i
′

j

kj
′ i

k′
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This diagram could be suggested by the following considerations.
If we fill in the distance d(a1, a2) = j − 1, then the resulting con-
figuration embeds in a tree with root u1, and with a2, c, u2 points
at distances i′, j′, k′ respectively lying on paths from the root which
meet only at u1. Then a1 represents a vertex adjacent to u2, and
lying on the path from the root to u2.

In particular, all triangles other than (a2, c, u2) and (a2, c, a1) are
geodesics. And of course (a2, c, u2) is a triangle of type (i, j, k). Thus
neither factor of the amalgamation involves a forbidden triangle. Fur-
thermore as (c, u1, u2) is a geodesic and δ ≥ 4 here, neither factor is
a Henson constraint of normal or antipodal type.

By 4-triviality, it follows that the amalgamation diagram may be
completed in A, and as i′+k′ = j, the vertices u1, u2 force d(a1, a2) =
j−1. The triangle (a1, a2, c) then has type (i−1, j−1, k) and perime-
ter p− 2, a contradiction. Thus no triangle of even perimeter greater
than C0 is found in A. □

Corollary 13.14.1. Let A be a 4-trivial amalgamation class of di-
ameter δ. Suppose K1 = ∞, that is the corresponding metrically
homogeneous graph is bipartite. Then A and Aδ

∞,0,C0,2δ+1,S contain
the same triangles and the same δ-Henson constraints.

Of course, we have only addressed the triangles in A, but once they
match up with Aδ

K1,K2,C0,C1
then our original definition of S will in

fact give the δ-Henson constraints of A.

13G. Triangles of odd perimeter

Lemma 13.15. Let A be an amalgamation class of diameter δ, and
Γ the Fraïssé limit of A. Assume that some triangle of odd perimeter
occurs in A, and let p be the least odd number which is the perimeter
of a triangle in A. Then the following hold.

1. A p-cycle embeds isometrically in Γ.
2. p ≤ 2δ + 1.
3. p = 2K1 + 1.
Proof. We introduce some metric space terminology which dif-

fers noticeably from graph theoretic terminology. We will call any
sequence of vertices (a0, . . . , an) in Γ a path, and the length of a path
is the sum of successive distances d(ai, ai+1). A path is full if all
successive distances are equal to 1. A path is a circuit if an = a0.
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By assumption Γ contains a circuit of odd length. Let C be a circuit
of minimal odd length p0. Then p0 ≤ p. Any path extends to a full
path of the same length, so we may suppose that C is a full path.
Then

C = (a0, . . . , ap0)

with ap0 = a0.
As the circuit C has minimal odd length, the vertices ai must be

distinct for i < p0. We claim that the embedding of C into Γ is
isometric. If not, we may label the vertices of C so that for some pair
(a0, am) we have

dΓ(a0, am) < dC(a0, am)(13.5)

In particular m < p0. Consider the circuits induced in Γ on

C ′ = (a0, a1, . . . , am, a0); C ′′ = (a0, am, am+1, . . . , ap0).

Let the lengths of C ′ and C ′′ be ℓ′ and ℓ′′ respectively.
In view of (13.5), we have ℓ′, ℓ′′ < p0. Furthermore ℓ′ + ℓ′′ =

p0 + 2d(a0, am) and thus one of ℓ′, ℓ′′ is odd. This contradicts the
minimality of p0. Thus the embedding of C into Γ is an isometry.

With m = (p0 − 1)/2, it follows that the triangle (a0, am, am+1) is
of type (1,m,m) and perimeter p0. Thus p0 = p. Our first point is
proved.

Since p = 2m + 1 ≤ 2δ + 1 our second point follows. And since
we have a triangle of type (1,m,m), we have K1 ≤ m, 2K1 + 1 ≤ p,
hence 2K1 + 1 = p and m = K1. □

Lemma 13.16. Let A be an amalgamation class of diameter δ and
associated parameters K1,K2. Then

A ⊆ Aδ
K1,K2

Proof. It suffices to show that any triangle occurring inA belongs
to Aδ

K1,K2
. In other words, we must show that no triangles of type

(i, j, k) with p = i+j+k odd and satisfying either one of the following
two constraints can occur in A (Definition 1.20).

p < 2K1 + 1;

p > 2K2 + 2i.

By Lemma 13.15 (3) we have p ≥ 2K1+1. So we turn to the second
point.
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Suppose we have a triangle of type (i, j, k) in A with p = i+ j + k
odd and

p > 2K2 + 2i.

Suppose here that i is minimized. If i = 1 then as p is odd we have
j = k > K2 and this contradicts the definition of K2. So

i > 1.

Consider the following amalgamation.

a b

u

v

i−
1

i

j

k

i

This has a completion in A. As i ≤ j ≤ k and p > 2K2 + i, we
have k > K2 and hence d(a, b) ̸= k. So d(a, b) = k + ϵ with ϵ = ±1.
Then A contains a triangle of type

(i− 1, j, k + ϵ)

of odd perimeter, and minimal entry i−1, and the perimeter is greater
than 2K2 + 2(i− 1). This contradicts the choice of i. □

Lemma 13.17. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ. If

K1 ≤ k ≤ K2,

then a triangle of type (1, k, k) belongs to A.

Proof. We may suppose that

K1 < k < K2.

Consider the following amalgamation diagram (Figure 117).
The factor (cu1a1u2) is a geodesic.
In the factor (ca2u1u2), there are at least three distinct lengths

occurring, so this factor is not a Henson constraint of normal or
antipodal type. In this factor, the nongeodesic triangles occurring
have types (1,K1,K1) and (1,K2,K2), both assumed present in A.
By 4-triviality, the diagram has a completion in A.
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a1 a2

u1 u2

c

k
−
K

1

K
2 −

k

k

K 1

K
2

1K 1
K
2

K2 −K1

Figure 117

In the amalgam, the points u1, u2 ensure that d(a1, a2) = k, and
thus the triangle (a1, a2, c) has type (1, k, k). □

Lemma 13.18. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ. Suppose that (i, j, k) is the type of a triangle
satisfying the following conditions.

1. K1 ≤ i ≤ K2;
2. p = i+ j + k ≤ C0 − 2;
3. If C0 = 2δ + 2 then i < δ;
4. If p is odd, then min(j, k) < δ.

Then there is a triangle of type (i, j, k) in A.

Proof. By Lemma 13.14 we may suppose that

p is odd.

Our assumptions then rule out the case j = k = δ, so we may suppose
j < δ. If j = 1 then as p is odd the triangle inequality gives i = k
and a triangle of type (i, j, k) belongs to A by Lemma 13.17. So we
suppose

1 < j < δ

Consider the amalgamation shown below. As each factor contains a
geodesic, neither factor is a Henson constraint of normal or antipodal
type (Remark 13.7).

So we consider the triangles present.
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a1 a2

u1 u2

c

1

1

i

j −
1

j
+
1

ki i

2

Leaving aside the geodesic triangles (a1, u1, u2) and (a2, u1, a2), the
remaining triangles in this diagram have types

(2, i, i), (1, i, i), (i, j − 1, k), and (i, j + 1, k).

Now 2i + 2 < C0 by our hypothesis, so a triangle of type (2, i, i)
belongs to A by Lemma 13.14.

As K1 ≤ i ≤ K2, a triangle of type (1, i, i) belongs to A by Lemma
13.17.

We must consider the remaining two triples

(i, j − 1, k), and (i, j + 1, k)

These satisfy the triangle inequality since (i, j, k) does and p is odd.
Thus they represent triangle types, and their perimeters are p± 1 <
C0, even. Thus triangles of these types occur in A.

Therefore the diagram has a completion in A, and then the triangle
(a1, a2, c) has type (i, j, k). □

Lemma 13.19. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a metrically homogeneous graph of
diameter δ, with associated parameters K1,K2, C0, C1. Then

C1 ≥ min(2δ +K2, C0 − 1).

Proof. If C0 = 2δ + 2 then C1 ≥ C0 − 1 and there is nothing to
show. So we suppose

C0 > 2δ + 2.

Suppose toward a contradiction that

C1 < 2δ +K2, C0 − 1.
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. Let K2 ≡ ϵ (mod 2) with ϵ = 0 or 1. Let K ′2 = K2 + 1 − ϵ. Then
K ′2 is odd. Set

i = K2;

j =
C1 −K ′2

2
;

k = j + (1− ϵ).

Then

j < (2δ +K2 −K ′2)/2 ≤ δ;

i+ j + k = i+ 2j + (1− ϵ) = K2 + (C1 −K ′2) + (1− ϵ) = C1.

We claim that (i, j, k) is the type of a triangle.
As |j − k| ≤ 1 we have

j ≤ i+ k and k ≤ i+ j.

Furthermore C1 ≥ 2δ + 1, so

i < C1 − i = j + k.

Thus (i, j, k) is the type of a triangle of perimeter C1.
Now Lemma 13.18 applies since C1 ≤ C0 − 2, C0 > 2δ + 2, and

j < δ. Thus there is a triangle of this type in A, contradicting the
definition of C1. □

Lemma 13.20. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ, with associated parameter C1. Then no triangle
of odd perimeter p ≥ C1 belongs to A.

Proof. Suppose on the contrary that there is some odd p ≥ C1

and some triangle of type (i, j, k) with i + j + k = p which belongs
to A. Take i to be minimal. We have p > C1, so also p− 2 ≥ C1.

Fix a triangle (a, b, c) in A with d(b, c) = i, d(a, b) = j, d(a, c) = k.
Take u on a geodesic from b to c with

d(b, u) = i− 1, d(u, c) = 1 (Figure 118).

If d(a, u) = k± 1 then (a, b, u) is a triangle of perimeter p or p− 2
and type (i− 1, j, k ± 1), violating the minimality of i. Thus

d(a, u) = k.

So (a, u, c) is a triangle of type (1, k, k). Thus k ≤ K2, and we have
p ≤ 2δ +K2.
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a

c

u

b
j

k

i− 1

1

Figure 118

Furthermore (a, b, u) is a triangle of type (i−1, j, k) and perimeter
p − 1, so p − 1 < C0. As p is odd it follows that p ≤ C0 − 1. Then
p ≤ min(2δ + K2, C0 − 1) and thus C1 < min(2δ + K2, C0 − 1),
contradicting Lemma 13.19. □

Corollary 13.20.1. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ, with associated parameters K1,K2, C0, C1. Then

A ⊆ Aδ
K1,K2,C0,C1

.

Proof. Lemmas 13.14, 13.16 and 13.20. □

Lemma 13.21. Let A be an amalgamation class of diameter δ de-
termined by constraints on triangles and δ-Henson constraints, with
associated parameters K1,K2. Then for any triangle type (i, j, k) with
p = i+ j + k odd, if

2K1 + 1 ≤ p ≤ 2K2 + 1

then there is a triangle of type (i, j, k) in A.

Proof. For p = 2K1 + 1 apply Lemma 13.15 (1). So we assume

p > 2K1 + 1

and we proceed inductively.
Taking N = p and m = 2, Lemma 13.13 implies that any triangle

of type (i′, j′, k′) for which

i′ + j′ + k′ = p, i′ ≥ 1, and j′, k′ ≥ 2

belongs to A, since our induction hypothesis applies to p− 2.
This applies in particular to the triple (i, j, k), taking i ≤ j ≤ k,

unless j = 1, in which case i = 1, p = 3, and 2K1 + 1 < 3, which is
impossible. □
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13H. Identification of A

Proposition 13.22. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ, with associated parameters K1,K2, C0, C1, and
S. Then A and Aδ

K1,K2,C0,C1,S contain the same triangles, and the
same Henson constraints.

Proof. We first verify the claim for triangles.
We have A ⊆ Aδ

K1,K2,C0,C1
by Corollary 13.20.1. So it suffices to

show conversely that each triangle type (i, j, k) realized inAδ
K1,K2,C0,C1

is realized in A.
Let p = i+ j + k. If p is even, then Lemma 13.14 gives the desired

result. So we suppose

p is odd, and i ≤ j ≤ k

We have the following conditions.
1. p ≥ 2K1 + 1;
2. p < 2K2 + 2i;
3. p < C1.
If p ≤ 2K2 + 1 then a triangle of type (i, j, k) belongs to A by

Lemma 13.21. So we will suppose

p > 2K2 + 1

and proceed by induction on p (odd).
Set

m = (p− 2K2 + 1)/2

The condition p < 2K2 + 2i may be expressed as: i ≥ m. Thus our
claim may be expressed as follows.

If i+ j + k = p, min(i, j, k) ≥ m,
then the type (i, j, k) is represented in A

The corresponding claim for p− 2 involves m− 1, and holds by our
inductive hypothesis. By Lemma 13.13, if there is some triangle in A
whose type (i, j, k) satisfies the conditions i+j+k = p, min(i, j, k) ≥
m, then all such types are represented by triangles in A. Furthermore,
since A ⊆ Aδ

K1,K2
, it suffices to find a triangle of type (i, j, k) in A

with i+ j + k = p, as the other condition then necessarily holds.
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If p > 2δ, then since p < C1 there is such a triangle by the definition
of C1. So suppose

p < 2δ.

Consider the triple (i, j, k) with

i = K2;

j = ⌊p−K2

2
⌋;

k = (p−K2)− j = p− (i+ j).

Then j ≤ k ≤ j + 1 and i < 2j ≤ j + k. Thus (i, j, k) is the type of
a triangle with i+ j + k = p. Furthermore

j ≤ p−K2

2
<

2δ −K2

2
< δ

and thus also k ≤ δ.
Apply Lemma 13.18. Since we have i = K2, p < 2δ ≤ C0 − 2, and

j < δ, a triangle of type (i, j, k) is in A. This concludes the proof.
The claim for Henson constraints follows from the definition of S

and the definition of Aδ
K1,K2,C0,C1,S . □

This proves the first half of Part II of the Main Theorem (i.e., part
(II–A)). The second part concerns the admissibility of the parameter
sequence K1,K2, C0, C1,S.

13I. Parameters for metrically homogeneous graphs
of non-generic type

We append here a discussion of the parameters assigned to met-
rically homogeneous graphs of non-generic type by our conventions,
for δ ≥ 3. Of course, δ will be the diameter of Γ in any case.

The metrically homogeneous graphs of non-generic type are either
finite or of infinite diameter, and the finite ones are either of degree
2 or antipodal of diameter 3 and degree at least 3.
(I) Infinite diameter: The tree-like graphs Tm,n.

— δ =∞, C0, C1 undefined (or ∞, if this is unsatisfactory).
— K1 = 1, K2 =∞ (n ≥ 3) or K1 =∞,K2 = 0 (n = 2).
— If S is nonempty, then 3 ≤ n <∞ and S consists of a clique

of order n+ 1.
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(II) Finite of degree 2: an n-gon for some n ≥ 6
If n is even:
— δ = n/2.
— K1 =∞,K2 = 0.
— C1 = 2δ + 1, C0 = 2δ + 2
— S empty.

If n is odd:
— δ = (n− 1)/2.
— K1 = K2 = δ.
— C1 = 2δ + 3, C0 = 2δ + 2
— S empty.

(III) Finite, antipodal of diameter 3, degree at least 3 (double cover
of an independent set, C5, or K3□K3).
— δ = 3, C1 = 7, C2 = 8;
— K1 = 1, K2 = 2 or K1 =∞, K2 = 0.
— C1 = 2δ + 1, C0 = 2δ + 2.
— S consists of a clique of order 4 or 5, and its antipodal

companions. or is empty.

Alternatively, sorting these out in our usual manner according to
the three types (for the admissible case), we arrive at the following.

(I) K1 =∞, K2 = 0
— Tm,2 (regular tree): parameters of the generic bipartite graph.
— n-gon, n ≥ 6 even: parameters of the generic antipodal bi-

partite graph.
— Antipodal double cover of an independent set (complement

of a perfect matching): parameters of the generic antipodal
bipartite graph of diameter 3 (overlaps with n-gon case for
n = 6).

(II) C ≤ 2δ +K1

— n-gon, n ≥ 6 odd: the values K1 = K2 = δ violate various
clauses in the definition of admissibility.

— antipodal of diameter 3, double cover of C5 or K3□K3: sim-
ilar to the parameters of Aδ

a,n, the generic Kn-free antipodal
graph of diameter δ, with n = 4 or 5; but that would require
δ ≥ 4.

(III) C > 2δ +K1

— Tm,n with n ≥ 3: The parameters K1,K2, C0, C1 impose
no constraints; these parameters agree with the parameters
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of the generic metrically homogeneous graph of unbounded
diameter with Γ1 a Henson graph, or random.

We remark that the antipodal double covers of C5 and K3□K3 are
not 4-trivial. By Lemma 13.10 or inspection, they contain triangles
of type (2, 2, 2), and then 4-triviality would imply the existence of an
infinite 2-anticlique I

(2)
∞ .





CHAPTER 14

AMALGAMATION REQUIRES ADMISSIBILITY

To complete the proof of Theorem 13.4, we must deal with part
(II–B) of our more explicit formulation.

Theorem (Main Theorem, Part (II–B)). Let (δ,K1,K2, C0, C1,S)
be the sequence of parameters associated to a 4-trivial amalgamation
class A with δ ≥ 3. Then the sequence

(δ,K1,K2, C0, C1,S)
is admissible.

We are interested in applying this mainly in the case

A = Aδ
K1,K2,C0,C1,S

itself; that is, if we define a class of finite structures in this particular
way, then we get an amalgamation class if and only if the parameter
sequence is admissible (keeping Theorem 12.1 in mind).

Our more general formulation, or the details of its proof, may be
useful also as a part of an approach to the general problem of classi-
fying the countable metrically homogeneous graphs.

We must prove that the numerical criterion given as the definition
of admissibility as far as δ,K1,K2, C0, C1 are concerned is necessary
for the amalgamation property, and that the mild additional condi-
tions imposed on the set S of Henson constraints are also necessary,
under the assumption that we have a 4-trivial amalgamation class.

As usual, we set C = min(C0, C1) and C ′ = max(C0, C1). We know
that the parameter sequence is acceptable, so as far as the numerical
parameters are concerned, we need only check the further conditions
imposed for admissibility.

If K1 =∞, then there are no triangles of odd perimeter, and hence
K2 = 0, C1 = 2δ + 1. There are no further conditions on C0 or S to
be checked in this case.

281
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So we will assume throughout that

K1 <∞.

14A. K1 and K2

Lemma 14.1. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
of diameter δ ≥ 3. Suppose we have

1 < i < k and i+ k ≤ δ + 1,

and triangles of type (i, k − i + 1, k) and (i, i + k − 1, k) are in A.
Then a triangle of type (1, k, k) is in A.

Proof. Consider the following amalgamation. Each factor con-
tains a geodesic, hence is not a Henson constraint.

a1 a2

u1 u2

c

k
−
i

i−
1

1

i

k
+
i
−
1

k
k
−
i+

1
i

k − 1

The triangles (a1, u1, c), (a1, u1, u2), (a1, c, u2), and (a2, u1, u2) are
geodesic (of lengths k−i+1, k−1, i, k+i−1, respectively). The other
triangles (c, a2, u1), (c, a2, u2), (c, u1, u2) involved in the diagram have
types

(i, k − i+ 1, k), (i, k + i− 1, k), and (i, k − i+ 1, k − 1).

Of these, all but the last have been assumed to be in A.
For the type (i, k − i + 1, k − 1), one first checks the triangle in-

equality, which is immediate. The perimeter is 2k ≤ 2δ, so this type
is represented in A by Lemma 13.12.

By 4-triviality, it follows that the two factors of this amalgamation
diagram occur in A. Therefore the diagram has a completion in A,
and in this completion the triangle (a1, a2, c) has type (1, k, k), since
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the points u1, u2 ensure d(a1, a2) ≤ k and d(a1, a2) ≥ k, respectively.
□

Lemma 14.2. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
of diameter δ ≥ 3 with associated parameters K1,K2, C0, C1. Suppose
that i, k satisfy

1. K1 ≤ i ≤ K2;
2. 1 < i < k;
3. i+ k ≤ min(δ + 1, (C0 − 2)/2).

Then k ≤ K2.

Proof. We show that there is a triangle of type (1, k, k) in A.
By Lemma 14.1 it suffices to check that A contains triangles of the

types

(i, k − i+ 1, k) and (i, i+ k − 1, k).

It is clear that these triples satisfy the triangle inequality.
We apply Lemma 13.18. Notice first that i, k < δ. Therefore it

suffices to check that the perimeters are at most C0 − 2. The two
perimeters in question are

2k + 1 ≤ 2(i+ k)− 1.

We have 2(i + k) − 1 < C0 − 2 by hypothesis. This completes the
proof. □

Lemma 14.3. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
of diameter δ ≥ 3 with associated parameters K1,K2. Then one of
the following holds.

1. K1 +K2 ≥ δ + 1;
2. K1 = 1, K2 = δ − 1;
3. K1 > 1, K1 +K2 = δ, and C0 = 2δ + 2.

Proof. Suppose first that

K1 = 1.

Then by Lemma 13.18 a triangle of type (1, δ − 1, δ − 1) belongs to
A, and so K2 ≥ δ − 1. This leads to Case 1 or 2.

Now suppose that

K1 > 1.
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If K1 > δ/2 then Case 1 applies, so suppose

K1 ≤ δ/2.

Set i = K1, k = δ + 1 − i. If C0 > 2δ + 2, then by Lemma 14.2 we
have k ≤ K2 and K1 +K2 ≥ δ + 1.

If C0 = 2δ + 2, then we arrive similarly at K1 +K2 ≥ δ, and thus
Case 1 or 3. If K1 = δ/2, this is clear, while if K1 < δ/2, then we
apply Lemma 14.2 with k = δ − i. □

The major case division among admissible values of parameters is
between the case C ≤ 2δ + K1 and C > 2δ + K1. The following is
the first step in this direction.

14B. The low case: C ≤ 2δ +K1

Lemma 14.4. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′, where
K1 <∞. If

C ≤ 2δ +K1

then

C > 2K1 + 2K2.

It is noteworthy that the conclusion fails in the case of the class
A associated with an n-gon, where n is odd. But this class is not
4-trivial.

Proof. Suppose first that

K1 = 1.

Then our hypothesis is that C = 2δ + 1. So there is no triangle of
type (1, δ, δ), and therefore K2 ≤ δ − 1. Thus the desired inequality
holds.

Now assume that

K1 > 1.
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Set j = ⌊C−K1
2 ⌋, and i = (C − K1) − j. Then 1 < j ≤ i ≤ δ.

Consider the following amalgamation.

a1 a2

u1 u2

c

1

1

i

K 1

K
1
−

1

j
i−

1 i−
1

2

The factor omitting a2 contains a geodesic, so is not a Henson
constraint. The factor omitting a1 contains an edge of length 2, so
is not a (1, δ)-space, but might be a Henson constraint of antipodal
type if δ = 3 and K1 = j = 2. In this case consideration of (c, a2, u2)
shows i− 1 = 2, while consideration of (c, u1, u2) shows i− 1 = 1, a
contradiction. So neither factor is a Henson constraint.

The triangles (a1, u1, u2), (a1, u1, c), (a1, u2, c) are geodesic, and
the other triangles occurring here are of the types

(2,K1 − 1,K1), (2, i− 1, i− 1), (i− 1, j,K1 − 1), and (i− 1, j,K1).

A triangle of type (2,K1−1,K1) has perimeter 2K1+1, and belongs
to A by Lemma 13.21. A triangle of type (2, i − 1, i − 1) belongs to
A by Lemma 13.12. If there are also triangles of the other two types

(i− 1, j,K1 − 1) and (i− 1, j,K1)

then the amalgamation diagram has a completion in A. The vertices
u1, u2 then force d(a1, a2) = K1 and thus A contains a triangle of
type (K1, i, j) and perimeter C, a contradiction.

Next we check that the remaining types (i − 1, j,K1 − 1) and
(i − 1, j,K1) represent valid triangle types, that is, that the trian-
gle inequality is satisfied.

As j ≤ i ≤ j + 1 and K1 > 1, the only inequality that needs to be
checked is

K1 ≤ i− 1 + j.
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But i− 1 + j = C −K1 and C > 2δ, so

K1 < C −K1 = i− 1 + j.

So we conclude from our analysis so far that a triangle of one of
the two types (i − 1, j,K1 − 1) or (i − 1, j,K1) must be forbidden.
Let us write the forbidden type as

(i− 1, j,K1 − ϵ)

with ϵ = 0 or 1.
The perimeters here are

p = C − 1− ϵ

with ϵ = 0 or 1. One of these perimeters is even, and the correspond-
ing triangle is in A by Lemma 13.14. So it is the triangle of odd
perimeter which is forbidden.

Now we claim

C − 2 ≥ 2K1.

We have C − 2 ≥ 2δ − 1, so this can fail only if

K1 = δ, C = 2δ + 1.

But if K1 = δ, then A contains a triangle of perimeter 2δ+ 1, and
thus C > 2δ + 1.

Since C − 2 ≥ 2K1 and p ≥ C − 2 is odd, we have p ≥ 2K1 +1. As
p < C, it follows that the forbidden triangle of type (i− 1, j,K1 − ϵ)
and odd perimeter p must satisfy the conditions

p > 2K2 + 2min(i− 1, j,K1 − ϵ)(∗)
= 2K2 + 2min(i− 1,K1 − ϵ).

Next we show

C − 1 ≤ 2K2 + 2(i− 1).

We have

j ≤ (C −K1)/2, i ≥ (C −K1)/2.

and thus

2K2 + 2(i− 1) ≥ 2K2 + (C −K1)− 2

= C + (2K2 −K1 − 2)

≥ C +K2 − 2 ≥ C − 1.
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Hence

p ≤ 2K2 + 2(i− 1).

So condition (∗) becomes

p > 2K2 + 2(K1 − ϵ).(∗′)
If ϵ = 0 then C > p > 2K2 + 2K1. If ϵ = 1, then C is odd and

C ≥ p + 2 > 2K2 + 2K1. So we have C > 2K1 + 2K2 in either
case. □

In the remainder of our analysis of the case C ≤ 2δ + K1, we
consider separately the cases
(a) C0 ≤ 2δ +K1;
(b) C1 ≤ 2δ +K1 < C0.
Furthermore, case (a) will be subdivided further according as the

parameter K1 is less than, or equal to, K2.

Lemma 14.5. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′. Suppose

K1 <∞, C0 ≤ 2δ +K1.

Then C0 = 2K1 + 2K2 + 2 and C1 ≥ C0 − 1.

Proof. We have C ≤ C0 ≤ 2δ+K1, so by the previous lemma we
find

C > 2K1 + 2K2.

In other words,

C0 ≥ 2K1 + 2K2 + 2;

C1 ≥ 2K1 + 2K2 + 1.

Set i = K1, j = ⌊C0−K1−3
2 ⌋, k = (C0 −K1 − 3)− j. Then we have

j ≤ k ≤ j + 1. We claim

i ≤ j ≤ k < δ.

We have

j ≥ (C0 −K1 − 4)/2 ≥ (K1 + 2K2 − 2)/2.

As C0 ≤ 2δ +K1 we find K1 ≥ 2 and thus j ≥ K2 ≥ i. Also

k ≤ j + 1 ≤ (C0 −K1 − 2)/2 ≤ δ − 1.
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Since i ≤ j ≤ k ≤ j + 1 the triple (i, j, k) satisfies the triangle
inequality. The perimeter p = i + j + k is C0 − 3. Lemma 13.18
applies, and there is a triangle of type (i, j, k) in A.

As C0 − 3 is odd, and A ⊆ Aδ
K1,K2

, we find

C0 − 3 < 2K2 + 2i = 2K1 + 2K2.

Thus

C0 = 2K1 + 2K2 + 2.

Hence C1 ≥ C0 − 1 as well. □

In order to control C1 further in the context of the preceding
lemma, we insert the following.

Lemma 14.6. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′. Suppose

C ≥ 2K1 + 2K2 and C is even.

Then

C > min(4K2, 4δ − 2K2 − 2).

Proof. Suppose on the contrary that

C ≤ 4K2, 4δ − 2K2 − 2.

If K1 = 1 then K2 ≥ δ − 1 by Lemma 14.3. In this case we have
C ≤ 4δ − 2(δ − 1)− 2 ≤ 2δ, which is impossible. So we suppose

K1 > 1.

Set k = C−2K2
2 , i = ⌊C−k2 ⌋, and j = (C − k) − i. Then by our

assumptions we have

K1 ≤ k ≤ K2.

We claim also that

1 < k < i ≤ j ≤ δ.

The inequality k < i can be written as

2k ≤ C − k − 2,

which reduces to

C ≤ 6K2 − 4.
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This holds since C ≤ 4K2 and K2 ≥ 2. Furthermore

2i ≤ C − k = (C + 2K2)/2 ≤ (4δ − 2)/2 = 2δ − 1,

and thus

i ≤ δ − 1 and j ≤ i+ 1 ≤ δ.

Now consider the following amalgamation.

a1 a2

u1 u2

c

1

1

i

k
−
1

k

j
i−

1 i−
1

2

The factor omitting a2 contains a geodesic, so is not a Henson
constraint. The factor omitting a1 contains the distinct lengths j, k >
1, so is not a Henson constraint.

The triangles (a1, u1, c), (a1, u2, c), and (a1, u1, u2) are geodesic,
and the other triangles involved here have types

(2, k − 1, k), (2, i− 1, i− 1), (i− 1, j, k − 1), and (i− 1, j, k).

These all satisfy the triangle inequality, so they are indeed triangle
types.

As K1 ≤ k ≤ K2 and k < δ, by Lemma 13.18 a triangle of type
(2, k − 1, k) belongs to A. By Lemma 13.12 a triangle of type (2, i−
1, i− 1) belongs to A. The third triangle has even perimeter C − 2,
so belongs to A by Lemma 13.14.

We claim finally that there is also a triangle of type

(i− 1, j, k)

in A. As the perimeter of this triangle is C−1, it suffices to check that
this triangle belongs to Aδ

K1,K2
. This comes down to the inequality

C − 1 ≤ 2K2 + 2k,

which corresponds to the definition of k.
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Therefore the amalgamation diagram can be completed in A. The
distance d(a1, a2) must be k − 1 or k, and as i+ j + k = C we find

d(a1, a2) = k − 1.

So the triangle (a1, a2, c) has type (i, j, k−1). As i+j+(k−1) = C−1
is odd, we must then have the inequality

C − 1 < 2K2 + 2(k − 1) = C − 2

and so we arrive at a contradiction. □

Lemma 14.7. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′. Suppose
that

C0 ≤ 2δ +K1 and K1 < K2.

Then C1 = 2K1 + 2K2 + 1 and C0 = 2K1 + 2K2 + 2.

Proof. By Lemma 14.5 we have

C0 = 2K1 + 2K2 + 2,

and C1 ≥ C0 − 1. We claim C1 = C0 − 1.
Suppose C1 > C0. Then C = C0 is even, and by Lemma 14.6 we

have

2K1 + 2K2 + 2 > min(4K2, 4δ − 2K2 − 2).

As K2 > K1 we have

2K1 + 2K2 + 2 ≤ 4K2,

so our inequality becomes

2K1 + 2K2 + 2 >4δ − 2K2 − 2;

K1 + 2K2 ≥2δ − 1.

Then

C0 = (K1 + 2K2) + (K1 + 2) ≥ 2δ +K1 + 1,

contradicting our initial hypothesis. □

Lemma 14.8. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
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of diameter δ ≥ 3 with associated parameters K1,K2, C, C
′. Suppose

that K2 is odd and that

3K2 ≤ 2δ − 1.

Then C1 ≤ 4K2 + 1.

Proof. This will require an amalgamation argument.
Suppose on the contrary that

C1 > 4K2 + 1.

Our assumptions imply K2 < δ− 1, and hence by Lemma 14.3, we
have K1 > 1. As K2 is odd, we have

3 ≤ K2 ≤ δ − 2 and δ ≥ 5.

If C0 ≤ 4K2, then C = C0, and by Lemma 14.4 we find

C0 > min(2δ +K1, 2K1 + 2K2),

while 2δ +K1 ≥ (3K2 + 1) +K1 ≥ 2K1 + 2K2, so we have

C0 > 2K1 + 2K2.

Then by Lemma 14.6 we find

C0 > min(4K2, 4δ − 2K2 − 2) = 4K2,

and we have a contradiction. Thus in fact

C0 > 4K2.

Now let i = (3K2+1)/2. Then 1 < i ≤ δ. Consider the amalgama-
tion

a1 a2

u1 u2

c

1

3

i

K 2
+
1

K
2

ii−
1 i−

3

4

Note that K2 + 2 ≤ K2 + (K2 + 1)/2 = (3K2 + 1)/2 ≤ δ. Thus all
lengths in this diagram are in the range [1, δ].
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Each factor contains at least two lengths greater than 1, so is not
a Henson constraint.

There are four nongeodesic triangles involved in this diagram. Two
of them have even perimeter:

cu1u2 (4, i− 3, i− 1) p = 3K2 + 1 ≤ 2δ;
ca2u2 (K2 + 2, i− 3, i) p = 4K2 < C0.

Thus these types are represented in A.
The other two nongeodesic triangles involved have odd perimeter:

a2u1u2 (4,K2 + 1,K2 + 2) p = 2K2 + 7 ≤ 4K2 + 1 < C1;
cu1a2 (K2 + 1, i− 1, i) p = 4K2 + 1 < C1.

In order to see that triangles of these types are in A, we must show
that they are in Aδ

K1,K2
.

Both perimeters are at least 2K2 + 1, so it suffices to check the
inequalities corresponding to the bound K2:

2K2 + 7 < 2K2 + 2 · 4;
4K2 + 1 < 2K2 + 2(K2 + 1).

As these inequalities are satisfied, our amalgamation diagram has a
completion in A. In this completion, the vertex u1 forces

d(a1, a2) = K2 or K2 + 2.

Therefore A must contain a triangle of one of the following types:

(K2, i, i) or (K2 + 2,K2 + 2, 3).

These have odd perimeter, respectively 4K2 + 1 and 2K2 + 7, so we
must then have one of the corresponding inequalities

4K2 + 1 < 2K2 + 2 ·K2;

2K2 + 7 < 2K2 + 2 · 3,

and as both fail, we reach a contradiction. □

Lemma 14.9. Let A be a 4-trivial amalgamation class of finite met-
ric spaces corresponding to a countable metrically homogeneous graph
of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′. Suppose
that K2 is even and

3K2 ≤ 2δ − 2, C0 = 4K2 + 2.

Then C1 = 4K2 + 1.
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Proof. We have C1 ≥ 4K2 + 1 by Lemma 13.19. Suppose

C1 > 4K2 + 1.

Let i = (3/2)K2 + 1. Consider the amalgamation

a1 a2

u1 u2

c

1

K
2 +

1

i

K 2
−
1

2

ii−
1 i−

2

K2

Here K1 ̸= 1, δ − 1, δ, so neither factor is a Henson constraint.
The nongeodesic triangles occurring in this diagram have types

(2,K2 − 1,K2), (K2, i− 2, i− 1), (K2 + 1, i− 2, i), and (K2 − 1, i− 1, i).

These triangles have perimeters respectively

2K2 + 1, 4K2 − 1, 4K2 + 1, and 4K2.

As 4K2 < C0 the last is realized.
For the other three triangles, we apply Proposition 13.22. As the

three perimeters are odd, at least 2K1+1, and less than C1, it suffices
to check the inequalities corresponding to K2, namely

2K2 + 1 < 2K2 + 2 · 2;
4K2 − 1 < 2K2 + 2 ·K2;

4K2 + 1 < 2K2 + 2 · (K2 + 1).

Since these all hold, it follows that the amalgamation diagram can
be completed in A.

The possible values of d(a1, a2) are K2− 1 and K2. So the triangle
(a1, a2, c) has type

(i, i,K2 − ϵ)

with ϵ = 0 or 1, and perimeter 4K2 + 2 − ϵ. If ϵ = 0 then this
is C0, which is impossible. So d(a1, a2) = K2 − 1 and the triangle
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(a1, a2, c) has odd perimeter 4K2 +1. Its type must therefore satisfy
the inequality

4K2 + 1 ≤ 2K2 + 2(K1 − 1).

But this fails, so we have a contradiction. □

Lemma 14.10. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that K1 <∞ and

C0 ≤ 2δ +K1.

Then C1 = 2K1 + 2K2 + 1 and C0 = 2K1 + 2K2 + 2.

Proof. If K1 < K2 then Lemma 14.7 applies. So suppose that

K1 = K2.

By Lemma 14.5 we have

C0 = 4K2 + 2;

C1 ≥ 4K2 + 1.

Since C0 = 4K2 + 2 ≤ 2δ +K1 = 2δ +K2 we have

3K2 ≤ 2δ − 2,

and one of Lemmas 14.8, 14.9 applies □

Lemma 14.11. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Then one of the following holds.

1. K1 +K2 ≥ δ + 1;
2. K1 = 1, K2 = δ − 1;
3. K1 > 1, K1 +K2 = δ, C1 = 2δ + 1, and C0 = 2δ + 2.

Proof. This differs from Lemma 14.3 only in Case 3, where we
specify the value of C1. So we may suppose

K1 > 1, K1 +K2 = δ, and C0 = 2δ + 2.

Then Lemma 14.10 determines C1. □

As a slight variation we have the following.
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Lemma 14.12. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that K1 <∞ and C1 = 2δ + 1. Then

K1 +K2 = δ and C0 = 2δ + 2.

Proof. By Lemma 13.19 we have

C1 ≥ min(2δ +K2, C0 − 1).

As C1 < 2δ +K2 it follows that C1 ≥ C0 − 1 and thus C0 = 2δ + 2.
We still need to check that K1 +K2 = δ.

As C1 = 2δ + 1 we have K2 < δ. By Lemma 14.11 if K1 = 1 we
have our result. So suppose

K1 ≥ 2.

By Lemma 14.10 we have

C1 = 2K1 + 2K2 + 1,

and thus K1 +K2 = δ. □

Lemma 14.13. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that

C0 > 2δ +K1.

Then

K1 + 2K2 ≥ 2δ − 1.

Proof. We may suppose that K2 < δ.
Let K1 ≡ ϵ (mod 2) with ϵ = 0 or 1. Consider the following amal-

gamation.

a b

u

v

K1

1

δ −
ε

δ

K1

Of course the triangle (a, u, v) belongs to A. As the perimeter p of
the triangle (b, u, v) is K1+2δ− ϵ, the perimeter is even. As p < C0,
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the triangle (b, u, v) also belongs to A. Thus this diagram can be
completed in A.

As K2 < δ, in the completed diagram we must have d(a, b) = δ−1,
so that the triangle (a, b, u) has type

(K1, δ − 1, δ − ϵ).

In particular, the triangle (a, b, u) has odd perimeter. Since this
triangle is in A, we must have the inequality

(δ − 1) + (δ − ϵ) ≤ 2K2 +K1.

If ϵ = 0 this is our claim. If ϵ = 1, then K1 is odd and 2K2 +K1 ≥
2δ − 2, so again our claim follows. □

Proposition 14.14. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that

K1 <∞, C ≤ 2δ +K1.

Then one of the following holds.
1. C ′ = C + 1 and:

C = 2K1 + 2K2 + 1 ≥ 2δ + 1 and K1 + 2K2 ≤ 2δ − 1.

2. C ′ > C + 1 and:

K1 = K2 and C = 4K2 + 1 = 2δ +K2.

Proof. If C = 2δ+1, then by Lemma 14.12 we have K1+K2 = δ
and C0 = 2δ + 2, so C ′ = C + 1 and C = 2K1 + 2K2 + 1. Also as
C = 2δ + 1 we have K2 < δ, and thus

K1 + 2K2 = K2 + δ ≤ 2δ − 1.

So we arrive at Case 1.
Suppose therefore that

C > 2δ + 1.

If C0 ≤ 2δ +K1, then by Lemma 14.10 we have

C = 2K1 + 2K2 + 1 and C ′ = C + 1.

In particular, the condition C0 ≤ 2δ +K1 becomes

K1 + 2K2 + 1 ≤ 2δ.
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and so we have the situation described by (1).
So we may suppose

C0 > 2δ +K1.

Then our initial hypothesis gives

C1 ≤ 2δ +K1.

Case 1. Suppose C1 = C0 − 1.
Then we have

C1 = 2δ +K1, C0 = 2δ +K1 + 1.

By Lemma 14.4 we have

2δ +K1 > 2K1 + 2K2, K1 + 2K2 ≤ 2δ − 1

Then by Lemma 14.13 we have

K1 + 2K2 = 2δ − 1.

Thus C1 = 2K1 + 2K2 + 1, and we have Case 1.

Case 2. Suppose that C0 > C1 + 1.
Then by Lemma 13.19 we have

C1 ≥ 2δ +K2.

As C1 ≤ 2δ +K1, we have C1 = 2δ +K2 and K1 = K2. Again, by
Lemma 14.4 we have

2δ +K2 > 4K2; 3K2 ≤ 2δ − 1

and by Lemma 14.13 we find

3K2 = 2δ − 1,

arriving at the situation envisioned in (2). □

14C. The high case: C > 2δ +K1

Lemma 14.15. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that

C > 2δ +K1.

Then 3K2 ≥ 2δ.
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Proof. By Lemma 14.13 we have

K1 + 2K2 ≥ 2δ − 1.

If 3K2 < 2δ, then we find K1 = K2 and 3K2 = 2δ − 1. Then by
Lemma 14.8, we have

C1 ≤ 4K2 + 1 = 2δ +K2 = 2δ +K1,

contradicting our hypothesis. □

Lemma 14.16. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that C1 > C0 > 2δ +K1 and 3K2 = 2δ. Then

C0 > 2δ +K2.

Proof. Suppose on the contrary that C0 ≤ 2δ +K2. Then K1 <
K2. By Lemma 14.13, we find

3K2 ≥ 2K2 + (K1 + 1) ≥ 2δ.

As 3K2 = 2δ, we conclude

K2 = K1 + 1, C0 = 2δ +K2.

Consider the following amalgamation.

a1 a2

u1 u2

c

1

K
2

δ

K 2
−
1

1

δ
δ −

1 δ −
1

K2

Each factor contains two distinct lengths K1, δ greater than 1, so
is not a Henson constraint.

The nongeodesic triangles involved in this diagram have the types

(1,K2,K2), (K2, δ − 1, δ − 1), (K2 − 1, δ − 1, δ), and (K2, δ − 1, δ).
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The first of these is in A by definition. The second and third triangles
have perimeter equal to C0 − 2, and are in A by Lemma 13.14. So
consider the last type:

(K2, δ − 1, δ),

of perimeter p = C0 − 1 < C1. It suffices to check that triangles of
this type are in Aδ

K1,K2
.

As p ≥ 2K1 + 1, it suffices to check the inequality

C0 − 1 ≤ 2K2 + 2 ·K2 = 2δ +K2,

which holds.
The amalgamation diagram can be completed inA with d(a1, a2) =

K2 − 1 or K2. Thus the triangle (a1, a2, c) has type (K2 − 1, δ, δ)
or (K2, δ, δ), and in the second case the perimeter is C0, which is
impossible. So A must contain a triangle of type (K2 − 1, δ, δ) and
odd perimeter C0 − 1, yielding the inequality

C0 − 1 ≤ 2K2 + 2(K2 − 1) = 2δ +K2 − 2,

which is a contradiction. □

Lemma 14.17. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′. If
K2 ≥ δ − 1, then either C ′ = C + 1 or C = 3δ − 1.

Proof. If C ≥ 3δ − 1, then our claim follows easily. So suppose

C < 3δ − 1 and C ′ > C + 1.

If C is odd then by Lemma 13.19 we find

C ≥ 2δ +K2 ≥ 3δ − 1,

a contradiction. So

C = C0 is even.

Now let (i, j, k) be the type of a triangle in A with perimeter

p = i+ j + k = C + 1

and with i ≤ j ≤ k. Then

i < δ and k ≥ 3.

If C ≤ 2δ +K1, then by Proposition 14.14 we have

C = 2δ +K2 ≥ 3δ − 1,
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a contradiction. Hence

C > 2δ +K1.

Therefore

i > K1.

Now consider the following amalgamation.

a1 a2

u1 u2

c

1

1

i

k
−
2

k

j
i−

1 i

2

Each factor contains a geodesic, so is not a Henson constraint.
The nongeodesic triangles involved in this diagram have types

(2, i− 1, i), (1, i, i), (i− 1, j, k − 2), and (i, j, k).

The last of these is in A by hypothesis. As K1 ≤ i ≤ K2, there is a
triangle of type (1, i, i) in A. Lemma 13.18 shows that a triangle of
type (2, i−1, i) is in A. We claim that there is also a triangle of type

(i− 1, j, k − 2)

in A.
First, we check the triangle inequality for this triple. As i ≤ j ≤

k ≤ i+ j, this comes down to the inequality

j ≤ (i− 1) + (k − 2).

As i + j + k = C0 + 1 ≥ 2δ + 3, we have i ≥ 3, and the inequality
follows. Now the perimeter p = (i−1)+ j+(k−2) is C0−2, so there
is a triangle of this type in A by Lemma 13.14.

Thus the amalgamation diagram has a completion in A. Then
d(a1, a2) = k − 1, so the triangle (a1, a2, c) has type (i, j, k − 1)
and perimeter C, a contradiction. □
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Lemma 14.18. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′. If

2K2 + 2 < C < δ + 2K2

then C ′ = C + 1.

Proof. Let k = C − 2K2. Then

3 ≤ k < δ.

Consider the following amalgamation.

a1 a2

u1 u2

c

1

1

K 2

k
−
1

k
+
1

K
2K 2
K
2

2

Each factor contains a geodesic, so is not a Henson constraint.
If this diagram has a completion in A, then we have d(a1, a2) = k,

and the triangle (a1, a2, c) has type (k,K2,K2) and perimeter C,
which is a contradiction. Since neither factor is a Henson constraint,
one of the nongeodesic triangles involved must be a forbidden trian-
gle.

The triangle types in question are

(2,K2,K2), (1,K2,K2), (k ± 1,K2,K2).

As 2K2+2 < C is even, there is a triangle of the first type in A, and
by definition there is one of the second type. So one of the triangle
types

(k ± 1,K2,K2)

must be forbidden.
Let us check that these are in fact triangle types. The triangle

inequality takes the form

k + 1 ≤ 2K2, C ≤ 4K2 − 1.
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Now 2K2 ≥ K1 +K2 ≥ δ by Lemma 14.3, and C < δ + 2K2 ≤ 4K2,
so this holds.

Triangles of type (k±1,K2,K2) have perimeter C±1. Now suppose
toward a contradiction that C ′ > C+1. If C is odd, then both triangle
types are realized, so suppose that C is even. We claim that these
triangle types are in A in this case as well.

By assumption

C − 1 > 2K2 + 1 ≥ 2K1 + 1,

so the perimeters satisfy the required lower bound p ≥ 2K1 + 1. It
remains to check the inequalities corresponding to the parameter K2.
We require the following inequalities.

C + 1 ≤ 2K2 + 2 ·K2; C ± 1 < 2K2 + 2(k ± 1).

We showed above that C ≤ 4K2 − 1. Furthermore

C ± 1 = 2K2 + k ± 1 < 2K2 + 2(k ± 1),

since k > 1. So both triangle types (k ± 1,K2,K2) are in A, and we
arrive at a contradiction.

Thus C ′ = C + 1. □

Lemma 14.19. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′. If
K2 = δ and C > 2δ +K1, then C ′ = C + 1.

Proof. If C > 2δ + 2, then by Lemma 14.18, either C ≥ 3δ or
C ′ = C + 1. If C ≥ 3δ then in any case C ′ = C + 1. So we may
suppose

C ≤ 2δ + 2.

As C > 2δ +K1, we find

K1 = 1, C = 2δ + 2.

Consider the following amalgamation.
Each factor contains a geodesic, so is not a Henson constraint.
The nongeodesic triangles involved here are (u1, c, u2), (a1, c, u2),

and (a2, c, u2), of types

(2, δ − 1, δ), (1, δ, δ), and (3, δ, δ).

The first two types are certainly in A. If we suppose C ′ > C + 1,
then a triangle of the third type is also in A, and the diagram can
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a1 a2

u1 u2

c

1

1

δ

1

3

δ
δ −

1 δ

2

be completed in A, with d(a1, a2) = 2. So the triangle (a1, a2, c) has
type (2, δ, δ), contradicting C = 2δ + 2. □

Lemma 14.20. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′. If
C > 2δ +K1 and C ′ > 2δ +K2, then C ≥ 2δ +K2.

Proof. Suppose on the contrary

C < 2δ +K2 < C ′.

Then by the previous lemma we have

K2 < δ.

Let C ′ −K2 ≡ ϵ (mod 2) with ϵ = 0 or 1. Consider the following
amalgamation.

a b

u

v

δ −
1

δ −
K
2

δ −
ε

δ

K2

The triangle (a, u, v) has type (δ − K2,K2, δ − 1) and perimeter
2δ− 1 ≥ 2K1 +1. So to see that this type is realized in A, it suffices
to check the inequality

(δ − 1) +K2 ≤ 2K2 + (δ −K2),

which is evident.
The triangle (b, u, v) has type (K2, δ, δ − ϵ) and perimeter

p = 2δ +K2 − ϵ ≡ C ′ (mod 2).
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As p < C ′, to see that this is represented in A it suffices to check the
inequalities

p ≥ 2K1 + 1; p ≤ 2K2 + 2K2.

The first holds since K1 < δ.
By Lemma 14.15 we have 3K2 ≥ 2δ and the second inequality

holds.
Therefore the diagram has a completion in A. Let i be the value

of d(a, b) in this completion. Then i ≥ K2.
We claim that the perimeter of (a, b, u) is at least C. If ϵ = 0 then

i+(δ−1)+(δ−ϵ) ≥ 2δ+K2−1 ≥ C. If ϵ = 1 then C ≡ K2 (mod 2)
and C < 2δ +K2, so C ≤ 2δ +K2 − 2 and the inequality still holds.

Since the perimeter 2δ + i− 1− ϵ ≥ C, we must have

i+ ϵ+ 1 ≡ C ′ (mod 2); i ≡ K2 + 1.

So the perimeter of the triangle (a, b, v) is odd. This gives the in-
equality

δ + i ≤ 2K2 + (δ −K2)

i ≤ K2,

which contradicts the conditions

i ≥ K2 and i ≡ K2 + 1 (mod 2).

□

Lemma 14.21. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that the following hold.

1. C > 2δ +K1.
2. K1 + 2K2 = 2δ − 1.

Then C ≥ 2δ +K1 + 2.

Proof. Notice that K1 is odd.
Consider the following amalgamation.
Each factor contains the lengths δ and δ − 1, so is not a Henson

constraint.
The nongeodesic triangles involved in this diagram have the types

(1,K1,K1), (K1, δ − 1, δ − 1), (K1 + 1, δ − 1, δ), and (K1, δ − 1, δ).
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a1 a2

u1 u2

c

1

K
1 +

1

δ

K 1

1

δ
δ −

1 δ −
1

K1

A triangle of the first type is in A by definition. The last type has
even perimeter

2δ +K1 − 1 < C,

and thus is also in A.
There remain the types

(K1, δ − 1, δ − 1) and (K1 + 1, δ − 1, δ).

with odd perimeters 2δ+K1−2 and 2δ+K1 < C. As these perimeters
are at least 2K1 + 1, to see that triangles of these types are in A it
suffices to check the following inequalities.

2δ − 2 ≤ 2K2 +K1; 2δ − 1 ≤ 2K2 +K1 + 1,

both of which hold by hypothesis.
Therefore the amalgamation diagram has a completion in A, with

d(a1, a2) = K1 or K1 + 1.

A triangle of type (K1, δ, δ) has odd perimeter, and

δ + δ = K1 + 2K2 + 1 > 2K2 +K1,

so this triangle type violates the constraint afforded by K2, hence
does not occur in A. Thus we have

d(a1, a2) = K1 + 1.

Then the triangle (a1, a2, c) has perimeter 2δ + K1 + 1, and thus
C ̸= 2δ +K1 + 1. □

Lemma 14.22. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that
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1. 2δ +K1 < C < 2δ +K2.
2. K2 ≤ δ − 2.

Then C ′ = C + 1.

Proof. Suppose toward a contradiction that

C + 1 < C ′.

Let k = C − 2δ. Then k < δ − 2. Consider the following amalga-
mation.

a b

u

v

k +
2

2

δ

δ

k + 1

The triangle (a, u, v) has type (2, k+1, k+2) and perimeter 2k+5.
We claim that 2k + 5 < C, or equivalently C < 4δ − 5. Indeed
C < 2δ +K2 ≤ 3δ − 2 ≤ 4δ − 5.

To see that the triangle (a, u, v) is in A it suffices to check the
following inequalities.

2k + 5 ≥ 2K1 + 1; 2k + 5 ≤ 2K2 + 2 · 2.

As K1 < k < K2, both inequalities hold. Thus the triangle (a, u, v)
belongs to A.

The triangle (b, u, v) has type (k+1, δ, δ) and perimeter C+1. We
claim that the triangle (b, u, v) is in A.

Since we have assumed C+1 < C ′, it suffices to check the inequal-
ities

C + 1 ≥ 2K1 + 1; C + 1 ≤ 2K2 + 2(k + 1).

As C > 2δ the first inequality is clear. The second inequality reduces
to

C + 2K2 + 1 ≥ 4δ.

Indeed, we have

C + 2K2 + 1 > (2δ +K1) + (2K2 + 1) ≥ 2δ + (2δ − 1) + 1 = 4δ,

by Lemma 14.13.
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Thus the diagram can be completed in A, with d(a, b) ≥ δ − 2. If
d(a, b) = δ − 2 or δ, then the triangle (a, b, u) has perimeter C or
C + 2, a contradiction. Thus

d(a, b) = δ − 1.

So the type of the triangle (a, b, v) is (2, δ − 1, δ), which yields the
inequality

(δ − 1) + δ ≤ 2K2 + 2; K2 ≥ δ − 1,

contrary to our hypothesis. □

Proposition 14.23. Let A be a 4-trivial amalgamation class of finite
metric spaces corresponding to a countable metrically homogeneous
graph of diameter δ ≥ 3 with associated parameters K1,K2, C, C

′.
Suppose that

K1 <∞, C > 2δ +K1.

Then the following hold.
1. K1 + 2K2 ≥ 2δ − 1.
2. 3K2 ≥ 2δ.
3. If K1 + 2K2 = 2δ − 1, then C ≥ 2δ +K1 + 2.
4. If C ′ > C + 1 then C ≥ 2δ +K2.

Proof. The first three points hold by Lemmas 14.13, 14.15, and
14.21 respectively. Now suppose

C ′ > C + 1.

We must show that C ≥ 2δ +K2.
If C = C1, then C1 < C0 − 1 and by Lemma 13.19 we find C ≥

2δ +K2. So suppose

C = C0.

If K2 ≥ δ − 1, then by Lemmas 14.17 and 14.19, we find

K2 = δ − 1 and C = 3δ − 1 = 2δ +K2,

and our claim holds.
On the other hand if K2 ≤ δ − 2 then Lemma 14.22 gives the

result. □

We now have enough to check the admissibility of the parameter
sequence (δ,K1,K2, C0, C1).
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Proposition 14.24. Let A be a 4-trivial amalgamation class of finite
metric spaces associated with a countable metrically homogeneous
graph. Then the associated numerical parameter sequence

(δ,K1,K2, C0, C1)

is admissible.

Proof. We have previously noted that the parameter sequence is
acceptable, and we began the present chapter by observing that there
is nothing to prove if K1 =∞. So we suppose

K1 <∞.

If C ≤ 2δ +K1, then the conditions for admissibility are given by
Proposition 14.14.

If C > 2δ +K1 then the conditions for admissibility are given by
Proposition 14.23. □

This gives us the bulk of Part (II–B) of our main theorem. It re-
mains to pin down the interactions between the numerical parameters
and the set S of Henson constraints.

Theorem (Main Theorem, Part II, Variant 2—Subdivided). Let Γ
be a 4-trivial countable metrically homogeneous graph of diameter
δ ≥ 3, and let A be the associated amalgamation class of finite metric
spaces. Then the sequence of parameters

(δ,K1,K2, C0, C1)

is admissible.
If all minimal constraints for A are either triangles or Henson con-

straints, then the sequence of parameters

(δ,K1,K2, C0, C1,S)

is also admissible.

Proof. We dealt with the numerical parameter sequence

(δ,K1,K2, C0, C1)

in Proposition 14.24.
Accordingly, we now suppose that A is determined by triangle con-

straints and Henson constraints. We must check that the additional
constraints on S which are required for admissibility are satisfied.
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These constraints are found in Definition 11.4. We may assume
that

K1 <∞.

Then the required conditions may be stated as follows.

— If C = 2δ + 1 and S is nonempty, then δ ≥ 4 and S consists of
a clique and its antipodal companions.

— If K1 = δ, then S is empty.
— If K1 = 1 and C = 2δ + 2, then S is empty.

The case C = 2δ + 1.

This falls under Type (II), with C = 2K1+2K2+1, so K1+K2 = δ.
We first check that C ′ = C + 1 (Type (IIA)). Otherwise, we have
the conditions

K1 = K2, 3K2 = 2δ − 1,

and thus 3(δ/2) = 2δ − 1, or δ = 2.
Since C ′ = C + 1, we are speaking of the antipodal case. So the

distance δ will not occur in a Henson constraint of order greater than
3, and any Henson constraint in S will be an antipodal companion
of a clique. Furthermore, S is closed under the operation of forming
antipodal companions, so if S is non-empty it must reduce to a single
clique and all of its antipodal companions.

In this case, we must eliminate the possibility

δ = 3.

By Fact 11.9, the possibilities for antipodal Γ are explicitly known
when δ = 3, and are antipodal double covers of one of the following
graphs.

(a) the pentagon (5-cycle);
(b) The product K3□K3 of two 3-cliques;
(c) an independent set In (n ≤ ∞);
(d) The random graph G∞.

The first two graphs mentioned are not 4-trivial, as noted in §13I.
And in the third and fourth cases, S is empty.
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The case K1 = δ and C = 3δ + 1.

In particular K1 > 1, and the configurations in S must be of the
form

(A1, . . . , Ak)

where the Ai are vertices or pairs of adjacent vertices, and the dis-
tance between elements of distinct sets Ai, Aj is δ.

Our claim is that under the stated hypothesis, all such configura-
tions already occur in A, and therefore S is empty.

Claim 1. Γδ is connected of diameter δ ≥ 3 with associated pa-
rameter K1 = δ.

We denote the parameters of Γδ corresponding to δ and K1 by δ̃
and K̃1.

Let us be more explicit about the conditions on Γ. As K1 = δ, by
the admissibility conditions the possibility C ≤ 2δ+K1 is ruled out.
Therefore we have

K1 = K2 = δ;

C = 3δ + 1, C ′ = C + 1.

We claim that every distance d in the range 1 ≤ d ≤ δ occurs in Γδ.
That is, we must check that the triangle types (d, δ, δ) are realized.
As C > 3δ we need only check for d odd that we have the inequalities

2δ + d ≥ 2K1 + 1; 2δ ≤ 2K2 + d,

and as K1 = K2 = δ this is clear.
So Γδ, viewed as a graph with edge relation d(x, y) = 1, is con-

nected of diameter δ̃ = δ, and is countable metrically homogeneous.
Furthermore we claim that Γδ is not of exceptional type. This fol-

lows easily from our assumptions on the constraints of Γ.
Finally, we claim that Γδ contains a triangle of type (1, δ, δ), so

that K̃1 = δ.
For this, we make use of an explicit amalgamation, as follows.
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a1 a2

u1 u2

c

1

δ

1

δ

δ

δ −
1

2 δ

δ

Neither factor is a (1, δ)-space or a (1, δ − 1)-space, so to see that
the factors occur in A it suffices to check the triangles. These are of
types

(1, 1, 2), (1, δ, δ), (δ, δ, δ), (δ − 1, δ − 1, δ), (δ − 1, δ, δ). (2, δ − 1, δ)

As the only constraints on triangles apply to perimeter less than
2δ + 1 these are all realized in A.

In the amalgam, the vertex u1 forces d(a1, a2) ≥ δ − 1 and the
vertex c prevents d(a1, a2) = δ − 1, so the configuration a1a2u1u2 is
as required.

This proves the claim.

Claim 2. For a, b a pair of adjacent vertices of Γ, the graph

Γδ(a, b) = Γδ(a) ∩ Γδ(b)

is again a countable metrically homogeneous graph of diameter δ ≥ 3,
not of exceptional type, with associated parameter K1 = δ.

We first check that Γδ(a, b) contains an edge. This involves an amal-
gamation much like the previous one.

a1 a2

u1 u2

c

1

δ

1

δ

1

δ −
1

2 δ

δ
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All that has changed is that the distance d(a2, u2) is now 1. As the
triangles containing a2, u2 are of types

(1, δ, δ) and (1, δ − 1, δ),

the factors are realized in A, and in the amalgam we have the desired
configuration (a1a2u1u2).

Now the lengths in the range (2, . . . , δ − 1) are clearly realized in
Γδ(a, b) as the corresponding configurations are not forbidden. The
distance δ is also realized because if we write (abcc′) for the desired
configuration, it suffices to find (abc) in Γδ(c

′), and this is covered by
Claim 1.

Thus Γδ(a, b) is connected and countable metrically homogeneous.
One checks that it is not of exceptional type directly, by checking
that the relevant configurations are not forbidden (and noting that
the configuration corresponding to an edge in Γδ(a, b) was already
checked).

Finally, we claim that Γδ(a, b) contains a triangle (c1, c2, d) of type
(1, δ, δ), where we choose notation so that d(c1, c2) = 1. Then this
corresponds to a configuration (abc1c2) in Γδ(d). By Claim 1 Γδ(d)
satisfies the same conditions as Γ, and the configuration (abc1c2) is
simply an edge in Γδ(a, b), so this follows.

This proves the second claim.
Now it follows inductively that any configuration consisting of n

pairs (ai, bi) with d(ai, bi) = 1 and all other distances equal to δ
will be realized in Γ. As any forbidden configuration compatible with
K1 > 1 would embed in one of this type, it follows that S is empty.

The case K1 = 1 and C = 2δ + 2.

In this case, Γδ is a complete graph. As Γ is not antipodal, Γδ is
infinite. Thus all cliques Kn embed into Γ.

On the other hand C ′ = C + 1: the alternative (in Type (III)) is
C ≥ 2δ + K2 and K2 ≤ 2. This gives 2δ − 1 ≤ K1 + 2K2 ≤ 5 and
δ = 3, K2 = 2. Thus K1+2K2 = 2δ− 1 and in this case we have the
constraint C ≥ 2δ +K1 + 2, which is a contradiction.

Since C ′ = C + 1, we have no triangle of perimeter 3δ, so any
Henson constraint would necessarily consist of exactly two cliques at
distance δ, say S = (Km,Kn) with m ≤ n. Assuming that n and
m + n are minimized, we fix a vertex a ∈ Kn and adjoin a vertex b
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with

d(b, a) = 1;

d(b, x) = δ − 1 (x ∈ Km);
d(b, y) = 2 (y ∈ Kn \ {a}),

and view the resulting configuration as an amalgam with the dis-
tances between a and Kn \ {a} to be determined. Again the bound
C = 2δ+2, C ′ = C+1 forces these distances all to be equal to 1, and
we are left to consider the factors of the amalgam. The (1, δ)-spaces
involved are available by induction, and the triangles involved are all
of suitably bounded perimeter. □

Next, we turn our attention in the remainder of this Part to what
can be said without assuming 4-triviality. We first take up local
analysis, meaning we consider the structure of Γi in those cases in
which an edge is present (presumably, whenever K1 ≤ i ≤ K2, but
this point has not actually been proved in general).





CHAPTER 15

LOCAL ANALYSIS

15A. Introduction

At this point, we have completed the analysis of amalgamation
classes determined by constraints on triangles and constraints of Hen-
son type (normal or antipodal). This completes the detailed presen-
tation of our catalog, and provides some initial justification for its
contents.

What follows provides some essential tools for analyzing poten-
tial counterexamples to the classification conjecture. We consider the
following explicit form of the main conjecture.

Conjecture (Conjecture 2, explicit form). Any countable metrically
homogeneous graph of generic type is of one of the following two forms

1. Aδ
K1,K2,C0,C1,S with admissible parameters

(δ,K1,K2, C0, C1,S)

where S is a set of (1, δ)-spaces.
2. Aδ

a,n (antipodal).

Since the countable metrically homogeneous graphs of non-generic
type were previously classified, a proof of this conjecture would com-
plete the classification of countable metrically homogeneous graphs.
Given a countable metrically homogeneous graph of generic type, we
have already associated to it an acceptable sequence of parameters
(δ,K1,K2, C0, C1,S), and the next goal would be to show that this
sequence of parameters is admissible, so that the corresponding class
A∗ = Aδ

K1,K2,C0,C1,S exists, We could then take as our target the
claim that the given class A coincides with the class A∗.

It is natural to approach this problem via local analysis. By this we
mean the study of the induced metric spaces Γi. Given a countable

315
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metrically homogeneous graph of diameter δ, and a fixed value i ≤ δ,
we recall that Γi consists of the points at distance i from a fixed
basepoint, with the induced metric. We are mainly interested in the
case in which Γi contains a pair of points at distance 1, and can hence
be usefully viewed also as a graph. In this case we aim to show that
Γi is itself a metrically homogeneous graph, and then by some form of
induction one would argue either that Γi is already in our catalog, or
else that Γi has precisely the same associated parameters as Γ does,
which is also helpful, though in a more limited way.

Our conjectured classification includes detailed predictions con-
cerning the structure of Γi, in terms of the parameters associated
with Γ, but at this point we aim at something more qualitative, as
expressed by Theorem 1.32 and Proposition 1.33, recalled below.

The first of these results justifies our remarks about the use of
induction to identify or constrain Γi in the presence of an edge.

Theorem (1.32). Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ, and suppose i ≤ δ. Suppose that
Γi contains an edge. Then Γi is a countable metrically homogeneous
graph (and, in particular, is connected).

Furthermore, Γi is primitive and of generic type, apart from the
following two cases.

1. i = δ;
K1 = 1; {C0, C1} = {2δ + 2, 2δ + 3};
Γδ is an infinite complete graph (hence not of generic type).

2. δ = 2i;
Γ is antipodal (hence Γi is imprimitive, namely antipodal).

This leaves aside the question of the relationship of the parameters
for Γi to the parameters for Γ. We will return to this point in our
analysis of the case of infinite diameter in Chapter 16.

The second result of this chapter states that when K1 ≤ 2, the
first result can be applied. While this condition is very restrictive,
this will be a useful tool in the remainder of this part. This result is
also very useful when δ ≤ 3, the case studied in Amato, Cherlin, and
Macpherson [2021].

Proposition (1.33). Let Γ be a countable metrically homogeneous
graph of diameter δ. Suppose

K1 ≤ 2.



15A. Introduction 317

Then for 2 ≤ i ≤ δ − 1, Γi contains an edge.

The proofs of these two results depend on one major case division:
K1 = 1 or K1 > 1. A more expressive statement of this case distinc-
tion is the following: Γ1 contains an edge, or Γ1 is an independent
set.

At a more technical level, some of the results achieved along the
way to our two main results have some independent value for the
further development of the classification theory in their own right.

First, we have the following structural results which are related to
the main results but are not subsumed under them.

Lemma 15.2 can be rephrased as a characterization of generic
type by a stronger and more readily applicable pair of condi-
tions.
– Γ1 is an independent set, a Henson graph, or a random

graph.
– For u1, u2 vertices at distance 2, the graph induced on their

common neighbors is isomorphic to Γ1.
Lemma 15.3 isolates the antipodal case: if some Γi is finite then
i = δ and we are in the antipodal case.
Lemma 15.4 has a rather technical look to it: namely, setting
aside the case i = δ, K1 = 1, the metric space Γi is connected
with respect to the relation “d(x, y) = 2.” This helps with the
proof of Theorem 1.32, and unlike the latter, it can be proved
by induction on i. In addition this result is occasionally useful
in its own right.
Lemma 15.5 states mainly that each vertex in Γδ−1 has infinitely
many neighbors in Γδ (a one-sided variation on Lemma 15.2).
Last in this vein: the technical Lemma 15.15 concerns only the
case K1 = 2: if u1, u2 are at distance 2, then the intersection
Γ2(u1) ∩ Γ2(u2) contains an edge.

Then we have some structural results which are evident when the
graphs in question are of known type, and which are helpful in laying
the foundations of local analysis.

Lemma 15.6 relates the perimeters of triangles to the diameter
of Γδ.
Applying our main results, we get the very useful Lemma 15.16
concerning the realization of certain configurations of order 4
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containing geodesics, which we expect to make extensive use of
in the future in place of the hypothesis of 4-triviality. In the
present monograph this lemma is invoked only in §15H.

15B. The type of Γi

We aim here at the following statement, to be proved at the end
of the section.

Lemma 15.1. Let Γ be a countable metrically homogeneous graph
of generic type and diameter δ ≥ 3. Let i ≤ δ, and suppose that the
graph Γi is connected.

Then Γi is metrically homogeneous, and one of the following holds.
(a) Γi is of generic type, and not bipartite of diameter 2.
(b) i = δ, C ≤ 2δ + 2 and C ′ = C + 1, Γδ is complete, and either

— K1 = 1, or
— Γ is antipodal;

We remark that complete bipartite graphs actually meet our defi-
nition of generic type, so must be explicitly excluded in the statement
of our lemma.

We begin our analysis with some useful technical points which will
be worth bearing in mind throughout.

Lemma 15.2. Let Γ be a countable metrically homogeneous graph
of generic type. Let u1, u2 be vertices of Γ with d(u1, u2) = 2, and let
Γ′ = Γ1(u1, u2) be the graph induced on their common neighbors

Γ1(u1, u2) = Γ1(u1) ∩ Γ1(u2).

Then Γ′ ∼= Γ1.

Proof. If K1 > 1 (Γ1 is an independent set), then this is given
by the definition of generic type (Definition 1.17). So we suppose

K1 = 1.

By the definition of generic type and the Lachlan/Woodrow classifi-
cation, Γ1 must then be a Henson graph Hn with 3 ≤ n < ∞, or a
random graph.

We may take the vertices u1, u2 in question to lie in Γ1. In this
case Γ′ contains the chosen basepoint v∗ for Γ, along with Γ′ ∩ Γ1,
and in addition Γ′ is a homogeneous graph. If Γ1 is a random graph
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then Γ′ ∩ Γ1 is also a random graph, and it follows at once that Γ′ is
a random graph, hence isomorphic to Γ1. So we suppose

Γ1
∼= Hn,

a Henson graph with

3 ≤ n <∞.

Inspection of {v∗}∪ (Γ′ ∩Γ1) gives us the following properties for Γ′.
1. Γ′ contains an infinite independent set;
2. Γ′ contains Kn−1;
3. Γ′ contains a geodesic path (a1, a2, a3) of length 2.
Since Γ′ embeds in Γ1, it will suffice now to check that Γ′ is prim-

itive. This will follow once we show the following.
(4) Γ′ contains a configuration (v1v2v3) with

d(v1, v2) = 1

d(v1, v3) = d(v2, v3) = 2

The configuration (u1u2v1v2v3) can be found in Γ1 if n ≥ 4, and
hence in Γ, so we now assume

n = 3.

Thus Hn is the generic triangle-free graph.
In this case, we use a direct amalgamation argument (Figure 119).

v1 v2 a v3

u1

u2

Figure 119. u1u2v1v2v3a

We first adjoin an additional vertex a to the configuration (u1u2v1v2v3)
satisfying the following.

d(a, u1) = d(a, v2) = d(a, v3) = 1

d(a, v1) = d(a, u2) = 2
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Set V = {a, v1, v2, v3}. We view V ∪ {u1, u2} as a 2-point amalga-
mation problem with the distance d(u1, u2) to be determined. This
is depicted as a graph in Figure 119, with non-edges representing
distance 2.

We will show that if the desired configuration (u1u2v1v2v3) does
not embed in Γ then the factors V ∪ {u1} and V ∪ {u2} embed in Γ;
and then we show that in the resulting amalgam, (u1u2v1v2v3) will
be the desired configuration.

In the factor (u1v1v2v3a), we have v1, v2, v3, a ∈ Γ1(u1) and as
(v1v2v3a) is triangle free this is realized.

For the factor (u2v1v2v3a), we view this as a 2-point amalgama-
tion problem with the distance d(a, v1) to be determined. It is easy
to see that the subfactors of this configuration occur in Γ. In the
resulting amalgam, if d(a, v1) = 1 then we have an isomorphic copy
(au2v1v2v3) of the desired configuration (u1u2v1v2v3) and we con-
clude. Otherwise, if d(a, v1) = 2, we have the second factor of the
amalgamation diagram on display.

So we may suppose that this amalgamation diagram occurs in Γ.
In its completion, since Γ1(u1) must be triangle free, we will have
d(u1, u2) = 2, as required.

Thus condition (4) above is verified, and the proof is complete. □

Corollary 15.2.1. Let Γ be a countable metrically homogeneous
graph of generic type and diameter δ. Let i < δ. Then Γ1 embeds
into Γi.

Proof. Apply Lemma 15.2 to a pair of vertices in Γi±1 at distance
2. □

The following simple principle is useful for isolating the antipodal
case.

Lemma 15.3. Let Γ be a countable metrically homogeneous graph
of generic type and diameter δ with Γi finite for some i, 1 ≤ i ≤ δ.

Then Γ is of antipodal type and i = δ.

Proof. Let u be the vertex taken as a basepoint for Γ. We consider
the model theoretic algebraic closure of u, denoted acl(u); this is the
union of the finite orbits of the stabilizer of u in the automorphism
group. By homogeneity, acl(u) is the union of {u} together with the
sets of the form Γi for which Γi is finite.

But by Corollary 15.2.1, if i < δ then Γi contains a copy of Γ1.
Thus only Γδ can be finite, and if this occurs, then acl(u) = {u}∪Γδ.
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But the relation

acl(u) = acl(v).

is an equivalence relation on Γ, and we conclude that this relation
must coincide with the relation

d(u, v) = 0 or δ.

By definition, this is the antipodal case. □

Lemma 15.4. Let Γ be a countable metrically homogeneous graph
of generic type and diameter δ. Suppose i ≤ δ, and suppose also that
if i = δ then K1 > 1. Then the metric space Γi is connected with
respect to the edge relation defined by

d(x, y) = 2.

Corollary 15.4.1. Let Γ be a countable metrically homogeneous
graph of generic type and diameter δ. Suppose i ≤ δ, that Γi is
nontrivial, and suppose also that if i = δ then K1 > 1. Then Γi is
not bipartite, and is not complete multipartite with more than one
component.

Proof of Lemma 15.4. We proceed by induction on i.
For u ∈ Γi−1, let Iu = Γ1(u)∩Γi. We claim that Iu is contained in

a single connected component Cu of Γi with respect to the relation
“d(x, y) = 2.”

If K1 > 1, then this is immediate. If K1 = 1, then we are assuming
i < δ, and therefore by Corollary 15.2.1, Γi contains a copy of Γ1. As
K1 = 1 and Γ1 is neither complete nor imprimitive, it follows that the
connected component in Γi of a vertex, with respect to the relation
“d(x, y) = 2,” is closed under the relation “d(x, y) ≤ 2”. So whatever
the value of K1, the set Iu is contained in a single such component
Cu.

Take v ∈ Γi. By Lemma 15.2 v has two neighbors u1, u2 in Γi−1
with d(u1, u2) = 2. We have Cu1 = Cu2 and d(u1, u2) = 2, and Γi−1 is
assumed connected with respect to the relation “d(x, y) = 2” by our
induction hypothesis. It follows that Cu is independent of the choice
of u ∈ Γi−1, and thus Γi consists of a single such component. □
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Lemma 15.5. Let Γ be a countable metrically homogeneous graph
of generic type. Suppose 1 ≤ i ≤ δ− 1. Then for u ∈ Γi±1, Γ1(u)∩Γi

is infinite. The same holds for i = δ and u ∈ Γi−1, unless Γ is of
antipodal type.

Proof. Suppose first that

i < δ.

Then our claim follows from Corollary 15.2.1.
So suppose for the remainder of the argument that

i = δ.

For u ∈ Γδ−1, let Iu be the set of neighbors of u in Γδ. Our claim is
that Iu is infinite.

Suppose the contrary. Then Iu is finite of some fixed order k, for
u ∈ Γδ−1.

For w ∈ Γδ−2 let Jw be the set of neighbors of w in Γδ−1. We also
fix v ∈ Γδ with d(v, w) = 2 and consider Γ′ = Γ1(v) ∩ Γ1(w). Then

Γ′ ⊆ Jw ⊆ Γ1(w).

By Lemma 15.2, Γ1 embeds into Γ′. It follows that

Γ′ ∼= Jw.

since these are homogeneous graphs which embed into each other.
Since Γ′ and Jw are both contained in Γδ−1, they are isomorphic also
over the basepoint.

Now the intersection of all Iu for u ∈ Γ′ is nonempty, as it con-
tains v. Since the Iu are finite, it follows by homogeneity that the
intersection

J∗w =
⋂

u∈Jw

Iu.

is also nonempty. Furthermore, the elements of J∗w are at distance 2
from w. By homogeneity, J∗w consists of precisely the vertices of Γδ

at distance 2 from w. In particular, the set J∗w can also be expressed
as

J∗w =
⋃

u∈Jw

Iu.

and thus this union is finite.
By Lemma 15.2, Jw contains an infinite independent set of vertices

J ′w. Then J ′w contains an infinite subset J ′′w such that the sets Iu for
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u ∈ J ′′w form a ∆-system. On the other hand each of these sets Iu is
contained in the finite set J∗w. Therefore all of these sets are equal. It
follows by homogeneity that for u1, u2 ∈ Γδ−1 with d(u1, u2) = 2, we
have

Iu1 = Iu2 .

Now Γδ−1 is connected with respect to the relation “d(x, y) = 2,”
by Lemma 15.4. It follows that Iu is independent of the choice of
u ∈ Γδ−1, and therefore Γδ is finite. But then Γ is antipodal by
Lemma 15.3. □

We are dealing here with countable metrically homogeneous graphs
Γ which are not necessarily in our catalog, but which do have well-
defined associated parameters

δ,K1,K2, C, C
′,S.

We must be careful not to assume however that these parameters are
admissible, or that they give much information about Γ—at least,
not until some of the relevant issues have actually been addressed. In
particular, it will be convenient to have the following now (and more
later on).

Lemma 15.6. Suppose that Γ is a countable metrically homoge-
neous graph of diameter δ which contains a triangle of perimeter
p = 2δ + d. Then Γδ has diameter at least d.

Proof. Take a triangle (a, b, c) of maximal perimeter and of type
(i, j, k) with i+ j maximized, and i ≤ j. Let us take the notation as
follows.

d(a, b) = i; d(a, c) = j; d(b, c) = k.

If i = j = δ then our claim follows.
So suppose

i < δ.

and take b′ so that (abb′) is a geodesic with d(a, b′) = i + 1 (Figure
120).

Then d(b′, c) ≥ k − 1, so the perimeter of the triangle (ab′c) is at
least i + j + k. As (i + 1) + j > i + j this contradicts the choice of
(a, b, c). □

Now we may take up the proof of Lemma 15.1.
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a

c

b

b′

i

j

k

1

Figure 120

Proof of Lemma 15.1. We are supposing that Γi is connected.
We show first that the induced metric on Γi is the graph metric (a
point also covered in Cameron [1998]).

Suppose there is a pair of points u, v whose distance r in the in-
duced metric does not agree with the distance r′ in the graph metric,
and take r minimal. Take a path P of minimal length r′ from u to v.
Then P is a geodesic in the graph metric. Take w on P at distance
r from u along P . Then in the induced metric, d(u,w) ≤ r. By mini-
mality of r, d(u,w) = r. As d(u,w) agrees with the graph metric, by
homogeneity r = r′, and we have a contradiction.

Now since Γi is homogeneous in the induced metric, and this is the
graph metric on Γi, it follows that Γi is metrically homogeneous.

Suppose Γi is not of generic type. Consider the classification of
countable metrically homogeneous graphs of non-generic type, given
explicitly by Fact 1.18. These fall under the following headings.

1. Complete;
2. Complete multipartite with parts of order greater than 1, and

at least two parts;
3. The complement Hc

n of a Henson graph, with 3 ≤ n <∞;
4. Finite;
5. Infinite diameter.
Certainly Γi has finite diameter, so we discard the last possibility.
If Γi is finite, then Γ is antipodal and i = δ by Lemma 15.3. This

is one of our exceptional cases:

i = δ, C = 2δ + 1, C ′ = C + 1.

So we can set aside the last two possibilities, and we are left with
cases (1–3) to consider.
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Suppose first that

i < δ.

Then by Lemma 15.2, the graph Γi contains a copy of Γ1, and in
particular Γi contains an infinite independent set. This excludes cases
(1, 3), so Γi is complete multipartite. But Γi should be connected with
respect to the relation d(x, y) = 2, and so we have a contradiction.

So we suppose henceforth

i = δ.

We consider cases (1–3) individually.

Case I. Suppose Γδ is complete.
If Γδ is trivial, then Γ is antipodal and C = 2δ+1, C ′ = C +1. So

we suppose

Γδ is nontrivial.

Then Γδ is infinite, by Lemma 15.3. In particular

K1 = 1.

Also, Γδ has diameter 1, and it follows from Lemma 15.6 that there
are no triangles of perimeter greater than 2δ + 1. So by definition of
C0, C1 we find

C0 = 2δ + 2 and C1 = 2δ + 3.

This of course is one of the stated exceptions.

Case II. Suppose Γδ is complete multipartite with nontrivial parts.
Take a pair of vertices (v1, v2) in Γδ at distance 2. Extend the pair

(v1, v2) to a geodesic (uv1v2) with d(u, v2) = 3. Then necessarily
u ∈ Γδ−1.

For u ∈ Γδ−1 let Iu denote Γ1(u) ∩ Γδ.
Suppose there is some v ∈ Iu with d(v, v1) = 1. Let Av be the

part of Γδ containing v. For a ∈ Av, we have d(a, v1) = 1 and hence
d(a, u) ≤ 2. But by homogeneity, comparing v and v1, there should
be v′ in Av with d(u, v′) = 3. This contradiction shows that Iu is
contained in a unique part Îu of Γδ.

Take v ∈ Γδ. Then there is a pair u, u′ ∈ Γδ−1 of neighbors of v
with d(u, u′) = 2 (Lemma 15.2). Then Îu = Îu′ . By homogeneity,
the same applies to any pair u, u′ ∈ Γδ−1 at distance 2. As Γδ−1 is
connected with respect to the relation d(x, y) = 2, it follows that Îu
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is independent of the choice of u ∈ Γδ−1, and hence Γδ has only one
part, a contradiction.

Case III. Suppose Γδ is the complement Hc
n of a Henson graph, with

3 ≤ n <∞.
Then Γ contains an infinite clique, so Γ1 contains an infinite clique,

and must be a random graph. In particular, for any finite subset A
of Γ1, the induced graph on the set of common neighbors of A is a
homogeneous graph containing the random graph, and is therefore
the random graph.

Let I be a 2-anticlique of order n−1 in Γδ (I ∼= I
(2)
n ). The induced

graph on the set of common neighbors of I is the random graph,
hence is not contained in Γδ. Thus we can find a vertex v ∈ Γδ−1
adjacent to all vertices of I.

Now beginning with a pair of vertices u1, u2 in Γδ with d(u1, u2) =
2, and extending to a geodesic (u1u2v1) with d(u1, v1) = 3, we find
v1 ∈ Γδ−1. By homogeneity we can find u ∈ Γδ so that d(u, v) =
d(u2, v1) = 3.

Then for a ∈ I we must have d(a, u) ≥ 2. But Γδ has diameter 2,
so I ∪ {a} is a 2-anticlique of order n in Γδ, a contradiction. □

15C. Local connectivity

In the present subsection we aim at the following result.

Lemma 15.7. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ ≥ 3, and let i ≤ δ. Suppose that Γi

contains an edge. Then Γi is connected.

We first treat the more typical cases in which either i < δ or
K1 > 1.

Lemma 15.8. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ, and let i ≤ δ. Suppose that Γi

contains an edge, and one of the following holds.
(a) i < δ; or
(b) K1 > 1.

Then Γi is connected.

Proof. We may suppose i > 1. We proceed by induction on i.
Thus if Γi−1 has an edge, we suppose that Γi−1 is connected.
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For u ∈ Γi−1, we let Iu be the set of neighbors of u in Γi.
Suppose first that

The connected components of Γi have diameter at least 2.(∗)
Then each set Iu is contained in a unique connected component Cu

of Γi.
For v ∈ Γi we have a pair of neighbors u1, u2 of v in Γi−1 with

d(u1, u2) = 2, by Lemma 15.2. It follows that

Cu1 = Cu2

whenever d(u1, u2) = 2. But by Lemma 15.4, Γi−1 is connected with
respect to the relation “d(x, y) = 2,” and thus the component Cu is
independent of u ∈ Γi−1, and Γi must be connected.

Now we suppose the following.

The connected components of Γi are complete.(∗∗)
If K1 = 1, then by hypothesis i < δ, so Γi contains a copy of Γ1 by

Lemma 15.2, and this contradicts (∗∗).
So in our present case we will have

K1 > 1.

But then Γ contains no cliques of order 3, and hence the connected
components of Γi have order precisely 2. That is, there is a definable
pairing

v ↔ v′

on Γi defined by

d(v, v′) = 1.

Take u ∈ Γi−1 and consider as usual the set Iu of neighbors of u in
Γi. For v ∈ Iu we have

d(u, v′) = 2.

By Lemma 15.2 there is a vertex u1 adjacent to both u and v′, and
not equal to v. So u1 cannot be in Γi, and must be in Γi−1.

u

v

u1

v ′
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Thus Γi−1 contains the edge (u, u1), and so by induction, we sup-
pose Γi−1 is connected. In particular any pair of vertices at distance
2 in Γi−1 have a common neighbor in Γi−1.

By homogeneity, for any edge (u1, u2) in Γi−1, and for any v ∈ Iu1 ,
we have d(u2, v

′) = 1. This may be expressed as follows.

{v′ | v ∈ Iu1} ⊆ Iu2 .

Switching u1 and u2, we may conclude that

{v′ | v ∈ Iu1} = Iu2 when d(u1, u2) = 1.

When u1, u2 ∈ Γi−1 satisfy d(u1, u2) = 2, as u1, u2 have a common
neighbor in Γi−1, we find Iu1 = Iu2 . But Γi−1 is connected with
respect to the relation “d(x, y) = 2” by Lemma 15.4, and thus Iu is
independent of u. But then Γi = Iu is an independent set, and we
have assumed it contains an edge. □

Now we deal with the case left over from the previous lemma.

Lemma 15.9. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ ≥ 3, with K1 = 1. Suppose that Γδ

contains an edge. Then Γδ is connected.

Proof. The graph Γδ−1 contains a copy of Γ1 by Corollary 15.2.1,
and in particular Γδ−1 contains an edge. By Lemma 15.8, we have

Γδ−1 is connected.

For u ∈ Iδ−1, we consider the set Iu of neighbors of u in Γδ.
Suppose first that

The connected components of Γδ have diameter(†)
greater than 1.

Then for u ∈ Γδ−1, the set Iu is contained in a unique connected
component Cu of Γδ. Then as usual, there are pairs u1, u2 in Γδ−1
with d(u1, u2) = 2 and with Cu1 = Cu2 , and it follows from Lemma
15.4, that Γδ consists of a single connected component. So the case
of interest is the remaining one.

The connected components of Γδ are complete(‡)

Suppose first that for u ∈ Γδ−1, the set Iu is a union of certain con-
nected components of Γδ. This means that any pair v1, v2 of adjacent
vertices in Γδ have the same neighbors in Γδ−1, and it follows that
they have the same neighbors in Γ, apart from each other. But then
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Γ carries a nontrivial definable equivalence relation. So Γ is bipartite
or antipodal; but in either case, there would be no edge in Γδ.

So Iu will not be a union of connected components of Γδ. We extend
Iu to the set Îu which is the union of all connected components of Γδ

which meet Iu. At this point we know the following.

Îu contains a vertex at distance 2 from u.

By homogeneity, we may conclude

Îu = {v ∈ Γδ | d(u, v) ≤ 2}.
Let u1, u2 ∈ Γδ−1 be adjacent. We will show that

Îu1 = Îu2 .

For v ∈ Iu1 , we have d(u2, v) ≤ 2, and hence v ∈ Îu2 . Thus

Iu1 ⊆ Îu2 ,

and hence

Îu1 ⊆ Îu2 .

Then by symmetry Îu1 = Îu2 .
Now as Γδ−1 is connected, it follows that Îu is independent of u,

and thus Γδ = Îu. Thus all distances occurring between Γδ−1 and Γδ

are at most 2, and Iu meets every connected component of Γδ.
Suppose Γδ is not connected. Let u1, u2 ∈ Γδ be chosen to maximize

the distance

d = d(u1, u2),

and let C1, C2 be the connected components in Γδ of u1, u2, respec-
tively. Then we have C1 ̸= C2 and d ≥ 2.

If d < δ, let v be adjacent to u2 with d(u1, v) = d+1. By the choice
of d, we have v ∈ Γδ−1. Hence d(u1, v) ≤ 2, a contradiction. Thus we
conclude that

d = δ ≥ 3.

As Îu = Γδ for u ∈ Γδ−1, we have d ≤ 3. We conclude

d = δ = 3.

If v∗ is our chosen basepoint for Γ, then (v∗, u1, u2) is a triangle
of type (3, 3, 3). The basepoint v∗ belongs to Γ3(u1). The connected
component of Γ3(u1) containing u2 is contained in Γ3, because Γ3(u1)
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does not meet Γ2. Thus in Γ3(u1) we see the following configuration:
a connected component, and a vertex lying at distance 3 from each
point in that connected component.

But in Γ3, there is no vertex v which lies at distance 3 from all
vertices in one of the connected components, because v has a neighbor
u ∈ Γ2 and Iu meets each connected component.

This is a contradiction. Thus Γδ is connected. □

Now the proof of Lemma 15.7 is complete, with the first two cases
covered by Lemma 15.8, and the last case covered by Lemma 15.9.

15D. Local primitivity

Now we aim at the following.

Lemma 15.10. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ ≥ 3. Suppose that i ≤ δ, and Γi

contains an edge. Then Γi is primitive, unless one of the following
occurs.

1. i = δ, K1 = 1, and Γδ is bipartite of diameter at least 3; or
2. Γ is antipodal, δ is even, and i = δ/2.

This will require some preliminary analysis. By Smith’s theorem
(Fact 1.27), in a counterexample Γi would be either bipartite or an-
tipodal.

We already showed in Corollary 15.4.1 that if Γi is bipartite, then
i = δ and K1 = 1. In Lemma 15.1 we disposed of the case in which
Γδ is bipartite in diameter 2. So if Γδ is bipartite, we arrive at (1).
Thus our analysis will take as its starting point the assumption that
Γi is antipodal.

Lemma 15.11. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ. Let i ≤ δ. If Γi is antipodal, then
either the diameter of Γi is δ, or Γ is antipodal and i = δ.

We remark that when Γ is antipodal and i = δ, one may consider
Γδ as a trivial antipodal graph of diameter 0. For that reason we chose
to include this possibility explicitly in the statement of the lemma.

Proof. Let d be the diameter of Γi, and suppose that d < δ. Let
v1, v2 ∈ Γi with d(v1, v2) = d. Take u adjacent to v2 with d(u, v1) =
d+ 1. Then u ∈ Γj with j = i± 1.
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i

j

v1 v2 v

u

d

1 1d
+
1

If v ∈ Γi is adjacent to u, then d(v1, v) = d, so v = v2. Thus any
u ∈ Γj has a unique neighbor in Γi.

But this contradicts Lemma 15.5. □

Lemma 15.12. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ. Let i ≤ δ. If Γi contains an edge
and is antipodal, then for any pair of vertices v, v′ ∈ Γ with

d(v, v′) = δ,

and for any u adjacent to v, we have

d(v′, u) = δ − 1.

Proof. By Lemma 15.11, we may take v, v′ ∈ Γi with d(v, v′) = δ,
and then for u ∈ Γi this is just an instance of the antipodal law in
Γi. But we must also consider u ∈ Γi±1.

Suppose then that we have u adjacent to v with d(u, v′) ̸= δ − 1.
Then u ∈ Γj for some j = i± 1, and we have

d(u, v′) = δ.

i

j

v ′ v v1

u

δ

1 1δ

Suppose v1 ∈ Γi is adjacent to u and distinct from v. Then d(v′, v1) ≥
δ − 1 and d(v′, v1) ̸= δ, so

d(v′, v1) = δ − 1.

By the antipodal law in Γi, d(v, v1) = 1. Thus

For u ∈ Γj , the set Iu of neighbors of u in Γi forms a clique.

If i < δ, then Lemma 15.2 shows that the neighbors of u in Γi

contain a copy of Γ1, and we have a contradiction. So we conclude

i = δ, j = δ − 1.
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Thus Γδ has diameter δ.
Consider a pair of points v1, v2 ∈ Γδ with d(v1, v2) = 2, and any

common neighbor v of v1, v2. Then v cannot lie in Γδ−1, and therefore
v lies in Γδ.

We consider two cases. First suppose the following (illustrated be-
low).

There is a common neighbor u1 of v, v1 in Γδ−1.

Then there is also a common neighbor u2 of v, v2 in Γδ−1. Note that

d(u1, u2) ≤ 2.

Then by Lemma 15.2, u1, u2 have a common neighbor w in Γδ−2.

δ

δ − 1

δ − 2

v1
v v2

u1 u2

w

Now v1, v2, w is a triple of points at mutual distance 2. Therefore
there is a vertex u adjacent to all three vertices v1, v2, w. Then u ∈
Γδ−1 and Iu is not a clique, giving a contradiction.

Now we consider the remaining case.

There is no common neighbor of v, v1 in Γδ−1.

Take u ∈ Γδ−1. As Iu is a clique, and the elements of Iu have the
common neighbor u ∈ Γδ−1, it follows that Iu consists of a single
point. But this contradicts Lemma 15.5. □

Lemma 15.13. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ ≥ 3. Let i ≤ δ. If Γi contains an
edge and is antipodal, then Γ is antipodal, δ is even, and i = δ/2.

Proof. By Lemmas 15.11 and 15.12, the graph Γi has diameter
δ, and Γ satisfies the following special case of the antipodal law.

If d(v, v′) = δ and d(v, u) = 1 then d(v′, u) = δ − 1.

In particular

Γδ contains no edge.
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Hence

i < δ.

As the diameter of Γi is δ, we also have i ≥ δ/2. If Γ is antipodal,
then we have Γi

∼= Γδ−i, and hence δ − i ≥ δ/2. Thus i = δ/2, and
in particular δ is even. So everything we aim at holds in this case.
Therefore we suppose toward a contradiction that

Γ is not antipodal.

Claim 1. For v, v′ in Γi with d(v, v′) = δ, there are

u− ∈ Γi−1 ∪ Γi−2, u+ ∈ Γi+1 ∪ Γi+2,

with

d(v, u±) = 2, d(v′, u±) = δ.

Take u1 ∈ Γi+1 adjacent to v. Then

d(v′, u1) = δ − 1.

Now we wish to extend this configuration by a vertex u+ adjacent
to u1, at distance 2 from v, and at distance δ from v′.

i+ 1

i

u1
u+

v v ′
2

δ

To see that a suitable vertex u+ exists, we work for a moment
relative to the basepoint v′. We have u1 ∈ Γδ−1(v

′) and we consider
the set Iu1 of neighbors of u1 in Γδ(v). By Lemma 15.5 this set is
infinite, so we take u+ ∈ Iu1 with u+ ̸= v.

At this point we have

d(u1, u+) = 1, d(v′, u+) = δ, u+ ̸= v.

Since u+ ̸= v and Γi is antipodal, it follows that u+ /∈ Γi. Thus u+
is in Γi+1 or Γi+2.

Now d(v, u+) ≤ 2. If d(v, u+) = 1, then d(v′, u+) = δ − 1, a con-
tradiction. So d(v, u+) = 2.

This completes the construction of u+, and the construction of u−
is similar. Thus the claim is proved.
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Now we introduce an auxiliary graph G. The vertex set of G will
be Γδ(v

′), and the edge relation is given by

d(x, y) = 2.

The vertices v, u−, u+ are in G, with u− and u+ adjacent to v in G.

Claim 2. The vertex v is a cut vertex for its connected component
in G.

We divide G \ {v} into the two parts

A =
⋃
j<i

(Γj ∩G)

B =
⋃
j>i

(Γj ∩G)

It suffices to show that there are no edges of G joining A to B, or in
other words no a ∈ A, b ∈ B with d(a, b) = 2.

If (a, b) were such a pair then we would have

a ∈ Γi−1, b ∈ Γi+1, d(a, v′) = d(b, v′) = δ, and d(a, b) = 2.

i+ 1

i

i− 1

b

a

v ′2

δ

δ

In this case we consider a common neighbor u of a, b. Then u ∈ Γi.
As d(u, a) = 1, we have

d(u, v′) = δ − 1.

By the antipodal law in Γi we find

d(u, v) = 1.

Thus d(v, a), d(v, b) ≤ 2 and as Γδ(v
′) contains no edge we find

d(v, a) = d(v, b) = d(a, b) = 2.

Now we have just seen that any common neighbor u of a, b is a
neighbor of v. By homogeneity if we take two vertices b′, c′ in Γ2 at
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distance 2, and let a′ be the basepoint of Γ, we find that any neighbor
of b′ in Γ1 is a neighbor of c′, or by symmetry that b′, c′ have the same
neighbors in Γ1.

By Lemma 15.4, Γ2 is connected with respect to the relation given
by “d(x, y) = 2” and we conclude that all vertices of Γ2 have the
same neighbors in Γ1. It follows that every vertex of Γ2 is adjacent
to every vertex of Γ1, or in other words Γ1 ⊆ Γ1(u) for u ∈ Γ2.

Then again by symmetry, Γ1(u1) = Γ2(u2) whenever d(u1, u2) = 2.
Now taking u1 as the basepoint and u2 ∈ Γ2, we find that Γ3 is empty
and δ = 2, a contradiction.

This proves the claim: v is a cut vertex in G.
It now follows by metric homogeneity that every vertex of the graph

G is a cut vertex for its connected component. In particular G is a
forest. But as G has finite diameter, it would then have leaves, giving
a final contradiction. □

Proof of Lemma 15.10. We suppose that Γ is metrically homo-
geneous of diameter δ, and that Γi contains an edge, with i ≤ δ.

We assume further that Γi is imprimitive. In this case by Smith’s
Theorem (Fact 1.27), the graph Γi is bipartite or antipodal (possibly
both).

We consider the two possibilities separately.

Case I. Γi is bipartite.
By Corollary 15.4.1 this forces

i = δ;

K1 = 1.

This is our exceptional case (1).

Case II. Γi is antipodal.
Then Lemma 15.13 applies and gives us our exceptional case (2).

□

15E. The case of Γδ bipartite

We eliminate the exceptional case left over in Lemma 15.10.

Lemma 15.14. Let Γ be a countable metrically homogeneous graph
of generic type and of diameter δ ≥ 3. Suppose that Γδ contains an
edge. Then Γδ is not bipartite
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Proof. Assuming the contrary, we know

K1 = 1.

We make an amalgamation argument to embed a triangle of type
(2, 2, 1) into Γδ.

We consider the configuration (abcuv) where a, b, c is a triangle of
type (2, 2, 1) with

d(a, b) = d(a, c) = 2 d(b, c) = 1

d(u, a) = 1 d(u, b) = 1 d(v, a) = 1 d(v, b) = 3

d(u, v) = 2

d(u, c) = 1 d(v, c) = 2

a, b, c ∈ Γδ u, v ∈ Γδ−1

As the last line indicates, the basepoint is also included in this
configuration.

δ

δ − 1

a b c

u v

1
1 1 3

1

1

(Distances not shown explicitly equal 2.)
The existence of a, b, c in Γδ suffices to give our claim. We may view

this configuration as a two point amalgamation problem in which the
distance d(a, b) is to be determined, with the value controlled by the
vertices u, v. It therefore suffices to show that the two factors of the
diagram embed isometrically into Γ.

δ

δ − 1

a c

u v
1

1
1

(I)

δ

δ − 1

b c

u v

1 1 3

1

1

(II)
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Factor (I): (a, c, u, v)

We view the first configuration as a two point amalgamation prob-
lem with the distance from v to the basepoint to be determined. As
(a, c, v) is a triangle of type (2, 2, 1), if this distance is δ we have the
desired contradiction.

As d(a, v) = 1, the only alternative is that v ∈ Γδ−1, as desired. So
the configuration (acuv) will be embedded as shown if and only the
following conditions are satisfied.

1. The configuration (auc) embeds as shown over the basepoint.
2. The configuration (acuv) embeds into Γ, but not necessarily

respecting the distances to the basepoint.
The configuration (acu) consists of a vertex u ∈ Γδ−1 adjacent to

two vertices of Γδ at distance 2. By Lemma 15.5, u has infinitely many
neighbors in Γδ, and as we assume Γδ is bipartite, this configuration
is realized.

The configuration (acuv) is already found in Γ1.

Factor (II): (b, c, u, v)

We view this factor as a two point amalgamation problem deter-
mining the distance from u to the basepoint. As (ubc) is a triangle
of type (1, 1, 1), that distance is forced to be δ − 1.

So the configuration (bcuv) will be embedded as shown if and only
the following conditions are satisfied.

1. The configuration (bcv) embeds as shown over the basepoint.
2. The configuration (bcuv) embeds into Γ, but not necessarily re-

specting the distances to the basepoint.
Now the configuration (bcv), over the basepoint, represents a vertex

v ∈ Γδ−1 at distances 2, 3 from a pair of adjacent vertices in Γδ.
Fix v ∈ Γδ−1 and let Jv be the set of vertices in Γδ at distance at

most 2 from v. If Jv ̸= Γδ, then by the connectivity of Γδ, there is
a pair of adjacent vertices b, c with c ∈ Jv and b /∈ Jv. This is the
desired configuration.

We must show that Jv ̸= Γδ.
Assume the contrary: Jv = Γδ. Let d be the diameter of Γδ, and

take w,w′ ∈ Γδ at distance d. If d < δ then extending to w′′ adjacent
to w′ with d(w,w′′) = d + 1 gives a contradiction. Therefore d = δ.
As Γδ(w) is connected, and contains the basepoint as well as a point
in Γδ, it must contain a point of Γδ−1. This contradicts Jv = Γδ.
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At this point we have dealt with the configuration (bcv) over the
basepoint, and we turn to (bcuv), with the basepoint discarded.

Treating u as the basepoint for this configuration, we require v ∈ Γ2

to lie at distances 2,3 from a pair of adjacent points in Γ1.
So we now let Jv denote the set of vertices in Γ1 at distance at

most 2 from v, and if Jv ̸= Γ1 conclude as above.
So it suffices to show that the distance 3 occurs between vertices

in Γ1 and Γ2: or in other words, that Γ contains a triangle of type
(1, 2, 3), which is simply a geodesic.

This completes the analysis. □

15F. Proofs of Theorem 1.32 and Proposition 1.33

Now we bring together the results proved piecemeal above.
Proof of Theorem 1.32. Our assumptions are that Γ is a count-

able metrically homogeneous graph of generic type and diameter δ,
and that Γi contains an edge, where i ≤ δ.

In Lemma 15.7 we saw that Γi is connected. By Lemma 15.1, Γi is
metrically homogeneous, and one of the following conditions hold.
(a) Γi is of generic type, or
(b) i = δ, C ≤ 2δ + 2 and C ′ = C + 1, Γδ is complete, and either

— K1 = 1, or
— Γ is antipodal;

By Lemmas 15.10 and 15.14 we also have one of the following.
(c) Γi is primitive; or
(d) Γ is antipodal, δ is even, and i = δ/2.
So the exceptional cases, when Γi is either not of generic type, or

is imprimitive (but contains an edge) are as given in the statement
of Theorem 1.32. □

Now we take up Proposition 1.33, relating to the case K1 ≤ 2.
We have already assembled the necessary technical ingredients in the
proof of Theorem 1.32.

But we will treat one further point separately, as it has value for
its own sake.

Lemma 15.15. Let Γ be a countable metrically homogeneous graph
of generic type, with K1 = 2. Let u1, u2 ∈ Γ with d(u1, u2) = 2. Then
Γ2(u1) ∩ Γ2(u2) contains an edge.
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Proof. Take v ∈ Γ1, and u ∈ Γ2 adjacent to v. As Γ2 is connected
and metrically homogeneous of generic type, we may find distinct
neighbors u′1, u

′
2 of u in Γ2. As K1 > 1 and v, u′1, u

′
2 are all adjacent

to u, we have

d(u′1, u
′
2) = 2;

d(v, u′1) = d(v, u′2) = 2.

If we denote by v∗ the basepoint for Γ, then (v, v∗) is an edge lying in
Γ2(u

′
1)∩Γ2(u

′
2). By homogeneity the same configuration occurs with

u1, u2 playing the role of u′1, u′2. □

Proof of Proposition 1.33. We suppose that Γ is a countable
metrically homogeneous graph of generic type and diameter δ ≥ 3.
We assume in addition that K1 ≤ 2, which means that there is an
edge in either Γ1 or Γ2. We claim that all Γi contain edges, for 2 ≤
i ≤ δ − 1.

So fix i with

2 ≤ i ≤ δ − 1.

By Corollary 15.2.1, Γi contains a copy of Γ1. Therefore, if Γ1 contains
an edge then so does Γi. So we need only consider the case

K1 = 2,

that is, Γ1 is an infinite independent set, and Γ2 contains an edge.

Claim 1. Let u− ∈ Γi−1 and u+ ∈ Γi+1 with d(u−, u+) = 2. Then
Γ2(u−)∩Γ2(u+) meets Γi−1, and also meets Γi+1 unless Γ is antipodal
and i = δ − 1.

Take v ∈ Γi. By Lemma 15.5, v has distinct neighbors u−, u
′
− ∈

Γi−1 and u+, u
′
+ ∈ Γi+1. The claim follows.

Claim 2. Let u1, u2 ∈ Γ with d(u1, u2) = 2. Then

Γ2(u1) ∩ Γ2(u2) is connected.

Let Γ′ = Γ2(u1). By Theorem 1.32, Γ′ is metrically homogeneous,
and of generic type. If we take u2 as the basepoint for Γ′, then Γ′2 =
Γ2(u1) ∩ Γ2(u2), and by a second application of Theorem 1.32, it
suffices to show that Γ2(u1) ∩ Γ2(u2) contains an edge. But this is
given by Lemma 15.15.

This proves our second claim.
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Now we put the two claims together. We take u− ∈ Γi−1 and u+ ∈
Γi+1 with d(u−, u+) = 2. We consider the connected graph Γ2(u−)∩
Γ2(u+), which meets both Γi−1 and Γi+1, and therefore meets Γi.
Thus we get a triangle u−, u+, u with u ∈ Γi and all distances equal
to 2.

By homogeneity there is a vertex v adjacent to u−, u+, and u.
Then as u± ∈ Γi±1, we have v ∈ Γi and (v, u) is an edge in Γi, as
required. □

15G. An application

We deduce the following more specialized point.

Lemma 15.16. Let Γ be a countable metrically homogeneous graph
of diameter δ, not of exceptional local type, and let 1 ≤ i1, i2 ≤ δ with
i1, i2 distinct. Suppose that Γi1 contains an edge. Set

j− = min(d(u, v) |u ∈ Γi1 , v ∈ Γi2), j+ = max(d(u, v) |u ∈ Γi1 , v ∈ Γi2).

Suppose j− ≤ j1 ≤ j2 ≤ j+ . Then there are u, u′ ∈ Γi1 and v ∈ Γi2

with

d(v, u) = j1, d(v, u′) = j2, d(u1, u2) = j2 − j1.

i1

i2
v

j2 − j1j−

j1 j2

j+

Proof. Take v ∈ Γi2 and j with j− ≤ j < j+. Let Xj
v be the set

{u ∈ Γi1 | d(u, v) ≤ j}.

Then Xj
v is a proper non-empty subset of the graph Γi1 , which is

connected by Theorem 1.32.
Take u0 ∈ Xj

v and u1 ∈ Γi1 \Xv so that d(u0, u1) = 1. Since
d(v, u0) ≤ j and d(v, u1) > j it follows that we have

d(v, u0) = j, d(v, u1) = j + 1.

Beginning with j = j− and with a pair u0 ∈ Γi1 , v ∈ Γi2 at
distance j−, iterate this procedure to define ui with d(ui−1, ui) = 1
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and d(v, ui) = j−+ i for 0 ≤ i ≤ j+−j−. It follows that d(uj1 , uj2) =
j2 − j1. □

15H. The interpolation property revisited

In our proof of the interpolation property (Lemma 13.9) we made
heavy use of the hypothesis of 4-triviality. Some of this can be elim-
inated at the cost of additional effort. In particular we have the fol-
lowing variant of the main lemma.

Lemma 15.17. Let A be an amalgamation class of finite metric
spaces corresponding to a countable metrically homogeneous graph of
diameter δ. Suppose that

2 ≤ i ≤ δ, 2 ≤ j < δ, and 1 ≤ k ≤ δ.

If A contains triangles of the types

(1, i− 1, i− 1), (i− 1, j − 1, k) and (i− 1, j + 1, k).

then A contains a triangle of type (i, j, k).

Proof. We use the same amalgam considered in the previous ver-
sion.

a1 a2

u1 u2

c

1

1

i

j −
1

j
+
1

k
i−

1 i−
1

2

Our first claim does not require a triangle of type (1, i− 1, i− 1).

Claim 1. The factor A1 = (a1u1u2c) lies in A.

Taking a1 as the basepoint for Γ, and c ∈ Γi(a1), we require two
points u1, u2 adjacent to c in Γi−1(a1), with d(u1, u2) = 2. By Lemma
15.2, the neighbors of c in Γi−1(a1) contain a copy of Γ1, so this is
possible.
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Now we consider the factor A2 = (a2u1u2c), and here we will indeed
assume that there is a triangle of type (1, i−1, i−1) in A, or in other
words, that Γi−1 contains an edge.

Claim 2. The factor A2 = (a2u1u2c) lies in A.

Taking c as the basepoint, we require the following configuration.

u1, u2 ∈ Γi−1 a2 ∈ Γk

d(u1, u2) = 2 d(a2, u1) = j − 1 d(a2, u2) = j + 1

i2 : k

i1 : i− 1

a2

u1 u2

j
−
1 j

+
1

2

By our hypotheses the distances j − 1 and j + 1 occur between
points in Γi−1 and Γk. We apply Lemma 15.16 with i1 = i − 1,
i2 = k, j1 = j − 1, j2 = j + 1 and our claim follows. □

An inductive argument gives the following case of the Interpolation
Property.

Lemma 15.18. Let Γ be a countable metrically homogeneous graph
of generic type and diameter δ ≥ 3. Let A be the associated amalga-
mation class of finite metric spaces. Suppose that K1 ≤ 2. Then Γ
has the Interpolation Property.

Proof. Let (i, j, k) be the triangle type in question. If Γi−1 con-
tains an edge, then Lemma 15.17 applies.

By Theorem 1.32 the hypothesis that Γi−1 contains an edge holds
unless i = 2.

If i = 2, then A is assumed to contain triangles of types (1, j±1, k),
and it follows that k = j and the triangle type in question is

(2, j, j)

with j < δ.
Then by Corollary 15.2.1, Γj contains a copy of Γ1, and thus con-

tains a pair of points at distance 2. □

This then gives the following.
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Lemma 15.19. Let Γ be a countable metrically homogeneous graph
of generic type and diameter δ ≥ 3. Let A be the associated amalga-
mation class of finite metric spaces. Suppose that K1 ≤ 2. Then A
contains all triangles whose perimeter is even and bounded by 2δ.

Proof. By Lemma 15.18, Γ has the Interpolation Property. By
Lemma 13.12 the result follows. □





CHAPTER 16

THE BIPARTITE CASE

If Γ is a metrically homogeneous bipartite graph, recall that BΓ
denotes the graph induced on either half of a bipartition by the edge
relation

d(x, y) = 2.

This has the effect of rescaling the graph metric on BΓ by a factor
of 1/2, and then BΓ is again a metrically homogeneous graph.

Our aim now is to prove the following.

Theorem (1.30). Suppose that Γ is a countable bipartite metrically
homogeneous graph, and that BΓ is one of the graphs in our catalog.
Then Γ is also in our catalog. In particular, if Γ is of generic type,
then Γ has the form

Γδ
∞,0,C0,2δ+1,S

with admissible parameters

(δ,K1 =∞,K2 = 0, C0, C1 = 2δ + 1,S).

Here the parameters C0, C1 are to be omitted if δ =∞.

This result is intended to function, in a suitable inductive frame-
work, as a satisfactory reduction of the bipartite case. But as noted in
§1F, this reduction is more satisfactory in the case of finite diameter
than in the case of infinite diameter.

When Γ has infinite diameter, then BΓ will also have infinite di-
ameter, but as we shall see in Lemma 16.3, BΓ also has K1 = 1. In
this case, we will see in Chapter 17 that the determination of BΓ
can itself be reduced to the case of finite diameter. Thus in all cases,
Theorem 1.30 leads eventually to a reduction in the diameter.

345
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The proof of Theorem 1.30 begins with a lemma proving that the
relationship between the parameters of Γ and BΓ is what one would
expect (Lemma 16.3).

16A. Preliminary analysis

Since we have the full classification of metrically homogeneous
graphs of non-generic type, it suffices to prove Theorem 1.30 in the
generic case.

Another class of bipartite examples was already classified in Cherlin
[2011, Theorem 13]. Namely, if Γ is of generic type then we can show
that, typically, BΓ should be a random graph, BΓ ∼= G∞. There are
exceptions when the diameter of Γ is at most 5, and these exceptions
were treated in Cherlin [2011], as follows.

Fact 16.1 (Cherlin [2011, Theorem 13]). Let Γ be a bipartite met-
rically homogeneous graph, of diameter at least 3, and degree at least
3, and with Γ1 infinite. Then either

(BΓ)1 is isomorphic to the random graph

or BΓ and Γ are in the catalog under one of the following headings
given in Table 16.1.

Accordingly, Theorem 1.30 reduces to the following proposition. In
the statement, a metrically homogeneous graph is said to be of known
type if it is listed in the explicit version of our catalog.

Proposition 16.2. Let Γ be a countable bipartite metrically homo-
geneous graph for which

(BΓ)1 is the random graph G∞.

Suppose that BΓ is of known type. Then Γ is generic bipartite subject
to a bound on perimeter and some δ-Henson constraints, i.e.

Γ ∼= Γδ
∞,0,C0,2δ+1,S

for some even C0 with 2δ + 2 ≤ C0 ≤ 3δ + 2.
Here the parameters C0, C1 are to be omitted if δ =∞.

The next lemma clarifies the relationship between BΓ and Γ. In-
spection of our catalog indicates how the parameters defining BΓ
should relate to the parameters defining Γ. Recall that if Γ is of
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BΓ (BΓ)1 δ Γ Catalog
entry

T∞,∞ ∞ ·K∞ ∞ infinitely branching
tree T2,∞

listed as such

K∞ K∞ 3 the complement of a
perfect matching,
or the generic bipar-
tite
graph

Γ3
∞,0,8,7,∅ or

Γ3
∞,0,10,7,∅

K∞[I2] K∞[I2] 4 generic antipodal
bipartite graph
of diameter 4

Γ4
∞,0;10,9;∅

Hc
n (n ≥

3)
Hc

n 4 the generic bipartite
graph with no K

(4)
n

(anticlique)

Γ4

∞,0;14,9;{I(4)n }

Hc
3 Hc

3 5 generic antipodal
bipartite of diameter
5

Γ5
∞,0;12,11;∅

Table 16.1

generic type, but not necessarily of known type, we have a reason-
able way to specify the associated parameters (δ,K1,K2, C0, C1,S),
even if they do not provide an immediate characterization of the
graph Γ. We are able to relate the parameters of the graph BΓ to
those of the unknown graph Γ, as follows.

Lemma 16.3. Let Γ be a countable bipartite metrically homoge-
neous graph of generic type with

(BΓ)1 ∼= G∞,

the random graph.
Suppose that the parameters associated with Γ are

(δ,∞, 0, C0, 2δ + 1,S)

with δ ≥ 3. Suppose that BΓ is of known type. Then

BΓ ∼= Γδ̃
K̃1,K̃2,C̃,C̃′,S̃
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where BΓ has parameters

(δ̃, 1, K̃2, C̃, C̃ ′, S̃)

satisfying the following conditions.
— δ̃ = ⌊δ/2⌋;
— K̃1 = 1;
— C̃ ′ = C̃ + 1;
— If δ̃ = 2, then BΓ is a random graph G∞ ∼= Γ2

1,2,7;
— If δ ≥ 3, then one of the following holds.

(a) K̃2 = δ̃− 1 and Γ is antipodal of even diameter; C̃ = 2δ̃+1

and S̃ = ∅; or
(b) K̃2 = δ̃, C̃ ≥ 2δ̃ + 2.

In particular, when δ̃ ≥ 3 we have

BΓ ∼= Γδ̃
1,δ̃−1,2δ̃+1

or Γδ̃
1,δ̃,C̃,S

Proof. As we suppose (BΓ)1 ∼= G∞, the random graph, inspec-
tion of the catalog gives

BΓ ∼= Γδ̃
K̃1,K̃2,C̃0,C̃1,S̃

for some admissible choice of parameters δ̃, K̃1, K̃2, C̃0, C̃1, S̃. By def-
inition

δ̃ = ⌊δ/2⌋

As BΓ contains the random graph, its diameter δ̃ is at least 2, and
also

K̃1 = 1.

If δ̃ = 2, then as BΓ is homogeneous and contains a random graph,
it follows that BΓ is a random graph. In this case we have nothing
more to prove.

So we may now suppose

δ̃ ≥ 3.

Then by admissibility we have K̃2 ≥ δ̃ − 1. Now we treat the two
possible values for K̃2 separately.
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Case 1. K̃2 = δ̃ − 1.
Then BΓ contains no triangle of type (1, δ̃, δ̃), and therefore Γ

contains no triangle of type (2, 2δ̃, 2δ̃). Set i = 2δ̃. As Γi is connected
with respect to the relation d(x, y) = 2 (Lemma 15.4), it follows that
Γi reduces to a single point. This forces 2δ̃ = δ, and Γ is antipodal
of even diameter.

Hence BΓ is also antipodal, and in particular C̃ ′ = C̃ + 1. Thus

BΓ ∼= Γδ̃
1,δ̃−1,2δ̃+1,S̃.

By irredundance, S̃ consists at most of cliques, and there are no
forbidden cliques, so S̃ = ∅.

Case 2. K̃2 = δ̃.
In this case, as there is a triangle in BΓ of (rescaled) type (1, δ̃, δ̃),

we have

C̃ ≥ 2δ̃ + 2 > 2δ̃ +K1

and BΓ falls under clause (III) of the definition of admissibility.
If C̃ ′ > C̃ + 1, then by admissibility we have C̃ ≥ 3δ and thus

by definition C̃ ′ = C̃ + 1 (C̃ ′ imposes a vacuous constraint). Thus
C̃ ′ = C̃ + 1. □

16B. Realization of triangles

The next lemma will provide a robust interpretation of the param-
eter C0 in our graph Γ, and determine which triangles embed in Γ;
as we will see explicitly in Corollary 16.4.1.

Lemma 16.4. Let Γ be a countable bipartite metrically homoge-
neous graph with (BΓ)1 a random graph, and

BΓ ∼= Γδ̃
1,K̃2,C̃,S̃.

If (i, j, k) is a triangle type with p = i + j + k even and p < 3δ − 1,
then there is a triangle of type (i, j, k) in Γ if and only if p < 2C̃.

Proof. If the distances i, j, k are all even, then this holds by in-
spection of BΓ. So we may suppose

i is even, j and k are odd, with j ≤ k.
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Suppose first that

There is a triangle (a, b, c) of type (i, j, k) in Γ,(∗)

where

d(a, b) = i, d(a, c) = j, d(b, c) = k.

We must show p = i+ j + k < 2C̃.
If

j < δ

then take c1 with

d(c1, a) = j + 1, d(c1, c) = 1.

a

c

b

c1

i

j

k

b1

Then d(b, c1) = k±1 and (a, b, c1) is a triangle of type (i, j+1, k±1),
with all distances even. It follows that

p ≤ i+ (j + 1) + (k ± 1) < 2C̃.

If on the other hand

j = δ,

then also k = δ. Since p < 3δ − 1, we have i < δ − 1.
In this case, choose b1 with d(b1, a) = i+ 1 and d(b1, b) = 1. Then

the triangle (a, b1, c) has type (i+1, δ−1, δ). Here δ−1 = j−1 is even
and i+1, δ are odd. As i+1 < δ, the triple (δ−1, i+1, δ) falls under
the case just treated, and gives i+ j+k = (δ− 1)+ (i+1)+ δ < 2C̃.
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Now suppose conversely that

p < 2C̃, 3δ − 1.(∗∗)

We will show that the triangle type is realized.
We may suppose that

(i, j, k) is not a geodesic.

We consider separately the cases in which j < δ and j = δ.
Suppose first that

j < δ.

In this case, we consider the following 2-point amalgamation dia-
gram.

a1 a2

u1 u2

c

1

1

k

j −
1

j
+
1

i
k
−
1 k −

1

2

The factors are as follows.

a1 c

u1 u2

1

1

k

k
−
1

k
−
1

2

(I)

c a2

u1 u2

k
−
1

k −
1

i

j −
1

j
+
1

2

(II)

We must show that these factors occur in Γ.
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The factor (I) = (a1u1u2c):
Taking a1 as the basepoint in Γ, we require a vertex c ∈ Γk such

that there are two vertices u1, u2 ∈ Γ1 lying at distance k − 1 from
u.

If this is not possible, then the relation

d(x, y) = k − 1.

defines a function

f : Γk → Γ1.

In particular, if Γ is antipodal then k < δ.
Let x1, x2 ∈ Γk have d(x1, x2) = 2. Since any u ∈ Γk−1 has two

distinct neighbors in Γk, it follows that x1, x2 have a common neigh-
bor v ∈ Γk−1. Then taking u ∈ Γ1 with d(u, v) = k − 2 we find
f(x1) = f(x2) = u. As Γk is connected with respect to the rela-
tion d(x, y) = 2 (Lemma 15.4), it then follows that the function f is
constant, a contradiction.

The factor (II) = (a2u1u2c):
We should first check that the configuration shown is indeed a

metric space. As i < j + k and i+ j + k is even, we have

i ≤ (j − 1) + (k − 1),

and the triangle inequality is easily verified throughout the diagram.
So the diagram (II) represents a metric space in which all distances

are even. After rescaling by a factor of (1/2), we claim that the result
embeds in BΓ. Let us call the rescaled diagram (ĨI).

Now antipodal Henson constraints do not come into play in the
bipartite antipodal case. We check now that diagram (ĨI) does not
correspond to a δ̃-Henson constraint in S̃.

The lengths involved in (ĨI) are 1, (j ± 1)/2, (k − 1)/2, and i/2.
As j < δ we have (j−1)/2 < δ̃. So if (ĨI) is a (1, δ̃)-space then j = 3

and δ̃ = (j +1)/2 = 2. In this case BΓ is a random graph and hence
S̃ = ∅.

Now let us check that diagram (ĨI) involves no forbidden trian-
gles. We claim that the only constraints to be met are bounds on
perimeter. If K̃2 = δ this is true by definition, while if K̃2 < δ̃ then
K̃2 = δ̃ − 1 and C̃ = 2δ̃ + 1, so the constraint on perimeter suffices.

The perimeters of the four triangles occurring in diagram (II) are
p−2, 2k, and 2(j+1). Here 2k ≤ p. As (i, j, k) is not a geodesic, and
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the perimeter is even, we also have 2(j+1) ≤ p. Thus after rescaling
all perimeters are bounded by p/2 < C̃.

This disposes of the case in which j < δ. There remains the possi-
bility

j = k = δ.

Thus the triangle in question has type

(i, δ, δ)

with δ odd and i even, and i < δ − 1.
Then by the first case treated, a triangle of type (i+2, δ−1, δ−1)

is realized in Γ. So in Γδ−1 we can find a pair of vertices u1, u2 at
distance i+ 2.

δ

δ − 1

v1

u1

v2

u2i+ 2

Take v1, v2 in Γδ adjacent to u1, u2 respectively. Then d(v1, v2) ≥ i
and

d(v1, v2) ≡ i ≡ 0 (mod 2).

Now in Γδ all distances are even, and Γδ is connected with respect
to the relation d(x, y) = 2 by Lemma 15.4. Therefore we have a pair
of vertices v′1, v

′
2 in Γδ at distance i, as required. □

Corollary 16.4.1. Under the hypotheses of the previous lemma, for
some even

C0 ≥ 2δ + 2

the triangles which embed in Γ are those of even perimeter less than
C0.

Proof. All triangles in Γ have even perimeter.
If all triangles in Γ have perimeter less than 3δ−1, then by Lemma

16.4 we may take C0 = 2C̃.
Now suppose there is a triangle (a, b, c) of perimeter 3δ − ϵ in Γ,

where ϵ = 0 or 1. Then this triangle has type (δ − ϵ, δ, δ) and δ ≡ ϵ
(mod 2). We will suppose that d(a, b) = d(a, c) = δ, d(b, c) = δ − ϵ.
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a

c

b1

b

δ

δ

δ
−

ε
−
1

1

Take b1 with d(b1, b) = 1 and d(b1, c) = δ− ϵ−1. Then the triangle
(a, b1, c) has type (δ − 1, δ, δ − ϵ− 1) and perimeter 3δ − 2− ϵ, so by
Lemma 16.4 we have 3δ−2−ϵ < 2C̃. Therefore every triangle of even
perimeter embeds into Γ. We set C0 = 3δ + 2− ϵ in this case. □

16C. Embedding lemma: δ even or infinite

Having determined the triangles embedding in our bipartite graph
Γ, we now pass to general configurations.

Definition 16.5. Let Γ be a metrically homogeneous graph of di-
ameter δ, and A a finite metric space. We say that A is Γ-constrained
if every triangle in A and every (1, δ)-space contained in A embeds
isometrically into Γ.

Alternatively, if Γ∗ is the bipartite graph of generic type in the
catalog, with the same parameters as Γ, our condition means that A
embeds into Γ∗. This is a useful point, as it shows that the class of
Γ-constrained finite metric spaces is an amalgamation class.

When Γ is bipartite and the diameter δ is odd, our definition simpli-
fies, as there are no (1, δ)-spaces with more than two points contained
in Γ. In addition, there will be no vertices whose distances lie at the
extremes (1 or δ) in either half of the bipartition in this case.

So we will treat the cases of even and odd diameter slightly differ-
ently.

First we discuss the case of even diameter. We will include the case
of infinite diameter under this heading.

Lemma 16.6. Let Γ be a countable bipartite metrically homoge-
neous graph of even diameter δ. Then S̃ consists of δ̃-anticliques (a
set of points mutually at distance δ̃ = δ/2). For δ infinite, this means
that S̃ is empty.
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Proof. Let Ã be a minimal Henson constraint for BΓ, not con-
taining a forbidden triangle, and suppose that Ã contains a nontrivial
maximal clique Ã1. But Ã must contain a pair of vertices at distance
δ̃ as well, as BΓ contains an infinite clique. So we have

C0 > 2δ + 2.

If δ = 4, then as BΓ contains a random graph, there are no Henson
constraints on BΓ. So we may suppose

δ ≥ 6.

Let N be the sum of the sizes of the nontrivial maximal cliques in
Ã. We proceed by induction on N .

We work in Γ with A and A1, having the same vertices as Ã and
Ã1, but with distances doubled to 2 and δ.

Fix a ∈ A1 and set A′ = A1 \ {a}, B = A \A1. Adjoin vertices
C = {c1, c2} with d(c1, c2) = 2 and with distances d(ci, x) for x ∈ A
given by the following. the following conditions.

x = a x ∈ A′ x ∈ B

d(c1, x) 1 1 δ − 1

d(c2, x) 1 3 δ − 1

View A ∪ {c1, c2} as an amalgamation problem in which the dis-
tances between a and A′ remain to be determined, with c1, c2 forcing
the value 2.

It remains to be checked that the factors aBC and A′BC both
embed into Γ. Write both these factors as A′′BC with A′′ equal to
{a} or to A′.

For b ∈ B adjoin a new vertex b′ and set B′ = {b′ | b ∈ B}. We put
a metric on A′′BCB′ as follows.

On A′′ ∪B′, all distances equal 2. Between B′ and C all distances
equal 1. Between B and B′ we use the rule

d(b1, b
′
2) =

δ if b1 = b2;

δ − 2 otherwise.

We view the resulting configuration as an amalgamation problem in
which distances between C and B are to be determined. The vertices
of B′ force all these distances to be δ − 1.

The factors of this configuration are CA′′B′ and A′′B′B.
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C A′′ B

B ′

b

b′

1, 3 δ

1 δ

δ − 2

In A′′BB′ all distances are even so this factor can be considered
(rescaled) in BΓ. Therefore it suffices to check the triangles and Hen-
son constraints resulting. The triangles are of even perimeter at most
2δ+2 when viewed in Γ, hence are realized in BΓ. The Henson con-
straints for BΓ, when viewed in Γ, will not involve the distance δ−2.
So these either lie in A′′B or in A′′bb′ for some b ∈ B. In either case,
the parameter N is decreased.

Thus the factor A′′B′B is realized, rescaled, in BΓ, and the factor
as it stands is realized in Γ.

There remains the factor CA′′B′.

C

A′′

B ′

1, 3

1

Now it is possible that the distance 3 does not actually occur here,
and that A′′B′ represents an independent set of vertices adjacent to
the two vertices c1, c2 of C, in which case the configuration is afforded
by Lemma 15.2.

On the other hand, if the distance 3 does occur, then we may
view this configuration as an amalgamation problem with distance
d(c1, c2) to be determined, and with the value 2 forced.
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So we may consider the two factors c1A′′B′ and c2A
′′′B′ separately.

Again, c1 is adjacent to all vertices of A′′B′ so the configuration
c1A

′′B′ is realized.
There remains c2A

′′B′.

A′′

B ′

3

1

c2

We can simplify this further by adjoining a vertex d at distance
1 from everything in A′′B′, and at distance 2 from c2, as shown
below. Then the distances between A′′ and B′ are forced to be 2,
and we come down to the factors c2dA′′ and c2dB

′. Here c2dB
′ again

represents an independent set of common neighbors of two vertices
at distance 2, so we need only consider c2dA

′′.

A′′

B ′

d
3

1

1

1

c2

For c2dA
′′, we view c2 as the basepoint, and we require d ∈ Γ2

adjacent to A′′ in Γ3, which we have. □

Proposition 16.7. Let Γ be a countable bipartite metrically homo-
geneous graph of diameter δ, with δ either even or infinite. Suppose
that (BΓ)1 is a random graph and BΓ is of known type. Let (A,B)
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be a finite bipartite Γ-constrained metric space. Then (A,B) embeds
into Γ.

Proof. We proceed by induction on |B|, and for |B| fixed by
induction on

min
b∈B
|{a ∈ A | d(a, b) ̸= 1}|.

First suppose

B is empty.

Then it suffices to consider BΓ. That is, we write Ã for the metric
space A rescaled by a factor of 1/2, and we claim that Ã embeds into
BΓ.

We must check that any triangles or δ̃-Henson constraints that
embed into Ã also embed into BΓ.

First we consider a triangle T embedding into A and the corre-
sponding triangle T̃ in Ã. As A is Γ-constrained, T embeds into Γ,
and thus T̃ embeds into BΓ.

Now we consider δ̃-Henson constraints in BΓ. By Lemma 16.6 we
are dealing with an anticlique in BΓ, and this is also an anticlique in
Γ, that is, a set of vertices at mutual distance δ (this case falls away
if δ is infinite). So if A is Γ-constrained it embeds into Γ.

Now suppose

|B| ≥ 1.

Case I. There is a pair (b, b′) with d(b, b′) ̸= δ.
In this case we will reduce the size of |B|.
Set k = d(b, b′) and add witnesses a1, a2 to A satisfying

d(a1, b) = 1; d(a1, b
′) = k − 1;

d(a2, b) = 1; d(a2, b
′) = k + 1;

d(a1, a2) = 2.

Note that k ≤ δ−2, so the triangles involved have perimeters bounded
by 2δ.

We must extend the configuration A∪B∪{a1, a2} to a Γ-constrained
configuration. This may be done by amalgamating {a1, a2, b, b′} with
A ∪B over {b, b′}.

View the resulting configuration A∪B∪{a1, a2} as a 2-point amal-
gamation problem with the distance d(b, b′) to be determined. The
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factors embed in Γ by induction on |B|, and the result of the amal-
gamation is uniquely determined as the parameters a1, a2 serve to
determine d(b, b′).

If δ is infinite then there is only Case (I). So suppose that δ is finite
and even for the remainder of the argument.

Case II. B is an anticlique; that is, d(b, b′) = δ for b, b′ ∈ B.
Fix b0 ∈ B minimizing the quantity

ν(b0) = |{a ∈ A | d(a, b0) ̸= 1}|.

Suppose first that

ν(b0) = 0.

That is, b0 is adjacent to all vertices of A.

B

A

b0
δ

1

Observe that all distances d(a, b) with a ∈ A, b ∈ B, and b ̸= b0
must be equal to δ − 1. So we may view A ∪ B as an amalgamation
diagram with these distances to be determined. It suffices to show
that the two factors

A ∪ {b0} and B

occur in Γ.
The factor (A, {b0}) embeds in Γ since Γ1 is infinite. And the an-

ticlique B embeds in Γ by the hypothesis of Γ-constraint.
So now we suppose

ν(b0) > 0,

and we pick some a ∈ A with d(a, b0) ̸= 1.
Set

k = d(a, b0)
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and adjoin witnesses a1, a2 to A satisfying

d(a1, b0) = 1; d(a1, a) = k − 1;

d(a2, b0) = 1; d(a2, a) = k + 1;

d(a1, a2) = 2.

b0

a1 a2
a

1 1 k
2 k + 1

k − 1

Since this configuration is actually a geodesic (a2b0a1a) of length
k+1, it occurs in Γ. We may extend to a Γ-constrained configuration
A ∪ {a1, a2} ∪B by amalgamating with A ∪B.

View the resulting configuration A∪{a1, a2}∪B as a 2-point amal-
gamation problem with the distance d(a, b0) to be determined. The
parameters a1, a2 determined this distance uniquely. So it suffices to
check that the factors omitting b0 or a are in Γ.

The factor omitting b0 has smaller |B| and is therefore realized, by
induction.

The factor omitting a has fewer non-neighbors of b0, and the same
set B, so this is also realized, by induction.

This completes the argument. □

16D. Henson constraints: δ finite and odd

Now we turn to the case of odd finite diameter. Our goal is the
following.

Proposition 16.8. Let Γ be a countable bipartite metrically homo-
geneous graph of odd finite diameter δ, with (BΓ)1 a random graph
and BΓ of known type. Let (A,B) be a finite Γ-constrained bipartite
metric space. Then (A,B) embeds into Γ.

With Γ bipartite, any Γ-constrained metric space is automatically
bipartite, in the sense that there are no triangles of odd perimeter,
but in the statement of the proposition we also specify a particular
bipartition, to be respected by the embedding.
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The special case of this proposition for which the graph Γ is also
antipodal was given in Cherlin [2011] as follows.

Theorem (Cherlin [2011, Theorem 12]). Let Γ be a metrically ho-
mogeneous graph of odd diameter δ = 2δ′+1 which is both antipodal
and bipartite. Then BΓ is connected, and Γ is the bipartite double
cover of BΓ. The graph BΓ is a metrically homogeneous graph with
the following properties:

1. BΓ has diameter δ′;
2. No triangle in BΓ has perimeter greater than 2δ′ + 1;
3. BΓ is not antipodal.

Conversely, for any metrically homogeneous graph G of diameter
with the three stated properties, there is a unique antipodal bipartite
graph of diameter 2δ′ + 1 such that BΓ ∼= G.

This allows us to assume for the remainder of the analysis that

C0 > 2δ + 2.

Our first goal is to show that in this case there are no Henson
constraints on BΓ, other than constraints on triangles.

Lemma 16.9. Let Γ be a countable bipartite metrically homoge-
neous graph of odd finite diameter δ with (BΓ)1 a random graph and
BΓ of known type.

Then any (1, δ̃)-space which does not contain a forbidden triangle
embeds into BΓ.

Proof. In terms of Γ, the statement refers to (2, δ−1)-spaces. We
will work with the unscaled metric on Γ.

If δ ≤ 5, then δ = 5 and BΓ is the random graph G∞, which has
no constraints. So we may suppose

δ ≥ 7.

We deal first with the case of an anticlique A (all distances equal
to δ − 1). We may suppose A has order at least 4 and that

C0 ≥ 3δ − 1.

We proceed by induction on the order of A.
We take a1, a2 ∈ A and let A′ = A \ {a1, a2}. Adjoin b with

d(b, a1) = 1, d(b, a2) = δ, and d(b, a) = δ − 2 for a ∈ A′.
View A ∪ {b} as an amalgamation problem determining d(a1, a2).

It suffices to consider the factors A′a1b, A′a2b.
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b

a1

a2
A′

1

δ

δ − 2

The factor ba1A
′

We adjoin a vertex c at distance 1 from b, 2 from a1, and δ−3 from
the vertices of A′, and view ba1A

′c as an amalgamation determining
the distances from b to A′.

The factors are the geodesic a1bc and the configuration a1A
′c in

which all distances are even. As BΓ is of known type it suffices to
check that the triangles and Henson constraints for BΓ embedding
in a1A

′c embed into Γ (when written in terms of the metric on Γ).
The triangles pose no problems as C0 ≥ 3δ − 2. In the Henson

constraints the distance δ − 3 will not occur since δ > 5.
So we come down to the configuration a1A

′, and we conclude by
induction on |A|.

The factor ba2A
′

We adjoin vertices ca for a ∈ A′ at distance 1 from b, δ− 1 from a2
and a, and at distance δ−3 from the rest of A′. Let C = {ca | a ∈ A′}.
We take d(c1, c2) = 2 on C.

We view ba2A
′C as an amalgamation problem with the distances

from b to A′ to be determined, and forced to be δ − 2. So it suffices
to consider the factors ba2C and a2A

′C.
If we view ba2C as an amalgamation problem in which the distances

between a2 and C are to be determined, it suffices to check that the
factors ba2 and bC embed into Γ. But this is clear.

So we consider a2A′C. Here all distances are even and it suffices to
check that the triangle and Henson constraints for BΓ are respected.
The triangle constraints present no issues.

For the Henson constraints, since we may set aside the distance
δ − 3, we are either dealing with triangles a2aca, which we have,
or the configuration a2C. For the latter, it suffices to take v with
d(a2, v) = δ, and then a set of neighbors of v.
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This disposes of the case in which the Henson constraint is an
anticlique. Now we suppose

A contains a nontrivial clique.
We proceed by induction on the sum of the sizes of the nontrivial

maximal cliques in A.
Let A1 be a nontrivial maximal clique in A, and take a ∈ A1, A′ =

A1 \ {a}, B = A \A1. Adjoin vertices C = {c1, c2} with d(c1, c2) = 2,
d(ci, b) = δ − 2 for b ∈ B, d(c1, x) = 1 for x ∈ A1, and d(c2, a) = 3,
d(c2, x) = 3 for x ∈ A′.

View the configuration AC as an amalgamation determining the
distances between a and A′. It suffices to show the factors aBC, A′BC
are in Γ. Set A′′ = a or A′ correspondingly and consider A′′BC.

Adjoin vertices B′ = {b′ | b ∈ B} with d(x, y) = 2 on B′, d(x, c) = 1
for x ∈ B′, c ∈ C, d(x, y) = 2 for x ∈ B′, y ∈ A′′, d(b′, b) = δ − 1,
and d(b′1, b2) = δ − 3 for b1, b2 ∈ B distinct.

View A′′BCB′ as an amalgamation determining the distances be-
tween C and B, with factors A′′CB′ and A′′′BB′.

In A′′BB′ all distances are even so it suffices to consider the triangle
constraints and Henson constraints for BΓ. There are no triangles of
large perimeter unless B contains vertices at distance δ− 1, in which
case A contained a triangle of perimeter 3(δ−1) and C0 > 3(δ−1). So
it suffices to consider Henson constraints, and for this we set aside the
distance δ− 3. Thus we are left either with A′′B, to which induction
applies, or with A′′bb′ for some b ∈ B, which consists of a vertex b at
distance δ − 1 from A′′b′, a set of points mutually at distance 2. For
this we take v with d(b, v) = δ and then a set of neighbors of v.

So we come down to the factor A′′CB′.

C

A′′

B ′

1, 3

1

If the distance 3 does not occur then Lemma 15.2 applies.
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If the distance 3 does occur then A′′ = {a} and we view this con-
figuration as an amalgamation determining d(a, b′) for b′ ∈ B′. One
factor aC is a geodesic and the other factor CB′ is covered by Lemma
15.2. □

16E. A reduction lemma for δ finite and odd

We now reduce the general embedding lemma to a special case.

Lemma 16.10. Let Γ be a countable bipartite metrically homoge-
neous graph of odd finite diameter δ with (BΓ)1 a random graph and
BΓ of known type. Suppose that every Γ-constrained bipartite config-
uration (A,B) with |B| = 1 and d(a, b) = δ for a ∈ A, b ∈ B embeds
into Γ. Then every Γ-constrained configuration embeds into Γ.

Proof. We proceed by induction on |B|. If B is empty, we work
in BΓ. There are no Henson constraints by Lemma 16.9 and any
forbidden triangles would correspond to forbidden triangles in Γ.

So we suppose

|B| ≥ 1.

Let us first deal with the case

|B| = 1.

Let B = {b}.
Define

Ai = {a ∈ A | d(a, b) = i}.
Note that Ai is empty for i even. We proceed by induction on

|A \A1|.
Suppose first that for some i with 1 < i < δ there is a ∈ A with

d(a, b) = i.

Then adjoin a−, a+ with

d(a−, b) = d(a+, b) = 1;

d(a−, a) = i− 1;

d(a+, a) = i+ 1.

Extend to a Γ-constrained configuration A ∪ {a±} ∪ B. View the
resulting configuration as a 2-point amalgamation with the distance
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b

a− a a+
2

i
i− 1 i+ 1

d(a, b) to be determined. The points a1, a2 force d(a, b) = i. So it
suffices now to find the factors A∪{a−, a+} and (A \ {a})∪{a−, a+, b}
in Γ.

For the first factor, we return to the case |B| = 0 and conclude by
inspection of BΓ.

For the second factor, since we have reduced the parameter |A \A1|
by removing a, we may conclude by induction.

Now we suppose there is no a ∈ A at distance i from b for 1 < i < δ,
or in other words

A = A1 ∪Aδ.

If both A1 and Aδ are nonempty then we view A∪B as an amalgama-
tion problem with the distances between A1 and Aδ to be determined.
These distances are necessarily equal to δ − 1. So we may suppose
now

A = A1 or Aδ.

If A = A1 we conclude since Γ1 contains an infinite independent
set.

On the other hand, if A = Aδ then we have a configuration satisfy-
ing the stated condition that |B| = 1 and d(a, b) = δ for a ∈ A, and
this is in Γ by hypothesis.

So now suppose

|B| > 1.

Take b1, b2 ∈ B distinct. Let k = d(b1, b2). As k is even we have
1 < k < δ.

Adjoin vertices a−, a+ with

d(a−, b1) = 1; d(a−, b2) = k − 1;

d(a+, b1) = 1; d(a+, b2) = k + 1;

d(a1, a2) = 2.

Complete (A ∪ {a1, a2}, B) to a Γ-constrained configuration.



366 16. The Bipartite Case

We can view the resulting configuration as an amalgamation prob-
lem in which the distance d(b1, b2) is to be determined, with a unique
value forced by a1 and a2. In the factors, the cardinality of the B side
is reduced, so by induction these are available in Γ. □

16F. The embedding lemma for δ odd, finite

Lemma 16.11. Let Γ be a countable bipartite metrically homoge-
neous graph of odd finite diameter δ with (BΓ)1 a random graph
and BΓ of known type. Let N ≥ 0 be fixed. Suppose that every Γ-
constrained bipartite configuration (A,B) with

|B| = 1; |A| ≤ N ;

A = Aδ.

embeds into Γ, where Aδ = {a ∈ A | d(a, b) = δ}, B = {b}.
Then every Γ-constrained bipartite configuration (A,B) with

|B| = 1; |Aδ| ≤ N

embeds into Γ.

Proof. We set B = {b} and

Ai = {a ∈ A | d(a, b) = i}.

We proceed by induction on |A \ (A1 ∪Aδ)|.
If there is a ∈ Ak for some k with 1 < k < δ, then
Adjoin vertices a−, a+ satisfying the following conditions.

d(a−, b) = d(a+, b) = 1;

d(a−, a) = k − 1;

d(a+, a) = k + 1.

We extend to a Γ-constrained configuration A∪{b, b1, b2} by amal-
gamating with A ∪ B. Recall that according to our amalgamation
strategy in such cases, this does not introduce any new pairs at dis-
tance δ, beyond those occurring in the factors. As k < δ − 1 all such
pairs will in fact occur in A ∪ B. Note also that we necessarily have
d(b, b±) = δ − 1 here.

We extend this to a Γ-constrained configuration A ∪ {a−, a+} ∪B
by amalgamating with A ∪B.
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We view the resulting configuration as a 2-point amalgamation
problem with the distance d(a, b) to be determined, and controlled
by the parameters a−, a+. So it suffices to show that the factors
A ∪ {a−, a+} and (A \ {a}) ∪ {a−, a+, b} embed into Γ.

The factor A∪{a−, a+} is realized as usual by embedding into the
known graph BΓ.

In the second factor

A∗ ∪ {b}
with A∗ = (A \ {a})∪{a−, a+}, we have at most N points at distance
δ from b, and removal of a decreases the parameter |A \ (A1 ∪ Aδ)|.
So in this case we conclude by induction.

This leaves the case in which

A = A1 ∪Aδ.

Then in an amalgam of (A1, B) with (Aδ, B) we must have d(a, a′) =
δ − 1 for a ∈ A1 and a′ ∈ Aδ. Thus it suffices to check that the fac-
tors (A1, B) and (Aδ, B) embed into Γ. The factor (A1, B) is available
since Γ1 is an infinite independent set, and the factor (Aδ, B) is avail-
able by hypothesis.

This completes the analysis. □

Lemma 16.12. Let Γ be a countable bipartite metrically homoge-
neous graph of odd finite diameter δ with (BΓ)1 a random graph
and BΓ of known type. Let N ≥ 2 be fixed. Suppose that every Γ-
constrained bipartite configuration (A′, B′) with

|B′| = 1; A′ = Aδ;

|A′| < N

embeds into Γ. Let (A,B) be a Γ-constrained bipartite configuration
with

|B| = 1; A = Aδ;

|A| = N.

Suppose there is a pair a1, a2 ∈ A with d(a1, a2) < δ−1. Then (A,B)
embeds into Γ.

Proof. We let B = {b} and

k = d(a1, a2) < δ − 1.

As k is even, we have k > 1.
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We adjoin elements b−, b+ satisfying the following.

d(b−, a1) = d(b+, a1) = 1;

d(b−, a2) = k − 1;

d(b+, a2) = k + 1.

We extend to a Γ-constrained configurations A∪{b, b−, b+}. Recall
that our amalgamation strategy in such cases does not introduce
any pairs at distance δ beyond those already in one of the factors.
As k < δ − 1 this means that the only pairs at distance δ in this
configuration are those in (A,B).

We view the resulting configuration

A ∪ {b, b−, b+}.
as a 2-point amalgamation problem with the distance d(a1, a2) to be
determined, and controlled by the parameters b±. It suffices to show
that the factors of this amalgamation diagram embed into Γ.

These factors have the form

A∗ ∪ {b, b−, b+}.
with A∗ = (A \ {ai}) ∪ {b, b−, b+} and i = 1 or 2. Now we need to
return to a situation in which the three points b, b−, b+ are reduced
to one.

Consideration of a1, b, b−, b+ shows that

d(b, b−) = d(b, b+) = δ − 1.

We adjoin a parameter a3 with

d(a3, b) = 1;

d(a3, b−) = d(a3, b+) = δ.

Then we extend to a Γ-constrained configuration A∗∪{a3}∪{b, b−, b+}.
This configuration may be viewed as an amalgamation diagram

in which the distances d(b, b−) and d(b, b+) are to be determined,
and are controlled by the parameter a3. So it suffices to embed the
corresponding subfactors

A∗ ∪ {a3, b} and A∗ ∪ {a3, b−, b+}.
into Γ.

Now in A∗ ∪ {a3, b}, we again have |B| = 1, and now the number
of points of A∗ ∪ {a3} at distance δ from b is less than N . So by our
hypothesis and Lemma 16.11, this configuration embeds into Γ.
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Now we consider the factor

A∗ ∪ {a3, b−, b+}.
Here we introduce additional parameters a4, a5 satisfying

d(a4, b−) = d(a4, b+) = 1;

d(a5, b−) = 1;

d(a5, b+) = 3.

We extend to a Γ-constrained configuration A∗∪{a3, a4, a5}∪B. We
may view this as a 2-point amalgamation with the distance d(b−, b+)
to be determined, and controlled by the parameters a4, a5. So we
come down to the individual factors

(A∗∗, {b′})

with b′ = b− or b+ and A∗∗ = A∗ ∪ {a3, a4, a5}. Recall that there are
no points a ∈ A∗ with d(b′, a) = δ.

Furthermore since BΓ is not complete, we have

δ > 3,

and thus the only point a ∈ A∗∗ at distance δ from b′ is a3.
Since N ≥ 2, Lemma 16.11 applies here. □

Lemma 16.13. Let Γ be a countable bipartite metrically homoge-
neous graph of odd finite diameter δ with (BΓ)1 a random graph and
BΓ of known type. Then every Γ-constrained bipartite configuration
(A,B) with |B| = 1, d(a, b) = δ for a ∈ A and b ∈ B embeds into Γ.

Proof. We proceed by induction on N = |A|. If N ≤ 2, then
the hypothesis of Γ-constraint gives the required embedding. So we
suppose

N ≥ 3.

If there is a pair of vertices a1, a2 ∈ A with d(a1, a2) < δ − 1, then
Lemma 16.12 applies. So we suppose

d(a, a′) = δ − 1 for a, a′ ∈ A.

Fix two vertices a1, a2 in A and set A0 = A \ {a1, a2}. Adjoin a
vertex b1 satisfying the following conditions.

d(b1, a1) = 1, d(b1, a2) = δ, d(b1, a) = δ − 2 for a ∈ A0,
d(b1, b) = δ − 1.



370 16. The Bipartite Case

View the resulting configuration as an amalgamation problem with
the distance

d(a1, a2)

to be determined. The parameter b1 ensures that this distances is
equal to δ − 1. So it suffices to show that the two factors (A0 ∪
{ai, b, b1}) embed into Γ for i = 1, 2.

We adjoin additional vertices a−, a+ satisfying the following con-
ditions.

d(a−, b1) = d(a+, b1) = 1,

d(a−, a) = δ − 3 for a ∈ A0,
d(a+, a) = δ − 1 for a ∈ A0.

Extend to a Γ-constrained configuration A0 ∪ {ai, a−, a+, b, b1}.
Here as usual we avoid introducing further pairs at distance δ.

View the resulting configuration as an amalgamation diagram in
which the distances

d(b1, a) for a ∈ A0

are to be determined, and are controlled by the parameters a−, a+.
So it suffices to show that the corresponding subfactors

{ai, a−, a+, b, b1} and A0 ∪ {ai, a−, a+, b}
embed into Γ.

In the second of these factors we have |B| = 1 and the vertex b is
at distance δ only from the points of A0 ∪{ai}. So Lemma 16.11 and
the induction hypothesis ensure that this configuration embeds into
Γ.

So we come down to the configuration

{ai, a−, a+, b, b1}.

b b1

ai a− a+

δ − 1

δ
1 1

2

Here to simplify further we introduce a parameter a3 with

d(a3, b) = 1, d(a3, b1) = δ,
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and extend to a Γ-constrained configuration {ai, a−, a+, a3}∪{b, b1}.
Setting A′ = {ai, a−, a+, a3}, we then reduce to the configurations

A′ ∪ {b} and A′ ∪ {b1} in which |B| = 1 and the number of points in
A′ at distance δ from b or from b1 is at most 2. As N > 2, Lemma
16.11 applies. □

Now we may assemble these ingredients.
Proof of Proposition 16.8. Let (A,B) be an arbitrary Γ-con-

strained bipartite finite metric space. We need to show that (A,B)
embeds into Γ isometrically. But Lemma 16.10 reduces the problem
to the case treated in Lemma 16.12. □

16G. Conclusion of the proof

At this point the proof of Theorem 1.30 is complete. Corollary
16.4.1 gives us an appropriate value for C0. If δ is odd and finite,
then Proposition 16.8 shows that

Γ ∼= Γδ
∞,0;C0,2δ+1.

If δ is even or infinite, then Proposition 16.7 shows that

Γ ∼= Γδ
∞,0;C0,2δ+1;S,

where if S is nonempty, it consists of a single δ-clique of order at
least 4 (by irredundance).

In the second case, we note that the role of S depends on the value
of C0.

1. If C0 ≤ 3δ, then S will be empty (by irredundancy).
2. If C0 = 3δ + 2, then S is either empty or consists of a single

δ-anticlique {Iδn} with n ≥ 4,





CHAPTER 17

INFINITE DIAMETER

Our next target is the following reduction of the classification prob-
lem in infinite diameter to the finite diameter problem. Of course, if
our catalog at some point needs to be enlarged, then this result will
need to be revisited.

Theorem (1.26). Suppose that every countable metrically homoge-
neous graph of finite diameter is of known type. Then every countable
metrically homogeneous graph is of known type.

Let Γ be a countable metrically homogeneous graph of infinite di-
ameter. Since the non-generic case has been fully classified, we may
suppose

Γ is of generic type.(⋆)

In particular, the parameter sequence

δ,K1,K2,S

associated with Γ is well-defined. As the diameter is infinite, the
parameters C0, C1 have been dropped. In this context, Henson con-
straints are cliques. One hopes that the parameter K2 is also super-
fluous, but this must still be shown.

In view of Theorem 1.30 and the reduction of that statement to
Proposition 16.2, we have the following.

Remark 17.1. If every countable metrically homogeneous graph of
generic type with K1 = 1 is of known type, then every countable
metrically homogeneous bipartite graph is of known type.

So in what follows we may suppose

K1 <∞.(⋆⋆)

373



374 17. Infinite diameter

17A. Toward Theorem 1.26

We aim next at the following lemma, which reduces Theorem 1.26
to something much more concrete.

Lemma 17.2. Suppose that every countable metrically homogeneous
graph of finite diameter is of known type. Let Γ be a countable metri-
cally homogeneous graph of infinite diameter, with K1 <∞. Let K =
max(K1, 2). Suppose that ΓK contains a triangle of type (K1,K1, 1).
Then Γ is of known type, specifically of the form

Γ∞K1,S

with S either empty or consisting of one clique.

We prepare for this as follows.

Lemma 17.3. Suppose that every countable metrically homogeneous
graph of finite diameter is of known type. Let Γ be a countable metri-
cally homogeneous graph of infinite diameter, with K1 <∞. Let K =
max(K1, 2). Suppose that ΓK contains a triangle of type (K1,K1, 1).
Then for i ≥ K, we have the following.

Γi contains triangles of type (j, j, 1) for K1 ≤ j ≤ i.

Proof. We proceed by induction on i with

i ≥ K.

We first check the claim for i = K. If K1 > 1, this is our as-
sumption. If K1 = 1, then K = 2 and we need to check that Γ2

contains triangles of types (1, 1, 1) and (2, 2, 1). This can be seen by
considering Γ1.

Now we pass from i to i+ 1. Let us write Γ̃ for Γi, and then write

(δ̃, K̃1, K̃2, C̃, C̃ ′, S̃)
for the associated parameters.

By our inductive hypothesis, we know in particular that Γ̃ contains
an edge. By Theorem 1.32, Γ̃ is of generic type, and primitive. We
are assuming that Γ̃ is of known type.

Our induction hypothesis amounts to

K̃1 = K1; K̃2 ≥ i.

Observe also that

δ̃ = 2i.
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Suppose first that

K̃2 > i.

Then Γ̃i+1 contains triangles of types (j, j, 1) for K̃1 ≤ j ≤ K̃2,
and in particular for K1 ≤ j ≤ i + 1. Therefore the same applies to
Γi+1, and the inductive step is complete.

So we must exclude the alternative

K̃2 = i.

Now by the admissibility conditions on the parameters associated to
Γ̃, we have the following possibilities.
Type (II): K̃1 + K̃2 ≥ δ̃; C̃ = 2(K̃1 + K̃2) + 1;
Type (III): K̃2 ≥ (2/3)δ̃ = (4/3)i.

If Γ̃ is of Type (III), then as (4/3)i > i, we have K̃2 > i, and we
arrive at a contradiction.

So suppose Γ̃ is of Type (II). Then we get

K̃1 + K̃2 ≥ δ̃ = 2i = 2K̃2,

and therefore

K̃1 = K̃2 = i.

Hence

C̃ = 4i+ 1 = 2δ̃ + 1.

If C ′ = C + 1, then Γ̃ is antipodal; but as Γ̃ is primitive, this is a
contradiction.

If C ′ > C + 1, then in Type (II) we have

3K̃2 = 2δ̃ − 1; 3i = 4i− 1; i = 1.

But i ≥ K ≥ 2, a contradiction. □

Lemma 17.4. Suppose that every countable metrically homogeneous
graph of finite diameter is of known type. Let Γ be a countable met-
rically homogeneous graph of infinite diameter and generic type con-
taining a clique of order n ≥ 3 (in particular, K1 = 1). Then for
i ≥ 2, Γi contains a clique of order n.

Proof. We proceed by induction on n, with the base case n = 3.
We use an explicit amalgamation, as shown.
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n− 1

A
a0

u u− u+

2

1
1

i
i− 1 2

i+ 1

Here the auxiliary parameters u−, u+ serve to force d(a0, u) = i and
the desired configuration is the clique A ∪ {a0} extended by u. We
also take d(u±, a) = 2 for a ∈ A. If the factors of this configuration
embed into Γ then in the amalgam, A ∪ {a0} is contained in Γi(u).

The factor omitting u can be viewed as A∪{u−, u+} inside Γ1(a0).
Since A ∪ {u−, u+} embeds into Γ1, this is available.

So we come down to the factor

A ∪ {u, u−, u+}.

n− 1

A

u u− u+

2

i
i− 1 2

i+ 1

We claim that this factor embeds into Γi and hence into Γ.
By Theorem 1.32, Γ̃ = Γi is a countable metrically homogeneous

graph of generic type. We write (δ̃, K̃1, K̃2, C̃, C̃ ′, S̃) for the associated
parameters.

The diameter is δ̃ = 2i, so all of the distances shown are less than
the diameter. Therefore it suffices to show that this configuration
contains no forbidden triangles or δ̃-Henson constraints for Γi.

We first consider the triangles involved. The maximal perimeter
involved is 2i + 3 < 2δ̃, so there is no forbidden triangle of large
perimeter. The triangle types of odd perimeter represented here are

(i, i, 1), (i, i± 1, 2), (2, 2, 1),

and these occur in Γi by Lemma 17.3.
As there are no pairs at distance δ̃ = 2i here, the only δ̃-Henson

constraints to be checked are cliques. But the cliques involved have
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order at most n − 1; if n > 3 then these are available by induction,
and otherwise it suffices to note that Γi contains edges. □

Proof of Lemma 17.2. We consider a finite configuration A which
contains no triangle of odd perimeter less than 2K1 + 1, and no for-
bidden clique. We must show that A embeds into Γ.

We take

i ≥ max(K1, max
a,a′∈A

d(a, a′)).

We claim that A embeds into Γ̃ = Γi. As usual we write (δ̃, K̃1, K̃2, C̃, C̃ ′, S̃)
for the parameters associated with Γ̃. We must check that A contains
no forbidden triangle or δ̃-Henson constraint for Γi.

We deal first with triangles. By Lemma 17.3 we have

K̃1 = K1;

K̃2 ≥ i.

Therefore any triangle of odd perimeter p and type (j, k, ℓ) in A
satisfies

p ≥ 2K̃1 + 1;

p ≤ 2i+ 2min(j, k, ℓ) ≤ 2K2 + 2min(j, k, ℓ).

We also have p ≤ 3i < 2δ̃ < C̃.
Thus all triangles occurring in A occur in Γi.
Now we deal with the δ̃-Henson constraints. No pair in A lie at

distance δ̃, so we concern ourselves only with cliques Kn occurring in
Γ. Then Lemma 17.4 applies. □

17B. The cases K1 ≤ 2

If we apply Lemma 17.2 to the cases considered in Proposition 1.33,
then we arrive at the following.

Lemma 17.5. Set K0 = 1 or 2. Suppose the following.
Every countable metrically homogeneous graph of generic type
and finite diameter for which K1 = K0 is of known type.

Then every countable metrically homogeneous graph of generic type
and infinite diameter for which K1 = K0 is also of known type.

Furthermore, if the hypothesis holds with K0 = 1, then every count-
able metrically homogeneous bipartite graph is of known type.
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Proof. For the first part, we apply Lemma 17.2. Then it suffices
to check that Γ2 contains a triangle of type (K1,K1, 1).

If K1 = 1 then this follows from Lemma 17.4.
If K1 = 2 this follows from Lemma 15.15.
The final point was discussed already in Remark 17.1. □

In particular, there is something to be said for taking up the general
classification problem in the case K1 = 1, since in any case one must
sometimes treat the case K1 = 1 separately from the case K1 > 1
(finite); and this would have the further merit of disposing of the
bipartite case unconditionally.

17C. General K1

Now we push through the same type of analysis for general K1 > 1.

Lemma 17.6. Let Γ be a countable metrically homogeneous graph
of generic type with K1 > 1. Suppose in addition that ΓK1 has diam-
eter at least K1. Then in ΓK1 there is a triangle of type (K1,K1, 1).

Proof. We use a direct amalgamation argument. Consider the
following 2-point amalgamation problem.

a1 a2

u1 u2

v

K
1

K
1

K 1
−
1

K 1

1

1
K 1
−
1 2

K1

Here the vertices v and u2 force d(a1, a2) = K1. So it will suffice
to show that the two factors

(a1vu1u2) and (a2vu1u2)

embed into Γ.
Over the basepoint u1, the factor (a2vu1u2) represents a vertex v

in ΓK1−1 at distances 1, 2 respectively from a pair of adjacent points
in ΓK1 .
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a1 v

u1 u2

K
1

K
1

K1 − 1

K 1
−
1

2

K1

v a2

u1 u2

K
1
−

1 2

1

K 1

1
K1

ΓK1

ΓK1−1

1

1 2

This is available since ΓK1 is connected and the distances 1, 2 occur
between ΓK1−1 and ΓK1 .

So we turn to the configuration

(a1vu1u2).

We amalgamate as follows.

a1 v

u1 u2

wK1

K1

K1 − 1

K 1
−
1

K1

1

1

K1

K1 − 1

As K1 > 1 this forces d(u2, v) = 2. So it suffices to show that the
factors

(a1vu1w) and (a1u1u2w)

embed into Γ.
Relative to the basepoint u1, the factor (a1vu1w) represents a ver-

tex in ΓK1 at distances K1 − 1 and K1 respectively from a pair of
adjacent vertices in ΓK1−1.
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a1 v

u1 w

K
1

K
1

K1 − 1

K 1
−
1

1

K1 − 1

a1 w

u1 u2

K
1

K
1

K1

K 1
−
1

1
K1

ΓK1−1

ΓK1

1

K
1 −

1

K1

As ΓK1−1 is connected it suffices to check that the distances K1−1
and K1 occur between ΓK1−1 and ΓK1 . And as ΓK1−1 is connected
it also follows that the set of distances occurring is an interval.

The distance 1 certainly occurs between ΓK1−1 and ΓK1 , so it suf-
fices to check that the distance K1 occurs. This corresponds to a
triangle of type (K1,K1,K1 − 1). As ΓK1 is connected it suffices at
this point to have the diameter of ΓK1 at least K1 − 1.

So the factor (a1vu1w) occurs in Γ.
Relative to the basepoint a1, the second factor (a1u1u2w) repre-

sents a geodesic of type (1,K1 − 1,K1) in ΓK1 .
So if ΓK1 has diameter at least K1, this factor is also available.
This completes the analysis. □

Now we prove Theorem 1.26.

Proof of Theorem 1.26. We suppose that every countable met-
rically homogeneous graph of finite diameter is of known type, and
we consider a countable metrically homogeneous graph Γ of infinite
diameter.

As the countable metrically homogeneous graphs not of generic
type are known, we may suppose that Γ is of generic type, and con-
sider the associated parameters, notably K1. By Remark 17.1 we may
suppose that K1 <∞.

By Lemma 17.5 we may suppose K1 > 1 (or even K1 > 2). By
Lemma 17.2 it suffices to show that ΓK1 contains a triangle of type
(K1,K1, 1), and by Lemma 17.6 it suffices to show that ΓK1 has
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diameter at least K1. But as Γ has infinite diameter, ΓK1 has diameter
2K1. □

A similar argument applies whenever the diameter δ is at least
2K1, and this may be useful even in the case of finite diameter.





CHAPTER 18

APPENDIX
SOME RECENT ADVANCES

At the end of Volume II we will survey a range of problems in
the theory of homogeneous structures, most of which arise after one
has a classification in hand—or, at least, some particular stock of
interesting examples to work with.

Here we discuss progress made on four particular points more
closely connected with the material of the present volume, namely
the following.

1. The classification of homogeneous multi-orders.
2. The classification conjecture for metrically homogeneous graphs.
3. Canonical completions of partial metrically homogeneous graphs.
4. Twisted automorphisms of metrically homogenous graphs

As we shall see, the first of these topics has some connection with
Part I. And the second simply restates the motivation for much of
the work in Part II, as well as that in Amato, Cherlin, and Macpher-
son [2021]. The last two points concern the further study of the au-
tomorphism groups of the known metrically homogeneous graphs,
considered as permutation groups, as topological groups, or as ab-
stract groups.

Namely, the third topic turns out to be the main ingredient in the
solution of a wide variety of problems concerning the automorphism
group of a known metrically homogeneous graph of generic type,
whether as a topological group or as an abstract group. It leads in
particular to a key finiteness condition which implies all of the follow-
ing: a structural Ramsey theoretic result (after adding a generic linear
order, in most cases), the so-called EPPA property giving descriptive
set theoretic information, and a notion of stationary amalgamation

383
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in the sense of Tent and Ziegler [2013] which has implications for the
structure of the automorphism group as an abstract group.

As the connections between the completion methods for partial
structures discussed here and the various applications is part of the
general theory, we leave the detailed discussion of these connections
to the appendix to Volume II. Here we concentrate on the particular
completion procedures relevant to metrically homogeneous graphs.
This leads to an interesting incursion into an evolving theory of gen-
eralized metric spaces, one which also makes a limited appearance
in connection with the first point (§18A). We will however mention
a bridge between the completion procedures on the combinatorial
side and the applications, namely a finiteness condition for partial
substructures.

Our fourth and last topic is not very well known, or, for that mat-
ter, very well understood. It concerns the structure of the normal-
izer Aut∗(Γ) = NSym(Γ)(Aut(Γ)) and the question as to whether the
group Aut∗(Γ) splits over Aut(Γ), a point first raised in Cameron and
Tarzi [2007]. Though there is still no general theory, there are anec-
dotal hints of one, and one can say something concrete about this
problem in the particular case of metrically homogeneous graphs—
beginning with a close analog of a well known result on finite asso-
ciation schemes proved by radically different methods in Bannai and
Bannai [1980]; here we consider the more general notion of twisted
isomorphism before specialzing to the twisted automorphism group.

One should note that the first and third topics involve work pub-
lished or in course of publication by a variety of authors, while the
discussions under the second and fourth headings include assertions
taken from articles not in final form, and give my views of these
matters as of summer 2021.

18A. Homogeneous multi-orders

We will refer to a structure in a relational language with finitely
many linear orders (and no further relations) as a multi-order. these
are also called finite-dimensional permutation structures. In the par-
ticular case of two linear orders, they are called permutation struc-
tures, and are essentially the same thing as permutations, at least in
the finite case; in particular the isomorphism type of a permutation
structure is a permutation pattern in the usual sense. If a permutation
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is identified with its graph as a function, the two orders correspond
to the two axes.

Cameron classified the homogeneous permutation structures, and
asked for the generalization to multi-orders (Cameron [2002/03)]).

Problem 4. Classify the (countable) homogeneous multi-orders.
In earlier drafts of the present monograph we discussed Problem

4 as an outstanding problem concerning the classification of homo-
geneous structures. This problem has now been solved, by striking
and powerful new methods from the side of geometrical neostability
theory, as we will discuss.

First we point out a connection to the material of Part I.
In Part I we found that when we expand the language of graphs by

a symbol for a linear order, the homogeneous structures that arise are
not very “new,” in the sense that they are derived from homogeneous
structures of simpler sorts by a natural expansion process: either
adding a generic order, or generically extending a prior partial order
to a linear order. Some complications arise as the language of ordered
graphs is equivalent in a straightforward sense to the language of
ordered tournaments, as well as the language of partial orders with
a linear extension, and for the most part homogeneous structures
of different kinds—graphs, tournaments, partial orders—give rise to
different homogeneous ordered structures when suitably expanded by
a linear order.

With this in mind, one might wonder more generally about the
relationship of the classification problem for homogeneous structures
in a given language with a linear order to the corresponding problem
for simpler languages. The base case for this question would take the
language of equality as the point of departure, and then add a finite
number of linear orders, taking us back to Cameron’s problem.

Braunfeld’s thesis (Braunfeld [2018]) contained some general re-
sults and very general conjectures concerning Problem 4. It was
shown there that any finite distributive lattice could be the lattice
of definable equivalence relations in a homogeneous multi-order, and
that if the reduct of a homogeneous multi-order to the language of
its definable equivalence relations is again homogeneous, then the
lattice of definable equivalence relations must in fact be distributive
(see also Braunfeld [2016]).

The existence statement (realizing an arbitrary finite distributive
lattice) is shown by viewing structures with a specified lattice of
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equivalence relations as generalized metric spaces with values in a
lattice, and then generically adding orders to make the equivalence
relations definable. More explicitly, if E,F are definable equivalence
relations with E covering F , there is a quotient structure E/F which
is the disjoint union of C/F for C an E-class, and one generically
“orders” E/F by a disjoint union of orders on the quotients C/F .14
At the end, one changes the resulting language back to an equivalent
language using global linear orders.

The corresponding classification conjecture was that all homoge-
neous multi-orders are obtained essentially in this way, with some
trivial variants (one order may coincide with another, or the reversal
of another, on some of the quotients involved). Part of the difficulty
of the problem as originally stated is that the language of multiple
linear orders is not the most natural language for the analysis of the
structures. (In particular, for a fixed number of linear orders, it is
hard to say explicitly which of these structures can actually be given
in the specified language, though this becomes a finite problem, and
may possibly have a neat answer.)

This conjecture has the following consequences. First, the primi-
tive case one should have just independent orders, with variants in
which some orders are repeated or reversed. Second, in all cases the
reduct to the language of definable equivalence relations should be
homogeneous, and, less obviously, the lattice of definable equivalence
relations should be distributive.

Using amalgamation methods and a very close analysis, the conjec-
tured classification was first verified for the particular case of three
linear orders. Then a new insight came from work of Pierre Simon,
studying a notion of rank compatible with the presence of orderings,
with a classification in the rank 1, ℵ0-categorical case (Simon [2020]).
Here the key amalgamation argument comes in just once, to show
that the homogeneous multi-orders are in fact finite rank in his sense;
in particular the primitive ones are rank 1. Then his general theory
gives the conjectured classification of primitive homogenous multi-
orders—as well as a classification of their reducts, another subject
for which the usual (Ramsey theoretic) methods tend to blow up
very considerably with the size of the language.

14This construction is inspired by some methods of structural Ramsey theory,
connected with the topological dynamics of the automorphism groups of homo-
geneous generalized metric spaces, a topic we return to below.
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Then the imprimitive case of Problem 4 was fully treated in Braun-
feld and Simon [2020], showing along the way that the reduct to the
language of equivalence relations is indeed homogeneous, and then
taking advantage of the resulting distributivity of the lattice.

Once one has the classification it then follows that a general struc-
tural Ramsey theorem holds as well, for the whole class of structures.

A byproduct of Pierre Simon’s work is an example of a homo-
geneous binary structure in a finite relational language containing
a symbol for a linear order which is not obtainable from a homo-
geneous structure in a simpler language by adding a suitable linear
order. This leaves the results of Part I wholly unexplained on theoret-
ical grounds. One would like to see multi-orders and ordered graphs
taken into some “tame” neostability context with applicability to clas-
sification problems and related matters which would obviate the need
for the very explicit type of analysis in Part I. The existing theory is
placed firmly in the context of NIP theories, so it is not at all clear—
particularly in view of the limitations coming from Pierre Simon’s
example—that such a theory should really exist.

It is also natural to ask whether we can do something similar in
the line of classification with partial orders in place of linear orders.
Notably:

Problem 5.
5.1 Classify the homogeneous structures equipped with two (or,

finitely many) partial orderings.
5.2 Classify the homogeneous partially ordered graphs.

It’s possible a priori that Problem 5.2 can be handled by the meth-
ods used in Part I, but this question has not been explored.

One can also look to combine Parts I and II of the present mono-
graph as follows.

Problem 6. Classify the linearly ordered metrically homogeneous
graphs of diameter 3 (or of any diameter, eventually!).

Before getting too carried away witih this particular problem one
should recall that some of the homogeneous ordered graphs are in fact
ordered homogeneous tournaments (but not ordered homogeneous
graphs) and in general if one adds on an ordering to a language one
has to be prepared to deal also with all of the proper reducts of the
expanded language. On the other hand, given the specific constraints
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imposed by the triangle inequality, we do not know how concerned
to be about that point in the case of this particular problem. And as
the prospects for a complete proof of the classification of the metri-
cally homogeneous graphs are looking bright at present (as discussed
below), the full version of the question may come into play.

18B. Metrically homogeneous graphs

18B.1. Toward the classification conjecture. Part II of the
present monograph left us without any detailed sense of how the
general classification conjecture for metrically homogeneous graphs
might be proved, though the local analysis of Chapter 15 was in-
tended to supply some useful tools in that direction, and their utility
has been illustrated by the proofs of Theorems 1.26 and 1.30.

We did not immediately see anything very general in our treatment
of the case of diameter 3 in Amato, Cherlin, and Macpherson [2021],
though we did see some suggestive parallels with the treatment of
the bipartite case.

On reconsideration, we now see the method of Amato, Cherlin, and
Macpherson [2021] as very promising for the treatment of the general
case, and the parallels mentioned as central to the proposed strategy.
(There may still be traces of a less optimistic, or more agnostic,
stance lingering elsewhere in this volume.) As this point dawned on
us before (or really during) submission of the final version of that
paper, we have included a discussion of this line of thought at the
end there, in §7.5 . Here we will flesh this out more. The work remains
tentative, and is in progress with Amato. Still we give the plan here
in considerable detail. As it depends very heavily at points on work
in this volume, this is a good place for this discussion.

The aim is to prove the conjectured classification of metrically ho-
mogeneous graphs of generic type and finite diameter in the form
given as an explicit catalog on page 219.

18B.1.1. The framework. We have explained in Definition 13.6
how to associate a canonical parameter sequence

δ,K1,K2, C0, C1,S

with any metrically homogeneous graph Γ of generic type.
We will write A for the class of finite structures embedding in Γ,

and A∗ for the class Aδ
K1,K2,C0,C1,S . The classification conjecture may
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be phrased as follows.

A = A∗.
Note that this notation makes sense whether or not the parameter
sequence is admissible; of course, since Γ is homogeneous, it cannot
actually hold unless the parameter sequence is admissible, in which
case in addition to the class A∗ we have the Fraïssé limit Γ∗ and the
more recognizable formulation of the conjecture as

Γ ∼= Γ∗.

The two-step process for proving this is trite, but meaningful.
(1) A ⊆ A∗.
(2) A∗ ⊆ A.
Actually there will be some overlap between the two steps in prac-

tice, and the real dividing line is somewhat past the end of Step 1. So
our description of these two steps below will deviate from the simple
scheme proposed.

18B.1.2. The first step. A more precise statement of the goals in
the first phase is as follows.
(1a) A ⊆ A∗.
(1b) Every triangle in A∗ embeds into Γ.
(1c) The parameters of Γ are admissible.

The content of (1a,1b) together is, mainly, that A and A∗ contain
the same metric triangles. The three points (1a–1c) taken together
correspond to the results of Chapters 13 and 14 of Part II (but there,
we dealt only with the 4-trivial case). The idea in general is to follow
the same line of argument very closely, after making some improve-
ments in the local analysis, notably around Lemma 15.16.

Thus Step 1 has a preparatory character. Once it is achieved, we
can work with Γ∗, the Fraïssé limit of A∗. But going forward the
focus in fact remains on the class A∗, and on work with finite con-
figurations.

18B.1.3. The second step. Things now become more elaborate
and more challenging.

The second step may be phrased as a general embedding theorem:
any finite structure compatible with the parameters of Γ embeds iso-
metrically into Γ. The approach suggested by an analysis of Amato,
Cherlin, and Macpherson [2021] is to proceed by induction on the
diameter of the finite configuration in question.
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The following terminology and notation will be convenient.

Definition 18.1. Let Γ be a metrically homogeneous graph of
generic type. A finite metric space is Γ-constrained if it belongs to
A∗.

Definition 18.2. For K1 finite, and d ≥ 1, the embedding prop-
erty Ed(K1) is the following.

Let Γ be a metrically homogeneous graph of generic type and
diameter at least 3 whose associated parameter KΓ

1 equals K1.
Then any finite Γ-constrained metric space of diameter at

most d embeds isometrically into Γ.

With this notation, the plan is to prove that Ed(K1) holds for all
d and K1, by induction on d. The inclusion A∗ ⊆ A will then be
immediate.

The base of this induction is not obvious: it is d = max(K1, 2).
Accordingly our second step breaks down as follows.
(2a) E2(K1) holds.
(2b) For K1 > 1 finite, EK1(K1) holds.15
(2c) For d > max(K1, 2), Ed−1(K1) implies Ed(K1).

The first point is a technicality. The treatment of the case d = K1

and the treatment of the inductive step both raise substantive issues.
As far as point (2c) is concerned, the plan is to follow and extend

the method of Amato, Cherlin, and Macpherson [2021] (this provides
a considerably more useful model than our treatment of the bipartite
case in Part II), We elaborate.

In retrospect, the main technical result in our treatment of the
diameter three case can be viewed as a proof16 of

E2(K1)=⇒E3(K1)

for K1 < 3—at a casual glance the use of the induction hypothesis
is a little hard to spot, very brief, and not very explicitly noticed.
One can also detect in that analysis the (also brief) moment when
the base case E2(K1) is actually proved, for K1 ≤ 2. The case K1 = 3
was avoided by a technical device having to do with twisted auto-
morphisms (see §18B.3) which allows for a change of language (and,
in particular, a change in the numerical parameters).

15One can either set aside the case K1 = ∞ using Theorem [1.30 or adjust the
notation so that the case K1 = ∞ is also covered.

16Actually, two (similar) proofs, after a division into two cases.
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On the other hand, there is really nothing in the prior work that
serves as a guide to a proof of point (2b). When K1 > δ/2 there is
an easy inductive argument to handle this, but that does not help us
toward the general case. So as far as mapping out a proof strategy is
concerned, this is the most troublesome element to be addressed.

We propose to prove the embedding property EK1(K1) by a further
inductive argument of an even more specialized character. But this
does not seem like the place to elaborate further on this last element.
The main point to be made here is that the structure of the proof
strategy leads directly to this particular point, and once one focuses
on it, one finds there is a reasonably natural approach, where the
definition of K1 comes directly into play.

But we should stiill say something more about how the treatment
of (2c) proceeds in general, as there is an important point which was
not seen so clearly when working under the assumption that δ = 3.
In particular, this will explain why the inductive step (2c) takes place
above max(K1, 2).

18B.1.4. Second step: The proof of (2c). Now we give a reading
of the contents of Amato, Cherlin, and Macpherson [2021] from the
point of view of the general problem of carrying out the induction
step (2c).

Roughly speaking, our line of argument is to show that if A∗ con-
tains any configuration A of diameter at most d which is not in A,
then after a suitable minimization this configuration is actually a
(1, d)-space (or a triangle, but this alternative was already ruled out
in Step 1). When d = δ this suffices as by definition A and A∗ con-
tain the same (1, δ)-spaces. So to complete the argument we need
to eliminate this extremal configuration in the case d < δ. So the
first question is how to reduce the general problem to the case of
(1, d)-spaces—or something very similar (one does not quite reach
the desired extremal configuration by very broad arguments).

For this we need useful measures of structural complexity which are
minimized by (1, d)-spaces. The complexity measures given in Am-
ato, Cherlin, and Macpherson [2021] are suitable, with some further
elaboration and adjustment to refer to d rather than δ, (In Amato,
Cherlin, and Macpherson [2021], d = δ = 3 throughout the main
argument, and one does not notice d as a distinct parameter.)

At this point one needs explicit amalgamation arguments in the
vein of Amato, Cherlin, and Macpherson [2021], on a broader scale.
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These turn out to depend on the existence of certain auxiliary config-
urations in A∗ which can be obtained from amalgamation arguments
inside the class A∗↾d of configurations in A∗ of diameter at most
d. At this point, the admissibility of the parameter sequence is of
first importance, as our arguments for A depend on the possibility of
solving amalgamation problems in A∗, but somewhat more is needed
since we must also control the diameter of the resulting solution. As
we will see, the condition d > max(K1, 2) comes in precisely at this
point.

In the first place, it turns out that A∗↾d is itself an amalgamation
class for d ≥ max(K1, 2). This is already very suggestive. In other
words, when amalgamating configurations of diameter at most d, we
are not forced to introduce any “new” distances greater than d.

Furthermore, when d is strictly greater than max(K1, 2) we can also
avoid adding new distances equal to either 1 or d in the amalgam.
This gives us the necessary control over the structural complexity of
the resulting configurations—our measurses of complexity are defined
in terms of the associated graph whose edges corresponding to the
extreme values for the distance, namely 1 and d.

The necessary amalgamation properties of the class A↾d can be
checked in various ways—one way, not the most agreeable, would
be to make a careful reading of the proofs of amalgamation in this
volume. A less cumbersome approach would be to check the admis-
sibility conditions for the parameters of the restricted class in order
to replace δ by d, and then to check the earlier discussion of the
conditions under which the extremal values 1, δ can be avoided in an
amalgam.

A more conceptual line of argument uses the completion process
discussed in 18B.2—one of the canonical completion procedures dis-
cussed there will do. Here one has a choice of procedures depending
on an auxiliary parameter which needs to be at least K1 and less
than d, and this accounts for our restriction d > K1. Evidently if one
wishes to avoid the values 1 and d in completing an amalgamation in
diameter d, one should also have d ≥ 3. (A complication arises as the
relevant parameter needs also to be at least δ/2, so one may need to
iterate the argument to first reduce δ if K1 is small.)

This explains why the base of the induction is max(K1, 2).
Some further difficulties will arise at the end when one has a (1, d)-

configuration A, or some very similar configuration. But it seems one
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can also handle the more concrete issues that arise at this point by
similar constructions with a more ad hoc quality.

18B.2. Canonical completion of partial substructures. A
number of problems relating to automorphism groups of homoge-
neous structures, both as topological groups and as abstract groups,
can be reduced to combinatorial problems for the structures in the as-
sociated amalgamation class A. At this point we are going to turn our
attention to the key combinatorial problem which arises in the con-
text of metrically homogeneous graphs. We leave the broader discus-
sion of the motivating problems concerning the automorphism group
to the appendix to Volume II. The reader familiar with those con-
nections will be thinking of structural Ramsey theory, extensions of
partial automorphisms (EPPA), stationary amalgamation, and their
implications for the topological dynamics, descriptive set theory, and
algebraic structure of the corresponding automorphism groups. With-
out that motivation, the problem we are about to discuss looks rather
more like a topic in the theory of combinatorial algorithms. But how-
ever it is viewed, it takes us in very interesting and new directions.

We deal here with the known metrically homogeneous graphs Γ of
generic type and their associated amalgamation classes A. But we
now shift our attention to the extended class of partial (or weak) sub-
structures of structures in A, which we denote by Â, and we concern
ourselves with the description of the class Â and its precise relation-
ship to A.

18B.2.1. Some examples. We give a couple of examples of the
class Â for some specific homogeneous structures (not limited to met-
rically homogeneous graphs).

(a) If Γ is the rational order, and A is the class of all finite linear
orders, then Â is the class of finite acyclic digraphs.

(b) If Γ is the generic metrically homogeneous graph of finite diam-
eter δ, then Â is the collection of finite [δ]-edge labeled graph
with no non-metric cycles (cycles with some edge longer than
the length of the complementary path).

We observe that the stated criteria for membership in the class Â
o are more clearly necessary than sufficient. The way one verifies the
correctness of a proposed description of the class Â is by giving a
completion procedure which take a a partial structure A and com-
pletes it to a structure Ā in A whenever this is possible. Typically
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the criterion for membership in Â amounts to the absence of any ob-
structions to the successful application of the completion procedure.

Ideally the completion procedure should also be canonical in the
sense that any isomorphism between finite structures gives an iso-
morphism between their completions; in particular it will follow that
automorphisms of A are automorphisms of Ā.

Returning to the two examples above, to complete an acyclic di-
graph to a linear order one first takes its transitive closure to get
a partial order, and then one somehow completes the partial order
to a linear order. In this case the completion cannot be carried out
canonically since the completed structure will be rigid, while the ini-
tial structure could be a trivial digraph with any number of vertices
and no arcs.

On the other hand, in the case of the generic metrically homo-
geneous graph of diameter δ, there is a canonical completion, given
by the shortest path metric with truncation to diameter δ. In other
words, the distance between two points is defined as either the min-
imum length of a path between them in the original edge-labeled
graph, or δ, whichever is least.

There is a connection between canonical completion and canonical
amalgamation. If A is a strong amalgamation class then an amalga-
mation problem asks for the completion of a particular partial struc-
ture, the free join of two structures over a common base. Thus when
one has a strong amalgamation class, any canonical amalgamation
procedure gives a canonical amalgamation procedure as well. How-
ever one should notice that one can also have a canonical completion
procedure for Â even if A is not an amalgamation class. We give a
class of examples that illustrates this further.

Let S ⊆ R>0 be a finite set of positive real numbers. We consider
the class AS of finite S-metric spaces. There is a general notion of
truncation to S, best expressed in terms of the following operation.

a+S b = max(s ∈ S | s ≤ a+ b)

When S = [δ] this is the usual truncation to diameter δ.
Now it turns out (Sauer [2013]) that the class AS of finite S metric

spaces is an amalgamation class if and only if the operation of +S is
associative, in which case paths have well-defined lengths in the sense
of +S . In this case the S-shortest path completion is a completion
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procedure, and the minimal obstructions to this procedure are the
non-metric cycles in the sense of +S .

But one has a similar canonical completion procedure even if the
class AS is not an amalgamation class. When the operation +S is
non-associative; paths will have multiple possible lengths, but the
S-shortest path metric still makes sense, as one minimizes over all
possible values. The difference is that free amalgamation of S-metric
structures (even of geodesic triangles) can create non-metric cycles in
this case; for example, with S = {1, 2, 3, 6}, amalgamate the geodesic
of type (1, 2, 3) with the geodesic of type (3, 3, 6).

18B.2.2. A finiteness condition. The following finiteness condi-
tion is very useful when it holds, and having a completion procedure
usually gives a good handle on whether or not it holds.

Definition 18.3. The class A (and the structure Γ which is its
Fraïssé limit, in the case of an amalgamation class) has finitely many
forbidden partial substructures if

Up to isomorphism there are finitely many minimal
structures in the language of A which do not belong to Â.(⋆)

One might say, more simply, that A is “finitely constrained,” but
this term would more often be taken to refer to forbidden induced
substructures. In fact, in finite diameter all of the metrically homo-
geneous graphs of generic type are finitely constrained in this latter
sense, more or less by definition (after paying some attention to the
possible Henson constraints).

Now transitive relations usually obstruct this finiteness condition.
For example, the minimal obstructions to extending to a linear order
are the oriented cycles, and there are infinitely many possibilities
(again, these correspond quite directly to the completion procedure
mentioned earlier).

Similarly, if S ⊆ R is finite and a +S a = a (a “gap”), then the
relation d(x, y) ≤ a is an equivalence relation, so for a < maxS
this provides an infinite set of non-metric cycles. Otherwise, in the
absence of gaps, it is easy to see that there are only finitely many
non-metric cycles, since S itself is finite. In particular the finiteness
condition holds when S = [δ], bringing us back to the case of the
generic metrically homogeneous graph of diameter δ.

Now we return to the known metrically homogeneous graphs of
generic type in the general case.
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18B.2.3. The case of metrically homogeneous graphs. Work on
completion procedures for partial metrically homogeneous graphs was
motivated initially by the question of the finiteness of the forbidden
partial substructures as the most direct route toward a structural
Ramsey theorem. A suitable procedure was given for the cases satis-
fying the following numerical conditions on the parameters in Coul-
son [2019], with many of the resulting applications to the automor-
phism groups.

C > 2δ +max(K1, δ/2); C ′ = C + 1; K2 ≥ δ − 1.

A very general completion procedure was found by the “Prague con-
sortium,” given in full generality in the preprint Aranda et al. [2017]
(57 pp.) and published in a condensed and simplified form (whose
generality is less clear) as Aranda et al. [2021]. One extreme case
escapes the full version as well, but only because there is no com-
pletion procedure with the desired canonicity property in that case.
We will refer to the results as given in full in the preprint, and go
into more detail in the appendix to Volume II when we discuss the
general theory. We note that the imprimitive cases are subtle but are
understood as well.

Subsequently it was seen that the completion algorithm founds fits
very neatly into a theory of shortest path completions in generalized
(and fairly exotic) metric spaces. The material on S-valued metric
spaces fits very naturally in the same framework, along with Braun-
feld’s lattice-valued generalized ultrametric spaces. It is certainly sur-
prising that the integral metric spaces associated with metrically ho-
mogeneous graphs are best viewed as generalized metric spaces with
respect to a highly non-standard addition. On the other hand the
generic metrically homogeneous graph of diameter δ is an instance
of the S-metric theory and the truncated path completion is the one
obtained from that point of view. In this case the “exotic” addition
operation is just ordinary addition truncated to δ—so in this case it
is not in fact particularly exotic.

A useful detailed account of the completion process in general is
also found in Konečný’s bachelor’s thesis (Konečný [2019a]). As far as
the particular case of metrically homogeneous graphs is concerned,
this treatment is more complete than the discussion found in his
more ambitious and more widely ranging master’s thesis (Konečný
[2019b]).
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It follows from all of this that with few exceptions the amalgama-
tion procedure we gave could be replaced by shortest path completion
with respect to a suitable generalized metric space structure. At the
moment, oddly enough, the proof of that fact relies on the proof of
amalgamation given here, as in order to know that the “completion”
process applies to amalgams one needs to know first that the class
has strong amalgamation. However, since this is the case, it should
be possible to give a direct proof.

In particular, in the primitive case, the numerical constraints defin-
ing admissibility must be equivalent to the fact that shortest path
completion is both available (via a suitable neutral parameter) and
adequate to the task. How exactly that equivalence is manifested
working directly from first principles is not entirely clear. One needs
a good deal of the numerical information, though not all of it, to
show that the relevant interpretation as a generalized metric space
exists in the first place, and then the rest of the information will
come in when checking the validity of the completion procedure for
the classes of interest (which carry additional constraints). At some
level this is what Konečný [2019b] aims at, but in a broader setting.

Leaving this digression aside, our immediate task is to explain what
the relevant semigroup operations are in our case, what the “shortest
path completion” can possibly mean when lengths are not compara-
ble and infima may not even exist, how the metrically homogeneous
graphs fit into this framework, and, also, what are the consequences
of this procedure for finiteness of forbidden partial structures and
related questions.

So we begin.
18B.2.4. Disjoint sums and neutral distances. We first describe

the most rudimentary instance of the completion procedure: disjoint
sum. That is, A and B are finite metric spaces embedding isomet-
rically into a give metrically homogeneous graph Γ, and we aim to
embed their disjoint union A⊕B canonically into Γ.

Definition 18.4. Let A,B be metric spaces and k ≥ 1. The k-
direct sum

A⊕k B

is the metric space on the disjoint union A ⊔ B with d(a, b) = k
between A and B.
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If Γ is a metrically homogeneous graph of finite diameter δ, then a
neutral distance M for Γ is a distance such that A(Γ) is closed under
the operation ⊕M .

For a known metrically homogeneous graph of generic type and
finite diameter δ ≥ 3 which has no Henson constraints, the neutral
distances are characterized by the conditions

max(K1, δ/2) ≤M ≤ K2, (C − δ − 1)/2

When there are Henson constraints it suffices to add the conditions

1 < M < δ

Using the numerical characterization of admissibility it can be
shown the neutral distances usually exist. The exceptions come in the
bipartite case and antipodal case; in the latter case, with C = 2δ+1,
the conditions reduce to M = δ/2 and thus require δ to be even.

18B.2.5. The distance semigroups Dδ
M,C . Given a known metri-

cally homogeneous graph of generic type and finite diameter with
parameters δ,K1,K2, C, C

′,S and a corresponding neutral parame-
ter M , one defines an associated partially ordered semigroup Dδ

M,C

as follows.

Definition 18.5. Let δ,M,C be acceptable. Then Dδ
M,C is the set

[δ] equipped with the operation +M,C and the relation ≤M,C defined
as follows. 1. The operation +M,C :

i+M,C j is the number in the interval (d−, d+) with

d− = |i− j|;
d+ = min(i+ j, C − (i+ j)− 1)

which is closest to M .
2. The partial order ≤M,C :

First define the natural partial order ≤M,C,nat.

i ≤M,C,nat j iff j = i+M,C x for some x ∈ [δ].

We let ≤M,C be the natural partial order associated with +M,C

unless C = 2δ+K1 and M = K1, in which case we extend it to make
M − 1 the second largest element:

M − 1 > j for j > M
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Remark 18.6. Notice that the value of i +M,C j is M if possible
(that is, if M is in the indicated interval) and in any case it is the
best approximation to M within that interval (so, either M or an
endpoint of the interval).

The order structure on Dδ
M,C is as follows (and illustrated below),

assuming

M < δ and C > 2δ + 2.

The minimal elements of Dδ
M,C are 1 and δ, and M is the unique

maximal element. The ordering induced on [1,M ] is the usual order-
ing, and +M,C1 agrees with +1 there; the ordering on [M, δ] is the
reverse of the usual ordering, and +M,C1 agrees with −1 there.

There are order relations between the two sides but they play less
of a role, and are not shown in the diagram.

One clarifying and useful point is the relation

M +M,C x = M

which shows that M is indeed maximum in the ordering on DM,C .

1
2

M

δ

DM,C

18B.2.6. Shortest path completions. It is clear what is meant by
the length of a path in a generalized metric space with values in a
commutative semigroup. It is considerably less clear what is meant
by the shortest path. In fact what we need to define is the shortest
path length.

If the semigroup is a lower semi-lattice this is reasonably clear:
one takes the infimum of all lengths. This does not mean that there
actually is a shortest path—a path of that length—though if one
completes a partial generalized metric space using the shortest path
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metric, then there will be such a path, namely the edge between the
two vertices.

The semigroups that interest us now are not semi-lattices, for the
most part. With very few exceptions they have two minimal ele-
ments, 1 and δ. Still the shortest path completion is defined by taking
infima—when they exist. This will provide a completion procedure
for a class Â only if all required infima actually do exist, for any
structure in Â.

This is an obscurely phrased condition and it is not clear how
to develop a satisfying theory of partially ordered semigroups with
sufficiently many infima—even less clear when one realizes that one
will require a distributive law of the form

a+S inf S = inf(a+ s | s ∈ S)

for all “geometrically realizable” instances of the law (where S is a
possible set of path lengths).

One case where this works out satisfactorily is the case of the
partially ordered semigroups Dδ

M,C associated to metrically homo-
geneous graphs. We have noticed that the two sides of the domain,
namely [0,M ] and [M, δ] are linearly ordered. It turns out that for
the most part sets of path lengths (computed in the sense of +S)
lie just on one side, so all necessary infima not only exist, but are
actually realized. There is an exceptional case but it corresponds to
the case already mentioned where the partial order is not the natural
one, but is adjusted.

For technical reasons, to make this work out, we also need to impose
some additional conditions on the neutral parameter M .

Definition 18.7. If Γ is a metrically homogeneous graph of finite
diameter δ and M is a neutral distance for Γ then M is proper for
Γ if, in addition the following conditions hold whenever Case (III)
applies to Γ (i.e., in the case in which C > 2δ +K1).

M + 2K2 ≥ 2δ.(P1)
If C = 2δ +K2 and C ′ > C + 1 then M < K2.(P2)

Again, proper neutral values of the distance exist outside the ex-
ceptional cases of antipodal graphs of odd diameter and the bipartite
case.

We are now going to attempt to paraphrase in this language a fun-
damental result given in Konečný [2019a] in a slightly older language.
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Similar results are given in the newer form in Konečný [2019b] for a
range of examples, but with less detail as far as the case of metrically
homogeneous graphs is concerned, so they are a little less suitable for
our immediate purpose.

Fact 18.8 (Konečný [2019a, Theorem 5.1, paraphrased]). Let

(δ,K1,K2, C0, C1)

be an admissible sequence of parameters with δ finite, and let A be
a partial substructure of

Γ = Γδ
K1,K2,C0,C1

.

Suppose that M is a proper neutral distance for Γ (Definitions 18.4,
18.7).

Then the shortest path completion (A, dM,C) of A embeds isomet-
rically into Γ and is M -optimal in the following sense. For any other
completion (A, d) of A which embeds isometrically into Γ, and for
any vertices u, v ∈ A, one of the following holds.

1. d(u, v) ≤ dM,C(u, v) ≤M .
2. d(u, v) ≥ dM,C(u, v) ≥M .
3. C = 2δ +K1, C ′ > C + 1, M = K1, dM,C(u, v) = M − 1, and

d(u, v) > M .
Furthermore, any automorphism of A is an automorphism of the

completion AM,C .17

One virtue of this statement is that it sheds some light on the two
“sides” of the semigroup, the intervals [1,M ] and [M, δ]; somewhat
more light is shed on this by the proof of the result by induction on
path length. And an exceptional case appears explicitly.

This all deserves a fuller account with more attention to various
foundational issues and the algebraic background to the theory. The
developments in Konečný [2019b] are certainly relevant as well but
are focused on the immediate applications more than the foundations
of the theory.

One case which may seem troubling—certainly we have found it
disconcerting—is the case in which the parameters satisfy C ′ > C+1
and C is not literally a bound on perimeter, which somewhat under-
cuts the motivation behind the definition of +M,C . In particular one

17The last point is clear, but it is important to take note of it.
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may well wonder why the relevant structures are Dδ
M,C-metric in this

case. So we give an example, in fact one we have seen before.

Type δ K1 K2 C C ′ M

(IIB) 5 3 3 13 16 3

The question is why the triangle type (5, 5, 4) is metric given that
4 exceeds the “perimeter bound.” In fact this is not obvious. What
this means is that

4 ≤M,C 5 +M,C 5 = 2

(here the value of C enters).
However the correctness of this inequality is unclear. It is clarified

by the following amalgamation problem.

a b

u

v

5

5

1

5

4

According to the shortest path completion, the solution must be

inf(5 +M,C 5, 5 +M,C 1) = inf(4, 2)

This makes it clear that we must have 4 ≤M,C 2, and this becomes
part of the definition of ≤M,C (in general, in this setting, M − 1
becomes the unique maximum below M).

So the relevant partially ordered semigroup has a very particular
partial order in this case.

This theory casts a great deal of light on the interpretation of the
numerical conditions for admissibility we gave in Part II, but this
point has not been completely elucidated. We know in particular that
our amalgamation method is essentially a shortest path completion
(but in our presentation, rather than fixing a single neutral parameter
M , we gave a range of possible values in various cases).

One central object of study would be the class of partially ordered
semigroups D for which the shortest path completion exists for any
D-metric space.18 However we have seen an example (in the contest

18In its most general form one should actually refer to “shortest walks,” but
the sort of pathology that would require making this distinction has not been
encountered to date.
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of S-metric spaces, for S ⊆ R) where the natural additive structure is
not even associative—associativity being equivalent in that context
to the amalgamation property. From this point of view, it remains
unclear whether associativity should be a hypothesis or a conclusion.
Similar remarks apply to the more obscure question of distributivity
in an algebraic setting in which one of the operations (meet) is only
partially defined, and needs to be applicable to certain finite sets
(whether this reduces to a binary operation in general is unclear).

We insert a few tentative remarks about foundations, as we have no
clear prospects of addressing this more systematically in the future.

Call a structure (S,+,≤) equipped with a binary operation + and
a partial order ≤ a distance magma.19 We impose no further axioms
at the outset. Already one can define the triangle inequality and the
notion of S-metric space, and even the length of a walk either as a set
of possible values or as their infimum, if it exists. In particular there
is a “shortest walk” metric which may not be everywhere defined.

We are interested in the case in which the shortest walk metric pro-
vides a canonical amalgamation procedure; call such distance mag-
mas coherent, and more particularly call them k-coherent if the short-
est walk metric provides 2-point amalgamation over a base of order
k. The condition of 1-coherence is simply the existence of all geodesic
triangles (a, b, a+b) and seems like a reasonable minimal assumption
on the algebraic side. The condition is equivalent to the following
pair of conditions.

1. + is commutative.
2. a ≤ (a+ b) + b for a, b ∈ S.

The second condition is a weak form of positivity: a ≤ a+ b.
As an extreme example, if one requires the partial order to be

trivial (equality) then the structure (S,+) must be an elementary
abelian 2-group. In this case path lengths are unique and the shortest
path metric gives an amalgamation procedure for S-metric spaces.
The Fraïssé limit is the composition of a trivial structure (with all
distances the 0 element of S) and the regular action of S on itself.
The limitation to elementary abelian 2-groups corresponds to the
symmetry of 2-types.

19Differing sharply from Conant’s use of the term in Conant [2017]; for foun-
dational studies some shift in terminology is appropriate.
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In general associativity follows from 1-coherence and translation
invariance; since the relation of equality is certainly translation in-
variant this covers the previous examples. One can construct non-
associative examples but whether they bring anything of value is
unclear.
2-coherence is a sharp form of the well-known 4-values condition

(amalgamation of triangles over a common edge) considered in Del-
hommé, Laflamme, Pouzet, and Sauer [2007], and more broadly in
Conant [2017], which also characterizes both amalgamation and canon-
ical amalgamation in the settings considered there.

The distributive law a+ inf(b, c) = inf(a+ b, a+ c) is equivalent to
translation invariance in the linearly ordered case, equivalent to co-
herence in the case of lattices viewed as distaince magmas (Λ, sup,≤),
and holds in Dδ

M,C in the form a+ inf S = inf a+ S (for cases where
S is a set of path lengths, at least).

Konečný suggest working in a framework (called “partially ordered
semigroups”) in which the distance magma (S,+,≤) satisfies the fol-
lowing conditions: S is a commutative semigroup, ≤ a partial order,
and positivity and translation invariance hold. He produces sufficient
conditions for coherence in terms of forbidden cycles which cover the
known examples of interest. From the point of view of homogeneity
the question is the following.

Problem 7. Is every infinite primitive homogeneous structure in a
finite symmetric binary language the expansion of class of S-metric
spaces by forbidden triangles and Henson constraints, where S is a
partially ordered semigroup and amalgamation is given by the short-
est path metric?

This mixes together two or three problems. One problem is really
quite separate: whether the structures in question are given by trian-
gle and Henson constraints. The other part is essentially whether the
3-constrained primitive cases fall under the generalized metric space
theory with partially ordered semigroups. On the one hand this asks
whether this is the right definition of generalized metric spaces, and
on the other hand it asks whether, given the right definition of gen-
eralized metric spaces, the 3-constrained case becomes more or less
tractable.

Another question embedded in the foregoing is whether primitive
infinite structures are associated with strong amalgamation classes.
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That is perhaps a separate question and in this problem one may
prefer to replace the hypothesis that the structure is infinite by the
hypothesis that the associated amalgamation class has strong amal-
gamation.

Remark 18.9. Formally, one can make a non-commutative theory
in the following way. One has a structure (S, ·, ∗,≤) where (S, ·) is a
semigroup, ∗ is an involution, that is
(a) a∗∗ = a.
(b) (ab)∗ = b∗a∗,
(c) inf(a, b)∗ = inf(a∗, b∗) when the left side is defined.

and ≤ is a partial order. Metrics satisfy
1. d(y, x) = d(x, y)∗.
2. d(x, z) ≤ d(x, y)d(y, z)

This includes the symmetric case with a∗ = a, and a commutative
operation.

It turns out that these axioms are more or less known.20 In a survey
article Kabil and Pouzet [2020], the authors give almost same axioms,
in a monoid setting with

d(x, y) ≤ 1 ⇐⇒ x = y

(a slightly curious formulation); and they give examples and appli-
cations. While the survey is recent (in fact, unpublished as of this
writing) the work traces its origins to Quilliot [1983]. Since we now
have what seems like an urgent need to extend the usual metric the-
ory in this general direction, this line may cast some light on our
current concerns as well. We will not attempt anything of that sort
here.

But to give a concrete example of the axioms, let (S, ·) a group,
a∗ = a−1, and let≤ be equality. Then all metric triangles are geodesics
and have (oriented) perimeter 1. Thus path lengths are unique and
the shortest path metric is well-defined on partial metric spaces. The
Fraïssé limit is dull: it is the composition of a finite structure (the
regular action of the group) with a trivial structure (d(x, y) = 1 for
all x, y).

The symmetric case of this is the case of elementary abelian 2-
groups.

20Thanks to Matěj Konečný for the pointer.
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A more interesting but more problematic example is the structure
S(n) encountered in Volume II, which has types i−→ for i ∈ Z/nZ and
the involution i∗ = −i − 1. Addition is problematic: we can choose
x⊕y = x+y or x+y+1. If we choose x⊕y = x+y then the triangle
inequality corresponds to the rule

z ≈ x+ y,

meaning z = x + y or (sacrificing associativity) x + y + 1. In other
words, if x⊕ y = x+ y then we take

i ≤ i, i− 1,

which is certainly not a partial order.
To make matters worse, the involution transforms one of the pos-

sible addition operations into the other.
Thus one may wonder whether a structure like S(n) fits into this

framework at all. The notion of a shortest path algorithm becomes
very problematic as the involution controlling type reversal does not
respect addition but rather interchanges two possible operations.

This makes it doubly interesting, from our point of view, that there
actually is a known stock of useful non-commutative examples—
though whether they are useful for us is a nice open question.

Modulo the question of what the axioms ought to be, whether S(n)
is the sort of thing that should be included, and whether—in that
case—one can speak of anything like a shortest path metric, we would
ask the following.

Problem 8. Are there further relations between non-commutative
metric spaces and 3-constrained homogeneous binary structures in
not necessarily symmetric languages, and a notion of shortest path
completion?’

18B.3. The twisted automorphism group. If Γ is a homoge-
neous structure in a finite relational language (or more generally an
ℵ0-categorical structure) let Γ∗ be the structure with the same un-
derlying set whose relations are the equivalence relations En on Γn

given by equality of types: En(a,b) holds iff a,b lie in the same orbit
under Aut(Γ). Set

Aut∗(Γ) = Aut(Γ∗).

We call this the group of twisted automorphisms of Γ; these may be
thought of as automorphisms up to a permutation of the symbols in
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the language (assuming Γ carries its canonical language). In particu-
lar there is a canonical map from Aut∗(Γ) to a group of permutations
of the language, and as we suppose Γ is homogeneous for a finite rela-
tional language, the image is a finite permutation group. The kernel
is Aut(Γ). Defining the twist group of Γ as

Twist(Γ) = Aut∗(Γ)/Aut(Γ),

we have a finite group of twists of the language associated with twisted
automorphisms.

Classically, one takes Γ = V a vector space over a field (a finite
field, if one wants to remain in our setting). The field is incorporated
into the language as a set of multiplication operators and the twists
can be identified with the automorphism group of the field.

Natural questions raised in Cameron and Tarzi [2007] include the
following.
(a) What is the group Twist(Γ)?
(b) When does the extension Aut∗(Γ) split over Aut(Γ)?
For example, the random graph has twisted automorphisms switch-

ing edges and non-edges, while the Henson graphs allow no non-trivial
twists of the language. In the case of the random graph the extension
does not split, since splitting would mean that there is an automor-
phism α of order two switching edges and non-edges. But then α
would leave some pair (v, vα) invariant, with v, vα distinct.

Essentially the same argument applies to the random c-edge colored
graph Γc for c even, so the extension does not split in this case.
Cameron and Tarzi show conversely that if c is odd then the extension
does split. A reasonable and suggestive way to formulate this result
is that the following conditions are equivalent.

1. Aut(Γ∗c) splits over Aut(Γc).
2. Every involution in Sym(c) lifts to an involution of Aut∗(Γc).
3. Every involution in Sym(c) has a fixed point.

The implications are immediate in the forward directions.
It is unclear whether, for example, the equivalence of the first two

conditions is valid in binary homogeneous structures generally. It
would seem unlikely.

It is of interest to consider, more generally, the generic c-colored k-
hypergraph. Then the method of Cameron and Tarzi gives the equiv-
alence of the following conditions.
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1. Aut(Γ∗c) splits over Aut(Γ).
2. Any subgroup of Sym(c) whose order divides k has a fixed point.
If k is a prime power then as before this may be expressed numer-

ically as gcd(k,m) = 1. In the general case the correct formulation
in numerical terms is the following.

3. c is not a sum of non-trivial divisors of k.
Thus, for example, with c = 5 and k = 6, while (c, k) = 1, this
condition is not satisfied,

Another equivalent condition is the following.
4. Each twist of the language lifts to a twisted automorphism of

the same order.
While this condition may look more natural than our condition (2),
in the context of the proof of equivalence this formulation is less
natural.

Non-trivial twisted automorphisms occur in metrically homoge-
neous graphs as well. In fact, in this context it is also useful to classify
twisted isomorphisms between metrically homogeneous graphs. Any
homogeneous structure will remain homogeneous if the language is
permuted, so from that point of view twisted automorphisms are the
rule rather than thee exception. However, a metrically homogeneous
graph will usually not remain metrically homogeneous under a twist
(that is, after relabeling the distances, it is unlikely that the triangle
inequality will continue to hold). So twisted isomorphisms between
metrically homogeneous graphs should be rare.

Indeed, Rebecca Coulson identified all possible twisted isomor-
phisms between metrically homogeneous graphs in her thesis (Coul-
son [2019]), arriving at a very special and also familiar list of possi-
bilities: namely, a list found in connection with an analogous problem
for finite association schemes in Bannai and Bannai [1980], by very
different methods.21 In Coulson’s work it was not necessary to restrict
to the known metrically homogeneous graphs, as the existing theory
gives sufficient information, at the cost of some additional work and
with some additional refinements.

Returning to twisted automorphisms, Coulson’s result states that
a non-trivial twist associated with a twisted automorphism will have

21One could look for a common generalization in the distance transitive case,
without assuming finiteness. Neither of the existing approaches seems adequate
in that setting.
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order 2, so the distinction between the lifting problem for involutions
and the splitting problem vanishes.

All of the twists occurring in this case have many fixed points. A
typical case would be the involution τδ which is defined as the natural
reflection on [1, 3, . . . , . . . , δ−2, δ], and the identity on [2, 4, . . . , . . . , δ−
3, δ − 1]. Thus fixed and non-fixed points alternate, except possibly
near the midpoint of the interval. Indeed, with δ ≡ 2 (mod 4), there
is a gap of length two between successive fixed points at the midpoint.
In this particular case the twist τδ does not lift to an involutory auto-
morphism of the associated metrically homogeneous graph Γ; but in
all other cases it does. (There is another involution which is simply
the extension of τδ−1 to [δ] fixing δ, and a very similar statement
holds in that case.)

In short, once more the criterion for splitting the group Aut∗(Γ)
is given in terms of the fixed points of involutory twists (specifically,
those near the midpoint of the set of distances). The meaning of this
is obscure and one woud like to know more.

At present, I believe the only source for the classification of the
twists is the cited thesis by Coulson, and the results on splitting
remain in unpublished notes.
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