
HOMOGENEOUS DIRECTED GRAPHS. THE IMPRIMITIVE CASE

GREGORY CHERLIN
LOGIC COLLOQUIUM ’85

EDITED BY THE PARIS LOGIC GROUP
NORTH-HOLLAND 1987, ELSEVIER

REVISED (2016)

Introduction

A relational system Γ is said to be homogeneous if any isomorphism α : A→ B between
two of its finite substructures is induced by an automorphism of Γ. Assuming the language
is finite, such structures are ℵ0-categorical, and Lachlan has a very general theorem con-
cerning the classification of the stable ones [4,7,10] which is a refinement (for this special
case) of the results of [3]. Roughly speaking, the stable homogeneous structures for a fixed
finite relational language fall into finitely many families, with the isomorphism type of the
structures within a family determined by rather trivial numerical invariants. In particu-
lar, there are only countably many countable stable homogeneous structures for a finite
relational language.

In certain cases all the homogeneous structures have been classified, though not as a
result of any general theory. The homogeneous symmetric graphs or tournaments (directed
graphs with any two vertices joined by an edge) were classified in [11] and [9] respectively.
The methods of the second paper seem particularly interesting, as the nimbus of a general
method seems dimly perceptible. I have shown recently that the same method can be used
to classify the homogeneous directed graphs omitting the edgeless graph I∞ on infinitely
many vertices: the tournaments are of course those which omit I2.

What of the homogeneous directed graphs in general? There are 2ℵ0 known types which
are freely generated by tournaments in the following sense. In the partial order of iso-
morphism types of finite tournaments ordered by embeddability, fix an infinite antichain
I (one is exhibited in [6], which I follow here). For X an arbitrary subset of I, form the
closure A(X ) of X with respect to free amalgamation, isomorphism, and substructure,
where the free amalgamation of two directed graphs which agree on their common vertices
is simply their union, pointwise and edgewise. Following Fräıssé, we associate to A(X ) the
A(X )-generic homogeneous directed graph, from which X is easily recovered. In this way
we find 2ℵ0 countable homogeneous directed graphs. (In the future structures are assumed
countable without further mention.)

And so it seems that Lachlan’s theory cannot be extended to the unstable case; but actu-
ally this does not follow at all—not from these cardinality considerations. If one is to draw
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this sort of conclusion from such evidence then one must in particular regard the homo-
geneous directed graphs as intrinsically unclassifiable, while the opposite possibility—that
they are all already known—is perfectly consistent with the evidence. I propose accordingly
to work in this direction—an explicit classification of the homogeneous directed graphs—
partly in order to lay to rest these cardinality considerations, which have lately reared
their heads in more algebraic contexts as well [1,12,13]. This is not so say that one actually
expects a smooth general theory of homogeneous structures for finite relational languages,
only that sensible criteria for classifiability are wanted; and indeed a very sensible criterion
has already been suggested by Lachlan. He proposes a Gentzen style entailment relation
for finite sets A,B of finite structures for a given language L: A ` B means that any ho-
mogeneous L-structure embedding all the structures in A must also embed some structure
in B. Using Fräıssé’s theory relating homogeneous structures and amalgamation classes,
one sees that this relation is r.e., and that the problem of classifiability is expressed quite
well by

Given L, is ` recursive?(∗)
This seems by far the most interesting problem in the area, and we known essentially
nothing about it.

The goal of the present paper is quite modest. I will describe the known homogeneous
directed graphs in some detail, checking homogeneity when it seems appropriate. They
fall naturally into three families: deficient (omitting some 2-type), imprimitive (carrying
a nontrivial ∅-definable equivalence relation), and free generated (in the sense described
above, or in a dual sense), and there are in addition two more examples known which may
be characterized by the 3-types they realize. The deficient examples were classified in the
papers [11,9] referred to earlier. The imprimitive ones will be classified here.

There is one other topic which should be dealt with, at least in part, before attacking the
primitive case directly. In [11] Lachlan classifies the homogeneous 2-tournaments (these are
tournaments partitioned into two distinguished subsets). In dealing with directed graphs
it may be convenient to deal with 3-tournaments, allowing in addition three 2-types to be
realized between distinct components (as opposed to two realized in a a given component,
up to symmetry). I have worked out the classification of the n-tournaments with an
arbitrary number of cross types between components, for all n. This seems to be a natural
problem to consider prior to tackling the homogeneous directed graphs, and the analysis
suggests profitable lines of analysis for the latter problem, but I no longer expect the result
to be directly applicable (that is, it may be usable, but it seems that there are better
approaches). All of this will be explored in detail elsewhere.
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1. The known homogeneous directed graphs

Our description of the known homogeneous directed graphs will be keyed to the following
catalog.

I Deficient
1 In
2 ~C3,Q,Q∗, T∞

II Imprimitive
3 Wreathed (composition)

4 T̂ , for T = I1, ~C3,Q, or T∞

5 n ∗ I∞
6 Semi-generic

III Exceptional
7 S(3)
8 P

IV Free
9 Generic omitting In+1

10 Generic omitting T
Proofs of homogeneity will be given in §2. In the following discussion Γ is some countable,

homogeneous, directed graph.

I. Deficient cases. There are three nontrivial 2-types, which will be denoted in two ways
as convenience dictates:

x→ y or y ∈ x′

x← y or y ∈ ′x
x ⊥ y or y ∈ x⊥

If Γ omits one of these 2-types then it is said to be deficient and is then either edgeless
(Case 1, n ≤ ∞) or a tournament. The homogeneous tournaments as classified by Lachlan

[9] are I1, included in Case 1, the oriented triangle ~C3, the rational order Q, the circular
order Q∗ described below, and the generic tournament T∞.

To form Q∗ we can either partition Q into two dense subsets and reverse the arrows
between elements in distinct subsets, or alternatively, place astronomers at all points lying
at rational angles on a circle of large radius, equip them with telescopes enabling them to
see halfway around in either direction, and draw arrows to the right as far as the eye can
see; then each astronomer believes he lives on the rational line. This structure is mentioned
in §6 of [2], and is studied in §4 of [15].

II. Imprimitive cases. If Γ is imprimitive then the nontrivial equivalence relation is the
union of equality with either ⊥ or its complement. Wreath products Γ1[Γ2] are formed by
taking Γ1,Γ2 with no 2-types in common, and replacing the points of Γ1 by copies of Γ2.
In other words, if T is one of the four nontrivial homogeneous tournaments from Case 2,
then we form T [In] or In[T ] for i < n ≤ ∞; the latter is more commonly called n · T .
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In all non-wreathed cases the equivalence relation will correspond to ⊥. For T a tour-
nament, the directed graph T̂ is constructed as follows. Let T ∗ = T ∪ {a} where a → T .

Then T̂ is the union of two copies T ∗1 , T
∗
2 of T ∗. For x1 ∈ T ∗1 , y2 ∈ T ∗2 , corresponding to

x, y ∈ T ∗, x1 → y2 iff y → x. Observe that ⊥ has equivalence classes of size 2, any two

of which form a 4-cycle ~C4. Î1 = ~C4. One may also check that Ĉ3 is isomorphic with
a graph on the nonzero points of the plain Y over the Galois field F3 with edges defined
by: x → y iff x ∧ y is equal to a fixed element of

∧2 V . (The exterior product is just
the determinant of the matrix with columns x, y once bases are chosen; there is a similar
structure on the nonzero points of the plane over Fq, homogeneous for a binary language

with 2(q − 1) 2-types.) The graph Q̂ is a variant of Q∗ in which each astronomer has an

antipodal twin whom he cannot see. T̂∞ is generic subject to the constraints:

(1) ⊥ gives rise to an equivalence relation with classes of size 2;

(2) The union of two ⊥-classes is a copy of ~C4.

The graph n ∗ I∞ is defined as the generic directed graph on which ⊥ is an equivalence
relation with n classes. For n = ∞ there is a variant which for lack of a more suggestive
term we call semi-generic. The directed graph ∞∗ I∞ is generic for the constraint:

(1) ⊥ gives rise to an equivalence relation.

To get the semi-generic variant we impose the further constraint.

2 For any pairs A1, A2 taken from distinct ⊥-classes, the number of edges from A1

to A2 is even.

III. Exceptional homogeneous directed graphs. We can define the myopic circular
order S(3) most simply in terms of astronomers whose telescopes enable them to see 1/3 of
their circular universe in each direction—leaving a third invisible. Alternatively, partition
Q into three dense sets Qi indexed by i ∈ Z/3Z, identify the types ⊥,→,← with 0, 1, 2
respectively, and for x ∈ Qi, y ∈ Qj distinct, assign to (x, y) the type i− j + tpQ(x, y).

The generic partially ordered set P needs no commentary.

IV. Freely generated homogeneous directed graphs. These are the graphs which
are generic subject to a constraint of the form: Γ embeds no X from X ; here X is a class
of deficient graphs of a given type. In (9) X is (In+1) and in (10) X = T is a class of
tournaments.

These are all the homogeneous graphs known to me, and I conjecture that in fact: only
countably many are missing. (Just as in the imprimitive case the semi-generic directed
graph appears unexpectedly, others could easily turn up.)

2. Proofs of homogeneity

For the homogeneity of Q∗ see [2] or [9]. Q∗ and S(3) can be analyzed along similar lines:
the astronomical description shows that the automorphism group is transitive, so we need
only check that the expansion of the structure by a single parameter x is homogeneous,
and up to a permutation of 2-types (and the removal of the element x) this expansion is
just Q partitioned into 2 or 3 dense subsets, respectively. In the case of S(3), identifying
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⊥,→,← with 0, 1, 2 respectively, and letting Qi = {y | tp(x, y) = i}, we assign to y ∈ Qk,
z ∈ Qj the type (i− j) + tp(yz).

The homogeneity of wreath products of homogeneous structures in disjoint languages
has been noted previously by Lachlan, if not earlier, and the existence of amalgamation
classes corresponding to examples 8–10 is both straightforward and well known. It remains
to discuss examples 4–6.

#4. Recall as a matter of notation that T̂ = T ∗1 ∪ T ∗2 with T ∗i = {ai} ∪ Ti and Ti ∼= T .
It is quite easy to see that the structure imposed on T1 ∪ T2 by (a1, a2) is homogeneous
if (and only if) T is, as it consists of two copies of T with a definable isomorphism. As

{a2} = a⊥1 , it suffices to see that T̂ is transitive when T 6∼= Qq∗ is homogeneous. The
following condition is sufficient for this, though not necessary:

For x ∈ T there is an isomorphism α : ′x→ x′ such that for y, z → x: y → αz iff αy → z

(†)

This condition evidently holds for I1, ~C3, and Q; for T = T∞ and x ∈ T the desired α
comes from a back-and-forth construction.

To check the transitivity of T̂ , observe fist that there is a canonical involution i ∈ Aut T̂
defined by x ⊥ i(x), so it suffices to find maps φ ∈ Aut T̂ which take a1 to any x1 ∈ T1. If
x1 corresponds to x ∈ T then let α be as in (†) and define φ(ai) = xi, φ(xi) = a3−i, while
for y → x→ z:

φ(yi) = α(y)i φ(zi) = α(z)3−i

(†) expresses the condition that this is an automorphism of T̂ .
To see that (†) is not a necessary condition for transitivity, notice that if Z/nZ is made

into a directed graph by taking x→ y to mean

(y − x) ∈ {1, . . . , n− 1} (mod 2)n

then Z/2nZ ∼= L(n− 1)∗, where L(n− 1) is the transitive tournament of order n− 1.

It will be useful later to know that Q̂∗ is not homogeneous, and for this we check the
failure of transitivity directly. On the one hand a′1 = Q∗ by construction, while on the
other hand, for x1 ∈ Q∗1, x′1 \ {a2} is linearly ordered, by inspection.

#5. n ∗ I∞
We must check that the class of finite directed graphs satisfying

(1) The union of = and ⊥ is an equivalence relation;
(2) this relation has at most n classes.

is an amalgamation class. It suffices to describe how to complete an amalgamation of
A ∪ {a1} with A ∪ {a2} over A, by specifying the type of a1a2 suitably.

We can take a1 → a2 unless there is an obstruction of one of the following forms.

(1.1) a1 ⊥ b ⊥ a2, b ∈ A; or
(2.1) A has n− 1 ⊥-classes, and there is no b ∈ A with b ⊥ a1 or b ⊥ a2.
We can take a1 ⊥ a2 unless there is an obstruction of the form:

1.2 ai ⊥ c 6⊥ aj , {i, j} = {1, 2}.
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There cannot be both sorts of obstruction, so the amalgamation succeeds.
#5. The semi-generic ⊥-imprimitive case.
We claim that the constraint (1) above can be combined with the constraint

(3) |(A1 × A2) ∩ E| is even for A1, A2 two ⊥-equivalent pairs (where E is the set of
edges)

to give an amalgamation class of finite directed graphs. With the notation of the previous
example, we must again specify the type of a1a2.

We take a1 → a2 unless there is either an obstruction of the form (1.1), or this choice
yields:

(3.1) b1, b2 ∈, ai ⊥ bi, and {((a1, b1)× (a2, b2)) ∩ E| is odd.

If (1.1) occurs then we take a1 ⊥ a2 and we have to check that [(a1, a2)× B] ∩ E| is even
for any ⊥-equivalent pair B in A; this follows since |[(ai, b)×B] ∩ E| is even for i = 1, 2.

If case (1.1) does not apply but (3.1) does, then we take a2 → a1 and constraint (1)
is still satisfied, and moreover (3.1) is now false. What must still be checked is that for
ai ⊥ ci ∈ A, that always |[(a1, c1) × (a2, c2)] ∩ E| is even; for this it suffices to consider
(a1, b1)× (a2, b2), (a1, b1)× (a2, c2), and (b1, c1)× (a2, c2).

This completes the description of the currently known examples. The next order of
business is to show that the list of imprimitive types is complete.

3. Imprimitive homogeneous graphs with finite classes

Throughout the remainder of this article, Γ denotes an imprimitive homogeneous di-
rected graph. As the nontrivial equivalence relation on Γ is the union of equality with
either ⊥ or its complement, and in the latter case Γ is necessarily a wreath product, we
may assume the equivalence relation is

“=” ∪ “⊥”

By a slight abuse of notation we will denote the equivalence relation also by ⊥. The
theorem we aim at is of course as follows.

Theorem 1. If Γ is an imprimitive homogeneous directed graph, then Γ is one of the
following.

(1) a wreath product (composition) T [In] or In[T ];

(2) T̂ , for T = I1, ~C3, Q, or T∞;
(3) n ∗ I∞;
(4) semi-generic for ⊥ an equivalence relation.

As noted, we may take the equivalence relation on Γ to be (essentially) ⊥. We consider
first the case in which this relation has finite classes, of order n <∞.

We can dispose of the case in which Γ is finite by reference to the list in [6] of all finite
examples. So we may assume that Γ is infinite, and not a wreath product. Fix a ⊥-class
C, and find x, y ∈ Γ \ C with

x→ y x′ ∩ C = y′ ∩ C
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If x′ ∩ C = ∅ or C then it follows easily that Γ is wreathed.
Fix a ∈ x′ ∩ C.
If |x′∩C| = k with 1 < k < n, then we can find A ⊆ C, a ∈ A, A 6= x′∩C and z ∈ Γ\C

with x→ z or z → x so that z′ ∩ C = A. Then axy and either axz or azx have the same
type, a contradiction. We conclude that k = 1, and similarly that n − k = 1, n = 2. It
then follows rapidly that Γ = T̂ for some homogeneous T , and we checked in the previous
section that this forces T 6∼= Q∗.

4. n ∗ I∞ with n finite

We have assumed that ⊥ defines an equivalence relation on Γ, and we will assume
throughout that Γ is not a wreath product. We now impose the condition

All ⊥-classes are infinite.

We first take up the case in which Γ/⊥ is finite.

Lemma 4.1. Suppose |Γ/⊥| = n is finite. Then for distinct ⊥-classes C1, C2 and I ⊆ C1

finite, the set I ′ ∩ C2 is infinite.

Proof. For I ⊆ C1 finite, let F (I) be the set of ⊥-classes C∗ in Γ other than C1 for which
I ′∩C∗ is finite. Suppose that for some such I, F (I) is nonempty. Let |I| = k be minimized.

As n is finite, there is a pair I1, I2 of disjoint k-subsets of C1 with F (I1) = F (I2). By
homogeneity, F (I1) = F (I2) for any pair of disjoint k-subsets of C1, and hence F (I) is
independent of I for I ⊆ C1 of order k. So we may set F ∗(C1) = F (I) for any such I.

As Γ is not a wreath product, Aut Γ acts 2-transitively on the ⊥-classes and therefore
F ∗(C1) consists of all ⊥-classes other than C1, that is I ′ is finite for I ⊆ C1 of order k.
Furthermore arguing as above, the size m of I ′ is bounded and hence, arguing as above, is
constant.

Take I0 ⊆ C1 of order k − 1, and set J = I ′ ∩ C2. Then J is infinite. Take S ⊆ C1 \ I0
of order m+ 1. For s ∈ S, we have(I0 ∪ {s})′ finite, that is s′ ∩ J is finite.Therefore ′S ∩ J
is infinite.

Take J0 ⊆ J∩′S of order k. Then J ′0 contains S. But the value of k and m corresponding
to C1 should be the same for C2, so this is a contradiction.

�

Corollary. With the same notation, we have the following.

(1) For any finite subsets I, I1 of C1 of the same order there is an automorphism of Γ
taking I to I1 and leaving C2 invariant;

(2) if I, J ⊆ C1 are finite, then I ′ ∩′ J ∩ C2 is infinite.

Proof.
1. Take a ∈ (I ∪ I1)′ ∩ C2. There is an automorphism taking {a} ∪ I to {a} ∪ I1.
2. Fix k arbitrary, and take K ⊆ C2 of order k.
By the lemma (and dually) we may take I1 ⊆ K ′ ∩ C1 and J1 ⊆′ K ∩ C1 with |I1| = |I|

and |J1| = |J |. Thus |I ′1 ∩′ J1 ∩ C2| ≥ k.
By (1) the same applies to I, J . �
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Lemma 4.2. Suppose |Γ/⊥| = n with n ≥ 3 finite. Then x′ is not a wreath product, for
x ∈ Γ.

Proof. We have supposed that Γ is not a wreath product. If the lemma fails, fix distinct
⊥-classes C,C1, C2 with x ∈ C and consider the finite tournament Tx on (Γ \ C)/⊥ with
edge relation as in x′. By Lemma 4.1, for x, y ∈ C the set {x, y}′ meets each equivalence
class outside C, and thus Tx = Ty.

Therefore no automorphism of Γ carries the triple (C,C1, C2) to the triple (C,C2, C1).
Now let A1 = x′∩C1, A2 = ′x∩C1, B1 = x′∩C2, B2 = ′x∩C2. If there are pairs (a1, b2)

and (a2, b1) with opposite orientation with a1 ∈ A1, a2 ∈ A2, b1 ∈ B1, b2 ∈ B2, then the
map

x, a1, b2 → x, b1, a2

is an isomorphism and hence is induced by an automorphism taking (C,C1, C2) to (C,C2, C1),
for a contradiction.

Thus for such a1, a2, b1, b2 the orientation of (a1, b2) is the same as that of (a2, b1), and
in particular is independent of the choice of a1 ∈ A1 and b2 ∈ B2.

Thus all points in A1 realize the same type over C2. It follows easily that all points in
A1 realize the same type over Γ \ C1. By homogeneity, all points in C1 realize the same
type over Γ \ C1, and again by homogeneity it follows that Γ is in fact a wreath product,
for a contradiction. �

Proposition 4.3. If Γ is an imprimitive homogeneous directed graph with equivalence
relation ⊥, with each ⊥-class infinite, and with Γ/⊥ finite, then either Γ is a wreath
product or Γ is n ∗ I∞ with n = |Γ/⊥|.

Proof. We proceed by induction on n, starting with n = 1. For the inductive step we
suppose that n > 1 and that Γ is not a wreath product.

Claim 1. For x ∈ Γ, x′ ∼= (n− 1) ∗ I∞.

For n = 2, this is contained in Lemma 4.1. For n > 2, we deduce from Lemmas 4.1
and 4.2 that x′ is an imprimitive homogeneous directed graph with equivalence relation ⊥,
with each ⊥-class infinite, with |x′/⊥| = n − 1, and not a wreath product, so induction
applies. The claim follows.

Claim 2. All finite directed graphs of the form

T ∪ I

embed into Γ, where T is a tournament of order n− 1 and I is a ⊥-class disjoint from the
⊥-classes represented by T , and is indiscernible over T .

If n = 2 then Claim 1 suffices. So suppose n > 2. Fix a, b ∈ T with a → b, let
T0 = T \ {a, b}, and form an amalgamation diagramK on a set of the form

T1 ∪ T2 ∪ {a1, a2, b1, b2} ∪ I1 ∪ I2
so that
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• The type of (a1, b1) is left unspecified;
• T1∪I1, T2∪I2 ∼= T0∪I by isomorphisms which extend to isomorphisms of T1∪{a1}

and T2 ∪ {b1} with T0 ∪ {a}, and of T1 ∪ {b1} and T2 ∪ {a1} with T0 ∪ {b};
• a1 ⊥ a2, b1 ⊥ b2;
• a2 → K \ {a1, a2}, b2 → K \ {a2, b1, b2}.

Viewing K as the amalgam of K1 = K \ {b1} with K2 = K \ {a1} over their common
part, the elements a2, b2 prevent a1 ⊥ b1, and then one of the configurations T1 ∪ {a1, b1}
or T2 ∪ {a1, b1} provides a copy of T ∪ I when the choice a1 → b1 or b1 → a1 is made.
Therefore, to complete the proof of the claim, it suffices to check that K1 and K2 embed
into Γ.

Now K2 consists of the vertex a2 dominating K \{a1, a2}, and this embeds in Γ by Claim
1.

The configuration K1 may be thought of as an amalgam in which the type of (a1, a2) is
to be determined. As n− 1 ⊥-classes are already represented in K \ {a1, a2}, none of them
containing a1 or a2, this amalgam forces a1, a2 to lie in the same ⊥-class. Furthermore,
a2 → b2 and b2 → a1, so the points a1, a2 cannot be identified. Thus to embed K1 into Γ,
it suffices to embed K1 \ {a1} and K1 \ {a2}. This again follows from Claim 1 applied to
a′2 and to b′2.

This proves the second claim, and now we may prove the Proposition. We consider a
finite configuration A contained in n ∗ I∞, and we must embed it into Γ. We may suppose
that A contains a tournament T of order n, which we use as a set of representatives for
the ⊥-classes. We suppose that the number of nontrivial ⊥-classes in A is minimized. If
this number is at most 1 then Claim 2 applies.

Suppose therefore that there are at least two nontrivial ⊥-classes C1, C2 in A. Adjoint
points to C2 to ensure that the points of C1 realized distinct types over C2. Then view A
as the amalgam of structures of the form Ai = {ai} ∪ (A \C1) where ai varies over C1; the
points of C2 prevent any identifications of distinct ai, and as A\C1 contains n−1 ⊥-classes
distinct from C1, the elements ai must all lie in the same ⊥-class in the amalgam. Thus
the result of this amalgamation is A.

The factors Ai = {ai} ∪ (A \ C1) have fewer nontrivial ⊥-classes, hence embed in Γ by
induction. �

5. The semi-generic case

Now we assume that the ⊥-classes are infinite and that Γ/⊥ is infinite. We will refer to
the extra constraint imposed on the semi-generic directed graph as the parity constraint.

Proposition 5.1. If Γ is an imprimitive homogeneous directed graph with equivalence
relation ⊥, for which the ⊥-classes are infinite, Γ/⊥ is infinite, Γ is not a wreath product,
and the parity constraint is satisfied, then Γ is isomorphic with the semi-generic directed
graph.

We begin with two preliminary results.



10 GREGORY CHERLIN

Lemma 5.2. Let Γ be an imprimitive homogeneous directed graph with equivalence relation
⊥, for which the ⊥-classes are infinite, Γ/⊥ is infinite, and Γ is not a wreath product, If
C1, C2 are two ⊥-classes and a ∈ C1, then a′ ∩ C2 and ′a ∩ C2 are infinite.

Proof. It suffices to consider a′ ∩ C2. We show first that a′ meets C2.
As Γ is not a wreath product, there are arcs in both directions between C1 and C2.
Suppose a′ does not meet C2. Let (c, b) be any arc from C2 to C1. Then there is an

automorphism carrying (c, a) to (c, b). But then C1, C2 go to C2, C1 and a goes to b, so
b′ does not meet C2. Thus each vertex in C1 either dominates or is dominated by C2. As
there is an automorphism switching C1 and C2, each vertex of C2 either dominates or is
dominated by C1. If we now consider arcs (a1, b1) and (b2, a2) in both directions between
C1 and C2, we reach a contradiction.

Thus a′ meets C2. Suppose now that a′ ∩ C2 is finite and fix b ∈ a′ ∩ C2. For each
arc (x, y) between C1 and C2 there is an automorphism taking (a, b) to (x, y), and hence
x′ ∩ (C1 ∪C2) is finite. For x ∈ C1 ∪C2, let R(x) be the set of points in C1 ∪C2 reachable
from x, i.e., lying on an oriented path from x. This is a finite set. Then R(a) is finite. Take
b ∈ C2 \ R(a). Then (b, a) is an arc, so a ∈ R(b), R(a) ⊆ R(b) \ {b}, and |R(a)| < |R(b).
However, there are arcs (a, c2) and (b, c1) with c1 ∈ C1, c2 ∈ C2, and an automorphism
taking (a, c2) to (b, c1), so |R(a)| = |R(b)|, for a contradiction. �

Arguing as in the proof of Lemma 4.2, and making use of the previous lemma at the
beginning, we may deduce the following.

Lemma 5.3. Let Γ be an imprimitive homogeneous directed graph with equivalence relation
⊥, for which the ⊥-classes are infinite, Γ/⊥ is infinite, and Γ is not a wreath product, Then
for x ∈ Γ, x′ is not a wreath product.

After these preparations, we may now prove the following family of assertions for all n.
Then clause (2.n), with n varying, gives the proposition.

Lemma 5.4. Let Γ be an imprimitive homogeneous directed graph in which ⊥ gives an
equivalence relation, not a wreath product, with Γ/ ⊥ infinite, and satisfying the parity
constraint. If K is a finite directed graph in which ⊥ gives an equivalence relation, and
one of the following applies, then K embeds into Γ.

(1.n) K = T ∪ I with T a tournament of order n and I a ⊥-class disjoint from T .
(2.n) K obeys the parity constraint and |K/⊥| = n.

Proof.

Claim 1. Condition (1.n) implies condition (2.(n+ 1)).
As we have the parity constraint in Γ, this is immediate: in (2.(n + 1)), amalgamating

the factors of K with a unique nontrivial ⊥-class can only give K.
It suffices therefore to prove condition (1.n) for all n, and for this we proceed inductively.

More precisely, we prove for each n, that for all Γ satisfying our hypotheses, condition (1.n)
holds.

If n = 1, then Lemma 5.2 suffices.
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We now suppose n > 1 and assume condition (1.(n− 1)) and hence also (2.n). We have
K = T ∪ I with |T | = n and I a ⊥-class disjoint from the ⊥-classes of T .

We fix two points u, v ∈ T and let A = K \ {u, v}. Let p, q be the desired types of u
over u over A and of v over A, respectively. Let B = A1 ∪ A2 be the union of two copies
of A, arranged so that corresponding elements of A1, A2 are in the same ⊥-class, and B
satisfies the parity constraint. Let pq denote the type over B given by p on A1 and q on
A2, and define qp similarly. Adjoin two more vertices x, y to one of the ⊥-classes of B so
that Bxy satisfies the parity constraint, and extend pq, qp to types r1, r2 over Bxy which
cannot be realized in a single ⊥-class under the parity constraint.

By condition (2.n), the types r1 and r2 are realized in Γ, and hence for any embedding
of Bxy into Γ, there are realizations a1, a2 of r1, r2 in Γ over Bxy. By the choice of r1, r2
they lie in distinct ⊥-classes, that is a1 → a2 or a2 → a1. Then correspondingly either
A1a1a2 or A2a1a2 is a realization of K. �

6. The case of ∞∗ I∞
We will treat the final case in a similar but more elaborate fashion. Our goal is the

following.

Proposition 6.1. Let Γ be a homogeneous directed graph in which ⊥ gives an equivalence
relation with infinitely many infinite classes, and suppose that Γ does not satisfy the parity
constraint (in particular, Γ is not a wreath product). Then Γ ∼=∞∗ I∞.

We record the contents of Lemmas 5.2 and 5.3 for the case at hand.

Lemma 6.2. Let Γ be a homogeneous directed graph in which ⊥ gives an equivalence
relation with infinitely many infinite classes, and suppose that Γ does not satisfy the parity
constraint. Then for x ∈ Γ, x′ is a homogeneous directed graph on which ⊥ is an equivalence
relation with infinitely many classes, each infinite, and is not a wreath product.

The proof of the proposition will be based on the following notions.

Definition 6.3. If A is an amalgamation class of finite directed graphs in which ⊥ defines
an equivalence relation, let A∗ be the class of all finite directed graphs K such that an
arbitrary extension K ∪ I of K with I an additional ⊥-class will belong to A.

Definition 6.4. An amalgamation class A of finite directed graphs in which ⊥ gives an
equivalence relation will be called robust iff it satisfies the following conditions.

• An independent set In on n vertices belongs to A for all n.
• A linearly ordered tournament Ln on n vertices belongs to A for all n.
• Some A ∈ A violates the parity constraint.

The latter condition can be expressed more concretely by saying that A contains the
particular directed graph O = C1 ∪ C2 on four vertices pictured below, consisting of two
⊥-classes C1, C2 of order 2 with three arcs in one direction and one in the reverse direction.
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This allows us to state the main point in the proof of Proposition 6.1 very concisely.

Lemma 6.5. Let A be a robust amalgamation class of finite directed graphs on which ⊥
is an equivalence relation. Then A∗ is also a robust amalgamation class.

We first deduce the proposition from the lemma, and then prove the lemma.

Proof of Proposition 6.1. It suffices to show that any finite directed graph K on which ⊥ is
an equivalence relation belongs to the amalgamation class A associated with Γ. We prove
this for all such Γ simultaneously, by induction on the number n of ⊥-classes in K. If there
is only one ⊥-class the claim is obvious, so we suppose n > 1. We write

K = J ∪ I

with I one of the ⊥-classes in K.
By Lemma 6.5 the associated amalgamation class A∗ is robust, so the induction hypoth-

esis applies, and J ∈ A∗. By the definition of A∗, we have K ∈ A. �

Proof of Lemma 6.5. For terminological convenience we refer both to the amalgamation
class A and the corresponding homogeneous directed graph Γ below.

That A∗ is an amalgamation class follows on purely formal grounds. If J1, J2 ∈ A∗ but
no amalgam J of J1, J2 lies in A∗, then for each such amalgam J = J1 ∪ J2 there is an
extension KJ = J ∪ IJ of the specified form which is not in A. Letting I = ∪JIJ we then
have J1 ∪ I, J2 ∪ I ∈ A by hypothesis, and hence some amalgam J ∪ I of the two also
belongs to A. But as I contains IJ , this gives a contradiction.

So the main point is to check is that tournaments of the forms J = In, Ln, or O all
belong to A∗. We begin with some considerations that apply equally well in all three cases.

We consider an extension K = J ∪ I of J by an additional ⊥-class I. The claim is that
K lies in A. If |I| ≥ 3 and I realizes at least two distinct types over J , then we can write
K as K1 ∪K2 with K1 = J ∪ I1, K2 = J ∪ I2, satisfying the following conditions.

• |I1 ∩ I2| = 1.
• |I1|, |I2| > 1.
• No points in I1 \ I2 and I2 \ I1 realize the same type over J .

Then K is the unique amalgam of K1,K2 over their common part, so if K1,K2 ∈ A we
get K ∈ A as well.

Thus it remains to consider two cases.

(1) I is indiscernible over J .
(2) |I| = 2.

Our treatment of these cases will be built up gradually.
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Claim 1. For x ∈ Γ, O embeds into x′.

We assume the contrary, toward a contradiction. Then by Lemma 6.2 and Proposition
5.1, x′ is isomorphic to the semi-generic imprimitive directed graph. That is, any finite
directed graph in which ⊥ gives an equivalence relation and the parity constraint is satisfied
must embed into x′, and, in particular, into Γ.

We make a direct construction. First form the following amalgamation diagram.

Both factors of this diagram embed into Γ since the one omitting y satisfies the parity
constraint, and the one omitting x is O. So there is an amalgam in Γ in which there is an
arc connecting x and y. Since we have ruled out x → y by hypothesis, we conclude that
y → x in the amalgam.

We have marked an additional vertex a because we next amalgamate this configuration
with a similar configuration containing a vertex b in place of a, as shown.

This second configuration satisfies the parity constraint, so embeds into Γ.
Now we amalgamate the two factors shown, that is we determine the type of the pair

(a, b). Evidently we must have a ⊥ b. So omitting y, we have x→ O.
This proves the claim.
Note that in what follows we can no longer assume that every finite directed graph on

which ⊥ gives an equivalence relation, and which respects the parity constraint, necessarily
embeds into Γ, as this followed only when we assumed that x′ does not contain O.

Claim 2. If K is a finite directed graph on which ⊥ is an equivalence relation with two
classes, then K embeds in Γ.

Let K consist of the two ⊥-classes I, J . Extending J if necessary, we may suppose that
all elements of I realize distinct types over J . Then we can easily reduce to the case |I| = 2.

Similarly, with |I| = 2, we can reduce to the following two cases.

(1) |I| = |J | = 2.
(2) |I| = 2, J is indiscernible over I.
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If |I| = |J | = 2 and the parity constraint is not satisfied by K, then K ∼= O which
embeds in Γ by assumption.

If the parity constraint is satisfied, and I realizes distinct types over J , then we add an
additional point a to I and express K as the union of two copies of O containing {a} ∪ J .
This can be viewed as an amalgamation diagram with unique solution K.

There remains the case in which |I| = |J | = 2 and I → J . If this does not embed in
Γ, then any two vertices a1, a2 in one ⊥-class have at most one common neighbor in the
other.

Take two ⊥-classes C1, C2, a1, a2, a3 ∈ C1 distinct, and let J = a′1 ∩C2. By Lemma 5.2,
J is infinite. Then a′2, a

′
3 meet J in at most 1 vertex each. Take a pair b1, b2 ∈ J \ (a′2∪a′3).

Then a1, a2 ∈ {b1, b2}′, a contradiction.
This disposes of all cases in which |I| = |J | = 2.
Now fix ⊥-classes C1, C2, take a ∈ C1, and set A = a⊥ = C1 \ {a}, B = a′ ∩ C2. The

structure (A,B), in which A and B are named and the relation → between A and B is
given, is a homogeneous structure. It may be viewed as a bipartite graph with the two
sides distinguished, taking the relation → from A to B as the edge relation, and ← as the
non-edge relation. Then up to bipartite complementation—or in therms of the digraph,
up to orientation—(A,B) is either complete, a perfect matching, or generic [5].

By what we have already proved in the case |I = |J | = 2, (A,B) is neither complete nor
a perfect matching. Hence (A,B) is generic, and the claim follows.

Claim 3. Every configuration K = xLI of the following form embeds into Γ.

• L ∼= Ln with first element a.
• x ⊥ a, x→ LI \ {a}.
• I is a ⊥-class not meeting the ⊥-classes of L.

If |L| = 1 this is covered by Claim 2. In general we proceed by induction on n = |L|.
We make an amalgamation of the form xLI1I2 where for a, b the first two elements of

L, the type of (a, b) remains to be determined, and where I1, I2 are copies of I chosen so
that either xLI1 or xLI2 will be an isomorphic copy of xLI once the orientation of the arc
(a, b) is chosen. Thus I1 realizes the type of I over xL, and I2 realize the type resulting
when the parameters a, b are switched.

The parameter x ensures that there is an arc between a and b. Since the completed
amalgam must contain the desired configuration, it suffices now to check that the factors
of this amalgamation obtained by omitting a or b embed into Γ.

For the factor omitting b, this holds by induction hypothesis.
For the factor omitting a, we note that x→ LI1I2 \ {a} and thus it suffices to find the

factor (L \ {a})I1I2 in x′; this is given by the induction hypothesis applied within x′.

Claim 4. In, Ln ∈ A∗ for all n.

Claim 2 covers In and Claim 3 covers Ln, dropping the parameter x.

Claim 5. The configuration A = (a1, a2, b) with a1 ⊥ a2 and a1 → b→ a2 belongs to A∗.
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Consider K = A ∪ I with I an additional ⊥-class. We must embed K in Γ.
We form an amalgamation (a1aa2, b, xI1I2) with three ⊥-classes a1aa2, b, and xI1I2,

leaving the type (a, b) to be determined by the amalgam in such a way that an arc b →
a makes a1baI1 isomorphic to K, while an arc a → b makes aba2I2 isomorphic to K.
Furthermore, we take a1aa2b→ x.

Since any completion of the amalgamation diagram described must contain a copy of K,
it must be shown that suitable factors embed into Γ.

Our specifications determine the type of a1 over I1, a2 over I2, and b over both I1 and
I2, but leave open the type of a1 over I2 and a2 over I1. We will take advantage of the
latitude this affords.

The factor omitting b embeds in Γ by Claim 2, regardless of how the unspecified types
are filled in. So the task is to embed some form of the factor omitting a into Γ.

We may view this as an amalgamation diagram in which the type of a2 over I1 is to be
determined. Our only constraint here is that a2 and I1 should lie in different ⊥-classes,
and this is satisfied in any amalgam. So it suffices to embed the factors omitting a2 or I1
into Γ.
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The factor omitting a2 is an extension of a1b ∼= L2 by I1I2, and is available since L2 ∈ A∗.
So we come down to the factor omitting I1, or rather any form of that factor in which

I2 occupies a third ⊥-class.

Here the type of a1 over I2 may be anything, so we treat this configuration again as an
amalgamation in which that type is to be determined; the parameter a2 ensures a1 6⊥ I2.

So we again pass to the factors of the diagram displayed. As before, the factor omitting
a1 is available since L2 ∈ A∗, whatever its precise form. And the factor omitting I2 is
available since Γ contains O.

Claim 6. O belongs to A∗.
We consider the homogeneous directed graph Γ∗ corresponding to the amalgamation

class A∗ ⊆ A. Here ⊥ is an equivalence relation with infinitely many infinite classes, and
by the previous claim, Γ∗ is not a wreath product. So if O does not embed in Γ∗ we are
left with one possibility.

• Γ∗ is semi-generic.

Thus any finite configuration satisfying the parity constraint will embed into Γ∗.
We now consider a configuration K = O ∪ I with I an additional ⊥-class.

As usual we may reduce to the case in which I is either indiscernible over O or of order
2.

If I∪{a1, a2} or I∪{b1, b2} respects the parity constraint then that configuration embeds
in Γ∗ and hence belongs to A∗, which implies that the full configuration K = OI belongs
to A, as required.

This holds in particular if I is indiscernible over O. So we come down to the following
case.
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• |I| = 2; and
• I ∪ {a1, a2}, I ∪ {b1, b2} ∼= O.

In this case, if I = {c1, c2}, add a third point c to I and treat OIc as the unique amalgam
of Oc1c and Oc2c. Here we need only choose c so that the factors omitting c1, c2 both embed
in Γ, and for this it suffices to ensure that {a1, a2}∪{c1, c} and {b1, b2}∪{c2, c} both obey
the parity constraint, which we may achieve by choosing the type of c appropriately.

The proof of the lemma is now complete. We dealt with In and Ln in Claim 4, and we
just dealt with O.

�

As we have seen, Proposition 6.1 follows from Lemma 6.5, and this completes the proof
of Theorem 1.
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Beweisbarkeit mathematicshen Sätze nebst einem Theorem über dichted Mengen,” Skriften
Vitenskasakad Krisitana 4 (1920), 1–36, §4.


