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ABSTRACT. We analyze the two cardinal properties of definable
sets in homogeneous graphs.

1. INTRODUCTION

A graph is homogeneous in Fraissé’s sense if any isomorphism be-
tween finite induced subgraphs extends to an automorphism [Erl [Hol.
The countable homogeneous graphs have been classified [LW], and the
typical examples are the classical Rado graph, which is the graph on
a countable set of vertices which is obtained up to isomorphism with
probability one by choosing edges randomly and independently with
probability 1/2, and the analogous “generic” K, -free graph, the unique
homogeneous countable graph containing no n-clique, and embedding
every finite K,,-free graph as an induced subgraph. There are also some
finite examples and some whose connected components are complete;
furthermore, the complement of a homogeneous graph is also homoge-
neous.

J. Burdges and S. Warner raised the question of the 2-cardinal prop-
erties of the Rado graph. Given a first order formula ¢(z,y) and a
structure M, the 2-cardinal spectrum of ¢ relative to M, denoted
Spec (¢, M), is defined as the set of all pairs (k,A) of infinite cardi-
nals such that:

There is a structure M* = M of cardinality A, and a
choice of parameters b in M*, so that the set defined by
¢(z,b) in M* has cardinality k.

Taking M to be the Rado graph or the generic K,-free graphs, and
the formula ¢(z,y) to be the edge relation E(x,y), or its complement
—FE(z,y), we determine the 2-cardinal spectra explicitly:

Theorem 1. If G is the Rado graph or the generic K, -free graph, and
if kK < X\ are infinite cardinals, then the following are equivalent:
1. A <25
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2. There is a graph G* elementarily equivalent to G of cardinality X,
and a vertex v € V(G*) for which |A(v)| = k;
3. There is a graph G* elementarily equivalent to G of cardinality \,
and a vertex v € V(G*) for which |A'(v)| = k.

Here A(v) denotes the set of neighbors of v in the graph G*, and
A'(v) is its complement.

The notion of elementary equivalence can be decoded into explicit
graph theoretic language:

Fact 1.1. 1. A graph G is elementarily equivalent to the Rado graph if
and only if it satisfies the following extension property Py for each k:
(P )For C C V(G) with |C| =k and for C' C C, there isv € V(G)\ C
with A(v) N C =’

2. A K,-free graph G is elementarily equivalent to the generic K, -
free graph if and only if it satisfies the following extension property P}
for each k:

(P )For C C V(G) with |C| =k and for C' C C, if the induced graph
on C" is K, _1-free, then there is v € V(G) \ C with A(v)NC ="’

This is easily seen on the basis of the general theory [Ho|. On the basis
of this theory, our theorem above, and the classification in [LW], one
can determine the 2-cardinal spectra of arbitrary formulas in arbitrary
homogeneous graphs.ﬂ On the other hand the 2-cardinal properties of
homogeneous structures in general remain open, even in the case of
binary relational languages.

The theorem will be proved by a construction which is based on a
standard construction of 2" independent subsets of a set of cardinality
x [Kul p. 288].

2. THE CONSTRUCTION

Proposition 2.1. Let G be the Rado graph or the generic K, -free
graph with n > 3, and k an infinite cardinal. Then there is a graph G*
elementarily equivalent to G with the following properties

1. V(G*) = Vo UV, a disjoint union, with |Vy| = k and |Vi| = 2%;

2. V1 s an independent set of vertices;

3. There is a vertex v, € Vo with |A(v,)| = 2.

4. For each vertex v € V(G*) we have |A(v) NVy| = |A'(v) N Vo| = k.

5. For any set of vertices V- C V(G*) containing Vy, the restriction of
G* to V is elementarily equivalent to G.

Before entering into the construction, let us check that this implies
the main theorem.

L Brraturm. This is overstated. See [Ack].
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Corollary 2.2. Let G be the Rado graph or the generic K, -free graph
with n > 3, and k an infinite cardinal. Then there are graphs G', G”
elementarily equivalent to G of cardinality 2" containing vertices v’ and
V" respectively such that:

AW =r;  VIG)\AW)] =~

Proof. : We may take G' = G* as in the Proposition, with v" any vertex
in V;. For the graph G” we take v" = v, € V(G*) as in the Proposition,
and let G” be the subgraph of G* induced on V5 U A(v,). O

Thus in the cases of interest to us we find that Spec (¢, G) contains
(k,2%) for all k, and hence on general principles contains (k, A) for all
k < A < 2. The only other point that needs to be made is the following;:
if G is the Rado graph or the generic K,,-free graph, and if v is a vertex
of G for which either A(v) or its complement has cardinality , then
|V(G)| < 2%. Consider for example the case in which |A(v)| = k. Then
for wy, wy ¢ A(v) we will have A(v)NA(wy) # A(v)NA(ws), using the
appropriate 3-extension property P; or Pi'. Thus |[V(G) \ A(v)| < 2%.

Thus our main Theorem follows directly from the Proposition. For
the proof of the Proposition we now make an explicit construction
modeled on the method described in [Kul, p. 288]. We shall suppose
that G is the generic K,-free graph with n > 3; the case of the Rado
graph is simpler.

Let I be the set of all functions with domain a finite subset of k
and with range contained in {0, 1}. Let V4 be the set of finite subsets
of I. Thus |Vo| = k. Let V; = 2%, the set of all functions from « to
{0,1}. Let U be the set of all quadruples of the form U = (A, A", X, F)
with A C V} finite, A’ C A, X C & finite, and F C 2X. Order Vj with
order type k, and choose distinct vertices vy € Vy with the following
properties for U € U:

() There is a finite set Y 2O X such that vy = {f €2¥ : f | X € F}.
(1) vy > sup A.

Now we impose an edge relation on V) U V; in which every edge
involves at least one of the vertices vy for some U € . The definition
is by induction on the well ordered set {vy : U € U}, beginning with
an empty edge relation. Let v = {v € Vy : v < vy}. At each stage we
will specify A(vy) N (v U ).

For a fixed U = (A, A", X, F), as sup A < vy the induced graph on
AUV is determined. If A’ contains a clique of order n — 1 then take
Avy)N (v UVy) = 0. If A’ is K,,_y-free then we take A(vy) Nvg = A4/,
and for f € V;, we take f € A(vy) if and only if
(a) IY f Y € vy, or equivalently, f | X € F; and
(b) {f} U A’ contains no clique of order n — 1.
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This completes the construction of the graph G*. Let v, be the first
vertex in Vp of the form vy for some U = (A, A", X, F) € U. We may
assume that the set F is nonempty. Then v U V] is an independent set
of vertices, so A(v,) N Vi is {f € Vi : f | X € F}, a set of cardinality
2",

The rest of (1-4) is clear. It remains to check that the restriction of
G* to any set V with 1y C V' C V(G*) is elementarily equivalent to
the specified graph G, or in other words that G* is K,,-free and satisfies
the extension properties P} for all k, with witnesses to the extension
properties taken in Vj.

If C C V(G*) is an n-clique and v = max(C N V), then v = vy for
some U € U, say U = (A, A", X, F), and then (C NVy) \ {vy} C A,
while |C'NV;| < 1. Thus the precautions taken in the construction will
ensure that G* is K,,-free.

Now suppose C' C V(G*) is finite, C' C C, and C” contains no (n—1)-
clique. Let A=CnNnVy, A=C"NnVy, B=CnNnV,,and B'=C'"NnVj,
and choose X C k finite so that the functions f [ X for f € B are
distinct. Let F = {f | X : f € B'} and U = (A, A", X, F). Then
A(vg)NC =", and vy € V4. O
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