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Abstract. For every finite m and n, there is a finite set of count-
able (m·Kn)-free graphs {G1, . . . , Gℓ} with the following property:
every countable (m·Kn)-free graph embeds as an induced subgraph
in at least one of the graphs Gi.

We make estimates of the sizes of such sets in various special
cases.
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1. Introduction

P. Komjáth and J. Pach [8] have defined the complexity of a class
Ω of graphs as the minimum cardinality κ such that there is a subset
Ω0 of Ω of cardinality κ which is cofinal in Ω, in the sense that every
graph G in Ω embeds as a subgraph in one of the graph in Ω0. We will
prove the following.

Theorem 1. If the graph G is a disjoint sum of complete graphs then
the class of countable graphs strongly omitting G has finite complexity.

This means that one can find finitely many countable graphsG1, . . . , Gk

in which the specified graph G does not embed as a subgraph, so that
any countable graph with the same property embeds into at least one
of the graphs Gi as an induced subgraph.

All graphs considered in this paper will countable (finite or countably
infinite), so we will drop explicit reference to the cardinality in the
following. If this constraint is relaxed, a range of other issues arise of a
more set theoretic character arise.

Many similar problems have been considered in the graph theoretic
literature, beginning with Rado’s observation (implicit also in work of
Fräıssé) that there is a graph containing an isomorphic copy of every
graph as an induced subgraph. Most results of this type concern classes
Ω of graphs which are determined by a bound κ on the number of ver-
tices (especially, κ = ℵ0, as here) and a class C of forbidden subgraphs.

As a rule the class C is taken to consist of connected graphs. Then
the corresponding class Ω is closed under the formation of countable
disjoint sums, and hence the complexity must be either uncountable or
1.

In such cases, the main question is whether the class Ω contains a
graph G which is universal for Ω. This may be understood in either
of two senses: G is universal in the ordinary sense if it embeds every
graph in Ω as a subgraph, and G is strongly universal if it embeds every
graph in Ω as an induced subgraph.

Some examples of classes Ω of graphs which do contain a strongly
universal member are the following: the class of graphs omitting a spe-
cific finite complete graph Kn [10]; the class of graphs omitting a path
of some specific length [9]; the class of graphs omitting all cycles of
odd length, up to some specified finite bound [10]; and the class of
graphs omitting all cycles of size at least n, for some specified n [10].
Similar classes which do not contain a universal member, even weakly
(and hence have uncountable complexity) are the following: the class of
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graphs which do not contain an infinite complete subgraph (the com-
plexity of this class is precisely ℵ1 [6, Theorem 7, taking κ = ℵ0]); the
class of planar graphs [11]; the class of locally finite graphs (N. G. de
Bruijn, reported in [12]); graphs omitting a cycle of size n (for n ≥ 4)
[2, 11], graphs which do not contain an infinite path [4]. We have also
shown [3] that the class of graphs omitting a fixed finite set of cycles
does not have a universal member unless the set of forbidden cycles is
of the type already considered in [9], consisting of all of the cycles of
odd length below some fixed bound.

At present there is no algorithm known for determining whether a
class of graphs determined by a finite set of forbidden finite connected
subgraphs has a universal member. When Ω is a class of graphs de-
termined by a collection C of forbidden subgraphs which are not all
connected, there tends to be no universal graph on trivial grounds: a
necessary condition for the existence of such a graph is the joint em-
bedding property: any two such graphs must embed jointly in a third.
(This is a weaker condition than closure under direct sums.)

Consider for example the class Ω of graphs which strongly omit the
disjoint sum K1 + K2 (an isolated vertex plus one edge). These are
the graphs with no edges, together with the graph K2, and so the
complexity of this class is 2.

The natural question in this setting, for sets of constraints not as-
sumed to be connected, would be whether the complexity is finite,
countably infinite, or uncountable. In general, asking for finite com-
plexity generalizes the universality problem to classes which do not
necessarily have joint embedding.

P. Komjáth and J. Pach have shown previously that for any finite n
the class Ω of graphs which do not embedKn+K2 has finite complexity,
and have also treated the problem for graphs of the form m ·K3 [8].

Our main theorem extends this result to the case of finitely many
forbidden subgraphs which are finite sums of finite complete graphs.
Our main theorem will be proved somewhat more generally, for graphs
with a vertex coloring (not assumed to be related in any way to the
graph structure). Even if we are interested only in the case of graphs,
we find this detour necessary, as it allows for a certain inductive ar-
gument in which the number of colors increases. For similar reasons,
the upper bounds obtained on the complexity of such classes are ex-
traordinarily large—at each step in the induction the number of colors
involved can increase substantially. To date virtually nothing is known
about the rate of growth of the complexity as a function of the sizes of
the forbidden subgraphs.
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The method used in this paper is model-theoretic, involving a sys-
tematic use of amalgamation combined with changes of language to
keep track of quantifier-free types over distinguished subsets, which we
interpret as vertex colorings. Hence this can all be expressed directly
in the language of vertex-colored graphs, and we have written the ar-
gument using purely graph-theoretic terminology.

Our proof actually applies to finite sums of graphs whose connected
components are taken from a class C of finite connected graphs with
the following two properties.

(1) Any connected induced subgraph of a graph in C is also in C.
(2) For all finite sets of constraints C0 of the form (C, c) with C ∈ C

and c a vertex coloring of C, there is a universal C0-free vertex
colored graph.

The family C of all complete graphs has these properties: property (2)
holds since free amalgamation suffices to build a homogeneous universal
graph by the Fräıssé theory, and that accounts for our main result.
Whether our more abstract version is in fact more general result is
unclear.

An obvious candidate to consider would be the family P of finite
paths, as forbidding a path gives a very well-behaved universal graph.
However, already the path P3 on three vertices fails the given condition.

First, take 3 colors 0, 1, 2 ∈ Z/3Z and forbid the paths of length 3
enriched by the colorings (i+1, i, i+1)—in other words a vertex of color
i may have at most one neighbor of color i + 1. Consider an infinite
path (vn |n ∈ Z) with vn given color n mod 3. This may be enriched
in uncountably many ways by additional edges and it is easy to see
that one cannot embed all of these enrichments as induced subgraphs
of a single graph satisfying our constraints. So condition (2) fails if we
require universality in the strong sense.

As it happens there is still a weakly universal graph for this particular
set of constraints: namely take the generic model for the theory of a
function f taking a disjoint union A0 ∪A1 ∪A2 to itself with elements
of type i going to elements of type i+1, and use this to determine the
graph structure between pairs Ai, Ai+1, while taking the induced graph
on each Ai to be complete.

But if we pass on to five colors and forbid the configuration consisting
of a vertex of color 0 adjacent to vertices of both of the additional
colors, this has the effect of putting an additional unary predicate on
the vertices of type 0, and beginning with an infinite path as in the
preceding case this gives uncountably many expansions which cannot
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even be weakly embedded into a common countable extension with the
same constraints.

So our method of proof breaks down here but one may still wonder
the following.

Problem 1. If Cis a finite collection of finite paths, does the collection
of C-free graphs have finite complexity with respect to strong embedding?

This is perhaps a more interesting question given that the natural
method does not apply.

2. Preliminaries

A (simple, loopless) graph is a structure G = (V,E), where V is the
set of vertices and E is a binary relation on V which is irreflexive and
symmetric. All graphs in this paper are assumed to be countable.

An embedding f from a graph G1 = (V1, E1) into a graph G2 =
(V2, E2) is an isomorphism with a subgraph: f : V1 → V2, and for
x, y in V1, if (x, y) ∈ E1 then (f(x), f(y)) ∈ E2. We say f is a strong
embedding if it is isomorphic with an induced subgraph (that is, the
converse holds).

Our main concern is with forbidden subgraphs.

Definition 2.1. For graphs G, H, we say that G weakly omits H if
H cannot be strongly embedded into G, and G strongly omits H if H
cannot be embedded into G (as a subgraph).

For a finite set C of graphs, we say that G omits C (weakly or
strongly) if G omits each graph in C (weakly or strongly, respectively).

For a forbidden complete subgraph H the distinction between weak
and strong omission falls away and we simply say that G omits H.

Notation 2.2. We write

H ↪→ G

if the graph H embeds into the graph G (as a subgraph).

Let k be a fixed positive integer. We say that a graph G is k-colored
provided the vertices of G are colored by k different colors. Here the
coloring c is a map from the vertices to the colors with no further
conditions imposed. We may write (G, c) for such a structure (without
necessarily specifying what set is being used to represent the colors).

When colors are present, weak or strong embeddings are required
to preserve colors (and by our conventions, every vertex carries some
color in that case).
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Definition 2.3. The complexity of a class Ω of graphs, or similar struc-
tures, is the minimum cardinality λ such that there is a subclass Ω0 of
Ω with cardinality λ such that every graph in Ω can be embedded in
one of the graphs in Ω0 as a subgraph. In the above definition if em-
bedded is replaced by strongly embedded and subgraph is replaced by
induced subgraph then the cardinality λ is called the strong complexity
of Ω. We will say correspondingly that the subclass Ω0 of Ω is cofinal
or strongly cofinal in the class Ω.

A direct sum of graphs is their disjoint union, with no additional
edges.

In the proofs of Lemma 3.2 and Proposition 6.3 below we will need
Fräıssé’s theory of homogeneous structures and amalgamation classes
[5]. A structure Γ is homogeneous in Fräıssé’s sense if any isomorphism
f between two finite substructures of Γ can be extended to an auto-
morphism of Γ .

If Γ is homogeneous then the class AΓ of all finite structures which
embed isomorphically into Γ is an amalgamation class. This means
that AΓ is closed under isomorphism and substructure, and has the
amalgamation property: namely, for A0, A1, A2 ∈ A¬C, whenever there
are strong embeddings f0, g0 of A0 into A1, A2 respectively, then there
is some A ∈ AC and there are embeddings f1, g1 of A1, A2 into A with
f1f0 = g1g0. Conversely, Fräıssé showed that any amalgamation class
A of finite structures (with countably many isomorphism types) is AΓ

for a unique (countable) Γ.
One way to create universal graphs with forbidden subgraphs (or

other structures) is to specify an amalgamation class of finite graphs
and to let Γ be the corresponding countable homogeneous structure.
Then Γ is in particular universal for the class of structures whose finite
substructures lie in A. (See [1] for a more detailed summary, with proof
sketches.)

3. The main result

Theorem 1. If the graph G is a disjoint sum of complete graphs then
the class of graphs strongly omitting G has finite complexity.

In fact our induction argument will prove the following stronger
statement, allowing for vertex colorings as well. This strengthening is
needed to make the induction work even in the case of interest here.

Theorem 2. Let k be fixed, and let C be a finite set of sums of complete
graphs, each equipped with a vertex coloring by k colors.
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Then there is a finite set of k-colored graphs strongly omitting the
graphs in C, which is strongly cofinal in the class of all such vertex
colored graphs.

For the proof, we first define a parameter we call the rank of the
constraint set C. Then we will prove Theorem 2 by induction on the
rank, with respect to the lexicographic order on ranks.

Definition 3.1. Let C be a finite graph and C a finite collection of
graphs.

The width of the graph C is the number of connected components of
C .

The width of the set C is the maximum width of its members.
The height of the set C is defined by

height(C) = max(|C| |C ∈ C and width(C) = width(C).)

We define the rank of the set C as the ordered pair (width(C), height(C)).
Ranks are compared lexicographically.

The case in which width(C) = 1 (C is a collection of vertex colored
cliques) is treated by a special argument in the following, by Fräıssé’s
method, as mentioned above.

Lemma 3.2. Let C be an arbitrary collection of k-colored finite com-
plete graphs and let A¬C be the class of graphs omitting C . Then the
class A¬C contains a strongly universal graph.

Proof. We apply Fräıssé’s theory of homogeneous structures and amal-
gamation classes [5]. The classA¬C is an amalgamation class in Fräıssé’s
sense, using free amalgamation of graphs, and the corresponding ho-
mogeneous structure is strongly universal for A¬C. □

. Now we turn to the induction step. Suppose rank(C) = (w, h),
where w > 1. Let

C0 = {C ∈ C |width(C) = w and |C| = h}.

Then rank(C) = rank(C0).
For C ∈ C0, choose XC , a connected component of C . Let

ξ =
∑
C∈C0

|XC |.

Let V0 be a set of ξ vertices.
For any subset X ⊆ C0, let

HX = {H |V (H) ⊆ V0, XC ↪→ H for all C ∈ X}.
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Clearly HX is finite, and its size only depends on X and on the choice
of XC for each C ∈ X .

Let L be the class of k-colored graphs. For H ∈ HX , let LH be the
class of triples (G, c0, f), where (G, c0) is a k-colored graph, c0 is the
coloring function from V (G) into {1, 2, . . . , k}, and f : H → G is a
strong embedding of H into G.

Let L′
H be the class of (k · 2|H|)-colored graphs. There is a natural

correspondence between LH and L′
H as follows. Identify the set of k ·

2|H| colors in L′
H with the Cartesian product {1, 2, . . . , k}×P(H). For

(G, c0, f) ∈ LH , define a coloring function c on V (G\f [H]) by

c(v) = (c0(v), {u ∈ H | (f(u), v) ∈ E(G)}).
Associate (G, c0, f) ∈ LH to the induced subgraph G\f [H] equipped
with the coloring c.
Conversely, given (G, c) ∈ L′

H with c = (c0, c1), there is a unique
structure (G ∪H, c0) ∈ LH with the following properties.

(1) G,H are disjoint induced subgraphs of G ∪H;
(2) c0 is consistent with c0 on G and with the coloring of H on H;

and
(3) the edges in G×H are

{(u, v) ∈ G×H | v ∈ c1(u)}.
The point of the above construction is that our induction hypothesis

can be applied to L′
H .

Notation 3.3. For (G, c) ∈ L′
H we writeG∪L′

H
H for the corresponding

expanded structure in LH .

We may also consider G ∪L′
H
H just as a k-colored graph.

The induction step is largely contained in the following:

Lemma 3.4. For any finite k-colored graph H, there is a finite set CH
of L′

H-structures such that the following hold.

(1) CH consists of (k× 2|H|)-colored sums of finite complete graphs,
(2) rank(CH) < rank(C),
(3) for G ∈ L′

H , G strongly omits CH if and only if G∪L′
H
H strongly

omits the union of C with

{XC |C ∈ C, XC does not embed in H}
(as a k-colored graph).

The natural choice of CH corresponding to condition (3) will satisfy
conditions (1) and (2). We will check this in detail later. First, however,
we complete the proof of Theorem 2 using the lemma.



GRAPHS OMITTING SUMS OF COMPLETE GRAPHS (2022) 9

Proof of Theorem 2. We proceed by induction on rank. We may assume
the width w is greater than 1 and apply the construction described
above.

Since rank(CH) < rank(C), by the induction hypothesis there is a
finite family of (k×2|H|)-colored graphs strongly omitting CH , which is
strongly cofinal in the class of all such graphs. Let GH be such a family.

Now define

G0 =
⋃

X⊆C0

{G ∪L′
H
H |H ∈ HX , G ∈ GH}.

We claim that G0 is strongly cofinal in the class of k-colored graphs
strongly omitting C. In fact, for any X ⊆ C0, any H ∈ HX , if G ∈ GH ,
then G strongly omits CH . Thus by (3), G ∪L′

H
H strongly omits C .

Hence any graph in G0 strongly omits C .
Now we show that G0 is strongly cofinal in the class of graphs which

strongly omit C . Suppose Γ strongly omits C. Let

X0 = {C ∈ C0 |XC embeds into Γ}

For C ∈ X0 choose an embedding iC : XC ↪→ Γ and let

H0 =
⋃

{i[XC ] |C ∈ X0}

as an induced subgraph of Γ.
H0 is isomorphic to a graph H in HX0 . Let f : H → H0 be the

isomorphism. Then (Γ, f) ∈ LH .
Let G be the associated structure in L′

H with the vertex set V [Γ\H0].
Thus Γ ≃ G ∪L′

H
H strongly omits C and also omits all XC which do

not embed in H. Hence by (3) of the lemma, G strongly omits CH .
So G strongly embeds in some G∗ ∈ GH . Thus Γ strongly embeds in
G∗ ∪L′

H
H. □

4. The class CH
Now let us prove Lemma 3.4 of Section 3.

Proof of Lemma 3.4. We fix the finite graph H. Let CH be the union of
the following three classes of (k× 2|H|)-colored sums of finite complete
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graphs D.

C1 = {D |For some C ∈ C\C0,
C → D ∪L′

H
H and the image of C contains D}

C2 = {D |For some C ∈ C0 for which XC ↪→ D ∪L′
H
H,

XC does not embed in H, and the image of XC contains D}
C3 = {D |For some C ∈ C0,

C ↪→ D ∪L′
H
H and the image of C contains D and meets H}.

Note that CH depends onH and onX. We now show that CH satisfies
the conditions (1–3) of Lemma 3.4.

Ad 1: CH consists of (k × 2|H|)-colored sums of finite complete graphs.
This holds by definition.

Ad 2: rank(CH) < rank(C).
For any D ∈ C1, there is some C ∈ C\C0 such that D embeds in

C . But for C ∈ C\C0 we have rank(C) < rank(C) and so rank(C1) <
rank(C).

If D ∈ C2 then there is some C ∈ C0 such that D embeds in XC , so
width(D) = 1 < width(C). Hence rank(C2) < rank(C).

If D ∈ C3, then D embeds properly into some C ∈ C0. So width(D) ≤
width(C) and |D| < |C| = h. Hence rank(C3) < (w, h) = rank(C).
Ad 3: For G ∈ L′

H , G strongly omits CH if and only if G∪L′
H
H strongly

omits

C ∪ {XC |XC does not embed in H}.

Suppose first that G ∈ L′
H and G strongly omits CH .

We show that G∪L′
H
H omits XC whenever XC does not embed in H.

Assume toward a contradiction that there is an embedding i : XC →
G ∪L′

H
H so that i[XC ] ∩ G ̸= ∅. Let D = i[XC ] ∩ G. Then D ∈ C2,

which contradicts the assumption that G strongly omits C2.
Now we show that G∪L′

H
H strongly omits C for all C ∈ C . Assume

toward a contradiction that i : C → G∪L′
H
H is an embedding for some

C ∈ C . If C ∈ C\C0, let D = i[C]\G. Then D ∈ C1, which contradicts
that G strongly omits C1.

If C ∈ C0, then there are three cases.
1. If XC does not embed in H, then G ∪L′

H
H omits XC , as we have

shown. So G ∪L′
H
H strongly omits C .

2. If i[C]∩H ̸= ∅, let D = i[C]∩G. Then D ∈ C3, which contradicts
that G strongly omits C3.
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3. If XC embeds in H but i[C] ∩ H = ∅, then fix an embedding
j : XC → H and define i∗ : C → G ∪L′

H
H by

i∗(x) =

i(x) if x ∈ C\XC ;

j(x) if x ∈ XC .

Let D = i∗[C] ∩ G = i[C\XC ]. Then D ∈ C3. This contradicts that G
strongly omits C3.

Conversely, suppose G ∈ L′
H and G ∪L′

H
H (as a k-colored graph)

strongly omits

C ∪ {XC |XC does not embed in H}.
We prove now that G strongly omits CH = C1 ∪ C2 ∪ C3.

If G does not strongly omit C1 or C3, then there are D ∈ C1 ∪ C3 and
an embedding j0 : D → G. Since D ∈ C1 ∪ C3, there are C ∈ C and an
embedding i : C → D ∪L′

H
H such that D ⊆ i[C].

With idH the identity map on H, consider the map

j = j0 ∪ idH : D ∪L′
H
H → G ∪L′

H
H

Hence j ◦ i : C → G∪L′
H
H is an embedding, which contradicts that G

strongly omits C.
If G does not strongly omit C2, then there are D ∈ C2 and an em-

bedding j0 : D → G. Since D ∈ C2, there are C ∈ C0 for which XC

does not embed in H and an embedding i : XC → D ∪L′
H
H such that

D ⊆ i[XC ]. With idH the identity map on H, let

j = j0 ∪ idH : D ∪L′
H
H → G ∪L′

H
H.

Then j ⊆ i : XC → G ∪L′
H
H is an embedding. This contradicts that

G omits XC .
This completes the proof of clause (3). □

5. Complexity estimates

The method of the present paper gives an effective upper bound on
the complexities of the classes of graphs considered here, but one which
grows very rapidly (an exponential tower). One suspects the complexity
does grow quite rapidly, but we do not have substantial lower bounds.

Here we always take complexity in the strong sense, that is we seek
a finite set of representatives for the C-free graphs up to strong embed-
dings (induced subgraphs, possibly vertex colored).

This is also a good point to recall that all our graphs are countable.
As at point we work more directly with infinite graphs here this needs
to be kept in mind.
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5.1. Qualitative upper bounds. We will be interested in the fol-
lowing parameters associated with the family of forbidden structures
C (which as usual we will take to be disjoint sums of complete graphs,
with vertex colorings).

(1) The number of available vertex colors k (take k = 1 in the
uncolored case).

(2) The number m of constraints which are disconnected.
(3) The maximum size N of a disconnected constraint.
(4) The maximum size s of a connected component in a discon-

nected constraint.

We take N and s to be zero when m = 0.
It will not be very damaging to use N as a bound for s, as far as

purely qualitative estimates are concerned, as the result is a tower of
exponentials of height roughly N . But in terms of these parameters our
concern is with the following.

Notation 5.1. Let f(k,m,N, s) denote the smallest bound c such
that for any constraint set C consisting of sums of complete graphs
with a vertex coloring, if its corresponding parameters are bounded by
k,m,N, s respectively, then the complexity of the associated class of
graphs is at most c.
In particular, f(k, 0, N, s) = 1.

Of course, one should check that this is even well-defined. We give
that via an explicit estimate.

Proposition 5.2. For m > 0 we have

f(k,m,N, s) ≤ 2m2(
ms
2 )(k + 1)msf(k′,m′, N − 1, s)(⋆)

with

k′ = k · 2ms

m′ = m · (2ms + 1)N

We remark that if we apply this estimate recursively, when one gets
down to N = 0 one may set m = 0 and halt—though we are forced to
deal with increasingly large estimates for m along the way.

Proof. We follow the proof of finiteness with the modification that the
subset C0 is replaced by the set C∗

0 of all C ∈ C which are disconnected.1

1Or more precisely, those of maximal size which are disconnected, but for our
purposes this seems like a marginal improvement.



GRAPHS OMITTING SUMS OF COMPLETE GRAPHS (2022) 13

Recall the construction: one selects a connected componentXC for each
C ∈ C∗

0 , one sets

ξ =
∑
C∈C∗

0

|XC |

and for each subset X ⊆ C∗
0 one considers the graphs H on a fixed set of

ξ vertices which contain copies of allXC for C ∈ X . One then associates
to each such choice of X and H a constraint set CH = C1 ∪ C2 ∪ C3 in
an enriched language with k · 2ξ colors in place of k.

Now |C1| = m and ξ ≤ ms. Thus we have 2m subsets X to consider.
Our estimate for the number of colored graphs H is

2(
ms
2 )(k + 1)ms

with the first factor counting graphs on the set of ms vertices and the
second factor counting the number of pairs (V, c) with V a subset of
the fixed set of ms vertices, and c a coloring of the set V by k colors.
This slightly overcounts the desired pairs (H, c).

It remains to show that the auxiliary set of constraints CH which
arises has its parameters bounded by k′,m′, N − 1, s respectively.

In view of the choice of C∗
0 , in the definition of CH as C1 ∪ C2 ∪ C3,

only the constraints in C2 can be disconnected. This accounts for the
replacement of N by N − 1. The value of k′ comes directly from the
construction and we may certainly retain the bound s. So it will suffice
to check that the specified value form′ bounds the size of the constraint
set C2.

One examines the definition again.

C2 = {D |For some C ∈ C∗
0 for which XC ↪→ D ∪L′

H
H,

XC does not embed in H, and the image of XC contains D}

There are m choices for C. With C fixed, we need to pick out a
proper subgraph and equip it with the extended coloring induced by
H. Note that C already has a k-coloring, which will be retained. So
this amounts to coloring C by 2ms+1 colors, with one additional color
to indicate discarded vertices. All together this gives

m′ ≤ m · (2ms + 1)N □

It seems plausible that this crude upper bound is not very far from
the truth.

Notation 5.3. Let γ(m,n) be the complexity of the class of graphs
omitting m ·Kn.
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We do not get a very clear upper bound for this other than as an iter-
ated exponential of height mn, which seems excessive, though possible
not far off.

Example 1. γ(m, 1) is the number of graphs of order m − 1, up to
isomorphism.

One can analyze γ(m, 2) in a somewhat similar fashion but in this
case it is useful to work more model theoretically.

Definition 5.4. A C-free graph Γ is existentially closed if any existen-
tial condition (with parameters) satisfied in a C-free extension holds in
Γ. In other words, given a finite induced subgraph A of Γ and a C-free
extension Γ′ of Γ, any finite induced subgraph A′ of Γ′ which contains
A can be embedded over A as an induced subgraph of Γ.

Since the existentially closed C-free graphs are strongly cofinal in the
C-free graphs we can restrict our attention to such graphs.

Remark 5.5. If A′ is strongly cofinal in the class of structures A, then
A and A′ have the same complexity.

The existentially closed C-free graphs tend to be quite well-behaved.
The nicest case is the following.

Definition 5.6. A C-free existentially closed graph is maximal if any
C-free existentially closed extension of it is isomorphic to it.

We note that this is one of the more extreme examples of our con-
vention that all graphs are to be countable.

Remark 5.7. The complexity of the class of C-free graphs is at least
the number of maximal existentially closed C-free graphs.

In the case of γ(m, 1), the existentially closed graphs are the graphs
of order m− 1, and they are all maximal.
Now let us show something similar in the case of γ(m, 2).

Lemma 5.8. Let Γ be an existentially closed (m ·K2)-free graph and
let Γ0 be the subgraph of Γ induced on the vertices of finite degree in Γ.
Then the following hold.

(1) Γ has at most m− 1 vertices of infinite degree.
(2) If there are k vertices of infinite degree, then Γ1 omits the graph

(m − k) ·Kn, and the vertex degrees in Γ1 are at most. 2(m −
k − 1).

(3) There are finitely many non-isolated vertices in Γ1, in fact fewer
than 8(m− k − 1)2 vertices.
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Proof. Ad 1
This is clear and does not require existential completeness.

Ad 2 It is clear that the graph induced on the vertices of finite degree
omits (m−k)·Kn as otherwise we choose an additional k edges involving
points of infinite degree and embed m ·Kn.

Suppose now that v is a vertex of finite degree. We adjoin a new
vertex v′ adjacent to v and to no other vertices. If the extended graph
is (m ·Kn)-free we contradict existential completeness, as v′ does not
embed over v and its neighbors into Γ. So Γ ∪ {v′} contains a copy of
m ·Kn, or in other words Γ \ {v} contains a copy A of (m− 1) ·Kn.

We may suppose that each vertex of infinite degree in Γ lies on one
of the edges of A and that those edges do not contain neighbors of v,
by replacing some edges of A if necessary to achieve this. So we are left
with a copy A′ of (m − k − 1) ·Kn which does not contain vertices of
infinite degree. If one of the edges at v in Γ is disjoint from A′ then
this creates a copy of m ·Kn in Γ for a contradiction. So the neighbors
of v lie in A′ and thus the degree of v is at most 2(m− k − 1).

Ad 3 If we have an graph of bounded degree d with more than (m −
1)(2d − 1) edges then we may find m disjoint edges by successively
removing one edge and all the adjacent edges, in groups of at most
1 + 2(d− 1) edges.

Apply this to the graph induced on the vertices of finite degree.
This graph contains at most (m− k − 1)(4(m− k − 1)− 1) edges. We
may double this to estimate the number of vertices, and take a slightly
coarser estimate for simplicity. □

Lemma 5.9. Let Γ be an existentially closed (m ·K2)-free graph. Then
Γ is maximal.

Thus the complexity of the family of (m·K2)-free graphs is the number
of existentially closed (m ·K2)-free graphs, up to isomorphism.

Proof. The second point will follow immediately by our earlier remarks
once the first one is proved.

So consider an existentially closed (m ·K2)-free graph Γ with k ver-
tices of finite degree and let A be the graph induced on the non-isolated
points of Γ1 together with the k vertices of infinite degree.

If v /∈ A then v has finite degree and is an isolated vertex of Γ1, so
its neighbors all have infinite degree.

Claim 1. Let Γ′ be a (m ·K2)-free extension of Γ. Then any edge e of
Γ′ which is not an edge of Γ contains a vertex in Γ of infinite degree.
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Let B be a subgraph of Γ of the form m′ ·K2 with m′ maximal. If
the edge e is disjoint from B then existential completeness yields an
edge in Γ disjoint from B and a contradiction.

So e contains a vertex v of Γ. The other vertex v′ of e lies outside Γ by
hypothesis. If v has finite degree in Γ then we get a similar contradiction
by considering v together with its neighbors, and v′. The claim follows.

Accordingly we consider the collection AA of all finite graphs B con-
taining A with the property that all edges of B not in A join vertices
of B\A to one of the k distinguished vertices “of infinite degree.” This
odd terminology really means that we introduce constants denoting the
vertices of A and among these we have names for the k vertices which
had infinite degree in Γ.

Then AA is an amalgamation class, with free amalgamation, so has
a homogeneous Fräıssé limit Γ∗.

Claim 2. Γ∗ is (mK̇2)-free.

This means that none of the structures in AA contains a copy of
m ·K2. This is immediate since any edges involved in such a copy not
lying in A would contain one of the k distinguished vertices of A and
the copy could be replaced by a set of edges lying in Γ.

By our first claim the finite substructures of Γ lie in AA and by exis-
tential completeness, amalgamation, and our second claim, the converse
holds, and the isomorphism follows.

In particular any existentially closed expansion of Γ will have the
same properties and be isomorphic to Γ∗. □

We remark in passing that in this particular case the maximality
applies in a stronger sense, namely our graph Γ is isomorphic with
any expansion which is (m ·K2)-free, but we did not prove that. That
would depend on a more explicit examination of the structure of Γ,
which is highly degenerate, as we have already seen. Typically one
does not expect this. In particular, existentially closed graphs tend to
be connected, while our Γ has so few edges that it even has isolated
points.

What one sees from the above is that the computation of γ(m, 2)
comes down to the determination of the number of structures which can
occur as the distinguished finite subgraph A in the foregoing lemma,
and this is largely a matter of determining the maximum size of A.
We expect the complexity to be roughly the number of graphs of that
size. At the moment our coarse estimate for that number is 8(m− 1)2

(in other words, quadratic as a function of the size 2m) and so the

complexity would be bounded by something on the order of 2(
8(m−1)2

2 ).
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We can be more explicit about the actual meaning of the bound we
need.

Definition 5.10. Let σ(m, 2) be the maximum size of a finite graph
A with the following properties.

(1) A is (m ·K2)-free.
(2) A contains no isolated vertices.
(3) For any vertex v of A, there is an embedding of (m − 1) · K2

into A\{v}.

The last condition expresses that A is maximal (m ·K2)-free in the
sense that the only way to expand A to a larger (m · Kn)-free is by
adding isolated vertices.

This suggests defining σ(m,n) as well as the maximal size of a (m ·
Kn)-free graph without isolated points such that any embedding into
an (m ·Kn)-free graph adds no additional cliques of order n, but these
notes are getting long enough without taking that up.

Lemma 5.11. σ(m, 2) = 3(m,−1)

Proof. Letting A = (m − 1) · K3 gives the lower bound (m − 1). We
prove the upper bound.

Suppose A satisfies the relevant conditions. Then we may fix a sub-
graph (not necessarily induced) A0 of A isomorphic to (m− 1) ·K2. So
A0 has m − 1 connected components, each a pair of points joined by
an edge.

Let B = A \A0. There are no edges in B. Therefore every vertex of
B has at least one neighbor in A0.

Claim 1. No component E of A0 has more than one neighbor in B.

Suppose on the contrary that there are at least two vertices of B
adjacent to some vertex of E. If each vertex of E has at least one
neighbor in B it follows that there are two disjoint edges in E ∪B and
so after replacing E by two such edges we embed m · K2 in A, for a
contradiction.

So we have a vertex a ∈ E with at least two neighbors in B, and the
other vertex of E has no neighbors in B. We now consider a subgraph
A1 of A \ {a} isomorphic to (m− 1) ·K2 and the subgraph A∗ of A on
the vertices of A0∪A1 with the edges of A0, of A1, and all edges of the
form (a, v) with v ∈ B.
Call the edges in A0 or in B ∪ {a} type 0, and the edges in A1 type

1. There may be some overlap (edges in both A0 and A1).
Let T be the connected component of a in A∗. On this component

the types alternate except at the vertex a, where only type 0 occurs.
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(Where there is overlap between the types, we have degenerate con-
nected components of order 0.)

We show next that T is a tree. Suppose on the contrary that C is
a minimal cycle in T . The cycle must contain the vertex a: otherwise,
the cycle consists of edges alternately in A0 and A1 and in particular
all vertices lie in A0. However at least one such vertex v has another
neighbor in T and the relevant edge can only have the form (a, b) with
b ∈ B, so this forces v = a and a contradiction.

So the cycle C has odd length 2k+1 and contains the vertex a. There
is a neighbor v of a not in the cycle C and the edge (a, v) together with
the k edges of type 1 in C give 2k + 1 edges which are disjoint from
the edges of A0 which are not in C. But at most k of the edges of A0

lie in C and so we embed m ·K2 into A, for a contradiction.
Thus T is a tree, and all vertices other than a have degree at most

2, so in fact it is a union of paths over a. Take a path P in T from a
to a leaf, whose first edge joins a to a neighbor in B. Then among the
edges on this path, at least as many are in A1 as are in A0. We also
have another edge from a to a point of B. So we may replace the edges
in A0 on the path by the edges in A1, together with the additional edge
at a, and increase their number, taking the remaining in edges in A0

to give an embedding of m ·Kn, for a contradiction. □

The upshot is that we expect the complexity of the class of graphs
forbidding m · Kn to be of the order of magnitude of the number of
graphs on 3(m− 1) points. As a lower bound we can take the number
of graphs on 3(m− 1) points containing a copy of (m− 1) ·K3, and as
there are few edges in (m−1)·K3 this is or the same order of magnitude
as the number of graphs on 3(m − 1) points. As an upper bound we
multiply by m to allow for k ≤ m − 1 points of infinite degree and
sum up the values over all of the fixed graphs A up to the maximum
size 3(m− 1), which amounts to a second factor of 3(m− 1). Thus the
relevant bounds are exponential in [3(m − 1)]2 and the most delicate
point is σ(m.2) connects data of order 2m with data of order 3(m−1),
and one would like to know if σ(m,n) is bounded by a linear function
of mn, or at least a polynomial (along with many other things of a
more theoretical and less combinatorial nature).

6. The low end: (Km +Kn)-free graphs

A problem of a more elementary character, where one may expect
more precise estimates, concerns the case of a single constraint with
just two summand. C = {Km +Kn}.
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6.1. c(m,n).

Notation 6.1. Let c(m,n) denote the complexity of the class of count-
able graphs omitting Km +Kn.

We will generally take m ≥ n here. Note that

c(1, 1) = 1

c(m, 1) = 2

with the relevant graphs in the second case being the generic graph
omitting Km and the graph Km itself.

We give some small values explicitly.

Proposition 6.2. c(m,n) has the following values for n ≤ 2 and
m ≥ n.

n m c(m,n) m c(m.n)

1 1 1 > 1 2

2 2 2 > 2 4

Proof. It suffices to describe the relevant existentially closed graphs,
and to check that they are maximal and cofinal in the corresponding
class.

For graphs omitting Km + K1 we take Km and the generic graph
omitting Km, the latter dropped if m = 1. Everything is clear in this
case.

For graphs omitting K2+K2 we take a triangle and a star of infinite
degree, and add infinitely many isolated vertices. These are clearly
maximal existentially closed, and conversely any triangle free graph
in the class has at most non-trivial connected component, which is a
star (or a single edge), and existential completeness forces the center
to have infinitely many neighbors and non-neighbors.

For graphs omitting Km+K2 with m > 2 we take the following four
graphs.

(1) Generic omitting Km.
(2) The generic graph of the formKm∪B whereB is an independent

set of vertices with no vertex in A in an m-clique.
(3) The generic graph of the form Km−1∪B with B an independent

set of vertices.
(4) Km+1 together with infinitely many isolated vertices.

Graphs (2,3) are easy enough to describe explicitly but constructing
them via Fräıss’e theory makes the application of general theory more
straightforward.
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We need to see that the graphs (2, 3) are well-defined, maximal ex-
istentially closed, and cofinal in the (Km +K2)-free graphs containing
Km but not Km+1.
In each case we have a clique A of order m or m− 1 which is treated

as a set of constants and we consider the class AA of finite extensions of
A with the stated conditions. These form amalgamation classes under
free join so the corresponding generic graphs exist. From the description
of AA, the resulting graphs are (Km +K2)-free.
To prove maximality and existential completeness, it suffices to show

that any expansion of one of these graphs satisfies the same conditions
(has the same finite substructures).

In case (1), because we are taking m > 2, there is an infinite set of
pairwise disjoint edges, and hence no copy of Km can be added.

In case (2), because we are takingm > 2, every vertex of A = Km has
infinite degree and hence there can be no otherm-clique in a (Km+K2)-
free extension.

In case (3) there are infinitely many expansions of the given clique
Km−1 to copies of Km so in any (Km+K2)-free extension the remaining
vertices form an independent set.

Case (4) is clear.
There proves everything except cofinality of the class, for the case in

which Γ is an existentially closed graph containing a clique K of order
m but none of order m + 1. If that clique is unique then the graph
embeds into the graph (2). So suppose there is a second clique K ′ of
order m. Then A = K ∩K ′ must have order m− 1, and thus K ∪K ′

is a copy of Km+1 with one edge removed. It follows that there is no
edge disjoint from A, as otherwise it will be disjoint from at least one
of K,K ′. Thus there is an embedding into the generic graph of type
(3).

This completes the verification for the case m > 2, n = 2. Note also
that two of these graphs fall away when m = 2, giving the exceptional
case again. □

We add a further value.
n m c(m,n) m c(m.n)

1 1 1 > 1 2

2 2 2 > 2 4

3 3 4

Proposition 6.3.

c(3, 3) = 4.
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Proof. We first perform an analysis a priori of maximal existentially
closed graphs in this class, then construct them.

A vertex v is said to be special if it lies in infinitely many triangles
intersecting pairwise in the vertex v. Note that there is at most one
special vertex. Similarly, an edge is special if it has infinitely many
extensions to a triangle.

Claim 1. Any two cliques which are either special, or are triangles,
meet.

This is immediate as otherwise we find a pair of disjoint triangles
extending the given data.

Case 1. If G contains a clique K of order 5 then all triangles of G lie
in this clique.

Case 2. Suppose G contains a clique K of order 4 but no clique of order
5.

Then any triangle in G has at least an edge in K. We claim that for
any two disjoint edges in K, exactly one of them is special.

Let e, e′ be two such edges and suppose that e′ is not special. Then
in the extension of G by a new common neighbor of the vertices of
e′, there is an embedding of K3 + K3, which must consist of the new
triangle and a second triangle T in G disjoint from e, and hence meeting
K in e.

If neither e nor e′ is special then we also have a triangle T ′ meeting
K in e′. Then T, T ′ must meet in a vertex extending K to a clique of
order 5, which is a contradiction. So at least one of e, e′ is special, and
we know at most one is.

It follows that there are exactly three special edges in K. These may
form either a star or a triangle in K. We may call these cases 2a and
2b.

Furthermore, in this situation all triangles not contained in K meet
K in one of the special edges.

Case 3. Suppose that G contains no clique of order 4.
By existential completeness, G does contain some triangle T .

Claim 2. For any triangle T in G there is a triangle T ′ which meets T
in exactly one vertex.

We extend G to a graph G′ with a new vertex v adjacent to the
vertices of T . As this configuration is not realized in G, there must be
a triangle disjoint from one of the triangles containing v, and hence
disjoint from the corresponding edge of T . But T ′ must meet T , so the
intersection is a single vertex. This proves the claim.
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Claim 3. G contains a special vertex.

We begin with the configuration T, T ′ consisting of two triangles with
a common vertex v.

Suppose that v is not special. Then a maximal family of triangles
in G disjoint over v will be finite. It follows that the extension which
adds two vertices to make a new triangle over v is not (K3 +K3)-free.
So there must be a triangle T ′′ in G disjoint from this triangle, which
means that it does not contain v. But T ′′ must meet T and T ′.

If T ′′ is contained in T ∪ T ′ it gives rise to a clique of order 4 and a
contradiction. So T ′′ consists of a vertex a ∈ T , b ∈ T ′, and c outside
T ∪T ′. Then T ∗ = (a, b, v) form a triangle whose edges lie in three other
triangles involving three distinct vertices outside T ∗. We know however
that there is another triangle meeting T ∗ in exactly one vertex, which
must also contain the vertex outside T ∗ joined to the oppose edge. This
again produces a clique of order 4 and a contradiction.

Thus the vertex v is special, and the claim is proved. In particular
every triangle contains the vertex v.

Next we claim that the configurations identified as cases 1, 2a, 2b,
and 3 correspond to unique possibilities for the existentially closed
graph G. So we return to a closer examination of each case.

Case 1. G contains a clique K of order 5.
We treat K as a set of distinguished vertices and consider the family

AK of finite extensions ofK whose triangles are all contained inK. This
forms an amalgamation class under free join and hence corresponds to
a generic graph of this type.

Any (K3 +K3)-free extension will have the same property and thus
this graph is maximal and existentially closed.

Case 2. Suppose G contains a clique K of order 4 but no clique of order
5.

We know then that there are three edges designated as special in
K, forming either a star (case 2a) or a triangle (case 2b). In each case
we consider the class AK of finite extensions in which all triangles not
contained in K meet K in a special edge. These form an amalgamation
class under free join, so the corresponding generic graph exists in each
case. In this graph the edges designated as special in K are in fact
special, since the corresponding finite extensions of K all lie in the
class AK .

Now any extension of the generic graph G will again omit K5 and
thus embed again into G, and the maximality and existential complete-
ness of G follow.



GRAPHS OMITTING SUMS OF COMPLETE GRAPHS (2022) 23

Case 3. G contains a special vertex v.
Then all triangles of G contain v. We consider the class Av of finite

graphs containing the vertex v whose triangles all contain v. This is an
amalgamation class under free join and thus the corresponding generic
graph exists and is (K3 +K3)-free. Furthermore the vertex v is in fact
special in the generic graph, or any graph extending it, from which
existential completeness and maximality again follow.

We have thus constructed four maximal existentially closed (K3 +
K3)-free graphs, one for each case identified, and we showed along the
way that any existentially closed (K3 +K3)-free graph falls under one
of the cases and embeds (is in fact isomorphic to) the corresponding
generic graph.

It follows that the complexity of the class of (K3 +K3)-free graphs
is 4. □

6.2. m > n ≥ 3: c′k(m,n). With n ≥ 3 and m > n the values of c(m,n)
are no longer bounded, and the situation becomes more complex. We
could also allow m = n but the details would vary, so we consider the
more typical case. We refine our definitions a bit to reflect the kind of
analysis we have been making. We will work for a time in the context
of c(m,n) and then specialize to the case n = 3.

Notation 6.4.
ck(m,n) is the complexity of the class of (Km+Kn)-free graphs which

contain a clique of order k but none of order k + 1.
c′k(m,n) is the number of maximal existentially closed (Km +Kn)-

free graphs containing a clique of order k but none of order k + 1;
c′(m,n) is defined similarly.

We have∑
k

c′k(m.n) = c′(m,n) ≤ c(m,n) ≤
∑
k

ck(m,n)

and conjecturally c′(m,n) = c(m,n). The sum
∑

k c(m,n) is an over-
count as one should restrict attention to existentially closed graphs;
for example, for many values of k we will have c′k(m,n) = 0 but
ck(m,n) > 0.

Lemma 6.5. If m ≥ n then

(1) c′k(m,n) = 0 for k < m− 1 ; also for k = m if m = n.
(2) c′k(m,n) = 0 for k ≥ m+ n.

Proof.

Ad 1



24 GREGORY CHERLIN AND NIANDONG SHI

If Γ is a graph containing no clique of order m− 1 then the disjoint
sum of Γ with a clique of order m− 1 is (Km +Kn)-free, so Γ cannot
be existentially closed. Thus ck(m,n) = 0 for k < m− 1.

The same argument applies if Γ contains no clique of order m, when
m = n.

Ad 2
Since Km +Kn is a subgraph of Km+n this is clear. □

So the sum of interest in general is∑
m−1≤k≤m+n−1

c′k(m,n).

We record some extreme values.

Lemma 6.6. For m ≥ n we have

c′m+n−1(m,n) = 1

For m > n we have

cm−1(m,n) = 1

Proof. Suppose first that Γ contains a clique K of order m+n− 1 and
is (Km + Kn)-free. Then every clique of order m is contained in K.
There is a generic graph G containing K and satisfying this property,
so any existentially closed graph containing K is isomorphic to G and
is maximal. This shows that c′m+n−1(m,n) = 1.

Now suppose m > n and let G be the generic Km-free graph. Then
G contains an infinite disjoint sum of copies of Kn and hence any
(Km+Kn)-free extension of G omits Km and embeds into G. It follows
that G is maximal existentially closed. □

Our intention in the ret of our analysis is to look more closely into
c(m, 3) for m > 3, verifying that this is∑

m−1≤k≤m+2

c′k(m, 3)

and that the growth rate is on the order of 2m
2
.

So far we have c′m−1(m, 3) = c′m+2(m, 3) = 1 and it remains to ex-
amine c′m(m, 3) and c′m+1(m, 3).

We continue to work somewhat generally, in the sense that we con-
sider c′m+n−2(m,n) and c′m+n−3(m,n) before specializing to n = 3.
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6.3. Estimating c′m+n−2(m,n) and evaluating c′m+1(m, 3).

Definition 6.7. A clique K in a graph G is m-special if it lies in
infinitely many cliques of order m with pairwise intersection K. As
a degenerate case, we consider m-cliques to be m-special (with the
“infinitely many” extensions all coinciding with K).

Remark 6.8. In a (Km + Kn)-free graph, all m-special cliques meet
all n-special cliques.

Evaluating c′m+n−2(m,n)
Supposem > n and G is an existentially closed (Km+Kn)-free graph

with a clique K of order m+ n− 2 and no clique of order m+ n− 1.

Claim 1. If A ⊆ K has order n−1 then either A is n-special or (K\A)
is m-special.

We suppose A is not n-special. Then adding a new vertex adjacent
to the vertices of A gives an extension of G which is not (Km +Kn)-
free, so there is a clique K ′ of order m in G disjoint from A. It must
contain K \ A as otherwise we have an embedding of Km + Kn. So
K ′ = (K\A) ∪ {v} for some vertex v /∈ K. If K\A is not m-special
then similarly A is contained in a clique K ′′of order m of the form
A ∪ {u} with u /∈ K. If u = v then K ∪ {v} is a clique of order
m+n−1, for a contradiction. But if u ̸= v then we have an embedding
of Km +Kn. So the claim follows.

Now viewK as a structure in which predicates distinguish the (m− 1)-
subsets which arem-special and the (n−1)-subsets which are n-special.
The structure on K satisfies the following constraints.

(1) If K is partitioned into sets (A,B) of sizes m − 1, n − 1, then
exactly one of A,B is special in the appropriate sense.

(2) Any (n− 1)-subset of an m-special (m− 1)-set is n-special.

Conversely, suppose K is given with predicates picking out (m− 1)-
subsets and (n−1)-subsets, which we will refer to as the m-special and
n-special subsets of K. We then consider the amalgamation class AK

consisting of extensions of K for which any n-clique not contained in
K contains an n-special (n− 1)-set and any m-clique not contained in
K contains an m-special (m − 1)-set. Here amalgamation is given by
joint embedding. Let GK be the corresponding generic graph (with its
additional structure).

ThenGK is (Km+Kn)-free: it is clear that any embedding ofKm+Kn

into GK cannot involve a copy of Km or Kn in K, and thus involves
disjoint special cliques of sizes m− 1 and n− 1 in K, which partition
K, and this contradicts one of our conditions.
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Consider an extension Γ of GK which is (Km+Kn)-free and let A be
an m-clique or an n-clique. Consideration of A ∪K shows that A ∩K
is then an (m− 1)-clique or (n− 1)-clique respectively. If it is not one
of the designated special cliques, its complement is, and then in GK

the complement is actually special. Then together with A one gets an
embedding of Km+Kn into Γ, and a contradiction. Thus the extension
Γ satisfies the conditions imposed on GK and accordingly embeds into
GK . It follows that GK is existentially closed as a (Km+Kn)-free graph
and is maximal.

We may draw the following consequence.

Lemma 6.9. For m > n, c′m+n−2 is the number of uniform (n − 1)-
hypergraphs on (m+n−2) vertices with the property that all hyperedges
meet, counted up to isomorphism.

Proof. We need to classify the configurations K on (m+n−2) vertices
equipped with a designation of the special (m−1)-sets and (n−1)-sets,
satisfying the conditions (1,2) above.

In view of the complementarity condition, it suffices to consider the
hypergraph on K whose edges are the non-special (n−1)-sets. In terms
of this hypergraph our conditions become

No two hyperedges are disjoint.

This gives the result. □

In particular with n = 2, m > 2 we find c′m(m, 2) = 2, and with
n = 3, m > 3 we find c′m+1(m, 3) = m+2 as there are (m+1) possible
stars (including the degenerate cases with 0 edges or 1 edge) and also
the possibility of a triangle.

For n > 3 one construction involves taking a fixed point as com-
mon to the distinguished (non-special) n− 1-sets and then viewing the
structure as an (n − 2)-hypergraph on the remaining points, a slight
overcount for various reasons—it neglects the reduction to isomorphism
types and the possibility that the hyperedges have other points in com-

mon. In any case this gives a lower bound in the range of 2(
m+n−3

n−2 ) and

an upper bound in the range of 2(
m+n−2

n−1 ), so a decent estimate for the
rate of growth once n is not terribly small (e.g., 3).

As far as c(m, 3) is concerned we have the following, so far.

k m− 1 m m+ 1 m+ 2

c′k(m,n) 1 ?? m+ 2 1

To evaluate cm(m, 3) we will look more generally at c′m+n−3(m,n).
The expectation of course is that c(m, 3) = m + 4 + c′m(m, 3) with

c′m(m, 3) making the dominant contribution. Up to this point we have
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checked the relevant cofinality conditions and that all of the graphs
considered are needed, that is, they are maximal existentially complete
in the full class of (Km +Kn)-free graphs.

7. Estimating c′m+n−3(m,n)

We suppose that

m > n ≥ 3

and that G is an existentially closed (Km +Kn)-free graph with some
clique K of order m+ n− 3 and no clique of order m+ n− 2. Set

N = m+ n− 3

We consider not only m-special cliques and n-special cliques, but
also N -special cliques. We remark that any two cliques of order N
must meet any clique of order n′ ≥ n in at least n′ − 2 vertices, as
otherwise their union has at least N +3 = m+n vertices and contains
a copy of Km +Kn.

We first consider the cases in which there is an N -special clique of
order N − 1 or N − 2.

7.1. Case 1. There is an N-special clique K0 of order N − 2.
Then any clique K ′ of order n must meet K0 is at least n− 2 vertices,
as otherwise we find an extension K1 of order N of K0 meeting K ′ in
fewer than n− 2 vertices.

So we consider the amalgamation class AK0 of extensions of K0 such
that each n-clique meets K0 in at least n − 2 points. This is closed
under free join. Let GK0 be the corresponding generic graph. Observe
that GK0 is (Km +Kn)-free since in any embedding there are at least
(m− 2) + (n− 2) vertices in K0, while |K0| = m = n− 5.

We claim that any (Km + Kn)-free extension of GK0 will have the
same properties. The one that needs to be checked is that there is no
cliqueK∗ of orderN+1. If there is one, we can extendK0 to a cliqueK1

of order N so that the intersection has order at most N − 2 < |K∗| − 2
for a contradiction.

It follows that GK0 is a maximal existentially closed (Km +Kn)-free
graph.

Thus this case contributes only 1 to the value of c′m+n−3(m,n).

7.2. N-special (N − 1)-cliques and balanced N-cliques.

Definition 7.1. Let G be a (Km +Kn)-free graph and A an N -clique
in G. We will say that G is balanced if for every partition (A1, A2) into
parts of sizes m − 1, n − 2 or m − 2, n − 1 respectively, either A1 is
m-special or A2 is n-special.
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Asm-special and n-special cliques must meet, in a balanced N -clique
exactly one part of each of the relevant partitions is special in the
appropriate sense.

We will identify a contribution of precisely m+ 2 to c′m(m, 3) in the
case in which there is a balancedN -clique, via a more general structural
analysis.

First however we will show that if there are no N -special (N − 2)-
cliques, but at least two N -special (N − 1) cliques, then the union of
the N -special (N − 2)-cliques is a balanced N -clique.

Lemma 7.2. Let G be an existentially complete (Km +Kn)-free graph
with no N-special (N−2)-clique. Then the union of the N-special (N−
1)-cliques is a clique.

Proof. Let A1, A2 be two distinct N -special (N−1)-cliques, and A their
intersection. So Ai = A ∪ {vi} for some vertex vi, i = 1 or 2.

We consider an extension of G in which A is extended to a clique
of order N by two new vertices. As A is not N -special there is an
embedding of Km+Kn into the extension, with one of the two cliques,
or order m or n, containing a vertex outside G and thus meeting G in a
subset of A or order at least m−2 or n−2. The other clique must then
contain at least 3 vertices outside A and hence lies in G. In particular
G contains a clique K of order n with at least three vertices outside
A. On the other hand K must meet A1 and A2 in at least n− 2 points
and so K contains the vertices v1, v2. Thus A1 ∪ A2 is a clique.
The lemma follows. □

Lemma 7.3. Let G be an existentially complete (Km +Kn)-free graph
with no N-special (N − 2)-clique and no (N + 1)-clique, and with at
least two N-special (N − 1)-cliques.

Then the union A of the N-special (N − 1)-cliques is a balanced
N-clique.

Proof. The argument for partitions of shape (m − 1, n − 2) or (m −
2, n− 1) is similar, so we treat the former case.

So let (A1, A2) be a partition of shape (m − 1, n − 2) and suppose
toward a contradiction that neither of the two parts is special in the
appropriate sense.

Extending G by one new vertex adjacent to the vertices of A1 to
make a new clique of order m, the extension cannot be (Km+Kn)-free
and thus there is a clique K2 of order n in G disjoint from A1. But K2

meets A in at least n− 2 vertices, so K2 ∩ A = A2.
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Similarly, extending A2 to a new clique of order n, there must be
a clique K1 of order m in G disjoint from A2 and containing at least
m− 2 vertices of A1.
Furthermore the cliques K1, K2 have some common vertex v, so if

K1 contains A1 then we have a clique A ∪ {v} of order N + 1, for a
contradiction. So A1 \K1 consists of one vertex a, and K1\A contains
2 vertices.

On the other hand A contains at least two N -special subsets of size
N − 1. So there is some N -special (N − 1)-clique contained in A which
omits a vertex of (K1 ∪K2)∩A. This may be extended to an N -clique
containing no additional vertex of K1 ∪ K2. Hence it misses at least
three vertices of one of the cliques K1, K2, giving an embedding of
Km +Kn into G, and a contradiction.

Making a similar argument for the shape (m− 2, n− 1), this proves
the lemma. □

Going forward, we will be supposing only that we have a balanced
N -clique A. In Table 1 we summarize the conditions imposed on A by
the ambient graph G, that is, with the m-special and n-special cliques
in A distinguished. We note that in case m = n+ 1, for cliques of size
m− 2 = n− 1, either or both of the two notions might apply.

(1) For a partition ofA into parts (A1, A2) of sizesm−1, n−2
or m− 2, n− 1 respectively, either A1 is m-special or A2

is n-special, but not both.
(2) Any m-special clique and any n-special clique have a

vertex in common.
(3) If the clique A′ is m-special of order m− k (k = 1 or 2)

then its subsets of order n− k′ are n-special for k′ ≤ k.

Table 1. The m-special, n-special structure on A

The third condition follows directly from the definitions. Note that
m− 2 ≥ n− 1.

7.3. Case 2. There is a balanced N-clique: Constructions. We
proceed next to construct the appropriate generic graphs of each type
for any finite structure A of order N satisfying the conditions of Table
1.

Lemma 7.4. Let m ≥ n ≥ 3. Let A be a finite structure of order
N = m + n − 3 which consists of a complete graph on A together
with two families of designated subsets, called m-special and n-special
cliques, where the m-special cliques have orders m−1 or m−2 and the
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n-special cliques have orders n− 1 or n− 2. Assume the conditions of
Table 1. Then there is an existentially complete (Km +Kn)-free graph
GA, unique up to isomorphism, which induces the given structure on
A. Furthermore GA is maximal existentially complete.

Proof.

Claim 1. GA is (Km +Kn)-free.
Any m-clique or n-clique has at most two vertices outside A, so an

embedding of Km+Kn into GA cannot involve a component embedded
into A. Accordingly the intersections with A arem-special and n-special
respectively, and meet.

Claim 2. In any (Km +Kn)-free expansion of GA, any m-clique or n-
clique K not contained in A meets A in an m-special or n-special clique
(in the sense of A), respectively.

K contains at most 2 vertices outside A, so the complementarity con-
dition applies, and if K∩A is not special in the appropriate sense, then
its complement in A is special in the other sense, and an embedding of
Km +Kn results, for a contradiction.
The same argument applies to our original graph G and shows that G

is isomorphic toGA. It also follows now thatGA is maximal existentially
complete. One should note also the following.

Claim 3. In GA, the induced structure on A is as given.

This follows from the preceding claims. □

Next we would like need to count the structures A associated with
balanced N -cliques, up to isomorphism, or estimate their number.

7.4. Balanced N-cliques as finite structures: Counting. We refer
to the conditions of Table 1. For the case n = 3 we will arrive at m+2
distinct structures, but we first proceed more generally.

All of this is more easily understood—at least for the purposes of
counting—in terms of the structure on the m-special cliques alone.

So suppose we have a structure A with a distinguished family of “m-
special” cliques of orders m and m−1. We let A∗ be the expansion of A
by the family of cliques of orders n−1 and n−2 whose complements are
not m-special, and call those cliques n-special. We claim that A∗ will
satisfy the axioms given above if and only if A satisfies the following
axioms.

Lemma 7.5. The conditions given in Tables 1 and 2 are equivalent.
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(1) If K is an m-special clique of order m − 2 then any
extension of K by an additional vertex is m-special.

(2) If K1 and K2 are m-special then their intersection has
order at least m− n+ 1.

Table 2. The m-special structure on A

Proof. More explicitly, if A is a structure of order N = m+n−3 given
in terms of a distinguished family of m-special cliques of orders m− 1
and m − 2, and the complementarity property is used to expand to
A∗ with the corresponding family of n-special cliques, then we claim
that the properties of Table 1 hold in the structure A∗ if and only if the
properties of Table 2 hold in the structure A. Since the complementarity
property defines the relationship between A and A∗ we may set that
condition aside.

Now consider property (2) for A∗, which we decode as follows: any
m-special clique K1 meets the complement of any clique K2 of order
m−1 or m−2 which is not m-special. In other words, if K1 is contained
in K2 then K2 must be special. This is the first condition in Table 2.

Now consider the third and last condition in Table 1: if K1 is m-
special and B is a subset of appropriate cardinality (n−1 if |K1| = n−1,
and n − 1 or n − 2 if |K1| = n − 2), then K2 = Bc is not m-special.
In other words, if K1, K2 are m-special, we require |K1\K2| < n− 1 or
|K1\K2| < n− 2 according as |K1| = m− 1 or m− 2, that is

|K1\K2| < |K1| − (m− n)

and |K1 ∩K2| ≥ m− n+ 1. □

We can make the presentation in Table 2 more manageable still by
passing to complements in a more literal sense: that is, by taking the
cliques of order n− 1 or n− 2 which are not n-special as distinguished.
Then our conditions become the following.

Taking this as our point of departure, we next count, or estimate, the
number of isomorphism types of structures on N = m+ n− 3-vertices
satisfying our conditions. So we consider a family of subsets of orders
n − 1 and n − 2, which we refer to as distinguished. Recall that these
are the ones which are not n-special under the embedding into GA—or,
to put matters another way. We can set that interpretation aside now
and work directly with the axioms.
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(1) Downward closure: if a clique of order n − 1 is not n-
special then any (n − 2)-clique contained in it is not
n-special.

(2) IfK1 andK2 are not n-special then their union has order
at most 2(n− 2). More explicitly, we have the following.

• If K1 has order n− 1 and K2 has order n− 2 they meet;
• if K1, K2 both have order n − 2 then their intersection
contains at least 2 vertices.

Table 3. The non-n-special structure on A

Namely, the family of distinguished cliques in A is closed down-
ward and satisfies the following intersection condition for K1, K2 dis-
tinguished.

If |K1| = n− 1 and |K2| = n− 2 then K1, K2 meet;

If |K1| = |K2| = n− 1, then K1 and K2 meet in at least two vertices.

For a general lower bound we can consider the structures obtained
by distinguishing any set of (n− 2)-cliques, and no (n− 1)-cliques. So
here we are simply counting (n− 2)-uniform hypergraphs on m+n− 3
vertices.

Another way to meet our conditions is as follows, which may well be
typical of cases with many (n− 1)-cliques distinguished (many m− 2-
cliques are special).

Definition 7.6. Let A be a set of N vertices and A0 a set of 2n − 4
vertices. Choose a family of subsets of A of orders n − 1 and n − 2,
to be called m-special, all of which are contained in A0, and are closed
downward.

Of course this second construction is a very limited one as the pa-
rameter m does not enter in.

Our main interest now is in the case n = 3, where the situation
degenerates.

Lemma 7.7. Under the assumptions of Case 2a, with n = 3, the struc-
ture A is a clique on m vertices with one of the following structures.

(1) There is no m-special clique of order m − 2 and the structure
on A is fully determined by the choice of m-special (m−1)-sets
(or 3-special vertices); or

(2) there is a unique m-special clique of order m − 2, and the m-
special cliques of order m − 1 are those which contain it, with
the rest determined by complementarity.
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In particular there are m+ 2 maximal existentially complete (Km +
K3)-graphs of type 2a.

Proof. Here N = m+ n− 3 = m.
We work with the complementary point of view as in Table 3. So

we have a distinguished family of edges (pairs of vertices) and vertices
which is downward closed, and our intersection condition includes the
constraint that all distinguished vertices lie on all distinguished edges.
So either there is exactly one distinguished edge with its vertices as
the distinguished vertices, or there are no distinguished edges and an
arbitrary set of distinguished vertices.

This gives 1 + (m + 1) = m + 2 structures, whose more natural
description is recovered by passing to the complements. □

If one moves on to n = 4, N = m + 1, then we need to select a
family of pairs and triples, downward closed, with all pairs and triples
meeting, and all triples having a pair in common.

On the one hand we can have no triples and an arbitrary graph on
m points, giving the dominant term. With exactly one triple T the
additional edges will consist of pairs (u, v) with v ∈ T , u /∈ T , and so
we need to count sequences a, b, c with

0 ≤ a ≤ b ≤ c; a+ b+ c ≤ m+ 3

giving roughly m3/36 possibilities.
With k > 1 triples sharing a common edge E the additional edges

consist of a vertex in E and a vertex in the remaining (m+1)−(k+2) =
m − k − 1 points, corresponding to pairs a, b with 0 ≤ a ≤ b and
a + b ≤ m − k − 1, summing the count over 2 ≤ k ≤ m − 1, for
approximately m3/12 structures. Finally we have the exceptional case
in which the triangles have no common edge. In this case their union has
order 4 and there are 3 or 4 triangles. If there are additional edges then
there are three triangles, with one common vertex, and the additional
edges contain this vertex. All together these exceptional case contribute
only 1 + (m− 2) = m− 1 additional structures.
One expects similar behavior for larger n, but this would involve

looking more closely at the consequences of the intersection conditions,
a topic which has been extensively studied in combinatorics.

8. Beyond balance

Lemma 8.1. Let G be an existentially complete (Km +Kn)-free graph
with maximal clique size N = m+n− 3. If two cliques A1, A2 of order
N have intersection A of order N − 1, then A is N-special.
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Proof. Let Ai = A ∪ {vi} for i = 1, 2.
We take an extension of G by a new vertex v extending A to a clique

of order N . It suffices to check that the extension is (Km +Kn)-free.
Otherwise, one has an embedding of Km + Kn into the extension,

which means that one of Km, Kn corresponds to a clique K contained
in A∪{v} and the other corresponds to a clique K ′ contained in G and
disjoint from K.
If K ∪ K ′ does not contain A1 ∪ A2 then we can replace v by an

element of A1 ∪ A2 and embed Km + Kn into G, for a contradiction.
ButK∩G ⊆ A, soK ′ contains the two vertices v1, v2 and hence A1∪A2

is a clique of order N + 1, a contradiction. □

Lemma 8.2. Let G be an existentially complete (Km +Kn)-free graph
with maximal clique size N = m + n− 3 and with no N-special clique
of order N−2. If two N-cliques A1, A2 have an intersection A of order
N − 2, then A is contained in two distinct N-special (N − 1)-cliques.

Proof. Let Ai = A ∪ {ui, vi}.

Claim 1. If A ∪ {u1} is not N -special, then there is an edge between
v1 and one of u2, v2.

We form an extension of G by a new vertex v extending A ∪ {u1}
to a new N -clique. If A ∪ {u1} is not special then the extension is not
(Km+Kn)-free and we have an embedding of Km+Kn as two disjoint
cliques K,K ′ where we may suppose that K contains the vertex v and
hence K ∩ G ⊆ A ∪ {u1}, while K ′ embeds into G. If the vertex v1
or both vertices u2, v2 lie outside K ∪ K ′ then we may replace the
vertex v by v1, or v and u1 by u2, v2, to embed Km +Kn into G, for a
contradiction.

So K ′ must contain v1 and one of u2, v2, proving the claim. We may
choose notation so that

(v1, v2) is an edge.

As G contains no (N + 1)-clique we find that (v1, u2) is not an edge.
If A ∪ {v1} and A ∪ {v2} are N -special then our lemma holds. Oth-

erwise, the previous claim shows that there is another edge between
{u1, v1} and {u2, v2} and as there is no triangle on these four points we
must have a 4-cycle (u1, v1, v2, u2).

Now we will reach a contradiction by showing that A is N -special.
So adjoin two new vertices w1, w2 extending A to an N -clique. It

suffices to show that the extension is (Km +Kn)-free.
Otherwise, we embed Km + Kn into the extension as K + K ′ with

K meeting {w1, w2} and we find K ⊆ A ∪ {w1, w2}, K ′ ⊆ G.
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Let C = (A1 ∪ A2) \ A, a 4-cycle. Now (K ∪K ′) ∩ C = K ′ ∩ C is a
clique, and hence misses a pair of vertices b1, b2 ∈ C joined by an edge.
Then we can replace the vertices of K \G by one or both of b1, b2 and
embed Km +Kn into G. □

Lemma 8.3. Let G be an existentially complete (Km +Kn)-free graph
with maximal clique size N = m + n − 3, with no N-special clique of
order N2, and with at most one N-special clique of order N−1. If there
is more than one N-clique in G then the intersection of all N-cliques
is an N-special clique A of order N − 1.

Proof. By Lemma 8.2 and our hypotheses, any twoN -cliques haveN−1
vertices in common. By Lemma 8.1 these intersections are N -special,
hence coincide, by our hypotheses. The lemma follows. □

Now continuing our analysis for the case N = m+n−3, and setting
aside cases 1 and 2, our assumptions are

(1) The maximal clique size is N = m+ n− 3.
(2) There is no N -special clique of order N − 2.
(3) There is no balanced N -clique.

By Lemma 7.3 we have at most one N -special clique of order N − 1
and thus we come down to the following possibilities, keeping Lemma
8.1 in mind.

• There is exactly one N -special clique of order N − 1, and the
N -cliques all contain it.

• There is exactly one N -clique.

Here we are getting into the weeds.
At the moment we are not making good use of the assumption that

there is no balanced N -clique and as a result it is possible that there
will be some overlap between the cases previously considered and the
remaining cases, which would be a point worth checking, if one wants
to make some definite claim about the exact value of c(m, 3).

8.1. Case 3. One N-special clique A of order N − 1. To recapit-
ulate, in Case 3 we have the following conditions.

(1) G is existentially complete (Km+Kn)-free with maximal clique
size N = m+ n− 3, where m > n ≥ 3.

(2) The intersection A of all N -cliques in G is an N -special clique
of order N − 1.

It is possible here that one of the N -cliques is balanced and we
might want to exclude such cases to avoid overlap with cases treated
previously. (Or rearrange the cases, eventually.)
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In Case 3 we examine the m-special and n-special cliques in A. The
cliques of order m−1 or n−1 are m-special and n-special, respectively,
so our concern is with the cliques of orders m−2 and n−2, and notably
with the partitions of A as (A1, A2) with |A1| = m−2 and |A2| = n−2.

Lemma 8.4. Under the assumptions of Case 3, if (A1, A2) is a par-
tition of A into sets of orders m − 2, n − 2 respectively, where A1 is
not m-special and A2 is not n-special, then there is a unique vertex v∗

outside A for which there are an m-clique K1 and an n-clique K2 such
that

Ki ∩ A = A1(i = 1, 2)

v∗ ∈ K1 ∩K2

Furthermore, there are at most two such vertices.

We do not claim that the various vertices of this type corresponding
to different partitions are necessarily distinct.

Proof.

Claim 1. There are cliques K1, K2 of orders m,n respectively so that
Ki ∩ A = Ai for i = 1, 2.

To find K1 we consider the extension of G by two new vertices ex-
tending A2 to an n-clique. As we suppose A2 is not n-special there is
an embedding of Km +Kn into this extension, and this is of the form
K1 + K ′

1 where K ′
1 contains one of the new vertices and hence is the

extension of A2 by these vertices. Thus K1 ⊆ G and K1 ∩ A ⊆ A1. If
K1 misses a point of A1 then after extending A to an N -clique A∗ by
a vertex outside A ∪K1, we can replace the two new vertices in K ′ by
two vertices of A∗ and embed Km +Kn into G, for a contradiction.

This gives the clique K1.
For the clique K2 we begin similarly with an extension by two new

vertices adjacent to the vertices of A1, and an embedding of Km +Kn

into the extension of the form K ′
2+K2 where K

′
2 contains a new vertex

and thus lies in A. Again K ′
2 ∪K2 must cover A, so K2 must cover A2.

Furthermore K ′
2 ∪ K2 must contain two vertices outside A, and they

must lie in K2. Since |K2| ≥ n, after shrinking K2 if necessary we find
a clique of order n whose intersection with A is A2.

This proves the claim.
The cliques K1, K2 must meet, so they contain at least one vertex

v∗ lying outside A. Furthermore (K1 ∩ K2) ∪ A is a clique, so the
intersection consists of one vertex. That is

K1 ∩K2 = {v∗}
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Claim 2. The vertex v∗ is unique.

Suppose on the contrary that K∗
1 is an m-clique containing A1 and

K∗
2 is an m-clique containing A2 with K∗

1 ∩K∗
2 = {w∗} and w∗ ̸= v∗.

ThenK1∩K∗
2 andK∗

1∩K2 both meet, and at least one does not contain
v∗. Therefore after replacing the pair (K∗

1 , K
∗
2) by either (K1, K

∗
2) or

(K∗
1 , K2), we may suppose that w∗ belongs to K1 or to K2, and hence

(v∗, w∗) is an edge, for a contradiction. This proves the claim, and the
lemma. □

Notation 8.5. For (A1, A2) a partition of A of shape (m − 2, n − 2)
for which A1 is not m-special and A2 is not n-special, let vA1,A2 be the
vertex afforded by the previous lemma.

Let A∗ be the union of A with the set of vertices vA1,A2 associated
to such partitions.

We view A∗ as equipped with the following data.

(1) A∗ carries the graph structure induced from G, with the subset
A distinguished. In particular, A is a clique.

(2) The distinguished family of subsets of A of order m− 2 which
are m-special, and the distinguished family of subsets of A of
order n− 2 which are n-special.

(3) For each vertex v of A∗, the non-empty collection of partitions
(A1, A2) of shape m− 2, n− 2 with neither part distinguished,
for which v = vA1,A2 .

We mention some properties of A∗.

(1) In any complementary pair of shape (m− 2, n− 2) at most one
of the two cliques is distinguished.

(2) If a subset of order m− 2in A is distinguished, then its subsets
of order n− 2 are distinguished.

This implies the following intersection condition: any two distin-
guished (m− 2)-sets must contain at least m−n+1 common vertices.

We then have the following constraints on G.

Lemma 8.6. Under the assumptions of Case 3, G satisfies the follow-
ing conditions.

(1) Every m-clique meets A in at least m − 2 elements; every n-
clique meets A in at least n− 2 elements.

(2) If an m clique K meets A in a set A1 of m− 2 elements, then
either A1 is m-special, or neither the vertex vA1,A2 is defined
with A2 = K\A1, and this vertex belongs to K; similarly for
n-cliques.
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Proof. As G is (Km + Kn)-free and A is N -special, the first point is
clear.

Now suppose that K is an m-clique and A1 = A ∩ K has m − 2
elements, and is not m-special. The complement is certainly not n-
special, as otherwise we embed Km +Kn directly, so the vertex vA1,A2

is defined, and is associated with a pair of cliques K1, K2 with K2 an
n-clique containing A2. Since K must meet K2 and the vertex vA1,A2 is
uniquely determined, it must lie in K. □

Now we associate to the finite structure A∗ the class AA∗ of finite
extensions of A∗ (as graphs) respecting the conditions of the previous
lemma. This is an amalgamation class with respect to free join and
thus there is a generic graph GA∗ associated with A∗.

Lemma 8.7. For A∗ as described, the graph GA∗ is maximal existen-
tially complete (Km + Kn)-free and induces the original structure on
A∗.

Proof.

Claim 1. GA∗ is (Km +Kn)-free.
Suppose toward a contradiction thatK1, K2 are cliques of ordersm,n

respectively which are disjoint. In particular K1, K2 induce a partition
(A1, A2) of A of shape m− 2, n− 2.
Since A1, A2 cannot both be distinguished in A∗, one of the cliques

is required to contain a vertex of the form vA1,A2 , and for this we must
have neither part distinguished, and hence both cliques contain vA1,A2 ,
for a contradiction.

The claim follows.
The designated cliques in A∗ become special in GA∗ since the relevant

finite structures satisfy the constraints imposed. In the case of cliques
of order m− 2, this depends on the condition of downward closure.

Claim 2. In any (Km +Kn)-free extension of GA∗ , the structurer im-
posed on A∗ is as given.

We claim that no other clique in A of order m−2 or n−2 can become
special. Suppose for example that A2 is a clique of order n− 2 which is
not distinguished in A∗, and A1 = A \ A2. If A1 is distinguished then
it is m-special in GA∗ and so A2 has no extension to an n-clique not in
A. If neither part is distinguished in A∗ then the vertex vA1,A2 prevents
A2 from becoming special.
The rest is clear and the claim follows.
From this it follows that the (Km+Kn)-free extensions of GA∗ embed

into GA∗ , that GA∗ is existentially complete, and that it is maximal.
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The lemma follows. □

It is possible that this construction will bring us back to an earlier
case. If A0 is a subset of A of order N − 2 and all its (m − 2)-subsets
are distinguished then A0 will become N -special in GA∗ . On the other
hand, this will uniquely determine the structure on A∗.

It remains to estimate the number of structures A∗ available. Here
we distinguish some (m− 2)-sets in A, close downward to (n− 2)-sets,
distinguish additional (n − 2)-sets, and on the set of complementary
pairs of shape (m− 2, n− 2) without distinguished parts we impose an
equivalence relation corresponding to the condition

vA1,A2 = vA′
1,A

′
2

If we use just one of our degrees of freedom we have the following
constructions.

(1) pick an (m− 2)-uniform hypergraph on A withe property that
any two hyperedges contain at least m−n+1 common vertices,
and close downward;

(2) pick an (n− 2)-uniform hypergraph on A;
(3) impose an equivalence relation on the set of all partitions of

shape (m− 2, n− 2).

The first two constructions give roughly 2(
m+n

n ) structures while the
third is counted up to isomorphism by the partition function p(

(
m+n−4
n−2

)
)

which is approximately

1√
48
(
m+n−4
n−2

)eπ√ 2
3(

m+n−4
n−2 ).

This is considerably smaller.
We come back finally to the contribution to c′m(m, 3). By the inter-

section condition there is at most one distinguished set of order m− 2.
So we have the following possibilities.

(1) There is a distinguished set of order m − 2. The distinguished
vertices are its members and there are no vertices vA1,A2 .

(2) There is no distinguished set of orderm−2. There are k ≤ m−1
distinguished vertices and an equivalence relation is imposed on
the remaining m− 1− k vertices.

Thus there is one structure of the first kind and there are
∑

k≤m−1 p(k)
structures of the second kind.

Thus the contribution to c′m(m, 3) (ignoring overlap) is

1 +
∑

k≤m−1

p(k).
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This appears to come out to approximately
√

6m
π
p(m) using the stan-

dard approximation for p(x), of about the same order of magnitude as
p(m).

8.2. Case 4. A unique N-clique. The hypotheses now are.

(1) G is existentially complete (Km+Kn)-free with maximal clique
size N = m+ n− 3, where m > n ≥ 3.

(2) There is a unique N -clique A in G.

Lemma 8.8. Under the assumptions of Case 4 the N-clique A is bal-
anced.

Proof.

Claim 1. If K,K ′ are cliques in G and

|(K ∪K ′) ∩ A| ≥ N − 1,

then K ∩K ′ ⊆ A.
Otherwise, let v ∈ (K ∩K ′)\A. Then [(K ∪K ′)∩A]∪{v} is a clique

of order at least N , contradiction our case assumption.
Now let (A1, A2) be a partition of A of type (m− 1, n− 2) or (m−

2, n− 1). If A1 is not m-special and A2 is not n-special then our usual
construction produces cliques K1, K2 of orders m and n respectively
with K1 ∩ A ⊆ A1, K2 ∩ A ⊆ A2. Furthermore if the type of the
partition is (m− 1, n− 2) then K2 ⊇ A2 and |A1 \K1| ≤ 1, while if the
type of the partition is (m− 2, n− 1) then K1 ⊇ A1 and |A2 \K2| ≤ 1.
In either case (K1 ∪K2) ∩ A ≥ N − 1 and then our first claim forces
K1, K2 to be disjoint, for a contradiction. □

As we have treated the balanced case earlier there is no need to deal
separately with this case.

At this point we have identified a cofinal collection of maximal exis-
tentially complete graphs determining c′m(m, 3) and counted the num-
bers in each case, though we have also noticed some overlap between
the contributions and there may be more.

The contributions were as follows.
Case 1 Case 2 Case 3 Case 4

1 m+ 2
∑

k≤m−1 p(k) + 1 0
There is an overlap of at least 1 so at the moment we have∑

k≤m−1

p(k) + 1 ≤ c′m(m, 3) ≤
∑

k≤m−1

p(k) +m+ 3,

with p the partition function. To get the exact number it would suffice
to review the cases again and check the overlap.
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So the complexity c(m, 3) is

c′m(m, 3) +m+ 4 ≈
∑

k≤m−1

p(k),

of about the same order of magnitude as p(m).
The count is dominated by existentially complete (Km + K3)-free

graphs with maximal clique size N = m+n− 3 having infinitely many
N -cliques, all of which are extensions of a fixed (N − 1)-clique by a
single vertex.

9. Concluding remarks

The last few sections, preceding, ought really to deal with some more
abstract issues, concerning the model companion T ∗ of the theory T
of graphs omitting a collection of sums of complete graphs. We paid a
good deal of attention to the algebraic closure of the empty set without
actually mentioning it or giving any relevant theory. A more systematic
approach would go as follows.

Conjecture 1. In any model of T ∗ we have the following.

(1) The algebraic closure of any set is its union with the algebraic
closure of the empty set.

(2) The algebraic closure of the empty set is finite, of bounded size
(and, most likely, not very large, related to bounds on the sizes
of maximal families of sets with intersection properties).

Furthermore, the completions of T ∗ are given by specifying the alge-
braic closure of the empty set. and are ℵ0-categorical.

The ℵ0-categoricity would follow from the other statements, via local
finiteness of the algebraic closure operation, modulo some generalities
about types in T ∗. All of this together would imply that the complex-
ity of this class is the number of completions of T ∗, and that all the
existentially complete models are maximal existentially complete.

This analysis is not necessarily limited to forbidden subgraphs of the
specified forms, but then the algebraic closure operator would become
less trivial and we would require a local finiteness condition very much
dependent on the structure of the forbidden subgraphs, as has already
been seen in the case of connected constraints, where T ∗ is complete
and the question is one of universality.

However all of that lies outside the possible scope of these notes.
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