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Introduction

Groups of finite Morley rank made their first appearance in model theory as
binding groups, which are the key ingredient in Zilber’s ladder theorem and in
Poizat’s explanation of the Picard-Vessiot theory. These are not just groups, but in
fact permutation groups acting on important definable sets. When they are finite,
they are connected with the model theoretic notion of algebraic closure. But the
more interesting ones tend to be infinite, and connected.

Many problems in finite permutation group theory became tractable only after
the classification of the finite simple groups. The theory of permutation groups of
finite Morley rank is not very highly developed, and while we do not have anything
like a full classification of the simple groups of finite Morley rank in hand, as a
result of recent progress we do have some useful classification results as well as
some useful structural information that can be obtained without going through an
explicit classification. So it seems like a good time to review the situation in the
theory of permutation groups of finite Morley rank and to lay out some natural
problems and their possible connections with the body of research that has grown
up around the classification effort.

The study of transitive permutation groups is equivalent to the study of pairs
of groups (G, H) with H a subgroup of G, and accordingly one can read much of
general group theory as permutation group theory, and vice versa, and, indeed, a lot
of what goes on in work on classification makes a good deal of sense as permutation
group theory—including even the final identification of a group as a Chevalley
group, which can go via Tits’ theory of buildings, or in other words by recognition
of the natural permutation representations of such groups. Many special topics in
permutation groups tied up with structural issues were discussed in [7, Chapter 11],
with an eye toward applications. See also Part III of [15].
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The most important class of permutation groups consists of the definably prim-
itive permutation groups, and in finite group theory one has the O’Nan-Scott-
Aschbacher classification of these groups into various families, determined mainly
by the structure of the socle and the way it meets a point stabilizer. This theorem
has been adapted to the context of finite Morley rank by Macpherson and Pillay
[14], and is the one really general piece of work in the area to date. We will refer
to this fundamental result (or set of results) as MPOSA. Also noteworthy is the
classification by Hrushovski of groups acting faithfully and definably on strongly
minimal sets [17, Th. 3.27], found here as Proposition 2.4, and the study by Gropp
[11] of the rank two case.

It turns out that basic notions of permutation group theory such as primitivity
and multiple transitivity have more than one useful analog in the context of groups
of finite Morley rank, for two reasons: (a) we are interested particularly in connected
groups (and, by implication, sets of Morley degree 1); (b) we are interested in
generic behavior. Of course we also impose definability constraints. So we have
definable primitivity and some analogs involving connectivity, and we have generic
n-transitivity, which is far more common than ordinary n-transitivity. Indeed, sharp
4-transitivity cannot occur on an infinite set [12], while AGL(V ) acts generically
sharply (n + 1)-transitively on V if V has dimension n, with PGL(V ) generically
sharply (n + 1)-transitive on projective space, with similar, though less extreme,
statements for other classical groups acting naturally.

In our first section we will explore some of the fundamental definitions and their
natural variations. After that we will focus on the following problem, which can be
taken up from a number of points of view:

Problem 1. Bound the rank of a definably primitive permutation group of finite
Morley rank in terms of the rank of the set on which it acts.

We will show, using soft methods, that there is some such bound. Here we
combine MPOSA with some ideas that have come recently out of the classification
project. There are two points to the analysis. One aims to drive the stabilizer of
a sufficiently long sequence of generic and independent elements to the identity,
bounding the length of the sequence. This divides into two parts: (1) getting
started: first bound the possible degree of generic multiple transitivity, which is
the length of time one waits before anything happens; (2) moving along: once the
chain of point stabilizers begins to decrease, argue that the process runs out in
bounded time. In the first stage we are not very precise in our estimates, but
one may expect that very good bounds should hold in this part of the process, as
generically highly transitive groups should be rare outside of known examples. This
is a problem which makes sense and is interesting for groups of finite Morley rank in
general, for simple algebraic groups acting definably, and even for simple algebraic
groups acting algebraically. In the latter case it has been solved in characteristic 0
by Popov [19], using some results of Kimura et al. on rational representations with
an open orbit.

The following result, controlling what one might reasonably call “Lie rank”, plays
an important role in our “soft” analysis and could also be of use in more concrete
approaches.
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Lemma 3.8. Let (G, Ω) be a definably primitive permutation group of finite Morley
rank, T a definable divisible abelian subgroup of G, T0 its torsion subgroup, and
O(T ) the largest definable torsion free subgroup of T . Then rk(T/O(T )) ≤ rk(Ω).

The present paper has an improvisational character. In the light of recent
progress (including some directly attributable to the month devoted to this topic
at the Newton Institute) it occurred to us that this could be a good time to take
up the topic of permutation groups afresh. We thought that it would in particular
provide an interesting setting for a review of some of the neglected but interesting
areas (representation theory, cohomology) where the theory in the algebraic case
offers considerable food for thought. No doubt this is the case, but that is not
the paper that has emerged in this round. Rather, the rank-bounding problem
described above wound up giving us a sharper but somewhat narrower focus, in
which the existing theory plays a substantial role, and problems of linearization are
particularly highlighted. While as a result some of our favorite problems are not
represented here, we found some others, some entirely new, along with some new
reasons for repeating old questions. We hope some of our readers will answer some
of these questions quickly, and find better versions of some of the others. Also, we
hope that the optimistic tone with which various approaches are described will not
give the impression that they do not require proper proofs. The line between the
proven and the unproven is certainly fuzzy here and in the long run caution is the
best policy (in spite of Keynes).

We also hope that we have dealt with the foundations in a satisfactory way, or,
if not, that someone will take up the matter further.

We would like to take this opportunity to thank the staff at the Newton Institute
(especially the gentleman who repaired the espresso machine) and the organizers,
with extra thanks to Zoé Chatzidakis.

Contents

(1) Foundations
(2) Bounds on rank: examples and a reduction
(3) The definable socle
(4) Actions of finite groups on connected groups
(5) Simple permutation groups
(6) Generic multiple transitivity: extremes
(7) Problem list

1. Foundations

We review some basic model theoretic and permutation group theoretic notions
in the context of definable group actions, for the most part under the assumption
of finite Morley rank, though it may well be worth taking the extra care necessary
to work in the stable category systematically. The main notions are transitivity,
primitivity, and multiple transitivity and a number of related variants, along with
definability, genericity, and connectivity. Most of this is already present in one form
or another in [14] but we think it is still worth while to consider the foundations
at leisure, and separately from more technical matters. Indeed, we have the feeling
that there is still something to be done here, at least at the level of collecting
illuminating examples.
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The term “permutation group” is generally taken here to refer to a group equipped
with a faithful action. But in dealing with intransitive actions, we may consider
the restriction of the group to an individual orbit, and there may be a kernel in
this case. Sometimes this actually matters. We will be casual about this below;
strictly speaking one should insert the term “faithful” almost everywhere below,
taking pains to omit it occasionally.

1.1. Transitivity, genericity, connectivity. We work in the definable category,
that is with groups and definable actions. We write actions on the right (“αg”).
The following is completely elementary but fundamental.

Lemma 1.1. Let (G, Ω) be a transitive permutation group, and Gα a point stabilizer
(with α ∈ Ω). Then the action of G on Ω is equivalent to the action of G on the
coset space Gα\G. In particular the action is interpretable in G if and only if Ω and
Gα are interpretable in G, in which case the two actions are definably equivalent.

One often treats permutation groups (G, Ω) as structures with underlying set Ω
and some inherited relations. The most satisfying choice of relations for our present
purposes, where the group G is of interest in its own right, are those definable
without parameters in the structure (G, Ω).

Lemma 1.2. Let (G, Ω) be a transitive permutation group and view Ω as a structure
equipped with all relations 0-definable in the two-sorted structure (G, Ω), equipped
with the action. View G as a structure equipped with its group operation and a
distinguished subgroup Gα for some α ∈ Ω. If the structure on G is stable then G is
interpretable in Ω. In particular, if G is stable and Ω has finite Morley rank, then
G has finite Morley rank.

Proof. The point stabilizers form a uniformly definable family of subgroups. If G
is stable it follows that arbitrary intersections of point stabilizers are in fact point
stabilizers of finite sets. In particular the identity subgroup is the stabilizer of some
finite subset A ⊆ Ω. Hence the map g 7→ Ag is 1− 1. Therefore the elements of G
and the group structure on G are encoded in Ω. �

Problem 2. If (G, Ω) is a permutation group and Ω is stable in the induced lan-
guage, does it follow that G is stable? Does this hold at least when Ω has finite
Morley rank?

Note that in the present paper we will treat the structure (G, Ω) as given, and
not just the group G. So in that context the action of interest is always definable,
and whether it is definable in some previously given language on G is a question
that rarely arises for us here, though when G is, for example, an algebraic group,
it may be an important issue.

Genericity is a fundamental notion in groups, and passes to transitive permuta-
tion groups.

Lemma 1.3. Let (G, Ω) be a stable transitive permutation group, α ∈ Ω, and X a
definable subset of Ω. Then the following conditions are equivalent.

(1) {g ∈ G : αg ∈ X} is generic in G
(2) Finitely many G-translates of X cover Ω.

If Ω has finite Morley rank then an equivalent condition is
(3) rk(X) = rk(Ω)
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Such a set is called generic in Ω.
We note that after identifying Ω with Gα\G, the set defined in point (1) is

⋃
X.

We now look at connected components.

Lemma 1.4. Let (G, Ω) be a transitive permutation group of finite Morley rank. Let
Ω0 be an orbit for the connected component G◦, Then rk(Ω0) = rk(Ω), deg(Ω0) = 1,
and the orbits of G0 are conjugate under the action of G.

Proof. Since G◦ / G, the orbits of G◦ are conjugated by G, and as the action of G
is transitive it follows that these orbits are conjugate. As there are finitely many
such orbits they have the same rank as Ω. Finally, there is a definable bijection
between Ω0 and a coset space for G◦, so the Morley degree of Ω0 is 1. �

We note that the setwise stabilizer G0 = G{Ω0} of Ω0 may be larger than G◦

and that the former is really the group induced “by G” on Ω0.
It is useful to extend the notion of genericity to permutation groups which are

not necessarily transitive, at least in the context of groups of finite Morley rank.
This we do using the rank directly.

Definition 1.5. Let X be a definable set in a structure of finite Morley rank. A
definable subset Y of X is strongly generic in X if rk(Y \X) < rk(X), and weakly
generic in X if rk(Y ) = rk(X). When X has Morley degree 1, the two notions
are equivalent, and are referred to as genericity. Otherwise, it is prudent to specify
which version is meant.

Lemma 1.6. Let (G, Ω) be a permutation group of finite Morley rank and g an
element of G which fixes a strongly generic subset of Ω pointwise. Then g = 1.

Proof. Let H = {g ∈ G : g fixes a strongly generic subset of Ω pointwise}. Then
H is a definable normal subgroup of G.

Take h ∈ H◦ generic, and α ∈ Ω generic over h. Then h and α are independent,
so α is fixed by a generic subset of H◦, and hence by H◦. As H◦ is normal in G
and G acts transitively, the group H◦ acts trivially on Ω. That is, H◦ = 1 and H
is finite.

Let X be the fixed point set for H in Ω. As H is finite, the set X is generic,
hence nonempty. Since X is also G-invariant, we have X = Ω and thus H = 1. �

Definition 1.7. Let (G, Ω) be a permutation group.
(1) G is generically transitive on Ω if G has a strongly generic orbit.
(2) G is generically n-transitive on Ω if the induced action on Ωn is generically

transitive.
(3) G is generically sharply n-transitive on Ω if the induced action on Ωn has

a strongly generic orbit on which G acts regularly.

We will not actually take up the generically sharply transitive case per se, but it
is worth mentioning as the subject of [11], particularly since such groups certainly
exist.

Example 1. The natural representation of AGL(n) affords a generically sharply
(n+1)-transitive action, and the natural projective representation of PGL(n) affords
a generically sharply (n + 1)-transitive action.

Problem 3. Find all the generically sharply n-transitive actions of algebraic groups
over algebraically closed fields, for n ≥ 2.
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Note that by a theorem of Hall [12] there cannot be a sharply n-transitive per-
mutation group on an infinite set for n ≥ 4, which stands in sharp contrast to the
above.

We would suggest that it is reasonable and interesting, though certainly chal-
lenging, to aim eventually at an identification of all the generically highly transitive
groups of finite Morley rank.

While there is no close connection in general between generic n-transitivity and
n-transitivity, it is reasonable to work with transitive actions throughout (unless
the set Ω carries some useful structure supported on several orbits, as is the case in
most natural representations). For n = 1 one just restricts to the strongly generic
orbit (possibly picking up a kernel). For n > 1 one makes use of the following.

Lemma 1.8. Let (G, Ω) be a generically n-transitive permutation group of finite
Morley rank.

(1) (G, Ω) is generically m-transitive for m ≤ n.
(2) If X is the strongly generic orbit for G, then G is generically n-transitive

on X
(3) If n > 1 then Ω has Morley degree 1.

Proof. The first two points are clear. For the last point, we may suppose that G
is transitive on Ω. If Ω has Morley degree greater than 1, then Ω contains distinct
G◦-orbits Ω0 and Ω1. But then no element of Ω0 ×Ω0 is conjugate to any element
of Ω0 × Ω1 under the action of G, and we have a contradiction. �

The last argument is a very weak analog, but the best we have, for the statement
that a doubly transitive group is primitive.

Lemma 1.9. Let (G, Ω) be a generically n-transitive permutation group, and let
Ω0 be a G◦-orbit. Then (G◦,Ω0) is generically n-transitive.

Proof. If n = 1 then this is clear. If n > 1 then Ω has Morley degree 1, so Ωn also
has Morley degree 1. If O is the strongly generic orbit for G in Ωn, and O0 is a
G◦-orbit inside O, then rk(O0) = rk(O) = rk(Ωn) and as the Morley degree is 1 it
follows that O0 is strongly generic in Ωn. �

1.2. Notions of Primitivity. Let us propose a number of notions of primitivity.

Definition 1.10. Let (G, Ω) be a permutation group.
(1) The action is primitive if there is no nontrivial G-invariant equivalence

relation.
(2) The action is definably primitive if there is no nontrivial definable G-

invariant equivalence relation.
(3) The action is virtually definably primitive if any G-invariant definable

equivalence relation has either finite classes or finitely many classes.

We are not much interested in primitivity per se, as this is too not natural in
the definable category. On the other hand it happens to be the case that almost
all definably primitive permutation groups are primitive ([14], see Lemma 1.17).

It is less clear which of the definable versions of primitivity is to be preferred,
and we have a third possibility to offer in a moment (this in turn raises the question
as to what the O’Nan-Scott-Aschbacher Theorem should be about in our category).
Certainly one desirable criterion is that any permutation representation that may
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interest us should have a nontrivial primitive quotient. These will be definable, and
frequently of Morley degree 1 (or, indeed, with the acting group G connected).

We intend to lay out the relationships among these notions in detail. First we
give their translations into “internal” group theoretic terms. For this we will need
to restrict attention to transitive group actions, so we begin with this point, which
is completely straightforward.

Lemma 1.11. Let (G, Ω) be a permutation group.
(1) If the action is definably primitive, then it is transitive.
(2) If the action is virtually definably primitive then either it has finitely many

orbits, and is virtually definably primitive on each orbit, or else it has finite
orbits, and the set of orbits carries no definable equivalence relation with
infinitely many infinite classes.

Proof. Possibly the context for the second point needs to be elucidated. The notion
of definability is relative to the structure (G, Ω) containing the action and whatever
additional structure it may carry (on G, on Ω, or on both together). We consider
the equivalence relation given by the orbits themselves, which is definable in this
context. If the orbits are finite then this is not very interesting, but it may meet
our definition. �

Remark 1.12. Let (G, Ω) be a stable permutation group with all orbits finite. Then
G is finite, since the kernel (which is assumed trivial) is the stabilizer of a finite
set, and therefore G acts faithfully on a finite union of orbits.

This remark is actually of some use, when one comes across permutation groups
carrying a definable invariant equivalence relation with finite classes. The lemma
states that the kernel of the action on the set of classes is finite.

It should now be reasonably clear that nothing of any significance would be lost
by including transitivity in the definition of virtual definable primitivity.

Lemma 1.13. Let (G, Ω) be a transitive permutation group, α ∈ Ω fixed, and Gα

the point stabilizer.
(1) The action is primitive if and only if Gα is a maximal proper subgroup of

G.
(2) The action is definably primitive if and only if Gα is a maximal definable

subgroup of G.
(3) The action is virtually definably primitive if and only if for any definable

subgroup H of G containing Gα, either [H : Gα] or [G : H] is finite.

Proof. The G-invariant equivalence relations on Ω are classified by the subgroups
of G containing Gα. More explicitly, if C is a set containing α, and Gα:C = {g ∈
G : αg ∈ C}, then the following are equivalent

(1) Gα:C is a subgroup of G;
(2) Gα:C is the setwise stabilizer G{C} of C in G;
(3) {Cg : g ∈ G} is a partition of Ω.

Furthermore, when this holds we have |C| = [G{C} : Gα] and |{Cg : g ∈ G}| = [G :
G{C}]. �

There is a rule of thumb that says one is always interested in the “connected”
versions of classical notions. So we propose a notion of c-primitivity intended to be
the connected version of primitivity, in two variants.
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Definition 1.14. Let (G, Ω) be a transitive permutation group of finite Morley
rank, α ∈ Ω, and Gα the point stabilizer.

(1) The action is c-primitive if Gα is a maximal proper definable connected
subgroup of G◦.

(2) The action is virtually c-primitive if Gα
◦ is a maximal proper definable

connected subgroup of G◦.

One may wish to translate this back into permutation group theoretic terms.
Here one needs the notion of a finite cover (G, Ω̂) of a permutation group (G, Ω),
which is given by a surjective G-invariant map π : Ω̂ → Ω with finite fibers (really
the map (1, π) : (G, Ω̂) → (G, Ω̂) is the morphism).

Lemma 1.15. Let (G, Ω) be a transitive permutation group of finite Morley rank.
(1) The action is virtually c-primitive if and only if every definable finite cover

is virtually definably primitive.
(2) The action is c-primitive if and only if every finite cover is an isomorphism,

and the action is virtually definably primitive.

Proof. Only the first point requires unwinding, and this is simply a matter of work-
ing out the content of the cumbersome criterion given, which can be read as follows:
for every definable subgroup G0 of Gα of finite index, and for every definable sub-
group H of G containing G0, either [H : G0] < ∞ or [G : H] < ∞. This can be
decoded further to: either H◦ = Gα

◦ or H◦ = G◦—at which point we have virtual
c-primitivity. �

One of the goals of permutation group theory is to provide a convenient language
for saying useful things about maximal subgroups, and in a finite Morley rank
context one thing that one could reasonably ask of the parallel theory is a useful
way of looking at maximal connected subgroups. But this is not really the point of
view that has been taken to date.

We now take note of reductions to Morley degree 1.

Lemma 1.16. Let (G, Ω) be a transitive permutation group of finite Morley rank,
and Ω0 an orbit for G◦ in Ω. Let G0 = G{Ω0}.

(1) If (G, Ω) is definably primitive then Ω has Morley degree 1 and Ω0 = Ω,
G0 = G.

(2) If (G, Ω) is virtually definably primitive then any G0-invariant definable
relation on Ω0 has finite classes.

(3) If (G, Ω) is c-primitive or virtually c-primitive, then (G0,Ω0) has the same
property.

On the other hand, this does not mean that we can reduce the group itself to its
connected component.

Example 2. Let (H,X) be a definably primitive permutation group of finite Morley
rank with H connected. Let K be a finite permutation group acting transitively on a
set I. Then the wreath product H oK acting on XI is a definably primitive permu-
tation group of finite Morley rank whose connected component HI leaves invariant
the equivalence relations Ei (i ∈ I) defined by

Ei(a, b) ⇐⇒ ai = bi

Thus (HI , XI) is not even virtually definably primitive.
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One may still find it profitable in practice to pay particular attention to con-
nected permutation groups, but there is no general reduction of the full theory to
that case, and this leads to practical difficulties in situations where one would like
to make inductive arguments.

The foregoing example is typical in the sense that the class of definably primitive
groups is much richer than the set of connected definably primitive groups precisely
because the finite sections can play such an important role. The general MPOSA
classification includes several cases that cannot arise as actions of connected groups.

1.3. Primitivity vs. Definable Primitivity.

Example 3. A definably primitive action which is not primitive.
Take a large torsion free divisible abelian group in its natural language (or as

a Q-vector space) and consider the regular action. This is definably primitive and
c-primitive but not primitive.

One may be a bit suspicious of this example since the point stabilizer is trivial,
and with good reason. If a regular action is definably primitive then the group
G contains no nontrivial proper definable subgroups and hence is abelian and (if
infinite) torsion free. On the other hand according to [14, Prop. 2.7] a definably
primitive group is primitive unless the point stabilizer is finite. We elaborate slightly
on this point.

Lemma 1.17 ([14]). Let (G, Ω) be a permutation group of finite Morley rank which
is definably primitive but not primitive, and let Gα be a point stabilizer. Then Gα

is finite, and if Gα > 1 then G◦ is either abelian or quasisimple.

Proof. Suppose that Gα < H < G. Let H0 be the normal closure in H of Gα
◦.

Then by a lemma of Zilber H0 is definable and connected. Since Gα ≤ H0Gα ≤ H
it follows by definable primitivity that H0 = Gα

◦, that is Gα
◦ / H. As Gα <

N(Gα
◦) ≤ G it follows that Gα

◦ / G. Now G acts transitively on Ω so it follows
that Gα

◦ acts trivially on Ω, hence Gα
◦ = 1 and Gα is finite.

Now if K is a definable connected normal subgroup of G then KGα = G and
thus K = G◦. So if G◦ is nonabelian then G◦ is quasisimple, that is perfect with
finite center and simple factor group. �

This result has a converse: if the point stabilizer is finite it cannot be maximal,
at least if we pass to an uncountable model.

Examples of such groups with G◦ abelian coming from irreducible representations
of finite groups are mentioned in [14]. Another type of example is the following
(responding to a question raised in the last paragraph of §2 of [14]).

Example 4. Let G = PSL2(C) and consider the action on cosets of H = Alt(5).
Then H is maximal among Zariski-closed proper subgroups, but not among (e.g.,
countable) proper subgroups. So in the algebraic category this provides a definably
primitive but not primitive action.

It can be shown with some additional effort that this action will remain definably
primitive in any enrichment of the language for which the group has finite Morley
rank.
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1.4. Definably Primitive Quotients. One would like to think that the general
permutation group of finite Morley rank can be analyzed in terms of transitive and
even primitive constituents. The reduction to the transitive case already involves
very substantial complications. Even if the action is generically transitive, the
action on a generic orbit may have nontrivial kernel, and there may be infinitely
many nongeneric orbits.

As far as primitivity is concerned, one would like to find a nontrivial definably
primitive quotient of any transitive permutation group of finite Morley rank, but
even this is too much to ask.

Example 5. Let G be a Chevalley group over an algebraically closed field of positive
characteristic, and let G(q) be the subgroup of Fq-rational points. Typically the
proper Zariski closed subgroups of G containing G(q) are the G(q′) for q′ a power
of q. Thus taking G with its structure as an algebraic group, any proper definable
subgroup containing G(q) is finite, and thus if we consider the action of G on
G(q)\G, this has no definable and definably primitive quotient.

On the other hand, this example is again fairly typical.

Lemma 1.18. Let (G, Ω) be a transitive permutation group of finite Morley rank.
Then the following hold.

(1) There is a nontrivial definable quotient of (G, Ω) which is virtually definably
primitive.

(2) If (G, Ω) is virtually definably primitive then either (G, Ω) is a finite cover
of a definably primitive permutation group, or the point stabilizer is finite.

Proof. Let Gα be a point stabilizer.
The first point is immediate: extend Gα to a proper definable subgroup of max-

imal rank.
For the second point, if N(Gα

◦) < G then [N(Gα
◦) : Gα] < ∞ by virtual

definable primitivity, and we look at N(Gα
◦)\G. On the other hand, if Gα

◦ / G
then by transitivity Gα

◦ acts trivially, Gα
◦ = 1. �

The most useful instance of this is the following.

Corollary 1.19. Let (G, Ω) be a transitive permutation group of finite Morley rank
with G connected simple. Then either (G, Ω) has a nontrivial definably primitive
quotient, or the point stabilizer is finite.

Proof. We apply both parts of the previous corollary, getting a nontrivial quotient
of (G, Ω) satisfying one of our two conclusions. Note however that if the point
stabilizer in the quotient is finite then it was finite in (G, Ω): as G is simple, there
is no kernel in this action. �

Problem 4. Suppose that (G, Ω) is a virtually definably primitive permutation
group of finite Morley rank with which is not a finite cover of a definably primitive
permutation group. Show that G is a Chevalley group of positive characteristic, and
the point stabilizer is contained in G(Fq) for some finite field Fq.

As we have already noticed, c-primitivity is just virtual definable primitivity
together with the condition that the point stabilizer be connected. On the other
hand, in general virtual definable primitivity has little to do with c-primitivity, with
examples again afforded by actions with finite point stabilizers.
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1.5. Generic n-Transitivity Revisited. We have the natural inductive principle:
if (G, Ω) is a generically n-transitive permutation group of finite Morley rank, and
Gα a point stabilizer with α in the generic orbit, then Gα acts generically (n− 1)-
transitively on Ω.

However, one might also expect generically highly transitive actions to be defin-
ably primitive, and this fails badly.

Example 6. Let (Hi, Xi) (i = 1, 2) be generically n-transitive permutation groups
of finite Morley rank. Then (H1 ×H2, X1 ×X2) is generically n-transitive.

One may ask whether there is, nonetheless, a general theory of generically n-
transitive groups. There is an initial reduction to the primitive case. Recall that
generic n-transitivity passes to connected components.

Lemma 1.20. Let (G, Ω) be a transitive and generically n-transitive group of finite
Morley rank with G connected. Then the following hold.

(1) rk(Gα) ≥ (n− 1) rk(Ω) for α ∈ Ω.
(2) Any definable quotient of (G, Ω) is generically n-transitive.
(3) If n > 1 then there is an infinite, definable, definably primitive quotient

(Ḡ, Ω̄)

Proof. The first two points are immediate. For the last point, since G is connected,
“infinite” is the same as “nontrivial”.

Now Lemma 1.18 tells us that we have an infinite definable and virtually defin-
ably primitive quotient (Ḡ, Ω̄) and that this is either a finite cover of a definably
primitive permutation group, or has a finite point stabilizer. But rk(Ḡᾱ) > 0 so
the latter possibility is excluded. �

We now have two good reasons for restricting our attention to the primitive
case: (1) in the present article we need to deal with generically n-transitive groups
in order to analyze primitive ones; (2) it seems that results on the primitive case
may bear strongly on the general case, in view of the foregoing.

Problem 5. Is there an O’Nan-Scott-Aschbacher analysis of generically 2-transitive
groups which are not necessarily definably primitive? Are all such groups essentially
products of generically n-transitive primitive groups (or generically n′-transitive
groups, with n′ not much smaller than n)?

This concludes our review of the fundamental definitions. The central notion of
[14] was definable primitivity, and this review suggests that one might on occasion
prefer to broaden the notion a little, but that the impact of this would be marginal.

2. Bounds on rank

We will organize our discussion around the following result and problem.

Theorem 1. There is a function ρ : N → N such that the following holds. For
any virtually definably primitive permutation group (G, Ω) of finite Morley rank we
have

rk(G) ≤ ρ(rk(Ω))

Problem 6. Find good bounds on ρ, where ρ(r) is the maximum rank of a virtually
definably primitive permutation group (G, Ω) of finite Morley rank, with rk(Ω) = r.
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Notice the following corollary.

Corollary 2.1. There is a function τ : N → N such that the following holds. For
any virtually definably primitive permutation group (G, Ω) of finite Morley rank
which is generically t-transitive,

t ≤ τ(rk(Ω))

Problem 7. Find good bounds on τ , where τ(r) is the maximum degree of generic
transitivity associated to a virtually definably primitive permutation group (G, Ω)
of finite Morley rank, with rk(Ω) = r.

We particularly like this last problem, because we have as yet no decent bounds
on τ and we imagine there should be very good ones. The gap between τ and ρ is
not so large, as we shall show.

Proposition 2.2. For any r we have

rτ(r) ≤ ρ(r) ≤ rτ(r) +
(

r

2

)
The proof of this Proposition will be given shortly.

Lemma 2.3. We may take Ω to have Morley degree 1, and we may replace “vir-
tually definably primitive” by “definably primitive,” in the definitions of ρ and τ ,
without altering the values.

Proof. We have seen in Lemma 1.16 that we may restrict attention to Morley degree
1 actions, with all G-invariant relations finite. Furthermore we know that each
relevant permutation group (G, Ω) is either a finite cover of a definably primitive
one, or has finite point stabilizer. It suffices to observe now that neither the rank
nor the degree of generic transitivity can be maximized in the presence of a finite
point stabilizer. �

2.1. Examples. Our first order of business is to justify our primitivity hypotheses.
After all, any permutation group on a set of rank 0 has rank 0, which is a very
good bound. There is also an excellent bound for the rank of a stable group acting
transitively on a rank 1 set, due to Hrushovski.

Proposition 2.4. Let (G, A) be a stable permutation group with A strongly mini-
mal. Then the Morley rank of G is at most 3, and either G◦ is abelian and regular
on A, or G is isomorphic with a Zariski closed subgroup of PSL2(K) for some
algebraically closed and strongly minimal field K interpretable in G.

In particular, if the rank of G is n ≤ 3 then the action of G◦ is sharply n-transitive
on A.

But above rank 1 things becomes more complicated. Examples of the following
type are given in [11], and show that nontransitive permutation groups are not so
easily reduced to transitive ones.

Example 7. Let V be a vector space over an algebraically closed field K, L a 1-
dimensional vector space over K, EV = End(V ), λ : V → L a nonzero linear map,
and f : L → V a map from the line L into a space curve in V not contained in a
proper subspace of V . We associate with these data the permutation group (EV , L2)
with EV viewed as an additive group and with action

A.(x, y) = (x, y + λ(A.f(x)))
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(using left-handed notation). Evidently this is faithful, and L2 has rank two.
The orbits are the rank one sets Lx = {x} × L. On Lx, if v = f(x) then the

kernel is
{A : A.v ∈ ker λ}

giving a parametrized family of subspaces of End(V ).

Even in the transitive case there are somewhat similar examples.

Example 8. Let G be an algebraic group with a rational linear representation
on the vector space V and let W be a subspace of V which does not contain any
nontrivial G-invariant subspace of V . Let Ĝ = V o G and consider the transitive
permutation group

(Ĝ, W\Ĝ)

This has rank rk(G) + rk(V/W ), and is not definably primitive since W < V . On
the other hand it is faithful by the choice of W .

We want rk(Ĝ) unbounded and rk(W\Ĝ) bounded, for which we take G fixed
and dim(V/W ) bounded. For example G could be simple, V irreducible, and W
a hyperplane. Or G could be a torus acting so V so that all weight spaces are
1-dimensional, and W could be a hyperplane avoiding all weight spaces.

In particular G could be a 1-dimensional torus and then W\Ĝ would be a Morley
rank two representation of a group of arbitrarily large rank.

Here a nontrivial invariant equivalence relation is given by the orbits of the
normal subgroup V , the quotient has kernel V , and the induced action is the regular
action of G on itself. On the other hand the stabilizer of a single equivalence class
will be the group V , with kernel a conjugate of W , and this portion of the action
resembles the previous example.

These examples are not particularly outlandish, but they do suggest that it may
be difficult to get even the coarsest degree of control over imprimitive representa-
tions.

On the other hand, we will eventually get a bound on the rank of a simple group
of finite Morley rank acting definably on a set of specified rank, and from this we
will get our general bound in the primitive case.

2.2. Reduction to generic multiple transitivity. We take up the proof of
Proposition 2.2. The idea is that if a point stabilizer does not act generically
transitively, then the ranks of the orbits of successive point stabilizers (taken along
a sequence of independent generic points of Ω) decrease steadily. One difficulty
that immediately comes to mind, in view of the last example, is that we have no
assurance that we can usefully pass to simple constituents of the induced permuta-
tion groups along the way. So we need to apply the initial primitivity hypothesis
for the full group at each step.

On the other hand we will see later that by making use of MPOSA one can
sometimes usefully recover primitivity for such constituents. So in all probability
the very soft argument given here can be usefully refined, and the bounds sharpened,
using both MPOSA and the structure theory of groups of finite Morley rank. In the
present article we will only explore this approach in the opposite case, under the
hypothesis of generic multiple transitivity, where our soft bounds are very loose,
and one should expect very good bounds by more concrete methods.
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Definition 2.5. Let (G, Ω) be a permutation group of finite Morley rank with Ω
of Morley degree 1. Let ok denote the generic rank of an orbit for the group Gα

◦

where α is an independent k-tuple of generic elements of Ω. That is, the following
set should be generic in Ω:

{ω ∈ Ω : rk(ωGα
◦
) = ok}

We would get the same values without taking connected components, but in fact it
is the connected components of the stabilizers which interest us.

Lemma 2.6. Let (G, Ω) be a primitive permutation group, k ≥ 1, and suppose that
0 < ok < rk(Ω). Then ok+1 < ok.

Proof. Assume the contrary, ok+1 = ok. Our idea is then that the orbits of a
stabilizer of a sequence of length k + 1 of independent generic elements do not
really depend on the last of the elements, or for that matter any of them, and hence
there should be a corresponding G-invariant equivalence relation after eliminating
spurious dependencies. This is reminiscent of various standard lines of argument
in stability theory and may well be a special case of one of them.

We use the symbol ≈ to denote generic equality for definable sets: so A ≈ B
means that rk(A∆B) < rk(A), rk(B), and in particular rk(A) = rk(B). We also
use the generic quantifier ∀∗x with the meaning “for a strongly generic set of x”.
Let r0 = rk(Ω). Our first claim is the following.

(1)
For all sequences α, β of either k or k + 1 independent generic
elements of Ω we have

∀∗x ∈ Ω [Gα
◦ · x ≈ Gβ

◦ · x]

Consider the bipartite graph Γ whose vertices are sequences of length k or k+1 of
independent generic elements of Ω, with edges corresponding to inclusion or reverse
inclusion. As this graph is connected, and the displayed condition in (1) defines an
equivalence relation on arbitrary sequences α, β of elements from Ω, it suffices to
verify that condition (1) holds for a pair of vertices α, β in Γ joined by an edge. But
this is immediate as the orbits in question have Morley degree one and (generically)
equal rank. So (1) holds.

Now we define an equivalence relation E(x, y) on Ω as follows:

∀∗α ∈ Ωk (Gα
◦ · x = Gα

◦ · y)

This is a definable G-invariant equivalence relation on Ω. An equivalent condition
is the following, writing Ω(k) for the set of sequences of k independent generic
elements of Ω.

∃α ∈ Ω(k) (α `x, y) & (Gα
◦ · x = Gα

◦ · y)
Indeed, as the type over x, y of a sequence of generic elements of Ω independent
over x, y is unique, if Gα

◦ ·x = Gα
◦ ·y for one such sequence α, then the same holds

for all such sequences.
We will write Ex for the E-equivalence class of x. The next point is really part

of a larger topic (finiteness of weight) but can be dealt with in an ad hoc way here.
Cf. [8, §5.6]

(2) ∀∗x rk(Ex) ≥ ok
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Let α(i) be a sequence of 2r0 + 1 independent generic elements of Ω(k). Then for
any pair x, y ∈ Ω there is an i ≤ 2r0 + 1 such that xy `α(i).

Take x ∈ Ω generic over α(1) . . . α2r0+1, and let C =
⋂

i≤2r0+1 Gα(i)
◦ · x. Then

by (1) rk(C) = ok. Choose y ∈ C with rk(y/x) ≥ ok. Choose i so that x, y `α(i).
Then E(x, y) holds by our second criterion. As Ex is x-definable and contains a
point y of rank at least ok over x, rk(Ex) ≥ ok. This proves (2).

(3) ∀∗x rk(Ex) ≤ ok

Take x ∈ Ω generic and let C = Ex. Choose y ∈ C generic and independent
from x over the parameter C. Then rk(C) = rk(y/“C”) (there is a definable set C
on the left side, and a type over the “element” C on the right). Take α ∈ Ω(k) with
α `x, y. Then y ∈ Gα · x.

As the element “C” is definable from x, and x, y `α, we have y `x,“C” α. But
y `“C” x, so

y `
“C”

α, x

In other words, rk(y/αx) = rk(y/“C”). Therefore rk(C) = rk(y/“C”) = rk(y/αx) ≤
rk(Gα

◦ · x) = ok. �

Proof of Proposition 2.2. The claim is

rτ(r) ≤ ρ(r) ≤ rτ(r) +
(

r

2

)
Let t = τ(r) and let (G, Ω) be primitive and generically t-transitive with Ω of rank
r. Our claim is that

rt ≤ rk(G) ≤ rt +
(

r

2

)
The first inequality is immediate as Ωt has rank rt.

Now by the definition of τ , (G, Ω) is not generically (t+1)-transitive and therefore
ot < rk(G). Hence by repeated application of the foregoing lemma, ot−1+i ≤
rk(G)− i until ot−1+i becomes 0. In particular ot−1+r = 0.

Now let α be a sequence of independent generic elements of Ω, of length t+r−1.
Then Gα

◦ has finite orbits, generically, hence fixes a generic set of points in Ω, and
by Lemma 1.6 we find Gα = 1, and rk(Gα) = 0.

Now writing Gi for the connected component of the pointwise stabilizer of
(α1, . . . , αi) for i ≤ t + r − 1 (beginning with G0 = G◦), we find

rk(G) =
∑

i<t+r−1

rk(Gi/Gi+1)

Furthermore rk(Gi/Gi+1) = rk(αGi
i+1) = oi, so

rk(G) ≤
∑
i≥0

oi ≤ rt +
∑

0≤i≤r−1

(r − 1− i) = rt +
(

r

2

)
�
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3. The definable socle

Using some very general results on the definable socle of a definably primitive
permutation group [14], we will eventually reduce the proof of Theorem 1 to the
following Theorem 2. The material in [14] is really the beginning of the subject, and
if we have addressed other more specialized matters first, it was only to get them
out of the way. We will not give a full account of [14] here, but certainly everything
there needs to be taken into account and it would also be desirable to continue
that analysis further, if possible, at some more substantial level of generality than
we envision here. But the MPOSA tool in its present form is more than adequate
for applications of the sort we consider here, and here we focus more on the other
problems which arise in such cases.

Theorem 2. There is a function σ which bounds the rank of a simple permutation
group of finite Morley rank in terms of the rank of any set on which it acts faithfully.

Again, this reduces via Proposition 2.2 to the following special case.

Proposition 3.1. There is a function τ ′ which bounds the degree of generic multiple
transitivity of a simple permutation group of finite Morley rank in terms of the rank
of the set on which it acts.

We will review the necessary information from [14] and then make the reduction
of Theorem 1 to Theorem 2 (and hence to Proposition 3.1).

3.1. The main case division. We now exploit the structure of the socle in a
definably primitive permutation group of finite Morley rank. A good deal is known
about the possibilities here, and for full details we refer to [14]. Here we emphasize
those points that give immediate information relevant to bounds on rank, using
comparatively soft methods, though certainly not as soft as those of the previous
section. This involves the definable socle, which is the subgroup generated by its
minimal definable normal subgroups. In any group G of finite Morley rank, it is
easy to see that the definable socle is itself definable, and is a finite direct product
of finitely many simple groups and an abelian group. If there is no abelian normal
subgroup then the socle contains its own centralizer. In particular, if G is infinite,
then the definable socle is infinite, and is a direct product of a connected normal
subgroup of G (the connected socle) with a finite normal subgroup of G, the latter
commuting with G◦.

In definably primitive groups the situation is considerably tighter. To begin with
we have the following, which is largely the preamble to Theorem 1.1 of [14].

Theorem 3 ([14, 1.1]). Let (G, Ω) be a definably primitive permutation group of
finite Morley rank with Ω infinite. Let B be the definable socle of G. Then one of
the following occurs.

(1) Affine type: B is abelian, is the unique minimal normal definable subgroup
of G, and acts regularly on Ω. G splits as B o Gα for any α ∈ Ω and
the action of G on Ω is equivalent to the action of G on B with B acting
by translation and Gα by conjugation. Furthermore, B is either torsion
free divisible, or an elementary abelian p-group, and there is no nontrivial
Gα-invariant

(2) B is a finite direct product T1 × · · · × Tk of isomorphic connected simple
groups.
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What is missing in the above summary is the further subdivision of the case 2
into three further subcases, each obtained from wreath products of a corresponding
basic type. These types may be referred to suggestively as regular simple type,
nonregular almost simple type, and simple diagonal action, and are listed as types
2, 3, and 4(a) in [14]; here type 1 is the affine type, and type 4(b) consists of wreath
products of types 2, 3, or 4(a) as well as certain intermediate permutation groups
lying between the specified socle and the full wreath product. The further results
(1.2-1.4) of [14] then cast additional light on the individual types.

We will in fact need a little more from [14] but we will first see how far Theorem
3 takes us.

We make a few comments on the proof of the statement as we have given it. Note
first that by definable primitivity, any definable normal subgroup acts transitively
on Ω. It follows easily that if G has an abelian normal subgroup then any minimal
abelian normal subgroup A acts regularly and the group splits as described in case
(1); furthermore the definable socle centralizes A and hence also acts regularly,
forcing the socle to reduce to A. So one may suppose that all minimal normal
subgroups are nonabelian. Furthermore, on general principles each nonabelian
minimal definable normal subgroup of G has the structure indicated in (2), so we
need only consider the case in which there is more than one minimal definable
normal subgroup of G, and they are all nonabelian. In particular, as they commute
and act transitively, it follows that each acts regularly. Then for any two minimal
normal subgroups H1,H2 of G it is easy to see that the point stabilizer (H1H2)α

is the graph of an isomorphism of H1 with H2 (and this is the starting point for a
more careful analysis of Bα).

3.2. The torsion-free divisible case. We give a first indication that this case
division is helpful for our present concerns.

Lemma 3.2. Let (G, Ω) be a definably primitive permutation group whose socle A
is torsion free divisible, and let r = rk(Ω). Then

rk(G) ≤ r2 + r

Proof. This is very much like saying dim(AGL(V )) ≤ dim(V )2 +dim(V ) and really
has the same proof.

By Theorem 3 we can identify Ω with A and G with A o G0 (note that G0 is
actually the point stabilizer of 0 under this identification).

Choose a sequence (a1, a2, . . . ) as long as possible with ai+1 /∈ d(a1, . . . , ai) (in
particular a1 6= 0). Let Ai = d(a1, . . . , ai−1). As the Ai are also torsion free and
divisible, rk(Ai) ≥ i and therefore the sequence (a1, . . . ) is finite of length n ≤ r.

Now as An = A, the point stabilizer Ga1,...,an
is trivial. Hence writing Gi for

the point stabilizer Ga1,...,ai
we have

rk(G0) =
n∑
1

rk(Gi/Gi−1) ≤ nr ≤ r2

and our claim follows. �

More to the point is the question as to why this doesn’t work in other cases. In
the case of elementary abelian socles what is missing is a linear structure to bound
the “dimension” (in the sense implicit above) in terms of the rank. In the case of
simple socles this argument actually works quite well, as we will see next, but only
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bounds the rank of G in terms of the rank of the socle, which must still be related
to the rank of Ω, since the socle usually does not act regularly.

3.3. Simple socles. Let us extract what we can from the last argument for the
case of simple socles, and more generally for nonabelian socles.

Lemma 3.3. Let S be an ℵ0-saturated simple group of finite Morley rank and rank
n. Then there are elements a0, . . . , an which definably generate S in the sense that

S = d(a0, . . . , an)

Notice that we need the saturation hypothesis even in the algebraic case: in
positive characteristic there are many locally finite simple algebraic groups.

Proof. We claim that we can choose a sequence (a0, a1, . . . ) so that setting Si =
d(a0, a1, . . . , ai) we have rk(Si) ≥ i until Si = S. This will certainly prove the
lemma, padding the sequence if necessary.

We begin with the case i = 1, which requires us to choose the two elements
a0, a1. If G does not have bounded exponent then by the saturation hypothesis
we can choose a0 = a1 to be an element of infinite order. If G does have bounded
exponent than for the purposes of this step we may work in a minimal connected
simple definable section S̄ and lift back to S afterward.

Now as S̄ is minimal simple and of bounded exponent it follows easily that its
Borel subgroups are nilpotent, and thus S̄ is a so-called “bad group”. For these
there is some useful structural information and in particular any nontrivial finite
subgroup lies in a unique Borel subgroup [7]. So if we take a0, a1 to be nontrivial
elements in two distinct Borel subgroups then d(a0, a1) is infinite, as required.

With the base of the induction out of the way, we continue as follows. We
suppose that Si has rank at least i, with i ≥ 1, and we wish to choose ai+1 = a in
S so that

rk(d(Si, a)) > rk(Si)

If we cannot do this, then we find

d(Si, a)◦ = Si
◦

for all a ∈ S, and hence Si
◦ / S, forcing Si

◦ = S, and we are already done. �

And now as before one has the following conclusion.

Lemma 3.4. Let G be a group of finite Morley rank and suppose that G has a
simple definable socle S of rank n. Then rk(G) ≤ n2 + n.

Proof. Consider the action of G on S by conjugation, which is faithful. Let the
sequence (a0, a1, . . . , an) be chosen in accordance with the previous lemma. Then
the point stabilizer of the sequence fixes S pointwise and is therefore trivial, so we
may repeat the computation of Lemma 3.2. �

We have not yet considered the case of a general nonabelian socle, and we will
return to this below.
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3.4. Elementary abelian socles. Now we take up the case of an elementary
abelian socle. For the present subsection, let us fix the notation as follows.

Notation 3.5. (H,A) is a pair consisting of an infinite group H acting definably,
definably irreducibly, and faithfully on an elementary abelian p-group A, and the
pair has finite Morley rank.

We now apply the version of Zilber’s field theorem given in [7, Theorem 9.5].

Theorem 4. Let V o G be a connected group of finite Morley rank with V,G
definable, V abelian and G-minimal, and CG(V ) = 1. Suppose that G has an
infinite definable abelian normal subgroup K. Then CV (G) = 1, K is central in G,
and there is an interpretable algebraically closed field over which V becomes a finite
dimensional vector space, K becomes a group of scalars generating the field, and G
acts linearly.

Applying this in the present instance we get the following.

Lemma 3.6. Suppose that H◦ has a nontrivial definable connected abelian normal
subgroup and let K be a minimal such subgroup. Then there is a definable H◦-
invariant subgroup A0 of A, and a finite subgroup K0 of K, such that K/K0 acts
freely on A0 and A is a direct sum of H-conjugates of A0. Furthermore K is central
in H◦.

Proof. Let A0 ≤ A be a minimal definable connected H◦-invariant subgroup. Then
A is the sum of the conjugates of A0 under H. In particular at least one of the
conjugates of A0 is not centralized by K, and we may take A0 to have this property.
Then K0 = CK(A0) is finite by the minimality of K.

Let H̄◦ = H◦/CH
◦(A0). Apply the previous theorem to A0 o H◦/CH

◦(A0),
with the subgroup K̄ ∼= K/CK(A0). Then [K, H◦] ≤ K0 and by connectedness K
is central in H◦.

Furthermore there is a vector space structure on A0 with respect to which K̄
acts by scalars and H◦/CH

◦(A0) acts linearly. �

This setup produces the natural bound on the rank of H.

Lemma 3.7. Suppose H◦ has a nontrivial definable connected abelian normal sub-
group. Then rk(H◦) ≤ rk(A)2.

Proof. Let K be a minimal definable connected abelian normal subgroup of H◦ and
let A0 be a minimal definable connected H◦-invariant subgroup of A.

Let r = rk(A), r0 = rk(A0), and let A be the sum of k H-conjugates of A0 and
no fewer. By the minimality of A0, A modulo a finite subgroup is a direct sum of
k subgroups of rank r0 and thus r = kr0.

The group H̄◦ = H◦/CH
◦(A0) acts as a linear group on A0. If A0 has dimension

d then rk(H̄◦) ≤ d2(r0/d) = r0d. Now H◦ embeds into the direct product of k
groups definably isomorphic to H̄◦ and hence rk(H) = rk(H◦) ≤ kr0d = rd ≤
r2. �

We still have to deal with the very reasonable possibility that the definable socle
of H◦ is semisimple. In this case what is needed, initially, is a bound on the number
of simple factors. For this we need the following preparation, which says, roughly
speaking, that tori tend to act generically freely, thereby bounding their ranks.
Here the groups playing the role of tori are the definable hulls of divisible abelian
torsion subgroups, taken modulo any definable torsion free subgroups.
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Lemma 3.8. Let (G, Ω) be a definably primitive permutation group of finite Morley
rank, T a definable divisible abelian subgroup of G, T0 its torsion subgroup, and
O(T ) the largest definable torsion free subgroup of T . Then rk(T/O(T )) ≤ rk(Ω).

Proof. Note that T0 is a countable subgroup of T . Therefore in a saturated model
we may take a point α ∈ Ω generic over T0. Suppose that a torsion element t ∈ T0

fixes α. Then t fixes a generic subset of Ω pointwise. Since Ω has Morley degree 1,
by Lemma 1.6, we find t = 1. In other words, the point stabilizer Tα is torsion free
and thus contained in O(T ). Hence rk(T/O(T )) ≤ rk(T/Tα) ≤ rk(Ω). �

For the next step, we need a result of Wagner on fields of finite Morley rank in
positive characteristic.

Theorem 5 ([21], cf. [2]). Let F be a field of finite Morley rank of even type and
positive characteristic. Then every definable subgroup of F× is the definable hull of
its torsion subgroup.

Accordingly we make the following definition.

Definition 3.9. A divisible abelian group of finite Morley rank is called a good
torus if every definable subgroup is the definable hull of its torsion subgroup.

The preceding theorem has the following consequence. Recall that a unipotent
subgroup in a group of finite Morley rank is a solvable definable connected subgroup
of bounded exponent. Such groups are in fact nilpotent. There are also “charac-
teristic 0” versions of unipotence but we do not use them here; our unipotence is
π-unipotence for some finite set of primes π.

Lemma 3.10. Let H be a connected solvable group of finite Morley rank acting
faithfully on a unipotent group V of bounded exponent. Let U(H) be the maximal
unipotent subgroup of H. Then H/U(H) is a good torus.

Proof. Let 1 = V0 < V1 < · · · < Vn = V be a chain of definable H-invariant
subgroups of V such that successive quotients Ai = Vi/Vi−1 are H-minimal, that is
infinite and without proper definable H-invariant subgroups. It is easy to see that
the joint kernel of all the actions of H on the Ai is U(H). Thus we reduce easily
to the case in which V is H-minimal and U(H) = 1, replacing V by the Ai and H
by its various quotients H/CH(Ai).

Now V is contained in the Fitting subgroup of V H and is self-centralizing in
V H, so the connected component F ◦(V H) of the Fitting subgroup of V H is unipo-
tent, and hence F ◦(V H) = V since U(H) = 1. But by the structure theory for
connected solvable groups, V H/F ◦(V H) is divisible abelian and thus H is divisible
abelian. Now Zilber’s Field Theorem applies and H acts on V like a subgroup of
the multiplicative group of a field. By Wagner’s theorem, it is a good torus. �

Lemma 3.11. Let K = L1 × · · · ×Ln be a product of infinite simple groups acting
faithfully on an elementary abelian p-group V , with the pair (V,K) having finite
Morley rank. Then n ≤ rk(V ).

Proof. We argue by induction on the rank of V . Easily K is faithful on V ◦ so we
may suppose V is connected. We may also suppose that CV (K) = 1. If V is not
definably K-irreducible and V0 is a minimal nontrivial K-invariant subgroup, then
V0 is infinite and connected and induction easily yields our claim. So we suppose
V is definably K-irreducible. Then (V o K, V ) is a primitive permutation group.
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Suppose first that

(1) L = Ln contains a nontrivial unipotent subgroup.

Then W = CV
◦(U) < V is nontrivial.

Let K1 = L1 × · · · × Ln−1. Then K1 acts on W and if the action is faithful we
find n− 1 ≤ rk(W ) < rk(V ) and our claim follows.

So we may suppose that L1 acts trivially on W . Let V1 = CV (L1) < V . This
contradicts the definable K-irreducibility of V .

So now we consider the alternative, which we may take to be the following.

(2) No factor Li contains a nontrivial unipotent subgroup

Now if B is a Borel subgroup of any factor Li, then U(B) = 1 and by the preceding
lemma B is a good torus. Therefore we can find a good torus T in K of rank at
least n. Then O(T ) = 1 and thus by Lemma 3.8 rk(T ) ≤ rk(V ). So n ≤ rk(V ) as
claimed. �

Now we use this information to give a bound on the rank of H in terms of the
ranks of A and the ranks of the definable simple nonabelian subgroups of H◦.

Lemma 3.12. Suppose that every definable simple nonabelian subgroup of H◦ has
rank at most s, and r = rk(A). Then the rank of H is at most

max(r2, r(s2 + s))

Proof. In view of Lemma 3.7 we will suppose that all minimal normal definable
subgroups of H◦ are simple. Let there be n such. For L a definable normal simple
subgroup of H◦, let HL = H◦/CH

◦(L). Then there is an embedding H◦ →
∏

L HL

and thus rk(H◦) ≤ n maxL(rk(HL))
Now identify L with its image in HL. Then L is a definable simple normal

subgroup of HL, and we claim that L is the definable socle of HL. Let K be the
preimage in H◦ of CHL

(L). Then [K, L] ≤ CL(L) = 1, so K = CH
◦(L). Thus L is

self-centralizing in HL and is the definable socle.
So by Lemma 3.4 we have rk(HL) ≤ s2+s and thus rk(H) ≤ n(s2+s) ≤ r(s2+s),

taking into account Lemma 3.11. �

Now we go back to the case of nonabelian socles and make a similar reduction.

3.5. Nonabelian socles. Throughout the present subsection (G, Ω) denotes a per-
mutation group of finite Morley rank with nonabelian definable socle. At this point
one can usefully examine the subdivision into cases afforded by the full statement
of MPOSA, but we continue on with less precise methods. Set r = rk(Ω).

Lemma 3.13. If G has more than one minimal definable normal subgroup, then

rk(G) ≤ r2 + 2r

Proof. Let L be a minimal normal subgroup of G. By our hypothesis CG(L) is
nontrivial and hence by definable primitivity L and CG(L) both act transitively
on Ω. It follows that each acts regularly and in particular rk(CG(L)) ≤ r, so
rk(G) ≤ r + rk(G/CG(L)).

Now write L = L1 × · · · × Ln with the Li isomorphic definable simple normal
subgroups of G◦. As L acts regularly on Ω we have rk(Li) = r/n. Then Lemma
3.4 yields

rk(G/CG(L)) ≤ n((r/n)2 + (r/n)) = r2/n + r
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and our claim follows. �

Now suppose that G contains a unique minimal definable normal subgroup L,
which is nonabelian. We should note that if G were connected then that subgroup
would in fact be simple, as G acts transitively on the simple factors of a nonabelian
minimal normal subgroup, and then the situation would be quite transparent. But
what this suggests, correctly, is that primitive groups will have a strong tendency
to be disconnected, in general.

In this case we finally need to use the more precise information from [14], de-
scribing the point stabilizer Lα, which is a characteristic feature of the OSA point
of view. There are the following two possibilities:

(a) L is a product of simple factors Li and Lα =
∏

i(Li)α (possibly Lα = 1
here);

(b) L is a product of ` groups Li, each of which is a product of k simple factors
Lij , with k ≥ 2, and (Li)α is a diagonal subgroup of Li, and in particular
rk((Li)α) is definably isomorphic to Lij for each j.

Lemma 3.14. If G has a unique minimal normal subgroup L, and its simple factors
have rank s, then corresponding to cases (a, b) above we have the following estimates.

(a) rk(G) ≤ r(s + s2);
(b) rk(G) ≤ 2(r2 + r)

Proof. Let L be the product of n simple factors, each of rank s. Then our estimate
for rk(G) is

n(s2 + s)

In case (a) we have n ≤ r. So we consider case (b).
If L acts regularly on Ω then s = r/n ≤ r.
If the point stabilizer Lα is a product of ` diagonal subgroups then n = k` for

some k and r = rk(L)− rk(Lα) = ns− `s = (k− 1)`s, s = r/(k− 1)` = r/(n− `) ≤
(2/n)r. So n(s2 + s) ≤ (4/n)r2 + 2r ≤ 2(r2 + r) since n ≥ 2. �

The upshot of all of this is that we need an estimate for the rank of a simple
group acting on Ω in terms of the rank of Ω, or equivalently, a bound on the degree
of multiple transitivity for such an action.

Of course, this reduction of a general problem on primitive permutation groups
to the simple case is a typical application of the OSA point of view.

4. Actions of finite groups on connected solvable groups

The present section has a preparatory character. In the next section we use
that fact that generically n-transitive groups have the symmetric group Sym(n) as
a section. Here we examine definable actions of Sym(n), and related groups, on
connected solvable groups of finite Morley rank, looking for lower bounds on the
rank. This is an issue which has not arisen in the past and has some affinities with
linear representation theory, though an action on a connected abelian group is not
necessarily very closely connected with a linear representation, as far as we know.
Getting sharp bounds for this sort of problem seems challenging.

There are three natural variations, all of which come into play.

Problem 8. Let Σ be a finite group. Find lower bounds for each of the following.
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(1) The minimal rank of a connected solvable group of finite Morley rank which
affords a faithful representation of Σ.

(2) The minimal rank of a connected solvable group of finite Morley rank which
affords a faithful representation of a central extension of Σ.

(3) The minimal rank of a connected solvable group of finite Morley rank which
affords a faithful representation of a group Σ̂ which covers Σ, i.e. maps
homomorphically onto Σ.

We will work with abelian groups rather than solvable groups, but in most cases
we can reduce to Σ-minimal groups, in which case there is no difference. But the
question makes sense also more generally, without even the hypothesis of solvability.

Actually, as we will see we are interested particularly in actions of finite groups
on divisible abelian groups. This brings us a little closer to the characteristic zero
linear theory.

The estimate we will need is the following. This is off the main line of our
discussion, and any estimate of the kind will suffice for our subsequent purposes.

Proposition 4.1. Let A be a connected abelian group of finite Morley rank, and Σ
a finite group acting definably and faithfully on A. Suppose that Σ maps surjectively
onto Sym(n). Then rk(A) ≥ bn/4c

We return to the main line in the next section.

4.1. Generalities. We dispose of some formal points before taking up anything
concrete. Recall that the Frattini subgroup Φ(Σ) of a finite group Σ is the inter-
section of its maximal subgroups, and is nilpotent.

Definition 4.2. Let Σ → Σ̄ be a surjection between finite groups. The map, or by
abuse Σ itself, is called a Frattini cover of Σ̄ if the kernel of the map is contained
in the Frattini subgroup of Σ.

An equivalent condition is this: no proper subgroup of Σ covers Σ̄. So we have
a trivial but useful starting point.

Lemma 4.3. Let Σ0 be a finite group, Σ a finite group mapping homomorphically
onto Σ0. Then Σ contains a subgroup Σ1 which is a Frattini cover of Σ0.

For the proof just take Σ1 minimal. Notice that if we also have a faithful repre-
sentation of Σ on a connected abelian group of finite Morley rank, then we have in
particular a faithful representation of a Frattini cover. This has the advantage that
the kernel of a Frattini cover is nilpotent, so we are getting much more control over
the group. What we would prefer is to reduce even further, to central extensions.

Now we take a preliminary look at the minimal modules for our finite groups.

Lemma 4.4. Let Σ be an almost simple group (i.e., the socle is simple). Let A be
a connected abelian group of minimal Morley rank such that Σ acts faithfully and
definably on A. Then Σ acts faithfully on some Σ-minimal definable section of A.

Proof. We argue by induction on rk(A). Let A0 ≤ A be Σ-minimal. If Σ acts
faithfully on A0 or A/A0 we conclude directly or by induction, respectively. In
the alternative case the socle Σ0 of Σ acts trivially on both factors and therefore
each element a ∈ A gives rise via commutation to a homomorphism α : Σ0 → A0,
from a simple group to an abelian group. So in this case Σ0 acts trivially on A, a
contradiction. �
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Next we prepare some general estimates for actions of elementary abelian groups.

Lemma 4.5. Let E be an elementary abelian p-group and m = mp(A). If E acts
faithfully on the connected p-divisible abelian group A of finite Morley rank, then
rk(A) ≥ m.

Proof. Let V ≤ A be E-minimal. Let E0 be the kernel of the action of E on V , a
subspace of E of codimension 1. If E0 acts faithfully on A/V then we conclude by
induction.

So let E1 be the kernel of the action of E0 on A/V . Then E1 acts trivially on
the factors of the chain 1 < V < A. So for e ∈ E#

1 commutation with e gives a
homomorphism ε : A/V → A with image a connected elementary abelian p-group,
contradicting our hypothesis. �

4.2. Actions of symmetric groups. We aim here at lower bounds for the rank
of a connected abelian group on which Sym(n) acts faithfully, particularly when
the abelian group in question is the definable closure of a p-torus for some p. Of
course, we will really need to deal with groups covering Sym(n) and these do not
necessarily behave in the same way, so the reader may prefer to pass on to the next
subsection which returns to the more general problem, with worse estimates.

Here it would be very useful to have a result of the following kind: if T is the
definable closure of a p-torus and is F -minimal under the action of a finite group
F , then the corresponding Tate module is F -irreducible. Unfortunately this is
nonsensical, as one sees already by taking F = 1, but perhaps something can be
rescued in this direction.

Before stating our next lemma we note that the symmetric group Sym(6) is iso-
morphic to the symplectic group Sp(4, 2) and therefore has a faithful representation
on a connected abelian group of Morley rank 4, namely the corresponding vector
space over the algebraic closure of F2.

Lemma 4.6. Let A be an abelian group on which Sym(n) acts definably and faith-
fully, with A either a finite elementary abelian p-group or a connected abelian group.
Let δ(A) be mp(A) in the first case and rk(A) in the second case. Then δ(A) ≥ n−1
unless n = 6, d = 4, and A is an elementary abelian 2-group (finite or connected).

Proof. We proceed by induction on n and then by induction on δ(A). If n = 2 our
claim is vacuous. If n ≥ 3 and d = 1 then the transpositions must act by inversion
on G, and the action cannot be faithful. So we may suppose throughout that d ≥ 2
and n ≥ 4. Write Σ for Sym(n).

We treat separately the case n = 4. Let V be the Klein 4-group in Σ. Let A0 < A
be V -minimal. Then V has a kernel on A0 and this kernel has three conjugates in
Σ. It follows easily that d ≥ 3. So from now on we suppose

n ≥ 5

In particular Σ is almost simple and A may be taken to be Σ-minimal in the
connected case, irreducible in the finite case. In particular A is either an elementary
abelian 2-group, or is 2-divisible.

We deal first with the case of an elementary abelian 2-group. We will use the
connected component notation below with an eye on the case in which A is con-
nected. This operator should be interpreted as vacuous (X◦ = X, not X◦ = 1)
when A itself is finite.
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Fix a transposition τ ∈ Σ. Then 1 ≤ [τ,A] ≤ CA
◦(τ) ≤ A. If the three sections

A1 = [τ,A], A2 = CA
◦(τ)/[τ,A], and A3 = A/CA

◦(τ) are all nontrivial, consider
the action of the group Σ0 = CΣ(τ) ∼= Sym(n− 2). If n ≥ 7 so that n− 2 ≥ 5, then
Σ0 acts faithfully on at least one of the sections Ai and thus we find δ(Ai) ≥ n− 3,
δ(A) ≥ (n − 3) + 2 = n − 1 as required. If n = 6 then the socle of Sym(4) acts
faithfully on at least one of these sections, which therefore has rank at least 2. So
we get our lower bound δ(A) ≥ 4 in this case. If n = 5 we have only to deal with
the case in which δ(Ai) = 1 for i = 1, 2, 3. Then Sym(3) is generated by involutions
and each of them acts trivially on each section, so Sym(3) acts trivially on each
section and therefore an element of order 3 acts trivially on A, a contradiction.

This disposes of all cases in which the elementary abelian 2-group A has the three
sections A1, A2, A3 all nontrivial. So at least one of these sections is trivial. But τ
acts faithfully on A, so we find CA

◦(τ) = [τ,A] or in other words [ker(1 − τ)]◦ =
im(1− τ). So δ(A1) = δ(A3). If n ≥ 7 then again Σ0 acts faithfully on one of these
sections and thus δ(A) ≥ 2(n− 3) ≥ n− 1.

We now have to treat the small cases with n = 5, 6.
Suppose first δ(A1) = δ(A3) = 1. Let V be a 4-group in Σ. Then CA

◦(V ) is
nontrivial and hence CA

◦(V ) = CA
◦(i) for i ∈ V # or in other words CA

◦(i) =
CA

◦(j) for commuting involutions i, j, and as n ≥ 5 we conclude that CA
◦(i) =

CA
◦(Σ) which may be supposed trivial. Thus we have a contradiction.
If δ(A1) = δ(A3) = 2 and δ(A) = 4 then the only remaining case is n = 6, which

we allow.
So now we pass to the main case.

A is 2-divisible

Recall that A is either connected, or is a finite elementary abelian p-group with
p odd, now.

Consider an involution τ and let Σ0 = CΣ(τ) ∼= Sym(n− 2). We have

A = A+
τ + A−

τ

with A+
τ , A−

τ the subgroups centralized by or inverted by τ respectively. If A is
infinite (connected) then the intersection A+

τ ∩ A−
τ is finite and these groups are

connected.
We have actions of Σ0 on A+

τ and A−
τ , and at least one of these actions is faithful.

So δ(A) ≥ (n − 3) + 1 = n − 2 with equality only if one of the factors has rank 1
and the other has rank n− 3.

Suppose δ(A+
τ ) = 1. The same holds for any transposition as they are conjugate.

So if τ, τ ′ are transpositions whose product σ has order 3, then τ and τ ′ invert
subgroups of corank 1 in A, and hence σ inverts a subgroup of corank at most
2. So in this case δ(A) = 2 and thus by the above n − 3 = 1, n = 4. Then
consider a pair of commuting transpositions τ1, τ2. We have A±

τ1
= A±

τ2
in some

order and hence τ1τ2 acts either trivially or by inversion on A. Then the action of
τ1τ2 commutes with the action of Σ on A and therefore this action is not faithful.
We conclude

δ(A−
τ ) = 1, δ(A+

τ ) = n− 3 > 1

for any transposition τ ∈ Σ. In particular n ≥ 5.
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For any pair of commuting transpositions τ, τ ′, the element τ ′ centralizes A−
τ , as

otherwise we would have A−
τ = A−

τ ′ for all such commuting pairs and then A−
τ is

independent of τ , since n ≥ 5.
For any transposition τ , the action of τ on A/A−

τ is trivial and in particular any
subgroup containing A−

τ is τ -invariant.
Now we need to work out the action in more detail. Fix two noncommuting

transpositions τ1, τ2 and let Ai = A−
τi

for i = 1, 2. Take a1 ∈ A1 and choose
a2 ∈ A2 so that

aτ2
1 = a1 + a2

Let σ = τ2τ1. Then aσ
1 = −a1 + aτ1

2 and σ carries A1 to A2, so aτ1
2 ∈ a1 + A2 and

therefore aτ1
2 = a1 + a2. Thus a2 = aσ

1 . Similarly aτ1
2 = aσ−1

2 + a2 = a1 + a2.
Now let τi be the elementary transposition (i, i+1) and let Ai = A−

τi
. Assuming

δ(A) < n − 1, let k be minimal so that δ(A1 + · · · + Ak) < k. Then Ak ≤
A1 + · · · + Ak−1 and therefore A1 + · · · + Ak is Σ-invariant, so k = n − 1 and
A = A1 + · · ·+ An−2 is an almost direct sum.

Consider the cycle σ = (12 . . . n). For any i < n − 1 if σi = τi+1τi then σσ−1
i

commutes with τi and thus σ acts on Ai as σi does. This holds also for An−1

with a notational variation. So for a ∈ Ai we have aτi+1 = a + aσ, and similarly
aτi−1 = a + aσ−1

.
Now consider any relation

a1 + · · ·+ an−1 = 0

with ai ∈ Ai. Applying τi we get

aτi
i−1 − ai + aτi

i+1 = ai−1 + ai + ai+1

or

(∗) aσ
i−1 + aσ−1

i+1 = 2ai

From this we easily derive
iai+1 = (i + 1)aσ

i

for all i < n− 1. For i = 1 the equation (∗) reduces to the desired form and after
that induction applies. But there is also a final equation for i = n−1 which reduces
to

0 = naσ
n−1

or nan−1 = 0. As A is divisible it follows that there are only finitely many possible
values for an−1, which contradicts our assumption. �

4.3. Groups covering Sym(n). Now we look at actions on connected abelian
groups of groups Σ mapping homomorphically onto Sym(n).

We first mention some comparatively low dimensional representations of double
covers of Sym(n), and the like. The Schur multiplier of Sym(n) is Z/2Z, but their
are two nonisomorphic double covers.

(1) 2.Sym(4) = GL(2, 3) has a 2 dimensional representation.
(2) Both of the double covers of Sym(7) have 4-dimensional representations in

characteristic 7.
(3) Alt(8) = SL(4, 2) has 4-dimensional representations in characteristic 2.
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Now we give our main estimate for groups covering Sym(n).

Proof of Proposition 4.1. We may suppose that Σ is a Frattini cover of Sym(n).
Suppose first that rk(A) = 1. In this case any abelian subgroup of Σ is cyclic

and in particular the Sylow 2-subgroup T of Σ contains a unique involution. So
this involution is in the kernel of the map Σ → Sym(n), and T itself is either cyclic
or a generalized quaternion subgroup. So the image of T in Sym(n) is abelian,
contradicting the structure of Sym(n).

So we may suppose rk(A) ≥ 2. That being the case, we may also suppose n ≥ 8,
but as one might reasonably aim at a sharper lower bound, e.g. (n− 2)/2, we will
only assume here that

n ≥ 5

Let Γ be the kernel of the given homomorphism Σ → Sym(n). Since Σ → Sym(n)
is a Frattini cover, Γ is nilpotent. Let Γ2 be the Sylow 2-subgroup. If Γ2 = 1 then
one expects the same estimates as in the preceding subsection, but in any case Σ
contains an elementary abelian 2-subgroup E with m(E) = bn/2c and this suffices
for our estimate. So we suppose

Γ2 > 1

Let A0 ≤ A be Σ-minimal. Let Γ0 be the kernel of the action of Σ on A0. If
Γ0 is contained in Γ then we can look at the action of Σ/Γ0 on A0 and conclude
by induction unless A = A0. On the other hand, if Γ0 is not contained in Γ then
Γ0 covers Alt(n) and hence Σ is generated by Γ0 and a 2-element, and Σ′ ≤ Γ0.
If A0 < A we can consider the action of Σ on A/A0 similarly and conclude by
induction unless Σ′ acts trivially on A/A0. So finally Σ′ acts trivially on A0 and
A/A0 and hence the subgroup of Σ′ generated by its 2′-elements acts trivially on
A, a contradiction as this covers Alt(n). So we may suppose that A is Σ-minimal.

Now let Σ1 be any subgroup of Σ covering Alt(n). We claim that A is Σ1-
minimal. We may replace Σ1 by a minimal subgroup covering Alt(n) and then
Σ1 = Σ′1 and thus Σ1 = Σ(∞) is normal in Σ. Now suppose A is not Σ1-minimal.
Let A0 < A be Σ1-minimal. Then A is the almost direct sum of two conjugates
of A0. Thus rk(A) = 2 rk(A0). Now there is a subgroup of Σ1 covering a copy of
Sym(n−2) inside Alt(n), so we may suppose by induction that rk(A0) ≥ b(n−2)/4c
and thus rk(A) ≥ bn/4c and we conclude. So we may suppose that A is Σ1-minimal
for all such Σ1.

Now we return to the structure of the nilpotent group Γ and its Sylow 2-subgroup
Γ2. Suppose that Γ2 is noncyclic and take k minimal so that Zk(Γ2) is noncyclic. Let
C = Zk+1(Γ2) and let Q be the preimage in Γ2 of Ω1(Zk(Γ2)/C). Let Q0 = CQ(C).

Now Γ2 acts trivially on Q/C and thus there is an action of Sym(n) on Q/C. If
this action is faithful then m2(Q/C) ≥ 4 and hence Q0 > C. In this case we can
consider the action of Sym(n) on Q0/C, and if this is faithful then m2(Q0/C) ≥ n−1
unless n = 6 and m2(Q0/C) = 4.

Suppose m2(Q0/C) ≥ n − 1. If Q0 is elementary abelian then we get a strong
estimate. Otherwise, Q′

0 ≤ C is the subgroup of order 2 and the commutator map
Q0/C × Q0/C → Q′

0 gives a symplectic structure on Q0/C, possibly degenerate.
We may take a totally isotropic subspace of Q0/C of dimension (n − 1)/2, which
lifts back to an abelian subgroup V ≤ Q0 for which m2(V/C) = (n− 1)/2. Thus V
contains an elementary abelian subgroup of rank (n− 1)/2 and we get the desired
estimate.
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Now suppose m2(Q0/C) = 4 and n = 6, with Sym(n) acting faithfully and with
Q′

0 > 1. Let Q1 be the preimage in Q0 of Ω1(Q0/Q′
0). Then Q1/Q′

0 is elementary
abelian of rank 4. As Sym(n) respects the symplectic structure it coincides with
Sp(4, 2) and in particular acts transitively on Q1/Q′

0. Then as Q1 \ C contains
involutions, Q1 has exponent two and thus is elementary abelian of rank 5. So
rk(A) ≥ 5.

So we are left with the case in which Alt(n) centralizes Q/C and hence a subgroup
of Σ covering Alt(n) centralizes Q. If Q contains a noncyclic elementary abelian
subgroup E then let A0 ≤ A be E-minimal and let E0 be the kernel of the action
of E on A0. Then CA

◦(E0) is CΣ(Q)-invariant and thus CA
◦(E0) = A, implying

E0 = 1 and E is cyclic after all.
So Q contains a unique involution and is therefore either cyclic or generalized

quaternion. But by our current assumption Q is not cyclic. On the other hand
by construction Q/Z(Q) is elementary abelian, and so Q is a quaternion group of
order 8, and is centralized by a subgroup of Σ covering Alt(n).

Taking a 2-element t ∈ Σ which represents a transposition in Sym(n), we may
suppose after adjustment that t centralizes an element a of order 4 in Q0. Then
C(a) covers Sym(n) so by minimality a ∈ Z(Σ) and in particular a ∈ Z(Q), a
contradiction.

All of this shows that Γ2 is cyclic. Now one can show in the same way that Γ
is cyclic and centralized by Alt(n) and pursue the matter further, but we will stop
here with a simple estimate. We have Γ2 centralized by a subgroup of Σ covering
Alt(n). Taking an elementary abelian subgroup of Alt(n) of rank at least 2bn/4c,
and lifting to a 2-subgroup of Σ, we get an elementary abelian subgroup of rank at
least bn/4c in Σ, and conclude. �

5. Simple permutation groups

In the present section we will bring to bear a good deal of recent work on simple
groups of finite Morley rank to the problem of bounding their rank or degree of
multiple transitivity in terms of the rank of a set acted upon faithfully. We begin
with by recalling some of the relevant information.

The material in subsection 5.4 is in a very provisional state and may not even
be internally consistent.

5.1. The four types. The 2-Sylow theory for groups of finite Morley rank gives a
broad division of all such groups into four types, according to the structure of their
2-Sylow◦ subgroups (maximal connected 2-subgroups). In general these have the
form

U ∗ T

a central product with finite intersection of a 2-unipotent group U (a connected,
definable 2-group of bounded exponent) and a 2-torus T (a divisible abelian 2-
group, not definable). The group G is said to be of even, odd, mixed, or degenerate
type according as S = U , S = T , U, T > 1, or S = 1. A delicate analysis depending
on a body of technology developed in the finite case, and some other ingredients,
shows the following.

Theorem 6. A simple group of finite Morley rank of even type is algebraic.
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Theorem 7. Let G be a group of finite Morley rank. Then G contains normal
subgroups T2(G), U2(G) of odd and even types respectively which commute, with
G/[T2(G) ∗ U2(G)] of degenerate type.

Here T2(G) is the subgroup generated by all definable hulls of 2-tori in G, and
U2(G) is the subgroup generated by all unipotent 2-subgroups. Theorem 7 depends
on Theorem 6. In fact what one actually shows is that Theorem 7 holds for groups
whose definable simple sections of even type are all algebraic.

These theorems have the following consequence, which can however be proved
much more directly [6].

Theorem 8. Let G be a simple group of finite Morley rank containing no nontrivial
divisible torsion subgroup. Then G is of degenerate type.

Another result of a general character with a comparatively short proof is the
following [5].

Theorem 9. Let G be a connected group of finite Morley rank of degenerate type.
Then G contains no involutions.

Actually this can be extended to a similar result holding for any prime p. In
that form it reads as follows.

Theorem 10 ([5]). Let G be a connected group of finite Morley rank containing
no infinite abelian p-subgroup. Then G contains no elements of order p.

The classification of simple groups of even type has various structural conse-
quences which are probably not accessible without that classification. For example
we have the following [1].

Proposition 5.1. Let G be a connected group of finite Morley rank of even type
and suppose that G contains no nontrivial normal 2-unipotent subgroup. Then G
is a central product of definable subgroups

E(G) ∗ Ô(G)

where E(G) is a product of quasisimple algebraic groups in characteristic two, and
Ô(G) has degenerate type.

These notions apply in our context as follows.

Lemma 5.2. Let G be a definably primitive permutation group of finite Morley
rank. Then G◦ is not of mixed type.

Proof. Supposing the contrary, U2(G) is nontrivial. If G contains a nontrivial nor-
mal 2-unipotent subgroup then the definable socle of G is an elementary abelian
2-group. But then the definable socle of G is disjoint from T2(G) and thus T2(G)
is trivial.

Similarly, if G contains no nontrivial normal 2-unipotent subgroup, then the
definable socle of U2(G) is a product of simple groups of even type and thus the
definable socle of G is also a product of simple groups of even type, and in fact all
of the factors are isomorphic. Again, this forces the socle to miss T2(G) and thus
T2(G) = 1. �

We can refine this a little when we have generic 2-transitivity as well.
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Lemma 5.3. Let (G, Ω) be a definably primitive and generically 2-transitive per-
mutation group of finite Morley rank. Then G◦ is either of odd or of even type.

Proof. We have already eliminated mixed type. On the other hand, as G is generi-
cally 2-transitive, also G◦ is generically 2-transitive, and hence there is an involution
in G◦ swapping two generic and independent elements of Ω. Since G◦ is connected
and contains an involution, it is not of degenerate type. �

This really does require primitivity in addition to generic 2-transitivity.

Example 9. Let G = G0 ×G1, where Gi = GL(Vi) and Vi are vector spaces over
fields Ki, with K0 of characteristic two and K1 not of characteristic two. Then
G has mixed type and acts generically n-transitively on V1 × V2, where n is the
minimal dimension involved.

5.2. Even type groups. In the simple case, we can use the classification in even
type to reduce the analysis to the specific case of Chevalley groups. The theory in
odd type is not sufficiently advanced to allow this kind of sweeping reduction to
known groups, though there is a large body of work also in this direction.

Lemma 5.4. Let (G, Ω) be a definably primitive group of finite Morley rank, where
the group G is isomorphic as an abstract group to a Chevalley group over an alge-
braically closed field. Then the algebraic dimension of a maximal torus T of G is at
most rk(Ω), and if the characteristic of the base field is positive then rk(T ) ≤ rk(Ω).

Proof. By Lemma 3.8, rk(T/O(T )) ≤ rk(Ω). Now T is definably a direct product of
1-dimensional tori Ti and O(T ) =

∏
O(Ti), so T/O(T ) is also a product

∏
Ti/O(Ti)

and therefore rk(T/O(T )) is at least the number of factors.
Now in the case of positive characteristic we also know that T is a good torus

by Wagner’s results, and thus O(T ) = 1. �

Proposition 5.5. Let (G, Ω) be a simple permutation group of finite Morley rank
and even type. Then the rank of G is bounded by a function of the rank of Ω (e.g.,
4 rk(Ω)2).

Proof. If d is the algebraic dimension of G and ` the Lie rank, then for the classical
groups of types A`, B`, C`, D` we have d = `(` + 2) or `(2`± 1), so at most 2`2 + `.
This leaves aside only the exceptional groups of types E6−E8, F4, G2, for which the
Lie ranks and dimensions are: (6, 78); (7, 133); (8, 248); (4, 52); (2, 14) respectively.

Now if f is the rank of the base field (visible in various ways in the group, notably
via the root groups), then rk(G) = df and rk(T ) = `f . So it suffices to bound d/`
in terms of rk(Ω), and since ` ≤ rk(T ) ≤ rk(Ω), this is certainly possible. �

So the problem now is to get some control over actions of simple groups of odd
type without an explicit classification (and even for Chevalley groups in character-
istic zero there is something still to analyze).

5.3. Odd type groups. We now need some general structural properties of odd
type groups, and we have to elaborate a little on the existing theory. Our starting
point is the following.

Definition 5.6. A decent torus is a divisible abelian group of finite Morley rank
which is the definable hull of its torsion subgroup.
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Theorem 11 ([9]). Let T be maximal definable decent torus in a connected group G
of finite Morley rank. Then the generic element of G belongs to a unique conjugate
of C◦(T ). Furthermore, any two maximal decent tori of G are conjugate.

The following inessential variant can be proved the same way, or simply deduced
from the foregoing.

Proposition 5.7. Let G be a connected group of finite Morley rank and T a maxi-
mal p-torus of G. Then the generic element of G lies in one and only one conjugate
of C◦(T ). Furthermore, any two maximal p-tori of G are conjugate in G.

Proof. Since any maximal p-tori extend to maximal decent tori, the conjugacy
statement here follows from the preceding.

Now let T̂ be a maximal decent torus containing the given p-torus T . Then for
a generic set of elements a ∈ G, a lies in one and only one conjugate of C◦(T̂ ), and
in particular a centralizes a conjugate of T . We may suppose a centralizes T̂ .

If a centralizes the maximal p-torus T1 of G, and T̂1 is a maximal decent torus
in C◦(a) containing T1, then T and T1 are conjugate in C◦(a) and hence T̂1 is also
a maximal decent torus of G. Thus T̂1 = T̂ (by our choice of a) and T1 ≤ T̂ . So by
maximality of T and T1, we have T = T1. �

In a similar vein the following will be useful.

Lemma 5.8. Let G be a connected group of finite Morley rank containing no non-
trivial unipotent p-subgroup. Then for a generic element a of G, the group d(a) is
p-divisible.

Proof. Let T be a maximal p-torus of G. Let X ⊆ G be the set of elements
belonging to a unique conjugate of C◦(T ). This set is generic in G and disjointly
covered by conjugates of X ∩ C◦(T ). So it suffices to look at generic elements of
C◦(T ). In other words, we may suppose that the maximal p-torus T is central in
G.

We claim then that all elements of order p in G belong to T . Let T̂ = d(T ) be
the definable hull of T , a divisible abelian group whose p-torsion lies in T . Our
claim is that G/T̂ contains no p-torsion. Otherwise, Ḡ = G/T̂ contains a nontrivial
connected definable abelian p-subgroup K̄0, whose definable hull is the image of
a connected nilpotent subgroup K of G. Now K is a connected nilpotent group
containing p-torsion not in T , and as T is a maximal p-torus in K there must be a
nontrivial p-unipotent subgroup in K, contradicting our hypothesis.

Now consider a ∈ G generic over T (which is a countable set). Then d(a) has the
form A×T0 with A p-divisible and T0 a finite cyclic p-group. In particular T0 ≤ T .

Now a = bt with b ∈ A and t ∈ T0. So AT0 = d(a) ≤ d(b)×〈t〉 and thus A = d(b),
T0 = 〈t〉. But b = at−1 is also generic over T , and d(b) is p-divisible. As there is
a unique generic type in G, we must have d(g) p-divisible for any realization g of
this type. �

Unlike most results of this general character, the lemma does not yield a generic
definable set of elements g for which the definable hull d(g) is p-divisible. For ex-
ample, working in an ordinary algebraic torus over an algebraically closed field, any
generic set will contain p-elements for all primes p different from the characteristic,
and for such elements the definable hull is the finite cyclic group generated by them.



32 A. BOROVIK AND G. CHERLIN

The following specialized result will be quite useful for the analysis of groups of
odd type as permutation groups.

Proposition 5.9. Let G be a connected group of finite Morley rank and odd type,
and let T be a maximal 2-torus of G. Then T contains all the involutions in C(T ).

Proof. It is convenient to generalize this a little, allowing G also to be of degenerate
type (i.e. T = 1), in which case we arrive at the nontrivial but known result that
degenerate type groups contain no involutions.

We suppose toward a contradiction that G is a minimal counterexample, and
that i ∈ G is an involution centralizing a maximal torus T of G, with i /∈ T . We
make a number of reductions. Note that i cannot belong to any proper definable
connected subgroup containing T . Furthermore G is nonabelian.

(1) Z◦(G) = 1

The connected abelian subgroup Z◦(G)d(T ) does not contain i. Therefore in the
quotient Ḡ = G/Z◦(G), the subgroup T̄ is a maximal 2-torus centralizes by an
involution ī which lies outside T̄ . If Z◦(G) > 1 then we contradict the minimality
of G (or T ≤ Z◦(G) and then we reduce to the degenerate case). So Z◦(G) = 1.

(2) Without loss of generality, Z(G) = 1

What we actually have is Z(G) finite, and we wish to factor out the center. For
this it suffices to check first that i /∈ Z(G)T . Assuming the contrary, we may even
take i ∈ Z(G).

Now a generic element of G lies in a conjugate of C◦(T ). So for a generic set of
elements g ∈ G, both g and gi lie in subgroups of the form C◦(T1), C◦(T2) for some
conjugates T1, T2 of T . In particular T1, T2 ≤ C◦(g). So T1 and T2 are conjugate
in C◦(g). Since g ∈ C◦(T1), we find g ∈ C◦(T2) as well. Since gi ∈ C◦(T2) we
find i ∈ C◦(T2). So conjugating in G, we find i ∈ C◦(T ) as well. Now C◦(T )/d(T )
has degenerate type and hence contains no involutions. That is, i ∈ d(T ) and thus
i ∈ T , a contradiction. Replacing G by Ḡ = G/Z(G), we may suppose Z(G) = 1.

As C◦(i) < G, minimality of G yields

(3) i /∈ C◦(i)

This is the sort of pathological situation in which a genericity argument becomes
available.

We consider the coset iC◦(i). A generic element of this coset has the form ia
with a a generic element of C◦(i) (treating i as a fixed parameter), and in particular
there is one and only one conjugate Ta of T in C◦(i) centralizing a.

Now d(a) is 2-divisible by Lemma 5.8, and [d(a) : d(a2)] ≤ 2, so d(a) = d(a2)
and thus a ∈ d(ai) and d(ai) = d(a, i). Hence C(ai) = C(a) ∩ C(i) and thus Ta is
the is also the unique conjugate of T in G commuting with ai.

Let X = {aC◦(i) : a is generic in C◦(i) over i}. Suppose that x ∈ X ∩ Xg for
some g ∈ G, so that

x = ai = (bi)g

with a and b generic over i in C◦(i). Then Ta = Tai and Tb = Tbi. For notational
simplicity suppose that Ta = T . Then Ta = T g

b . There is also some h ∈ C◦(i) with
Th = Tb. Then Thg = T and hg ∈ N(T ).
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Furthermore we have ig = ihg ∈ C(T )∩iC◦(i), since ig ∈ d(bi)g = d(ai). Writing
ig = ij with j ∈ C◦(i), we see that j ∈ C◦(i) commutes with T , so by induction
j ∈ T . Thus i ∈ iΩ1(T ). This is a finite set.

Now suppose the element x lies in Xg1∩Xg2 and the conjugates ig1 , ig2 are equal.
Then g1g

−1
2 ∈ C(i), and therefore Xg1 = Xg2 . So all of this shows that x belongs

to only finitely many distinct conjugates of X. Let the number of such conjugates
be k.

The type X (over i) does not have k + 1 distinct conjugates which intersect. So
the same applies, by compactness, to some i-definable subset X̂ of iC◦(i) containing
X. We claim that

⋃
X̂ is generic in G.

We have N(X̂) ≤ N(C◦(i)〈i〉) since X̂ generates C◦(i)〈i〉. So by a Frattini
argument we have N(X̂) ≤ C(i)N(T 〈i〉). Now N◦(T 〈i〉) = C◦(T 〈i〉) ≤ C(i), so
N◦(X̂) = C◦(i). Now a standard rank computation (first used in the theory of bad
groups, and much used recently, cf. [13]), shows that the union

⋃
X̂G is generic in

G.
However for all x ∈ X̂, the group d(x) is not 2-divisible, while for generic g ∈ G,

the group d(g) is 2-divisible, and we arrive at a contradiction. �

We tidy this up a little more.

Corollary 5.10. Let G be a connected group of finite Morley rank and odd type,
and let T be a maximal 2-torus of G. Then T contains all the 2-elements in C(G).

Proof. Supposing on the contrary that t is a 2-element in C(T ) outside T , we may
take t to have order 2 modulo T . Then taking t0 ∈ T with t20 = t2 we have tt−1

0 ∈ T
by the previous proposition. �

5.4. Primitive simple groups of odd type. Now we come back to permutation
groups. We are interested in working with the action of a maximal 2-torus in a
definably primitive simple permutation group of odd type.

Lemma 5.11. Let (G, Ω) be a definably primitive permutation group of finite Mor-
ley rank, and let r = rk(Ω). Then for any k there is an N ≤ kr + 1 such that for
any sequence

x1, . . . , xN , . . . , xN+k

of independent generic elements of Ω, the point stabilizer GN+k = Gx1,...,xN+k

contains a maximal 2-torus of GN = Gx1,...,xN
.

Proof. Take an infinite sequence x1, x2, . . . of independent generic elements of Ω.
Let Gi be the point stabilizer Gx1,...,xi . Let Ti be the definable hull of a maximal
2-torus of Gi, and let ri = rk(Ti/O(Ti)).

The sequence ri is monotonically decreasing and takes on at most r + 1 values
in view of Lemma 3.8. Thus over the interval [1, . . . , k(r + 1) + 1] there must be an
interval [N,N +k] of length k over which the function is constant. Here N ≤ kr+1.

Suppose now that T1 is the definable hull of a maximal 2-torus of GN+k and that
T2 is the definable hull of a maximal 2-torus of GN with T1 ≤ T2. As rN = rN+k

we have
rk(T1/O(T1)) = rk(T2/O(T2))

Thus T2 = T1O(T2) and hence the maximal 2-torus of T2 is contained in T1, as
claimed. �
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Proposition 5.12. Let (G, Ω) be a definably primitive permutation group of fi-
nite Morley rank with G connected and of odd type. Then the degree of generic
transitivity of G is at most 4r2 + 5r + 1

Proof. Take an infinite sequence x1, x2, . . . of independent generic elements of Ω.
Let k = 4r + 4. Suppose that G is generically [k(r + 1) + 1]-transitive. Apply the
preceding lemma to get a corresponding value of N . Let H be the point stabilizer
Gx1,...,xN

and Let F be the set

{xN+1, . . . , xN+k}

Then HF is the point stabilizer HxN+1,...,xN+k
. As G is generically (N+k)-transitive,

the setwise stabilizer H{F} induces the full symmetric group Sym(k) on F .
Fix a maximal 2-torus T0 of HF and let T be its definable hull. By the Frattini

argument there is a subgroup of H{F} normalizing T and covering Sym(k). Modulo
the kernel of the action on T/O(T ), the group still covers Sym(k), as its 2-elements
are forced to act nontrivially on T0 by Corollary 5.10.

This then yields rk(T/O(T )) ≥ bk/4c > r violating our estimate in Lemma
3.8. �

Note that for r = 2 this gives a bound on generic transitivity of at most 27 for
a definably primitive action. Everything depends on the bound in Lemma 4.1 and
there is considerable room for improvement here, particularly when r is low.

The bound in [11] for sharp generic transitivity without assuming definable prim-
itivity is 6. In the actual example of SL(n), with generic sharp (n+1))-transitivity,
a maximal torus of rank n − 1 appears in the stabilizer of n independent points
with a group Sym(n) acting on it, so the various estimates do not give up too much
up to this point. But after fixing another generic independent point one loses the
whole torus in this case. It would also be helpful to understand whether double
covers of Sym(n) can occur in the normalizer of a maximal 2-torus.

6. Generic multiple transitivity

6.1. An extremal case. The following conjecture has the potential to involve a
good deal of the existing theory of groups of finite Morley rank.

Problem 9. Let G be a connected group of finite Morley rank acting faithfully,
definably, transitively and generically (n+2)-transitively on a set Ω of Morley rank
n. Then the pair (G, Ω) is equivalent to the projective linear group PGLn+1(F )
acting on the projective space Pn(F ) for some algebraically closed field F .

Of course the transitivity hypothesis is superfluous as one may restrict to the
relevant orbit in any case. It is here just to keep the notation clean. Note that we
aim to show in particular that the action of G is primitive.

This conjecture would give natural bounds for generic multiple transitivity of
permutation groups of finite Morley rank. But the main point is that it provides a
convenient sandbox for trying out recently developed methods, in particular those
used in the ongoing analysis of groups of odd type. A major part of this conjecture
is the “affine group” case which might come in to the analysis of the point stabilizer
of the group from Problem 9; see Problem 13 below.

One reason that induction may be useful is the following.
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Lemma 6.1. Let (G, Ω) be a transitive and generically n-transitive permutation
group of finite Morley rank. Let E be a definable G-invariant equivalence relation
on Ω. Then (G, Ω/E) is generically n-transitive (though not necessarily faithful).

Proof. As G acts transitively on Ω/E, the equivalence classes have constant rank.
So generic sets in Ω and Ω/E correspond. �

Taking an inductive approach to Problem 9, then under the stated hypotheses it
follows that any proper G-invariant definable equivalence relation E will have finite
classes. One can then show that there is a maximal such relation E, definable by
E(α, β) ⇐⇒ Gα

◦ = Gβ
◦. There is a potential issue with the uniform definability

of Gα
◦ but that is not a problem for transitive actions. Modulo this maximal E,

we have a definably primitive action. So if we have the desired result for definably
primitive actions, then the pair (G/K, Ω/E) is identified, with K the kernel of the
action on the quotient. Now K leaves each class of E invariant, so K◦ acts trivially
on Ω, hence K is finite and G is a central extension of G/K. In particular K is
contained in a maximal torus T of G. Now T leaves some class C of E invariant,
and being connected fixes C pointwise. Hence K has fixed points, and being central
acts trivially on Ω. So K = 1. So without loss of generality one may suppose (G, Ω)
is definably primitive in Problem 9.

Thus we may bring [14] to bear again, and now the group G is connected. This is
a very special case, and the classification then reduces to the following possibilities.

(1) The affine case: G = A o H with H a point stabilizer acting generically
(n + 1)-transitively on an elementary abelian group of rank n.

(2) The socle is a simple group L acting regularly on Ω and G = LoH with H
a point stabilizer acting generically (n+1)-transitively on the simple group
L of rank n as a group of automorphisms.

(3) The socle is a simple group L acting nonregularly and G lies between L
and Aut(L).

(4) Diagonal action: the socle is the product of two isomorphic simple groups
L1 × L2. L1 × L2 ≤ G ≤ Aut(L1) × Aut(L2) and furthermore G/(L1 ×
L2) ≤ ∆(Out(L)) where L ∼= L1

∼= L2 and ∆(Out(L)) is the subgroup of
Out(L1)×Out(L2) corresponding to the diagonal subgroup via an isomor-
phism of L1 with L2. In other words, if Ĝ is the subgroup of Aut(L1) ×
Aut(L2) consisting of pairs (α, β) with α ≡ β mod Inn(L), we want

L1 × L2 ≤ G ≤ Ĝ

The set Ω is defined by specifying the point stabilizer, which is the diagonal
subgroup ∆(Aut(L)) (or its intersection with G).

In the third and fourth cases the condition of finiteness of Morley rank is ex-
tremely restrictive. If L is a Chevalley group then any connected subgroup of
Aut(L) containing L will coincide with L itself, while Aut(L) includes everything
induced by a field automorphism.

In Problem 9 our target is type (3) and therefore one of the things one wants to
do, presumably, is to remove the other possibilities. However another idea is to use
induction and focus on the point stabilizer. Probably one should do both, but the
second seems like the main avenue of attack.

Let us examine the basic case of type (4), where G = L × L and Lα = ∆(L).
This is equivalent to the natural action of Lop×L on L on the left and right, which
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as an action of L × L becomes (g, h).a = g−1ah. Thus G1 = ∆(L) and the action
of G1 on L is equivalent to the action of L on L by conjugation.

The general case of (4) is similar. The set Ω can be identified with ∆(L)\L ×
L which has as representatives either copy of L, and after this identification G1

becomes a subgroup of Aut(L) containing L and acting on Ω as it acts on L.
Now in both cases (2) and (4) there is a definable simple normal subgroup L

acting regularly on Ω, on which the point stabilizer Gα acts as a group of automor-
phisms. Thus in these cases rk(L) = n and Gα acts generically (n + 1)-transitively
on L. By the proof of Lemma 3.3 if a1, . . . , an are n independent generic elements
of L, then d(a1, . . . , an) = L unless rk(d(a1, . . . , a`)) ≤ ` − 1 for all ` ≤ n. In
particular the generic element of L has finite order.

Problem 10. Let L be a connected ℵ0-saturated group of finite Morley rank such
that for two independent generic elements a, b we have rk(d(a, b)) ≤ 1. Show that
L is nilpotent of bounded exponent.

This, or something similar, would get rid of these two cases for our present
problem.

Alternatively, as we will see later, in many such cases one can force the socle
to act generically doubly transitively and in particular get an involution into L, in
which case it is definitely of unbounded exponent, as it is not of degenerate type.

One may also use Lemma 3.8 to study the point stabilizer M = Gα on an
appropriate definable quotient Ω/E. Here one hopes to arrive at a configuration
where modulo the kernel K of the action, M/K contains a subgroup PGLn(F ),
while K has Prüfer rank at most 1. This configuration deserves close study. In
particular, one should try to deal with the following.

Problem 11. If a simple algebraic group L acts definably on a group K of degen-
erate type, then [K, L] is nilpotent.

There is a similar conjecture for actions of the definable hull of a 2-torus on a
degenerate type group, which would give the solution to this problem as a special
case. But perhaps this version is more accessible.

6.2. The affine case. For the affine case, we want the following.

Problem 12. Let G be a connected group of finite Morley rank acting faithfully,
definably, and generically t-transitively on an abelian group V of Morley rank n.
Then t ≤ n.

Later, with an eye on the point stabilizer, we may also want the extremal affine
case treated fully. Whether or not it enters directly into the treatment of Problem
9, it is of independent interest.

Problem 13. Let G be a connected group of finite Morley rank acting faithfully,
definably, and generically n-transitively on a connected abelian group V of Morley
rank n. Then V has a structure of a n-dimensional vector space over an algebraically
closed field F of Morley rank 1, and G is GLn(F ) in its natural action on Fn.

This problem connects closely to the structure theory for groups of finite Morley
rank. Note that Problem 12 is a special case of Problem 13.

In either of these problems A should be G-minimal, if we are in an inductive
setting. We have only to consider the possibility of a nontrivial G-invariant finite
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subgroup A0, in which case G fixes A0 pointwise. Passing to A/A0 we either have
a contradiction or an identification of G/K acting on A/A0 with GLn(F ) in its
natural action, where K = CG(A0). As usual K◦ acts trivially A and K is finite.
As G is connected we find K = 1. So now we have

1 → A0 → A → A/A0 → 1

a sequence of G-modules with A0 finite and trivial, and A/A0 natural. The asso-
ciated 2-cocycle with values in A0 is “generically constant” in each variable, the
extension so should split definably, another point to be checked. As A is connected
we have finally A0 = 1.

In particular A is either torsion free or an elementary abelian p-group for some
p. In the context of Problem 12 only the elementary abelian case is possible, and in
the context of Problem 13 one may have the torsion free case, with each subgroup
of the form d(a) of rank 1. But in the latter case one has also that the definable
closure of k independent generic elements has rank k and that its setwise stabilizer
acts generically k-transitively. This seems like enough to complete the analysis
of the torsion free case in the full generality of Problem 13, by direct induction
(perhaps by characterizing the underlying projective geometry, or by more group
theoretic methods). Some particular arguments of a more concrete character may
also be needed in low rank cases.

Now return to Problem 12 in the case in which A is an elementary abelian
p-group.

Consider any nontrivial definable G-invariant equivalence relation E such that
a generic element of A belongs to an infinite class. Then G acts generically t-
transitively on the quotient of the generic orbit modulo E and if t > n this forces
the ranks of the generic classes to be 1, by induction on n, and then the action
on the quotient and the induced group G/K can be identified with (PGL(n −
1, F ), Pn−1(F )). In particular the setwise stabilizer of a single generic E-class C is
its pointwise stabilizer in this representation, and acts on the class C, which however
has rank 1. It follows that the whole class C has a nontrivial pointwise stabilizer
GC in G. Let Ĉ be the fixed point set of GC . This is a proper subgroup of A. One
can recover Ĉ◦ from its generic element. So this gives rise to another G-invariant
equivalence relation on the generic orbit in A, again with classes of rank 1, but now
each class is generic in the group it generates. So we cover A by a collection of
G-invariant subgroups with finite intersections. Actually the intersection of each
subgroup with the union of its distinct conjugates is finite and G-invariant so by
G-minimality these intersections are trivial.

Now it seems the kernel K of the quotient action is acting as an abelian subgroup
on each class C (group C ∪{0}) and hence is itself abelian. And also a good torus.
So central in G. Hence semi-regular. So if this is nontrivial then we have just put
a linear structure on A and that is the end of generic (n + 1)-transitivity. So K is
finite and G is a covering group of PGL(n−1, F ). But this acts generically sharply
n-transitively on the quotient so after fixing n generic independent points in A we
are out of group elements.

All of which says that as one expects any G-invariant equivalence relation has
generically finite classes. And for such a class C and a ∈ C, C is contained in the
fixed point set for Ga

◦, which is a finite subgroup of A (a 6= 0). So we have again
a primitive quotient of (G, A) or rather (G, O) with O the generic orbit, and there
is at worst a finite kernel. So G is itself subject to MPOSA. An infinite abelian
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normal subgroup in G would linearize A again and lead to a contradiction, so the
socle of G is again simple or a product of two simple groups; actually quasisimple
allowing for the finite kernel.

Two simple groups will lead again to linearization and a contradiction so the
socle is a single simple subgroup L. As L acts transitively on the primitive quotient
of the generic orbit it also acts transitively on that orbit.

Suppose A contains a nontrivial infinite definable proper subgroup. Then fixing
a minimal one A0, A is more or less a direct sum of conjugates of A0 by finitely
many elements of L. Then the generic element of A is a sum of independent generic
elements in these conjugates (which can all be identified with A0). So the generic
(n + 1)-transitivity of G on A gives the same thing on A0, in lower rank, and a
contradiction. So A is minimal in this strong sense.

Now G contains involutions since it is generically doubly transitive. An involu-
tion has finite centralizer on A so inverts A. But we have a 2-element interchanging
generic independent elements so an involution swaps them or fixes them, a contra-
diction.

So it seems that in Problem 9 our original group G must have a simple socle L
acting nonregularly.

If this socle is of even type then it is a Chevalley group, and G = L, and one is
in the algebraic case, more or less. Actually as the language is enriched there are
potentially more permutation representations than in the algebraic category. For
the truly algebraic case generically multiply transitive actions of simple groups (also
reductive groups) have been studied by Popov [19] by a method which is limited
to characteristic zero for technical reasons. One does not get beyond generic 4-
transitivity except in the case of the series A`, as anticipated.

Problem 14. Extend Popov’s work to all characteristics and to the finite Mor-
ley rank permutation group category in which the groups are Chevalley groups, or
products of Chevalley groups and tori.

In our category the base field can vary from group to group in a direct product,
and it is not clear what a “torus” actually is, but good tori would be a natural
candidate for the role. In any case it is the base case of Chevalley groups which is
critical here.

This approach also leaves low values of n to deal with. Passing through this kind
of classification is cumbersome for low values of n and one should look for more
intrinsic methods.

The basis of the induction is discussed again, more generally, in Problems 15
and 16 formulated below.

If the even type case is eliminated then while G is of odd type, the socle of G
may, in principle, be of either degenerate or odd type. It is not clear how to limit
things further on an a priori basis, so it would seem to be high time to take up the
point stabilizer, which also has a generically highly transitive action.

Note incidentally that we may assume

The point stabilizer is connected.

This amounts to replacing Ω by a finite cover where the point stabilizer is replaced
by its connected component.
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If one succeeds in identifying the point stabilizer (and the ambient group) after
this change, then all that remains is to check that it is self-normalizing in the larger
group.

6.3. The point stabilizer. In the context of Problem 9 it would be nice to show
that the point stabilizer has a faithful primitive permutation representation, and to
argue that it falls in the affine class, then identify the affine action explicitly as the
action of GL(n) on its natural module. After which one would still have to identify
the original group, and the whole of the point stabilizer. However it is not so clear
how to extract an appropriate representation from the data.

Let us consider the action of the point stabilizer Gα on Ω. This may be definably
imprimitive. In that case one gets equivalence classes of rank 1 and a quotient of
Gα to which induction applies. The connected component of the kernel operates
on a collection of rank 1 sets and is therefore either solvable or has factors of type
PSL(2). So one has, in this case, a great deal of information about Gα and one
may hope to disentangle the situation from this point.

On the other hand the action of Gα on its generic orbit may be definably prim-
itive, and while this again restricts the structure of Gα, it is not so strong, and
needs to be driven toward an eventual contradiction. In particular Gα may have
simple socle, in which case we are forced again to deal with simple groups having
an unclear structure.

However, if L is the simple socle of G, then Lα contains the socle of Gα and by
primitivity acts transitively on the generic orbit of Gα. So in this case at least L
acts generically doubly transitively and in particular contains involutions, so is of
odd type.

6.4. Small affine groups. Returning now to the affine case, we comment on the
case of low rank, which would seem to require separate treatment.

Problem 15. Let G be a connected group of finite Morley rank acting faithfully
and definably on an abelian group V of Morley rank 2. Then either G is solvable,
or V has a structure of a 2-dimensional vector space over an algebraically closed
field F and G is one of the groups SL2(F ) and GL2(F ) in their natural action on
V = F 2.

Problem 15 is believed to be solved, though all such claims must be checked.

Problem 16. Let G be a connected group of finite Morley rank acting faithfully,
definably and irreducibly on an abelian group V of Morley rank 3. Then one of the
following holds:

• V is of finite exponent p > 2 and G is a simple p-group.
• V has a structure of a 3-dimensional vector space over an algebraically

closed field F and G = ZL where Z is a subgroup of the group of scalar
matrices and L is one of the groups PSL2(F ) (in its irreducible representa-
tion as a 3-dimensional orthogonal group) or SL3(F ) (in its natural action
on F 3).

For the treatment of Problem 16, one would have to collate all known information
on “small” groups of odd type, including Altseimer’s work on characterization of
PSL3 by centralizers of involutions. When G happens to be PSL2(F ), turning V
into a vector space over F could be a problem (unless this case is already covered
by Meierfrankenfeld [16]—but we have not checked the details).
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The PSL2(F ) case of Problem 16 is likely to come out of the configuration which
appears to be covered by the recent theorem by Adrian Delore [10] on minimal
simple groups of Prüfer rank 1.

Fact 6.2. Let G be a minimal simple group of odd type and Prüfer rank 1. Assume
that the centralizer of a toric involution is not a Borel subgroup in G. Then G '
PSL2(F ) for an algebraically closed field F .

Eric Jaligot has informed us that the proof of Delore’s theorem as such uses
the solvability assumption only for “local” subgroups in G: that, subgroups of the
form N◦

G(A) for an abelian subgroup A < G. Exactly this condition, solvability of
local subgroups, will naturally appear in the treatment of Problem 4. It would be
nice if someone would undertake the task of checking that all papers on minimal
simple groups actually use only this weaker assumption; this would make Fact 6.2
immediately applicable in the analysis of Problem 16.

The following fact could be useful in proofs of Problems 15 and 16. (Again, the
proof of this “fact” is being written up.)

Fact 6.3. Let G be a simple group of finite Morley rank acting faithfully and de-
finably on an elementary abelian p-group V . If G contains no infinite elementary
abelian p-subgroups then the following statements hold.

• Every connected solvable subgroup of G is abelian.
• If C is a Carter subgroup of G then CG(C) is generous in G.
• Carter subgroups of G are conjugate.
• G contains no involutions.

In the course of the proof of Fact 6.3 the following observation arises; one would
expect it to be very useful in the proof of Problem 16.

Fact 6.4. Let H be a connected group of finite Morley rank acting faithfully and
definably on an elementary abelian p-group V . Assume that H = LT where L C H
and T is an divisible abelian group equal to the definable closure of its 2-torsion. If
L contains no infinite elementary abelian p-subgroups then [L, T ] = 1.

6.5. An inductive step for Problem 13. The inductive step in the treatment of
Problem 13 also appears to be natural: we take a generic point v ∈ V and consider

U = CV (CG(v));

the aim is to show that rk(U) = 1 and that therefore H = N◦
G(U)/U acts generically

(n−1)-transitively on V/U , which would allow us to apply the inductive assumption
and conclude that H̄ = H/CH(V/U) is GLn−1(F ).

The next step is to glue together a Curtis-Tits system in a big subgroup G∗ of G
from a Curtis-Tits system in [H̄, H̄] ' SLn−1(F ) and from a Curtis-Tits system in
a similar section of an appropriate conjugate of H. We discuss Curtis-Tits systems
in the next subsection.

Finally, if a Curtis-Tits system in G∗ is constructed and G∗ is identified with
GLn(F ) for an algebraically closed field F , the structure of an F -vector space on V
is introduced by Meierfrankenfeld’s characterization of natural modules for classical
groups [16].
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6.6. The Curtis-Tits Theorem. We start by quoting a very general form of the
Curtis-Tits Theorem in the formulation due to Timmesfeld [20].

Fact 6.5 ([20]). Let Φ be an irreducible spherical root system of Tits rank at least 3,
with fundamental system Π and Dynkin diagram ∆. Let G be any group generated
by rank one groups Xr = 〈Ar, A−r〉 for r ∈ Π, with unipotent subgroups Ar, A−r

satisfying the condition

NXr
(Ar) ∩NXr

(A−r) ≤ N(Xs)

for all r, s ∈ Π. Set Xrs = 〈Xr, Xs〉 for r, s ∈ Π distinct, and assume the following
all hold.

(1) Xr, Xs commute for r, s not connected in ∆.
(2) If r, s are connected in ∆, then there is a group X̄ = X̄rs of Lie type with

root system Φrs (the span of r, s in Φ), which is generated by subgroups Āα

for α ∈ Φr,s, and there is a surjective homomorphism φrs : Xrs → X̄rs,
such that:
(a) φrs[Aα] = Āα for α ∈ Φrs;
(b) kerφrs ≤ Z(Xrs);
(c) If X̄rs is defined over a field of order 2 or 3, or is of the form PSL3(4),

then ker φrs is a 2′-group or a 3′-group respectively.
Then there is a group Ḡ of Lie type B, with root system Φ and with fundamental
system Π, and there is a surjective homomorphism σ : G → Ḡ mapping the groups
A±r for r ∈ Π onto the corresponding fundamental root groups and their opposites
in Ḡ. Furthermore, ker σ ≤ Z(G) ∩ H, where H is the subgroup generated by the
groups Hr = NXr (Ar) ∩NXr (A−r) for r ∈ Π.

The following case is the one which concerns us here.

Proposition 6.6. Let Φ be an irreducible root system (of spherical type) and rank
at least 3, and let Π be a system of fundamental roots for Φ. Let X a group generated
by subgroups Xr for r ∈ Π, Set Xrs = 〈Xr, Xs〉. Suppose that Xrs is a group of Lie
type Φrs over an infinite field, with Xr and Xs corresponding root SL2-subgroups
with respect to some maximal torus of Xrs. Then X/Z(X) is isomorphic to a group
of Lie type via a map carrying the subgroups Xr to root SL2-subgroups.

Since the only simple algebraic groups which we expect to appear in Problems 9
and 13 are groups PSLn and SLn over an algebraically closed field, we can specialize
the Curtis-Tits Theorem even further.

The following fact is essentially Fact 5.2 of [4].

Proposition 6.7. Let G be a group of finite Morley rank generated by a family of
subgroups Ki, i = 1, . . . , n− 1, n > 3. Assume that the following conditions hold:

• All Ki are isomorphic to SL2(F ) for some algebraically closed field F of
characteristic 6= 2.

• [Z(Ki), Z(Kj)] = 1 for all i, j = 1, . . . , n− 1.
• [Ki,Kj ] = 1 if |i− j| > 1.
• 〈Ki,Kj〉 ' SL3(F ) if |i− j| = 1.

Then G is isomorphic to a factor group of the group SLn(F ) by a (finite) subgroup
from the center.

Problem 16, which describes “3-dimensional” groups, could be very useful in the
control of groups generated by two “root” SL2-subgroups.
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6.7. Pseudoreflection groups. Finally, Problem 13 may reduce to yet another
Problem, also concerned with very familiar objects.

Problem 17. Let G be a connected group acting definably, faithfully and irreducible
on a abelian group V (written additively). Assume that G contains a pseudoreflec-
tion subgroup, that is, an abelian subgroup R such that

(1) V = [V,R]⊕ CV (R)
(2) R acts transitively on the set of non-trivial elements in [V,R].

Then V has a structure of a vector space over an algebraically closed field F such
that [V,R] is one-dimensional subspace and R acts on [V,R] as the multiplicative
group of F , and G = GL(V ).

It would be interesting to see whether the theory of pseudoreflection groups can
be transferred from the case of groups of even type, where it features prominently
in the classification theory of simple groups of finite Morley rank and even type, to
the context of groups of odd type.

Notice that in the special case when we have rk([V,R]) = 1, which is the only case
needed for treating Problem 13, Problem 17 should follow easily from the results
of Problems 15 and 16. However, at this point another theme comes into the plot:
classical involutions.

Indeed, for any conjugate Rg of R, the group L = Lg = 〈R,Rg〉 centralizes
U = CV (R) ∩ CV (Rg) and acts on V/U . But rk(V/U) 6 2, and it will follow from
Problem 15 that L̄ = L/CL(V/U) is isomorphic either to an abelian group R ∗Rg

(central product), or to a soluble group F+ oF ∗, or to GL2(F ) for an algebraically
closed field F , with R and Rg being one-dimensional algebraic tori.

The case in which all of the subgroups L̄g are solvable, g ∈ G, is very peculiar and
should lead to a contradiction with the assumption that G acts on V irreducibly.

Otherwise we choose L such that L̄ ' GL2(F ). It should be easy to show that
CL(V/U) = 1; after that, if we denote by J the derived subgroup of L ' GL2(F ),
we get a remarkable subgroup:

• J ' SL2(F );
• if z is the involution from Z(J) then J C CG(z);
• Let J ′ be a conjugate of J and z′ be the involution in Z(J ′). If z and z′

commute then

〈J, J ′〉 ' J × J ′, J ∗ J ′ or SL
3

(F )

(this is where Problem 16 would be useful).
The classical involution analysis in the spirit of Aschbacher and Berkman [4]

should hopefully lead to the configuration of the Curtis-Tits Theorem (in the version
of Proposition 6.7), and ultimately yield a subgroup G∗ ' SLn(F ).

We can repeat a comment made in §6.5: if a Curtis-Tits system in G∗ is con-
structed and G∗ is identified with SLn(F ) for an algebraically closed field F , the
structure of a F -vector space on V is introduced by Meierfrankenfeld’s characteri-
zation of natural modules for classical groups [16]. After that the identification of
G with GL(V ) is likely to be very straightforward.

Notice also that Problem 17 could possibly provide a very efficient way to develop
the Inductive Step in Problem 13: if, in the notation of §6.5, we can indeed conclude
that H/CH(V/U) is GLn−1(F ), then a pseudoreflection subgroup from GLn−1(F )
in its action on V/U is likely to induce a pseudoreflection subgroup action on V .
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6.8. One more problem. The following arises in conjunction with attempts to
analyze intersections of Carter subgroups in groups of degenerate type, which is a
major focus of interest in the general theory, and may not be entirely out of place
here.

Problem 18. Let A be a connected abelian group of Morley rank n, and let (Ai : i ∈
I) be a uniformly definable family of pairwise distinct connected definable subgroups
of rank k in A. Show that rk(I) ≤

(
n
k

)
.

The bound is achieved when A is a vector space over a field of rank 1. The case
n = 2 and k = 1 is of particular interest.

7. Problem list

We list here the problems that turned up along the way.

Problem 1 (Introduction). Bound (tightly, if possible) the rank of a definably
primitive permutation group of finite Morley rank in terms of the rank of the set
on which it acts.

Problem 2 (§1). If (G, Ω) is a permutation group and Ω is stable in the induced
language, does it follow that G is stable? Does this hold at least when Ω has finite
Morley rank?

Problem 3 (§1). Find all the generically sharply n-transitive actions of algebraic
groups over algebraically closed fields, for n ≥ 2.

Problem 4 (§1). Suppose that (G, Ω) is a virtually definably primitive permutation
group of finite Morley rank with which is not a finite cover of a definably primitive
permutation group. Show that G is a Chevalley group of positive characteristic, and
the point stabilizer is contained in G(Fq) for some finite field Fq.

Problem 5 (§1). Is there an O’Nan-Scott-Aschbacher analysis of generically 2-
transitive groups which are not necessarily definably primitive? Are all such groups
essentially products of generically n-transitive primitive groups (or generically n′-
transitive groups, with n′ not much smaller than n)?

Problem 6 (§2). Find good bounds on ρ, where ρ(r) is the maximum rank of a
virtually definably primitive permutation group (G, Ω) of finite Morley rank, with
rk(Ω) = r.

Problem 7 (§2). Find good bounds on τ , where τ(r) is the maximum degree of
generic transitivity associated to a virtually definably primitive permutation group
(G, Ω) of finite Morley rank, with rk(Ω) = r.

Problem 8 (§5). Let Σ be a finite group. Find lower bounds for each of the
following.

(1) The minimal rank of a connected solvable group of finite Morley rank which
affords a faithful representation of Σ.

(2) The minimal rank of a connected solvable group of finite Morley rank which
affords a faithful representation of a central extension of Σ.

(3) The minimal rank of a connected solvable group of finite Morley rank which
affords a faithful representation of a group Σ̂ which covers Σ, i.e. maps
homomorphically onto Σ.
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Problem 9 (§6). Let G be a connected group of finite Morley rank acting faithfully,
definably, transitively and generically (n+2)-transitively on a set Ω of Morley rank
n. Then the pair (G, Ω) is equivalent to the projective linear group PGLn+1(F )
acting on the projective space Pn(F ) for some algebraically closed field F .

Problem 10 (§6). Let L be a connected ℵ0-saturated group of finite Morley rank
such that for two independent generic elements a, b we have rk(d(a, b)) ≤ 1. Show
that L is nilpotent of bounded exponent.

Problem 11 (§6). If a simple algebraic group L acts definably on a group K of
degenerate type, then [K, L] is nilpotent.

Problem 12 (§6). Let G be a connected group of finite Morley rank acting faith-
fully, definably, and generically t-transitively on an abelian group V of Morley rank
n. Then t ≤ n.

Problem 13 (§6). Let G be a connected group of finite Morley rank acting faith-
fully, definably, and generically n-transitively on a connected abelian group V of
Morley rank n. Then V has a structure of a n-dimensional vector space over an
algebraically closed field F of Morley rank 1, and G is GLn(F ) in its natural action
on Fn.

Problem 14 (§6). Extend Popov’s work to all characteristics and to the finite
Morley rank permutation group category in which the groups are Chevalley groups,
or products of Chevalley groups and tori.

Problem 15 (§6). Let G be a connected group of finite Morley rank acting faithfully
and definably on an abelian group V of Morley rank 2. Then either G is solvable, or
V has a structure of a 2-dimensional vector space over an algebraically closed field
F and G is one of the groups SL2(F ) and GL2(F ) in their natural representations.

Problem 16 (§6). Let G be a connected group of finite Morley rank acting faith-
fully, definably and irreducibly on an abelian group V of Morley rank 3. Then one
of the following holds:

• V is of finite exponent p > 2 and G is a simple p-group.
• V has a structure of a 3-dimensional vector space over an algebraically

closed field F and G = ZL where Z is a subgroup of the group of scalar
matrices and L is one of the groups PSL2(F ) (in its irreducible representa-
tion as a 3-dimensional orthogonal group) or SL3(F ) (in its natural action
on F 3).

Problem 17 (§6). Let G be a connected group acting definably, faithfully and
irreducible on a abelian group V (written additively). Assume that G contains a
pseudoreflection subgroup, that is, an abelian subgroup R such that V = [V,R] ⊕
CV (R) and R acts transitively on the set of non-trivial elements in [V,R]. Then
V has a structure of a vector space over an algebraically closed field F such that
[V,R] is one-dimensional subspace and R acts on [V,R] as the multiplicative group
of F , and G = GL(V ).

Problem 18 (§6). Let A be a connected abelian group of Morley rank n, and let
(Ai : i ∈ I) be a uniformly definable family of pairwise distinct connected definable
subgroups of rank k in A. Show that rk(I) ≤

(
n
k

)
.
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