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Abstract. We analyze the two cardinal properties of definable
sets in homogeneous graphs.

1. Introduction

A graph is homogeneous in Fräıssé’s sense if any isomorphism be-
tween finite induced subgraphs extends to an automorphism [Fr, Ho].
The countable homogeneous graphs have been classified [LW], and the
typical examples are the classical Rado graph, which is the graph on
a countable set of vertices which is obtained up to isomorphism with
probability one by choosing edges randomly and independently with
probability 1/2, and the analogous “generic” Kn-free graph, the unique
homogeneous countable graph containing no n-clique, and embedding
every finite Kn-free graph as an induced subgraph. There are also some
finite examples and some whose connected components are complete;
furthermore, the complement of a homogeneous graph is also homoge-
neous.
J. Burdges and S. Warner raised the question of the 2-cardinal prop-

erties of the Rado graph. Given a first order formula ϕ(x,y) and a
structure M, the 2-cardinal spectrum of ϕ relative to M, denoted
Spec (ϕ,M), is defined as the set of all pairs (κ, λ) of infinite cardi-
nals such that:

There is a structure M∗ ∼= M of cardinality λ, and a
choice of parameters b in M∗, so that the set defined by
ϕ(x,b) in M∗ has cardinality κ.

Taking M to be the Rado graph or the generic Kn-free graphs, and
the formula ϕ(x,y) to be the edge relation E(x, y), or its complement
¬E(x, y), we determine the 2-cardinal spectra explicitly:

Theorem 1. If G is the Rado graph or the generic Kn-free graph, and
if κ ≤ λ are infinite cardinals, then the following are equivalent:
1. λ ≤ 2κ;
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2. There is a graph G∗ elementarily equivalent to G of cardinality λ,
and a vertex v ∈ V (G∗) for which |∆(v)| = κ;
3. There is a graph G∗ elementarily equivalent to G of cardinality λ,
and a vertex v ∈ V (G∗) for which |∆′(v)| = κ.

Here ∆(v) denotes the set of neighbors of v in the graph G∗, and
∆′(v) is its complement.

The notion of elementary equivalence can be decoded into explicit
graph theoretic language:

Fact 1.1. 1. A graph G is elementarily equivalent to the Rado graph if
and only if it satisfies the following extension property Pk for each k:
(Pk)For C ⊆ V (G) with |C| = k and for C ′ ⊆ C, there is v ∈ V (G)\C
with ∆(v) ∩ C = C ′

2. A Kn-free graph G is elementarily equivalent to the generic Kn-
free graph if and only if it satisfies the following extension property P n

k

for each k:
(P n

k )For C ⊆ V (G) with |C| = k and for C ′ ⊆ C, if the induced graph
on C ′ is Kn−1-free, then there is v ∈ V (G) \ C with ∆(v) ∩ C = C ′

This is easily seen on the basis of the general theory [Ho]. On the basis
of this theory, our theorem above, and the classification in [LW], one
can determine the 2-cardinal spectra of arbitrary formulas in arbitrary
homogeneous graphs.1 On the other hand the 2-cardinal properties of
homogeneous structures in general remain open, even in the case of
binary relational languages.
The theorem will be proved by a construction which is based on a

standard construction of 2κ independent subsets of a set of cardinality
κ [Ku, p. 288].

2. The construction

Proposition 2.1. Let G be the Rado graph or the generic Kn-free
graph with n ≥ 3, and κ an infinite cardinal. Then there is a graph G∗

elementarily equivalent to G with the following properties
1. V (G∗) = V0 ∪ V1, a disjoint union, with |V0| = κ and |V1| = 2κ;
2. V1 is an independent set of vertices;
3. There is a vertex v∗ ∈ V0 with |∆(v∗)| = 2κ.
4. For each vertex v ∈ V (G∗) we have |∆(v) ∩ V0| = |∆′(v) ∩ V0| = κ.
5. For any set of vertices V ⊆ V (G∗) containing V0, the restriction of
G∗ to V is elementarily equivalent to G.

Before entering into the construction, let us check that this implies
the main theorem.

1Erraturm. This is overstated. See [Ack].
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Corollary 2.2. Let G be the Rado graph or the generic Kn-free graph
with n ≥ 3, and κ an infinite cardinal. Then there are graphs G′, G′′

elementarily equivalent to G of cardinality 2κ containing vertices v′ and
v′′ respectively such that:

|∆(v′)| = κ; |V (G′′) \∆(v′′)| = κ

Proof. : We may take G′ = G∗ as in the Proposition, with v′ any vertex
in V1. For the graph G′′ we take v′′ = v∗ ∈ V (G∗) as in the Proposition,
and let G′′ be the subgraph of G∗ induced on V0 ∪∆(v∗). □

Thus in the cases of interest to us we find that Spec (ϕ,G) contains
(κ, 2κ) for all κ, and hence on general principles contains (κ, λ) for all
κ ≤ λ ≤ 2κ. The only other point that needs to be made is the following:
if G is the Rado graph or the generic Kn-free graph, and if v is a vertex
of G for which either ∆(v) or its complement has cardinality κ, then
|V (G)| ≤ 2κ. Consider for example the case in which |∆(v)| = κ. Then
for w1, w2 /∈ ∆(v) we will have ∆(v)∩∆(w1) ̸= ∆(v)∩∆(w2), using the
appropriate 3-extension property P3 or P n

3 . Thus |V (G) \∆(v)| ≤ 2κ.
Thus our main Theorem follows directly from the Proposition. For

the proof of the Proposition we now make an explicit construction
modeled on the method described in [Ku, p. 288]. We shall suppose
that G is the generic Kn-free graph with n ≥ 3; the case of the Rado
graph is simpler.

Let I be the set of all functions with domain a finite subset of κ
and with range contained in {0, 1}. Let V0 be the set of finite subsets
of I. Thus |V0| = κ. Let V1 = 2κ, the set of all functions from κ to
{0, 1}. Let U be the set of all quadruples of the form U = (A,A′, X, F )
with A ⊆ V0 finite, A′ ⊆ A, X ⊆ κ finite, and F ⊆ 2X . Order V0 with
order type κ, and choose distinct vertices vU ∈ V0 with the following
properties for U ∈ U :
(i) There is a finite set Y ⊇ X such that vU = {f ∈ 2Y : f ↾ X ∈ F}.
(ii) vU > sup A.

Now we impose an edge relation on V0 ∪ V1 in which every edge
involves at least one of the vertices vU for some U ∈ U . The definition
is by induction on the well ordered set {vU : U ∈ U}, beginning with
an empty edge relation. Let v<U = {v ∈ V0 : v < vU}. At each stage we
will specify ∆(vU) ∩ (v<U ∪ V1).

For a fixed U = (A,A′, X, F ), as sup A < vU the induced graph on
A ∪ V1 is determined. If A′ contains a clique of order n − 1 then take
∆(vU)∩ (v<U ∪V1) = ∅. If A′ is Kn−1-free then we take ∆(vU)∩v<U = A′,
and for f ∈ V1, we take f ∈ ∆(vU) if and only if
(a) ∃Y f ↾ Y ∈ vU , or equivalently, f ↾ X ∈ F ; and
(b) {f} ∪ A′ contains no clique of order n− 1.
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This completes the construction of the graph G∗. Let v∗ be the first
vertex in V0 of the form vU for some U = (A,A′, X, F ) ∈ U . We may
assume that the set F is nonempty. Then v<∗ ∪V1 is an independent set
of vertices, so ∆(v∗) ∩ V1 is {f ∈ V1 : f ↾ X ∈ F}, a set of cardinality
2κ.

The rest of (1–4) is clear. It remains to check that the restriction of
G∗ to any set V with V0 ⊆ V ⊆ V (G∗) is elementarily equivalent to
the specified graph G, or in other words that G∗ is Kn-free and satisfies
the extension properties P n

k for all k, with witnesses to the extension
properties taken in V0.

If C ⊆ V (G∗) is an n-clique and v = max(C ∩ V0), then v = vU for
some U ∈ U , say U = (A,A′, X, F ), and then (C ∩ V0) \ {vU} ⊆ A′,
while |C ∩V1| ≤ 1. Thus the precautions taken in the construction will
ensure that G∗ is Kn-free.

Now suppose C ⊆ V (G∗) is finite, C ′ ⊆ C, and C ′ contains no (n−1)-
clique. Let A = C ∩ V0, A

′ = C ′ ∩ V0, B = C ∩ V1, and B′ = C ′ ∩ V1,
and choose X ⊆ κ finite so that the functions f ↾ X for f ∈ B are
distinct. Let F = {f ↾ X : f ∈ B′} and U = (A,A′, X, F ). Then
∆(vU) ∩ C = C ′, and vU ∈ V0. □
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