TWO CARDINAL PROPERTIES OF HOMOGENEOUS GRAPHS

GREGORY CHERLIN AND SIMON THOMAS

ABSTRACT. We analyze the two cardinal properties of definable sets in homogeneous graphs.

1. INTRODUCTION

A graph is homogeneous in Fraïssé's sense if any isomorphism between finite induced subgraphs extends to an automorphism [Fr, Ho]. The countable homogeneous graphs have been classified [LW], and the typical examples are the classical Rado graph, which is the graph on a countable set of vertices which is obtained up to isomorphism with probability one by choosing edges randomly and independently with probability 1/2, and the analogous "generic" K_n -free graph, the unique homogeneous countable graph containing no *n*-clique, and embedding every finite K_n -free graph as an induced subgraph. There are also some finite examples and some whose connected components are complete; furthermore, the complement of a homogeneous graph is also homogeneous.

J. Burdges and S. Warner raised the question of the 2-cardinal properties of the Rado graph. Given a first order formula $\phi(x, \mathbf{y})$ and a structure \mathcal{M} , the 2-cardinal spectrum of ϕ relative to \mathcal{M} , denoted Spec (ϕ, \mathcal{M}) , is defined as the set of all pairs (κ, λ) of infinite cardinals such that:

There is a structure $\mathcal{M}^* \cong \mathcal{M}$ of cardinality λ , and a choice of parameters **b** in \mathcal{M}^* , so that the set defined by $\phi(x, \mathbf{b})$ in \mathcal{M}^* has cardinality κ .

Taking \mathcal{M} to be the Rado graph or the generic K_n -free graphs, and the formula $\phi(x, \mathbf{y})$ to be the edge relation E(x, y), or its complement $\neg E(x, y)$, we determine the 2-cardinal spectra explicitly:

Theorem 1. If G is the Rado graph or the generic K_n -free graph, and if $\kappa \leq \lambda$ are infinite cardinals, then the following are equivalent: 1. $\lambda \leq 2^{\kappa}$; 2. There is a graph G^* elementarily equivalent to G of cardinality λ , and a vertex $v \in V(G^*)$ for which $|\Delta(v)| = \kappa$;

3. There is a graph G^* elementarily equivalent to G of cardinality λ , and a vertex $v \in V(G^*)$ for which $|\Delta'(v)| = \kappa$.

Here $\Delta(v)$ denotes the set of neighbors of v in the graph G^* , and $\Delta'(v)$ is its complement.

The notion of elementary equivalence can be decoded into explicit graph theoretic language:

Fact 1.1. 1. A graph G is elementarily equivalent to the Rado graph if and only if it satisfies the following extension property P_k for each k: (P_k) For $C \subseteq V(G)$ with |C| = k and for $C' \subseteq C$, there is $v \in V(G) \setminus C$ with $\Delta(v) \cap C = C'$

2. A K_n -free graph G is elementarily equivalent to the generic K_n -free graph if and only if it satisfies the following extension property P_k^n for each k:

 (P_k^n) For $C \subseteq V(G)$ with |C| = k and for $C' \subseteq C$, if the induced graph on C' is K_{n-1} -free, then there is $v \in V(G) \setminus C$ with $\Delta(v) \cap C = C'$

This is easily seen on the basis of the general theory [Ho]. On the basis of this theory, our theorem above, and the classification in [LW], one can determine the 2-cardinal spectra of arbitrary formulas in arbitrary homogeneous graphs.¹ On the other hand the 2-cardinal properties of homogeneous structures in general remain open, even in the case of binary relational languages.

The theorem will be proved by a construction which is based on a standard construction of 2^{κ} independent subsets of a set of cardinality κ [Ku, p. 288].

2. The construction

Proposition 2.1. Let G be the Rado graph or the generic K_n -free graph with $n \ge 3$, and κ an infinite cardinal. Then there is a graph G^* elementarily equivalent to G with the following properties

1. $V(G^*) = V_0 \cup V_1$, a disjoint union, with $|V_0| = \kappa$ and $|V_1| = 2^{\kappa}$;

2. V_1 is an independent set of vertices;

3. There is a vertex $v_* \in V_0$ with $|\Delta(v_*)| = 2^{\kappa}$.

4. For each vertex $v \in V(G^*)$ we have $|\Delta(v) \cap V_0| = |\Delta'(v) \cap V_0| = \kappa$.

5. For any set of vertices $V \subseteq V(G^*)$ containing V_0 , the restriction of G^* to V is elementarily equivalent to G.

Before entering into the construction, let us check that this implies the main theorem.

¹Erraturm. This is overstated. See [Ack].

Corollary 2.2. Let G be the Rado graph or the generic K_n -free graph with $n \geq 3$, and κ an infinite cardinal. Then there are graphs G', G'' elementarily equivalent to G of cardinality 2^{κ} containing vertices v' and v'' respectively such that:

$$|\Delta(v')| = \kappa; \quad |V(G'') \setminus \Delta(v'')| = \kappa$$

Proof. : We may take $G' = G^*$ as in the Proposition, with v' any vertex in V_1 . For the graph G'' we take $v'' = v_* \in V(G^*)$ as in the Proposition, and let G'' be the subgraph of G^* induced on $V_0 \cup \Delta(v_*)$.

Thus in the cases of interest to us we find that Spec (ϕ, G) contains $(\kappa, 2^{\kappa})$ for all κ , and hence on general principles contains (κ, λ) for all $\kappa \leq \lambda \leq 2^{\kappa}$. The only other point that needs to be made is the following: if G is the Rado graph or the generic K_n -free graph, and if v is a vertex of G for which either $\Delta(v)$ or its complement has cardinality κ , then $|V(G)| \leq 2^{\kappa}$. Consider for example the case in which $|\Delta(v)| = \kappa$. Then for $w_1, w_2 \notin \Delta(v)$ we will have $\Delta(v) \cap \Delta(w_1) \neq \Delta(v) \cap \Delta(w_2)$, using the appropriate 3-extension property P_3 or P_3^n . Thus $|V(G) \setminus \Delta(v)| \leq 2^{\kappa}$.

Thus our main Theorem follows directly from the Proposition. For the proof of the Proposition we now make an explicit construction modeled on the method described in [Ku, p. 288]. We shall suppose that G is the generic K_n -free graph with $n \ge 3$; the case of the Rado graph is simpler.

Let I be the set of all functions with domain a finite subset of κ and with range contained in $\{0, 1\}$. Let V_0 be the set of finite subsets of I. Thus $|V_0| = \kappa$. Let $V_1 = 2^{\kappa}$, the set of all functions from κ to $\{0, 1\}$. Let \mathcal{U} be the set of all quadruples of the form U = (A, A', X, F)with $A \subseteq V_0$ finite, $A' \subseteq A$, $X \subseteq \kappa$ finite, and $F \subseteq 2^X$. Order V_0 with order type κ , and choose distinct vertices $v_U \in V_0$ with the following properties for $U \in \mathcal{U}$:

(i) There is a finite set $Y \supseteq X$ such that $v_U = \{f \in 2^Y : f \upharpoonright X \in F\}$. (ii) $v_U > \sup A$.

Now we impose an edge relation on $V_0 \cup V_1$ in which every edge involves at least one of the vertices v_U for some $U \in \mathcal{U}$. The definition is by induction on the well ordered set $\{v_U : U \in \mathcal{U}\}$, beginning with an empty edge relation. Let $v_U^{\leq} = \{v \in V_0 : v < v_U\}$. At each stage we will specify $\Delta(v_U) \cap (v_U^{\leq} \cup V_1)$.

For a fixed U = (A, A', X, F), as $\sup A < v_U$ the induced graph on $A \cup V_1$ is determined. If A' contains a clique of order n-1 then take $\Delta(v_U) \cap (v_U^{\leq} \cup V_1) = \emptyset$. If A' is K_{n-1} -free then we take $\Delta(v_U) \cap v_U^{\leq} = A'$, and for $f \in V_1$, we take $f \in \Delta(v_U)$ if and only if (a) $\exists Y f \upharpoonright Y \in v_U$, or equivalently, $f \upharpoonright X \in F$; and

(b) $\{f\} \cup A'$ contains no clique of order n-1.

This completes the construction of the graph G^* . Let v_* be the first vertex in V_0 of the form v_U for some $U = (A, A', X, F) \in \mathcal{U}$. We may assume that the set F is nonempty. Then $v_* \cup V_1$ is an independent set of vertices, so $\Delta(v_*) \cap V_1$ is $\{f \in V_1 : f \upharpoonright X \in F\}$, a set of cardinality 2^{κ} .

The rest of (1-4) is clear. It remains to check that the restriction of G^* to any set V with $V_0 \subseteq V \subseteq V(G^*)$ is elementarily equivalent to the specified graph G, or in other words that G^* is K_n -free and satisfies the extension properties P_k^n for all k, with witnesses to the extension properties taken in V_0 .

If $C \subseteq V(G^*)$ is an *n*-clique and $v = \max(C \cap V_0)$, then $v = v_U$ for some $U \in \mathcal{U}$, say U = (A, A', X, F), and then $(C \cap V_0) \setminus \{v_U\} \subseteq A'$, while $|C \cap V_1| \leq 1$. Thus the precautions taken in the construction will ensure that G^* is K_n -free.

Now suppose $C \subseteq V(G^*)$ is finite, $C' \subseteq C$, and C' contains no (n-1)clique. Let $A = C \cap V_0$, $A' = C' \cap V_0$, $B = C \cap V_1$, and $B' = C' \cap V_1$, and choose $X \subseteq \kappa$ finite so that the functions $f \upharpoonright X$ for $f \in B$ are distinct. Let $F = \{f \upharpoonright X : f \in B'\}$ and U = (A, A', X, F). Then $\Delta(v_U) \cap C = C'$, and $v_U \in V_0$.

References

- [Ack] N. L. Ackerman, "On n-cardinal spectra of ultrahomogeneous theories," ca. 2013, Prprint, https://people.math.harvard.edu/~nate/papers/ index.html.
- [Fr] R. Fraïssé, "Sur l'extension aux relations de quelques propriétés des ordres," Ann. Ecole Norm. Sup. 7 (1954), 361-388.
- [Ho] W. Hodges, Model Theory, Cambridge University Press, Encylopedia of Mathematics and its Applications 42, 1993.
- [Ku] K. Kunen, Set Theory: An Introduction to Independence Proofs, Studies in Logic 102, North Holland, Amsterdam, 1988.
- [LW] A. Lachlan and R. Woodrow, "Countable ultrahomogeneous undirected graphs," Trans. Amer. Math. Soc. 262 (1980), 51-94.

RUTGERS UNIVERSITY