HOMOGENEOUS DIRECTED GRAPHS. THE IMPRIMITIVE CASE

GREGORY CHERLIN
LOGIC COLLOQUIUM '85
EDITED BY THE PARIS LOGIC GROUP
NORTH-HOLLAND 1987, ELSEVIER
REVISED (2016)

Introduction

A relational system Γ is said to be homogeneous if any isomorphism $\alpha: A \rightarrow B$ between two of its finite substructures is induced by an automorphism of Γ. Assuming the language is finite, such structures are \aleph_{0}-categorical, and Lachlan has a very general theorem concerning the classification of the stable ones $[4,7,10]$ which is a refinement (for this special case) of the results of [3]. Roughly speaking, the stable homogeneous structures for a fixed finite relational language fall into finitely many families, with the isomorphism type of the structures within a family determined by rather trivial numerical invariants. In particular, there are only countably many countable stable homogeneous structures for a finite relational language.

In certain cases all the homogeneous structures have been classified, though not as a result of any general theory. The homogeneous symmetric graphs or tournaments (directed graphs with any two vertices joined by an edge) were classified in [11] and [9] respectively. The methods of the second paper seem particularly interesting, as the nimbus of a general method seems dimly perceptible. I have shown recently that the same method can be used to classify the homogeneous directed graphs omitting the edgeless graph I_{∞} on infinitely many vertices: the tournaments are of course those which omit I_{2}.

What of the homogeneous directed graphs in general? There are $2^{\aleph_{0}}$ known types which are freely generated by tournaments in the following sense. In the partial order of isomorphism types of finite tournaments ordered by embeddability, fix an infinite antichain \mathcal{I} (one is exhibited in [6], which I follow here). For \mathcal{X} an arbitrary subset of \mathcal{I}, form the closure $\mathcal{A}(\mathcal{X})$ of \mathcal{X} with respect to free amalgamation, isomorphism, and substructure, where the free amalgamation of two directed graphs which agree on their common vertices is simply their union, pointwise and edgewise. Following Fraïssé, we associate to $\mathcal{A}(\mathcal{X})$ the $\mathcal{A}(\mathcal{X})$-generic homogeneous directed graph, from which \mathcal{X} is easily recovered. In this way we find $2^{\aleph_{0}}$ countable homogeneous directed graphs. (In the future structures are assumed countable without further mention.)

And so it seems that Lachlan's theory cannot be extended to the unstable case; but actually this does not follow at all-not from these cardinality considerations. If one is to draw
this sort of conclusion from such evidence then one must in particular regard the homogeneous directed graphs as intrinsically unclassifiable, while the opposite possibility-that they are all already known - is perfectly consistent with the evidence. I propose accordingly to work in this direction - an explicit classification of the homogeneous directed graphspartly in order to lay to rest these cardinality considerations, which have lately reared their heads in more algebraic contexts as well $[1,12,13]$. This is not so say that one actually expects a smooth general theory of homogeneous structures for finite relational languages, only that sensible criteria for classifiability are wanted; and indeed a very sensible criterion has already been suggested by Lachlan. He proposes a Gentzen style entailment relation for finite sets \mathcal{A}, \mathcal{B} of finite structures for a given language $L: \mathcal{A} \vdash \mathcal{B}$ means that any homogeneous L-structure embedding all the structures in \mathcal{A} must also embed some structure in \mathcal{B}. Using Fraïssé's theory relating homogeneous structures and amalgamation classes, one sees that this relation is r.e., and that the problem of classifiability is expressed quite well by

$$
\text { Given } L \text {, is } \vdash \text { recursive? }
$$

This seems by far the most interesting problem in the area, and we known essentially nothing about it.

The goal of the present paper is quite modest. I will describe the known homogeneous directed graphs in some detail, checking homogeneity when it seems appropriate. They fall naturally into three families: deficient (omitting some 2 -type), imprimitive (carrying a nontrivial \emptyset-definable equivalence relation), and free generated (in the sense described above, or in a dual sense), and there are in addition two more examples known which may be characterized by the 3 -types they realize. The deficient examples were classified in the papers $[11,9]$ referred to earlier. The imprimitive ones will be classified here.

There is one other topic which should be dealt with, at least in part, before attacking the primitive case directly. In [11] Lachlan classifies the homogeneous 2-tournaments (these are tournaments partitioned into two distinguished subsets). In dealing with directed graphs it may be convenient to deal with 3-tournaments, allowing in addition three 2 -types to be realized between distinct components (as opposed to two realized in a a given component, up to symmetry). I have worked out the classification of the n-tournaments with an arbitrary number of cross types between components, for all n. This seems to be a natural problem to consider prior to tackling the homogeneous directed graphs, and the analysis suggests profitable lines of analysis for the latter problem, but I no longer expect the result to be directly applicable (that is, it may be usable, but it seems that there are better approaches). All of this will be explored in detail elsewhere.

1. The known homogeneous directed graphs

Our description of the known homogeneous directed graphs will be keyed to the following catalog.

I Deficient
$1 I_{n}$
$2 \vec{C}_{3}, \mathbb{Q}, \mathbb{Q}^{*}, T^{\infty}$
II Imprimitive
3 Wreathed (composition)
$4 \hat{T}$, for $T=I_{1}, \vec{C}_{3}, \mathbb{Q}$, or T^{∞}
$5 n * I_{\infty}$
6 Semi-generic
III Exceptional
$7 S(3)$
$8 \mathcal{P}$
IV Free
9 Generic omitting I_{n+1}
10 Generic omitting \mathcal{T}
Proofs of homogeneity will be given in $\S 2$. In the following discussion Γ is some countable, homogeneous, directed graph.
I. Deficient cases. There are three nontrivial 2-types, which will be denoted in two ways as convenience dictates:

$$
\begin{aligned}
& x \rightarrow y \text { or } y \in x^{\prime} \\
& x \leftarrow y \text { or } y \in \in^{\prime} x \\
& x \perp y \text { or } y \in x^{\perp}
\end{aligned}
$$

If Γ omits one of these 2-types then it is said to be deficient and is then either edgeless (Case $1, n \leq \infty$) or a tournament. The homogeneous tournaments as classified by Lachlan [9] are I_{1}, included in Case 1 , the oriented triangle \vec{C}_{3}, the rational order \mathbb{Q}, the circular order \mathbb{Q}^{*} described below, and the generic tournament T^{∞}.

To form \mathbb{Q}^{*} we can either partition \mathbb{Q} into two dense subsets and reverse the arrows between elements in distinct subsets, or alternatively, place astronomers at all points lying at rational angles on a circle of large radius, equip them with telescopes enabling them to see halfway around in either direction, and draw arrows to the right as far as the eye can see; then each astronomer believes he lives on the rational line. This structure is mentioned in $\S 6$ of [2], and is studied in $\S 4$ of [15].
II. Imprimitive cases. If Γ is imprimitive then the nontrivial equivalence relation is the union of equality with either \perp or its complement. Wreath products $\Gamma_{1}\left[\Gamma_{2}\right]$ are formed by taking Γ_{1}, Γ_{2} with no 2 -types in common, and replacing the points of Γ_{1} by copies of Γ_{2}. In other words, if T is one of the four nontrivial homogeneous tournaments from Case 2, then we form $T\left[I_{n}\right]$ or $I_{n}[T]$ for $i<n \leq \infty$; the latter is more commonly called $n \cdot T$.

In all non-wreathed cases the equivalence relation will correspond to \perp. For T a tournament, the directed graph \hat{T} is constructed as follows. Let $T^{*}=T \cup\{a\}$ where $a \rightarrow T$. Then \hat{T} is the union of two copies T_{1}^{*}, T_{2}^{*} of T^{*}. For $x_{1} \in T_{1}^{*}, y_{2} \in T_{2}^{*}$, corresponding to $x, y \in T^{*}, x_{1} \rightarrow y_{2}$ iff $y \rightarrow x$. Observe that \perp has equivalence classes of size 2 , any two of which form a 4 -cycle \vec{C}_{4}. $\hat{I}_{1}=\vec{C}_{4}$. One may also check that \hat{C}_{3} is isomorphic with a graph on the nonzero points of the plain Y over the Galois field \mathbb{F}_{3} with edges defined by: $x \rightarrow y$ iff $x \wedge y$ is equal to a fixed element of $\bigwedge^{2} V$. (The exterior product is just the determinant of the matrix with columns x, y once bases are chosen; there is a similar structure on the nonzero points of the plane over \mathbb{F}_{q}, homogeneous for a binary language with $2(q-1) 2$-types.) The graph $\hat{\mathbb{Q}}$ is a variant of \mathbb{Q}^{*} in which each astronomer has an antipodal twin whom he cannot see. $\widehat{T^{\infty}}$ is generic subject to the constraints:
(1) \perp gives rise to an equivalence relation with classes of size 2 ;
(2) The union of two \perp-classes is a copy of \vec{C}_{4}.

The graph $n * I_{\infty}$ is defined as the generic directed graph on which \perp is an equivalence relation with n classes. For $n=\infty$ there is a variant which for lack of a more suggestive term we call semi-generic. The directed graph $\infty * I_{\infty}$ is generic for the constraint:
(1) \perp gives rise to an equivalence relation.

To get the semi-generic variant we impose the further constraint.
2 For any pairs A_{1}, A_{2} taken from distinct \perp-classes, the number of edges from A_{1} to A_{2} is even.
III. Exceptional homogeneous directed graphs. We can define the myopic circular order $S(3)$ most simply in terms of astronomers whose telescopes enable them to see $1 / 3$ of their circular universe in each direction-leaving a third invisible. Alternatively, partition \mathbb{Q} into three dense sets \mathbb{Q}_{i} indexed by $i \in \mathbb{Z} / 3 \mathbb{Z}$, identify the types $\perp, \rightarrow, \leftarrow$ with $0,1,2$ respectively, and for $x \in \mathbb{Q}_{i}, y \in \mathbb{Q}_{j}$ distinct, assign to (x, y) the type $i-j+\operatorname{tp}_{\mathbb{Q}}(x, y)$.

The generic partially ordered set \mathcal{P} needs no commentary.
IV. Freely generated homogeneous directed graphs. These are the graphs which are generic subject to a constraint of the form: Γ embeds no X from \mathcal{X}; here \mathcal{X} is a class of deficient graphs of a given type. In (9) \mathcal{X} is (I_{n+1}) and in (10) $\mathcal{X}=\mathcal{T}$ is a class of tournaments.

These are all the homogeneous graphs known to me, and I conjecture that in fact: only countably many are missing. (Just as in the imprimitive case the semi-generic directed graph appears unexpectedly, others could easily turn up.)

2. Proofs of homogeneity

For the homogeneity of \mathbb{Q}^{*} see [2] or [9]. \mathbb{Q}^{*} and $S(3)$ can be analyzed along similar lines: the astronomical description shows that the automorphism group is transitive, so we need only check that the expansion of the structure by a single parameter x is homogeneous, and up to a permutation of 2-types (and the removal of the element x) this expansion is just \mathbb{Q} partitioned into 2 or 3 dense subsets, respectively. In the case of $S(3)$, identifying
$\perp, \rightarrow, \leftarrow$ with $0,1,2$ respectively, and letting $Q_{i}=\{y \mid \operatorname{tp}(x, y)=i\}$, we assign to $y \in Q_{k}$, $z \in Q_{j}$ the type $(i-j)+\operatorname{tp}(y z)$.

The homogeneity of wreath products of homogeneous structures in disjoint languages has been noted previously by Lachlan, if not earlier, and the existence of amalgamation classes corresponding to examples $8-10$ is both straightforward and well known. It remains to discuss examples 4-6.
\#4. Recall as a matter of notation that $\hat{T}=T_{1}^{*} \cup T_{2}^{*}$ with $T_{i}^{*}=\left\{a_{i}\right\} \cup T_{i}$ and $T_{i} \cong T$. It is quite easy to see that the structure imposed on $T_{1} \cup T_{2}$ by $\left(a_{1}, a_{2}\right)$ is homogeneous if (and only if) T is, as it consists of two copies of T with a definable isomorphism. As $\left\{a_{2}\right\}=a_{1}^{\perp}$, it suffices to see that \hat{T} is transitive when $T \not \not 二 Q q^{*}$ is homogeneous. The following condition is sufficient for this, though not necessary:

For $x \in T$ there is an isomorphism $\alpha:^{\prime} x \rightarrow x^{\prime}$ such that for $y, z \rightarrow x: y \rightarrow \alpha z$ iff $\alpha y \rightarrow z$
This condition evidently holds for I_{1}, \vec{C}_{3}, and \mathbb{Q}; for $T=T^{\infty}$ and $x \in T$ the desired α comes from a back-and-forth construction.

To check the transitivity of \hat{T}, observe fist that there is a canonical involution $i \in$ Aut \hat{T} defined by $x \perp i(x)$, so it suffices to find maps $\phi \in \operatorname{Aut} \hat{T}$ which take a_{1} to any $x_{1} \in T_{1}$. If x_{1} corresponds to $x \in T$ then let α be as in (\dagger) and define $\phi\left(a_{i}\right)=x_{i}, \phi\left(x_{i}\right)=a_{3-i}$, while for $y \rightarrow x \rightarrow z$:

$$
\phi\left(y_{i}\right)=\alpha(y)_{i} \quad \phi\left(z_{i}\right)=\alpha(z)_{3-i}
$$

(\dagger) expresses the condition that this is an automorphism of \hat{T}.
To see that (\dagger) is not a necessary condition for transitivity, notice that if $\mathbb{Z} / n \mathbb{Z}$ is made into a directed graph by taking $x \rightarrow y$ to mean

$$
(y-x) \in\{1, \ldots, n-1\}(\bmod 2) n
$$

then $\mathbb{Z} / 2 n \mathbb{Z} \cong L(n-1)^{*}$, where $L(n-1)$ is the transitive tournament of order $n-1$.
It will be useful later to know that $\widehat{\mathbb{Q}^{*}}$ is not homogeneous, and for this we check the failure of transitivity directly. On the one hand $a_{1}^{\prime}=\mathbb{Q}^{*}$ by construction, while on the other hand, for $x_{1} \in \mathbb{Q}_{1}^{*}, x_{1}^{\prime} \backslash\left\{a_{2}\right\}$ is linearly ordered, by inspection.
\#5. $n * I_{\infty}$
We must check that the class of finite directed graphs satisfying
(1) The union of $=$ and \perp is an equivalence relation;
(2) this relation has at most n classes.
is an amalgamation class. It suffices to describe how to complete an amalgamation of $A \cup\left\{a_{1}\right\}$ with $A \cup\left\{a_{2}\right\}$ over A, by specifying the type of $a_{1} a_{2}$ suitably.

We can take $a_{1} \rightarrow a_{2}$ unless there is an obstruction of one of the following forms.
(1.1) $a_{1} \perp b \perp a_{2}, b \in A$; or
(2.1) A has $n-1 \perp$-classes, and there is no $b \in A$ with $b \perp a_{1}$ or $b \perp a_{2}$.

We can take $a_{1} \perp a_{2}$ unless there is an obstruction of the form:

$$
1.2 a_{i} \perp c \not \perp a_{j},\{i, j\}=\{1,2\} .
$$

There cannot be both sorts of obstruction, so the amalgamation succeeds.
$\# 5$. The semi-generic \perp-imprimitive case.
We claim that the constraint (1) above can be combined with the constraint
(3) $\left|\left(A_{1} \times A_{2}\right) \cap E\right|$ is even for A_{1}, A_{2} two \perp-equivalent pairs (where E is the set of edges)
to give an amalgamation class of finite directed graphs. With the notation of the previous example, we must again specify the type of $a_{1} a_{2}$.

We take $a_{1} \rightarrow a_{2}$ unless there is either an obstruction of the form (1.1), or this choice yields:

$$
b_{1}, b_{2} \in, a_{i} \perp b_{i} \text {, and }\left\{\left(\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right)\right) \cap E \mid\right. \text { is odd. }
$$

If (1.1) occurs then we take $a_{1} \perp a_{2}$ and we have to check that $\left[\left(a_{1}, a_{2}\right) \times B\right] \cap E \mid$ is even for any \perp-equivalent pair B in A; this follows since $\left|\left[\left(a_{i}, b\right) \times B\right] \cap E\right|$ is even for $i=1,2$.

If case (1.1) does not apply but (3.1) does, then we take $a_{2} \rightarrow a_{1}$ and constraint (1) is still satisfied, and moreover (3.1) is now false. What must still be checked is that for $a_{i} \perp c_{i} \in A$, that always $\left|\left[\left(a_{1}, c_{1}\right) \times\left(a_{2}, c_{2}\right)\right] \cap E\right|$ is even; for this it suffices to consider $\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right),\left(a_{1}, b_{1}\right) \times\left(a_{2}, c_{2}\right)$, and $\left(b_{1}, c_{1}\right) \times\left(a_{2}, c_{2}\right)$.

This completes the description of the currently known examples. The next order of business is to show that the list of imprimitive types is complete.

3. Imprimitive homogeneous graphs with finite classes

Throughout the remainder of this article, Γ denotes an imprimitive homogeneous directed graph. As the nontrivial equivalence relation on Γ is the union of equality with either \perp or its complement, and in the latter case Γ is necessarily a wreath product, we may assume the equivalence relation is

$$
"=" \cup " \perp "
$$

By a slight abuse of notation we will denote the equivalence relation also by \perp. The theorem we aim at is of course as follows.

Theorem 1. If Γ is an imprimitive homogeneous directed graph, then Γ is one of the following.
(1) a wreath product (composition) $T\left[I_{n}\right]$ or $I_{n}[T]$;
(2) \hat{T}, for $T=I_{1}, \vec{C}_{3}, \mathbb{Q}$, or T^{∞};
(3) $n * I_{\infty}$;
(4) semi-generic for \perp an equivalence relation.

As noted, we may take the equivalence relation on Γ to be (essentially) \perp. We consider first the case in which this relation has finite classes, of order $n<\infty$.

We can dispose of the case in which Γ is finite by reference to the list in [6] of all finite examples. So we may assume that Γ is infinite, and not a wreath product. Fix a \perp-class C, and find $x, y \in \Gamma \backslash C$ with

$$
x \rightarrow y \quad x^{\prime} \cap C=y^{\prime} \cap C
$$

If $x^{\prime} \cap C=\emptyset$ or C then it follows easily that Γ is wreathed.
Fix $a \in x^{\prime} \cap C$.
If $\left|x^{\prime} \cap C\right|=k$ with $1<k<n$, then we can find $A \subseteq C, a \in A, A \neq x^{\prime} \cap C$ and $z \in \Gamma \backslash C$ with $x \rightarrow z$ or $z \rightarrow x$ so that $z^{\prime} \cap C=A$. Then axy and either $a x z$ or $a z x$ have the same type, a contradiction. We conclude that $k=1$, and similarly that $n-k=1, n=2$. It then follows rapidly that $\Gamma=\hat{T}$ for some homogeneous T, and we checked in the previous section that this forces $T \not \approx \mathbb{Q}^{*}$.

$$
\text { 4. } n * I_{\infty} \text { WITH } n \text { FINITE }
$$

We have assumed that \perp defines an equivalence relation on Γ, and we will assume throughout that Γ is not a wreath product. We now impose the condition

All \perp-classes are infinite.
We first take up the case in which Γ / \perp is finite.
Lemma 4.1. Suppose $|\Gamma / \perp|=n$ is finite. Then for distinct \perp-classes C_{1}, C_{2} and $I \subseteq C_{1}$ finite, the set $I^{\prime} \cap C_{2}$ is infinite.
Proof. For $I \subseteq C_{1}$ finite, let $F(I)$ be the set of \perp-classes C^{*} in Γ other than C_{1} for which $I^{\prime} \cap C^{*}$ is finite. Suppose that for some such $I, F(I)$ is nonempty. Let $|I|=k$ be minimized.

As n is finite, there is a pair I_{1}, I_{2} of disjoint k-subsets of C_{1} with $F\left(I_{1}\right)=F\left(I_{2}\right)$. By homogeneity, $F\left(I_{1}\right)=F\left(I_{2}\right)$ for any pair of disjoint k-subsets of C_{1}, and hence $F(I)$ is independent of I for $I \subseteq C_{1}$ of order k. So we may set $F^{*}\left(C_{1}\right)=F(I)$ for any such I.

As Γ is not a wreath product, Aut Γ acts 2 -transitively on the \perp-classes and therefore $F^{*}\left(C_{1}\right)$ consists of all \perp-classes other than C_{1}, that is I^{\prime} is finite for $I \subseteq C_{1}$ of order k. Furthermore arguing as above, the size m of I^{\prime} is bounded and hence, arguing as above, is constant.

Take $I_{0} \subseteq C_{1}$ of order $k-1$, and set $J=I^{\prime} \cap C_{2}$. Then J is infinite. Take $S \subseteq C_{1} \backslash I_{0}$ of order $m+1$. For $s \in S$, we have $\left(I_{0} \cup\{s\}\right)^{\prime}$ finite, that is $s^{\prime} \cap J$ is finite. Therefore ' $S \cap J$ is infinite.

Take $J_{0} \subseteq J \cap^{\prime} S$ of order k. Then J_{0}^{\prime} contains S. But the value of k and m corresponding to C_{1} should be the same for C_{2}, so this is a contradiction.

Corollary. With the same notation, we have the following.
(1) For any finite subsets I, I_{1} of C_{1} of the same order there is an automorphism of Γ taking I to I_{1} and leaving C_{2} invariant;
(2) if $I, J \subseteq C_{1}$ are finite, then $I^{\prime} \cap^{\prime} J \cap C_{2}$ is infinite.

Proof.

1. Take $a \in\left(I \cup I_{1}\right)^{\prime} \cap C_{2}$. There is an automorphism taking $\{a\} \cup I$ to $\{a\} \cup I_{1}$.
2. Fix k arbitrary, and take $K \subseteq C_{2}$ of order k.

By the lemma (and dually) we may take $I_{1} \subseteq K^{\prime} \cap C_{1}$ and $J_{1} \subseteq^{\prime} K \cap C_{1}$ with $\left|I_{1}\right|=|I|$ and $\left|J_{1}\right|=|J|$. Thus $\left|I_{1}^{\prime} \cap^{\prime} J_{1} \cap C_{2}\right| \geq k$.

By (1) the same applies to I, J.

Lemma 4.2. Suppose $|\Gamma / \perp|=n$ with $n \geq 3$ finite. Then x^{\prime} is not a wreath product, for $x \in \Gamma$.

Proof. We have supposed that Γ is not a wreath product. If the lemma fails, fix distinct \perp-classes C, C_{1}, C_{2} with $x \in C$ and consider the finite tournament T_{x} on $(\Gamma \backslash C) / \perp$ with edge relation as in x^{\prime}. By Lemma 4.1, for $x, y \in C$ the set $\{x, y\}^{\prime}$ meets each equivalence class outside C, and thus $T_{x}=T_{y}$.

Therefore no automorphism of Γ carries the triple (C, C_{1}, C_{2}) to the triple (C, C_{2}, C_{1}).
Now let $A_{1}=x^{\prime} \cap C_{1}, A_{2}=^{\prime} x \cap C_{1}, B_{1}=x^{\prime} \cap C_{2}, B_{2}=^{\prime} x \cap C_{2}$. If there are pairs $\left(a_{1}, b_{2}\right)$ and (a_{2}, b_{1}) with opposite orientation with $a_{1} \in A_{1}, a_{2} \in A_{2}, b_{1} \in B_{1}, b_{2} \in B_{2}$, then the map

$$
x, a_{1}, b_{2} \rightarrow x, b_{1}, a_{2}
$$

is an isomorphism and hence is induced by an automorphism taking $\left(C, C_{1}, C_{2}\right)$ to $\left(C, C_{2}, C_{1}\right)$, for a contradiction.

Thus for such $a_{1}, a_{2}, b_{1}, b_{2}$ the orientation of $\left(a_{1}, b_{2}\right)$ is the same as that of $\left(a_{2}, b_{1}\right)$, and in particular is independent of the choice of $a_{1} \in A_{1}$ and $b_{2} \in B_{2}$.

Thus all points in A_{1} realize the same type over C_{2}. It follows easily that all points in A_{1} realize the same type over $\Gamma \backslash C_{1}$. By homogeneity, all points in C_{1} realize the same type over $\Gamma \backslash C_{1}$, and again by homogeneity it follows that Γ is in fact a wreath product, for a contradiction.

Proposition 4.3. If Γ is an imprimitive homogeneous directed graph with equivalence relation \perp, with each \perp-class infinite, and with Γ / \perp finite, then either Γ is a wreath product or Γ is $n * I_{\infty}$ with $n=|\Gamma / \perp|$.

Proof. We proceed by induction on n, starting with $n=1$. For the inductive step we suppose that $n>1$ and that Γ is not a wreath product.

Claim 1. For $x \in \Gamma, x^{\prime} \cong(n-1) * I_{\infty}$.
For $n=2$, this is contained in Lemma 4.1. For $n>2$, we deduce from Lemmas 4.1 and 4.2 that x^{\prime} is an imprimitive homogeneous directed graph with equivalence relation \perp, with each \perp-class infinite, with $\left|x^{\prime} / \perp\right|=n-1$, and not a wreath product, so induction applies. The claim follows.

Claim 2. All finite directed graphs of the form

$$
T \cup I
$$

embed into Γ, where T is a tournament of order $n-1$ and I is a \perp-class disjoint from the \perp-classes represented by T, and is indiscernible over T.

If $n=2$ then Claim 1 suffices. So suppose $n>2$. Fix $a, b \in T$ with $a \rightarrow b$, let $T_{0}=T \backslash\{a, b\}$, and form an amalgamation diagram K on a set of the form

$$
T_{1} \cup T_{2} \cup\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\} \cup I_{1} \cup I_{2}
$$

so that

- The type of $\left(a_{1}, b_{1}\right)$ is left unspecified;
- $T_{1} \cup I_{1}, T_{2} \cup I_{2} \cong T_{0} \cup I$ by isomorphisms which extend to isomorphisms of $T_{1} \cup\left\{a_{1}\right\}$ and $T_{2} \cup\left\{b_{1}\right\}$ with $T_{0} \cup\{a\}$, and of $T_{1} \cup\left\{b_{1}\right\}$ and $T_{2} \cup\left\{a_{1}\right\}$ with $T_{0} \cup\{b\}$;
- $a_{1} \perp a_{2}, b_{1} \perp b_{2}$;
- $a_{2} \rightarrow K \backslash\left\{a_{1}, a_{2}\right\}, b_{2} \rightarrow K \backslash\left\{a_{2}, b_{1}, b_{2}\right\}$.

Viewing K as the amalgam of $K_{1}=K \backslash\left\{b_{1}\right\}$ with $K_{2}=K \backslash\left\{a_{1}\right\}$ over their common part, the elements a_{2}, b_{2} prevent $a_{1} \perp b_{1}$, and then one of the configurations $T_{1} \cup\left\{a_{1}, b_{1}\right\}$ or $T_{2} \cup\left\{a_{1}, b_{1}\right\}$ provides a copy of $T \cup I$ when the choice $a_{1} \rightarrow b_{1}$ or $b_{1} \rightarrow a_{1}$ is made. Therefore, to complete the proof of the claim, it suffices to check that K_{1} and K_{2} embed into Γ.

Now K_{2} consists of the vertex a_{2} dominating $K \backslash\left\{a_{1}, a_{2}\right\}$, and this embeds in Γ by Claim 1.

The configuration K_{1} may be thought of as an amalgam in which the type of $\left(a_{1}, a_{2}\right)$ is to be determined. As $n-1 \perp$-classes are already represented in $K \backslash\left\{a_{1}, a_{2}\right\}$, none of them containing a_{1} or a_{2}, this amalgam forces a_{1}, a_{2} to lie in the same \perp-class. Furthermore, $a_{2} \rightarrow b_{2}$ and $b_{2} \rightarrow a_{1}$, so the points a_{1}, a_{2} cannot be identified. Thus to embed K_{1} into Γ, it suffices to embed $K_{1} \backslash\left\{a_{1}\right\}$ and $K_{1} \backslash\left\{a_{2}\right\}$. This again follows from Claim 1 applied to a_{2}^{\prime} and to b_{2}^{\prime}.

This proves the second claim, and now we may prove the Proposition. We consider a finite configuration A contained in $n * I_{\infty}$, and we must embed it into Γ. We may suppose that A contains a tournament T of order n, which we use as a set of representatives for the \perp-classes. We suppose that the number of nontrivial \perp-classes in A is minimized. If this number is at most 1 then Claim 2 applies.

Suppose therefore that there are at least two nontrivial \perp-classes C_{1}, C_{2} in A. Adjoint points to C_{2} to ensure that the points of C_{1} realized distinct types over C_{2}. Then view A as the amalgam of structures of the form $A_{i}=\left\{a_{i}\right\} \cup\left(A \backslash C_{1}\right)$ where a_{i} varies over C_{1}; the points of C_{2} prevent any identifications of distinct a_{i}, and as $A \backslash C_{1}$ contains $n-1 \perp$-classes distinct from C_{1}, the elements a_{i} must all lie in the same \perp-class in the amalgam. Thus the result of this amalgamation is A.

The factors $A_{i}=\left\{a_{i}\right\} \cup\left(A \backslash C_{1}\right)$ have fewer nontrivial \perp-classes, hence embed in Γ by induction.

5. The semi-Generic case

Now we assume that the \perp-classes are infinite and that Γ / \perp is infinite. We will refer to the extra constraint imposed on the semi-generic directed graph as the parity constraint.

Proposition 5.1. If Γ is an imprimitive homogeneous directed graph with equivalence relation \perp, for which the \perp-classes are infinite, Γ / \perp is infinite, Γ is not a wreath product, and the parity constraint is satisfied, then Γ is isomorphic with the semi-generic directed graph.

We begin with two preliminary results.

Lemma 5.2. Let Γ be an imprimitive homogeneous directed graph with equivalence relation \perp, for which the \perp-classes are infinite, Γ / \perp is infinite, and Γ is not a wreath product, If C_{1}, C_{2} are two \perp-classes and $a \in C_{1}$, then $a^{\prime} \cap C_{2}$ and ${ }^{\prime} a \cap C_{2}$ are infinite.

Proof. It suffices to consider $a^{\prime} \cap C_{2}$. We show first that a^{\prime} meets C_{2}.
As Γ is not a wreath product, there are arcs in both directions between C_{1} and C_{2}.
Suppose a^{\prime} does not meet C_{2}. Let (c, b) be any arc from C_{2} to C_{1}. Then there is an automorphism carrying (c, a) to (c, b). But then C_{1}, C_{2} go to C_{2}, C_{1} and a goes to b, so b^{\prime} does not meet C_{2}. Thus each vertex in C_{1} either dominates or is dominated by C_{2}. As there is an automorphism switching C_{1} and C_{2}, each vertex of C_{2} either dominates or is dominated by C_{1}. If we now consider $\operatorname{arcs}\left(a_{1}, b_{1}\right)$ and $\left(b_{2}, a_{2}\right)$ in both directions between C_{1} and C_{2}, we reach a contradiction.

Thus a^{\prime} meets C_{2}. Suppose now that $a^{\prime} \cap C_{2}$ is finite and fix $b \in a^{\prime} \cap C_{2}$. For each arc (x, y) between C_{1} and C_{2} there is an automorphism taking (a, b) to (x, y), and hence $x^{\prime} \cap\left(C_{1} \cup C_{2}\right)$ is finite. For $x \in C_{1} \cup C_{2}$, let $R(x)$ be the set of points in $C_{1} \cup C_{2}$ reachable from x, i.e., lying on an oriented path from x. This is a finite set. Then $R(a)$ is finite. Take $b \in C_{2} \backslash R(a)$. Then (b, a) is an arc, so $a \in R(b), R(a) \subseteq R(b) \backslash\{b\}$, and $|R(a)|<\mid R(b)$. However, there are $\operatorname{arcs}\left(a, c_{2}\right)$ and $\left(b, c_{1}\right)$ with $c_{1} \in C_{1}, c_{2} \in C_{2}$, and an automorphism taking $\left(a, c_{2}\right)$ to $\left(b, c_{1}\right)$, so $|R(a)|=|R(b)|$, for a contradiction.

Arguing as in the proof of Lemma 4.2, and making use of the previous lemma at the beginning, we may deduce the following.

Lemma 5.3. Let Γ be an imprimitive homogeneous directed graph with equivalence relation \perp, for which the \perp-classes are infinite, Γ / \perp is infinite, and Γ is not a wreath product, Then for $x \in \Gamma, x^{\prime}$ is not a wreath product.

After these preparations, we may now prove the following family of assertions for all n. Then clause (2.n), with n varying, gives the proposition.

Lemma 5.4. Let Γ be an imprimitive homogeneous directed graph in which \perp gives an equivalence relation, not a wreath product, with Γ / \perp infinite, and satisfying the parity constraint. If K is a finite directed graph in which \perp gives an equivalence relation, and one of the following applies, then K embeds into Γ.
(1.n) $K=T \cup I$ with T a tournament of order n and $I a \perp$-class disjoint from T.
(2.n) K obeys the parity constraint and $|K / \perp|=n$.

Proof.

Claim 1. Condition (1.n) implies condition $(2 .(n+1))$.
As we have the parity constraint in Γ, this is immediate: in $(2 .(n+1))$, amalgamating the factors of K with a unique nontrivial \perp-class can only give K.

It suffices therefore to prove condition (1.n) for all n, and for this we proceed inductively. More precisely, we prove for each n, that for all Γ satisfying our hypotheses, condition (1.n) holds.

If $n=1$, then Lemma 5.2 suffices.

We now suppose $n>1$ and assume condition $(1 .(n-1))$ and hence also (2.n). We have $K=T \cup I$ with $|T|=n$ and I a \perp-class disjoint from the \perp-classes of T.

We fix two points $u, v \in T$ and let $A=K \backslash\{u, v\}$. Let p, q be the desired types of u over u over A and of v over A, respectively. Let $B=A_{1} \cup A_{2}$ be the union of two copies of A, arranged so that corresponding elements of A_{1}, A_{2} are in the same \perp-class, and B satisfies the parity constraint. Let $p q$ denote the type over B given by p on A_{1} and q on A_{2}, and define $q p$ similarly. Adjoin two more vertices x, y to one of the \perp-classes of B so that $B x y$ satisfies the parity constraint, and extend $p q, q p$ to types r_{1}, r_{2} over $B x y$ which cannot be realized in a single \perp-class under the parity constraint.

By condition (2.n), the types r_{1} and r_{2} are realized in Γ, and hence for any embedding of $B x y$ into Γ, there are realizations a_{1}, a_{2} of r_{1}, r_{2} in Γ over $B x y$. By the choice of r_{1}, r_{2} they lie in distinct \perp-classes, that is $a_{1} \rightarrow a_{2}$ or $a_{2} \rightarrow a_{1}$. Then correspondingly either $A_{1} a_{1} a_{2}$ or $A_{2} a_{1} a_{2}$ is a realization of K.

6. The case of $\infty * I_{\infty}$

We will treat the final case in a similar but more elaborate fashion. Our goal is the following.

Proposition 6.1. Let Γ be a homogeneous directed graph in which \perp gives an equivalence relation with infinitely many infinite classes, and suppose that Γ does not satisfy the parity constraint (in particular, Γ is not a wreath product). Then $\Gamma \cong \infty * I_{\infty}$.

We record the contents of Lemmas 5.2 and 5.3 for the case at hand.
Lemma 6.2. Let Γ be a homogeneous directed graph in which \perp gives an equivalence relation with infinitely many infinite classes, and suppose that Γ does not satisfy the parity constraint. Then for $x \in \Gamma, x^{\prime}$ is a homogeneous directed graph on which \perp is an equivalence relation with infinitely many classes, each infinite, and is not a wreath product.

The proof of the proposition will be based on the following notions.
Definition 6.3. If \mathcal{A} is an amalgamation class of finite directed graphs in which \perp defines an equivalence relation, let \mathcal{A}^{*} be the class of all finite directed graphs K such that an arbitrary extension $K \cup I$ of K with I an additional \perp-class will belong to \mathcal{A}.

Definition 6.4. An amalgamation class \mathcal{A} of finite directed graphs in which \perp gives an equivalence relation will be called robust iff it satisfies the following conditions.

- An independent set I_{n} on n vertices belongs to \mathcal{A} for all n.
- A linearly ordered tournament L_{n} on n vertices belongs to \mathcal{A} for all n.
- Some $A \in \mathcal{A}$ violates the parity constraint.

The latter condition can be expressed more concretely by saying that \mathcal{A} contains the particular directed graph $O=C_{1} \cup C_{2}$ on four vertices pictured below, consisting of two \perp-classes C_{1}, C_{2} of order 2 with three arcs in one direction and one in the reverse direction.

This allows us to state the main point in the proof of Proposition 6.1 very concisely.
Lemma 6.5. Let \mathcal{A} be a robust amalgamation class of finite directed graphs on which \perp is an equivalence relation. Then \mathcal{A}^{*} is also a robust amalgamation class.

We first deduce the proposition from the lemma, and then prove the lemma.
Proof of Proposition 6.1. It suffices to show that any finite directed graph K on which \perp is an equivalence relation belongs to the amalgamation class \mathcal{A} associated with Γ. We prove this for all such Γ simultaneously, by induction on the number n of \perp-classes in K. If there is only one \perp-class the claim is obvious, so we suppose $n>1$. We write

$$
K=J \cup I
$$

with I one of the \perp-classes in K.
By Lemma 6.5 the associated amalgamation class \mathcal{A}^{*} is robust, so the induction hypothesis applies, and $J \in \mathcal{A}^{*}$. By the definition of \mathcal{A}^{*}, we have $K \in \mathcal{A}$.

Proof of Lemma 6.5. For terminological convenience we refer both to the amalgamation class \mathcal{A} and the corresponding homogeneous directed graph Γ below.

That \mathcal{A}^{*} is an amalgamation class follows on purely formal grounds. If $J_{1}, J_{2} \in \mathcal{A}^{*}$ but no amalgam J of J_{1}, J_{2} lies in \mathcal{A}^{*}, then for each such amalgam $J=J_{1} \cup J_{2}$ there is an extension $K_{J}=J \cup I_{J}$ of the specified form which is not in \mathcal{A}. Letting $I=\cup_{J} I_{J}$ we then have $J_{1} \cup I, J_{2} \cup I \in \mathcal{A}$ by hypothesis, and hence some amalgam $J \cup I$ of the two also belongs to \mathcal{A}. But as I contains I_{J}, this gives a contradiction.

So the main point is to check is that tournaments of the forms $J=I_{n}, L_{n}$, or O all belong to \mathcal{A}^{*}. We begin with some considerations that apply equally well in all three cases.

We consider an extension $K=J \cup I$ of J by an additional \perp-class I. The claim is that K lies in \mathcal{A}. If $|I| \geq 3$ and I realizes at least two distinct types over J, then we can write K as $K_{1} \cup K_{2}$ with $K_{1}=J \cup I_{1}, K_{2}=J \cup I_{2}$, satisfying the following conditions.

- $\left|I_{1} \cap I_{2}\right|=1$.
- $\left|I_{1}\right|,\left|I_{2}\right|>1$.
- No points in $I_{1} \backslash I_{2}$ and $I_{2} \backslash I_{1}$ realize the same type over J.

Then K is the unique amalgam of K_{1}, K_{2} over their common part, so if $K_{1}, K_{2} \in \mathcal{A}$ we get $K \in \mathcal{A}$ as well.

Thus it remains to consider two cases.
(1) I is indiscernible over J.
(2) $|I|=2$.

Our treatment of these cases will be built up gradually.

Claim 1. For $x \in \Gamma, O$ embeds into x^{\prime}.
We assume the contrary, toward a contradiction. Then by Lemma 6.2 and Proposition 5.1, x^{\prime} is isomorphic to the semi-generic imprimitive directed graph. That is, any finite directed graph in which \perp gives an equivalence relation and the parity constraint is satisfied must embed into x^{\prime}, and, in particular, into Γ.

We make a direct construction. First form the following amalgamation diagram.

Both factors of this diagram embed into Γ since the one omitting y satisfies the parity constraint, and the one omitting x is O. So there is an amalgam in Γ in which there is an arc connecting x and y. Since we have ruled out $x \rightarrow y$ by hypothesis, we conclude that $y \rightarrow x$ in the amalgam.

We have marked an additional vertex a because we next amalgamate this configuration with a similar configuration containing a vertex b in place of a, as shown.

This second configuration satisfies the parity constraint, so embeds into Γ.
Now we amalgamate the two factors shown, that is we determine the type of the pair (a, b). Evidently we must have $a \perp b$. So omitting y, we have $x \rightarrow O$.

This proves the claim.
Note that in what follows we can no longer assume that every finite directed graph on which \perp gives an equivalence relation, and which respects the parity constraint, necessarily embeds into Γ, as this followed only when we assumed that x^{\prime} does not contain O.

Claim 2. If K is a finite directed graph on which \perp is an equivalence relation with two classes, then K embeds in Γ.

Let K consist of the two \perp-classes I, J. Extending J if necessary, we may suppose that all elements of I realize distinct types over J. Then we can easily reduce to the case $|I|=2$.

Similarly, with $|I|=2$, we can reduce to the following two cases.
(1) $|I|=|J|=2$.
(2) $|I|=2, J$ is indiscernible over I.

If $|I|=|J|=2$ and the parity constraint is not satisfied by K, then $K \cong O$ which embeds in Γ by assumption.

If the parity constraint is satisfied, and I realizes distinct types over J, then we add an additional point a to I and express K as the union of two copies of O containing $\{a\} \cup J$. This can be viewed as an amalgamation diagram with unique solution K.

There remains the case in which $|I|=|J|=2$ and $I \rightarrow J$. If this does not embed in Γ, then any two vertices a_{1}, a_{2} in one \perp-class have at most one common neighbor in the other.

Take two \perp-classes $C_{1}, C_{2}, a_{1}, a_{2}, a_{3} \in C_{1}$ distinct, and let $J=a_{1}^{\prime} \cap C_{2}$. By Lemma 5.2, J is infinite. Then $a_{2}^{\prime}, a_{3}^{\prime}$ meet J in at most 1 vertex each. Take a pair $b_{1}, b_{2} \in J \backslash\left(a_{2}^{\prime} \cup a_{3}^{\prime}\right)$. Then $a_{1}, a_{2} \in\left\{b_{1}, b_{2}\right\}^{\prime}$, a contradiction.

This disposes of all cases in which $|I|=|J|=2$.
Now fix \perp-classes C_{1}, C_{2}, take $a \in C_{1}$, and set $A=a^{\perp}=C_{1} \backslash\{a\}, B=a^{\prime} \cap C_{2}$. The structure (A, B), in which A and B are named and the relation \rightarrow between A and B is given, is a homogeneous structure. It may be viewed as a bipartite graph with the two sides distinguished, taking the relation \rightarrow from A to B as the edge relation, and \leftarrow as the non-edge relation. Then up to bipartite complementation - or in therms of the digraph, up to orientation- (A, B) is either complete, a perfect matching, or generic [5].

By what we have already proved in the case $|I=|J|=2,(A, B)$ is neither complete nor a perfect matching. Hence (A, B) is generic, and the claim follows.

Claim 3. Every configuration $K=x L I$ of the following form embeds into Γ.

- $L \cong L_{n}$ with first element a.
- $x \perp a, x \rightarrow L I \backslash\{a\}$.
- I is a \perp-class not meeting the \perp-classes of L.

If $|L|=1$ this is covered by Claim 2. In general we proceed by induction on $n=|L|$.
We make an amalgamation of the form $x L I_{1} I_{2}$ where for a, b the first two elements of L, the type of (a, b) remains to be determined, and where I_{1}, I_{2} are copies of I chosen so that either $x L I_{1}$ or $x L I_{2}$ will be an isomorphic copy of $x L I$ once the orientation of the arc (a, b) is chosen. Thus I_{1} realizes the type of I over $x L$, and I_{2} realize the type resulting when the parameters a, b are switched.

The parameter x ensures that there is an arc between a and b. Since the completed amalgam must contain the desired configuration, it suffices now to check that the factors of this amalgamation obtained by omitting a or b embed into Γ.

For the factor omitting b, this holds by induction hypothesis.
For the factor omitting a, we note that $x \rightarrow L I_{1} I_{2} \backslash\{a\}$ and thus it suffices to find the factor $(L \backslash\{a\}) I_{1} I_{2}$ in x^{\prime}; this is given by the induction hypothesis applied within x^{\prime}.

Claim 4. $I_{n}, L_{n} \in \mathcal{A}^{*}$ for all n.
Claim 2 covers I_{n} and Claim 3 covers L_{n}, dropping the parameter x.
Claim 5. The configuration $A=\left(a_{1}, a_{2}, b\right)$ with $a_{1} \perp a_{2}$ and $a_{1} \rightarrow b \rightarrow a_{2}$ belongs to \mathcal{A}^{*}.

Consider $K=A \cup I$ with I an additional \perp-class. We must embed K in Γ.
We form an amalgamation $\left(a_{1} a a_{2}, b, x I_{1} I_{2}\right)$ with three \perp-classes $a_{1} a a_{2}, b$, and $x I_{1} I_{2}$, leaving the type (a, b) to be determined by the amalgam in such a way that an arc $b \rightarrow$ a makes $a_{1} b a I_{1}$ isomorphic to K, while an arc $a \rightarrow b$ makes $a b a_{2} I_{2}$ isomorphic to K. Furthermore, we take $a_{1} a a_{2} b \rightarrow x$.

Since any completion of the amalgamation diagram described must contain a copy of K, it must be shown that suitable factors embed into Γ.

Our specifications determine the type of a_{1} over I_{1}, a_{2} over I_{2}, and b over both I_{1} and I_{2}, but leave open the type of a_{1} over I_{2} and a_{2} over I_{1}. We will take advantage of the latitude this affords.

The factor omitting b embeds in Γ by Claim 2, regardless of how the unspecified types are filled in. So the task is to embed some form of the factor omitting a into Γ.

We may view this as an amalgamation diagram in which the type of a_{2} over I_{1} is to be determined. Our only constraint here is that a_{2} and I_{1} should lie in different \perp-classes, and this is satisfied in any amalgam. So it suffices to embed the factors omitting a_{2} or I_{1} into Γ.

The factor omitting a_{2} is an extension of $a_{1} b \cong L_{2}$ by $I_{1} I_{2}$, and is available since $L_{2} \in \mathcal{A}^{*}$. So we come down to the factor omitting I_{1}, or rather any form of that factor in which I_{2} occupies a third \perp-class.

Here the type of a_{1} over I_{2} may be anything, so we treat this configuration again as an amalgamation in which that type is to be determined; the parameter a_{2} ensures $a_{1} \not \perp I_{2}$.

So we again pass to the factors of the diagram displayed. As before, the factor omitting a_{1} is available since $L_{2} \in \mathcal{A}^{*}$, whatever its precise form. And the factor omitting I_{2} is available since Γ contains O.
Claim 6. O belongs to \mathcal{A}^{*}.
We consider the homogeneous directed graph Γ^{*} corresponding to the amalgamation class $\mathcal{A}^{*} \subseteq \mathcal{A}$. Here \perp is an equivalence relation with infinitely many infinite classes, and by the previous claim, Γ^{*} is not a wreath product. So if O does not embed in Γ^{*} we are left with one possibility.

- Γ^{*} is semi-generic.

Thus any finite configuration satisfying the parity constraint will embed into Γ^{*}.
We now consider a configuration $K=O \cup I$ with I an additional \perp-class.

As usual we may reduce to the case in which I is either indiscernible over O or of order 2.

If $I \cup\left\{a_{1}, a_{2}\right\}$ or $I \cup\left\{b_{1}, b_{2}\right\}$ respects the parity constraint then that configuration embeds in Γ^{*} and hence belongs to \mathcal{A}^{*}, which implies that the full configuration $K=O I$ belongs to \mathcal{A}, as required.

This holds in particular if I is indiscernible over O. So we come down to the following case.

- $|I|=2$; and
- $I \cup\left\{a_{1}, a_{2}\right\}, I \cup\left\{b_{1}, b_{2}\right\} \cong O$.

In this case, if $I=\left\{c_{1}, c_{2}\right\}$, add a third point c to I and treat $O I c$ as the unique amalgam of $O c_{1} c$ and $O c_{2} c$. Here we need only choose c so that the factors omitting c_{1}, c_{2} both embed in Γ, and for this it suffices to ensure that $\left\{a_{1}, a_{2}\right\} \cup\left\{c_{1}, c\right\}$ and $\left\{b_{1}, b_{2}\right\} \cup\left\{c_{2}, c\right\}$ both obey the parity constraint, which we may achieve by choosing the type of c appropriately.

The proof of the lemma is now complete. We dealt with I_{n} and L_{n} in Claim 4, and we just dealt with O.

As we have seen, Proposition 6.1 follows from Lemma 6.5, and this completes the proof of Theorem 1 .

References

1. C. Berline and G. Cherlin, "QE rings of prime characteristic," in Bull. Soc. Math. Belg. B 33 (1981), 3-17.
2. P. Cameron, "Orbits of permutation groups on unordered sets II," J. London Math. Soc. 23 (1981) 249-264.
3. G. Cherlin, L. Harrington, and A. Lachlan, " \aleph_{0}-categorical, \aleph_{0}-stable structures, Ann. Pure Appl. Logic 28 (1985), 103-135.
4. G. Cherlin and A. Lachlan, "Stable finitely homogeneous structures," Trans. American Math. Soc. 296 (1986), 815-850.
5. M. Goldstern, R. Grossberg, and M. Kojman, "Infinite homogeneous bipartite graphs with unequal sides," Discrete Mathematics 149 (1996), 69-82.
6. C. W. Henson, "Countable homnogeneous relational systems and \aleph_{0}-categorical theories," J. Symbolic Logic 37 (1972), 494-500.
7. A. Lachlan, "Finite homogeneous simple digraphs," in Logic Colloquium 1981, J. Stern ed., North-Holland, NY (1982), 189-208.
8. A. Lachlan, "On countable stable structures which are homogeneous for a finite relational language," Israel J. Math. 49 (1984), 69-153.
9. A. Lachlan, "Countable homogeneous tournaments," Trans. American Math. Soc. (1984), 431-461.
10. A. Lachlan and S. Shelah, "Stable structures homogeneous for a binary language," Israel J. Math. 49 (1984), 155-180.
11. A. Lachlan and R. Woodrow, "Countable ultrahomogeneous graphs," Trans. American Math. Soc. 262 (1980), 51-94.
12. D. Saracino and C. Wood, "QE commutative rings," J. Symbolic Logic 49 (1984), 644-651.
13. D. Saracino and C. Wood, "QE nil-2 groups of exponent 4," J. Algebra 756 (1982), 337-382.
14. J. Schmerl, "Countable homogeneous partially ordered sets," Algebra Universalis 9 (1979), 317-321.
15. T. Skolem, "Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematicshen Sätze nebst einem Theorem über dichted Mengen," Skriften Vitenskasakad Krisitana 4 (1920), 1-36, §4.
