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1. Statement of the problem

We conjecture that the triangle constraints in a homogeneous 2-multi-
tournament determine an amalgamation class. This conjecture has been
reduced to the elimination of four cases; these are patterns of forbidden
triangles which do not define an amalgamation class, but for which every
amalgamation problem of order 5 has a solution.

The elimination of this case by direct amalgamation methods is undoubt-
edly complicated, though there is a reasonable approach and in particular
with some computer assistance it should be manageable. And there is the
possibility that some new type of example would turn up, notably one in-
volving some additional constraints of order 4, though the work done so far
suggests this is unlikely, unless there is some underlying algebraic structure
that can be exploited.

We prove a very fragmentary result here to illustrate that one can work
effectively and systematically by focusing first on the consequences of 5-
amalgamation.

It will be helpful to introduce some terminology.

Definition 1.1. A hereditary class of finite 2-multi-tournaments is k-trivial
if every 2-multi-tournament of order at most k which contains no forbidden
triangle belongs to the class.

Then we aim to prove something like the following, for each of the classes
defined by a particular pattern of forbidden triangles which requires exclu-
sion.

(a) The class is 4-trivial (relying mainly on amalgamations of order 5).
(b) If the class if 4-trivial, a contradiction results (using amalgamations

of order 6).
More precisely, one should treat the second point first, seeing which con-

figurations of order 4 actually play a role, and then prove the corresponding
portion of the first point.
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The basis for the second point would be a consideration of all the amal-
gamation diagrams of order 6 with no solution, in which the four auxiliary
points are chosen so that each blocks one of the four possible 2-types by
completing a forbidden triangle.

In each case one of the two factors of order 5 is forbidden, and if the class
is 4-trivial then each of these factors can be represented in ten ways as the
result of an amalgamation determining one 2-type; each such has, a priori,
three possible solutions other than the forbidden factor, and in practice,
fewer if forbidden triangles occur for some of the solutions.

We consider what this means in the specific case (which we call Case 1)
in which monochromatic 3-cycles are forbidden and all other triangles are
realized.

C3(111), C3(222) are forbidden.(Case 1)
All other triangles are realized.

The shorthand notation used here—C3 for an oriented 3-cycle, and 111
for three 1-arcs, 222 for three 2-arcs—will be extended later to cover all
tournaments of order 4 and used very heavily in the discussion of step (a).

2. Diagrams of order 6

The elimination of Case 1 is easy in the 5-trivial case. In the 4-trivial case
(our step (b)) it is unclear, but we make a few comments.

The key amalgamation diagrams in the 5-trivial case have the following
form.
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This diagram has no solution, however it is completed, and it suffices to
complete it without introducing any monochromatic triangles in (u1, u2, v1, v2).

At the cost of possibly interchanging a1, a2 we may take a1
2−→ a2. There

are then 388 diagrams of this type, each imposing the condition that one of
the two factors of order 5 must be forbidden. In the 4-trivial case, each of
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these factors can be viewed as an amalgamation diagram determining the
type of one pair in ten ways, with factors present, so if a given factor is
forbidden then it gives rise to ten positive conditions on variants which must
be present.

In particular we have the extreme case of Figure 1 below.
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Figure 1. No solutions

Here, if the factor omitting a2 is viewed as an amalgamation diagram
determining the type of (u1, u2), then it has a unique solution. Thus assuming
4-triviality, the factor omitting a1 must be forbidden. Viewing this factor also
an amalgamation determining the type of (u1, u2), there is a unique solution
other than the given factor, so this must be realized. We may also reach the
same conclusions with 1-arcs or 2-arcs reversed, or colors interchanged.

It is not clear whether the desired contradiction can actually be reached
staying within the realm of diagrams of order at most 6, but it is clear that
one has a good deal to work with here.

3. Configurations of order 4

In the remainder of these notes we give some arguments using amalga-
mation diagrams of order at most 5 which are motivated by the problem
of showing 4-triviality (or some approximation thereof). The main result is
Lemma 3.4 which appears to be roughly half of the argument needed to show
that a particular configuration is realized (along with all its variants under
changes of language). As that already has a complicated argument—which
would need to be checked in detail before continuing—we stop at that point,
having laid out both a method (not very explicitly) and some useful notation.

On the methodological side, it will be clear that all of our arguments
involve an alternating sequence of amalagamation arguments of just two
types, and that one can lay out the tree of possible arguments of this type
systematically. With relatively modest assumptions on the configurations of
order 4 which are realized or forbidden this tends to lead to a reasonably
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efficient contradition in each case, and by subdividing cases according to
whether certain key configurations are realized or forbidden, one can arrive
at a useful result. As there are 132 2-multi-tournaments of order 4 one is
not going to work through the 2132 possible specifications by a brute force
computer search, but what one sees is the relevant exponent is not 132 but
something closer to 6.

3.1. Notation. We introduce notation for 2-multi-tournaments of order 4.

Notation 3.1. The four tournaments of order 4 are denoted L4 (transitive),
C4 (local order, not transitive), IC3 (vertex dominating a 3-cycle), and C3I
(3-cycle dominating a vertex).

The vertices of a tournament of order 4 are labeled 1–4 according to the

following scheme:

L4 Natural order
C4 4-cycle with 1→ 3, 2→ 4

IC3 1 dominates the 3-cycle (2,3,4)
C3I the 3-cycle (1, 2, 3) dominates 4

As we forbid monochromatic 3-cycles we may normalize further by taking
the colors of the first two arcs in the 3-cycles in IC3 or C3I to agree.

A 2-multi-tournament of order 4 is denoted by the symbol for the un-
derlying tournament and a list of the colors of the 6 edges in the following
standardized order.

L4 (1,2), (2,3), (3,4); (1,3),(2,4);(1,4)
C4 (1,2), (2,3), (3,4), (4,1); (1,3), (2,4)
IC3 (1,2), (1,3), (1,4); (2,3), (3,4), (4,2)
C3I (1,2), (2,3), (3,1); (1,4), (2,4); (3,4)

.

Thus our notations for 2-multi-tournaments of order 4 have the forms
L4(i1i2i3; j1j2; k), C4(i1i2i3i4; j1j2), IC3(i1i2i3; j1j2j3), and
C3I(j1j2j3; i1i2i3).

In what follows, we focus on the consideration of the configuration

L4(112; 21; 1)

A first objective in Step (a) in the treatment of Case 1 would be the
following.

Conjecture 1. In Case 1, the configuration L4(112; 21; 1) is realized.

Allowing for changes of language, this would give eight configurations of
order four realized.

So far we have pursued the analysis far enough to conclude the following.

Proposition 3.2. In Case 1, if the configuration L4(112; 21; 1) is forbidden,
then its reversal L4(211; 12; 1) is realized.

Allowing for changes of language, this has a total of 4 variants. An analysis
similar to the proof of the proposition is likely to prove the conjecture.

We discuss this in detail.
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3.2. C4(1111; 22) and C4(2222; 11). For the proof of the proposition one
can work exclusively with amalgamation diagrams of order at most 5. To
begin with, amalgamation diagrams of order 4 yield the following simple but
useful result.

Lemma 3.3. In Case 1, the configurations

C4(1111; 22) and C4(2222; 11)

are realized.

Proof.
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3.3. C4(1112; 22), L4(112; 11; 2), L4(211; 11; 2). We will rely systematically
on arguments based on amalgamation diagrams of order 4 or 5, which can
be represented very compactly in a manner we now describe.

For expository purposes we deal with the following, which should really
be treated as one claim in the proof of a lemma. The point is that this can
be proved by a single application of a general method, and we wish mainly
to establish our notation for the presentation of such arguments here.

Lemma 3.4. With the forbidden and realized triangles as in Case 1, suppose
the following.

L4(112; 21; 1), L4(211; 12; 1), and L4(122; 11; 1) are forbidden.

Then C4(1112; 22) is realized.

In the proof of this lemma, and again afterward, we use letter codes to refer
to some key configurations of order 4. To begin with, we have the following.

A: L4(112; 21; 1) C: L4(122; 11; 1)

B: L4(211; 12; 1) D: C4(1112; 22)

In the proof of Lemma 3.4, we will assume that configurations A–D are
forbidden, and arrive at a contradiction.

The proof is summarized in the following table. The notation will be ex-
plained in the proof.

Proof. We suppose toward a contradiction that the configuration C4(1112; 22)
is forbidden. We then arrive at a contradiction by a series of amalgamation
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# Clause Config. Source
1 Contradiction IC3(111; 221)1,2 #2, #3, #4
2 7 IC3(111; 221) #2.1, #2.2
3 7 IC3(211; 221) #3.1, #3.2
4 7 C4(2121; 21) #4.1, #4.2
2.1 7 (#2, #2.2) B12 + C12 C 7, A 7, B 7, #2.1.1
2.2 D12(2

−)X IC3(221; 221) D 7, #3
3.1 7 (#3, #3.2) C14 +A13 C 7, A 7, #4.1.1
3.2 C34(1

−)X L4(111; 12; 1) C 7, $3.2.1, #3.2.2
4.1 7 (#4,#4.2) C14 + C3(222) C 7, D 7, #4.1.1
4.2 X C4(2222; 11) Lemma 3.3
2.1.1 7 L4(212; 21; 1) #4.2, $2.1.1.1
3.2.1 7 L4(121; 11; 1) #3.2.1.1, #3.2.1.2
3.2.2 7 L4(112; 12; 1) #3.2.2.1, #3.2.2.2
4.1.1 7 C4(1222; 11) #3.1.1.1, #3.1.1.2
2.1.1.1 7 (#2.1.1, #4.2) C14 + C3(222) C 7, D 7

3.1.1.1 7 (#3.1.1,#3.1.1.2) A14 +D24 A 7, D 7

3.1.1.2 X C4(1111; 22) Lemma 3.3
3.2.1.1 7 (3.2.1,#3.2.1.2) C14 +A13 See #3.1
3.2.1.2 C12(2)X L4(222; 11; 1) C 7, A 7, #2.1.1
3.2.2.1 7 (#3.2.2,#3.2.2.2) A13 + C12 C 7, A 7, #2.1.1
3.2.2.2 C14(2)X L4(122; 11; 2) C 7, #3.1.1

Table 1. Proof of Lemma 3.4

arguments summarized by Table 1. We discuss in detail how to read the
table.

This table represents a sequence of numbered assertions, or more properly,
a tree, with earlier assertions depending on later ones (with some apparent
exceptions to this rule, which we will take note of).

The type of assertion made is indicated in the “Clause” column. In most
cases the precise content of the assertion is further indicated in the “Con-
figuration” column. The “Source” column refers to the supporting lines, or
previously known facts. The references to supporting lines should give a tree
structure, but to avoid duplication of branches some references cross over.
For example, line #3.2.2.2 refers back to line #3.1.1 rather than duplicating
the branch below that line.

The reading of a given line depends on which type of clause occurs. There
are four types, two of which require amalgamation arguments, and one of
which involve only tautologies, and one exceptional type which applies only
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to the first line. We discuss each of these types in detail, with a relevant
example.

• The contradiction: Line 1.
Line 1 is exceptional: it is the statement that a contradiction has been

reached. Typically we would expect the contradiction to be one of proposi-
tional logic (in which case no configuration would be given) but in the case
at hand we actually refer to an amalgamation argument in a notation which
is heavily used throughout. Namely, we see the following notation.

IC3(111; 221)1,2

This means that the configuration IC3(111; 221) is to be viewed as an amal-
gamation diagram of order 4 with the type of the pair (1,2) to be determined.
There are four possible solutions, one of which must be realized. However the
solution with a2

1−→ a1 involves a monochromatic 3-cycle and is discarded
without comment in the table. The other three solutions, with a1

1−→ a2,
a1

2−→ a2, a2
2−→ 1 correspond respectively to the configurations shown in

lines #2–4, and as we will see next, these lines assert that those configura-
tions are not realized. Hence the “source” of the contradiction is lines #2, #3,
#4, as listed in the “Source” column; and the configuration serves further to
indicate the nature of the contradiction.

Note in particular that any configuration containing a monochromatic 3-
cycle is dropped from explicit mention in the table.

• Forbidding a configuration. Example: Line #2.
The symbol “ 7” standing alone indicates that the configuration shown in

the configuration column is forbidden. This is reduced to two other asser-
tions, referenced in the source column, by propositional logic, as will be clear
momentarily.

Now we come to the substantive assertions, relying on amalgamation ar-
guments. These assertions may be either positive or negative.

• Realizing a configuration. Example: Line #2.2.
Here we have the clause entry “D12(2

−)X” and the configuration entry
“IC3(221; 221).” The main content of this is the assertion

XIC3(221; 221)

meaning that the displayed configuration is realized. We have also the nu-
merical code

D12(2
−)

which provides a particular way of viewing the configuration IC3(221; 221)
which is relevant to the proof. This notation represents the configuration
which is derived from the configuration D by replacing the type of (1, 2) by
1

2←− 2; here “2−” is a code for “ 2←−.” The result is the desired configuration
IC3(221; 221).
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The proof that the configuration D12(2
−) is realized goes as follows. View

the configuration D as an amalgamation diagram of order 4 in which the
type of the pair (1, 2) is to be determined. Eliminate all solutions other than
2

2−→ 1 to conclude.
The source column gives the references for the elimination of the other

solutions. One possible solution, 1 2−→ 2, would produce a monochromatic 3-
cycle and is therefore discarded without comment. The remaining solutions,
corresponding to 1

1−→ 2 or 2
1−→ 1, give D and IC3(211; 221), respectively.

Consequently in the source column there is a reminder that D is forbidden,
and a reference to line #3 where the configuration IC3(211; 221) is discussed.

A simplified presentation occurs in the case of line #4.2, since the desired
configuration is one which was treated earlier, and it suffices to cite the
relevant lemma as a source.

• Forbidding one of a pair of configurations. Example: Line #2.1.
This is the most elaborate of the four types of assertion.
The notation “ 7 (#2,#2.2)” signifies that at least one of the configura-

tions on display in lines #2, #2.2 is forbidden. Since line #2.2 states that
the configuration shown there is realized, this justifies the assertion in line
#2.

The method of proof in such cases involves an amalgamation diagram of
order 5. This amalgamation diagram is one that can be shown to have no
solution; hence one of its two factors must be forbidden, and these two fac-
tors will be the ones listed in the corresponding pair of lines. The source
column supports the assertion that no solution to the amalgamation prob-
lem is realized; more specifically, for those solutions not giving rise to a
monochromatic triangle, the source column will refer to a configuration of
order 4 which embeds in the purported solution and can itself be shown to
be forbidden.

To see this in detail, we first need to reconstruct the relevant amalga-
mation diagram. A rough description of that diagram will be found in the
configuration column, using a subscript notation similar to the one we saw
above.

We will work through this in detail in the case of line #2, where the
relevant description is as follows.

B12 + C12

Here B12 and C12 refer to amalgamation diagrams of order 4 corresponding
to B,C respectively, with the type of the pair (1,2) to be determined. These
are as follows.

The two diagrams agree on the vertices a1, a2, w so we may form an amal-
gamation diagram of order 5 by combining the two as shown below.

There is some ambiguity remaining, as we did not yet specify the type of
(u,w) here. In fact, the argument that this diagram does not have a solution
does not involve the type of (u,w), but of course the resulting factors do, and
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B12 + C12

the type must be chosen so as to produce the two factors already specified:
IC3(111; 221) and IC3(221; 221). We take w

2−→ u to get those factors.
Now in the source column for line #2 we find four entries corresponding

to the possible solutions of this diagram: a1
1−→ a2, a2

1−→ a1, a1
2−→ a2, or

a2
2−→ a1. By the construction of the diagram, two of these solutions will

involve either B or C, and a third solution turns out to be A. As these are
all assumed to be forbidden we need only eliminate the last possibility, which
is L4(212; 21; 1); this is dealt with in line #2.1.

This completes our discussion of line #2, and with this, we have covered
all four types of line occurring in the table.

Now the whole table may be read in this manner and from this one can
reconstruct an argument involving only two types of amalgamation diagram,
those of order 4 giving rise to positive conditions, and those of order 5 giving
rise to negative conditions. As this ends in a contradiction (working up the
table to the first line), the lemma follows. �

Notice that the table given on page 6 contains all the information needed
to reconstruct the full proof efficiently. We will continue to use this type of
notation in subsequent arguments, to give a compact representation of proofs
of this type.

The previous lemma has some useful corollaries, based on the following.

Lemma 3.5. Under the assumptions of Case 1, if L4(112; 21; 1) is forbidden
and C4(1112; 22) is realized, then L4(122; 11; 2) is forbidden.

Proof. Here the proof is very short but nonetheless we give it in tabular form.
As this is very short indeed, we elucidate once more. In line #1.1 the no-

tation A14+C3(222) references the following type of amalgamation diagram.
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# Clause Config. Source
1 7 L4(122; 11; 2) #1.1, #1.2
1.1 7 (#1, #1.2) A14 + C3(222) A 7

1.2 X C4(1112; 22) Hyp.
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A14 + C3(222)

However this is completed, the only possible solution is a1
1−→ a2, and then

A embeds. So this has no completion and one of the factors is forbidden.
Filling in the diagram with w

1−→ u and v
2−→ u yields the configurations

of lines #1.2 and #1 as factors. �

As the hypotheses of Lemma 3.5 are preserved by reversal of arcs, the
same applies to the conclusion. In particular, applying Lemma 3.4 we arrive
at the following.

Corollary 3.6. With the forbidden and realized triangles as in Case 1, sup-
pose the following.

L4(112; 21; 1), L4(211; 12; 1), and L4(122; 11; 1) are forbidden.

Then the configurations

L4(112; 11; 2), L4(211; 11; 2)

are forbidden.

3.4. L4(122; 11; 1). As stated, our goal is to show, under the hypotheses of
Case 1, that if L4(112; 21; 1) and L4(211; 12; 1) are both forbidden, then a
contradiction results.

A significant step toward this is given by the following lemma.

Lemma 3.7. Under the assumptions of Case 1, if L4(112; 21; 1) and L4(211; 12; 1)
are forbidden then L4(122; 11; 1) is realized.

We began working toward this in the previous section, where we also
presented the notation we use to represent amalgamation diagrams of this
type.

Proof. Suppose toward a contradiction that L4(112; 211; 1), L4(211; 12; 1),
and L4(122; 11; 1) are all forbidden.
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We recall some of our previous notation and introduce some additional
notation for key configurations.1

A: L4(112; 21; 1) E: L4(122; 11; 2) I: C4(1212; 22)

B: L4(211; 12; 1) F : L4(221; 11; 2) J : L4(211; 22; 1)

C: L4(122; 11; 1) G: C4(2111; 22)

D: C4(1112; 22) H: C4(1212; 12)

So now we are assuming that configurations A, B, C are forbidden.

Claim 1. L4(221; 22; 1) is forbidden.

We suppose the contrary, and then argue as follows, where the notation
is as in the previous case.

# Clause Config. Source
1. Contradiction #2, #3, #4
2. 7 (#3,#4) H13 + C3(222)

∗

(u 2−→ v, u
1−→ w)

#2.1, #2.2, #2.3

3. X C4(2222; 11) Lemma 3.3
4. X L4(221; 22; 1) Hyp.
2.1 7 H=C4(1212; 12) #2.1.1, #2.1.2
2.2 7 C4(2121; 21) #2.2.1, #2.2.2
2.3 7 C4(1212; 22) #2.3.1, #2.3.2
2.1.1 7 (#2.1, #2.1.2) G13 +G14 (w 1−→ u) #4, #2.1.1.1
2.1.2 X C4(1111; 22) Lemma 3.3
2.2.1 7 (#2.2, #2.2.2) G24 +A14 (w 2−→ u) A 7, #2.1.1.2
2.2.2 G14(2)X L4(211; 22; 2) #4, #2.1.1.1
2.3.1 7 (#2.3, #2.3.2) G13 +G14 (u 2−→ w) See 2.1.1
2.3.2 X C4(1112; 22) Hyp.
2.1.1.1 7 G=C4(2111; 22) #2.1.1.1.1,#2.1.1.1.2
2.1.1.1.1 7 (#2.1.1.1,

#2.1.1.1.2)
A14 + C3(222);
(u 2−→ v, w 1−→ u)

A 7

2.1.1.1.2 C14(2
−)X C4(1222; 11) C 7, #2.1.1.1.2.1

2.1.1.1.2.1 7 L4(122; 11; 2) #2.1.1.1.2.1.1, #2.3.2
2.1.1.1.2.1.1 7 (#2.1.1.1.2.1,

#2.3.2)
A14 + C3(222)

(v 2−→ u, w 1−→ u)
See #2.1.1.1.1

1Some of these may not be needed, in the end.
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This time, the contradiction in line 1 is a matter of propositional logic.
The amalgamation diagrams of order 5 are specified in detail and illustrated
after the table.
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A14 + C3(222)

The proof of our next claim will be very similar but longer.
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Claim 2. C3I(221; 211) is realized.

We suppose the contrary, and argue as shown in the following tables. The
contradiction comes from forbidding all completions of the diagram E34.

Part I
# Clause Config. Source
1 Contradiction E34 #2, #3, #4, #5
2 7 E34(1) = L4(121; 11; 2) #2.1, #2.2
3 7 E34(1

−) = L4(111; 22; 1) #3.1, #3.2
4 7 E34(2) = L4(122; 11; 2) #4.1, #4.2
5 7 E34(2

−) = L4(112; 22; 1) #5.1, #5.2
2.1 7 (#2, #2.2) F14 + F24 #2.1.1, #2.1.2
2.2 X N13(2) = L4(222; 11; 1) #2.2.1, #2.2.2
3.1 7 (#3, #3.2) G13 +G14 #3.1.1
3.2 X K12(2

−) = C4(2121; 21) #3.2.1, #3.2.2
4.1 7 (#4, #4.2) A14 + C3(222) A 7

4.2 X C4(1112; 22) Hyp.
5.1 7 (#5, #5.2) J13 +A∗12 C 7, A 7, J 7

5.2 X I34(1
−) = C3I(221; 212) #5.2.1, #5.2.2

2.1.1 7 L4(221; 11; 2) #2.1.1.1, #4.2
2.1.2 7 IC3(122; 112) #2.1.2.1, #2.1.2.2
2.2.1 7 C3I(221; 112) #2.2.1.1, #2.2.1.2
2.2.2 7 L4(222; 21; 1) #2.2.2.1, #2.2.2.2
3.1.1 7 C4(2111; 22) #3.1.1.1, #3.1.1.2
3.2.1 7 IC3(111; 221) #3.2.1.1, #3.2.1.2
3.2.2 7 IC3(211; 221) #3.2.2.1, #3.2.2.2
5.2.1 7 C4(1212; 22) #5.2.1.1, #4.2
5.2.2 7 C3I(221; 222) #5.2.2.1, #5.2.2.2
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Tracing contradiction: Part II
# Clause Config. Source

2.1.1.1 7 (#2.1.1, #4.2) B14 + C3(222) B 7

2.1.2.1 7 (#2.1.2, #2.2) J13 +B14 B 7, J 7

2.2.1.1 7 (#2.2.1, #2.2.1.2) F14 + F24 See #2.1
2.2.1.2 X C4(2222; 11) Lemma 3.3
2.2.2.1 7 (#2.2.2, #2.2.2.2) A24 + C14 A 7, #4
2.2.2.2 X A14(2) = L4(112; 21; 2) A 7

3.1.1.1 7 (#3.1.1, #3.1.1.2) A14 + C3(222) See #4.1
3.1.1.2 X C14(2

−) = C4(1222; 11) C 7, #4
3.2.1.1 7 (#3.2.1, #5.2) H14 + C14 (11) C 7, #4, #3.2.1.1.1
3.2.2.1 7 (#3.2.2, #3.2.2.2) B14 + C3(222) See #2.1.1.1
3.2.2.2 X C3I(221; 211) Hyp.
5.2.1.1 7 (#5.2.1, #4.2) G13 +G14 See #3.1
5.2.2.1 7 (#5.2.2, #5.2.2.2) H14 + C14 (12) C 7, #4, #3.2.1.1.1
5.2.2.2 X L24(2) = L4(222; 22; 1) #2.2.2, #5.2.2.2.1
3.2.1.1.1 7 C4(1212; 12) #3.2.1.1.1.1, #3.2.1.1.1.2
5.2.2.2.1 7 IC3(221; 221) #5.2.2.2.2.1, #3.2.2.2
3.2.1.1.1.1 7 (#3.2.1.1.1, #3.2.1.1.1.2) G13 +G14 See #3.1
3.2.1.1.1.2 X C4(1111; 22) Lemma 3.3
5.2.2.2.1.1 7 (#5.2.2.2.2, #2.1.2.2) A14 + F14 A 7, #2.1.1
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Now to conclude we make another elaborate argument in the same vein.
We give the relevant illustrations in considerable detail.

See the illustrations following for more detail on diagrams of order 5.
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Part I
# Clause Config. Source
1 Contradiction #2, #3, #4
2 7 (#3, #4) L24 + C3(111) #2.1, #2.2
3 X L34(2

−) = L4(222; 12; 2) #3.1, #3.2, #2.2
4 X N12(2

−) = C4(2221; 21) #4.1, #4.2
2.1 7 IC3(221; 221) #2.1.1, #2.1.2
2.2 7 L4(222; 22; 1) #2.2.1, #2.2.2
3.1 7 L4(221; 22; 1) Hyp.
3.2 7 L4(221; 12; 2) #3.2.1, #3.2.2
4.1 7 IC3(122; 221) #4.1.1, #4.1.2
4.2 7 IC3(222; 221) #4.2.1, #4.2.2
2.1.1 7 (#2.1,# 2.1.2) E34 + I∗23 #2.1.1.1, #2.1.1.2, #2.1.1.3, #2.1.1.4
2.1.2 X N13(1) = IC3(211; 221) #2.1.1.4, #4.2
2.2.1 7 (#2.2,# 2.2.2) J13 + F14 #2.2.1.1, #2.2.1.2, #2.2.1.3
2.2.2 X F13(2) = L4(221; 21; 2) #2.2.1.3, K 7

3.2.1 7 (#3.2,# 3.2.2) K23 + C∗14 C 7, #2.1.1.3, #3.2.1.1
3.2.2 X C24(2) = L4(122; 12; 1) C 7, #3.2.2.1
4.1.1 7 (#4.1,# 4.1.2) F13 + I23 #2.2.1.3, K 7, #2.1.1.4
4.1.2 X G34(2) = C4(2121; 22) #4.1.2.1, K 7, $4.1.2.2
4.2.1 7 (#4.2,# 4.2.2) J34 + I∗34 #4.2.1.1, #2.1.1.4, #3.1
4.2.2 X L23(1) = L4(212; 22; 1) #2.2
2.1.1.1 7 C4(2122; 11) #2.1.1.1.1, #2.1.1.1.2
2.1.1.2 7 L4(111; 22; 1) #2.1.1.2.1, #2.1.1.1.2
2.1.1.3 7 L4(122; 11; 2) #2.1.1.3.1, #2.1.1.3.2
2.1.1.4 7 C4(1212; 22) #2.1.1.4.1, #2.1.1.3.2
2.2.1.1 7 L4(211; 11; 2) #2.2.1.1.1, #2.1.1.1.2
2.2.1.2 7 C3I(221; 121) #2.2.1.2.1, #2.2.1.2.2
2.2.1.3 7 L4(221; 11; 2) #2.2.1.3.1, #2.1.1.3.2
3.2.1.1 7 L4(121; 22; 1) #3.2.1.1.1, #4.2.2
3.2.2.1 7 IC3(111; 221) #3.2.2.1.1, #2.1.2
4.1.2.1 7 C4(2111; 22) #4.1.2.1.1, #4.1.2.1.2
4.2.1.1 7 C3I(221; 212) #4.2.1.1.1, #4.2.1.1.2
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Part II
# Clause Config. Source

2.1.1.1.1 7 (#2.1.1.1, #2.1.1.1.2) A14 + C3(222) (b1) A 7

2.1.1.1.2 X G14(1) = L4(211; 22; 1) #4.1.2.1, 2.1.1.1.2.1
2.1.1.2.1 7 (#2.1.1.2, #2.1.1.1.2) F14 +B14 B 7, #2.2.1.3
2.1.1.3.1 7 (#2.1.3.1, #2.1.3.1.2) A14 + C3(222) (a) See 2.1.1.1.1
2.1.1.3.2 X C4(1112; 22) Hyp.
2.1.1.4.1 7 (#2.1.1.4, #2.1.1.3.2) G13 +G14 #4.1.2.1
2.2.1.1.1 7 (#2.2.1.1, #2.1.1.1.2) F13 + J13 #2.2.1.3, K 7, J 7

2.2.1.2.1 7 (#2.2.1.2, #2.2.1.2.2) H13 +H∗13 #2.2.1.2.2.1„ #2.1.1.4
2.2.1.2.2 X I12(1

′) = IC3(212; 221) #2.1.1.4, #4.2
2.2.1.3.1 7 (#2.2.1.3, #2.1.1.3.2) B14 + C3(222) B 7

3.2.1.1.1 7 (#3.2.1.1, #4.2.2) C14 + C3(222)
∗ C 7, #2.1.1.3

3.2.2.1.1 7 (#3.2.2.1, #2.1.2) B12 +A∗12 A 7, C 7, B 7, #2.2.1.1
4.1.2.1.1 7 (#4.1.2.1, #4.1.2.1.2) A14 + C3(222) (b2) See 2.1.1.1.1
4.1.2.1.2 X C14(2

′) = C4(1222; 11) C 7, #2.1.1.3
4.2.1.1.1 7 (#4.2.1.1, #2.1.2) C14 + C3(222)

∗ See 3.2.1.1.1
2.1.1.1.2.1 7 L4(211; 22; 2) #2.1.1.1.2.1.1, #2.1.1.1.2.1.2
2.1.1.1.2.1.1 7 (#2.1.1.1.2.1,

#2.1.1.1.2.1.2)
J13 + C12 C 7, #2.2.1.2, J 7

2.1.1.1.2.1.2 X J13(1) = L4(221; 12; 1) #2.2.1.2, J 7

This last contradiction completes the proof. (Illustrations follow.)
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