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0. Introduction

A group of finite Morley rank is a group equipped with a notion of dimension
satisfying various natural axioms [8, p. 57]; these groups arise naturally in model
theory, expecially geometrical stability theory. The main examples are algebraic
groups over algebraically closed fields, where the notion of dimension is the usual
one, as well as certain groups arising in applications of model theory to diophantine
problems, where the notion of dimension comes from differential algebra rather
than algebraic geometry. The dominant conjecture is that all such simple groups
are algebraic.

Algebraicity Conjecture (Cherlin/Zilber). A simple group of finite Morley
rank is an algebraic group over an algebraically closed field.

Much work towards this conjecture involves local analysis in an inductive setting
reminiscent of the classification of the finite simple groups, but without transfer
arguments or character theory.

Other methods have emerged recently in the study of groups of finite Morley
rank, and have led to a number of advances. Among the characteristic features of
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this recent work are the systematic use of generic covering arguments, which will
be met with below, as well as the study of divisible abelian p-subgroups (commonly
known as p-tori), with which we will also be occupied here.

Such p-tori may always be viewed as semisimple. However, there are difficulties
when one wishes to view individual p-elements as either semisimple or unipotent.
For example, even a connected solvable p-group of a group of finite Morley rank
is merely a central product, not necessarily a direct product, of a p-torus and a
definable connected nilpotent p-subgroup of bounded exponent (commonly known
as a p-unipotent subgroup). Elements in the intersection have an ambiguous charac-
ter. Our main objective here is to obtain several results concerning that p-torsion
in connected groups of finite Morley rank which is semisimple in a robust sense
involving the absence of p-unipotent subgroups.

As our groups have elements of infinite order, we say p⊥-group and π⊥-group
when the group has no p-torsion, or no p-torsion for any prime p ∈ π. Alternatively,
a group G of finite Morley rank is said to have p⊥ type if it contains no nontriv-
ial unipotent p-subgroup, and similarly π⊥ type if p⊥ type for any prime p ∈ π.
For the case p = 2, the connected 2⊥-groups of finite Morley rank are exactly the
connected groups of degenerate type by [5], while the groups of finite Morley rank
of 2⊥ type comprise both odd and degenerate type. The classification project now
focuses exclusively upon simple groups of 2⊥ type because the Algebraicity Conjec-
ture holds in the presence of a 2-unipotent subgroup [2]. The results of the present
paper will have numerous applications to classification problems, beginning with
the Generation Theorem of [7] — or strictly speaking, beginning with some earlier
papers that could have been shortened had the results been available at the time.

The main results are Theorems 1–5 below. We expect each of them to find fur-
ther use. The last three are intended to be less technical and more readily applicable
than the first two, but they do not exhaust the information that can be extracted
from the more technical results. Two of the results, stated as Theorems 2* and 3*
below, are given in more general forms in the text.

The first section expands upon [10] and clarifies the nature of the generic ele-
ment of G.

Theorem 1. Let G be a connected group of finite Morley rank, p a prime, and let
a be a generic element of G. Then

(1) the element a commutes with a unique maximal p-torus Ta of G,

(2) the definable hull d(a) contains Ta, and
(3) if G has p⊥ type then d(a) is p-divisible.

The next section contains a new genericity argument for cosets.

Theorem 2∗. Let G be a group of finite Morley rank, let a be a p-element in G

such that CG(a) has p⊥ type, and let T be a maximal p-torus of CG(a) (possibly
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trivial). Then

⋃
(aC◦

G(a, T ))G◦
is generic in aG◦.

These two technical results are the main ingredients in the following robust
criterion for semi-simplicity.

Theorem 3∗. Let G be a connected group of finite Morley rank, p a prime, and a

any p-element of G such that C◦
G(a) has p⊥ type. Then a belongs to a p-torus.

Theorem 3* has an immediate consequence for the structure of Sylow
p-subgroups, i.e. maximal solvable p-subgroups.

Corollary 3∗. Let G be a connected group of finite Morley rank of p⊥ type, and T

a maximal p-torus of G. Then any p-element of CG(T ) belongs to T .

Our fourth section further exploits the genericity argument for cosets to prove
conjugacy of Sylow p-subgroups.

Theorem 4. Let G be a group of finite Morley rank of p⊥ type. Then all Sylow
p-subgroups are conjugate.

We note that the Sylow 2-subgroups are known to be conjugate in general groups
of finite Morley rank [8, Theorem 10.11], while for general p, conjugacy is known
in solvable groups of finite Morley rank [8, Theorem 9.35].

Our last topic concerns the so-called Weyl group, which for our present purposes
may be defined as follows.

Definition. Let G be a group of finite Morley rank, and T a maximal divisible
abelian torsion subgroup of G. The Weyl group of G is the group NG(T )/C◦

G(T ).

The maximal divisible abelian torsion subgroups of G are conjugate by [10], so
this group is well-defined up to conjugacy and in particular up to isomorphism.
Furthermore, it is finite since N◦

G(T ) = C◦
G(T ) [8, Theorem 6.16].

Theorem 5. Let G be a connected group of finite Morley rank. Suppose the Weyl
group is nontrivial and has odd order, with r the smallest prime divisor of its order.
Then G contains a unipotent r-subgroup.

In particular, a connected group G of finite Morley rank of degenerate type with
a nontrivial Weyl group will contain unipotent torsion.

All of these results will be needed in [7]. The Torality Theorem (Theorem 3)
should be quite useful subsequently in the analysis of particular configurations
associated with classification problems in odd type groups. Indeed, the corollary
to Theorem 3 is also given for p = 2 in [6], where it is applied to the study of
generically multiply transitive permutation groups.
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Outside material will be introduced as needed, but much of this occurs already
in the first section. Any facts used without explicit mention can be found in [8].

1. Generic p-Divisibility

We begin by analyzing the generic element of a connected group of finite Morley
rank. We use the notation d(a) for the definable hull of an element a, defined to
be the intersection of all definable subgroups containing a. The definable hull of a
divisible abelian torsion subgroup of G is called a decent torus.

Theorem 1. Let G be a connected group of finite Morley rank, p a prime, and let
a be a generic element of G. Then

(1) the element a commutes with a unique maximal decent torus Ta of G,

(2) the definable hull d(a) contains Ta, and
(3) if G has p⊥ type then d(a) is p-divisible.

Here we consider only elements a whose type over ∅ is generic. When G is of p⊥

type there need not be any generic definable set X such that d(a) is p-divisible for
every element of X . Indeed, with G an algebraic torus in characteristic other than
p, that stronger claim fails. In this case the generic element has infinite order, but
every infinite definable set contains p-elements of finite order, and for such elements
d(a) = 〈a〉.

The idea of the proof is to replace the group G by the centralizer of one of
its maximal decent tori. This depends on the main result of [10], which is closely
related to point (1) above.

Fact 1.1 [10]. Let G be a group of finite Morley rank. Then all maximal decent
tori of G are conjugate. Furthermore, if T is a maximal decent torus of G, then
there is a generic subset X of the group Co

G(T ) such that

(1) X ∩ C◦
G(T )g = ∅ for g /∈ NG(T ), and

(2)
⋃

XG is generic in G.

In particular Fact 1.1 states that any element of the generic definable set
⋃

XG

commutes with a unique conjugate of T , or in other words with a unique maximal
decent torus of G. So we have our first point:

Lemma 1.2. Let G be a connected group of finite Morley rank, and let a ∈ G be
generic over ∅. Then C◦

G(a) contains a unique maximal decent torus Ta of G.

Our next point is that Ta is contained in d(a), and at this point we must work
not with the generic set X , but with the type of a itself generic. In this situation
there are two notions of genericity which are relevant: genericity in the group G,
and genericity in the subgroup C◦

G(Ta), but again by Fact 1.1 these two notions can
be correlated. Indeed, the next result is a direct reformulation of Fact 1.1.
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Lemma 1.3. Let G be a connected group of finite Morley rank, and T0 a maximal
decent torus. Then an element a ∈ C◦

G(T0) is generic over ∅ in G if and only if the
following hold.

(1) T0 is generic over ∅, in the set of maximal decent tori;
(2) The element a is generic in the group C◦

G(T0) over the canonical parameter
for T0.

A word on terminology: as a definable set, T0 can be viewed as an “imaginary
element” of G, and the canonical parameter for T0 is simply this element. As this
may be identified with T0 itself, one may speak of genericity “over T0”. The natural
language for discussing the group C◦

G(T0) treats this parameter as a distinguished
constant; it is interdefinable with C◦

G(T0).

Proof. Suppose first that a is generic. Then T0 = Ta.
We show that T0 is generic over ∅. If T0 belongs to a ∅-definable family T in Geq

(a uniformly definable family in G) then a belongs to the set U :=
⋃

T∈T C◦
G(T ). If

the family T is nongeneric in the set of maximal decent tori, then U is nongeneric
in G, a contradiction — the failure of genericity is immediate by a rank calculation.

Now we show a is generic over the canonical parameter t0 for T0, in CG(T0). If
a belongs to some nongeneric set Yt0 ⊆ C◦

G(T0), where Yt0 is defined over t0, then a

belongs to the ∅-definable nongeneric set
⋃

Tt∈T Yt, where again the nongenericity
follows by a direct rank calculation.

Now suppose T0 is generic over ∅ and a ∈ C◦
G(T0) is generic over the parameter

t0. Suppose that a belongs to the ∅-definable subset Y of G. Let Y0 = Y ∩C◦
G(T0).

As a ∈ Y0, the set Y0 is generic in C◦
G(T0). The set T of conjugates T of T0 for

which Y ∩ C◦
G(T ) is generic in C◦

G(T ) is ∅-definable and contains T0, and hence T
is generic in the set of conjugates of T0. It then follows from Fact 1.1(2) that Y is
generic in G.

We will also need some general properties of definable quotients.

Lemma 1.4. Let G be a group of finite Morley rank, A ⊆ G, H a normal A-
definable subgroup of G, and Ḡ := G/H.

(1) If an element a ∈ G is generic over A then its image ā in Ḡ is generic over A.
(2) If T is a maximal decent torus of G, and H is solvable, then the image T̄ of T

in Ḡ is a maximal decent torus of Ḡ.

The first point has already occurred in a special form above, and is also contained
in [11, Lemme 6.2].

Proof. Ad 1. Suppose V̄ is an A-definable subset of Ḡ containing ā, with preimage
V in G. As V contains a it is generic. But rk(V ) = rk(V̄ ) + rk(H) and thus V̄ is
generic in Ḡ. Thus ā is generic in Ḡ.
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Ad 2. Let Tp be the p-torsion subgroup of T . It suffices to show that T̄p is a
maximal p-torus of Ḡ. Let Sp be the preimage in G of a maximal p-torus S̄p of
Ḡ containing T̄p. We may suppose that G = d(Sp) and thus G is solvable. Now
let P be a Sylow p-subgroup of G containing Tp. Then P̄ is a Sylow p-subgroup
of Ḡ by [4]. It now follows from conjugacy of Sylow p-subgroups that P̄ contains
a maximal p-torus of Ḡ. But as P is a solvable p-group, P ◦ = Tp ∗ Up with Up

unipotent [8, Corollary 6.20], so T̄p is the maximal p-torus of P̄ , and hence is a
maximal p-torus of Ḡ.

Lemma 1.5. Let G be a connected group of finite Morley rank and a ∈ G generic.
Then d(a) contains Ta.

Proof. Treating the parameter Ta as a constant, and bearing in mind Lemma 1.3,
we may suppose that a is a generic element of C◦

G(Ta), and Ta is ∅-definable. Hence
we may replace G by C◦

G(Ta), assuming therefore that

G contains a unique maximal decent torus T , which is central in G.

Let T1 be the definable hull of the torsion subgroup of d(a) ∩ T . As T is taken
to be ∅-definable, the torsion subgroup of T is contained in acl(∅) and hence the
definable set T1, treated as another parameter, is also in acl(∅). Thus ā is generic
in the quotient Ḡ := G/T1, and in this quotient T̄ := T/T1 is a maximal decent
torus. So replacing G by Ḡ, we may suppose that d(a)∩T is torsion free. It suffices
to show that T = 1.

By [8, Ex. 10, p. 93], d(a) = A⊕C is the direct sum of a divisible abelian group
A and a finite cyclic group C. If n = |C|, then for any multiple N of n, we have
d(aN ) = A. On the other hand, for any torsion element t ∈ T , the element a′ = at is
also generic over ∅ and hence a′ and a realize the same type. Letting N be a multiple
of n and the order of t, it follows that d((a′)n) = d((a′)N ) = d(aN ) = d(an) and
thus tn ∈ d(an) ≤ d(a). Now by our reductions d(a) contains no p-torus for any p,
and hence the torsion part of d(a) has bounded exponent. Thus tn has bounded
exponent, with t varying and n fixed, and so T = 1 as claimed.

For the final point in Theorem 1 we prepare the following, which is a minor
variation on Fact 1.7 below.

Lemma 1.6. Let G be a connected group of finite Morley rank, p a prime, and T

a maximal p-torus of G. Suppose that T is central in G and a is a p-element of G

not in T . Then C◦
G(a) contains a nontrivial p-unipotent subgroup. In particular, if

G is of p⊥ type then all p-elements in G belong to T .

Here we employ one of the main results of [5].

Fact 1.7 [5, Theorem 4]. Let G be a connected group of finite Morley rank,
and let a ∈ G be a nontrivial p-element. Then CG(a) contains an infinite abelian
p-subgroup.
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Proof of Lemma 1.6. Observe first that the p-torsion subgroup of d(T ) is T ,
and thus a /∈ d(T ). Now passing to a quotient as in the previous argument we may
suppose that T = 1 and G contains no p-torus. So C◦

G(a) contains a nontrivial
p-unipotent subgroup by Fact 1.7.

We turn to the last point in Theorem 1.

Lemma 1.8. Let G be a connected group of finite Morley rank of p⊥ type, and
a ∈ G a generic element. Then d(a) is p-divisible.

Proof. As we have seen above, we may suppose that Ta is central in G and ∅-
definable. The group d(a) is an abelian group of finite Morley rank, and hence has
the form A⊕C for some p-divisible abelian group A, and some p-group C of bounded
exponent by [8, Ex. 10, p. 93]. Since G is of p⊥ type, C ≤ Ta by Lemma 1.6. As
Ta ≤ d(a) by Lemma 1.5, Ta ≤ A and d(a) = A is p-divisible.

Now Theorem 1 is contained in Lemmas 1.2, 1.5, and 1.8.

2. Coset Genericity

In this section, we prove a generic covering theorem. Theorems of this type have
played an increasing role in the analysis of connected groups of finite Morley rank.
Our aim here is to show that for a p-element a of a group G of p⊥ type, the
union of the conjugates of C◦

G(a) is generic in G. This improves on the analysis
carried out in [5] for groups of p-degenerate type. In order to prove this, we need
to sharpen it substantially and identify a subgroup of C◦

G(a) actually responsible
for the genericity. The precise result we aim at is the following, which generalizes
the result in several directions, notably by allowing the element a to lie outside the
connected component of G.

We formulate this analysis using a more general set of primes π, as opposed
to the single prime p used in the introductory statement. A π-torus is a divisible
abelian π-group. Similarly π⊥ type means p⊥ type for all p ∈ π.

Theorem 2. Let G be a group of finite Morley rank, let a be a π-element in G

such that CG(a) has π⊥ type, and let T be a maximal π-torus of CG(a) (possibly
trivial). Then ⋃

(aC◦
G(a, T ))G◦

is generic in aG◦.

In particular ⋃
(aC◦

G(a)G◦
) is generic in aG◦.

Generic covering theorems have involved definable subgroups more often than
cosets. The following covering lemma, given in [5], is well adapted to the case of
cosets.
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Fact 2.1 [5, Lemma 4.1]. Let G be a group of finite Morley rank, H a definable
subgroup of G, and X a definable subset of G. Suppose that

rk


X

∖ ⋃
g/∈H

Xg


 ≥ rk(H).

Then rk(
⋃

XG) = rk(G).

The following property of generic subsets of cosets is very well known for sub-
groups, but occurs more rarely in its general form.

Lemma 2.2. Let G be a group of finite Morley rank, H a connected definable
subgroup, and X a definable generic subset of the coset aH. Then 〈X〉 = 〈aH〉 =
〈a, H〉.

Proof. The second equality is purely algebraic, and clear. For the first, an appli-
cation of genericity and connectedness shows that H ≤ 〈X〉, and thus aH ⊆ 〈X〉.

Proof of Theorem 2. We will use the notation NG(X) here for arbitrary subsets
of G, not just subgroups, with its usual meaning: the setwise stabilizer of X under
the action of G by conjugation.

Let T be the set of maximal π-tori of C◦
G(a). We observe first that T may

be identified with a definable set in Geq. Indeed, it follows from the conjugacy of
maximal decent tori that maximal π-tori are conjugate under the action of the
group

Ga = C◦
G(a)

so T corresponds naturally to the right coset space NGa(T )\Ga for any T ∈ T ,
and NGa(T ) = NGa(d(T )) is definable. As the elements of T are not necessarily
definable themselves, this identification should be used with circumspection.

As the maximal π-tori of CG(a) are conjugate, we may suppose that the π-torus
T ∈ T is chosen generic over a. Set

H := C◦
G(〈a, T 〉)

which enters the picture most naturally here as C◦
C◦

G(a)(T ). Then T is the unique
maximal π-torus in H , and we aim to show that

rk
(⋃

(aH)G◦)
= rk(G◦).

Let Ĥ be the generic stabilizer of aH , defined as

{g ∈ G : rk((aH) ∩ (aH)g) = rk(aH)}.
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This is a definable subgroup of G. We claim

rk(Ĥ) = rk(H). (2.1)

Since a is an element of finite order normalizing (even centralizing) H , the group
〈a, H〉 is definable, with 〈a, H〉◦ = H . Applying the preceding lemma,

Ĥ ≤ NG(〈a, H〉) ≤ NG(〈a, H〉◦) = NG(H) ≤ NG(T ).

Thus Ĥ◦ ≤ CG(T ).
We claim that any π-element u of 〈a, H〉 lies in the abelian group 〈a, T 〉: indeed,

the π-group U = 〈u, a〉 has the form U0〈a〉 with U0 = U∩H . We claim that U0 ≤ T .
For this, it suffices to show that any π-element u′ ∈ U0 belongs to T . But this holds
by Lemma 1.6.

Therefore 〈a, H〉 contains only finitely many elements of the same order as a,
and as Ĥ acts by conjugation on these elements, we have Ĥ◦ ≤ C◦

G(a) and thus
Ĥ◦ ≤ C◦

G(〈a, T 〉) = H . So (2.1) holds.
We would like to apply the generic covering lemma, Fact 2.1, with X = aH and

with H (in the lemma) equal to Ĥ (here). For this, it suffices to verify the condition

rk


aH

∖ ⋃
g/∈Ĥ

(aH)g


 = rk(H). (∗)

Now suppose x ∈ aH is generic over the parameters a and T (really, d(T )). We
claim that both

x centralizes a unique maximal π-torus of C◦
G(a), namely T , and (2.2)

a ∈ d(x) (2.3)

Clearly x = ah with h ∈ H generic over a and T . Since T is itself generic
over a, h realizes the type of a generic element of C◦

G(a) over a (Lemma 1.3). By
Theorem 1(1) for p ∈ π, h centralizes a unique maximal p-torus of C◦

G(a) for p ∈ π,
and hence so does x. So (2.2) follows.

As C◦
G(a) has π⊥ type, d(h) is π-divisible by Theorem 1(3). So, for any π-number

q, the quotient d(h)/d(hq) is a q-divisible group of exponent at most q, and hence
trivial: d(h) = d(hq). Let q be the order of a. Then d(xq) = d(aqhq) = d(hq) = d(h).
So h ∈ d(x), and hence also a ∈ d(x), giving (2.3).

If (∗) fails, then aH ∩
⋃

g/∈Ĥ(aH)g is generic in aH , so, as x ∈ aH is generic
over the parameters a and T , we have xg ∈ aH for some g /∈ Ĥ . As x, xg ∈ aH ,
d(x) and d(xg) both commute with T , and therefore d(x) also commutes with T g−1

.
Since a ∈ d(x), we have T g−1 ≤ C◦

G(a). By (2.2) it follows that T = T g−1
, that is

g ∈ NG(T ).
Again, since a ∈ d(x), the element ag ∈ d(xg) lies inside 〈a, H〉. Of course

ag ∈ 〈a, T 〉 since a has order q. Since g ∈ NG(T ) this gives g ∈ NG(〈a, T 〉). So g nor-
malizes H = C◦

G(〈a, T 〉) as well. Therefore (aH)g = (xH)g = xgHg = xgH = aH ,
and g ∈ Ĥ, a contradiction. So (∗) holds, and our result follows by Fact 2.1.
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3. Torality

We now prove the main result of the paper. Again, we formulate this in a technical
form slightly more general than the original statement, using a set of primes π.

Theorem 3. Let G be a connected group of finite Morley rank, π a set of primes,
and a any π-element of G such that C◦

G(a) has π⊥ type. Then a belongs to a π-torus.

Theorem 3 has the following direct corollary.

Corollary 3.1. Let G be a connected group of finite Morley rank with a π-element
a such that CG(a) has π⊥ type. Then a belongs to any maximal π-torus of CG(a).

Proof. By Theorem 3, there is a maximal π-torus T containing a. By Fact 1.1,
any maximal π-torus in CG(a) is C◦

G(a)-conjugate to T , and so contains a.

This imposes very strong restrictions on a simple group G of finite Morley rank.
For π = {2}, the outstanding structural problems concern groups of 2⊥ type (i.e.
odd or degenerate type). In this context, our results impose constraints on the
structure of a Sylow 2-subgroup, which will be developed in [7].

For the proof, we use the following variation on Fact 1.7 [5, Theorem 4]. This
lemma is due to Tuna Altinel.

Lemma 3.2 (Altinel). Let G be a connected group of finite Morley rank, and let
a ∈ G be a nontrivial π-element. Then CG(a) contains an infinite abelian p-subgroup
for some p ∈ π.

For the proof, we require the following.

Fact 3.3 ([3]; [9, Fact 3.2]). Let G = H � T be a group of finite Morley rank
with H and T definable. Suppose T is a solvable π-group of bounded exponent and
Q � H is a definable solvable T -invariant π⊥-subgroup. Then

CH(T )Q/Q = CH/Q(T ).

Proof of Lemma 3.2. We may take G to be a minimal counterexample. So in
particular C◦

G(a) is a π⊥-group by Fact 1.7. Of course, G does contains an infinite
abelian p-group for some p ∈ π by Fact 1.7. So clearly a /∈ Z(G).

As Z◦(G) has no π-torsion, CG/Z◦(G)(a) = CG(a)/Z◦(G) by Fact 3.3. So
C◦

G/Z◦(G)(a) has no π-torsion by [8, Ex. 11, p. 93 or Ex. 13c, p. 72]. Thus Z◦(G) = 1
by minimality of G.

We now show that a∈ d(x)∩ aC◦
G(a) for any x∈ aC◦

G(a). Let K := d(x)∩C◦
G(a).

So x is a π-element in d(x)/K. By [8, Ex. 11, p. 93], xd◦(x) contains a π-element
b. As C◦

G(a) is a π⊥-group, a is the unique π-element in aC◦
G(a) ⊇ xK. Thus

a = b ∈ d(x), as desired.
By Theorem 2,

⋃
(aC◦

G(a))G is generic in G. We show that G has no divisible
torsion. Otherwise, choose a maximal decent torus T of G. By Fact 1.1,

⋃
C◦

G(T )G
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is generic in G too, and hence meets aC◦
G(a) in an element x. So a ∈ d(x) lies inside

some C◦
G(T )g with g ∈ G. But CC◦

G(T )g (a) is still a π⊥-group, contradicting the
minimality of G.

As C◦
G(a−1) = C◦

G(a),
⋃

(a−1C◦
G(a))G is also generic in G, by Theorem 2. So

there is some x ∈ a−1C◦
G(a) ∩ (aC◦

G(a))g for some g ∈ G. As above ag and a−1

are the only π-elements in (aC◦
G(a))g and a−1C◦

G(a), respectively. So ag = a−1. It
follows that G has an involution in d(g).

We recall that B(G) is the subgroup of G generated by all its 2-unipotent
subgroups. As G has no divisible torsion, G has even type by [5], but has no alge-
braic simple section. So B(G) is a 2-unipotent subgroup normal in G, by the Even
Type Theorem [2, Main Theorem and Proposition II 6.2]. Now Z◦(B(G)) �= 1
by [8, Lemma 6.2].

Since ag = a−1, there is a 2-element u in d(g) such that au = a−1. As G/B(G)
is 2-torsion-free by [5], we find u ∈ B(G) and a−2 = [a, u] ∈ B(G). Then a is a
2-element, so a belongs to B(G) and 2 belongs to π, contradicting that C◦

G(a) ≥
Z◦(B(G)) is a π⊥-group.

Proof of Theorem 3. We may suppose that a is nontrivial. By Lemma 3.2,
there is a non-trivial π-torus T of C◦

G(a), which we take maximal in C◦
G(a). Set

H := C◦
G(a, T ). By Theorem 2, the set

⋃
(aH)G is generic in G. So after conjugating

we may suppose that some x = ah ∈ aH is generic in G. We claim that a ∈ d(x).
Since x is generic in G, CG(x) contains a unique maximal π-torus S of G, which

lies inside d(x), by Theorem 1. Clearly T ≤ S since T ≤ CG(x). The definable hull
d(x) contains a π-element x′ with x′H = xH = aH . So x′a−1 ∈ H is a π-element.
Now H is connected, T is a maximal π-torus of H , T is central in H , and H has
π⊥-type. So decomposing x′a−1 into a product of p-elements in H , it follows from
Lemma 1.6 that x′a−1 ∈ T ≤ S ≤ d(x). Hence a ∈ d(x), as claimed.

Again since x is generic in G, we have x ∈ C◦
G(S) by Fact 1.1, and hence

a ∈ C◦
G(S). If a /∈ S, then the image ā of a in C̄ = C◦

G(S)/d(S) is nontrivial. By
Lemma 3.2, there is an infinite abelian p-subgroup Ū in CC̄(ā), for some p ∈ π, and
Ū must be p-unipotent. It follows that there is a p-unipotent subgroup U of C◦

G(S)
with [a, U ] ≤ d(S). Now a normalizes U because a normalizes the central product
Ud(S). It follows that [a, U ] is a connected subgroup of U ∩ d(S), which is finite,
so U ≤ C(a), a contradiction.

For applications to the structure of Sylow p-subgroups in connected groups of
p⊥ type and low Prüfer p-rank, especially Prüfer rank 1, see [7].

4. Conjugacy of Sylow p-Subgroups

We define Sylow p-subgroups of a group G of finite Morley rank as maximal solvable
p-subgroups. One arrives at the same class of subgroups by imposing local finiteness
or local nilpotence in place of solvability [8, Sec. 6.4]. If S is a Sylow p-subgroup
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of G then S◦ will be a central product of a p-unipotent subgroup and a p-torus,
and in particular S◦ is nilpotent. So if S is a Sylow p-subgroup and X a proper
subgroup of S, then NS(X) > X .

Our goal in the present section is the following.

Theorem 4. Let G be a group of finite Morley rank of p⊥ type. Then all Sylow
p-subgroups are conjugate.

The conjugacy result is also known for solvable groups, as a special case of the
theory of Hall subgroups [8, Theorem 9.35] and for arbitrary groups of finite Morley
rank when p = 2 [8, Theorem 10.11].

As an immediate consequence we can strengthen [5, Theorem 3].

Corollary 4.1. Let G be a connected group of finite Morley rank and p⊥ type. If
some Sylow p-subgroup of G is finite then G contains no elements of order p.

The critical case for the proof is the case in which at least one Sylow p-subgroup
is finite; which proves the corollary itself. It also shows that Sylow p-subgroups are
conjugate if all lie outside G◦.

Lemma 4.2. Suppose G is a group of finite Morley rank and p⊥ type containing
a finite Sylow p-subgroup P . Then all Sylow p-subgroups of G are conjugate.

Proof. Consider a counterexample G of minimal Morley rank and degree. Thus
Sylow p-subgroups are conjugate in proper definable subgroups of G.

Let Op(G) denote the subgroup of G generated by its solvable normal p-
subgroups. Such a p-subgroup must be contained in P and thus Op(G) ≤ P is
finite, and is the largest finite normal p-subgroup of G. In Ḡ = G/Op(G) we have
Op(Ḡ) = 1 and P̄ = P/Op(G) is a finite Sylow p-subgroup of Ḡ, and if we prove
the claim for Ḡ it follows for G. So we may suppose

Op(G) = 1. (4.1)

Let D be a subgroup of P of maximal order subject to the condition: D is
contained in a solvable p-subgroup of G which has no conjugate contained in P .
Let R be such a p-subgroup. Let D1 = NP (D), D2 = NR(D). By the maximality
of D, any p-Sylow subgroup P1 of NG(D) containing D1 is conjugate to a subgroup
of P . Let R1 be a Sylow p-subgroup of NG(D) containing D2. If R1 is conjugate to
P1, then R1 is conjugate to a subgroup of P . In particular, D2 is then conjugate to
a subgroup of P and R is conjugate to a group meeting P in a subgroup of order
greater than |D|. But this contradicts the choice of D.

It follows that in NG(D) we have nonconjugate Sylow p-subgroups, so by the
minimality of G, we find D � G and thus D ≤ Op(G) = 1. Hence any solvable
p-subgroup which meets P nontrivially is conjugate to a subgroup of P .
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Fix a ∈ P nontrivial. We claim

CG◦(a) is a p⊥-group. (4.2)

If this fails, take x ∈ CG◦(a) a nontrivial p-element. By Fact 1.7, CG(x) contains
an infinite abelian p-subgroup A. As Op(G) = 1, we have CG(x) < G and hence
the Sylow p-subgroups of CG(x) are conjugate. Taking Sylow p-subgroups Q and
R of CG(x) containing 〈a, x〉 and A respectively, we find that Q is conjugate to
a subgroup of P since Q meets P nontrivially, and hence the infinite group R is
conjugate to a subgroup of the finite group P , a contradiction.

Now let b be an arbitrary p-element of the coset aG◦, and Tb a maximal p-torus
of C◦

G(b). Then
⋃

(bC◦
G(b, Tb))G◦

is generic in aG◦ by Theorem 2. This applies in
particular to a, with Ta = 1. As we have generic sets associated to a and b in the
coset aG◦, their intersection is nontrivial, giving

aC◦
G(a) ∩ b′C◦

G(b′, Tb′) �= ∅ for some conjugate b′ of b. (4.3)

Fix h ∈ aC◦
G(a)∩b′C◦

G(b′, Tb′). As h ∈ aG◦, there is a p-element h′ ∈ d(h)∩aG◦.
Of course, d(h) lies inside both 〈a〉C◦

G(a) and 〈b′〉C◦
G(b′, Tb′). As 〈a〉 ∩ G◦ = 1 by

(4.2), it follows that d(h) ∩ aG◦ is contained in aC◦
G(a). So h′ ∈ aC◦

G(a). We also
deduce from (4.2) that a is the unique p-element in aC◦

G(a), and then h′ = a since
h′ is a p-element. As a ∈ d(h), we know a centralizes Tb′ , and therefore Tb′ = 1 by
(4.2). Now C◦

G(b′) is also a p⊥-group by Lemma 1.6. So a similar argument shows
that d(h) ∩ aG◦ is contained inside b′C◦

G(b′, Tb′), and therefore h′ ∈ b′C◦(b′), as
C◦

G(b′) is now a p⊥-group, b′ is the unique p-element in b′C◦
G(b′), and h′ = b′. We

conclude that a = b′ and therefore

For a ∈ P#, any two p-elements in aG◦ are conjugate. (4.4)

Now fix an arbitrary Sylow p-subgroup Q of G. We will show that P and Q are
conjugate.

Let Ḡ = G/G◦ and let R̄ be a Sylow p-subgroup of Ḡ containing P̄ . We may
suppose after conjugating Q that Q̄ ≤ R̄. We claim

R̄ = P̄ . (4.5)

Assuming the contrary, let R be the preimage in G of R̄. We have NR̄(P̄ ) > P̄ and
thus NR(PG◦) > PG◦. As PG◦ < R ≤ G, Sylow p-subgroups of PG◦ are conjugate
and therefore NR(PG◦) = G◦NR(P ) by a Frattini argument. Thus, NR(P ) covers
NR̄(P̄ ) and therefore there is a p-element x ∈ NR(P )\P . But then P is not a Sylow
p-subgroup, a contradiction. So (4.5) holds.

Hence QG◦ ≤ PG◦. If QG◦ < PG◦, then Sylow p-subgroups of QG◦ are conju-
gate, and NPG◦(Q) � QG◦ by a Frattini argument. In this situation, we similarly
discover a p-element outside QG◦ that normalizes Q, which then contradicts Q

being a Sylow p-subgroup of G. So therefore QG◦ = PG◦. In particular there are
a ∈ Q# and b ∈ P with aG◦ = bG◦, and thus a, b are conjugate. Hence some
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conjugate of Q meets P , and as we have shown this conjugate of Q must itself be
conjugate to P .

Proof of Theorem 4. We have G a group of finite Morley rank of p⊥ type and
P1, P2 Sylow p-subgroups. We may suppose that Sylow p-subgroups in proper defin-
able subgroups of G are conjugate, and we wish to prove the same for G.

Let T1, T2 be the maximal p-tori in P1, P2 respectively. We may suppose T1 ≤ T2.
If P1 is finite the preceding lemma applies. So we may suppose T1 is nontrivial.

If NG(T1) < G then conjugacy holds in NG(T1) and thus T2 is conjugate to a
subgroup of P1. In this case T1 = T2, so P1, P2 ≤ NG(T1) and our claim follows.

So suppose T1 �G. Then passing to Ḡ = G/d(T1), the image P̄1 of P1 is finite.
We claim that P̄1 is a Sylow p-subgroup of Ḡ. Let Q̄1 be a solvable p-group contain-
ing P̄1, set Q̄ = d(Q̄1), and let Q be the preimage in G of Q̄. Then Q is solvable.
By [4], P̄1 is a Sylow p-subgroup of Q̄, and hence P̄1 = Q̄1. That is, P̄1 is a Sylow
p-subgroup of Ḡ.

By the previous lemma, P̄1 and P̄2 are conjugate, and we may suppose they are
equal. Let P̄ = d(P̄1) and let P be the preimage in G of P̄ . Then P is solvable and
P1, P2 ≤ P , so by [4] the groups P1, P2 are conjugate, as claimed.

5. Weyl Groups

A suitable notion of “Weyl group” in the context of groups of finite Morley rank is
the following. This definition is well-defined up to conjugacy in G, and finite.

Definition 5.1. Let G be a group of finite Morley rank. Then the Weyl group
associated to G is the abstract group W = NG(T )/C◦

G(T ) where T is a maximal
decent torus.

In algebraic groups, Weyl groups are Coxeter groups, and in particular are
generated by involutions. We note that, by a Frattini argument using Fact 1.1, the
“Weyl group” associated to some non-maximal decent torus is a section of the Weyl
group associated to a maximal decent torus.

Theorem 5. Let G be a connected group of finite Morley rank. Suppose the Weyl
group is nontrivial and has odd order, with r the smallest prime divisor of its order.
Then G contains a unipotent r-subgroup.

In fact, we prove that either

(H1) An r-element representing an element of order r in W centralizes a unipotent
r-subgroup, or else

(H2) Some toral r-element centralizes a unipotent r-subgroup.

Corollary 5.2. Let G be a minimal connected simple group of finite Morley rank.
Suppose the Weyl group is nontrivial and has odd order, with r the smallest prime
divisor of its order. Then (H1) holds in G.
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Proof. Otherwise there is an r-element x representing a Weyl group element of
order r such that CG(x) has r⊥ type. Then x is toral by Theorem 3. Of course
(H2) holds by Theorem 5. So there is a toral r-element y such that CG(y) contains
a unipotent r-subgroup, and thus Ur(CG(y)) �= 1 by solvability. We may assume
that x and y belongs to the same r-torus by [10]. Then x ∈ T ≤ C◦

G(y) and
Ur(CG(y)) ≤ CG(T ) ≤ CG(x), a contradiction.

Proof of Theorem 5. We consider a connected group G with maximal decent
torus T , we let W = NG(T )/C◦

G(T ) be the associated Weyl group, and we take
r = rW the minimal prime divisor of |W |. We suppose toward a contradiction that
(H1) and (H2) both fail in G, and subject to this, we first minimize the Morley
rank of G, then minimize the order of Z(G) if that group is finite. We will argue
below that Z(G) = 1 using these reductions.

Let Z denote Z(G) if this group is finite, and Z◦(G) otherwise. Let Ḡ = G/Z,
and let T̄ be the image of T in Ḡ, a maximal decent torus of Ḡ by Lemma 1.4(2).
Let W = NḠ(T̄ )/C◦

Ḡ
(T̄ ) be the corresponding Weyl group, and r̄ = rW the least

prime dividing its order. We claim first that

r̄ = r. (5.1)

The preimage of T̄ in G is TZ, and T is the unique maximal decent torus of
TZ, so NG(T ) is the preimage of NḠ(T̄ ). Therefore, C◦

G(T ) = N◦
G(T ) maps onto

C◦
Ḡ

(T̄ ) = N◦
Ḡ

(T̄ ), and the preimage of C◦
Ḡ

(T̄ ) in NG(T ) is ZC◦
G(T ). Thus, there is

a natural surjection W → W with kernel isomorphic to Z/(Z ∩ C◦
G(T )). If Z(G)

is infinite, then as Z is connected this map is an isomorphism, and in particular
r̄ = r. So suppose that Z = Z(G) is finite. Then r̄ ≥ r and we must show that r

divides |W |.
Let Zr denote the r-torsion subgroup of Z. We claim that Zr ≤ C◦

G(T ). If z ∈ Zr

is not toral, then C◦
G(z) contains unipotent torsion by Theorem 3. As (H1) fails in

G, and z is central, we have z ∈ C◦
G(T ) in this case. On the other hand, if z ∈ Zr

is toral, then as z is central we have z ∈ T ≤ C◦
G(T ). Thus Zr ≤ C◦

G(T ). Therefore
|W |r = |W |r and in particular r̄ = r. This proves (5.1).

Now we show

Z(G) = 1. (5.2)

By the choice of G, if Z(G) > 1, then Ḡ satisfies (H1) or (H2) with respect to the
same value of r. So there is an r-element x of G such that CḠ(x̄) contains a nontrivial
unipotent r-subgroup, with x̄ either a representative for a nontrivial element of W ,
or toral. Then there is a nontrivial unipotent r-subgroup U of CG(x mod Z), in
other words [x, U ] ≤ Z. Letting U0 = [x, U ] if this is nontrivial, and U0 = U

otherwise, we have a unipotent r-subgroup U0 centralizing x.
If x̄ represents a nontrivial element of W , then x represents a nontrivial r-

element of W , and (H1) holds in G, a contradiction. So x̄ is toral, and we may
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suppose x̄ ∈ T̄ , that is x ∈ TZ. Then there is an r-element x′ ∈ xZ ∩ T , and again
U0 ≤ CG(x′), giving (H2) in G, and a contradiction. Thus (5.2) holds.

Now fix an r-element a ∈ NG(T ) representing a nontrivial element of W . We
notice that there is no proper definable connected subgroup H of G containing
〈a, C◦

G(T )〉. Otherwise, the corresponding Weyl group WH = NH(T )/C◦
H(T ) =

NH(T )/C◦
G(T ) would again have r as the minimal prime divisor of its order, and

then this would violate the minimal choice of G.
Let Tr be the maximal r-torus of T , which is nontrivial by Theorem 3. We

claim

CTr (a) is finite. (5.3)

Otherwise, let T1 = C◦
Tr

(a) > 1, and consider H = C◦
G(T1). Then H < G since

Z(G) = 1, and C◦
G(T ) ≤ H . Now C◦

G(a) is of r⊥ type since (H1) fails in G. So if
T2 is a maximal torus of C◦

G(a) containing T1, then a ∈ T2 by Theorem 3. Hence
a ∈ H , and we arrive at a contradiction. This proves (5.3).

It will follow that Tr acts transitively on the coset aTr:

aTr = aTr. (5.4)

We consider the endomorphism of Tr given by commutation with a. By (5.3) this
has finite kernel, so it is surjective [8, Ex. 9, p. 93]. Therefore [a, Tr] = Tr, and
multiplication by a on the left gives (5.4).

As Ω1(Tr)·〈a〉 is a finite r-group, we have CTr (a) > 1. Fix b ∈ CTr (a) an element
of order r. Our goal is to show that b and b2 are conjugate under the action of W ,
using (5.4) as well as a variant with the roles of a and b reversed. From this it will
follow quickly that r is not in fact minimal, to conclude the argument. To begin
with, we have a conjugate to ab by (5.4). We next concern ourselves with reversing
the roles of a and b.

We claim

a /∈ C◦
G(b) and b /∈ C◦

G(a). (5.5)

Consider the group H = C◦
G(b). We have H < G since Z(G) = 1, and C◦

G(T ) ≤
H . Thus a /∈ H = C◦

G(b).
Suppose b ∈ C◦

G(a). By the failure of (H2) in G, C◦
G(b) is a group of r⊥ type.

By Theorem 3, b belongs to a torus of C◦
G(a). Let T1 be a maximal torus of C◦

G(a)
containing b. Then again by Theorem 3, a ∈ T1 ≤ C◦

G(b), a contradiction. Thus
(5.5) holds.

Theorem 4 applies to CG(a), so its Sylow r-subgroups are conjugate. As b ∈
CG(a), it follows that b normalizes a maximal r-torus R of CG(a). Now a ∈ R

by Corollary 3.1, and R is a maximal r-torus of G. At this point, b represents a
nontrivial element of NG(R)/C◦

G(R).
Now extend R to a maximal decent torus S in G. By a Frattini argument,

NG(R) = C◦
G(R)NNG(R)(S), so the coset bC◦

G(R) meets NG(S). Let b′ ∈ bC◦
G(R) ∩
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NG(S). Then (b′)r ∈ C◦
G(R) ∩ NG(S), so there is an r-element b′′ ∈ b′(C◦

G(R) ∩
NG(S)). Then b′′ ∈ bC◦

G(R) is an r-element normalizing S.
Since (H2) fails in G, the group NG(R) has r⊥ type. In particular, Theorem 4

applies to the subgroup 〈b, C◦
G(R)〉 of NG(R), and in this group one Sylow r-

subgroup has the form R · 〈b〉. Hence b′′ is conjugate under the action of C◦
G(R) to

an element b∗ of R · 〈b〉. Then b∗ normalizes a conjugate S∗ of S containing R, and
since b∗ /∈ C◦

G(R), b ∈ 〈R, b∗〉 also normalizes S∗. Therefore, we can now reverse
the roles of a and b, and conclude that b is conjugate to ab under the action of R,
and thus a and b are conjugate. As r > 2, we find similarly that b2 is conjugate to
a, and thus that b, b2 are conjugate in G.

Now we return to the action of the Weyl group. The group NG(T ) controls
fusion in T . That is, if X ⊆ T and Xg ⊆ T , there is an element of NG(T ) carrying
X to Xg. Indeed, we have T, T g ≤ CG(Xg), so T g is conjugate to T in CG(Xg),
and thus X is conjugate to Xg under NG(T ).

By the control of fusion, b and b2 are conjugate by an element w ∈ W . Then
some power of w has order a prime divisor � of the order of 2 in the multiplicative
group modulo r, and in particular � divides r − 1, so � < r, a contradiction. This
final contradiction completes the proof.

Corollary 5.3. Let G be a connected group of finite Morley rank without unipotent
torsion. If the Weyl group is nontrivial then it has even order. In particular, the
group G is not of degenerate type in this case.

Theorem 5 could be proved more efficiently by applying [1, Theorem 1], which
says that the centralizer of a p-torus in a connected group of finite Morley rank
is connected. We note that the proof of [1, Theorem 1] employs our Lemmas 1.3
and 2.2.
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