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L∗-GROUPS OF ODD TYPE
WITH RESTRICTED 2-TORAL ACTIONS

IV. TOWARD THE IDENTIFICATION OF G2

JEFFREY BURDGES AND GREGORY CHERLIN

Abstract. We have given an identification theorem for PSp4 as part of an

investigation of simple K∗-groups of finite Morley rank of odd type having
Prüfer 2-rank 2 and 2-rank at least 3, and more generally in a suitable restricted

odd type L∗-setting. Here we pursue the alternative line which should lead to

G2. One branch of the analysis arrives at the desired identification theorem.
A second branch, at an early stage, leads to a configuration in characteristic

three known also in finite group theory, but eliminated there through the use

of character theory, in which a maximal unipotent subgroup is pathologically
small. The latter configuration deserves further attention.

Note. Some material in §3 repeats portions of [BC22c], mainly because the

division of the text has been adjusted at various times and involves some
redundancy.
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1. Introduction

We consider the Algebraicity Conjecture for groups of finite Morley

rank in odd type with Prüfer 2-rank two and 2-rank at least 3. We

work in the setting of odd type L∗-groups with restricted actions of

2-tori (the condition NTA2 given in Definition 2.1). This includes the

case of K∗-groups—groups whose proper definable simple sections are

algebraic—which is the usual inductive setting for such problems. In

that setting the aim is to identify the minimal possible counterexamples

to the Algebraicity Conjecture as a whole.

By taking a somewhat wider setting we aim to identify the mini-

mal configurations of odd type which would be counterexamples to the

Algebraicity Conjecture in their own right—that is, we permit some

degenerate type definable simple sections, but constrain their auto-

morphism groups, and then proceed much as in the K∗ setting. One

of the obstacles to this program is a satisfactory treatment of the case

of a “strongly embedded” subgroup, but in the case that concerns us

here, this does not arise.

Prior work [BC22a] showed that in this wider setting all simple

groups of finite Morley rank of odd type and Prüfer 2-rank at least

three are algebraic, or else possess a strongly embedded subgroup, and

a Sylow 2-subgroup which reduces to a 2-torus. That work general-

izes, and follows closely in the footsteps of, an earlier treatment of the

K∗-case.

In [BC22b, BC22c] we continued on to the case of Prüfer 2-rank two

and 2-rank at least three. The lengthy paper [BC22b] analyzes central-

izers of involutions in detail, and arrives at two possible configurations,

of the sort encountered in PSp4 and G2. One useful distinction between

the two cases is the following: the number of conjugacy classes of in-

volutions is either one or two. The details are given in Fact 2.10. In

higher Prüfer rank the corresponding analysis can be carried out more

efficiently, more uniformly, and more simply.

It is shown in [BC22c] that the case of two conjugacy classes of

involutions leads to the identification of the group as PSp4 over an

algebraically closed field. So the present paper takes up the case of one

conjugacy class—with less success. The target in this case is the group

G2.
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The initial configuration to be studied is given by Fact 2.10, part

(2). This is supplemented by the determination of the Weyl group in

[BC22c].

So our analysis here begins at a reasonably advanced stage. The aim

then is to construct a split BN-pair and apply a result given in fullest

generality in [Ten04] (or the earlier form of [TVM03], which covers the

case in question), together with the classification of Moufang polygons

of finite Morley rank.

As in the identification of PSp4 in [BC22c], the idea is to define a

“torus” T, and a “Borel” subgroup B explicitly, taking B = TU where

U is a “maximal unipotent” subgroup in an abstract sense, and then

work with the groups N = NG(T) and B. Again as in the case of

PSp4, one of the first question that arises is whether the group U is

contained in the centralizer of an involution. This possibility is quickly

eliminated in the setting corresponding to PSp4 but remains alive here

as a potential pathological configuration, very similar to a configuration

encountered in the finite case as well, and which is eliminated there

using character theory.

On what we consider the main branch of the analysis, where the

group U as constructed does not fall into the centralizer of an involu-

tion, we identify the group G2. The other branch appears to be recal-

citrant but fairly tightly structured. In particular, the characteristic is

three in that case. We would be quite happy at this point to invoke a

K∗-hypothesis to dispose of this branch, if we knew how to do that,

but we do not in fact see any major simplifications in that case. Still

it is not out of the question that the additional techniques available

in that setting could be brought to bear. There is a somewhat similar

situation in the treatment of strongly embedded subgroups for which

the extension to our context of L∗-groups of odd type with NTA2 is

still not known, but where the configuration can be eliminated in the

K∗ context by taking advantage of the rich theory of solvable groups

of finite Morley rank.

A noteworthy earlier result under stronger hypotheses is found in

[Alt98] (unpublished), which leaves aside the case of characteristic

three.
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2. Preliminaries

2.1. L∗-groups and the condition NTA2. We work throughout in

the context of groups of finite Morley rank of odd type.

Definition 2.1. Let G be a group of finite Morley rank and odd type.

Then G is an L∗-group if every proper definable simple section of

odd type is algebraic.

G satisfies the condition NTA2 (“no 2-toral actions”) if any con-

nected definable section which acts definably and faithfully on a de-

generate type simple section of G is itself of degenerate type.

The 2-rank of a group is the maximal rank of an elementary abelian

2-subgroup (we work only with finite 2-rank).

A 2-torus is an abelian divisible 2-subgroup. The Prüfer 2-rank of

group of finite Morley rank is the 2-rank of a maximal 2-torus.

The notion of L∗-group used in odd type differs from the notion

used in even type. Earlier articles in this series have more comprehen-

sive reviews of useful terminology and prior work on other aspects of

the Algebraicity Conjecture, and in particular discuss the reasons for

focusing on odd type and working with Prüfer 2-rank. We refer the

reader to [BC22a] for a discussion of the merits of treating L∗-groups

with NTA2 rather than K∗-groups, and for the prior results that make

this possible. Of course, the prior results which are still needed at this

point in the analysis will be reviewed in this section.

The following captures the extent to which our hypotheses approxi-

mate the K∗-hypothesis.

Fact 2.2 ([BC22b]). Let H be a connected L-group of finite Morley

rank and odd type satisfying NTA2. Let H̄ = H/OF (H).

Then

H̄ = Ealg(H̄) ∗ K̄ where K̄ is connected and

K̄/Z◦(K̄) has degenerate type.

In the K∗ setting K̄ would be solvable. In our setting, the extensive

theory of solvable groups is generally not helpful, but a great deal can

be done without it.

2.2. Unipotence theory. We review some aspects of the theory of

unipotence in groups of finite Morley rank.
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Definition 2.3. A unipotence parameter is either a prime p or a pair

(0, r) with r ≥ 0.

For a prime p, a p-unipotent group is a definable connected nilpotent

p-group, and the p-unipotent radical of a group H of finite Morley rank

is the largest definable normal p-unipotent subgroup. One of the useful

points is that in a solvable group H of finite Morley rank, every p-

unipotent subgroup lies in the p-unipotent radical (hence in F (H)).

The “characteristic zero” unipotence theory uses the full range of

parameters (0, r), with the intuition being that larger values of r corre-

spond to “more unipotent” subgroups, smaller values to “more semisim-

ple” ones. One has notions of (0, r)-unipotence and the corresponding

(0, r)-unipotent radical. It is not the case in general that all (0, r)-

unipotent subgroups belong to the Fitting subgroup of a solvable group

of finite Morley rank, but this does hold for the most unipotent sub-

groups: that is, for the (0, r)-unipotent subgroups corresponding to the

largest value of r for which non-trivial (0, r)-unipotent subgroups exist.

One therefore focuses attention on the parameter r̄0(H), defined as the

largest such value of r.

Generally speaking the theory of (0, r)-unipotence runs parallel to

the more straightforward p-unipotence theory. One recurring point of

the (0, r)-unipotence theory is that by definition (0, r)-unipotent groups

are generated by connected abelian (0, r)-unipotent groups, so that

when entering into details one frequently returns to the abelian case.

We write Uπ(H) for the subgroup of H generated by its π-unipotent

subgroups. We use this notation mainly in the case when this group

coincides with the π-unipotent radical. In general (as in the case of

algebraic groups) Uπ(H) need not itself be π-unipotent.

In the nilpotent case the theory becomes particularly transparent,

and the Uπ-notation becomes particularly useful.

Fact 2.4 ( [Bur04, Thm. 2.31]; [Bur06, Cor. 3.6] ). Let G be a nilpotent

group of finite Morley rank. Then G = D ∗ B is a central product of

definable characteristic subgroups D,B ≤ G where D is divisible and B

is connected of bounded exponent. Let T be the torsion part of D. Then

we have decompositions of D and B into central products as follows.

D = d(T ) ∗ U0,1(G) ∗ U0,2(G) ∗ · · ·
B = U2(G)× U3(G)× U5(G)× · · ·
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In particular, when k is a field of finite Morley rank, one has the

following points.

(1) If the characteristic is non-zero then r̄0(k
×) = r̄0(k+) = 0.

(2) If the characteristic is zero then r̄0(k+) = rk(k+) > r̄0(k
×).

Thus, as one might hope, the additive group is more unipotent

than the multiplicative group.

Definition 2.5. Let k be a field of finite Morley rank. The Morley

characteristic χM (k) is defined as follows.

(1) If the characteristic is p > 0, the Morley characteristic is also

p.

(2) If the characteristic is zero, the Morley characteristic is the pair

(0, rk(k)).

In other words, the Morley characteristic associates an abstract no-

tion of unipotence to the field (or really, to its additive group).

We also require a partial order on Morley characteristics. The nota-

tion “π′ ≥M π” means the following.

(1) If π = p > 0: then π′ = π.

(2) If π = (0, r): then either π′ is a prime p, or π′ = (0, r′) and

r′ ≥ r.

In this connection we have also the following, slightly rephrasing the

foregoing.

Fact 2.6. Let k be a field of finite Morley rank, π its Morley charac-

teristic, and π′ ≥ π. Then Uπ′(k×) = 1.

Here (and throughout) one treats the classical case π = p > 0 and

the case π = (0, r) separately, but in parallel.

In the next lemma one is interested mainly in the special case of

simple algebraic groups, where the definability hypotheses are auto-

matically satisfied.

Lemma 2.7. Let L be an affine algebraic group over an algebraically

closed field k of characteristic zero, equipped with its structure as an
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algebraic group (with the field as an additional sort), and possibly ad-

ditional structure. Let r ≥ rk(k). Then a (0, r)-unipotent subgroup of

L is a unipotent subgroup (non-trivial only if r = rk(k)).

Proof. Certainly k+ is a (0, r)-unipotent group and therefore any unipo-

tent subgroup of L is as well.

For the converse it suffices to consider an abelian (0, r)-unipotent

subgroup of L. This is then a product of a unipotent group and a torus

and as we have a (0, r)-unipotent group, the torus is trivial. □

A similar result, in a less transparent notation, is the following.

Fact 2.8 ([BC22b]). Let G be a connected simple group of finite Morley

rank which is an L∗-group of odd type satisfying the condition NTA2,

of Prüfer 2-rank at least two, and 2-rank at least three.

Let t be an involution of G.

Then

∆ρ(CG(t)) = EE(CG(t)).

Here ρ is the maximum “reduced rank” of the multiplicative group

of the base field of a component of an involution and ∆ρ is the sub-

group generated by all p-unipotent subgroups and all (0, r)-unipotent

subgroups for which r > ρ.

The fact implies that for r at least the maximum rank of any such

base field of characteristic zero, any (0, r)-unipotent subgroup of CG(t)

will be contained in ECG(t) (hence unipotent).

One important ingredient of the proof, of major importance in its

own right, is the following. This comes from the signalizer functor the-

ory.

Fact 2.9. Under the hypotheses of Fact 2.8, for any involution i we

have

r̄0(OFCG(i)) ≤ ρ.

In addition, OFCG(i) is torsion-free.

2.3. Component Analysis. We discuss the main results of [BC22b],

passing quickly over those which lead to identification as PSp4.
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We use the notation Ealg(H) for the product of the algebraic compo-

nents of E(H); there may also be degenerate type quasisimple sections,

but we tend to ignore them.

From [BC22b, Thm. 1.2] we have the following two possibilities.

Fact 2.10. Let G be a connected simple L∗ group of finite Morley rank

of odd type satisfying the condition NTA2, with Prüfer 2-rank 2 and

m2(G) ≥ 3.

Then there are at most two conjugacy classes of involutions, and one

of the following applies.

(1) There are two conjugacy classes of involutions.

Then the 2-rank of G is 4; and the Sylow 2-subgroup is as in

PSp4.

One conjugacy class of involutions satisfies

C◦
G(i) ≃ PSL2(k)× k×,

and the other class satisfies

CG(i) ≃ SL2(k) ∗2 SL2(k),

with the two components of SL2(k) ∗2 SL2(k) conjugate.

(2) There is one conjugacy class of involutions, and these satisfy

CG(i) = SL2(k1) ∗2 SL2(k2)

where the base fields k1, k2 have the same characteristic. Fur-

thermore, in characteristic zero, we have

r̄0(k
×
1 ) = r̄0(k

×
2 )

in the sense of characteristic zero unipotence theory (§3.3).

In particular CG(i) is connected. Furthermore, CG(i) contains

a Sylow 2-subgroup of G, isomorphic to that of SL2 ∗2 SL2 (in

characteristic other than 2).
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The notation ∗2 denotes a central product with central involutions

identified.

The first case was treated in [BC22c].

Fact 2.11 ([BC22c, Theorem 1.8]). Let G be a group of finite Mor-

ley rank and odd type. Suppose that G is a simple L∗-group satisfying

NTA2, with Prüfer 2-rank two and 2-rank at least three, and having

precisely two conjugacy classes of involutions. Then G has the form

PSp4(k) for some algebraically closed field k.

So we take up the second case. That is, we will work with the fol-

lowing assumptions.

Hypothesis 2.12. G is a simple group of finite Morley rank, an L∗-

group of odd type satisfying NTA2, with one conjugacy class of invo-

lutions. For any involution i we have

CG(i) = Li,1 ∗2 Li,2

with Li,ℓ ≃ SL2(kℓ) where the base fields have the same characteristic

and their multiplicative groups have the same reduced rank. We sup-

pose rk(k1) ≥ rk(k2), and that for fixed ℓ the components Li,ℓ (with i

varying) are conjugate. We let π = χM (k1).

For L a component of the centralizer of an involution in G, with

base field k, we define the Morley characteristic χM (L) as the Morley

characteristic of the base field k in the sense of Definition 2.5.

We will sometimes quote results from prior work for groups satis-

fying Hypothesis 2.12 which were in fact proved previously in greater

generality. One should consult the prior works directly if one wants to

know the appropriate level of generality for a given result. In this paper

we have no reason to consider other cases (and in the case that leads

to the identification of PSp4, that result tends to make such questions

moot).

2.4. Auxiliary results and notation. We record some useful prin-

ciples.

2.4.1. Torsion subgroups.

Definition 2.13. For P a set of primes, a P -torus is a divisible abelian

P -group. We write Π for the set of all primes, so that a Π-torus is a

maximal divisible abelian torsion group.
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The definable hull of a Π-torus is called a decent torus. If all definable

subgroups of a definable group are decent tori, it is called a good torus

The following is part of the deep background and is for the most part

taken advantage of without particular comment, but it is worth noting

explicitly.

Fact 2.14 ([Che05]). Let G be a group of finite Morley rank. Then any

two maximal Π-tori of G are conjugate; equivalently, any two maximal

decent tori are conjugate.

Fact 2.15 ([Fré06, Lemma 3.1]). Let G be a group of finite Morley

rank, N a definable normal subgroup of G. Let T be a maximal decent

torus in G. Then TN/N is a maximal decent torus of G/N , and every

maximal decent torus of G/N has this form.

Fact 2.16 ([ABC08, Prop. II 11.7]). Let P be a set of primes. Let H

be a connected solvable P⊥-group of finite Morley rank acting faithfully

on a nilpotent P -group U of bounded exponent. Then H is a good torus.

The proof is by reduction to the case of the multiplicative group of

a field of nonzero characteristic (Wagner).

Fact 2.17 ([AB08, Theorem 1]). If G is a connected group of finite

Morley rank and T is a p-torus of G, then CG(T ) is connected.

Fact 2.18 ([ABC99, Prop. 2.43], [ABC08, Prop. I.9.12]). Let G =

H⋊T be a group of finite Morley rank, Q◁H, and π a set of primes,

such that Q,H, T are definable and

• Q and T are solvable;

• T is a π-group of bounded exponent;

• Q is a T -invariant π⊥-subgroup.

Then

CH/Q(T ) = CH(T )Q/Q

Fact 2.19 ([ABCC03], [Bur09, Lemma 3.5]). Let G be a connected

solvable p⊥-group of finite Morley rank, and let P be a finite p-group

of definable automorphisms of G. Then CG(P ) is connected.

If in addition G is a nilpotent (0, r)-unipotent group then CG(P ) is

a (0, r)-unipotent group.
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Remark 2.20. In the foregoing result it suffices to have P a locally finite

p-group as the centralizer of P will then be the centralizer of a finite

subgroup. The case of particular interest has p = 2 and P a 2-torus.

Fact 2.21 ([BC09, Theorem 3*]). Let G be a connected group of finite

Morley rank and odd type. Then any 2-element in G lies in some 2-

torus of G.

Fact 2.22 ([ABC08, I.10.4]). Let G be a group of finite Morley rank

without involutions, and α a definable involutory automorphism of G.

Then

G = CG(α)×G−

(i.e., the multiplication map going from right to left is bijective).

Here G− is the subset inverted by α.

The following is a variation on [BN94, Prop. 13.4] (a simple bad

group has no definable involutive automorphism).

Lemma 2.23. Let G be a connected group of finite Morley rank of

degenerate type, and let α be an involutive automorphism of G. Then⋃
CG(α)

G is disjoint from G− \{1}, where G− = {x ∈ G | xα = x−1}.

Proof. The group G has no involutions. By Fact 2.22 we have G =

CG(α)G
−.

Suppose g ∈ G and x ∈ G− ∩ CG(α)
g. We may take g ∈ G−. So

xg
−1

= (xg
−1)α = (xα)g

−α

= (x−1)g;

xg
−2

= x−1.

Thus g4 ∈ C(x), but g ∈ d(
〈
g4
〉
), so g ∈ C(x) and x−1 = x, x = 1. □

We give the next result in its original form, which is considerably

more general than is needed here.

Fact 2.24 ([Wag97, Theorem 2.4.3]). If G is a stable group of generic

exponent 3, then G is nilpotent of exponent 3.
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2.4.2. Solvable groups, Carter subgroups, genericity.

Fact 2.25 ([ABC08, Lemma 8.3]). Let G be a connected solvable group

of finite Morley rank. Then G/F ◦(G) is divisible abelian.

Definition 2.26. Let G be a group of finite Morley rank. A Carter

subgroup ofG is a definable connected nilpotent subgroup of finite index

in its normalizer.

Fact 2.27 ([Fré00, Cor. 5.20]). If C is a Carter subgroup of a connected

solvable group G of finite Morley rank and N is a normal subgroup of

G (not necessarily definable), then the image of C in G/N is a Carter

subgroup of G/N , and all Carter subgroups of G/N have this form. In

particular, the Carter subgroups of G/N are conjugate.

We are only interested in the case in which N is definable but we re-

tain the generality of the original statement. The conjugacy statement

is less subtle in that case but in any case this is not the aspect that

will concern us here.

There is one point here which we will find convenient to put in an-

other form. It is likely that this formulation also occurs in the literature,

but we have not noticed a suitable reference.

Lemma 2.28. If C is a Carter subgroup of a connected group G of

finite Morley rank and N is a definable normal connected solvable sub-

group of G, then the image of C in G/N is again a Carter subgroup of

the quotient.

Proof. Otherwise NG(CN)/N is infinite. Therefore there is a connected

subgroupH ofNG(CN) withH/CN infinite abelian. This violates Fact

2.27 applied to H. □

Fact 2.29 ([BBC07, Lemma 4.1]). Let G be a group of finite Morley

rank, H a definable subgroup of G, and X a definable subset of G.

Suppose that

rk(X \
⋃
g/∈H

Xg) ≥ rk(H)

Then rk(
⋃

XG) = rk(G).
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Fact 2.30 ([BC09, Thm. 1 (1,2)]). Let G be a connected group of finite

Morley rank, p a prime, and let a be a generic element of G. Then

• the element a commutes with a unique maximal p-torus Ta of

G, and

• the definable hull d(⟨a⟩) contains Ta.

2.5. Some subgroups.

Fact 2.31 ([Poi01, Théorème 1]). Si K est un corps de rang de Morley

fini et de caractéristique p non nulle, tout sous-groupe definissable sim-

ple G de GLn(K) est définissablement isomorphe à un groupe algébrique

sur K.

Fact 2.32 ([BC08, Theorem 2.1]). Let G be a connected L-group of

finite Morley rank and odd or degeneate type. Let V be an elementary

abelian 2-group acting definably on G.

Then ΓV = G.

The following emerges from component analysis.

Fact 2.33 ([BC22b, Lemma 7.8]). Let G be a group of finite Morley

rank satisfying Hypothesis 2.12 and having one conjugacy class of in-

volutions. Let i be an involution and let L be an E-component of CG(i).

Let H be a definable proper subgroup of G containing L and having 2-

rank at least 2. Let L̂ be the normal closure of L in H and Q = OF (L̂).

Then one of the following applies.

(1) Q = 1 and L̂ ≤ Ealg(H).

(a) H ≤ CG(i), or

(b) Ealg(H) is of type SL3.

or

(2) Q > 1 and L̂ = Q · L.

(a) i inverts Q, or

(b) CG(i) = Ealg(CG(i)) = EE(CG(i)) has two components of

type SL2. Their base fields have the same characteristic

and, in the case of characertistic zero, the same rank.
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3. The Weyl group and unipotent subgroups

We now move towards the construction of a BN-pair and the resulting

identification of G2, with a “bad branch” still to come.

3.1. The Weyl group. The first part of the analysis concerns the

definition and structure of the Weyl group, and this runs parallel to

the analysis for PSp4. This topic was treated with sufficient generality

in [BC22c]. We recapitulate here for the case of present interest.

Notation 3.1. Let G be a group of finite Morley rank of odd type.

For T a maximal 2-torus of G, and for i an involution in T , set

WT = NG(T )/CG(T ); Wi = NC(i)(T )/CC(i)(T ).

We call these Weyl group of G, and of C(j), respectively (with respect

to T ). As one may replace T by d(T ), these groups are quotients of

definable groups.

By conjugacy of maximal 2-tori the Weyl group W = WT of G is

well-defined up to conjugacy.

Wi may be identified with a subgroup of WT , namely the image of

NC(i)(T ) in WT .

In particular, any element ofWi will be considered also as an element

of WT .

Fact 3.2 ([BC22c, Lemma 3.6]). Let G be a group of finite Morley rank

satisfying Hypothesis 2.12. Let T be a maximal 2-torus of G and i an

involution of T .

Then the Weyl group of G is a dihedral group of order 12, with gen-

erators w̄1, w̄2, σ̄ where wℓ is an element of NLi,ℓ
(T ) of order 4, and

σ ∈ N(T ) is an element of order three acting as the 3-cycle (i, j, ij) on

Ω1(T ).

3.2. The group N . Here we continue to overlap with [BC22c] but

nonetheless we give the details relevant to the case of G2.

Definition 3.3. Let G be a group of finite Morley rank satisfying

Hypothesis 2.12. Let T be a maximal 2-torus ofG. We define a subgroup

N of N(T ) as follows.

For an involution i of G, let xi be a representative for the Weyl group

WLi,1
in Li,1. That is, xi ∈ Li,1 has order 4 and inverts T ∩ Li,1 while

centralizing Li,2. Let wi be an involution of CG(i) inverting T .
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Take two involutions i, j ∈ T and set

N = d(T ) ⟨xi, xj , wi⟩ .

Lemma 3.4. With hypotheses and notation as in Definition 3.3, the

element xjxi represents an element of order three in the Weyl group,

operating on Ω1(T ) as the 3-cycle

(i, j, ij).

Proof. The involution i acts as the transposition (j, ij) and j acts as

the transposition (i, ij) on Ω1(T ) so the action of xjxi is clear.

Consider the action of (xjxi)
3 on T ∩ Li,1.

For a ∈ Li,1 we have i
xjxi = j and thus axjxi ∈ Lj,1, so for a ∈ T∩Li,1

we have

a(xjxixj) = (a−1)xjxi ;

a(xjxi)
3

= (a−1)(xjxi)(xixjxi) = (a−1)xi = a.

Thus (xjxi)
3 centralizes T ∩ Li,1. As (xjxi)

3 also centralizes (xjxi), it

centralizes T ∩Lj,1 and T ∩Lij,1. As any two of these 2-tori generate T ,

(xjxi)
3 centralizes T and (xjxi) acts as a Weyl group element of order

three. □

Lemma 3.5. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Let N be defined as above.

Then

CN (T ) = N◦ = d(T ); N(T ) = C(T ) ·N ; N/d(T ) ≃ WT .

Proof. By construction d(T ) ≤ N . Since N/d(T ) is finite, in view of

Fact 2.17 we have CN (T ) = C◦
N (T ) = d(T ). So CN (T ) = N◦ = d(T ).

The statements N(T ) = C(T ) · N and N/d(T ) ≃ WT are equiva-

lent. We have seen that the group N induces Sym3 on Ω1(T ), and the

element inverting T has been included. □

Lemma 3.6. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Let N be defined as above.

Then the following hold.
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(1) Any proper definable connected simple algebraic section L of G

is of type PSL2 or PSL3.

(2) There is no proper connected definable subgroup of G containing

N .

Proof.

Ad 1. Otherwise, the section L is of type G2. Let L = H/K with K

normal and definable in H.

By Fact 2.2 Ealg(H/OF (H)) ≃ L. So we may suppose L = H/OF (H).

By Fact 2.18 the centralizer of an involution in H covers the centralizer

in L.

We consider an involution i of H. Then CH(i) has a quotient of type

SL2 ∗2 SL2 and it follows that CG(i) is contained in H. Then by Fact

2.33 we find H ≤ CG(i), for a contradiction.

This proves the first point.

Ad 2. Suppose H is a proper connected definable subgroup of G con-

taining N . Then the Sylow 2-subgroup and Weyl group of H agree with

that of G2, so H has a definable section of type G2, for a contradic-

tion. □

3.3. Unipotent subgroups. This section reviews a number of facts

from [BC22c, §3.3]. concerning a “maximal unipotent” subgroup U in

the sense of Fact 3.11. This is a problematic subject in our context and

is associated with a possible pathological configuration.

Fact 3.7. Let G be a group of finite Morley rank satisfying Hypothesis

2.12. Let T be a maximal 2-torus of G, and let U be a maximal definable

T -invariant connected nilpotent group.

Then U is maximal among definable connected nilpotent subgroups

of G, and N◦(U)/σ◦(U) is of degenerate type.

Fact 3.8. Let G be a group of finite Morley rank satisfying Hypothesis

2.12. Let T be a maximal 2-torus of G, and let U be a maximal definable

connected T -invariant nilpotent subgroup of G.

Let π be either a prime different from the characteristic of any base

field of a component of the centralizer of an involution, or a symbol
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(0, r) with r greater than the Morley rank of the base field of any com-

ponent of the centralizer of an involution. Then

Uπ(U) = 1

Notation 3.9. Let G be a group of finite Morley rank satisfying Hy-

pothesis 2.12. let T be a maximal 2-torus of G (fixed, and not generally

referred to explicitly in the associated notation). Let i be an involution

of T .

For ℓ = 1 or 2, Bℓ denotes some Borel subgroup of Li,ℓ normalized

by (thus, containing) T for ℓ = 1, 2, and B = B1B2. We write Xℓ for

the unipotent radical of Bℓ and we set X = X1X2.

Let U be a fixed maximal definable connected nilpotent subgroup of

G which contains X and is T -invariant (hence U is also maximal among

definable connected nilpotent subgroups of G).

Fact 3.10. Let G be a group of finite Morley rank satisfying Hypothesis

2.12. With notation as in 3.9, we have

U ∩ d(T ) = 1.

Fact 3.11. Let G be a group of finite Morley rank satisfying Hypothesis

2.12. Let i be an involution.

Then with notation as in 3.9, we may choose U to contain a maximal

definable nilpotent Uπ-subgroup of G.

The main question—which confronts us immediately—is whether or

not U = X. When U > X our analysis proceeds to an identification of

G2. When U = X our analysis will be inconclusive. We shall return to

this topic shortly.

3.4. Tori. We continue with our review of [BC22c, §3], specialized (as

always) to our current context.

Notation 3.12. Let G be a group of finite Morley rank satisfying

Hypothesis 2.12. Fix a maximal 2-torus T of G.

Then we let (correspondingly) T = CG(T ).

Remark 3.13. N normalizes T.
This is clear by the construction of N .

We think of T as the “algebraic” torus containing T . This is some-

what justified by the following.
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Fact 3.14.

(1) T = T1T2 with Tℓ the algebraic torus of Li,ℓ containing T∩Li,ℓ.

(2) For t ∈ I(T ), and K a component of Ealg(CG(t)), the group

T ∩K is a maximal torus of K.

(3) U ∩ T = 1

Fact 3.15. T normalizes the group U .

Furthermore, U is generated by unipotent subgroups of algebraic com-

ponents of centralizers of involutions t ∈ I(T ).

This gives us the point of departure for our analysis.
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4. G2 type: SL3-type subgroups and root groups

As in the case of PSp4, the key to building a BN-pair is to show that

our subgroup U is not contained in CG(i); cf. [BC22c]. But this is more

difficult in the case of groups of type G2 than in the case of PSp4. In

the finite case, one uses character theory to settle this point when the

characteristic of the base field is three.

In characteristic not three, we will find a group of type SL3 embed-

ded as the centralizer of an element of order three, whose maximal

unipotent subgroup links the long root groups in CG(j) for j ∈ Ω1(T ).

In characteristic three, we arrive at an alternate pathological configura-

tion where in fact U ≤ CG(i). We will not eliminate this configuration,

and it deserves further attention. A more “intrinsic” description of this

situation is: N◦
G(X) ≤ CG(i).

We operate under Hypothesis 2.12 and in the previous section we

have discussed various useful subgroups of the group G. We will be

keeping a maximal 2-torus T fixed and use the associated notation

(which depends on T but does not mention the dependence).

Notation 4.1. V = Ω1(T ) = ⟨i, j⟩.

4.1. Characteristic other than three (or 2). The odd type hypoth-

esis removes characteristic 2 from consideration. Characteristic three

presents its own particular issues.

Lemma 4.2. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Then the following conditions are equivalent.

(1) G contains a non-trivial 3-torus .

(2) The base fields of the components of CG(i) have characteristic

not equal to three.

If these conditions hold, then there is an element c ∈ C◦
G(Ω1(T )) of

order three centralized by a Weyl group element σ of order three, and

which lies in one of the components of CG(i). For any such element c,

we have

Ealg(CG(c)/OF (CG(c))) ≃ SL3 .

Proof. We first check the equivalence of the two conditions.



L∗ GROUPS IN ODD TYPE. IV: THE G2 CONFIGURATION 21

(2 =⇒ 1)

We recall that the two base fields have the same characteristic. If

this characteristic is not three then T contains a 3-torus.of Prüfer rank

two.

(1 =⇒ 2)

For the converse, if there is a non-trivial 3-torus, then by Fact 2.14

there is a non-trivial 3-torus T3 centralizing the 2-torus T . In particular

T3 ≤ T, and the characteristic is not equal to three.

So the two conditions are equivalent. Now we assume these conditions

hold, and let T3 be a maximal 3-torus in T.
Then T3 has Prüfer 3-rank two, and the Weyl group of G with respect

to T also acts on T3. So there is some c ∈ Ω1(T3) which is fixed by an

element σ of order three in W .

Now the Weyl group element w1 inverts σ and hence acts on CT3
(σ).

It follows that CT3
(σ) contains an element c of order three which is

either fixed or inverted by w1, hence lies in Li,1 or Li,2. Let Ki,1 be

the component of CG(i) containing c and Ki,2 the other component.

Then Ki,2 ≤ CG(i, c). Similarly there are components Kt′,2 of CG(t
′))

in CG(c) for t
′ ∈ I(V ).

Let H = C◦
G(c), H̄ = H/OF (H) = Ē ∗ K̄ the usual decomposition,

and correspondingly, H = E ·K. We claim that E is itself quasi-simple,

that is, [E,OF (H)] = 1. As E is generated by C◦
E(t

′) for t′ an involution

of V , and E(CE(i)) = Ki,2, this follows. As the group E has Prüfer

2-rank two, it must be a quasi-simple cover of PSL3, with the base field

as in Ki,2.

Thus at this point we have H = E ∗K with E of type SL3 or type

PSL3, and with K of degenerate type.

Claim 1. K ≤ T.

As usual it suffices to consider C◦
K(i) ≤ CCG(i)(Ki,2) = Ki,1. So

C◦
K(i) ≤ CKi,1

(c)) ≤ T. The claim follows.

Now a maximal 3-torus of E has Prüfer rank two and thus contains

the 3-torsion of T. So the factor K contains no 3-torsion. Hence c ∈
Z(E) and E ≃ SL3. □

4.2. Root subgroups. Recall that Xℓ is a maximal unipotent sub-

group of Li,ℓ (a root group).
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Lemma 4.3. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Then (
⋃
XG

1 ) ∩ (
⋃
XG

2 ) = 1.

Proof. Supposing the contrary, there is some g ∈ G for which

X1 ∩Xg
2 > 1.

Take a non-trivial element h ∈ X1 ∩Xg
2. Then

Li,2, L
g
i,1 ≤ CG(h).

In particular i, ig ∈ C◦
G(h). and so after further conjugation in CG(h)

By Facts 2.21 and Fact 2.14 we may suppose that i and ig lie in a

common 2-torus TH of H.

Now i normalizes Lg
i,1 and centralizes h, so centralizes Lg

i,1. It follows

that i = ig and Lg
i,2 is Li,2. But then X1 meets Li,2, a contradiction. □

Lemma 4.4. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Then Xz
1,Xz

2 ̸≤ CG(i) for any z ∈ N \ CG(i).

Proof. Suppose e.g. that Xz
1 ≤ CG(i). Then i, iz centralize Xz

1 so after

conjugating in C(Xz
1) we may suppose that iz commutes with i. Then i

normalizes Lz
i,1 and acts trivially onXz

1, so L
z
i,1 ≤ CG(i) and Lz

i,1 = Li,1,

and z centralizes i. □

Lemma 4.5. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Then w2 acts non-trivially on Lt,ℓ for t ∈ I(V ), ℓ = 1, 2,

except when t = i and ℓ = 1.

Proof. If w2 centralizes Lt,ℓ then i = w2
2 centralizes Lt,ℓ and so t = i,

in which case clearly ℓ = 1. □

Notation 4.6. Let G be a group of finite Morley rank satisfying Hy-

pothesis 2.12. Take σ ∈ N of order three. Set

⟨X1⟩σ =
〈
Xγ

1 |γ ∈ ⟨σ⟩
〉
,

with ⟨X2⟩σ defined similarly.

Lemma 4.7. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Take σ ∈ N of order three. Then ⟨X1⟩σ is not nilpotent.
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Proof. We may suppose σ acts on Ω1(V ) as the 3-cycle (i, j, ij). Set

H = ⟨X1⟩σ.

Claim 1. H is nonabelian.

Suppose toward a contradiction that H is abelian and let K =

C◦
G(X1). Then

H,Li,2, L
σ
i,2 ≤ K.

By Fact 2.33 we find that either K ≤ CG(i) or Ealg(K) is of type SL3.

If K ≤ CG(i) then in particular Xσ
1 ≤ CG(i). From the point of view

of CG(j) this is visibly not the case.

If Ealg(K) is of type SL3 then there is an element of order three

in K centralizing Li,2, and hence lying in CK(i). This element must

centralizes X1 and Li,2, giving a contradiction.

The claim follows.

Now suppose toward a contradiction that H is nilpotent. Let π be

χM (Li,1).

Let A = Uπ(Z(H)). Then A is nontrivial by the theory of unipotence

(notably, but not exclusively, Fact 2.4).

Now by Fact 2.32

A = ⟨C◦
A(t) : t ∈ I(V )⟩ .

As σ normalizes A, it follows that all the groups At = C◦
A(t) for t ∈

I(V ) are non-trivial. By Fact 2.19, the groups At are Uπ-groups.

Now Ai is T -invariant and hence has the form

Ai,1 × Ai,2

where Ai.ℓ = Ai ∩ Li,ℓ.

The group Ai,1 is a unipotent subgroup of Li,1, hence is X1 or trivial.

If Ai,1 = X1 then X1 ≤ Z(H). Then H is abelian, a contradiction. So

Ai ≤ Li,2.

If Ai is a unipotent subgroup of Li,2 then since since it is nontriv-

ial and T-invariant it is a root subgroup. But then
〈
Ag
i : g ∈ ⟨σ⟩

〉
is

also contained in A, and hence ⟨Ai⟩σ is abelian, giving much the same

contradiction as above.
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There remains the case in which

Ai ≤ T ∩ Li,2.

It then follows that all At ≤ T for t ∈ I(V ), and hence A ≤ T.
As A centralizes X1, A centralizes Li,1. Similarly A centralizes Lj,1

and Lij,1.

Let HA = C◦
G(A), H̄A = HA/OF (HA) = ĒA ∗ K̄A with ĒA =

Ealg(H̄A). Then ĒA contains Lv,1 for v ∈ I(V ). By Fact 2.33, Ealg(HA)

is of type SL3 and is generated by Lt,1 with t ∈ V . But then Xσ
1 is

another root group of Ealg(HA) and we arrive at a contradiction.

This proves the result. □

Lemma 4.8. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Take σ ∈ N of order three. Set

⟨X1⟩σ =
〈
Xγ

1 |γ ∈ ⟨σ⟩
〉

Then we have one of the following.

(1) ⟨X1⟩σ = G; or

(2) Ealg(⟨X1⟩σ) ≃ (P)SL3.

The same applies to X2.

Proof. Set H0 = ⟨X1⟩σ and H = H0T. Suppose H0 < G. Then H < G.

Set H̄ = H/OF (H) = Ē ∗ K̄ where Ē = Ealg(H̄) and K̄/Z◦(K̄) has

degenerate type.

If X̄1 = 1 then H̄0 = 1 andH0 is nilpotent, a contradiction to Lemma

4.7. It follows that X1 ∩OF (H) = 1. On the other hand X1 is inverted

by a 2-element of T and thus X̄1 ≤ Ē. Thus H̄0 ≤ Ē. It follows easily

that Ē ≃ PSL3 or SL3 and that H̄0 = Ē. That is

H0/OF (H0) ≃ (P)SL3 .

In particular the Weyl group Sym(3) acts on H0.

Again the base field of H̄0 is the base field of Li,1 and the torus of

H̄0 is T̄. We have

OF (H0) =
〈
C◦
OF (H0)

(t) : t ∈ I(V )
〉
.
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Consider the group Y = C◦
OF (H0)

(i). Since [Y,X1T] is nilpotent and
Y normalizes Li,1, the group Y centralizes Li,1. Y is also normalized

by T and Y ∩ T = 1, so Y ≤ Li,2 is unipotent.

If Y is non-trivial then Y is a maximal unipotent subgroup of Li,2.

But ⟨Y ⟩σ ≤ OF (H0) is nilpotent so we have a contradiction. Therefore

Y = 1, and OF (H0) = 1. Thus H0 is PSL3 or SL3. □

5. The pathological case: N◦
G(X) ≤ CG(i)

We first examine the problematic case—though the reader is welcome

to pass over this and continue with the more favorable case of the next

section.

Hypothesis 5.1 (G2 with pathology). Let G be a group of finite Mor-

ley rank satisfying Hypothesis 2.12. We assume in addition that

N◦
G(X) ≤ CG(i).(☡)

Remark 5.2. Under Hypothesis 5.1, X is a maximal definable connected

nilpotent subgroup of G.

5.1. The base fields. Among other things, we show in the first stage

of analysis that the base fields are of characteristic three and definably

isomorphic.

Lemma 5.3. Let G be a group of finite Morley rank satisfying Hypoth-

esis 2.12. Suppose A = Li,2 ∩ Lj,2 > 1. Then C◦
G(A) ≃ (P)SL3 ∗A◦.

Proof. Notice that A contains no involution and is centralized by ⟨i, j⟩.
As j acts on Li,2 like a square root z of i in T, it follows that A

commutes with z. So A must lie in the unique torus of Li,2 containing

z, namely T ∩ Li,2.

Let H = C◦
G(A)

Claim 1. OF (H) ≤ T.

Set U = C◦
OF (H)(i). Then Li,1 normalizes U ≤ CG(i) with U nilpo-

tent, so U ≤ Li,2. Furthermore A centralizes U so U ≤ T. Similarly

C◦
OF (H)(t) ≤ T for t ∈ I(V ). The claim follows.
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In particular T acts trivially on OF (H) and hence Li,1, Lj,1 act triv-

ially on OF (H). In particular ⟨Li,1, Lj,1⟩ ≤ CH(OF (H)) and it follows

that ⟨Li,1, Lj,1⟩ = Ealg(H) ≃ (P)SL3, and

H = E ∗ CH(E)

with E = Ealg(H).

Now CH(E) ≤ CH(i) ≤ CG(i) so CH(E) = H∩CCG(i)(E) ≤ H∩Li,2.

Similarly CH(E) ≤ Lj,2, so CH(E) = A◦ and H = E ∗ A◦. □

Lemma 5.4. Let G be a group of finite Morley rank satisfying Hypoth-

esis 5.1 and σ a Weyl group element of order three. Then ⟨X1⟩σ = G.

Proof. Supposing the contrary, by Lemma 4.8 Ealg(⟨X1⟩σ) ≃ (P)SL3.

Let K = Ealg(⟨X1⟩σ).
Take a maximal unipotent subgroup UK of K centralizing X1. Con-

sider H = C◦
G(X1), which contains UK and Li,2. H has Prüfer 2-rank

1, and CH(i) = X1Li,2 covers H̄ = H/OF (H) = L̄i,2 × CH̄(Li,2), so

H = OF (H)Li,2. Now with B2 the Borel subgroup of Li,2 containing

X2, we have X2 ≤ (B2 ·OF (H))′ ≤ F (B2 ·OF (H)), so X2 ·OF (H) is

nilpotent.

By hypothesis X is a maximal connected nilpotent subgroup of G,

so OF (H) = X1. But then UK ≤ H = X1Li,2. By rank considerations

UK ∩Li,2 must be a Borel subgroup. But UK is either p-unipotent with

p the base characteristic, or torsion-free. □

Lemma 5.5. Let G be a group of finite Morley rank satisfying Hypoth-

esis 5.1. Then Li,2 ∩ Lj.2 = 1.

Proof. Supposing the contrary, let A = Li,2 ∩ Lj,2 and

K = Ealg(C
◦
G(A)) ≃ (P)SL3 .

Then ⟨X1⟩σ ≤ K, contradicting Lemma 5.4. □

Lemma 5.6. Let G be a group of finite Morley rank satisfying Hypoth-

esis 5.1. Then the multiplicative groups of the fields k1, k2 are definably

isomorphic. In particular the fields have the same characteristic and

the same rank.



L∗ GROUPS IN ODD TYPE. IV: THE G2 CONFIGURATION 27

Proof. Let

A1 = T ∩ Li,1 ≃ k×1 ; A2 = T ∩ Li,2 ≃ k×2 ;

B = T ∩ Lj,2.

Then B ∩ A1 = 1, since j commutes with B and inverts A1, and B

does not contain i. By Lemma 5.3, B ∩ A2 = 1.

On the other hand B ≤ T = A1 × A2 and by rank considerations

T = A1×B. So B is the graph of a definable isomorphism between the

multiplicative groups of k1 and k2. Thus the characteristics are equal

and the ranks are the same. □

Note the asymmetry in our notation between index 1 and 2, as set

up initially in the statement of Hypothesis 2.12, is now abolished. In

particular Lemma 5.4 applies to X2 as well.

Definition 5.7. Let G be a group of finite Morley rank satisfying

Hypothesis 2.12.

The base characteristic is the characteristic of the base fields k1, k2.

Both parts of the next lemma seem significant, though the second is

a corollary of the first.

Lemma 5.8. Let G be a group of finite Morley rank satisfying Hypoth-

esis 5.1.

Then

(1) The base characteristic is three.

(2) CG(i) contains no definable torsion-free subgroup.

Proof.

Ad 1.

Apply Lemma 4.2 and the symmetric form of 5.4.

Ad 2.

Suppose CG(i) contains a non-trivial definable torsion-free subgroup.

Then the projection to Li,1 is torsion-free, and we may suppose it is

non-trivial. It must then lie in an algebraic torus,

But by Fact 2.16 an algebraic torus of Li,1 is a good torus. □
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5.2. Local analysis: a black hole principle. We aim at the “black

hole” principle stated in Proposition 5.14 below.

Lemma 5.9. Let G be a group of finite Morley rank satisfying Hypoth-

esis 5.1.

Then any element t which is a representative for a Weyl group ele-

ment σ of order three is conjugate to an element of X.

Proof. Take w ∈ CG(i) an involution inverting T. At the level of the

Weyl group, w and t commute. So a = [t, w] ∈ T.
By Lemma 5.5 we have CT(t) = 1. Thus t3 = 1 and [t,T] = T. Take

b ∈ T with [t, b] = a−1. Then [t, wb] = 1. As wb is an involution, t is

conjugate to an element t′ of CG(i). As t3 = 1, t′ is conjugate to an

element of X in CG(i). □

Lemma 5.10. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

For g ∈ T non-trivial, there is a t ∈ I(V ) such that C◦
G(g) ≤ CG(t).

Proof.

C◦
G(g) = ⟨C◦

G(g, t) : t ∈ V ⟩ .

Now C◦
G(g, i) is one of T, TLi,2, or Li,1T.

If at most one centralizer C◦
G(g, t) is greater than T for t ∈ I(V ), the

claim follows. So suppose

C◦
G(g, i), C

◦
G(g, j) > T,

and specifically C◦
G(g, i) = Li,1T. Then C◦

G(g, j) = Lj,1T. But then

⟨X1⟩σ < G, contradicting Lemma 5.4. □

Definition 5.11. Let G be a group of finite Morley rank satisfying

Hypothesis 5.1. Then UX denotes the family of all definable connected

nilpotent subgroups of G which meet X nontrivially and are not con-

tained in CG(i).

A group U ∈ U will be called U-maximal if it maximizes U∩X across

all groups in U , and in addition is itself a maximal definable connected

nilpotent subgroup of G.
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Lemma 5.12. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1. Let V = Ω1(T ).

Suppose that U ∈ U satisfies the following conditions.

(a) (U ∩X)◦ is maximized across UX.

(b) U is a maximal definable connected nilpotent subgroup of G.

Then the following hold.

(1) U ∩X is connected.

(2) U is U-maximal.

(3) U ∩X < X < C◦
G(U ∩X).

In particular, if U is nonempty then U-maximal groups exist.

Proof.

Ad 1,2.

By Lemma 2.19 CU (i) is connected and it follows that U ∩ X is

connected. This gives points (1,2).

Ad 3.

By assumption X is maximal definable nilpotent, hence U ∩X < X.

Clearly X ≤ C◦
G(U ∩X).

Let U1 = N◦
U (U∩X). Then U1 > U∩X and U1 normalizes C◦

G(U∩X).

If we suppose X = C◦
G(U ∩X) then U1 normalizes X and consideration

of X · U1 violates the U -maximality of U . So (3) follows. □

Lemma 5.13. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1. Let V = Ω1(T ).

Suppose U ∈ U is U-maximal and set H = C◦
G(U ∩ X). Then the

following hold.

(1) F ◦(H) ≤ X.

(2) X is not contained in Li,1 or Li,2.

(3) For h ∈ H \NH(X) we have X ∩Xh = U ∩X.

(4) The union
⋃

h∈H Xh is generic in H.



30 JEFFREY BURDGES AND GREGORY CHERLIN

Proof.

Ad 1.

Since the group B = XF ◦(H) is solvable, Fact 2.25 implies that

X ≤ F (B) and thus X ·F ◦(H) is nilpotent. By the maximality of X we

find F ◦(H) ≤ X.

Ad 2.

Suppose for example that U ∩X ≤ Li,1, so that Li,2 ≤ H. By Claim

1 the group X commutes with OF (H), so Li,2 acts trivially on OF (H).

It follows that Li,2 ≤ Ealg(H), and as the Prüfer 2-rank of H is at most

one, that

Li,2 = Ealg(H).

Let U0 = N◦
U (U ∩ X). Then U0 normalizes Li,2 and acts via inner

automorphisms. Conjugating under the action of Li,2, we may suppose

that U0 acts like a subgroup of the Borel subgroup N(X2). But then

the group

U∗ = U0 ·X2

is nilpotent and U ∩ X < (U ∩ X)X2 ≤ U∗ ∩ X, contradicting the

maximality of U ∩X.

Ad 3.

Set

H̄ = H/(U ∩X).

Claim 1. X̄ is a Carter subgroup of H̄ (Definition 2.26).

We need to show that N◦
H̄
(X̄) = X̄.

Suppose toward a contradiction that NH̄(X̄)/X̄ is infinite. Let B ≤
N◦

H(X) be the preimage of a Borel subgroup of N◦
H̄
(X̄). By the maxi-

mality of X, F ◦(B) = X. By Fact 2.25, B/F ◦(B) is divisible abelian.

The maximality of X implies that the action of this group on X is faith-

ful. By Fact 2.16 B/F ◦(B) contains torsion. By Fact 2.15 B contains

a non-trivial Π-torus T0. Conjugating by an element of N(X), we may

suppose that T0 ≤ T. Since U ∩ X and T0 commute, we may suppose

U ∩X ≤ Li,1 and T0 ≤ Li,2. This contradicts (2) and proves the claim.
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Now suppose X ∩Xh > U ∩X, that is, X̄h ∩ X̄ > 1.

Then Xh ∩ X > U ∩ X. Then by the maximality of U ∩ X we have

Xh ≤ CG(i). But Xh contains U ∩X and is maximal unipotent, while

U ∩ X is not contained in Li,1 or Li,2, so this forces Xh = X. This

proves (3).

Ad 4. From (3), by Fact 2.29, we have
⋃
X̄H̄ generic in H̄, and (4)

follows. □

Proposition 5.14. Let G be a group of finite Morley rank satisfying

Hypothesis 5.1.

If U is a connected nilpotent subgroup of G that contain a non-trivial

unipotent element of CG(i) then U lies inside CG(i).

Proof. Assuming the contrary, we can take a counterexample U which

is U -maximal and consider H = C◦
G(U ∩X).

By Lemma 5.13, H is generically of exponent 3. By Fact 2.24, H is

nilpotent. As H contains X, this is a contradiction. □

We derive some consequences.

Lemma 5.15. If u ∈ X, u ̸= 1, then i is the only involution centralizing

u.

Proof. Let Hu be the group generated by definable connected nilpotent

subgroups of G containing u. Then Hu ≤ CG(i) and Hu is either X or a

product X0L with X0 contained in X and L a component of CG(i). Let

H∗
u be the group generated by definable connected nilpotent subgroups

ofG containing a unipotent element ofHu. ThenH∗
u is CG(i). Therefore

any involution t centralizing u centralizes i. But if the involution t

centralizes i and u then it is i. □

Lemma 5.16. For i, j distinct involutions, the intersection

CG(i) ∩ CG(j)

lies inside a conjugate of T.
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Proof. This is a definable subgroup of CG(i) containing no unipotent

element, by Lemma 5.15. The result follows by Fact 2.31. □

5.3. Involutions and rank computations. One can attempt to com-

pute rk(G) by a study of involutions in the manner of Thompson by

studying the generic product of involutions. In some pathological set-

tings this leads to a fairly direct contradiction. Here however one en-

counters the problem of “dark matter,” to be defined and discussed in

the next subsection. Still, we make the computations.

Notation 5.17. Let f denote the rank of the base fields (see Lemma

6.2).

Then to begin with, we have rk(CG(i)) = 6f .

Now we consider the set Σ of strongly real elements of G: these are

the elements inverted by some involution. This includes all elements of

CG(i), since a torus is inverted by an involution, a unipotent element

is inverted by an involution, and a mixed type element ua with u, a in

different components of CG(i) and with u unipotent, a toral is inverted

by elements t1 and w2 in the respective components with square i, so

that au is inverted by the product t1w2.

We consider the multiplication map

µ : I(G)× I(G) → Σ.

In the context of groups of finite Morley rank, if one has a definable

surjection

f : A ↠ B

then

rk(A) = max(rk(Br) + r)

with Br the subset of B for which the rank of the corresponding fiber

is r.

Specializing to the case at hand we have, first of all, the following.

Lemma 5.18. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

Then the inverse image of the set of toral elements
⋃
TG ⊆ Σ under

µ has rank rk(G) + 2f .
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Proof. We consider the rank of the fiber at a ∈ T. This consists of the
pairs

(t, ta)

where t is an involution inverting a.

If a = 1 then the rank of the fiber at a is

rk(I(G)) = rk(G)− rk(CG(i)).(1)

and as there is only one such point a the rank of the inverse image is

the same.

If a = i is an involution of T then the rank of the fiber at a is

rk(I(CG(i))) = 4f.

As the rank of the set of involutions is rk(G) − 6f we find that the

rank of the inverse image of the involutions under µ is

rk(G)− 2f.(2)

If a ∈ T is nontrivial, and not an involution, we apply Lemma 5.10.

We may suppose that C◦
G(a) ≤ CG(i). We take an involution w ∈ CG(i)

inverting T.
If t is an involution inverting a we write

t = wt′

where w inverts t′ and t′ centralizes a. In particular, t′ ∈ CG(i). More

precisely, a = a1a2 where aℓ ∈ Li,ℓ ∩ T and t′ = t′1t
′
2 similarly, with

components well-defined up to multiplication by i.

These cases are very similar, with some variation in detail according

as a is in a component Li,ℓ or not. We claim that the fiber rank is 2f .

On the one hand w inverts T and T centralizes a, so the fiber rank is

at least rk(T) = 2f . On the other hand, as w must invert t′ the fiber

rank is at most 2f . Now a varies over a generic subset of
⋃

GTG, which

is itself generic in G, so the inverse image for this subset has rank

rk(G) + 2f.(3)

The largest of these three numbers is the last.

rk
(
µ−1

(⋃
TG

))
= rk(G) + 2f. □
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Lemma 5.19. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

Then rk(G) ≥ 14f .

Proof. The rank of I(G)×I(G) is 2 rk(G)−2 rk(CG(i)) = 2 rk(G)−12f

and the rank of the inverse image of the toral elements is rk(G) + 2f .

The lemma follows. □

So the question becomes whether the rank of G is exactly 14f , or

greater. This comes down to computing, or estimating, the ranks of the

inverse image of the remaining strongly real elements. It is not clear

how to do that effectively.

But we will examine the other elements of G, beginning with those

in
⋃

G(CG(i))
G.

Lemma 5.20. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

Then the inverse image of the ot the nontoral elements of
⋃

CG(i)
G ⊆

Σ under µ has rank at most rk(G) + f .

Proof. We consider elements of the form ua with u ∈ Li,1 unipotent and

nontrivial and a ∈ Li,2. We let t1 ∈ Li,1 be a toral element inverting

u and t2 ∈ Li,2 a toral element inverting a. Then we may suppose

t = (t1, t2) is an involution inverting au (the only special case being

the one where a = 1 and t2 should be chosen to have order 4).

The inverse image of au under µ consists of pairs (tx, txua) with t

inverting x and x centralizing ua. If ua is unipotent than x ∈ CG(i)

(Proposition 5.14). If a is toral and non-trivial then x centralizes (ua)3 =

a3, and from Lemma 5.10 it follows that x centralizes a, and hence u,

taking us back to the first case. So x ∈ CG(i). This then gives 2f as the

rank of the inverse image of the element ua. Accordingly we compute

the following ranks for elements ua with a either toral and nontrivial or

unipotent (note that an element of this form lies in a unique centralizer

of an involution).

Type of a rk elements rk inverse image

Toral rk(G)− f rk(G) + f

Unipotent rk(G)− 2f rk(G)

□
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So taking these elements into account will not change the lower

bound of Lemma 5.19. The question therefore is what occurs outside

of centralizers of involutions, and this is where matters become fairly

obscure.

5.4. Invisible elements and dark matter.

Definition 5.21. Let G be a group of finite Morley rank satisfying

Hypothesis 5.1.

An element x ∈ G is visible if x centralizes some involution, and

invisible otherwise. A subgroup of G will be called visible if all of its

elements are visible.

A strongly real invisible element is called dark. The set of dark el-

ements is called the dark matter. We write D for the dark matter to-

gether with the identity.

Remark 5.22. In the previous section we considered the map

µI(G)× I(G) → Σ

and showed that if the inverse image of the visible elements is generic

then the rank of G is 14f . This holds in particular if there is no dark

matter, a case which seems worth separate examination on its own as

a test case.

Now we make an exploration of the dark matter. The results are

inconclusive.

Lemma 5.23. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

The centralizer of a nontrivial visible element is visible.

Proof. We suppose that a centralizes the nontrivial element h ∈ CG(i).

Writing h = h1h2 with hℓ ∈ Li,ℓ, we may suppose that h1 is nontrivial

and h2 is of the same type (toral or unipotent) as h1, or trivial, replacing

h by h3 otherwise.

Then Lemma 5.10 or 5.15. applies. □

We put this in a more directly useful form as follows.

Lemma 5.24. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

Then the following hold.
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(1) The centralizer of a dark element is an abelian group.

(2) The set D is the union of the centralizers of dark elements.

(3) Distinct centralizers of dark elements intersect trivially.

Proof.

Ad 1,2. Let a be a non-trivial dark element, inverted by the involution

i. Then i acts on C(a). If i centralizes a non-trivial element b in C(a)

then b is visible, so a is visible, a contradiction.

Thus C(a) is an abelian group contained in D and both (1) and (2)

follow.

Ad 3. This follows from (1): if a, b are nontrivial dark elements which

commute then C(a) = C(b). □

As we shall see, the general tendency of the dark elements is to

behave like unipotent elements, lying in some approximation to a Borel

subgroup, but with no ambient semisimple algebraic group involved.

Lemma 5.25. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

If a is a dark element then the following hold.

(1) N◦
G(C(a)) > C(a).

(2) There is no prime p for which C(a) and NG(C(a))/C(a) both

contain p-torsion.

(3) C(a) is connected.

Proof. We set A = C(a).

Ad 1. If NG(A)
◦ = A then the dark matter is generic. But the visible

elements are generic, so this is a contradiction.

Ad 2. Suppose that A contains a nontrivial p-element. Then any p-

element of NG(A) centralizes a nontrivial p-element of A, and hence

lies in A. From this (2) follows.

Ad 3. If A > A◦ take an element b ∈ A of prime order p modulo A◦.

We may take b itself to be a p-element.

N◦
G(A)/(A ∩ N◦

G(A)) centralizes the finite group A/A◦. So b cen-

tralizes N◦
G/A, and as NG(A)/A contains no p-torsion, the group C(b)
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covers N◦
G(A)/(A ∩ N◦

G(A)). But C(b) = A, so this is a contradic-

tion. □

Lemma 5.26. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

If a is a dark element and i is an involution inverting a, then the

following hold.

(1) For any prime p, Up(C(a)) is p-unipotent.

(2) N(C(a))/C(a) has p-rank at most one for each prime p.

(3) N(C(a))/C(a) has a unique involution.

(4) N(C(a))/C(a) = C(a)⋊ CN(C(a))(i).

(5) C◦
N(C(a))(i) is a good torus.

Proof. We set A = C(a)

Ad 1. A is connected abelian. Any Π-torus TA contained in A will be

central in N◦
G(A), giving a contradiction. So (1) follows.

Ad 2. Suppose that E is an elementary abelian p-subgroup of NG(A)/A

of rank two. Then A is generated by the subgroups CA(V0) for [V :

V0] = p and these are trivial, giving a contradiction.

Ad 3. On one hand, i represents an involution of NG(A)/A.

On the other hand, if t1, t2 are two involutions of NG(A)/A then they

both invert A and thus t1t2 centralizes A, and hence lies in A.

Ad 4. By (3), i centralizes NG(A)/A. So (4) follows from Fact 2.18.

Ad 5. By (2) the 3-unipotent part of CNG(A)(i) is trivial, so it is inside

an algebraic torus in non-zero characteristic, and (5) follows. □

All of this suggests that the dark elements tend to look a good deal

like the generic unipotent elements in centralizers of involutions.

Lemma 5.27. Let G be a group of finite Morley rank satisfying Hy-

pothesis 5.1.

If a is a dark element and A = C(a) then

rk(NG(A)/A) ≤ f.
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Proof. Let TA be the good torus CNG(A)◦(i), with p-rank at most one

for each prime p. We claim that

rk(TA) ≤ f.

We let T1 be the projection of TA to Li,1 and T2 the kernel and T1

an algebraic torus of Li,1 containing T1. By the proof of Lemma 5.6

there is a definable isomorphism of k×2 with k×1 and so T2 is definably

isomorphic to some T ∗
2 ≤ T1.

Then T1∩T ∗
2 = 1 as otherwise there is some element in the intersec-

tion of prime order p and then T has p-rank at least two, a contradic-

tion. Thus

rk(T ) = rk(T1) + rk(T ∗
2 ) ≤ rkT1 = f. □

We will now leave this configuration and turn to the less pathological

branch of the analysis.
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6. Identification of G2 when U ̸≤ CG(i).

We return to the “main branch.”

Hypothesis 6.1. Let G be a group of finite Morley rank satisfying

Hypothesis 2.12. Suppose that N◦
G(X) is not contained in CG(i).

We will keep the torus T fixed, and when we speak of root subgroups,

we mean root subgroups normalized by T. The Weyl group ⟨w̄1, w̄2, σ̄⟩
is described in Fact 3.2.

6.1. Unipotent subgroups. Recall from Fact 2.10 that the base fields

k1, k2 have the same characteristic, which we can call the base field

characteristic.

Lemma 6.2. Suppose that the base field characteristic is non-zero.

Then the following hold.

(1) The torus T is a good torus.

(2) rk(k1) = rk(k2)

Proof.

Ad 1.

We have T = T1 ∗2 T2 with Tℓ = T ∩ Li,ℓ an algebraic torus of Li,ℓ.

As the factors are good tori by Fact 2.16, T is a good torus.

Ad 2.

Suppose toward a contradiction that rk(k2) < rk(k1). From the ac-

tions of T on Li,2 and Lj,2 we get an action on the product of rank

at most 2 rk(k2) < rk(T). Hence the centralizer T0 = CT(Li,2, Lj,2) is

nontrivial.

Let H = CG(T0). By Fact 2.33 we must Ealg(H) is of type SL3(k2).

As this has Lie rank 2 this forces T0 to be torsion free. But T0 is a

good torus. □

Lemma 6.3. Let G be a group of finite Morley rank satisfying Hypoth-

esis 6.1.

Then for some index ℓ = 1 or 2 and involution t = j or ij there is a

root subgroup of Lt,ℓ centralizing X.
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Proof.

Claim 1. There is a root subgroup Y of some Lt,ℓ, with t = j or ij

and ℓ = 1 or 2, for which Y normalizes X.

Let Q = N◦
G(X). Then

Q =
〈
C◦
Q(t) : t ∈ I(V )

〉
.

To fix notation, we may suppose that B = C◦
Q(ij) is not contained in

CG(i).

As B is T-invariant we have

B = B1 ×B2

with Bℓ = B ∩ Lij,ℓ. We may suppose B1 is not contained in CG(i),

hence contains a root subgroup Y of Lij,1.

This proves the claim.

Now we prove that XY is abelian.

The group XY is nilpotent, with X as a normal subgroup.

Let Z = (Z(XY) ∩ X)◦. Then Z contains X1 or X2. The claim is

that Z = X.

Otherwise, we have Z < X and Z = X1 or X2. Then X ≤ Z◦
2(XY).

So for x ∈ X, y ∈ Y we have [x, y] ∈ Z and

[x, y] = [x, y]i = [x, y−1] = [x, y]−1

and [x, y] = 1, and X centralizes Y, after all. □

Notation 6.4. We have chosen notation so that σ ∈ N acts on I(V )

as the 3-cycle (i, j, ij). We let wt,ℓ denote a Weyl group element in Lt,ℓ

(wℓ = wi,ℓ).

We have fixed X = X1X2 and we will suppose going forward that

notation is chosen as in the proof of the previous lemma so that some

root group Y of Lij,1 commutes withX (since we may switch the indices

1 and 2, and replace σ by σ−1).

We set

Xt,ℓ = Xσt

ℓ

where σt is the power of σ taking i to t.
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Let X−
t,ℓ be the opposite root group. The action of the Weyl group

D12 is the natural action on each of the orbits Oℓ = (X±
t,ℓ : t = i, j, ij)

for ℓ = 1 or 2. Here σ acts on the index t and z = w1w2 is the central

element swapping the pair X±
t,ℓ for each choice of t, ℓ. Furthermore in

view of the structure of D12, we have σw1 = σ−1. Hence w1 swaps the

pairs

(X1,X−
1 ), (X1,j ,X−

1,ij), and (X−
1,j ,Xℓ,ij).

For example

Xw1

1,j = Xσw1

1 = Xw1σ
−1

1 = (X−
1 )

σ−1

= X−
1,ij .

In diagrammatic terms we have the actions shown below.

Xi,1X−
i,1

Xj,1 X−
ij,1

Xij,1 X−
j,1

w1

σ

Figure 1. Action of the Weyl group, w1 and σ on Xt,1

We have a similar action of σ and w2 on the root groups Xt,2 and

this together with the action of w1w2 gives a complete description of

the action on these root groups, which the usual sort of diagram for G2

(as shown) summarizes at least as far as the notation is concerned.

We now show that the behavior of these groups is at least roughly

in keeping with the Chevalley commutator formula for G2.
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Xi,1 = X1 (2α1 + 3α2)X−
i,1

Xj,1
X−

ij,1 (α1 + 3α2)

Xij,1
X−

j,1 (α1)

Xi,2 = X2 (α2)

X−
i,2

X−
ij,2

Xj,2

X−
j,2 (α1 + 2α2)

Xij,2 (α1 + α2)

Figure 2. All root groups, with G2-type labels

Lemma 6.5. Let G be a group of finite Morley rank satisfying Hypoth-

esis 6.1.

Then

(1) X commutes with X−
ij,1.

(2) X2 commutes with X−
ij,1 and Xj,1.

(3) X1 commutes with X−
ij,1, X

−
j,2, Xij,2 and X−

j,1.

(4) The group

Q =
〈
X−

ij,1,X
−
j,2,X1,Xij,2,X−

j,1

〉
is nilpotent of class 2 with

Q = X−
ij,1X

−
j,2X1Xij,2X−

j,1 (product—in any order);

Q′ = [X−
ij,1,Xj,1] = X1.

(5) Q = OF (CG(X1)).
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Proof.

Ad 1. By hypothesis (as of Notation 6.4) X commutes with at least one

of the root subgroups Xij,1, X−
ij,1.

Suppose toward a contradiction that X commutes with Xij,1 = Xσ−1

1 .

Applying σ, we find that X1 also commutes with Xj,1.

We let H = C◦
G(X1). Then ⟨X1⟩σ ≤ H.

Let H̄ = H/OF (H) = Ē ∗ K̄ with Ē = Ealg(H̄).

Now Ē contains L̄i,2 and Ē is generated by conjugates of L̄i,2, so

if Ē > L̄i,2 then H contains T and so X1 commutes with j, a con-

tradiction. It follows that ⟨X1⟩σ ≤ OF (H). This contradicts Lemma

4.8.

Ad 2. By (1) X2 commutes with X−
ij,1. Applying w1, X2 commutes with

Xj,1.

Ad 3. By (1) X1 commutes with X−
ij,1. Applying w2, it also commutes

with X−
j,1.

Applying σ−1 to (2) we find that X1 commutes with Xij,2, and ap-

plying w2 we find X1 commutes with X−
j,2.

Ad 4. Again, let H = C◦
G(X1), H̄ = H/OF (H) = Ē ∗K̄. Then Ē = L̄2.

The involution i inverts the groups other than X1 taken as generators

of Q, and modulo OF (H) it commutes with them, so we find that

Q ≤ OF (H). Thus Q is nilpotent.

In particular Q ∩ Li,2 = 1. It is then easy to see that CQ(i) = X1.

But CQ(i) covers CQ/X1
(i), so it follows that i inverts Q/X1 and Q/X1

is abelian. So Q is nilpotent of class at most 2. In particular we can

write an element of Q as a product of elements of root groups in any

desired order, as the commutators lie in X1.

For the final point, as X−
ij,1 = (X−

j,1)
σ, the groups X−

ij,1 and X−
j,1 do

not commute. But their commutator is a T-invariant subgroup of X1,

so

[X−
j,1,X

−
ij,1] = X1.

Thus Q′ = X1.

This completes the proof of (4).

Ad 5. Let R = OF (CG(X1)). Then Q ≤ R and it suffices to check that

CR(t) = CQ(t) for t = i, j, ij.

For t = i this is clear as R ∩ L2 = 1.



44 JEFFREY BURDGES AND GREGORY CHERLIN

For t = j or ij the centralizers in Q are maximal unipotent subgroups

of the corresponding centralizers in G.

So (5) holds. □

Lemma 6.6. Let G be a group of finite Morley rank satisfying Hypoth-

esis 6.1.

Then the following hold.

(1) The ranks of the base fields are equal.

(2) The group Q · X2 is a maximal connected definable nilpotent

subgroup of G.

Proof.

Ad 1. We know this already when the base field characteristic is non-

zero.

In the case of non-zero characteristic if the ranks of the base fields

are different then consider the decomposition

Q = Uπ1(Q) ∗ Uπ2(Q)

where πℓ = (0, rk(kℓ)).

Then L2 acts on Q1 and as the ranks of the base fields are different

the action is trivial. This then putsQ1 into CG(i) to get a contradiction.

Ad 2. That Q ·X2 is nilpotent follows from (1).

The maximality follows much as in the case of point (5) of the

last lemma by considering the centralizers of i, j, and ij; notably,

CQ·X2
(i) = X. □

At this point we can take a less abstract approach to the treatment

of the group U and define it explicitly as follows, with a slight change

of notation.

Definition 6.7.

U = Q ·X2

with Q = OF (CG(X1)) =
〈
X−

ij,1,X
−
j,2,X1,Xij,2,X−

j,1

〉
.

Correspondingly we now take B = T ·U.
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6.2. The BN-pair. We now move toward the construction of a spher-

ical split irreducible BN-pair.

Definition 6.8 (BN-pair). Let G be a group. A BN-pair for G consists

of two subgroups B and N satisfying the following conditions, where

T = B ∩N .

(BN1) G = ⟨B,N⟩ and T ◁N .

(BN2) The groupWBN := N/T is generated by a (specified) nonempty

set I of involutions.

(BN3) For v, w ∈ N and wT ∈ I we have

vBw ⊆ BvB ∪BvwB.

(BN4) wBw ̸= B for all w ∈ N with wT ∈ I.

The BN-pair is irreducible if WBN is not a direct product of proper

subgroups spherical if WBN is finite, and split if B splits as U · T with

U a nilpotent normal subgroup of B.

We will use B = UT as in Definition 6.7 and N = N(T) = N(T ).

WBT can be identified with WT = N(T )/T , the dihedral group. That

is, the notations B, N , T from the definition of BN-pair will refer to

B, N and T. If we define I and verify (B2–B4) then the identification

of G2 will follow since we will then have an irreducible spherical split

BN-pair of finite Morley rank, and either of [Ten04], [TVM03] applies.

Now we need to pick a suitable set of generators for the Weyl group.

Notation 6.9. We set

s = w2, t = wσ
1 = wj,1; I = {s̄, t̄} ⊆ WBN ,

z = w1w2.

So we take s̄, t̄ as the fixed generators of our Weyl group, and we also

fix notation for a central element z̄ of the Weyl group.

Recall that σw1 = σ−1 and thus st = zσ−1 is an element of order 6.

inverted by s. The action of W on root subgroups was given above and

can be read off of Figure 2.



46 JEFFREY BURDGES AND GREGORY CHERLIN

Now we treat condition (B4).

Lemma 6.10. Let G be a group of finite Morley rank satisfying Hy-

pothesis 6.1.

Then Bs,Bt ̸= B.

Proof. We have

Xs
2 = X−

2 ; (X−
1,j)

t = X1,j

and as U is nilpotent it follows that neither of these groups lies in U.

Thus Us,Ut ̸= U and Bs,Bt ̸= B. □

So everything comes down to the condition (B3), which we may

restate as follows.

vUw ⊆ BvB ∪ BvwB for w = s or t.

We examine the structure of U more closely.

Lemma 6.11. Let G be a group of finite Morley rank satisfying Hy-

pothesis 6.1.

Then any T-invariant definable subgroup of U is a product of some

of the root groups given as generators of U.

Proof. Let U0 be such a subgroup.

The corresponding statement is clear for the centralizers CU0
(t) with

t = i, j, or ij. So U0 is generated by suitable root subgroups.

It suffices to show that U0∩Q has the stated form. So we may suppose

U0 ≤ Q.

If U0 contains X1 then U0 is the product of the corresponding root

subgroups taken in any order. If U0 does not contain X1 then it is

abelian and the same conclusion follows. □

Definition 6.12.

Q1 = U ∩Ut.

Lemma 6.13. Let G be a group of finite Morley rank satisfying Hy-

pothesis 6.1.

Then the following hold.
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(1) Q1 =
〈
Xi,2,X−

ij,1,X
−
j,2,Xi,1,Xij,2

〉
.

(2) U = Q1 ⋊X−
j,1.

Proof.

Ad 1. Recall that t = wj,1. It is clear that the root subgroups listed lie

in Q1; these are all of the root subgroups of U other than X−
j,1.

On the other hand X−
j,1 = Xt

j,1 so the root subgroup X−
j,1 does not

lie in Q1.

Q1 is the product of the root groups it contains.

Ad 2.The group NU(Q1) properly contains Q1 and is a product of its

root subgroups, so it is U. Point (2) follows. □

Thus we have the following two decompositions of U.

U = Q ·X2; U = Q1 ·X−
j,1.

A more sugesstive notation would be

U = Xw ·Qw,

where w is s or t and we set, correspondingly, Qw = U ∩Uw and

Xs = X2, Xt = X−
j,1.

In this notation, we have

vUw = vXwwQw

and hence the corresponding instance of (B3) reduces to

vXww ⊆ BvB ∪ BvwB.(B3w)
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Returning to our more explicit notation the condition becomes

vX2w2 ⊆ BvB ∪ Bvw2B;(B3s)

vX−
j,1wj,1 ⊆ BvB ∪ Bvwj,1B.(B3t)

If (B3w) holds for a particular pair (v, w) then it holds also for the

pair (vw,w). Indeed, we have

wXww ⊆ BwwBw ∪Bw

where Bw is the corresponding Borel subgroup in Lw = Li,2 or Lj,1

respectively, and then

vwXww ⊆ vBwB ∪ vB

and we can apply the hypothesis to (vBw)B.

Lemma 6.14. Let G be a group of finite Morley rank satisfying Hy-

pothesis 6.1.

Then condition (B3) holds.

Proof. We deal first with (B3s), i.e., w = w2.

If Xv−1

2 ⊆ U then vX2w2 = Xv−1

2 vw2 ⊆ Bvw2 and the claim follows.

If (X−
2 )

v−1 ⊆ U then X(vw2)
−1

2 ⊆ U, so the claim follows for (vw2, w2),

and hence for (v, w2) as well. One of these two cases will apply for any

choice of v.

The argument for (B3t) is similar (symmetrical). □

Thus we conclude.

Theorem 6.15. Let G be a simple group of finite Morley rank, an L∗-

group of odd type satisfying NTA2, with one conjugacy class of involu-

tions. With i an involution of G, suppose that N◦
G(X) is not contained

in CG(i).

Then G is G2(k) for some algebraically closed field k.

Proof. By Fact 2.10 we arrive at Hypothesis 2.12 and hence at hypoth-

esis 6.1. Hence our analysis above gives a BN-pair (B, N) with dihedral

Weyl group. The condition G = ⟨B, N⟩ holds by Fact 2.32.

Then [Ten04] or [TVM03] gives the identification, and as the base

field has finite Morley rank, it is algebraically closed. □
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7. Appendix

It may be helpful to record the commutatiion relations in G2, partic-

ularly in connection with the exceptional case of characteristic 3. We

take this from [DS16]. We give only [eα, eβ] for positive roots, assuming

an appropriate normalization.

Roots: α1, α2, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2 with α1 long

and α2 short.

[eα, eβ] (α, β positive; α + β a root; α ≤ β)

α β α1 α1 + α2 α1 + 2α2 α1 + 3α2

α1 e2α1+3α2

α2 eα1+α2 2eα1+2α2 3eα1+3α2

α1 + α2 −3e2α1+3α2
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