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Introduction

Mϵγα βιβλιoν µϵγα κακoν
— Callimachus, Epigrams

We will be concerned here with the following conjecture.

Algebraicity Conjecture. An infinite simple group of finite Morley
rank is algebraic, over an algebraically closed field.

This conjecture arises in Model Theory, where Morley rank is an abstract
notion of dimension which generalizes the notion of the dimension of an algebraic
variety in some of its usual formulations. The conjecture asserts that any infinite
simple group which can be equipped with such a dimension function must be
isomorphic, as an abstract group, to a Chevalley group: the group of F -rational
points of a simple algebraic group, over some algebraically closed field F . It
remains open.

The main result to be proved here can be stated as follows.

Main Theorem. Let G be a simple group of finite Morley rank. Then
G satisfies one of the following two conditions.

(1) G is algebraic, in characteristic two.
(2) G has finite 2-rank.

The 2-rank of G, denoted m2(G), is the dimension of the largest elementary
abelian 2-subgroup of G.

The condition that the 2-rank is finite can be reformulated in more useful
but somewhat more technical ways, notably as follows: the Sylow 2-subgroups
contain divisible abelian subgroups of finite index and finite 2-rank. Such groups
are said to be of “odd type”, when the divisible abelian subgroup is nontrivial,
and of “degenerate type” when it is trivial. We therefore prefer the following
formulation.

Main Theorem. Let G be a simple group of finite Morley rank, and
nonalgebraic. Then G is of odd or degenerate type.

This is somewhat more than we had set out to do here. We had expected to
confine our results to the analysis ofminimal counterexamples to the Algebraicity
Conjecture. The turning point came in [2], when it became clear that methods for
achieving “absolute” results like the foregoing could be envisioned using many
of the techniques already developed for the treatment of minimal cases. This is
startling, as it is the analog in our subject of a classification of finite simple groups
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of characteristic two type without the Feit-Thompson (Odd Order) theorem.
Indeed, groups without involutions fall in the degenerate class—and conversely,
simple groups of degenerate type contain no involutions, as the Algebraicity Con-
jecture predicts (Theorem 4.1 of Chapter IV). About such groups we say nothing,
and of course they may occur, in principle, as subgroups or sections of the groups
we do study. We work around them.

Much of our approach will be modeled closely on the methods of finite group
theory. The Algebraicity Conjecture is analogous to the classification of the finite
simple groups as Chevalley groups, possibly twisted, together with the alternating
groups and 26 “sporadic” finite simple groups, and the methods we use are largely
those which were involved in the two proofs of that classification so far given,
combined with certain additional ingredients, namely: (1) the amalgam method,
which is part of a proposed third generation approach to the classification of the
finite simple groups, and is very effective in our context; (2) more elementary ideas
modeled on the theory of algebraic groups and lacking a finite analog; (3) specific
properties of algebraic groups. To this list, a fourth category must be appended,
relating to the body of techniques which enables us to work around the presence
of degenerate sections. This is a very geometrical theory, based ultimately on
dimension computations, and which is developed in Chapter IV. Everything we
do there could be done in the category of algebraic groups, but is not—primarily,
it seems, because stronger results based on properties of complete varieties are
available. In our category, there is no coherent notion of complete variety, and we
see no obvious parallel with the methods of Chapter IV, but we observe that the
results go in the same general direction. Both model theorists and algebraists may
find this chapter of particular interest (though it really has to be seen in action, say
in Chapter VI, to be appreciated)—model theorists because the material is model
theoretic in character, and group theorists because the line of argument varies
considerably from the accustomed lines of group theory, both finite and algebraic,
while at the same time having a clear meaning within the algebraic category. The
closest model for this kind of analysis is found in the so-called black box group
theory (randomized finite group theory), where properties of “most” elements
play an important role.

The Main Theorem and some additional results which will be detailed in
the final chapter, relating to groups of odd type, impose sharp limitations on
the structure of a possible counterexample to the Algebraicity Conjecture, and
suggest that such a group is unlikely to contain any involutions at all. Now it
seemed entirely possible when we first began that exceptions to the conjecture do
occur in nature, or not far removed from nature; in the finite case one has both
the “twisted” Chevalley groups and the sporadic ones to deal with, and possible
analogs of both could be envisioned in our case. This possibility now appears to
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be rapidly receding. On the other hand one can imagine various model theoretic
constructions which would most naturally produce torsion free examples, and
our results say nothing about that possibility, except to suggest that the groups
so constructed would look more like free groups than like conventional matrix
groups.

The final chapter is where we expose a detailed summary of concrete appli-
cations of the main theorem of this book. The analysis of permutation groups of
finite Morley rank outlined in that chapter illustrates, in a way reminiscent of the
applications of the classification of the finite simple groups, how the main result of
this book can be put in action in obtaining results not directly related to classifica-
tion issues. It is worth noting that the proofs some results (e.g. generic equations)
in Chapter IV, in their first incarnations, used the classification of simple groups of
even type. It later turned out that the full classification was not necessary for these
results.

When we set out on this project, we looked forward to the possibility of
extracting from it, as a byproduct, a “skeletal” version of the classification of the
finite simple groups, showing roughly what the core of that proof would look like
in the absence of such complications as sporadic groups, very small base fields,
and wreath products. In other words, we aimed to give a reading of the very
long classification proof of the finite simple groups that imparts some particular
structure to it, while providing a rigorous proof in a different context. What we do
here, supplemented by the other material to be described below, could be taken as
such a reading, but that is not how we see it after the fact. Rather, what emerges
from this analysis is that the methods used to prove the classification of the finite
simple groups are more than adequate to the task, and there is an embarrassment
of riches. At various points, and indeed at the level of global strategy, one is
confronted with several approaches, all apparently adequate, though differing
in their efficiency. The theory in the finite case, and the fragment given here,
sufficient for our purposes, can be read as involving a number of large and not
very intimately connected theories, which have been developed simultaneously,
and in some cases, it seems, only as far as a particular approach to the classification
requires. We have made a selection from among these theories, which works
particularly efficiently in the case of groups of finite Morley rank, but which might
not represent a particularly efficient, or even viable, way of handling the finite case.
Most strikingly, the theme of “standard components,” which plays a large role in
the finite case, almost disappears from view in our work, simply because at a key
point more efficient methods appear on the scene. We welcomed this—we had no
desire to pursue standard components, and a lingering suspicion that a lifetime (or
three) might not be sufficient, though it is in fact likely the theory would collapse to
reasonable proportions, adapted to the finite Morley rank context. Had we taken
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the conventional route, what we do here would look very much like the two proofs
known in the finite case—whether it would be more difficult than the one we give
remains unclear, but it would certainly be longer! We will suggest at the end that
we may be following a different line of proof which makes sense in the finite case,
not necessarily as a classification of all finite simple groups, but as an independent
approach to a narrower subclass, including the Chevalley groups in characteristic
two. There is an analog with work of Timmesfeld in the finite case; while what we
do here is not strictly parallel to that, the relationship seems real.

The difference between our problem and the finite problem seems to have less
to do with sporadic groups than with small fields. Indeed, we make considerable
use of tori, which over the field F2 reduce to the identity. We do have some trouble
laying our hands on nontrivial tori sometimes, but in the end they can be produced
when needed.

One point which does work out largely as we anticipated is the following:
the theories that we do develop are applied here in much the same way that they
are used in finite group theory, but with considerably less “background noise”,
and as a result the connection between methods adapted from the finite case, and
the situation in algebraic groups, becomes more transparent. However even here
there is a nuance. The starting point for our main analysis (in the third Part) is
the classical theory of groups with strongly embedded subgroups, and its neo-
classical revival, groups with weakly embedded subgroups. If one consults the
original papers [1, 121] which deal with theK∗-case, one finds lines of argument
which are certainly different from those used at the corresponding point in the
theory of finite simple groups, but which nonetheless have very much the flavor of
finite group theory, and in particular rely heavily on the theory of solvable groups,
which runs in important respects closely parallel to the theory of finite solvable
groups. All of the latter goes away when one drops the inductive hypothesis (K∗)
and it is here that our Chapter IV comes into its own. As a result, this particular
piece of the theory blows up considerably, and the chapter is a long one.

At the opposite extreme, our Chapter IX is a direct adaptation of work of
Stellmacher to the finite Morley rank context. The subject would be rather dull
if this chapter were typical. But the bulk of the developments have a different
character: the main results achieved are closely parallel to results in the theory of
finite simple groups, and the methods used owe much to the theory of finite group
theory—but not to the proofs of the corresponding results! The dominant theme in
these more typical parts of the theory is the adaptation to the context of connected
groups of the fundamental notions of finite group theory, which in many cases
brings them much closer to the notions of algebraic group theory which inspired
them.
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In any case, the pursuit of this classification problem has led those involved
to develop a set of theories for groups of finite Morley rank which provide useful
extensions of the theories developed in the finite case, and the specific require-
ments and challenges of the classification project have suggested some lines of
development which were not immediately obvious; we mention particularly work
by Corredor, Frécon, Poizat, and Wagner in this connection. About half of the
present volume is devoted to the treatment of general topics of this kind, con-
tinuing in the vein of [51], and the other half to its applications to classification
theorems in the simple case.

Our Main Theorem contains roughly half, or perhaps somewhat more, of what
is currently known about the Algebraicity Conjecture (at least, as far as 2-local
structure is concerned). To explain the present state of affairs more fully requires
a little more background.

There is a Sylow theory for groups of finite Morley rank, for the prime 2.
In addition to the conjugacy of the Sylow 2-subgroups, there is a very particular
structure theory, considerably more reminiscent of the situation in algebraic groups
than the situation in finite groups, which is summarized by the following cryptic
formula.

S◦ = U ∗ T (∗)
Using the language of algebraic groups, this formula may be read as follows:

“The connected component of a Sylow 2-subgroup is a central product of
a unipotent 2-group and the 2-torsion from a split torus.” For a precise
interpretation of the statement in our more general context, see §6 of Chapter I.
The point to bear in mind is that if we actually were dealing with an algebraic
group, this result would hold in a considerably sharper form, depending on the
characteristic of the base field.

S◦ = U in characteristic two; S◦ = T in all other characteristics

In particular the Algebraicity Conjecture predicts that this strong form should hold
for simple groups of finite Morley rank, and the Main Theorem can be reformulated
more lucidly as stating that this is, in large measure, the case. According to the
formula (∗), there are four possible structures for S◦, depending on which of the
factors U and T are present, and they correspond in some sense to hypotheses on
the characteristic of the as yet unidentified base field: if U ̸= 1 and T = 1 we
say the group has even type; if U = 1 and T ̸= 1 we speak of odd type, thereby
inadvertently taking 0 to be odd; when U and T are both nontrivial we speak
of mixed type, and finally when both are absent—which means the full Sylow
2-subgroup is finite, and possibly trivial—we speak of degenerate type. It will be
seen that this terminology is consistent with the abbreviated account with which
we began.
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The Algebraicity Conjecture therefore breaks up naturally into four cases; in
mixed and degenerate type we seek a contradiction, and in odd and even types
we seek an identification of the group as an algebraic group (or, to put the matter
both more concretely and more accurately, as a Chevalley group) over a field of
appropriate characteristic. The Main Theorem can then be put in a third and very
natural form as follows.

Main Theorem, Version II.

(1) There are no simple groups of finite Morley rank of mixed type.
(2) A simple group of finite Morley rank of even type is isomorphic to

a Chevalley group over a field of characteristic two.

In view of the formula (∗), this is equivalent to the previous versions, and it
is in this form that we will prove it. One can see now the sense in which we deal
with “half” of the problem; but actually the deepest problem lies in the degenerate
case. Since we know that there are no involutions in this case, 2-local analysis
ends there, but the problem remains. In odd type there is now a substantial theory,
which we omit.

The state of knowledge in odd type is covered up to a recent date by the thesis
of Jeff Burdges [59]. In odd type one has the following, which is limited to the
inductive framework ofK∗-groups, where aK∗-group is a group of finite Morley
rank all of whose proper definable infinite simple sections are Chevalley groups,
or in practical terms, as we suggested earlier, a group which is a putative minimal
counterexample to the Algebraicity Conjecture.

Odd Type. A simple K∗-group G of finite Morley rank and odd type
satisfies one of the following conditions, where S◦ is the connected compo-
nent of a Sylow 2-subgroup.

(1) G is algebraic.
(2) m2(S

◦) ≤ 2.

Can this approach actually prove the Algebraicity Conjecture in full? This
seems very unlikely, for reasons well known to model theorists. The critical case is
that in which there are no involutions, the most degenerate case in our taxonomy.
Here the methods of the present text are not helpful, though the methods used in
odd type have a certain force even in the absence of involutions, and we hope that
further exploration of the degenerate case will lead to the further development of
such methods. The focus of attention in the degenerate case is on Borel subgroups
(maximal connected solvable subgroups) and the pattern of their intersections; they
may, however, intersect trivially, at which point group theoretic analysis appears
to come to a final halt. In any case, we are not yet so far.

The conjecture antipodal to the Algebraicity Conjecture runs as follows.
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Anti-Algebraicity Conjecture. There is a simple torsion free group
of finite Morley rank.

The conventional wisdom at present is Manichaean: one of the two extremes
ought to be correct. Beyond that, there seem to be few strong opinions as to
how the matter should stand, though model theory has certainly clarified the
issues involved over time. In particular, our work here relies crucially on some
clarification of the model theoretic issues by Frank Wagner, as will be seen in
Chapter IV at a preparatory level, and in Chapter VI in the context of a concrete
application.

One striking difference between our subject and the theory of finite groups is
our ability to prove a general result on groups of even type without first dispos-
ing of the case of degenerate groups. This would be analogous to disposing of
characteristic 2 type finite simple groups without first proving the Feit-Thompson
theorem. Evidently, the two situations differ substantially.

The proof of the Main Theorem evolved gradually, as we have mentioned. At
first, we dealt with K∗-groups, that is with minimal potential counterexamples,
under the additional assumption (called tameness) of the noninvolvement of “bad
fields” (cf. §4 of Chapter I), though with the intention of reexamining the latter
hypothesis at a later stage. After Jaligot’s thesis [122], cf. also [120, 121], it
became clear that the time had already come to proceed in the mixed and even
type cases without reliance on this simplifying hypothesis (and to a large extent
Burdges’ thesis [59] has performed a comparable service for odd type). At this
stage the K∗ hypothesis remained an integral part of the project. The program
aiming at the full classification by adjusting the inductive framework was initiated
in [2]. In this connection, methods derived from Wagner’s work on the model
theory of fields of finite rank have been essential.

Finally, one should not lose sight of two trivial but important points:

• the class of algebraic groups over algebraically closed fields of charac-
teristic two is already a rich class, in the sense that the classification of
Dynkin diagrams is an interesting, though relatively direct, classifica-
tion, with its own “sporadic” (non-classical) members;

• at a deeper level, there are many nonalgebraic simple groups of finite
Morley rank, because there are many fields of finite Morley rank with
pathological structure, furnished by the Hrushovski construction—and
all of this structure is visible in the associated groups. This is an important
point, and more than once we have been confronted with the fact that
we do not actually know the properties of “algebraic groups” when
they are endowed with a finite Morley rank different from the usual
dimension theory. Strictly speaking, algebraic groups (in this broad
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sense) are not even known to be K-groups!—Though this does hold in
positive characteristic, via work of Poizat.

Our main theorem says that in the presence of a fairly strong dimension concept—
and nothing further—the underlying group structure is governed by the same
finite combinatorics as in the algebraic case (Coxeter groups), at least in the case
which corresponds to characteristic two in the algebraic setting; furthermore, this
holds regardless of what pathology is allowed a priori in definable sections. We
do not actually show that our groups are algebraic: we show that, like simple
algebraic groups, they are Chevalley groups, which from our point of view means
that they are amalgams of copies of SL2 governed by the “recipe” encoded in a
Dynkin diagram.

From this point of view, the reader should not be surprised to see considerable
space devoted to the “tiny” group SL2: all of Chapters VI and VII, and much of
Chapters V and VIII. On the other hand, the finite group theorist may be surprised
to see that so little space is taken up with the remaining groups. By the standards
of finite group theory, our inductive analysis is instantaneous.

The proof of the classification of the finite simple groups has given rise to a
polemic between some who feel that the complexity of the proof must be due more
to a poor choice of methods than to the nature of the problem, and those who feel
that this is not at all the case—including, of course, most of those who have worked
on the proof. This is not a polemic into which we feel a need to enter. We find
the methods used extremely attractive. We also feel largely fortunate that we are
not obliged to follow them too closely, and at the same time a bit unfortunate that
we have no access to character theory or transfer methods—either one would be
enormously helpful. Possibly our present work can make a modest contribution
to the discussion underlying the polemic, by giving a demonstration of the flavor
of a substantial portion of the finitistic methods in a context which lies somewhere
in between the conceptual theory of algebraic groups and the more combinatorial
theory of finite simple groups, and whose complexity in the primitive measure
theoretic sense of length (or volume) is in the vicinity of the geometric mean of the
two.
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ency, the conference Groupes, Géométrie et Logique at CIRM, Luminy (September,
2004), and the Newton Institute’s program in model theory and its applications,
for the month devoted to groups of finite Morley rank (March, 2005).

This work has benefited from continuing support from the NSF (current
grant DMS-0600940) as well as from the Agence Nationale de la Recherche (grant
:JC05 47037:jaligot:eric:). The Institut Camille Jordan at the Université Claude
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öyküsünü kendi elyazımla yazıp gönderdiğim mektubun üzerinden on beş yıl
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In a historical vein
The history of the subject is bound up not only with the history of the theory of

finite simple groups, but much of the history of pure model theory, which under-
went a revolution beginning in the late sixties, and even (or perhaps, particularly)
for those who lived through much of the latter, is not easy to reconstruct in a
balanced way. We offer just a few scattered remarks, first from the second author:

Vladimir Nikanorovich Remeslennikov in 1982 drew my atten-
tion to Gregory Cherlin’s paper [67] on groups of finite Morley
rank and conjectured that some ideas from my work [on peri-
odic linear groups] could be used in this then new area of alge-
bra. A year later Simon Thomas sent to me the manuscripts of
his work on locally finite groups of finite Morley rank. Besides
many interesting results and observations his manuscripts con-
tained also an exposition of Boris Zilber’s fundamental results
on ℵ1-categorical structures which were made known to many
western model theorists in Wilfrid Hodges’ translation of Zil-
ber’s paper [190] but which, because of the regrettably re-
stricted form of publication of the Russian original, remained
unknown to me.

The third author came to the subject by a rather different route, the common
point of origin being the work of Zilber, which seems to have become more rapidly
known in the west than in his country of origin, and in the original Russian. This
was the subject of considerable interest (notably in Paris and Jerusalem) in the
summer and fall of 1980, where as a result of their relationships with a notorious
open problem in pure model theory, the broader conjectures of Zilber began to
reach a wide audience. At the outset, work on the algebraic content of stability
theory was stimulated in the west by Macintyre’s work on ℵ1-categorical fields
[133], and in the east by a suggestion of Taitslin. For the third author, coming
into model theory via the Robinson school, the question of the algebraic content
of stability theory was both natural and inevitable. The notions of ℵ1-categoricity
and model completeness, characteristic of the two main schools of model theory at
that time, had both arisen from considerations of the double-edged question: what
is so special about the theory of algebraically closed fields, and is in fact anything
special about this theory? The text [124] also arrived at a timely moment; in
particular, this text made use of a notion of connectivity close to the one adopted
in the present text, and for similar reasons.
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The first author came to the subject from Mecidiyeköy, _Istanbul.
The complex and provocative Poizat has played a complex and provocative

role in the development of this theory. In particular his early intervention brought
the more “algebraic” formulation of the rank notion into its proper form, and
generally he has been very attentive to foundational issues, some of great practical
importance.

The complex and vigorous Nesin has played a complex and vigorous role in the
development of this theory, entering at an early phase and, with his collaborators,
treating a number of key configurations. In a historical vein, we remark that a
period of forced confinement gave him the necessary leisure to familiarize himself
with the contents of [177]; whether he wishes to convey his thanks for this we do
not know, but it may be doubted. (“Si j’avais quelque chose à adresser aux grands
de ce monde, je jure, ça ne serait pas des remerciements!” - Galois)

Model theorists will be aware that the subject has also grown off in other
direction—geometrical stability theory, applications to number theory in the hands
of Hrushovski and several others, and that in these developments the structure of
abelian groups turns out to be central, and not at all as trivial as might appear at first
glance. We have also found close attention to the structure of abelian subgroups
and their definable subgroups valuable, notably in connection with the theory of
“good tori.”
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CHAPTER I

Tools

Oh me dolente! come mi riscossi
quando mi prese dicendomi: “Forse
tu non pensavi ch’io loico fossi!”.
— l’Inferno, Canto XXVII

Introduction

This chapter contains material relating to the general theory of groups
of finite Morley rank. Much of this material may be found in [51], and
some of it in considerably more general form in [180]. For the fundamental
principles, particularly those involving a certain amount of model theory,
the source [150] is excellent. We avoid anything involving particular classes
of groups, such as Chevalley groups. Everything we need in that line of
a general character will be given in the following chapter, with additional
specialized topics in the third.

Our treatment is compact but reasonably full. We begin with a few
points from abstract group theory, notably the basic commutator laws and
the classical Schur-Zassenhaus splitting which we transfer later in the chap-
ter to the context of finite Morley rank. We then lay out the rank axioms
on which everything we do will depend, and derive the theory of connected
groups.

In §4 of Chapter I we take up the theory of fields of finite Morley
rank. Recent advances in this direction play a major role in our work. We
give Macintyre’s theorem, that infinite fields of finite rank are algebraically
closed, Zilber’s results on the interpretation of fields in groups, results of
Wagner and Newelski limiting the nongeneric definable subsets of fields of
finite rank, and a more recent result of Wagner on fields of finite Morley
rank in positive characteristic: torsion is dense in any definable subgroup
of a torus. In the last part of this book we will be in a context in which
all fields should have characteristic two, and this will be a critical property;
so we encapsulate it in the term “good torus” which is introduced in this
section.

The next section deals with the theory of nilpotent groups of finite Mor-
ley rank: their structure, the existence in general of the Fitting subgroup,
two notions of Frattini subgroup (both useful, but quite distinct), and other
staples of general group theory like the normalizer condition. In the presence
of connectedness, a number of these points take on noticeably strengthened
forms.

3
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A subject which is closely related to the theory of nilpotent groups is
the Sylow theory, which also exists in two forms, connected and general, but
only for the prime two. It is most convenient to work with the connected
theory as the main variant, but it occasionally misses something relevant,
in which case one passes to the general theory, but for the most part after
first profiting from the connected version. We write “Sylow◦” and “Sylow”
for the two theories respectively, so the reader should expect to encounter
“Sylow◦” rather than “Sylow” more or less throughout (and heuristically
one does little damage by ignoring the distinction).

Up to a point, the reader knows what to expect from Sylow theory.
However one remarkable, and relatively elementary point, is that the struc-
ture of a Sylow◦ 2-subgroup of a group of finite Morley rank is remarkably
limited. This can be explained by invoking the theory of algebraic groups,
a topic we leave for the next chapter. The structures of Sylow◦ 2-subgroups
in algebraic groups are remarkably limited, and depend mainly on whether
the characteristic is two or not (in this context, 0 is odd, or in any case
not equal to two). The structure of a Sylow◦ 2-subgroup of a group of fi-
nite Morley rank in general is close to a direct product of the two types of
Sylow◦ 2-subgroups occurring in algebraic groups. Since a product of alge-
braic groups over various fields is an example, possibly typical, of a group
of finite Morley rank, this is not a completely unexpected result.

This structural result plays a fundamental role in our approach to the
subject. It gives us a way of distinguishing groups of “characteristic two”
type from the others, at the outset. Something similar is done in finite group
theory, but in a more complicated way, using the structure of centralizers of
involutions instead, which complicates the treatment of small groups (groups
of low Lie rank). On the other hand, this is inevitable in the finite case, as
there are various isomorphisms between quasisimple groups over small fields
of different characteristics, and the characteristic of a very small group may
depend on the group in which it is located. In our case, we have a clearcut
distinction at the outset, unless the 2-Sylow◦ subgroup is trivial; this would
mean that the ordinary 2-Sylow subgroup is finite, and should not occur in a
connected group of finite Morley rank. This last point would be the analog
of the Feit-Thompson theorem in the finite Morley rank context.

In §7 of Chapter I we take up Bender’s generalized Fitting subgroup
F ∗(G). This theory plays a central role in the classification of the finite
simple groups. It will be less visible in our treatment, but only because we
stay on the “characteristic two” side of the theory. On the other side, this
notion plays an absolutely central role, and indeed the same role as in the
finite case. The theory in the finite Morley rank context is exactly parallel to
the finite theory, once one takes into account the slight variations associated
with taking connected components of everything, which we tend to do on
every possible occasion.

In the following section we give some of the theory of solvable groups of
finite Morley rank, notably the Hall and Carter theories. The Carter theory
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is more important here than in the finite case; indeed, it is reminiscent of the
theory of maximal tori in the algebraic case. We also discuss the solvable
radical, along with the socle and the p-unipotent radicals Up(H), which
naturally accompany the solvable radical. This section also includes some
results on “lifting” centralizers which are extremely useful in practice, and
are well known in the finite case. There is also an early form of Schur-
Zassenhaus, in a minimal case.

In the following section we come back to the Schur-Zassenhaus theory
in general, one of the leading themes of [51].

The next section collects some useful information about automorphisms,
in a general setting. There are four topics: (1) the actions of automorphisms
of finite order, notably order two or order p where the group being acted on
contains no p-elements; (2) action of a group of even type on a degenerate
type group; (3) automorphisms of p-tori; (4) “continuously characteristic”
subgroups. With the exception of (2) these provide useful general principles
of an elementary nature. However (2) is the motor for much of the present
work. It turns out that the action of a connected 2-group on a degenerate
type group must be trivial, or in other words: if a connected 2-group nor-
malizes a degenerate type group, then the two groups commute. In practice
this is what allows us to prove a classification theorem for groups of even
type without first proving a Feit-Thompson theorem; this result uncouples
any degenerate type sections of the groups in question from the more inter-
esting parts of the group—most easily in proper subgroups, where induction
applies.

In §11 of Chapter I we take up some matters connected with modules,
that is definable actions of groups on abelian groups. For the irreducible
case, the main points were dealt with under the interpretability of fields, and
for the most part we record some generalities here concerning Clifford theory
and composition series. We also point out one situation in which a group
action must involve a good torus. The subject of modules, or representation
theory, is certainly an important one in our subject, and we will return to
it in various more specialized contexts, but in a general setting it is largely
exhausted by Zilber’s results on interpretability of fields and subsequent
elaborations by Wagner and Poizat already given in §4 of Chapter I.

Our last two sections are more technical. We first take up the Thompson
A× B-lemma, which goes over into our context very naturally, and can be
used to “kill cores” (and a bit more than cores, actually) in 2-local subgroups
in an inductive even type setting. As it happens, our approach uses fewer
2-local subgroups than the standard approaches of finite group theory, and
any cores we need killed are more or less dead on arrival anyway, but in any
case we give this theory, and show later how it may be applied to simplify
the situation.

The other point concerns the theory of complex reflection groups, which
is our main route toward the identification of Coxeter groups, just prior
to final identification of a generic simple group of even type. We will use
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various representations of our “Weyl group” on the torsion subgroup of a
maximal torus to build a representation in characteristic zero (an ultraprod-
uct). This can be viewed as a complex representation, and retain enough of
the character of the natural reflection representations (in finite characteris-
tic) of the Weyl group to be viewed as irreducible complex reflection groups.
Fortunately, these have been classified explicitly, and this material is given
here, with specific information needed later on to eliminate the non-Coxeter
“interlopers”.

Overview

We review the main points of the chapter here for the general reader
unfamiliar with the foundations of the subject (as given in [51]) and anxious
to move along rapidly.

The section on general group theory (§1 of Chapter I) consists largely
of points we will call on occasionally in the sequel, and which may not be
familiar in the precise form we require. Our development actually begins
in §2 of Chapter I with a discussion of rank as a “dimension function” on
definable sets. This notion of rank coincides with Morley rank on the class
of groups, but not in general. We do not give a separate definition of Morley
rank; our rank notion is adequate not only in groups, but in any structures
which can be interpreted into groups. One should be a little cautious though
in looking beyond groups. We will deal later with the theory of buildings,
for example, and it takes some work to show that our rank notion can again
be called “Morley rank” in that context—none of which affects any of our
applications, but does raise some doubts about our terminology, for those
who take the model theory seriously.

Rank behaves for practical purposes like an estimate on the logarithm
of the cardinality, a point that can be rendered rigorous in some contexts
(e.g. for families of groups defined, uniformly, over finite fields), and also
behaves like the Zariski dimension (which by the Lang-Weil theorem agrees
with the former in the large finite case).

Thus the rank of a Cartesian product is the sum of the ranks. Less
obvious, by far, is the following property: in any uniformly definable family
of definable sets, the sizes of the finite sets are bounded. This is connected
with the notion of rank as the sets of rank zero are the finite ones, and it is
related to definability of the rank.

The four axioms for rank are called Monotonicity, Additivity, Defin-
ability, and Uniform bounds, and we have touched on the three nontrivial
axioms already, so at this point the reader should have a fairly precise sense
of the notion. As a consequence of these axioms, one gets a Fubini principle
governing the rank of a subset of a product, or more generally of a subset of
a disjoint union of sets of constant rank (a fibering). In particular a subset
S of such a disjoint union is “generic” (i.e., of full rank), if its fibers are
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generically generic: that is, the generic fiber of the ambient set meets S in
a generic subset.

With rank providing a notion of dimension, there is also a notion of
multiplicity, known as Morley degree in this context. The multiplicity is
the number of irreducible components of maximal dimension. Unlike the
algebraic case, these components are well-defined only modulo sets of lower
rank, and thus the multiplicity can only be defined in the top dimension.
The fine structure of the rank notion is hard to exploit; things are always
clearest in the top dimension.

The rank (and degree) provides a descending chain condition for de-
finable subgroups. There is a more subtle uniform chain condition for uni-
formly definable families of subgroups, due to Baldwin and Saxl; see Lemma
2.8 of Chapter I for details.

From the descending chain condition on definable subgroups we derive a
kind of Zariski closure for subgroups, namely the smallest definable subgroup
containing a given group. A point which seems modest, but eventually
plays a large role, is found in Lemma 2.16 of Chapter I: the definable hull
of a cyclic group is the direct sum of a divisible group and a finite cyclic
group. A defect in the theory is the fact that the function d(a) taking an
element a to the definable hull of the cyclic group ⟨a⟩ is typically not a
definable function; this defect is largely remedied in §4 of Chapter IV by
introducing a definable approximation d̂ to d with very similar properties.
Another apparently innocuous result is lifting of torsion: the preimage of p-
torsion under a definable homomorphism contains p-torsion. In view of the
natural map Z → Z/nZ this has to be considered a particularly agreeable
circumstance, and one that keeps our theory reasonably close to the finite
theory; it is of course true in the algebraic context as well, when one restricts
attention to Zariski closed groups and algebraic homomorphisms.

In a very similar vein, we have the Basic Fusion Lemma 2.20 of Chapter
I: two involutions are either conjugate or commute with a third. This is
familiar in the finite case, much less familiar but still true in the algebraic
case, and true in our case as well, and essential if nontrivial parts of the
theory of finite groups are to be applied in our context to classification
problems.

Everything so far is essential for subsequent developments. We may then
pass on (§3 of Chapter I) to the critical notion of connected group and the
connected component (of the identity) in a definable group. Obviously we are
no longer following the motivation of the finite case, but the finite notions
will mix well with this notion. In the algebraic category, while definable sets
and Zariski closed sets are decidedly not the same thing (more’s the pity),
definable subgroups and Zariski closed subgroups do in fact coincide, and
thus in our more general context we may expect definable groups to behave
well. We call a definable group disconnected if it contains a proper definable
subgroup of finite index, and connected otherwise. The existence of the
connected component G◦ is then purely formal, in view of the descending
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chain condition on definable subgroups, but there is a useful property which
lies deeper: a connected group must be irreducible, that is of Morley degree
one—or in other words, to put the thing more usefully: a connected group
cannot contain two disjoint generic subsets. This is the foundation for a
geometrical line of argument in our subject, as will be seen in Chapter IV.
For the proof, see Proposition 3.6 of Chapter I. The idea is to consider the
action of G on its irreducible components of top dimension (not, admittedly,
a well-defined notion, but manageable nonetheless). In carrying through this
idea one makes use of the Fubini principle.

At this point we have a substantial corpus of basic ingredients to work
with, and we can derive some concrete consequences, notably: any definable
action of a connected group of finite Morley rank on a finite set is trivial; any
definable endomorphism with finite kernel of a group of finite Morley rank
is surjective; the additive and multiplicative groups of an infinite field (or
division ring) of finite Morley rank are connected; an infinite group of finite
Morley rank contains an infinite definable abelian subgroup. The reader
new to the subject might want to try his hand at these.

Another tool of wide applicability is the following definability result, due
to Zilber: if G is a group of finite Morley rank, and H a subgroup generated
by connected definable subgroups, then H is also connected. This is one
of several reasons that it is useful to adapt most of the notions of group
theory to connected versions; thus we work very often with the connected
normalizer N◦(X), the connected centralizer C◦(X), and so on.

Before proceeding, we extend the notion of connected component to
subgroups which are not necessarily definable: H◦ = H ∩ [d(H)◦] when
H is not necessarily definable. The most interesting case of this arises in
conjunction with the Sylow theory, as Sylow subgroups are typically not
definable. We note also that definable hulls of abelian, nilpotent, or solvable
groups are again abelian, nilpotent, or solvable, respectively.

For definable groups H it follows from what we have said already that
the Morley degree of H is the index [H : H◦]. A considerably more delicate
point is the following: if F is a uniformly definable family of definable groups,
then these indices [H : H◦] are uniformly bounded—this would be obvious
if the family

{H◦ : H ∈ F}

were itself known to be uniformly definable. For the proof, it seems to be
necessary to go back into the foundations of the subject.

Next we take up the theory of fields of finite Morley rank (§4 of Chapter
I), which contains both the earliest results in this area, and some of the most
recent, all of them very useful in applications. This consists of the following
ingredients.

• Macintyre’s theorem: An infinite field of finite Morley rank is alge-
braically closed;
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• Zilber’s Linearization Theorem: Let G be a connected group of
finite Morley rank acting definably, faithfully, and irreducibly on
an abelian group V , and let T ◁ G be infinite abelian. Then the
subring of End(A) generated by T is a an algebraically closed field,
with respect to which V becomes a finite dimensional vector space
on which G acts linearly.

• The Newelski-Wagner Genericity Lemma: A definable subset of a
field of finite Morley rank which contains an infinite field is generic

• The Good Torus Principle: Any definable subgroup of the multi-
plicative group of a field of finite Morley rank, in positive charac-
teristic is the definable hull of its torsion subgroup

Most of this can be extracted reasonably directly based on the foun-
dations established in the previous two sections, with the exception of the
final point, which is a reformulation of results of Wagner which require some
further foundational work, but in the specific context of fields. As will be
seen in Chapter VI (and to some extent already in Chapter IV) this last
result provides the basis for our geometrical lines of argument which fill the
gap which would otherwise result from our inability to handle nonsolvable
groups without involutions—not by casting any light on the class of groups,
but by allowing us to work around it entirely.

For Macintyre’s theorem, we have already laid sufficient foundations. We
know that the additive and multiplicative groups of our field are connected,
and in Galois theoretic terms it follows that the field has no Kummer or
(in characteristic p) Artin-Schreier extensions, and is perfect. While this
by itself will not yield algebraic closure, these properties are inherited by
finite algebraic extensions, which “live inside” the universe of definable sets.
And indeed, a Galois theoretic argument then shows that a field with these
properties holding hereditarily is algebraically closed.

Zilber’s theorem (found in this form in [51]) is a distant cousin of Schur’s
lemma, coupled with the following point (Lemma 4.5 of Chapter I) any defin-
able group of automorphisms of a field of finite Morley rank is trivial. “But
what of the Frobenius automorphism?” the alert reader will object—observe
the distinction between a definable group of automorphisms and a group
of definable automorphisms. The triviality of such definable automorphism
groups is largely a consequence of Macintyre’s theorem (the fixed field must
be either finite or algebraically closed, and we need only concern ourselves
with the former case, which indeed requires a little attention).

The Newelski-Wagner Genericity Lemma would be obvious if the “infi-
nite field” referred to were itself definable, as the structure consisting of a
pair of algebraically closed fields, nested, has infinite rank. So this becomes
largely a matter of trading a not necessarily definable field in for a definable
one.

Finally, the Good Torus Principle is both essential and subtle, and not
in the direct line of thought we have followed to this point. The underlying
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model theoretic result is the following: if F is a field of finite Morley rank,
then the subfield Falg of model theoretically algebraic elements is an elemen-
tary substructure. In positive characteristic one may show (via the Frobe-
nius automorphism, which respects both the field structure and whatever
multiplicative subgroups may be definable) that these algebraic elements
are algebraic in the conventional sense, and thus our field has a locally finite
elementary substructure. This then decodes into the Good Torus Principle.
The point of this principle will be seen considerably later, starting with §1
of Chapter IV (Proposition 1.15 of Chapter IV).

At this point we have the foundations well in hand, and we can develop
various standard group theoretic topics on that basis (§§5 of Chapter I–9
of Chapter I): the structure of nilpotent groups, the Fitting subgroup (and
later, the generalized Fitting subgroup), and the theory of solvable groups,
which includes the theory of Hall and Carter subgroups, the solvable radical,
and the important Schur-Zassenhaus lemma. The latter requires a consid-
erable development. The solvable theory has some special features which
are reminiscent of the algebraic theory. It is much simpler than the theory
in the finite case, because of our attention to connected groups. The most
striking parallel to algebraic group theory is a version of the Lie-Kolchin
theorem: if H is a connected solvable group of finite Morley rank then the
quotient H/F ◦(H) modulo the connected Fitting subgroup is a divisible
abelian group (Lemma 8.3 of Chapter I). The idea of the proof is to use
the Zilber Linearization Theorem on a composition series for H to get H
acting as a subgroup of a product of fields, where the kernel of the action
has a nilpotent action on H and hence lies in the Fitting subgroup (after
which one may pass to the connected Fitting subgroup with a little more
argument).

One can also define a reasonable notion of p-unipotent subgroup, and
show in the solvable case that these groups necessarily lie in the Fitting
subgroup. We would have more trouble introducing a notion of 0-unipotence;
this has been done, for use in groups of odd type, but for us the critical case
is 2-unipotence, and we may be spared these interesting refinements.

In the Introduction we took special note of the Sylow theory, for good
reason. On the one hand it presents several subtleties: the groups in ques-
tion are typically not definable, which makes their management a delicate
point; furthermore, while we have a good Hall theory, in general, inside
solvable groups, we have no real Sylow theory at all for any prime other
than 2. And indeed the treatment of Sylow theory in the finite case is reso-
lutely arithmetical, whichever of the variety of approaches one adopts. We
must adopt an entirely different approach, working inductively, and relying
ultimately on the Basic Fusion Lemma when all else fails.

One may deal with either Sylow subgroups or their connected analog,
Sylow◦ subgroups; the latter is the workhorse of the subject, but the former
intervenes on occasion. Sylow 2-subgroups are maximal 2-subgroups, and
2-subgroups are those whose elements have order a power of 2. Existence
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is therefore not an issue; conjugacy is, but can be proved by an inductive
argument. Structure is also an issue. An essential point is the local finiteness
of the Sylow 2-subgroups. If one wishes to extend the theory to p-subgroups,
one should probably build local finiteness into the definition; but even so,
problems will remain.

Considerably more can be said about the structure of a Sylow◦ 2-subgroup
S of a group of finite Morley rank, and indeed the situation runs closely par-
allel to what one sees in the algebraic case. The structure is as follows:

S = U ∗ T
where

(1) The ∗ represents a central product, with a finite intersection.
(2) U is 2-unipotent: definable, connected, solvable of bounded expo-

nent (and hence nilpotent, by Lemma 5.5 of Chapter I.
(3) T is a 2-torus: divisible abelian but presumably not definable, as

the definable hull should contain elements of infinite order.

This structural result gives us a way of distinguishing groups of “character-
istic two” type from the others, at the outset. Either or both of U and T
may be trivial; in a simple group one expects exactly one of the two to be
absent. There are all told four possibilities, and hence four possible “types”:
mixed type, with both factors present; degenerate type, with S = 1; and even
or odd type, with, respectively, S = U or S = T . Each of these types is
approached differently, though as we shall see the two types with U > 1 are
approached similarly, and in the end the case of mixed type reduces to the
case of even type.

The chapter contains four further sections, dealing with automorphism,
modules, the Thompson A × B theorem, and complex reflection groups
(§§10 of Chapter I–13 of Chapter I). This is a motley collection, ending up
with topics that lie somewhere between general tools and the sort of more
specialized developments treated in Chapter III.

To begin with, a number of general principles involving automorphisms
should be considered part of the basic tools of the trade, and have been
collected together. More specialized topics relating to automorphisms of
Chevalley groups will be found under that more specialized heading. But
we have buried one topic of the first importance in this section, namely
Proposition 10.13 of Chapter I: If a 2-unipotent group acts definably on a
definable subgroup without 2-unipotent subgroups (for example, on a group
of degenerate type), then the action is trivial. This result furnishes one of
the key mechanisms for neutralizing degenerate sections of a group. And in
the course of the analysis we make our first acquaintance with the important
notion of strong embedding, to be investigated in detail in Chapter VI.

The topics considered under “modules” do not form a particularly co-
herent whole. Logically, this section could equally well include the Zilber
Linearization Lemma, some at least of the Schur-Zassenhaus analysis, and
other topics. But we collect here a few points for which the language of
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modules is particularly convenient, and which do not belong to any more
notable category.

The last two topics (A × B theorem, complex reflection groups) are of
a very specific character. They are close in spirit to the specialized topics
which are treated on their own in Chapter III, but seem to us to have more
of the character of general group theory.

The Thompson A × B Lemma goes over smoothly from finite group
theory to our context, and it plays much the same role for us that it does
classically; and it could easily be hidden in the section on nilpotent groups,
or modules, or automorphisms, which are themselves three faces of a single
thing. But it plays a distinguished role in the subject, and we let it stand
alone. The theory of complex reflection groups, on the other hand, is a topic
which clearly belongs, as far as the content is concerned, in our first section,
which was devoted to topics in general group theory which we take over and
use—we use this one rarely, but to great effect.

In other words, we deal at the end with four afterthoughts (excepting
the fundamental Proposition 10.13 of Chapter I) perhaps out of their proper
places, but all playing an important role in the sequel.

If the reader is still with us, he has been here long enough and should
either browse the chapter or move on to points of greater interest (probably
Chapters III or IV, as taste may dictate).

1. General group theory

In this section we record some general group theoretic facts which are
occasionally useful, and establish our group theoretic notations, particularly
in areas in which conventions are not entirely standardized. We note at the
outset that in model theoretic contexts, the notation Xn stands for the
Cartesian power X × · · · × X of the set X, but the notation Gn, for G a
group, will also refer to a term in the upper central series; this usage should
not result in any substantial ambiguity. But we will avoid the use of the
same notation for the set of n-th powers. In abelian contexts, that set may
be denoted nG, and in nonabelian contexts we have no special notation for
this set.

When we work with a group H having a normal subgroup K, we will
sometimes avoid passing to the quotient H̄ = H/K by a standard notational
device: we write for example Z(HmodK) for the pullback to H of Z(H̄);
CH(XmodK) for the pullback to H of CH̄(X̄); and NH(LmodK) for the
pullback to H of NH̄(L̄).

1.1. Notations.

Notation 1.1. Let G be a group, and π a set of primes.

(1) For a, b ∈ G, we set ab = b−1ab and [a, b] = a−1ab.
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(2) For X,Y ⊆ G, [X,Y ] denotes the subgroup generated by commu-
tators [x, y] with x ∈ X, y ∈ Y ; but for x ∈ X, [x, Y ] denotes the
set of commutators {[x, y] : y ∈ Y }.

(3) Gi and G(i) are defined inductively by:

G0 = G(0) = G;

Gi+1 = [G,Gi];

G(i+1) = [G(i), G(i)]

The series Gi is called the descending central series; the series G(i)

is called the commutator series.
(4) The ascending central series Zi(G) is defined inductively by

Z0(G) = 1;

Zi+1(G)/Zi(G) = Z(G/Zi(G))

(5) A π-number is a positive integer all of whose factors belong to π.
(6) For a ∈ G, H ≤ G, aH denotes the set {ah : h ∈ H}.
(7) A π-element of G is an element whose order is a π-number.
(8) A π-group is a group all of whose elements are π-elements.
(9) A π⊥-group is a group none of whose elements other than 1 is a

π-element.
(10) π′ is the complement of π in the set of prime numbers.
(11) We write G× for G \ {1}.
(12) G is π-radicable if for every g ∈ G and every π-number n, g has

an n-th root in G; and if G is abelian, the term π-divisible means
the same thing (but may be expressed additively).

(13) If P is a {p}-group, then Ωi(P ) is the subgroup generated by ele-
ments of order at most pi.

Note that a π′-group is a π⊥ group, but that π′-groups are necessarily
periodic (all elements are of finite order) whereas π⊥-groups may contain
elements of infinite order.

When π = {p} for a single prime p, we lighten the notation accordingly:
p-group, p′-group, p⊥-group, and so on.

1.2. Commutator laws.

Lemma 1.2. [105, . . . ] Let G be a group, and a, b, c, g ∈ G.

(L) [ab, g] = [a, g]b[b, g]

(R) [g, ab] = [g, b][g, a]b

(J) [[a, b−1], c]b[[b, c−1], a]c[[c, a−1], b]a = 1

We will refer to (J) as the Jacobi identity.

Corollary 1.3. Let i ∈ I(G) (that is, an involution), x ∈ G, γ = [i, x].
Then γi = γ−1.



14 I. TOOLS

Corollary 1.4. Let G be a group, A an abelian subgroup, and g ∈
NG(A). Then the commutator map γg : A → A defined by γg(a) = [g, a] is
an endomorphism of A.

Lemma 1.5. Let G be a group, and X,Y subgroups. Then X and Y
normalize [X,Y ].

Proof. Let x1, x ∈ X, y1 ∈ Y , γ = [x1, y1]. Then [x1x, y1] = [x1, y1]
x[x, y1],

hence γx ∈ [X,Y ]. □

Lemma 1.6 (Three subgroups lemma). Let G be a group, H,K,L three
subgroups, and N ◁ G. If two of the three subgroups:

[[H,K], L], [[K,H], L], [[L,H],K]

are contained in N , then so is the third.

Proof. Suppose the first two are contained in N . By the Jacobi iden-
tity, for l ∈ L, h ∈ H, k ∈ K, we find

[[l, h], k]h
−1 ∈ [[H,K], L]K [[K,L], H]L ⊆ N

and thus [[l, h], k] ∈ N . □

Definition 1.7. Let G be a group.

(1) G is quasisimple if G′ = G and G/Z(G) is simple.
(2) G is quasisemisimple if G is a central product of quasisimple groups.
(3) For any group G, E(G) is the subgroup of G generated by its sub-

normal quasisimple subgroups.

Lemma 1.8. Let G be a quasisemisimple group. If H ◁ G then H ′ is
quasisemisimple, H = H ′Z(H), Z(H) = H ∩ Z(G), and the quasisimple
normal subgroups of H are normal in G.

Proof. Let Ḡ = G/Z(G). Then Ḡ is a direct product of simple groups
and H̄ is normal in Ḡ, so the same applies to H̄. Thus H = H ′Z(H) and
Z(H) = H ∩ Z(G), and it follows that H ′ = H ′′. It remains to check the
last claim.

If H1 is a quasisimple normal subgroup of H, then H̄1 ◁ Ḡ and hence
H1Z(G) ◁ G. Then H1 = H ′

1 = (H1Z(G))
′ is normal in G. □

Lemma 1.9. Let G be a group.

(1) If H,K are subnormal in G and quasisimple, then either [H,K] = 1
or H = K.

(2) E(G) is the central product of the subnormal quasisimple subgroups
of G.

Proof. As the second claim follows from the first, we concern ourselves
with the first.

Let H = H0 ◁ H1 ◁ . . .Hm = G and K = K0 ◁ K1 ◁ . . .Kn = G,
and proceed by induction on max(m,n). Then the conjugates of H in G lie
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inside Hm−1, so by induction distinct conjugates of H commute with one

another, and generate a subgroup Ĥ which is their central product; similarly
the conjugates of K̂ generate a subgroup K̂ which is their central product.

Suppose first that L = Ĥ∩K̂ is abelian. Then L ≤ Z(K̂) so [[H,K],K] =
1 and by the three subgroups lemma, [H,K] = [H, [K,K]] = 1.

Now suppose that L = Ĥ ∩ K̂ is nonabelian, and let L1 be a quasisimple
normal factor of L. Then L1 is also quasisimple normal in Ĥ and in K̂.
Accordingly there are conjugates H1 of H and K1 of K such that L1Z(Ĥ) =

H1Z(Ĥ) and similarly for K1. Then L1 = L′
1 = (L1Z(Ĥ))′ = (H1Z(Ĥ))′ =

H1 and similarly L1 = K1, so H and K are conjugate, and the claim follows
as already remarked. □

Lemma 1.10. Let G be a group, and H a solvable normal subgroup. Then
[E(G), H] = 1.

Proof. The commutator [E(G), H] is a solvable normal subgroup of
E(G), hence is contained in Z(E(G)), or in other words [E(G), [E(G), H]] =
1 and hence [E(G), H] = 1 since E(G)′ = E(G). □

Lemma 1.11. Let G be a group, and H a normal subgroup. Then E(H) =
(E(G) ∩H)′.

Proof. By the definitions, E(H) ≤ E(G) and hence E(H) = E(H)′ ≤
(E(G) ∩H)′. Conversely E(G) ∩ E(H) ◁ E(G), hence (E(G) ∩H)′ is qua-
sisemisimple. □

1.3. Commutator subgroup.

Lemma 1.12. [51, Ex. 21, p. 7]
Let G be a group with G/Z(G) finite. Then G′ is finite.

Proof. Let X = {[a, b] : a, b ∈ G}. Then |X| is finite. Let X =
{x1, . . . , xN} in some definite order. We claim

(∗) Any element of G′ may be written in the form
x∗1 · . . . x∗N with x∗i a positive power of xi

For this, let g ∈ G′ have the representation g = xi1 · · · · ·xil . We proceed
by induction on l.

If i1 ≤ · · · ≤ il, we have our claim. Assuming the contrary, let j be mini-
mal so that ij > ik for some k > j, and with l fixed, choose the representation
of g to maximize j. Choose k > j to minimize ik. Let g1 = xi1 · · · · · xij−1 ,

g2 = xij · · · · ·xik−1
, and g3 = xik+1

· · · · ·xil . Note that g
xik
2 can be expressed

as a product of length k−j since X is invariant under conjugation. Consider
the representation of g as g1xikg

xik
2 g3. This again has length l, but has ik in

place of ij in the j-th position. Thus relative to this second representation,
the value of j has increased, a contradiction. This proves (∗).

Note also that the transformation of an expression for g into the standard
form of (∗) does not increase length. Let n = |G/Z(G)|. We claim now that
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the representation can always be taken with length at most |X| · n. To see
this, it suffices to show that any expression of the form xn+1 (considered as
length n + 1), with x = [a, b] ∈ G′, can be shortened by rewriting. Since
xn ∈ Z(G), this may be done as follows:

xn+1 = a−1xnba = [(xn−1)axaa−1]ba = (xn−1)a[a, b]a[a, b] = (xn−1)a[a2, b]

where the last expression can be construed as length n, since [a2, b] ∈ X. □

Lemma 1.13. [51, Ex. 22, p. 8]
Let G be a group, and H1, H2 subgroups of G which normalize each other.

If the set of commutators X = {[h1, h2] : h1 ∈ H1, h2 ∈ H2} is finite, then
the commutator subgroup H = [H1, H2] is finite.

Proof. We may take G = H1H2 and thus CG(X) = CG(H) is a normal
subgroup of finite index. Hence Z(H) has finite index in H, and it follows
thatH ′ is finite. Accordingly we may factor outH ′ without loss of generality,
and assume that H is abelian.

Therefore the commutator maps γh1 : H1 → H defined by γh1(h2) =
[h1, h2] are homomorphisms, so X is closed under taking powers. Thus the
elements of X are of finite order, and H is generated by a finite set of
elements of finite order; H is finite. □

1.4. Abelian and nilpotent groups.

Notation 1.14. Let A be an abelian group

(1) For n ≥ 1, A[n] = {a ∈ A : na = 0}.
(2) A subgroup B of A is pure in A if nA ∩B = nB for all n ≥ 1.

Lemma 1.15. [93, 28.2, Kulikov] If A is an abelian group, and B a pure
subgroup with A/B of bounded exponent, then A splits as B ⊕ C for some
complement C.

Proof. By Zorn’s Lemma one can find a maximal pure subgroup B̂ of
A containing B, such that B̂/B splits over B. We claim B̂ = A. If note, take

a ∈ A of maximal prime power order q = pn modulo B̂, and use the purity
of B̂ to write ⟨B̂, a⟩ as ⟨B̂⟩ ⊕ C with C cyclic. To reach a contradiction

it suffices to check that B̂ ⊕ C is again pure in A. This reduces easily to
checking that pA ∩ (B ⊕ C) = pB ⊕ pC and follows from the maximization
of q. □

Lemma 1.16. [93, Theorem 17.2] Let A be an abelian group of bounded
exponent. Then A is a direct sum of cyclic groups.

Proof. Take a maximal direct sum of cyclic subgroups which is pure
in A, and apply the preceding lemma. This reduces the problem to one
of finding a single cyclic direct factor of A, and for this one takes a cyclic
subgroup of maximal prime power order, which is again pure in A and hence
is a direct factor. □
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Lemma 1.17. If H is a nilpotent group and π is a set of primes then
the set Hπ of π-elements of H is a subgroup, and is the direct sum of the
subgroups Hp (i.e., H{p}) for p ∈ π. In particular the set Htor of elements
of finite order in H is a subgroup, and is the direct sum of all the subgroups
Hp.

Lemma 1.18. [70, 71] Let H be a π-radicable nilpotent group. Then

1. Hπ ≤ Z(H).
2. Zi(H)/Zi−1(H) is π-torsion free and π-divisible for i > 1.

Proof.
Ad 1. We show for each prime p ∈ π that

(∗) If hp ∈ Z(H) with h ∈ H, then h ∈ Z(H)

We may suppose that the corresponding statement holds in H/Z(H), and
accordingly if hp ∈ Z(H) then h ∈ Z2(H).

Fix such an h. Then for x ∈ H we have 1 = [hp, x] = [h, x]p = [h, xp],
and as H is p-radicable we find h ∈ Z(H) as required.

Ad 2. In H̄ = H/Zi−1(H), our claim is that Z(H̄) is π-torsion free and
π-divisible. It is π-torsion free by part (1) applied to H/Zi−2(H), and it is
π-divisible by (∗) applied to H̄. □

Lemma 1.19. Let G be a group and H a normal nilpotent subgroup such
that G/H ′ is nilpotent. Then G is nilpotent.

Proof. Let H0 = H, Hi+1 = [G,Hi], and take n minimal so that
Hn ≤ H ′. We proceed by induction on n. It suffices therefore to show that
G/H ′

1 is nilpotent.
LetKi = [Hi, H]. As G/H ′ is nilpotent, it suffices to show that [G,Ki] ≤

Ki+1H
′
1 for all i. We apply the three subgroups lemma: [[G,Hi], H] = Ki+1

and [[G,H], Hi] = [H1, Hi], which is contained in H ′
1 for i ≥ 1 and is equal

to Ki+1 for i = 0. Thus [G,Ki] ≤ Ki+1H
′
1 for all i. □

Lemma 1.20. If H is a nilpotent group, π a set of primes, and H has a
central series Hi such that every section Hi/Hi+1 is π-radicable, then H is
π-radicable.

Lemma 1.21. If H,K are normal nilpotent subgroups of the group G,
then HK is nilpotent.

Lemma 1.22. Let G be a nilpotent by finite p-group for some prime p.

(1) Z(G) ̸= 1
(2) For H < G, we have NG(H) > H.

Proof.
Ad 1. Let G0 ◁ G be nilpotent and normal, with Ḡ = G/G0 finite. Let

A = Ω1(Z(G0)). Then the group A ⋊ Ḡ is an elementary abelian by finite

p-group. Take a ∈ A× and consider the subgroup A0 = ⟨aḠ⟩ of A; this is a
finite Ḡ-invariant group.
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The finite p-group A0 ⋊ Ḡ is nilpotent, so its center is nontrivial and
meets the normal subgroup A0 nontrivially. Thus CA(Ḡ) ̸= 1 and hence
Z(G) ̸= 1.

Ad 2. Let H0 be the largest normal subgroup of G contained in H, and
factor it out. We may assume then that H contains no normal subgroup of
G. In particular H ∩Z(G) = 1, and as Z(G) ≤ N(H) the claim follows. □

Lemma 1.23. Let G be an infinite abelian by finite p-group of bounded
exponent for some prime p. Then Z(G) is infinite.

Proof. We may think of G as giving an action of a finite p-group P
on an infinite abelian p-group A of bounded exponent, and we may restrict
attention to the elementary abelian p-group Ω1(A). So take A to be elemen-
tary abelian. Then taking x ∈ Z(P ) of order p, and proceeding by induction
on |P |, it suffices to check that the extension of A by ⟨x⟩ is nilpotent.

In End(A), which is a ring of characteristic p, we may perform the
calculation: (1− x)p = 1− xp = 0, which proves our claim. □

Lemma 1.24 (Maschke). Let H = A×B be a group, π a set of primes,
and G a finite group acting on H. Suppose that A is an abelian G-invariant
π-group, B is a π⊥-group, and G is a π′-group. Then H splits as A× B̃ for
some G-invariant complement B̃.

Proof. This is a variant of Maschke’s Theorem. Let n = |G|, and let
π : H → A be the projection map with respect to the decomposition A×B.
The group G acts naturally on End(H), and we let π̃ = 1

n

∑
g∈G π

g (since

πg takes values in A, the summation notation makes sense).
Then π̃ : H → A, π̃ ↾ A = id, and π̃ is G-invariant, so ker π̃ is a

G-invariant complement to A. □

1.5. Schur-Zassenhaus. The next two results are standard, with sub-
stantial proofs which we will not reproduce here.

Lemma 1.25. [98, 2.1, p. 221] Let G be a finite group, H a normal
solvable subgroup, with |H| and |G/H| relatively prime. Then H has a
complement K in G: G = H ⋊ K; and any two such complements are
conjugate under H.

A generalization of part of the above, not limited to the finite case, is
given by Suzuki [171],

Lemma 1.26. Let G be a group with a normal abelian subgroup A, and
let L be a subgroup of G such that A ≤ L ≤ G and [G : L] = m < ∞.
Assume the following:

(1) A is m-divisible and m-torsion free.
(2) A has a complement in L.

Then A has a complement in G, and any two such are conjugate. Fur-
thermore, any complement of A in L is contained in a complement of A in
G.
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Similarly, in the nilpotent case:

Lemma 1.27. Let G be a group with a normal nilpotent subgroup A of
finite index m, and assume that A is m-radicable and m-torsion free. Then
A has a complement in G, and any two such are conjugate.

Proof. We can argue inductively since A/Z(A) is m-torsion free by
Lemma 1.18 of Chapter I. So assume G = AT with T ∩ A = Z(A). As
Z(A) is m-divisible we can split T by the preceding lemma. Thus G splits
as A⋊ T0 for some T0.

For conjugacy one argues similarly that the complements may be taken
in Z(A)T0, and the previous lemma applies. □

We also need a more technical version of the Schur-Zassenhaus Theorem
proved in [106, p. 172] and [107, p. 267].

Proposition 1.28. Let G be a group, π a set of primes, and suppose A ◁
G with A an abelian, π-divisible, π⊥-group. Suppose that G/A is a locally
finite π-group and A satisfies the descending chain condition for centralizers
of subsets of G. Then the following hold:

(1) G splits over A, that is there is a complement to A in G;
(2) Any two such complements are conjugate;
(3) Any group H ≤ G with H ∩A = (1) is contained in a complement

to A.

Proof. We will show that (2, 3) follow directly from (1) under our
hypotheses, and we prove (1) by induction on the cardinality of G/A.
Proof of (2, 3) assuming G splits. (Cf. [106, p. 172, proof of Lemma 4.2].)

Let G = A⋊H, and let H1 be a subgroup with H1 ∩ A = (1). We will
show that H1 is conjugate to a subgroup of H.

By the descending chain condition on centralizers in G, there is a finite
subset K0 of H1 such that CA(K0) = CA(H1). Let K1 be a finite subgroup
of H1 containing K0, and let K2 be a finite subgroup of H such that K1 ⊆
A⋊K2. By Lemma 1.26 of Chapter I, K1 is conjugate to a subgroup of K2.
In particular K1 is conjugate to a subgroup of H, and since G = AH, there
is an element a ∈ A such that Ka

1 ≤ H.
This element a is unique modulo CA(H1): if Kb

1 ≤ H and b ∈ A, then
Ka

0 ,K
b
0 ≤ H and [a−1b,Ka

0 ] ≤ A ∩ H = (1), forcing a−1b ∈ CA(K
a
0 ) =

CA(K0) = CA(H1). In other words, if Ka
0 ≤ H then also Ka

1 ≤ H for all
finite groups K1 with K0 ≤ K1 ≤ H1, and thus Ha

1 ≤ H, as desired.
Proof of (1). (Cf. [107, p. 267].)

We proceed by induction on the cardinality κ of G/A. If κ is finite, then
Lemma 1.26 of Chapter I applies. If κ is infinite, then G can be written
as an increasing continuous union of groups Gi (i < κ) with A ≤ Gi and
|Gi/A| < κ. Hence by induction, Gi splits as A ⋊Hi. We can now replace
the groups Hi by groups H∗

i which are again complements to A in Gi, and
are increasing: i < j implies H∗

i ≤ H∗
j , proceeding by induction on i. At
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limit ordinals we take unions, and at successor stages we take H∗
i+1 to be a

suitable conjugate of Hi+1, using (2, 3). □

1.6. Central extensions. We include some extremely general back-
ground on central extensions here. The connections with cohomology are
not used here; what will matter is the very substantial theory of central
extensions of algebraic groups, which will be quoted later.

Definition 1.29. Let G be a group.

(1) A central extension of G is a group Ĝ together with a surjective

homomorphism h : Ĝ→ G whose kernel is in the center of Ĝ.
(2) A universal central extension of G is a central extension h : Ĝ→ G

which is universal in the sense that it factors uniquely through any
other: if h0 : G0 → G is a central extension, there is a unique
homomorphism Ĝ→ G0 making the diagram commute.

As always holds in such cases, universal central extensions, if they exist,
are unique up to canonical isomorphisms. The question of existence will
be discussed here. It is elementary and standard. The connection with
cohomology is also standard, and illuminating, but is not needed here.

The substantial theory of central extensions as it applies to Chevalley
groups will be simply quoted at a later point. There one has to distinguish
central extensions in the algebraic sense, which are well understood, from
central extensions in the abstract sense, which are more subtle. The follow-
ing turn out to be true: for any Chevalley group over an algebraically closed
field, there is a universal central extension in any of the following categories:
algebraic groups; abstract groups; groups of finite Morley rank. There is
no reason a priori to expect the third point to be valid, but it is proved
by showing that the universal algebraic central extension is also universal
in the finite Morley rank category, which is natural enough. The following
result is given just to establish the framework in which one works, at the
level of abstract groups.

Lemma 1.30 (Universal Extensions). Let G be an abstract group.

(1) G has a universal central extension iff G is perfect, i.e. G = G′.

(2) If G is perfect, then a central extension Ĝ → G of G is universal
iff
(a) Ĝ is perfect.
(b) For any central extension e : E → G of G, the extension

Ĝ→ G factors through E.
(3) If G is perfect, and

1 → R→ F → G→ 1

is a presentation of G (i.e., a short exact sequence with F is free,
so that the kernel R is the set of “relations” holding in G), then the
group F ′/[F,R], with the natural map onto G′ = G, is a universal
central extension of G.
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Proof.
Ad 1. Suppose first that Ĝ has a universal central extension. We will

apply the uniqueness condition to show that G is perfect.
If A = G/G′ is nontrivial, then Ĝ = G×A is a central extension ofG with

respect to projection on the first factor. Any central extension e : E → G
then factors through Ĝ in at least two ways, via the map (e, 1) and (e, ē)
where ē : E → A is induced by e.

The converse will follow from part (3).

Ad 2. We claim that the condition: Ĝ is perfect, is equivalent to the
uniqueness of the desired map.

If Ĝ is not perfect then we consider the central extension E = Ĝ × A
with A = Ĝ/Ĝ′, as in the first part, and we clearly do not have uniqueness
here. So the conditions are necessary.

Conversely if Ĝ is perfect and we have two maps π1, π2 : Ĝ → E com-
patible with Ĝ→ G, with E a central extension, then π1 and π2 differ only
by central elements of E and hence coincide on Ĝ = Ĝ′.

Ad 3. If G is perfect, and 1 → R → F → G → 1 is a presentation of
G, set Ĝ = F ′/[F,R] (depending somewhat on the fixed presentation), with

the natural map h : Ĝ → G. Since the kernel of this map is R/[F,R], even
F/[F,R] → G would be a central extension, and of course as G is perfect the

restriction to F ′/[F,R] remains surjective. So Ĝ→ G is a central extension,
and we claim it is universal.

We now apply part (2).

Let us check that Ĝ is perfect (condition (a)). Since the natural map
F ′ → G is surjective, we have F = F ′R. Hence F ′ = [F ′R,F ′R] ≤ F ′′R′

and as R′ ≤ [F,R] we find Ĝ′ = Ĝ.
Now let us check condition (b). For any central extension E → G of G,

we can lift F → G to a compatible map π : F → E. This then restricts to
a map π0 : F

′ → E with [F,R] in the kernel, since R goes into the center of

E. So we have at least one compatible map π̄ : Ĝ→ E.
□

Some other points of the general theory worth noting here, that the
reader may wish to check, are the following:

(1) If we have Ĝ→ G a universal central extension, and any subgroup

Z of Z(Ĝ), then Ĝ is the universal central extension of Ĝ/Z.
(2) Just as the “uniqueness” condition was translated by the condition

of perfection, the “existence” condition may be translated into the
following: any central extension of Ĝ splits; or equivalently, Ĝ has
no nontrivial perfect central extension.

This last condition is very natural: in the category of perfect central
extensions of G, we require maximality; and the intermediate extensions
have a natural lattice structure.
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What we have done here does not, of course, prove that simple algebraic
groups have universal central extensions in the category of algebraic groups.
That requires more concrete considerations. But as a point of terminology,
it may be mentioned that the universal central extension in the algebraic
category is called simply connected, and the whole theory is analogous to,
bound up with, and illuminated by, the consideration of universal covers of
topological groups.

1.7. The class U.

Definition 1.31. Let G be a group. We say that G is locally solvable
if every finitely generated subgroup is solvable.

Lemma 1.32. A locally solvable periodic group is locally finite.

Lemma 1.33. [131] Let G be a locally solvable group, and suppose that
H is a minimal normal subgroup of G. Then H is abelian.

Proof. If H is nonabelian, take h ∈ H× arbitrary. Then ⟨hG⟩ = H and
H ′ = H. Take G0 finitely generated so that h ∈ ⟨hG0⟩′. Let H0 = ⟨hG0⟩.
Then as G0 normalizes H ′

0, we find hG0 ⊆ H ′
0 and hence H ′

0 = H0. But
H0 ≤ ⟨h,G0⟩, which is solvable, a contradiction. □

Definition 1.34. U is the class of locally finite groups G such that every
subgroup H of G satisfies:

(1) There is a finite series

1 = H0 ◁ H1 ◁ . . . ◁ Hn = H

with locally nilpotent quotients.
(2) For each set π of primes, the maximal π-subgroups of H are con-

jugate.

Lemma 1.35. [58] Let G be a locally finite solvable group satisfying the
minimum condition on centralizers. Then G ∈ U.

Definition 1.36. Let G be a group. A Sylow basis for G is a collection
of Sylow subgroups Sp, one for each prime, such that for any set π of primes,
the group

Sπ = ⟨Sp : p ∈ π⟩

is a π-group.

Proposition 1.37. [94, Corollary 2.6, Theorem 2.10] Let G ∈ U. Then

(1) G contains a Sylow basis.
(2) Any two Sylow bases of G are conjugate.
(3) If (Sp : p prime) is a Sylow basis for G, then SpSq = SqSp for all

p, q and hence Sπ =
∏

p∈π Sp.
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1.8. Groups of bounded exponent.

Lemma 1.38. Let 1 → H → K → L → 1 be a short exact sequence.
Then K has bounded exponent if and only if H and L do.

Lemma 1.39. A group of exponent 2 is abelian.

Lemma 1.40. A group G of exponent three is locally nilpotent.

Proof. We may suppose that G is finitely generated.
For x, y ∈ G we have (xy)3 = 1 and hence

xyx = (yxy)−1 = (yxy)2 = yxy−1xy

and hence xyx = xxy. Thus xG ≤ C(x) for each x. Letting Hx = ⟨xG⟩, if G
is finitely generated it follows that the intersection of Hxi over a generating
set is central, and and may be factored out. Then G embeds into the product
of the factor groups G/Hxi , which may be supposed nilpotent by induction
on the number of generators. □

1.9. Strongly real elements.

Lemma 1.41. If i, j are involutions in a group G and a = ij, then
⟨i, j⟩ = ⟨a⟩⋊ ⟨i⟩, a dihedral group (possibly infinite).

Definition 1.42. An element of a group G is strongly real if it is the
product of two involutions.

Remark 1.43. An element is strongly real if and only if it is inverted
by some involution.

2. Rank

We present the rank axioms, and discuss the resulting descending chain
conditions, and the notion of definable hull of a group. Some key founda-
tional properties have delicate model theoretic proofs, which are treated at a
more satisfactory level of generality in [150], and from other points of view
in [180].

2.1. Axioms. We consider a group G equipped with additional struc-
ture, such as an algebraic group which may be considered also as a variety.
We will suppose G carries a rank function in the sense of Borovik and Poizat,
namely a function “rk” which assigns to each set S definable over G, its “di-
mension” rk(S), and which satisfies the following four axioms.

The Rank Axioms

Monotonicity For any n, rk(S) > n if and only if S contains an infinite
family of disjoint definable subsets Si of rank n.

Additivity If f : A → B is definable and surjective, and if the fibers
f−1(b) have constant rank r for b ∈ B, then rk(A) = r + rk(B).
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Definability For any uniformly definable family {Sb : b ∈ B} of definable
sets, and for any n ∈ N, the set

{b ∈ B : rk(Sb) = n}

is also definable.
Finite Bounds For any uniformly definable family F of finite subsets, the

sizes of the sets in F are bounded.

The definable subsets over G are, more precisely, quotients by definable
equivalence relations of definable subsets of Gn for some n. A family {Sb :
b ∈ B} is uniformly definable if, firstly, B is itself definable, and secondly,
the relation “x ∈ Sy” is definable. For example, the set {CG(a, b) : a, b ∈ G}
would be such a family.

Sooner or later one encounters some technical difficulties in working
with these definitions that need to be addressed in a systematic way, so we
will point them out at the start. The underlying group G here is a fixed
abstract group. In model theory, however, just as in the algebraic theory,
the “groups” that interest us are not abstract groups but are really variable
(functors, interpretations, models). Just as one may vary the base field in
an algebraic group, in model theory one may replace the group G by any
elementarily equivalent groupG∗, that is, by any model of the same complete
theory.

Now when one replaces the abstract group G by an elementarily equiv-
alent group G∗, we claim that the rank function on G gives rise to a rank
function on G∗, satisfying the same axioms. This essential and nontrivial
fact is not a formal consequence of the axioms, and would not hold if we
were to consider algebraic structures of a more general type; it depends on
the assumption that G is, specifically, a group. This is proved in detail in
[150], where it is also proved that these groups are exactly the groups of
finite Morley rank in the sense of model theory.

We do not want to develop the underlying model theory at great length,
so we will take it as known, and we will take note of the few places where this
kind of principle is applied in an essential way. We remark that in algebraic
geometry it is also well known that group varieties are better behaved than
arbitrary varieties: for example it is immediate that they are smooth. For
model theorists they are also smooth . . . . The uniformity given in a very
rudimentary form in the fourth rank axiom is a symptom of this.

As a direct consequence of the axioms we find:

Lemma 2.1. Let G be a group of finite Morley rank. Then:

(1) Algebraic sets: The sets of rank 0 are the finite sets.
(2) Invariance: If f : A ↔ B is a definable bijection between definable

sets, then rk(A) = rk(B).
(3) Finite Unions: The rank of a finite union S =

⋃
i Si is the maximum

of rk(Si).
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(4) Extended Additivity: If f : A → B, with f , A, and B definable,
then setting

r∗b = rk(f−1(b));Bk = {b ∈ B : r∗b = k}

we have:

rk(A) = max
k

(rk(Bk) + k)

(5) Fubini: Let X ⊆
⋃̇

b∈B Ab (disjoint union) with X, B, and (Ab : b ∈ B)
all definable, with rk(Ab) independent of b. Then the following are
equivalent:
(a) rk(X) = rk(A) + rk(B);
(b) rk({b ∈ B : rk(X ∩Ab) = rk(A)}) = rk(B).
In particular, if X ⊆ A×B, then writing Ab = A× {b} and Ba =
{a} ×A, the following three conditions are all equivalent.
(a) rk(X) = rk(A) + rk(B);
(b) rk({b ∈ B : rk(X ∩Ab) = rk(A)}) = rk(B).
(c) rk({a ∈ A : rk(X ∩Ba) = rk(B)}) = rk(A);
The equivalence of the last two points is sometimes called Symme-
try.

Proof. The first point follows directly from the Monotonicity property.
The second follows from additivity, viewing the bijection f as a covering

with fibers of rank 0.
The third can be proved by induction on rank, using Monotonicity.
For the fourth point, observe first that to make it fully meaningful we

should introduce the following convention:

rk(∅) = −∞

which has the effect of eliminating the values of k for which Bk is empty
(in particular, limiting k to at most rk(A)), and is generally an appropriate
convention.

Now divide A up into the sets Ak = {a ∈ A : r∗f(a) = k}; in more

geometrical language, this is the union of the fibers of dimension k. We have
rk(A) = maxk rk(Ak), by part (2), and by additivity rk(Ak) = rk(Bk) + k.

The final point is an application of the fourth. □

An essential point which is not particularly evident is the following:

Fact 2.2. Let G be a group of finite Morley rank, and H a group defin-
able over G. Then H has finite Morley rank.

Proof. This is fairly clear with the customary model theoretic notion
of finite Morley rank, but not with the definitions (or axioms) we have
provided—particularly, with respect to reduction of the language. So we
refer to [150] for a thorough discussion of the model theoretic basis for the
equivalence of the various definitions. □
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We may also introduce a notion of multiplicity for definable sets, more
precisely “multiplicity in the top dimension”, denoted degree(S):

Definition 2.3. Let S be a definable set over a group G of finite Morley
rank, with rk(S) = r.

(1) A subset X of S is generic if it contains a definable subset of rank
rk(S).

(2) S is irreducible if S contains no definable subset A such that both A
and its complement have rank r; in other words, S does not contain
two disjoint generic subsets.

(3) If S is the union of d irreducible definable sets Si of rank r, we set
degree(S) = d.

To justify this terminology, we require a few more facts:

Lemma 2.4. Let S be a definable set over a group G of finite Morley
rank, with rk(S) = r.

1 Finiteness of Degree: S is a union of finitely many definable irre-
ducible subsets of rank r.

2 Uniqueness: If S is the union of d definable irreducible subsets Si
of rank r, and of d′ definable irreducible subsets S′

j of rank r, then

d = d′, and the relation i ∼ j defined by:

rk(Si ∩ S′
j) = r

defines a bijection between the indices i and j.
3 Additivity of Degree: If S =

⋃
Si is a finite union with rk(Si) =

r constant, and rk(Si ∩ Sj) < r for i ̸= j, then degree(S) =∑
degree(Si).

4 Multiplicativity: For A and B definable, we have
degree(A×B) = degree(A)× degree(B).

5 Invariance: Degree is invariant under definable bijections.

Proof.
Ad 1. Suppose S is not a finite union of definable irreducible sets of

rank r. Then there is S1 ⊆ S such that S1 and S \ S1 both have rank r;
furthermore, one of these sets, which we may suppose to be S \ S1, is again
not a finite union of definable irreducible sets of rank r. Hence we may
iterate this procedure, defining S1, S2, . . . disjoint definable subsets of S of
rank r, and contradicting the monotonicity.

Ad 2. With i fixed and j varying, we have

Si =
⋃
j

(Si ∩ S′
j),

a disjoint union, and as Si is irreducible, exactly one of the intersections has
rank r. The same applies with the roles of i and j reversed.

Ad 3. Replacing Si by Si\
⋃

j<i Sj , we take the Si to be a finite partition
of S, and the claim is obvious.
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We note that it is not possible to speak of the irreducible components of
S in the above situation, except as equivalence classes of irreducible subsets,
where irreducible subsets of rank r are equivalent if their intersection has
rank r.

Ad 4. We have rk(A × B) = rk(A) + rk(B) and the same applies to a
product of irreducible definable subsets A0 ⊆ A, B0 ⊆ B, so it suffices to
check that if A and B are irreducible, then so is their product.

Let A and B be irreducible, and S ⊆ A×B with rk(S) = rk(A)+rk(B).
By Fubini, the set {b ∈ B : rk(S ∩ (A × {b})) = rk(A)} has rank equal to
rk(B).

If the complement S′ = (A × B) \ S also has full rank in A × B, then
the set {b ∈ B : rk((A × {b}) \ S) = rk(A)} also has full rank in B. Thus
these two sets meet, by irreducibility of B, and with b ∈ B chosen to lie in
both, we get two disjoint definable subsets of A × {b} of full rank, and a
contradiction to the irreducibility of A.

(5) is immediate. □

Ranks and degrees behave well with respect to definable subgroups:

Lemma 2.5. Let G be a group of finite Morley rank, and H a definable
subgroup.

(1) rk(G) = rk(G/H) + rk(H);
(2) If [G : H] = n is finite, then rk(H) = rk(G) and degree(G) =

n degree(H).

Proof. It suffices to note that the cosets of H in G are of equal rank
and degree, as there are definable bijections between them. Then the general
properties of rank mentioned above suffice: for (1) consider the surjection
G→ G/H, and for (2) apply the additivity of degree. □

With these definitions, irreducible sets are those of Morley degree one
(in geometrical terms, they are irreducible in the top dimension).

2.2. Chain conditions.

Lemma 2.6. Let G be a group of finite Morley rank. Then G satisfies the
descending chain condition for definable subgroups: any properly descending
chain

G > G1 > G2 > . . .

with all Gi definable, is finite.

Proof. Apply Lemma 2.5 of Chapter I to see that at each stage, either
the rank or the degree of Gi decreases. □

There is another chain condition, rather more specialized but occasion-
ally very powerful, due to Baldwin and Saxl, in considerably greater gener-
ality. It depends on a combinatorial consequence of the rank axioms:



28 I. TOOLS

Lemma 2.7. Let G be a group of finite Morley rank, S a definable set
over G, and let R(x, y) be a definable binary relation on S. Then there is a
finite bound n = nR on the lengths of finite subsets of S which are linearly
ordered by R.

Proof. If this fails, then we have arbitrarily long finite sequences lin-
early ordered by the relation R, and thus in some group G∗ elementarily
equivalent to G, we can find an infinite subset X ⊆ S, indeed one of order
type Q, on which R defines a linear ordering. In more detail, this passage
from the unbounded finite to the infinite runs as follows. Extend the lan-
guage by constants denoting elements of such a set X, extend the theory of
G by the properties we wish to have holding on X, and check the consistency
of the resulting theory with the complete theory of G—by hypothesis, every
finite subset of the extended theory is actually satisfied by G, under a suit-
able interpretation of the additional constants. Then by the Completeness
Theorem, the theory has a model, which is the desired group G∗.

Now take a definable subset S of minimal rank and degree such that
S ∩X contains a subset of order type Q. Fixing an element 0 ∈ X ∩ S, we
may split S into two subsets S< = {x ∈ S : R(x, 0)} and S> = S \S<, both
of which contain subsets of X of order type Q; but at least one of these two
sets has either lesser rank, or lesser degree, than S, contradicting the choice
of S. □

Lemma 2.8. Let G be a group of finite Morley rank, and H = {Hb : b ∈
B} a uniformly definable family of subgroups of G. Then:

(1) There is an absolute bound n = nH on the length of any chain of
subgroups in H.

(2) The set
⋂
H of arbitrary intersections of subgroups from H is again

uniformly definable, and any such group can be represented as an
intersection of bounded length.

Proof. Define R(x, y) as follows: “Hx ⊇ Hy”. Then the previous
lemma proves (1).

We turn to (2). By the descending chain condition for definable sub-
groups, any intersection of definable groups is an intersection of finitely
many of them; but in the case of intersections of groups in the uniformly
definable family H, we claim we can bound the length of a chain of such
intersections.

Supposing the contrary, we have for every n an intersection Hb1 ∩ . . . ∩
Hbn which cannot be shortened. Now we can again replace the group G
by an elementarily equivalent one in which we have an infinite series of
groups Hn (n ∈ N), all belonging to the family H. This is achieved by
introducing constants denoting the defining parameters of the groups Hn

(using the hypothesis that H is a uniformly definable family). In checking
the consistency, we use the following: if an intersection H1∩· · ·∩Hn cannot
be shortened, then the sequence (H1 ∩ · · · ∩ Hk : 1 ≤ k ≤ n) is strictly
decreasing.



2. RANK 29

So in a group G∗ elementarily equivalent to G we find groups Hn ∈ H
such that the entire sequence (H1 ∩ · · · ∩ Hk : 1 ≤ k < ∞) is strictly
decreasing, violating the descending chain condition for definable subgroups.

□

Corollary 2.9. Let G be a group of finite Morley rank, and X an
arbitrary subset. Then C(X) is definable. In fact there is a bound c such
that for any X ⊆ G there is X0 ⊆ X with |X0| ≤ c and CG(X0) = CG(X).

Proof. C(X) =
⋂

a∈X C(a), which is an intersection taken from a fam-
ily of uniformly definable subgroups. □

Lemma 2.10. Let G be a group of finite Morley rank, and {Hi : i ∈ I}
a family of definable pairwise commuting nonabelian subgroups of G. Then
I is finite.

Proof. Let X = C(⟨Hi : i ∈ I⟩. Then By Lemma 2.6 of Chapter I
we have X = C(⟨Hi : i ∈ I0⟩) for some finite set I0. Then I0 = I, as for
i ∈ I \ I0 we would have Hi centralizing ⟨Hj : j ∈ I0⟩, but not Hi itself. □

Lemma 2.11. Let A be a p-divisible abelian group of finite Morley rank
for some prime p. Then A[p] is finite.

Proof. Supposing the contrary, let A be a counterexample of minimal
rank, and Ā = A/A[p]. As A[p] is infinite, rk(A) > rk(Ā). Thus by induction
Ā[p] is finite, i.e. A[p2]/A[p] is finite. But pA[p2] = A[p], a contradiction. □

Corollary 2.12. Let A be a divisible group of finite Morley rank. Then
A[n] is finite for all n.

Proof. The case of prime powers reduces to that of primes, and the
general case then follows. □

Lemma 2.13. Let A be an abelian group of finite Morley rank, π a set
of primes. Then

(1) A = U⊕T with U a π-group of bounded exponent, and T π-divisible
and definable.

(2) A = V +T with V a π-group of bounded exponent and T π-divisible,
with both V and T definable, and with V ∩ T finite.

Proof.
Ad 1. Apply the DCC for definable subgroups: take T minimal definable

in A such that A/T is a π-group of bounded exponent. Then by construction
T is π-divisible. In particular T is a pure subgroup of A.

It follows that A splits as A = U⊕T by Lemma 1.15 of Chapter I, where
U is not necessarily definable.

Ad 2. If U has exponent n, replace U by V = A[n]. □

2.3. Definable hull. Another consequence of the descending chain
condition is the existence of the definable hull of an arbitrary set (and, in
particular, of an arbitrary subgroup).
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Definition 2.14. Let G be a group of finite Morley rank, X ⊆ G a
subset, not necessarily definable. Then d(X) denotes the smallest definable
subgroup of G containing X.

Since the intersection of all definable subgroups containing X is again
definable, by the DCC, the existence of d(X) is assured. This notion is
used mainly in two special cases: (1) if X consists of a single element {a},
then d(X) is sometimes denoted d(a), and is in a sense “cyclic”, or at least
1-generated; (2) if X is itself a group, but is not definable, then d(X) is a
group which is analogous to the “Zariski closure” in an algebraic group.

Note also that d(X) = d(⟨X⟩) where ⟨X⟩ denotes the group generated
by X.

Lemma 2.15. Let G be a group of finite Morley rank, and X,Y sub-
groups, not assumed definable, and H ◁ G definable.

(1) C(X) = C(d(X)).
(2) d(N(X)) ≤ N(d(X)).
(3) d(XH) = d(X)H; d(X)H/H = d(XH/H).
(4) [d(X), d(Y )] = d([X,Y ]).

(5) d(Xi) = d(X)i, d(X(i)) = d(X)(i).
(6) Zi(X) ≤ Zi(d(X)).
(7) If X is nilpotent of class c, then d(X) is nilpotent of class c.
(8) If X is solvable of class c, then d(X) is solvable of class c.

Proof.
Ad 1. X ≤ C(C(X)), and the latter is definable by Corollary 2.9 of

Chapter I. So d(X) ≤ C(C(X)), as claimed.
Ad 2. If g ∈ N(X) then X ≤ d(X)g, so d(X) ≤ d(X)g, and the same

applies to g−1. Thus N(X) ≤ N(d(X)) and hence d(N(X)) ≤ N(d(X)).
Ad 3. Both claims follow directly from the definitions. The second

claim can be written more cleanly as d(X̄) = d(X), working in the group
N̄G(H) = NG(H)/H.

Ad 4. Part of the claim is that [d(X), d(Y )] is definable, which will be
proved in section 3 of Chapter I. Assuming this, we prove the rest here. We
use the elementary group theoretic fact that X and Y normalize [X,Y ] (see
1.5 of Chapter I).

Let Z = [X,Y ]. As X,Y ≤ N(d(Z)), we have d(X), d(Y ) ≤ N(d(Z)).
Let N = NG(d(Z)), and N̄ = N/d(Z). Then [X̄, Ȳ ] = 1, so [d̄(X), d̄(Y )] =
[d(X̄), d(Ȳ )] = 1 by (1). In other words, [d(X), d(Y )] ≤ d([X,Y ]). Given
that [d(X), d(Y )] is definable, the reverse inclusion is clear.

Ad 5. The commutator series Gi and G(i) are defined by iterated com-
mutation, so this is clear.

Ad 6. Proceed by induction, starting with i = 0, Z0(X) = 1. Assume in-
ductively that Zi(X) ≤ Zi(d(X)). Then [Zi+1(X), X] ≤ Zi(d(X)), so work-

ing in N = NG(Zi(d(X))), with N̄ = N/Zi(d(X)), we have [Zi+1(X), X] = 1



2. RANK 31

and hence [Zi+1(X), d(X)] = 1, that is [Zi+1(X), d(X)] ≤ Zi(d(X)), and
Zi+1(X) ≤ Zi+1(d(X)).

Now (7) follows from (5) or (6), and (8) follows from (5). □

Lemma 2.16. [51, Exercise 10 p. 93]
The definable hull of a cyclic subgroup of a group G of finite Morley rank

is the direct sum of a divisible group and a finite cyclic group.

Proof. Let C = ⟨x⟩ be a cyclic subgroup of G. Then d(C) is an
abelian subgroup by Lemma 2.15 of Chapter I. By Lemma 2.13 of Chapter
I, d(C) = U⊕T , with U of bounded exponent, and T divisible and definable.
Let u be the projection of x to U ; then x ∈ ⟨u⟩ ⊕ T and since u is of finite
order, the latter group is definable. Hence d(C) = d(x) ≤ ⟨u⟩ ⊕ T , that is
d(C) = ⟨u⟩ ⊕ T . □

Lemma 2.17. Let G be a p⊥-group of finite Morley rank. Then G is
uniquely p-radicable: that is, every element of G has a unique p-th root.

Proof. Let a ∈ G, and let A = d(a). As A contains no elements of
order p, by Lemma 2.16 of Chapter I it is p-divisible. So a = bp with b ∈ A,
and in particular b ∈ Z(C(a)).

If in addition cp = a, then c ∈ C(a) and c commutes with b, hence
(bc−1)p = 1 and b = c. □

Lemma 2.18. Let G be a group of finite Morley rank, π a set of primes,
and h : H → K a definable homomorphism with H, K definable. If a ∈ H
and h(a) is a π-element, then there is a π-element a′ ∈ H so that h(a) =
h(a′).

Proof. Let H0 = kerh. Then an ∈ H0 for some π-number n. By
Lemma 2.16 of Chapter I the group d(an) ≤ H0 factors as C × D with C
finite cyclic of order a π-number, and D π-divisible. Note that a centralizes
d(an) and hence after replacing a by ad for a suitable d ∈ D, we have an ∈ C
and hence a is a π-element. □

Lemma 2.19. Let G be a group of finite Morley rank, π a set of primes,
and H,K two definable π⊥ subgroups of G with K normalizing H. Then
HK is a π⊥-subgroup of G.

Proof. Let HK = HK/H. By Lemma 2.18 of Chapter I, this is π⊥-
group. □

Lemma 2.20 (Basic Fusion Lemma). Let G be a group of finite Morley
rank, and i, j two involutions of G. Then either i and j are conjugate in
d(⟨i, j⟩), or there is an involution k ∈ d(⟨(ij)⟩) commuting with both i and
j.

Proof. Let a = ij. Then ⟨i, j⟩ = ⟨a⟩ ⋊ ⟨i⟩ (Lemma 1.41 of Chapter
I) and hence d(⟨i, j⟩) = d(⟨a⟩) ⋊ ⟨i⟩. Here d(⟨a⟩) is the direct product of
a divisible group and a finite cyclic group C. It follows that either a is a
square in d(⟨a⟩), or C contains an involution.
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Now i, j invert ⟨a⟩ and the subgroup of d(⟨a⟩) consisting of all elements
inverted by i, j is definable, so i, j invert d(⟨a⟩).

If a = b2 with b ∈ d(⟨a⟩), then ib = j, which gives the first alternative.
If C contains an involution k then k commutes with i and j, giving the

second alternative. □

It would be reasonable to investigate the relationship between X and
d(X) more systematically. Some specific aspects have been illuminated thor-
oughly, and in great generality, by Wagner in [180], but there is a great deal
more that remains unexplored in this direction. The following further ex-
ample can be obtained by simply combining results proved above.

Lemma 2.21. Suppose X = X1 ∗X2 is a central product. Then d(X) =
d(X1) ∗ d(X2).

3. Connected groups

3.1. Connectivity and irreducibility. We will develop an extensive
theory of connected definable groups (and a less extensive theory of con-
nected groups in general, not necessarily definable, with divisible abelian
torsion groups providing some of the main examples of the latter).

There are two ways to define connectivity, a coarse algebraic way which
we take as our definition, and an alternative similar to irreducibility in
the algebraic case; fortunately, the two coincide (Lemma 3.6 of Chapter
I). One of the important applications of connectivity is the following: any
subgroup of a group of finite Morley rank which is generated by connected
definable subgroups is itself definable. This is generalized in Proposition
3.19 of Chapter I below.

The theme of connectivity will accompany us throughout the book.

Definition 3.1. Let G be a group of finite Morley rank.

(1) G is connected if G has no proper definable subgroup of finite index.
(2) A subgroup H of G is definably characteristic in G if it is invariant

under all definable automorphisms of G.

Observe that a definably characteristic subgroup of a normal subgroup
H of G will be normal in G, since the inner automorphisms induced by G
on H are definable in H (in the language inherited from G).

Lemma 3.2. Let G be a group of finite Morley rank. Then

(1) G contains a unique connected definable subgroup of finite index,
denoted G◦;

(2) G◦ is definably characteristic in G
(3) G◦ is definable without parameters.

Proof.
Ad 1. By the descending chain condition there is a minimal definable

subgroup of G of finite index; and this is then connected. If there are two
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such, then their intersection is of finite index in each, and hence they are
equal. Thus G◦ exists, and is unique.

Ad 2. Clear.
Ad 3. If G◦ is defined by the formula ϕ(x, ā) with the parameter ā, it is

the unique group of this form with the correct index. So one can quantify
out the parameter ā. □

We mention some useful consequences of connectivity.

Lemma 3.3. Let G be a connected group of finite Morley rank.

(1) Any definable action of G on a finite set is trivial.
(2) If h : G → G is a definable endomorphism with finite kernel, then

h is surjective.

Proof.
Ad 1. The point stabilizers are definable subgroups of finite index.
Ad 2. As the kernel is finite, rk(imh) = rk(G) by additivity. Hence

[G : imh] <∞ by monotonicity, and G = imh by connectivity. □

There is also a useful standard convention relating to “connected ana-
logues” of notions of finite group theory. We write NG

◦(H) for (NG(H))◦,
and similarly:

Notation 3.4. Let G be a group of finite Morley rank, H a definable
subgroup, and Ξ any group theoretic operation (such as NG, CG, F ). Then
Ξ◦ is the group theoretic operation defined by Ξ◦(H) = (Ξ(H))◦.

This will bring out certain analogies more forcefully, as well as lightening
the notation in some cases.

At one extreme, if G is finite then G◦ = 1. At the other:

Example 3.5. Let F be an infinite division ring of finite Morley rank,
not necessarily associative. Then the additive group of F is connected.

Proof. F ◦ is not only an additive subgroup of F , but an ideal, since
nonzero multiplication maps are definable automorphisms of the additive
group. As F is infinite, we will not have F ◦ = (0), so we have F ◦ = F . □

The case of the multiplicative group is more subtle, and requires a more
sophisticated result, given in a more general form in [150]:

Lemma 3.6. Let G be a group of finite Morley rank. Then

1 degree(G) = [G : G◦]; in particular:
2 G is connected if and only if G is irreducible

Proof. Firstly, the general case (1) follows at once from the special
case (2), and additivity of degree. So one may concentrate on (2), and one
direction is trivial: an irreducible group must be connected, as the cosets of
G◦ in G have constant rank.

Assuming now that G is connected, of rank r, we claim that degree(G) =
1. Supposing the contrary, let d = degree(G) > 1 and let A1, . . . , Ad be
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irreducible definable subsets of G; let Āi be the equivalence class of all
irreducible subsets of G meeting Ai in a set of rank r (and hence differing
from Ai by a set of lower rank). Then G acts naturally on the set {Āi : 1 ≤
i ≤ d}, in two ways, by right translation and by left translation (by g−1 in
the latter case).

This action is clearly definable, since rank is definable. As the orbits
under the action are finite, and G is connected, G acts trivially under both
left and right translation.

Now if d > 1, consider the multiplication map µ : A1 × A2 → G. There
is an index j such that µ−1(Aj) has full rank in A1 × A2, that is: 2r. By
the Fubini principle, Lemma 2.1 of Chapter I, this means

rk{a ∈ A2 : Ā1a = Āj} = r;(1)

rk{a ∈ A1 : aĀ2 = Āj} = r;(2)

However we have already seen that Ā1g = Ā1 and gĀ2 = Ā2 for all g ∈ G;
so 1 = j = 2, a contradiction. □

Corollary 3.7. Let F be an infinite field of finite Morley rank. Then
the multiplicative group of F is connected.

Proof. We saw above that the additive group of F is connected, and
hence, by the foregoing, also irreducible. As the multiplicative group differs
from the additive group, as a set, by removal of a single point, it is also
irreducible, and hence connected. □

It is worth noticing at this point that the real field R provides a canonical
“counterexample” to the foregoing; its additive group is connected, and its
multiplicative group is not. This means of course that R does not admit
a rank function in our sense, though the natural notion of real dimension
has many of the desired properties. Monotonicity fails: R contains infinitely
many disjoint intervals, all of dimension 1.

Lemma 3.8. Let G be a connected group of finite Morley rank, and K a
finite normal subgroup such that G/K is abelian. Then G is abelian, and if
G/K is divisible, also G is divisible.

Proof. As G is connected, K ≤ Z(G). As [G,G] ≤ K ≤ Z(G), the
commutator map γg : G → K induced by commutation with an element
of G is a homomorphism, whose image is both finite and connected, hence
trivial. This proves that G is abelian.

Now G = B + D with B of bounded exponent, D divisible, and both
factors connected. With Ḡ = G/K, we have Ḡ = B̄ + D̄ and evidently if
B > 1 then B̄ > 1. □

Lemma 3.9. Let G be a group of finite Morley rank, and H ≤ G a con-
nected subgroup, not necessarily definable. If Z(H) is finite, then H/Z(H)
is centerless.
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Proof. We claim Z2(H) = Z(H).
Take h ∈ Z2(H). Then commutation with h gives a homomorphism

H → Z(H)

and as the image is finite, we have

[H : CH(h)] <∞
By connectivity h ∈ Z(H). □

Lemma 3.10. Let G be an infinite group of finite Morley rank. Then G
contains an infinite definable abelian subgroup.

Proof. Suppose G is a counterexample. Using the DCC for definable
subgroups, we may suppose thatG has no proper infinite definable subgroup.
Then G is connected, and Z(G) is finite, so Ḡ = G/Z(G) is centerless.
Replace G by G/Z(G): then our assumption is that G is centerless, and
contains no proper infinite definable subgroup.

For a ∈ G× we have CG(a) < G and hence CG(a) is finite. This implies
that the order of a is finite. Furthermore, as there is a definable bijection
between the conjugacy class aG and the space of cosets G/CG(a), we have
rk(aG) = G. By irreducibility, then, G× consists of a single conjugacy class.
In particular taking a to be of prime order p, all elements of G× are of order
p. But a is conjugate to a−1 in G, and this implies that p = 2. So after all
G is abelian (Lemma 1.39 of Chapter I). □

The following is in a similar vein.

Lemma 3.11. Let G be a connected group of finite Morley rank containing
no involution. Then every element of G has an infinite centralizer.

Proof. Suppose a ∈ G has a finite centralizer. Then arguing as in the
previous lemma, we find rk(aG) = rk(G) and also rk((a−1)G) = rk(G), and
as G is connected these two conjugacy classes meet, and hence coincide:
ag = a−1 for some g ∈ G. Furthermore g2 ∈ C(a), which by assumption is
finite, so g is of finite order. As G contains no involution, g is of odd order;
but then evidently a = a−1 and we have a contradiction. □

3.2. Nondefinable groups and connectivity. The notion of connec-
tivity applies to undefinable subgroups as well as definable ones.

Definition 3.12. Let G be a group of finite Morley rank, X an arbitrary
subgroup.

(1) A subgroup Y of X is relatively definable in G, if Y = X ∩H for
some definable subgroup H of G.

(2) X is connected if X has no proper relatively definable subgroup of
finite index.

(3) X◦ is the smallest relatively definable subgroup of X of finite index.

The basic properties of connected components go over to this setting.
To begin with, one essential point:
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Lemma 3.13. Let G be a group of finite Morley rank, and X an arbitrary
subgroup. Then X satisfies (1) the DCC on relatively definable subgroups, as
well as (2) the existence of uniform bounds on chains of uniformly relatively
definable subgroups.

Proof.
Ad 1. Let Hi∩X be a strictly decreasing sequence of relatively definable

subgroups of X. Then we may replace Hi by H∗
i =

⋂
j≤iHj . Then the

sequence (Hi) is also strictly decreasing, and the usual DCC applies in G.
Ad 2. Similar, noting that if H is a uniformly definable family of sub-

groups of G, then the set H∗ of arbitrary intersections of subgroups from
H is also uniformly definable, so the construction used above is again avail-
able. □

While the foregoing is extremely useful, it can often be avoided by re-
course to the following indirect approach, and more generally by systematic
use of d(X) in place of X:

Lemma 3.14. Let G be a group of finite Morley rank, X an arbitrary
subgroup. Then X◦ = d◦(X) ∩X.

Proof. Certainly d◦(X) ∩X is relatively definable and of finite index,
so X◦ ≤ d◦(X) ∩X.

Conversely, suppose X◦ = X ∩ H. Let H1 =
⋂

x∈X Hx. Then X◦ =
X ∩H1 and H1 is definable. Furthermore X normalizes H1 and XH1 is a
finite extension of H1, hence definable. So d(X) ≤ H1X, and d◦(X) ≤ H1.
Thus d◦(X) ∩X ≤ X ∩H1 = X◦. □

Lemma 3.15 ([51], Exercise 10 page 78 ). Let G be a group of finite
Morley rank, X an arbitrary subgroup. Then X◦ contains all connected
relatively definable subgroups of X.

Proof. Let H ∩X be connected and relatively definable. Replacing H
by H◦ ∩ d(X), we may suppose that H is connected and contained in d(X).
Then H ∩ d◦(X) has finite index in H, so H ≤ d◦(X). □

Lemma 3.16. [51, Lemma 5.41] Let G be a group of finite Morley rank.
If X is an arbitrary nilpotent by finite subgroup of G, then X◦ is nilpotent.
Similarly, if X is solvable by finite then X◦ is solvable.

Proof. Let Y ≤ X be a subgroup of finite index, either nilpotent or
solvable, according to the case under consideration. Then d(Y ) is, corre-
spondingly, nilpotent or solvable, and X◦ ≤ X ∩ d(Y ). □

The following fact is more model theoretic in nature, and is not an
immediate consequence of the rank axioms.

Fact 3.17 ([149]). Let F be a uniformly definable family of definable
subgroups of a group of finite Morley rank. Then the indices [H : H◦] are
bounded for H ∈ F .
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This should be taken as information coming directly from model theory.
But as it is not given in [150], we will indicate the line of proof without,
however, developing the underlying machinery.

Proof. Poizat shows in [150] (reworking an analysis of Lascar to use
the rank axioms as given here) that there are finitely many strongly minimal
sets Di (i = 1, ,̇n) such that every complete type is nonorthogonal to one of
them. Fixing such a finite family, we may add defining parameters to the
language and suppose they are definable without parameters.

Pillay then shows that for every uniformly definable collection of defin-
able sets, the Morley degree is bounded. (This is analogous to definability
of rank, which was built into the axioms after being derived similarly from
finiteness of Morley rank and the Lascar analysis.)

One shows first that U -rank equals Morley rank (again, this is done by
Poizat), and then one shows a similar uniform bound on degree for families
realizing a complete type. Namely, if p(x, b) is a complete type of Morley
rank n, then we claim that for some formula φ ∈ p, every nonempty set
defined by a formula of the form φ(x, b′) has rank n and bounded degree.

Having treated types, one passes to formulas by a compactness argu-
ment.

This is the general line of argument. We now enter into details.
One proceeds by induction on n. Using the nonorthogonality one reduces

the rank: there is, by assumption, a strongly minimal set D among the Di,
and a parameter c, such that for some a satisfying p and d satisfying D,
independent over b, c, we have d ∈ acl(a, bc)\acl(bc). Let p′ be the type of a
over bcd. Then the Morley rank of p′ (or the U -rank) is n−1. The induction
hypothesis furnishes a formula ψ(x, bcd) associated with p′ in our sense (and
lying in p′). As d ∈ acl(abc) there is also a formula µ(w, abc) controlling
the multiplicity of d over abc. But d /∈ acl(bc), so there is a further formula
µ′(bc) true of bc, and implying that the subset of D defined by the following
is infinite:

∃y, ψ(y, bcw)&µ(w, ybc)
(The free variable here is w.)

We can now define a suitable formula φ′(x, yz) for the type p′, namely

∃w ∈ Dψ(x, y, z, w)&µ(w, x, y, z)&µ′(y, z)

This says that w belongs to a certain set whose rank is n−1, which is fibered
over D (or most of D, according to the final clause). With yz = b′c′ fixed,
and assuming the set defined by φ(x, b′c′) is nonempty, the set of pairs (x,w)
satisfying

ψ(x, b′, c′, w, )&µ(w, x, b′, c′)

is a disjoint union of sets of fixed rank n− 1 and bounded degree, n over a
set of rank 1, hence has rank n and bounded degree. Finally the set defined
by φ′(x, b′c′) is the projection of this set by a boundedly finite-to-one map.
So it has the same rank, and bounded degree.
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We need finally to descend to the type p. Let q be the type of c over b.
We consider the formula φ0(x, b) which expresses the following:

For generic y satisfying q, φ′(x, b, y) holds

By stability theory this is definable. Furthermore, the set defined by φ′(x, b, c)
is generic in the set defined by φ(x, b) in the sense that the complement is
of lower rank. This last point is a property of b:

∃zThe sets defined by by φ0(x, b) and φ
′(x, b, z) differ by a set of lower rank

So this is expressible by a formula α(b). Consider φ(x, y) = φ0(x, y)&α(y).
This asserts that the set defined by φ(x, b′) for any b′, if nonempty, has the
same rank and degree as a set of the form φ(x, b′, c′). So we descend to p.

This completes the bound in the case of types. □

3.3. Generation by indecomposable subsets. Zilber extends the
notion of connectivity to arbitrary definable sets as follows.

Definition 3.18. Let G be a group of finite Morley rank, and X a subset
of G. Then X is indecomposable if there is no definable subgroup H of G
for which X/H is finite, with |X/H| > 1.

Evidently a connected group is an indecomposable subset.
The following is an analog of a basic lemma in the theory of algebraic

groups. Its main effect for us will be to lead directly to the definability of a
number of groups of interest to us.

Proposition 3.19. [51, Theorem 5.26]
Let G be a group of finite Morley rank, and X a collection of indecompos-

able definable subsets of G, each of which contains the identity of G. Then
the group HX = ⟨X : X ∈ X⟩ is definable and connected, and is the setwise
product of finitely many of the groups X ∈ X and their inverses, possibly
with repetitions.

Proof. Let Y be a product of finitely many groups X ∈ X , allowing
repetitions, chosen so as to maximize r = rk(Y ). The main point is to
show that HX = Y Y −1. This yields the stated representation of HX , which
includes the definability. Once one has the definability, connectivity follows.
Namely, for any definable group K of finite index in HX , one has that X/K
is finite, hence by hypothesis |X/K| = 1; as 1 ∈ X, this means X ⊆ K, and
thus HX ≤ K.

So it suffices to show that HX = Y Y −1, which can be rewritten as
follows: for h ∈ HX , hY meets Y . In fact we make a stronger claim: for
h ∈ HX , Y and hY differ by a set of rank less than r. The advantage of this
stronger claim is that it suffices to prove it for h ∈ X, where X ∈ X , as it
passes easily to inverses and finite products.

For X ∈ X , we have rk(XY ) = r. Let A ⊆ Y be irreducible. Let
GA = {g ∈ G : gA ∼ A}, where for A,B irreducible of rank r, A ∼ B means
that rk(A ∩ B) = r, equivalently A and B differ by a set of rank less than



3. CONNECTED GROUPS 39

r. Then GA is a definable subgroup of G, and as rk(XY ) = r, there are
up to equivalence only finitely many irreducible definable subsets of XY of
rank r. Hence X/GA is finite, and as 1 ∈ X we conclude that X ⊆ GA. As
this holds for each irreducible definable subset of Y , we find that gY and Y
differ by a set of rank less than r for all g ∈ X, as claimed. □

The following corollary of Proposition 3.19 of Chapter I provides a quick
way of proving the existence of connected analogs of notions arising in finite
group theory, whose strict analogs may be problematic. In some cases one
can dispense entirely with the strict analogs; in others the simpler connected
analogs can be used effectively as a first step toward the strict notions.

Corollary 3.20. Let G be a group of finite Morley rank, and let X be
any collection of connected subgroups of G. Then ⟨X : X ∈ X⟩ is definable,
and connected.

Definition 3.21. Let G be a group of finite Morley rank. Then

(1) O(G) is the largest definable connected normal solvable 2⊥-subgroup
of G. (invoking Lemma 2.19 of Chapter I).

(2) Ô(G) is the largest definable connected normal subgroup of G of
degenerate type.

Lemma 3.22. Let G be a group of finite Morley rank and P a definable
2-subgroup of G. Then O(NG(P )) = O(CG(P )).

Proof. We have [O(NG(P )), P ] ≤ O(NG(P ))∩P = 1, so O(NG(P )) ≤
CG(P ) and hence O(NG(P )) ≤ O(CG(P )). The reverse inclusion holds
since CG(P ) is normal in NG(P ) and O(CG(P )) is definably characteristic
in CG(P ). □

Lemma 3.23. Let G be a group of finite Morley rank and A and B
definable subgroups with A connected. Then ⟨A,B⟩ is a definable subgroup
of G.

Proof. ⟨A,B⟩ = ⟨Ab : b ∈ B⟩B and ⟨Ab : b ∈ B⟩ is definable by Lemma
3.20 of Chapter I. □

This result is rendered more useful by criteria for the existence of inde-
composable subsets.

Lemma 3.24. Let G be a group of finite Morley rank, X a definable
subset.

(1) If N = {g ∈ G : Xg = X}, and we do not have 1 < |X/H| < ∞
for any N -invariant definable normal subgroup H of G, then X is
indecomposable.

(2) If X is irreducible, then there is a finite subset F of X such that
X \ F is indecomposable.

(3) If X is indecomposable and g ∈ G, then gX and Xg are indecom-
posable.
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Proof.
Ad 1. Suppose toward a contradiction that 1 < |X/H| < ∞ for some

definable subgroup H of G. Let H0 =
⋂

n∈N Hn. For each n ∈ N we have
|X/Hn| = |X/H| and as H0 is a finite intersection of such conjugates (by the
DCC), it follows that 1 < |X/H0| <∞ as well, contradicting our hypothesis.

Ad 2. Take H minimal definable such that |X/H| < ∞. Then for any
other definable subgroup K with |X/K| <∞, we have |X/H ∩K| <∞ and
hence H ≤ K, that is |X/H| is maximal.

As X is irreducible, there is exactly one coset C in G/H meeting X in
an infinite set; let F be X \ C.

Ad 3. This is purely formal. There are bijections gX/H ↔ X/H, and

Xg/H ↔ gX/Hg−1
. □

Proposition 3.25. Suppose that G is a group of finite Morley rank with
no nontrivial proper normal definable subgroups. Then G is simple.

Proof. Let C be a nontrivial conjugacy class in G. Then C is G-
invariant, so by the criterion given in the last lemma, as G has no nontrivial
G-invariant proper definable subgroups, C is indecomposable.

For g ∈ C, the set g−1C = [g,G] is also indecomposable, and contains
1. So by Proposition 3.19 of Chapter I [G,C] = ⟨[g,G] : g ∈ C⟩ is definable;
since this group is normal in G, it coincides with G: G is generated by each
of its conjugacy classes. □

Lemma 3.26. Let G be a group of finite Morley rank, and H a minimal
normal definable subgroup. If H is nonabelian, then H is a finite direct sum
of definable simple subgroups.

Proof. Let S be minimal normal definable in H. Then H = d(⟨Sg : g ∈
G⟩). The conjugates of S are all minimal normal in H and hence commute
pairwise. If S is abelian it follows that H is abelian, a contradiction. So
S is nonabelian and hence has finitely many conjugates by Lemma 2.10 of
Chapter I. Thus ⟨Sg : g ∈ G⟩ is definable and H = ⟨Sg : g ∈ G⟩ is a finite
direct sum.

Now any nontrivial normal definable subgroup of S will be normal in H
and hence equal to S. By Proposition 3.25 of Chapter I, S is simple. □

Lemma 3.27. Let G be a locally solvable group of finite Morley rank.
Then G is solvable.

Proof. We proceed by induction on the rank and degree of G. We
may suppose that G is connected and contains no infinite abelian normal
subgroup. So Z(G) is finite and by Lemma 3.9 of Chapter I if we replace G
by G/Z(G) we may suppose Z(G) = 1. As G is connected, it has no finite
nontrivial normal subgroup.

Now takeH ◁ Gminimal normal definable. ThenH is a finite direct sum
of simple subgroups, which are again locally solvable, contradicting Lemma
1.33 of Chapter I. □
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Lemma 3.28. Let G be a group of finite Morley rank, H a connected
definable subgroup, and g ∈ G. Then the sets [g,H] and gH = {gh : h ∈ H}
are indecomposable.

Proof. Since [g,H] is a translate by g−1 of the set gH , we deal only
with the latter. Now gH is H-invariant, so it suffices to show that if K is an
H-invariant definable subgroup of G, then we do not have 1 < |gH/K| <∞.

Suppose gH/K is finite; then as H acts definably on this set by conju-
gation, and H is connected, the action is trivial. Hence gH/K = (g/K)H =
(g/K) and |gH/K| = 1. □

Corollary 3.29. Let G be a group of finite Morley rank, H a connected
definable subgroup, and X ⊆ G an arbitrary subset. Then [X,H] is definable
and connected.

Proof. [X,G] is generated by the family {[x,G] : x ∈ X} of indecom-
posable definable subsets of G, each of which contains 1. So Proposition
3.19 of Chapter I applies. □

This is a case in which we will not remain satisfied with the “connected”
version of the result. We prove:

Lemma 3.30. [51, Corollary 5.31] Let G be a group of finite Morley rank
and H,K definable subgroups of G that normalize one another. Then [H,K]
is definable.

Proof. Working in NG(H) ∩ NG(K), we may suppose that H and K
are normal in G.

The subgroups [H◦,K] and [H,K◦] are then definable normal subgroups
of G, and are contained in [H,K], so we may pass to G/[H◦,K][H,K◦] or
in other words assume that

(∗) [H,K◦] = [K,H◦] = 1

After these reductions, we will show that [H,K] is finite, hence definable.
Let C be the set of commutators [h, k] with h ∈ H, k ∈ K. By (∗) the

commutation map γ : H ×K → C factors through H/H◦ ×K/K◦, so C is
finite. By Lemma 1.13 of Chapter I, [H,K] is finite. □

Lemma 3.31. Let G be a group of finite Morley rank, and H a normal
subgroup of G not commuting with G◦. Then the following are equivalent.

(1) H is a minimal normal definable subgroup of G.
(2) H is a minimal normal subgroup of G

Proof. If H is minimal normal and [H,G◦] ̸= 1, then H = [H,G◦] is
definable.

Conversely, supposeH is minimal normal definable andK ≤ H is normal
in G. Then [K,G◦] ≤ K is normal and definable. Thus either K = H
or [K,G◦] = 1, in which case H meets C(G◦) and hence is contained in
C(G◦). □
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The exceptional case is that in which H ≤ Z(G◦), with H minimal
normal definable. Such subgroups exist by the descending chain condition
for definable subgroups, but may not be minimal normal. On the other hand
minimal normal subgroups of Z(G◦) may not exist, but will be definable if
they do exist, as shown in the following.

Lemma 3.32. Let G be a group of finite Morley rank, and H a minimal
normal subgroup of G. Then H is definable, and if [H,G◦] = 1 then H is
finite.

Proof. If [H,G◦] > 1 then the previous lemma applies, so it suffices to
deal with the last point. So suppose [H,G◦] = 1. Of course, if H ∩G◦ = 1
then H is finite, so we may suppose H ≤ Z(G◦). In particular H is abelian
and may be considered as a G/G◦-module.

Now H is either an elementary abelian p-group for some p, or a divisible
abelian group. Furthermore, being irreducible for the action of a finite group,
H is finitely generated as a group. Thus it is not divisible, and must be a
finite p-group for some p. □

We can now cast some further light on E(G) as defined in Definition 1.7
of Chapter I.

Lemma 3.33. Let G be a group of finite Morley rank and L a subnormal
quasisimple subgroup. Then L is definable.

Proof. Wemay suppose that L is infinite. ReplacingG by C◦(Z(L))/Z(L),
we may suppose that L is simple and G is connected. We proceed by induc-
tion on the rank of G.

If LZ(G) is definable then L = (LZ(G))′ is definable. In particular if
Z(G) is infinite then induction applies in G/Z(G) and we conclude.

If Z(G) is finite then G/Z(G) is centerless and it suffices to treat the
image of L in G/Z(G). So we may suppose now that Z(G) = 1.

Let H ◁ G be a minimal definable normal subgroup. As G is centerless,
H is infinite and hence connected. By hypothesis there is a series

L = K0 ◁ K1 ◁ · · · ≤ Kn = G

Take i minimal with H ∩ Ki > 1. If i = 0 then L ≤ H; if H < G we
conclude by induction, while if H = G then G is simple (Proposition 3.25
of Chapter I), forcing L = G. If i > 0 then [Ki−1,Ki ∩H] ≤ Ki−1 ∩H = 1,
and so L ≤ C(Ki ∩H) < G. As C(Ki ∩H) is definable, we may conclude
by induction. □

Lemma 3.34. Let G be a group of finite Morley rank. Then for every n,
Gn and G(n) are definable, and G∞ and G(∞) are definable.

Proof. The case of Gn and G(n) follows from Lemma 3.30 of Chapter I
by induction. By the DCC these sequences both stabilize at some point. □

Lemma 3.35. Let A be an abelian group of finite Morley rank and π a
set of primes. Then
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(1) There is a decomposition

A = Aπ ⊕Aπ⊥

with Aπ all the π-torsion, and Aπ⊥ some complement to Aπ in A;
(2) If G is a group acting on A, and A satisfies the DCC with respect

to G-centralizers, then so does A/Aπ.

Proof.
Ad 1. First write A = B ⊕ T with B having bounded exponent and

T divisible (Lemma 2.13 of Chapter I). Then each of B and T splits as
claimed, and the result follows.

Ad 2. Let Ā = A/Aπ. We claim that for any subset X of G we have

(∗) CĀ(X) = CA(X)Aπ

Then the DCC will be inherited from A to Ā.
We prove (∗). Fix X ⊆ G and ā ∈ CĀ(X), represented by a ∈ A. By

the DCC for G-centralizers in A, there is X0 ⊆ X finite so that CA(X) =
CA(X0). For x ∈ X0 we have [a, x] ∈ Aπ and hence for some π-number n we
have 1 = [a, x]n = [an, x], hence an ∈ CA(X0) = CA(X). Now by Lemma
2.18 of Chapter I, there is a π-element a′ representing the coset aCA(X). So
a ∈ a′CA(X) ≤ AπCA(X). □

Lemma 3.36. Let G be a solvable group of finite Morley rank and π a
set of primes. Then there is a series G = G0 > G1 > · · · > Gn = 1 with all
Gi characteristic in G, having abelian quotients Ai = Gi/Gi+1, so that for
each i either

(1) Ai is a π-group; or
(2) Ai is a π-divisible π⊥-group satisfying the DCC for G-centralizers.

Proof. We refine the series G(i), which has definable terms. Let Bi be
the quotient G(i)/G(i+1), a definable abelian group. As such, Bi itself has
the DCC for G-centralizers, and splits as Bi,π ⊕Bi,π⊥ according to Lemma

3.35 of Chapter I. Let Gi,π be the preimage of Bi,π in G(i) and insert the
terms Gi,π into the series; these are typically not definable.

Now the quotients are, alternately, π-groups Gi,π/Gi+1, and π-divisible

π⊥-groups Gi/Gi,π. By the preceding lemma, the DCC for G-centralizers is
inherited by Gi/Gi,π. □

Definition 3.37. A group G is semisimple if G is a direct sum of simple
groups.

Lemma 3.38. Let G be a group of finite Morley rank and suppose that
G′ = G. Then the following are equivalent:

(1) G/Z(G) is semisimple
(2) G is quasisemisimple
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Proof. It suffices to show that 1 =⇒ 2. So suppose that Ḡ = G/Z(G)
is semisimple, with simple factors L̄i (i ∈ I) covered by Li ≤ G. Then G is
the central product of the Li.

Let Ki = L
(∞)
i , G0 = ⟨Ki : i ∈ I⟩. Then G0 is the central product of the

Ki, and asKi covers L̄i we have G = G0Z(G). Thus G = G′ = G′
0 = G0. □

Lemma 3.39. Let G be a connected solvable group of finite Morley rank,
and H ≤ G a minimal infinite definable normal subgroup. Then H is
abelian.

Proof. H is connected. Hence H ′ is connected and definable. By the
minimality of H, either H ′ = H, which contradicts solvability, or H ′ = 1,
as claimed. □

4. Fields

4.1. Fields of finite Morley rank. The theory of groups of finite
Morley rank is intimately bound up with the theory of fields of finite Mor-
ley rank, and not just because of the conjectured relation with algebraic
groups. Under general conditions, an action of one group of finite Morley
rank on another tends to give rise to a field (Proposition 4.11 of Chapter I),
which when infinite is algebraically closed (Proposition 4.2 of Chapter I).
Difficulties arise when the a proper connected subgroup of the multiplicative
subgroup appears in such an action; these difficulties are partly neutralized
by results of Wagner, which take on a group theoretic cast in the theory of
“good tori” (§4.4).

Lemma 4.1. Let R be a commutative ring of finite Morley rank without
nilpotent elements. Then R is a finite product of fields.

Proof. We do not assume at the outset that R contains an identity.
The principal ideals aR of R form a uniformly definable family, hence

satisfy a uniform chain condition by Lemma 2.8 of Chapter I. Let I be a
minimal nontrivial principal ideal of R. Then I is an integral domain, since
if ab = 0 with b ̸= 0 then aI = (0) by minimality, so a2 = 0 and finally
a = 0. Again by minimality aI = I for all nonzero a ∈ I, and I is a field.
Let I⊥ = AnnR(I).

We show R = I ⊕ I⊥. Fix e ∈ I its multiplicative identity, and consider
r ∈ R. Then re = xe for some x ∈ I, and hence (r − x)e = 0. Accordingly
(r − x)I = 0 and r − x ∈ I⊥, as required.

Now let R0 be minimal among definable ideals contained in R such that
R = R0 ⊕R⊥

0 and R⊥
0 is a finite sum of fields. Note that any ideal of R0 is

an ideal of R, so if R0 ̸= (0) we can apply our initial construction to enlarge
R⊥

0 and shrink R0, a contradiction. Thus R is a finite sum of fields. □

Proposition 4.2. [133] Let F be an infinite field of finite Morley rank.
Then F is algebraically closed.
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Proof. The polynomial maps of the form p(x) = xn and τ(x) = xp−x,
the latter in characteristic p > 0, are endomorphisms of the additive and
multiplicative groups of F , respectively, with finite kernel. Both of these
groups are connected by Example 3.5 of Chapter I and Corollary 3.7 of
Chapter I. So Lemma 3.3 of Chapter I implies that all of these maps are
surjective: so the multiplicative group of F is divisible, and in particular F
is perfect, and all polynomials of the form xp − x − a = 0 split over F in
characteristic p > 0.

More importantly, all of these conclusions apply to any finite extension
K of F , as such an extension can be identified, definably, with Fn for some
n, and hence K inherits a rank function from F .

From this point on, Galois theory suffices. Assuming F is not alge-
braically closed, take a finite extensionK of F and a proper Galois extension
K̂ of K, chosen so as to minimize the dimension [K̂ : K]. Then there are

no intermediate fields between K̂ and K, so the extension is of some prime
order l. Furthermore, the l-th roots of unity are in K, as otherwise one can
lower the dimension by replacing K̂ by K[11/l] and K by an intermediate
field.

Now since K has an adequate supply of roots of unity, the theory of
cyclic extensions tells us that if l ̸= char(K) then K̂ is a Kummer extension

K[a1/l] for some a ∈ K, while if l = char(K) then K̂ is an Artin-Schreier
extension K[α] with τ(α) ∈ K. However Kummer extensions are excluded
by the divisibility of K×, and Artin-Schreier extensions by the surjectivity
of τ on K. □

Lemma 4.3. Let F be a field of finite Morley rank, and K a proper
definable subfield. Then K is finite.

Proof. Otherwise, both K and F are algebraically closed. Let V ≤ F
be aK-subspace of F of dimension n. Fixing a basis of V , we have a bijection
V ↔ Kn; hence rk(F ) ≥ rk(V ) = n rk(K) ≥ n. This is a contradiction for
large n. □

This has the following nice consequence.

Lemma 4.4. Let F be a field of finite Morley rank and characteristic
zero. Then the additive group of F is minimal: it contains no nontrivial
proper definable subgroup.

Proof. Let A ≤ F be a definable subgroup and let R = {r ∈ F : rA =
A}. Then Z ≤ R and thus R is an infinite definable subring, hence also
subfield, of F . So R = F and A = 0 or F . □

Lemma 4.5. Suppose that F is an infinite field of finite Morley rank,
and G is a definable group of automorphisms of F . Then G = 1.

Proof. For σ ∈ G, let Fσ be the fixed field. By the previous lemma, Fσ

is finite. For each n, Fσn is an extension of degree n, and by compactness
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there is τ ̸= 1 ∈ G (at least, in an elementary extension) such that [Fτ :
Fσ] = ∞ and, in particular, Fτ is infinite. This contradicts the previous
corollary. □

4.2. Linearization.

Definition 4.6. Let G be a group of finite Morley rank acting definably
on an abelian group V . Then V is definably G-irreducible if it has no
nontrivial proper definable G-invariant subgroup.

Lemma 4.7 (Schur’s Lemmma). Let G be a group acting definably on
a definably G-irreducible abelian group V . Then the ring of definable endo-
morphisms of V is a division ring.

Proof. Kernels and images of definable endomorphisms are definable,
hence 0 or V . □

Lemma 4.8. Let A be an abelian group of finite Morley rank acting
definably on a definably A-irreducible abelian group V . Then the subring
K of End(V ) generated by A is definable.

Proof. By Schur’s Lemma, K is a field.
Take v ∈ V nontrivial. In the semidirect product V ⋊ A, we have

[v,A] = {(a − 1).v : a ∈ A}. By Lemma 3.28 of Chapter I these sets are
indecomposable, and hence by Proposition 3.19 of Chapter I, V is a finite
sum of such sets, or equivalently vA+···+A = vK for some finite length sum
A+ · · ·+A. As K is a field, this relation forces A+ · · ·+A = K, and proves
the definability of K. □

Definition 4.9. Let G be a group of finite Morley rank acting definably
on an abelian group V . Then V is G-minimal if V is infinite and contains
no G-invariant proper infinite definable subgroup.

Lemma 4.10. Let A be an infinite abelian group of finite Morley rank and
V an A-minimal abelian group on which A has a nontrivial action. Then V
is A-irreducible.

Proof. By minimality, CV (A) is finite. Let V̄ = V/CV (A). There is a
map from the commutative ring of definable endomorphisms of V generated
by A to the corresponding subring of End(V̄ ). The kernel of this map is
trivial, since no nonzero definable endomorphism can take the connected
group V into CV (A). Thus A generates an infinite field F , in End(V ).
Taking v ∈ V \ CV (A), we see that V = F.v and that CV (A) = (0). □

Proposition 4.11 (Linearization). Let G be a connected group of finite
Morley rank acting definably, faithfully, and irreducibly on an abelian group
V , and let T ◁ G be infinite abelian. Then the subring K of End(A) gener-
ated by T is a field which is definable over G, and under the action of K V
is a finite dimensional vector space on which G acts K-linearly.
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Proof. Let A = CV (T
◦). We claim A = 1; otherwise, by irreducibility,

we have A = V and T ◦ = 1, T is finite, a contradiction.
Let U be a minimal infinite definable T -invariant subgroup of V . Then

U is T -irreducible, as otherwise there is a finite T -invariant subgroup U0 of
U and then U0 ≤ CV (H

◦), a contradiction.
By Clifford theory (see section 11 of Chapter I) V is a finite direct sum

of conjugates Ui = Ugi of U . Let K be the subring of End(V ) generated
by T . As the Ui are T -submodules, We have a natural map with trivial
kernel K →

∑
End(Ui), and the image in each factor generates a field Ki

by Schur’s Lemma. That is, we may view K as a subring of
∑
Ki where the

field Ki is generated by T in End(Ui). Such a ring is itself isomorphic to a
direct sum of fields. By the Lemma 4.8 of Chapter I, the fields involved are
definable in G, and hence K is also definable.

On the other hand G acts by conjugation as a group of definable auto-
morphisms of the ring K, permuting the factors, and as G is connected it
stabilizes the factors (Lemma 3.3 of Chapter I). Thus G acts as a defin-
able group of automorphisms on each field, hence trivially by Lemma 4.5 of
Chapter I. In other words, G commutes with K.

On the other hand, by construction, G permutes the fields Ki transi-
tively, thus there is only one such, and K is a field. Note that the irreducible
module U can now be construed as a 1-dimensional subspace. □

Proposition 4.12. Let G be a connected solvable group of finite Morley
rank, and suppose that G is not nilpotent. Then there are definable sections
K,T of G, with an action of T on K induced by conjugation in G, such
that the pair (K,T ), together with the action, is definably isomorphic to a
pair (F+, T

∗) where F is a field, T ∗ is a multiplicative subgroup of F which
generates F+ additively, and the action of T on K corresponds to the natural
action of T ∗ on F+ by multiplication.

Proof. Fix i so that rk(Zi(G)) is maximal, and replace G by G/Zi(G).
Then Z(G) is finite, so G/Z(G) is centerless; factoring out again, assume
that G is centerless.

Let A be a minimal infinite definable normal subgroup of G. As G is
centerless, the action of G on A is faithful. We claim that A is G-irreducible.
Suppose B ≤ A is a nontrivial G-submodule. Then [B,G] is a definable
connected G-submodule by Corollary 3.29 of Chapter I. Since the action of
G is faithful, [B,G] is nontrivial. As this module is connected, it is infinite,
and hence by minimality [B,G] = A, and B = A. So A is irreducible.

Let T be a minimal infinite definable normal subgroup of G/CG(A). By
Lemma 3.39 of Chapter I, T is abelian. By the preceding proposition, T gen-
erates a field F ⊆ End(A) which gives A the structure of a finite dimensional
vector space. We can represent F+ by any 1-dimensional subspace of A. The
generation of F by T is additive since T is closed under multiplication. □
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4.3. Bad fields. One difficulty arises in applying the Linearization
Lemma: we may have T < K, something which does not occur in alge-
braic examples.

Definition 4.13. A bad field is a structure (K;T ) of finite Morley rank
in which K is a field and T is a proper, infinite subgroup of its multiplicative
group.

While no examples of such fields have actually been constructed, meth-
ods of Hrushovski suffice for the construction, in characteristic 0, of analo-
gous structures of infinite rank, Cf. [152]. On the other hand model theo-
retic arguments due to Wagner provide some measure of control in positive
characteristic (enough, in fact, to show that their existence would require
number theoretic restrictions on primes which are heuristically unlikely).

The main model theoretic result in positive characteristic is as follows.
(This result does not immediately give number theoretic restrictions, but it
is all we require.)

Definition 4.14. Let M be an arbitrary structure. An element a of M
is algebraic if it belongs to a finite set which is definable without parameters;
equivalently, assuming M is reasonably homogeneous, the condition is:

aAutM is finite

The set of algebraic elements is denoted Malg.

Proposition 4.15. [182] Let F be a field of finite Morley rank. Then
Falg is an elementary substructure of F (in its full language).

For the proof, we first prepare some machinery.

Lemma 4.16. [181, 144] Let K be a field of finite Morley rank, and
X a definable subset of K which contains an infinite subfield F of K, not
assumed definable. Then

(1) X is generic in K in the sense that rk(K \X) < rk(K).
(2) If in addition X is a multiplicative subgroup of K, then X = K×.

Proof. The second point follows at once from the first: a generic sub-
group of a group, in the sense given, must be the whole group. So we
concentrate on the first point.

We may suppose that X is a counterexample of minimal rank r and
degree d. Then for any a ∈ F×, as a+X and aX are also counterexamples,
and contain the same field F , we have a+X ∼ X and aX ∼ X in the sense
that in each case the symmetric difference has rank less than r.

Let K1 = {a ∈ K : a +X ∼ X}. Then F ⊆ K1 and K1 is a definable
subgroup of K+. Let K2 = {a ∈ K1 : aX ∼ X or a = 0}. Then F ⊆ K2 and
K2 is a definable subring of K. In particular K2 is an integral domain and
hence by Lemma 4.1 of Chapter I, K2 is a subfield of K; but as K2 is infinite,
by Lemma 4.3 of Chapter I to Proposition 4.2 of Chapter I, K2 = K.
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Now let R ⊆ X ×K be defined as

{(x, a) ∈ X ×K : xa ∈ X}
For all a ∈ K, R∩ (X×{a}) is generic in X. Hence by the Fubini principle:

{x ∈ X : R ∩ ({x} ×K) is generic in K}
is generic in X; pick one such element x. Then

rk(X) ≥ rk(xK ∩X) = rk(R ∩ {x} ×K) = rk(K)

and hence X is generic in K. □

Proof of Proposition 4.15 of Chapter I. We aim to show that
Falg is an elementary substructure of F . For this, we need to show that
every Falg-definable nonempty set X has a point in Falg. Evidently an ele-
mentary substructure will satisfy this condition, and the converse also holds:
this is known as the Tarski-Vaught test for elementary substructures.

Toward a contradiction take a counterexample X with rk(X) and then
degree(X) minimized. Then X is infinite, as otherwise X ⊆ Falg. Further-
more, by minimization, X has no nonempty proper Falg-definable subset.

Let f = rk(F ). In an elementary extension, we may take an element
a ∈ F such that a belongs to no Falg-definable subset of rank less than f .
We claim that there is no proper nonempty Falg(a)-definable subset of X.
Suppose on the contrary that Sa is definable from a and parameters in Falg,
and both X ∩ Sa and X \ Sa are nonempty. Then we may consider the set

F0 = {y ∈ F : X ∩ Sy ̸= ∅ and X \ Sy ̸= ∅}
of rank f since it contains a. By Lemma 4.16 of Chapter I, F \ F0 cannot
contain Falg. Hence Falg meets F0 and there is a parameter a∗ ∈ Falg such
that X ∩Sa∗ and X \Sa∗ are both nonempty, contradicting the choice of X.
So there is no proper nonempty a-definable subset of X.

Now there is a finite sequence a1, a2, . . . of elements of Falg such that
F =

∑
aiX. In particular

(1) rk
(∑

aiX
)
= f

Choose a sequence a1, . . . , an in Falg, of minimal length, satisfying condition
(1). Then a ∈

∑
aiX:

a = a1x1 + · · ·+ anxn with xi ∈ X

Consider Xa = {x ∈ X : a ∈ a1x+
∑

i>1 aiX}. Here X is definable
from a and the parameters a1, . . . , an. This set is nonempty and definable
over a and Falg, hence contains all of X.

Consider the set R ⊆ F×X of pairs (a, x) for which a ∈ a1x+
∑

i>1 aiX.
Then a belongs to the Falg-definable set S = {u : rk(R∩{u}×X) = rk(X)},
and hence rk(S) = f ; so rk(R) = rk(F ) + rk(X). Consider the map R→ F
given by (a, x) 7→ a−a1x. The fibers have rank at most rk(X) since a given
x ∈ X determines at most one corresponding a. Hence the image has rank at
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least rk(R)− rk(X) = rk(F ); in other words rk({a− a1x : (a, x) ∈ R}) = f .
But this implies that

rk(
∑
i>1

aiX) = f

and this contradicts the minimization of the length n.
This contradiction completes the argument. □

Lemma 4.17. Let F be a field of finite Morley rank and X an infinite
definable subset. Then for some finite set of elements ai in Falg,

(∗) F = a1X + · · ·+ akX

Proof. We can select a subset of X which is indecomposable relative
to the additive group F+, for example by Lemma 3.24 of Chapter I. So
after translation, we may suppose that X is indecomposable and contains
0. Rescaling, we may also suppose that 1 ∈ X. Then by Proposition 3.19 of
Chapter I, Y = ⟨aX : a ∈ Falg⟩ is both definable, and a finite sum as in (∗).
On the other hand the group TY = {a ∈ F× : aY = Y } contains Falg by
construction, hence coincides with F× by Lemma 4.16 of Chapter I. Hence
Y = F and our claim follows. □

Proposition 4.18. Let F be an infinite field of finite Morley rank and
positive characteristic p, whose language consists of the usual language of
fields augmented by certain subgroups of (F+)

n and (F×)n Let F0 be the sub-
field of elements algebraic over Fp, viewed as a substructure for the extended

language (note that F0 is the algebraic closure F̃p of Fp, as a field). Then

F0 ≺ F

Proof. It suffices to check that F0 = Falg in this case. For this we use
the Frobenius automorphism Frob; this is an automorphism of F , by our
assumption on the language, and for a ∈ Falg the orbit of a under powers of
Frob must be finite, so a ∈ F0. □

4.4. Good tori.

Definition 4.19. Let G be a group of finite Morley rank.

(1) A torus in G is a definable connected divisible abelian group.
(2) A good subgroup in G is a definable subgroup H of G group such

that every definable subgroup of H is the definable hull of its torsion.
(3) A good torus is a torus in G which is a good subgroup of G.
(4) An absolutely good torus in G is a torus in G which is good in

every elementary extension of G.

By a combinatorial argument, every good torus is absolutely good [68].
However, the good tori which arise in groups of finite Morley rank are all
absolutely good a priori, so we do not require this result, which however
simplifies the terminology.
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Proposition 4.20. Let F be an infinite field of finite Morley rank, of
positive characteristic, Then F× is an absolutely good torus.

Proof. The hypotheses are unaffected by passage to elementary exten-
sions, so we work in the given model. Of course, F× is a torus. Let T ≤ F×

be definable. We claim that T is the definable hull of its torsion.
Let Ttor be the torsion subgroup, T0 = d(Ttor), and consider the structure

F̃ consisting of F equipped with the field operations, as well as predicates
denoting T and T0. By Lemma 2.2 of Chapter I F̃+ is again a group of
finite Morley rank with respect to this language. Furthermore, F̃ is a struc-
ture of the sort to which Wagner’s result (Proposition 4.15 of Chapter I)

applies. Hence the structure F̃alg derived by restricting everything to Falg is
an elementary substructure. However in this structure, T = Ttor (since Falg

is locally finite) and a fortiori T = T0; however the property “T = T0” is
expressible in the given language, hence passes to K. □

Lemma 4.21. Let G be a group of finite Morley rank.

1 If H is a definable subgroup of G such that every connected subgroup
of H is the definable hull of its torsion, then H is a good subgroup
of G.

2 If 1 → H → K → L → 1 is a short exact sequence of definable
groups, then K is good if and only if H and L are good.

Proof.
Ad 1. Consider a definable subgroup K of H.
For x ∈ K, let Ax = Z(CK(x)). This is an abelian group containing x,

and it will be sufficient to show that Ax is the definable hull of its torsion.
So we may suppose that H = Ax, and in particular H is abelian.

Then by Lemma 2.13 of Chapter I, H = H1 +H2 with H1 of bounded
exponent and H2 divisible, hence connected. Thus H1 ≤ Htor and H2 ≤
d(Htor), and our claim follows.

Ad 2. The property of goodness clearly passes to definable subgroups.
We consider homomorphic images. Let h : K → L be a surjection, and L∗

a subgroup of L, K∗ its preimage in K. Then K∗ = d(K∗
tor) and by Lemma

2.15 of Chapter I we find that L∗ = h[d(K∗
tor)] = d(h[K∗

tor]) ≤ h[L∗
tor], as

required.
Now suppose that H and L are good. Any definable subgroup of K fits

into a similar short exact sequence, so it suffices to show that K = d(Ktor).
Now d(Ktor) contains d(Htor) = H. We need to show that d(Ktor) also
covers L; since its image is definable, it suffices to show that it covers Ltor.

Let x̄ ∈ Ltor, and let x be a lifting of x̄ to K. If x̄n = 1 then xn ∈ H.
Let H+ = ⟨H,x⟩. Then [H+ : H] is finite, so H+ is definable. As H is
good, every connected definable subgroup of H+ is the definable hull of its
torsion; so H+ is good. Thus x ∈ d(H+

tor) ≤ d(Ktor), and x̄ ∈ h[d(Ktor)] =
d(h[Ktor]). □

Corollary 4.22.
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(1) Let G be a group of finite Morley rank, and T a connected definable
subgroup of a finite product of good tori. Then T is a good torus.

(2) Let G be a connected group of finite Morley rank. Then there is a
unique minimal definable normal subgroup K of G such that G/K
is good torus.

Proof.
Ad 1. By the formal properties of goodness, T is a good subgroup of G.

It is also an abelian group of finite Morley rank and hence can be written as a
sum T1+T2 with T1 of bounded exponent, and T2 divisible, and both factors
definable. By Lemma 2.11 of Chapter I, T1 is finite. Hence [T : T2] < ∞.
By connectivity, T = T2 is divisible.

Ad 2. If G/K1 and G/K2 are good tori, then G/(K1 ∩ k2) embeds as a
connected subgroup of the product, hence is a good torus. By the minimal
condition on definable subgroups, the claim follows. □

Lemma 4.23 (Rigidity Lemma). Let G be a group of finite Morley rank
and T a definable abelian subgroup of G with T ◦ an absolutely good torus.
Then the following hold.

(1) N◦
G(T ) = C◦

G(T ).
(2) If H is a uniformly definable family of subgroups of T , then H is

finite.
(3) If H is a definable subgroup of G, and F is a uniformly definable

subgroup of homomorphisms from H to T , then F is finite.

The first of these requires only goodness.

Proof.
Ad 1. Let N = N◦

G(T ). Then N acts on Ttor and as T [n] is finite for
all n, and N is connected, N centralizes Ttor (Lemma 3.3 of Chapter I). As
C(Ttor) = C(d(Ttor)) = C(T ), our first claim follows.

Ad 2. Supposing the contrary, in some elementary extension we can have
arbitrarily many uniformly definable subgroups of T (specifically, more than
2ℵ0). However each such group is determined by its intersection with Ttor,
and as T [n] is finite for each n, Ttor is a countable set.

Ad 3. We may suppose H is connected, as once a homomorphism is
determined on H◦ it has finitely many extensions to H. If K ◁ H is minimal
definable normal with H/K a good torus, then for every homomorphism in
F factors through H/K, so we may suppose that H is itself a good torus.
Then each homomorphism is determined by its action on the torsion of H,
so the cardinality of F is bounded, and hence finite. □

Lemma 4.24. Let G be a group of finite Morley rank, K a definable
subgroup, and T ≤ Z(K) a good torus. Then NG

◦(K) ≤ CG
◦(T ).

In particular, if K = CG
◦(T ) then K is almost self-normalizing.

Proof. There is a unique maximal good torus T̂ contained in Z(K).

Hence N◦(K) ≤ N◦(T̂ ) = C◦(T̂ ) ≤ C◦(T ), proving the first point, and the
second is then immediate. □
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4.5. Division rings and related structures. .
The following results have geometrical consequences; see §6 of Chapter

III.

Proposition 4.25. A division ring of finite Morley rank is commutative,
hence a finite or algebraically closed field.

Proof. The finite case is classical ([184]). Suppose therefore that D
is an infinite division ring of finite Morley rank, and is noncommutative.
We may suppose also that every proper definable division subring of D is
commutative. Let K = Z(D). If D is finite dimensional over K, then K
is algebraically closed and it follows that D = K. So we suppose that D
is infinite dimensional over K. It follows that K is finite, as otherwise by
considering finite dimensional K-subspaces of D we find rk(D) ≥ d rk(K)
for all d.

By Lemma 3.10 of Chapter I, D× contains an infinite definable abelian
subgroup A. As the center of D is finite, there is a ∈ A noncentral, and
then L = CD(a) is a proper infinite definable division subring of D, hence
commutative. But a division ring which is finite dimensional over a commu-
tative subfield is also finite dimensional over its center, cf. [127, 15.8], and
we have a contradiction. □

Our next result concerns the more specialized subject of alternative di-
vision rings. These are not necessarily associative rings with left and right
multiplicative inverses, satisfying a weak associative law:

(A) (ax)x−1 = a = x−1(xa)

We will follow [179], where in addition the Moufang identities are taken as
part of the definition:

(ab · a)c = a(b · ac), b(a · ca) = (ba · c)a; ab · ca = a(bc · a) = (a · bc)a
For a derivation of these conditions from the axiom (A) see [136, App. B].
Alternative division rings coordinatize Moufang projective planes, see Chap-
ter III, §7 of Chapter III.

In this context, the centralizer C(X) of a subset X of an alternative
division ring D is defined as the set of elements a which both centralize and
associate with elements of X: ax = xa, (ax)y = a(xy), and in particular
the center Z(D) = CD(D) is a field.

The structure of non-associative alternative division rings is completely
determined by the Bruck-Kleinfeld Theorem ([57, 125], cf. [136, 179]),
and from this one can see that alternative division rings of finite Morley
rank are fields. One can also derive this from more general principles, in a
way that is analogous to the treatment of the finite case. For this one begins
with the following.

Lemma 4.26. Let D be a nonassociative ring of finite Morley rank, and
R ⊆ D an associative subring. Then R is contained in a definable associative
subring of D.
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Proof. Viewing R and D as additive groups, let R̂ = d(R). Easily

R · R̂ = R̂ and hence R̂ · R̂ = R̂, so it suffices to check that R̂ is associative.
Let

A = {d ∈ D : r1r2 · d = r1 · r2d for r1, r2 ∈ R}
For fixed r1, r2 the corresponding set is definable and contains R, hence
R̂ ≤ A.

Let

S = {a ∈ R̂ : For r ∈ R and b ∈ A we have r1b · a = r1 · ba}

Arguing as above, R̂ ⊆ S and hence R̂ = S.
This means that elements in R satisfy: r · s1s2 = rs1 · s2 for s1, s2 ∈ R̂,

and hence the same applies to R̂: R̂ is associative. □

One can show similarly that if we drop the assumption on Morley rank,
then any definable subset that generates an associative subring is contained
in a definable associative subring, which is equally useful for the following.

Proposition 4.27. An alternative division ring D of finite Morley rank
is associative and commutative.

Proof. As noted, this can be read off from the explicit classification
given by the Bruck-Kleinfeld Theorem ([179, 20.1,20.2]), according to which
such a division ring is eight dimensional over its center K, and has a “norm”
function which is an anisotropic quadratic form on K in eight variables,
which is incompatible with the two possible forms ofK, finite or algebraically
closed.

One may also argue in another way using a theorem of Artin which
applies to the broader class of alternative rings (not necessarily division
rings): every subring generated by two elements is associative [57, p. 888],
as well as the relatively elementary result that commutative alternative rings
are associative.

By Artin’s result and our Lemma 4.26 of Chapter I, any two elements
a, b ∈ D are contained in a definable associative subring R of D. This
subring is clearly a division ring, and hence by Proposition 4.25 of Chapter
I it is commutative. So D is commutative. □

In the classification of Moufang generalized quadrangles (cf. §6 of Chap-
ter III), we also encounter more exotic structures of the type known as an
involutory set may be involved. These are triples of the form (K,K0, σ) in
which K is a division ring, σ is an involutory anti-automorphism of K, and
K0 is an additive subgroup of K with the following properties

(1) 1 ∈ K0

(2) Kσ ⊆ K0 ⊆ FixK(σ) where Kσ denotes

{a+ aσ : a ∈ K}

(3) aσK0a ⊆ K0 for a ∈ K.
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Lemma 4.28. Let K be a an infinite division ring with an involutory
antiautomorphism σ. Then either Kσ is infinite, or σ is trivial; in the latter
case K is a field of characteristic two.

Proof. We may assume that Kσ is finite. Let h(a) = a + aσ and let
K1 = ker(h). Then K1 has finite index in K.

Suppose first that

FixK(σ) is infinite.

Then FixK(σ) meets K1 nontrivially, since the intersection has finite index
in FixK(σ). But on FixK(σ) ∩ K1 we have 2a = a + aσ = 0 and thus the
characteristic of K is two. In this case,

K1 = FixK(σ)

Now for a ∈ K1, it follows that aK1∩K1 also has finite index in K. But
if ab ∈ aK1 ∩K1 we have

ba = bσaσ = (ab)σ = ab

Thus C(a) contains K1∩a−1K1 and so C(a) is of finite index in K. But then
C(a) is an infinite division ring, and K/C(a) is a C(a)-vector space, which
being finite can only be trivial. so this forces K = C(a) for a ∈ K1, that is
K1 ≤ Z(K). But then similarly K/Z(K) is trivial, K = Z(K) = FixK(σ),
and our claim follows.

So now suppose

FixK(σ) is finite.

Consider the action of σ on Z(K). This gives an involutory automorphism
of the field Z(K) with finite fixed field, so the field Z(K) is also finite.

Let x ∈ FixK(σ), x ̸= 0. Then K1x ∩ K1 has finite index in K. Take
ax ∈ K1x ∩K1. Then

−ax = (ax)σ = xaσ = −xa
and thus a ∈ C(x). Hence C(x) has finite index in K, and as FixK(σ) is
finite, CK(FixK(σ)) has finite index in K. So FixK(σ) ≤ Z(K).

Now K1 is a vector space over FixK(σ). Consider the map

q : K1 → FixK(σ)

given by q(a) = a2. Then q(xa) = x2q(a) for x ∈ FixK(σ) and q(a + b) =
q(a) + q(b) + (ab + ba). Since the function ab + ba is bilinear on K1 over
FixK(σ), q is a quadratic form on K1. As K1 is infinite, its dimension
over FixK(σ) is greater than two and therefore the quadratic form has a
nontrivial zero, that is a2 = 0 for some a ∈ K1, a ̸= 0, a contradiction. □

Lemma 4.29. Let (K,K0, σ) be an involutory set, and let K be the struc-
ture consisting of K as an additive group together with K0 as a distinguished
subset, and the multiplication map restricted to K0×K. If K has finite Mor-
ley rank and K is infinite, then K is an algebraically closed field and σ is
trivial.
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Proof. Let K1 = K0
◦, which is nontrivial by the preceding lemma. Let

R be the subring of K generated by K1. As R = RK1, if we consider R as
an additive group it is generated by the connected subgroups rK1 for r ∈ R,
and is therefore definable, and is the sum of finitely many of these subgroups:
R =

∑
i riK1. On the other hand each multiplication map µri : K → K is

definable in K, and hence the action of R on K is definable. In particular
the ring structure on R itself is definable.

So R is a ring without zero divisors, and has finite Morley rank. It follows
easily that the nontrivial multiplication maps are surjective, and thus R is
a division ring, hence an algebraically closed field. Since the vector space
structure on K is definable and K has finite Morley rank, the dimension
of K over R is finite. Hence the dimension of K over its center Z is finite
[127, 15.8], and the dimension of K over Z ∩R is finite. It follows that the
multiplication on K is definable, and hence K is also an algebraically closed
field. As σ has order two, its fixed field cannot be finite, and hence σ is
trivial (Lemma 4.5 of Chapter I). □

4.6. Pure fields. We refer to a field F which carries no additional
structure beyond the field operations as a pure field. In a pure algebraically
closed field, the definable sets are the constructible sets in the sense of
algebraic geometry.

Fact 4.30 ([150], Théorème 4.15). An infinite field definable in a pure
algebraically closed field F is definably isomorphic to F .

This is a delicate point. One uses the theory of algebraic groups, and
the result that a group definable (or interpretable) in an algebraically closed
field is itself algebraic, which is a relative of the Weil group chunk theorem,
later much generalized by Hrushovski and Zilber. We give an indication of
the second phase of the analysis.

Let the field K be interpreted in the algebraically closed field F , and
suppose that the group G = K+ ⋊K× (with the natural action of K× on
K+) is known to be algebraic over F . By Lemma 3.7 of Chapter I this
group is connected, and it is solvable. From the general theory of algebraic
groups it follows that it is linear (being centerless) and may be identified
with a Zariski closed subgroup of the upper triangular matrices, with K+

unipotent.
One may then distinguish cases according to the characteristic of F .
If the characteristic is zero, we have Lemma 4.4 of Chapter I. As K+ is

unipotent, this easily proves that K+ is 1-dimensional and definably isomor-
phic with F+, with which we identify it. The same Lemma 4.4 of Chapter I
implies that K acts F -linearly on F+ and hence K× becomes identified with
F×.

If the characteristic is positive, then evidently K+, being unipotent, is
also an elementary p-group. Furthermore by inspection of the torsion inK×,
the latter group is a 1-dimensional torus. Hence K+ is also 1-dimensional. It
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then follows thatK+ can be identified (definably) with F+, and it remains to
understandK× and its action on F+, which requires some brief consideration
of the multiplication maps induced by K× as definable functions on F .

5. Nilpotent groups

One of the most useful results of the present section is the structural
analysis of connected nilpotent groups of finite Morley rank, Proposition5.8
of Chapter I, which provides a satisfying generalization of the abelian case.
Also of great importance is the existence and definability of the Fitting
subgroup Proposition 5.13 of Chapter I. The other topics covered in the
present section are more specialized.

5.1. The normalizer condition.

Lemma 5.1. Let H be a nilpotent group of finite Morley rank and P an
infinite normal subgroup. Then P ∩ Z(H) is infinite.

Proof. Take i minimal so that P ∩ Zi(H) is infinite. Then we may
suppose that P ≤ Zi(H).

We may also suppose that P is connected. For x ∈ H, the commutator
map γx : P → Zi−1(H)∩P has finite image and has fibers of constant rank
CP (x). Hence rk(CP (x)) = rk(P ) and as P is irreducible by Lemma 3.6 of
Chapter I, we have [x, P ] = 1. Thus P ≤ Z(H), and the claim follows. □

Corollary 5.2. Let H be an infinite nilpotent group of finite Morley
rank. Then Z(H) is infinite.

Proposition 5.3. Let H be a nilpotent group of finite Morley rank, and
suppose P is a definable subgroup of infinite index. Then [NH(P ) : P ] is
infinite.

Proof. We know Z◦(H) ̸= 1. If Z◦(H) is not contained in P , then
[Z◦(H) : P ∩ Z◦(H)] is infinite and hence [Z◦(H)P : P ] = ∞, so the claim
follows in this case.

If Z◦(H) ≤ P then we may pass to H/Z◦(H), and conclude by induction
on the rank. □

5.2. Structure.

Definition 5.4.

(1) Let G be a group of finite Morley rank. Then G is unipotent if
G is connected, has bounded exponent, and is solvable. If G is
π-unipotent if it is a unipotent π-group.

(2) U2(G) is the subgroup of G generated by the unipotent 2-subgroups
of G.

Lemma 5.5. Let G be a unipotent group of finite Morley rank. Then G
is nilpotent.
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Proof. Otherwise, by Proposition 4.12 of Chapter I, there is an infinite
section T of G isomorphic to a subgroup of the multiplicative group of a
field. As G is unipotent, T ◦ has bounded exponent, and is therefore trivial,
a contradiction. □

Lemma 5.6. Let H be a connected nilpotent group of finite Morley rank.
Then the series Zi

◦(H) is a central series.

Proof. We know that Z◦(H) is nontrivial, and by iterating this it fol-
lows that the series terminates at H after at most rk(H) steps.

Furthermore [G,Zi
◦(G)] ≤ Zi−1(G) is connected by Corollary 3.29 of

Chapter I. Thus [G,Zi
◦(G)] ≤ Zi−1

◦(G) □

Lemma 5.7. Let H be a connected nilpotent group of finite Morley rank.
Suppose that H contains no nontrivial normal unipotent subgroup. Then H
is radicable.

Proof. It suffices to show that each section Ai =: Zi
◦(H)/Zi−1

◦(H) is
divisible (Lemma 1.20 of Chapter I). By Lemma 2.13 of Chapter I it suffices
to show that Ai contains no nontrivial unipotent subgroup B.

Suppose toward a contradiction that i is minimal such that Ai contains
a nontrivial unipotent subgroup B. Let B̂ be the preimage of B in Zi

◦(H).

For g ∈ G, commutation induces a homomorphism γg : B̂ → Ai−1 which

factors through B̂ → B. Thus the image, a homomorphic image of B,
is unipotent, Thus the image of the subgroup [G, B̂] in the section Ai−1

is unipotent, hence trivial. This means that [G, B̂] ≤ Zi−2
◦(H) and thus

B̂ ≤ Zi−1
◦(H), a contradiction. □

Proposition 5.8. Let H be a connected nilpotent group of finite Morley
rank. Then there are definable normal subgroups U, T of H such that:

1 U is unipotent and T is radicable;
2 H = U ∗ T , a central product;
3 U ∩ T is finite.

Proof. Note that the second and third points are actually consequences
of the first. The third point follows by Lemma 1.18 of Chapter I, while for
the second point we note that [U, T ] ≤ U ∩ T is connected and finite, hence
trivial.

Now choose U maximal definable unipotent and normal inH. By Lemma
5.7 of Chapter I, H/U is radicable.

If U = 1 we are done. Otherwise, we proceed by induction on rk(H).
Let A ≤ U be a minimal infinite definable normal subgroup of H; then A is
connected. In H̄ = H/A we have H̄ = Ū ∗ D̄ with D/A radicable. We may
suppose H = D and D > A.

Now D̄′ < D̄ soD′A ̸= D. AsD′A is also connected, we have inductively
D′ = A ∗D1 with D1 radicable.
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If D1 > 1 then in D̃ = D/D1 we have D̃ = Ã ∗ T̃ with T/D1 radicable,
and hence T radicable. Hence D = AT with A unipotent, T radicable, both
normal, connected, and definable, and the same follows for H.

Now suppose D1 = 1, that is D′ ≤ A. Then for x ∈ D, the map
γx : D → A induced by commutation is a homomorphism, whose image is
radicable and of bounded exponent, hence trivial. This means that D is
abelian and our claim follows from Lemma 2.13 of Chapter I. □

Remark 5.9. In the preceding Proposition, the subgroups U and T are
characteristic.

Proof. Let n be the exponent of U . Then T = {hn : n ∈ H}, and U
is the connected component of the subgroup generated by {h ∈ H : hn =
1}. □

We proceed further with the structure of radicable nilpotent groups.

Lemma 5.10. Let H be a π-radicable nilpotent group of finite Morley
rank. Then H ′ is π-torsion-free.

Proof. Suppose this fails, and let i be minimal such that [Zi(H), H]
contains torsion. Set Hi = [Zi(H), H]. Then Hi−1 is π-torsion free. Let

h = [x1, h1] · · · · · [xn, hn]
be a π-torsion element with x1, . . . , xn ∈ Zi(H).

The maps γx : Zi(H)/Zi−1(H) → Hi/Hi−1 induced by commutation are
homomorphisms, and so is their sum

γ =
∑
i

γxi

As the domain of γ is π-torsion free (Lemma 1.18 of Chapter I), so is the
image, by Lemma 2.18 of Chapter I. But h is in the image, a contradiction.

□

Proposition 5.11. Let H be a radicable nilpotent group of finite Morley
rank. Then H factors as a direct product

Htor ×H0

with H0 radicable and torsion free (and not usually definable).

Proof. Let H̄ = H/H ′. This factors as H̄tor × H̄0 where the group H0

contains H ′. As H ′ is torsion free and H̄0 is torsion free, we find that H0 is
torsion free. Furthermore H = HtorH0 with both factors normal, and with
trivial intersection, so we have the desired representation. □

Lemma 5.12. Let G be a group of finite Morley rank, and H a defin-
able connected nilpotent subgroup. Then the p-torsion subgroup Hp of H is
connected.

Proof. H = U ∗T with T radicable, U connected of bounded exponent,
and both definable. The p-torsion of U is connected by Lemma 1.17 of
Chapter I, and the p-torsion of T is divisible. □
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5.3. Fitting subgroup.

Proposition 5.13. Let G be a group of finite Morley rank. Then there
is a unique maximal normal nilpotent subgroup of G, and it is definable.

Proof. If H,K are definable connected normal nilpotent subgroups of
G, thenHK is again definable connected normal, and nilpotent (Lemma 1.21
of Chapter I). So granted the existence, uniqueness is clear. Again, granted
the existence, the definability is immediate by Lemma 2.15 of Chapter I.

So the problem is one of existence. We proceed by induction on the rank
of G.

The problem reduces at once to the case of G connected, since if H is
the maximal normal nilpotent subgroup of G◦, then H is normal in G, and
for all normal nilpotent subgroups Ĥ of G containing H, the index [Ĥ : H]
is bounded by [G : G◦].

Again, if Z(G) is infinite then by induction G/Z(G) has a maximal
nilpotent normal subgroup, which then lifts to the desired subgroup of G.

If Z(G) is finite and nontrivial we may first treat G/Z(G), which is
centerless by Lemma 3.9 of Chapter I, then return to G. So we will suppose

Z(G) = 1

Now let A be the centralizer in G of all nilpotent normal subgroups of
G. Then A is normal in G, and definable by the definable DCC, Lemma
2.6 of Chapter I. Now by induction C(A) has a unique maximal normal
nilpotent subgroup H, and H contains all nilpotent normal subgroups of
G. On the other hand H is nilpotent and normal in G, so H is the desired
subgroup. □

Definition 5.14. Let G be a group of finite Morley rank. The maximal
nilpotent normal subgroup of G is called the Fitting subgroup, and is denoted
F (G).

We note that F ◦(G) is the largest definable connected nilpotent normal
subgroup of G, or in other words is the connected analogue of the Fitting
subgroup from the finite case. As we saw in the argument above, the con-
struction of the connected analogue can be less problematic than the con-
struction of the strict analogue; in some cases only the connected analogue
has been given a sense.

The Fitting subgroup is of particular use in the study of solvable groups
(§8 of Chapter I), and also via its extension to the generalized Fitting sub-
group F ∗ (§7 of Chapter I).

Lemma 5.15. Let G be a group of finite Morley rank, and H a normal
subgroup. Then F (H) = F (G) ∩H.

Proof. As F (H) is characteristic in H, it is normal in G. □
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5.4. Stabilizers of chains.

Lemma 5.16. Let G be a group of finite Morley rank, P be a nilpotent p-
group contained in G but not necessarily definable, and H a definable group
acting faithfully on P ; this action is assumed to extend definably to d(P ).
Suppose there is a series P = P0 > P1 > · · · > Pn = 1 of H-invariant
subgroups with Pi+1 ◁ Pi, so that H acts trivially on each quotient Pi/Pi+1.
Then H is a p-group.

Proof. Let h ∈ H and choose q a power of p to maximize CP (h
q),

using Lemma 3.13 of Chapter I. Replace h by hq: then CP (h) = CP (h
pn)

for all n. We claim h = 1. Supposing the contrary, take i maximal so that h
acts nontrivially on Pi, and take x ∈ Pi so that [h, x] ̸= 1. As [h, x] ∈ Pi+1,
h commutes with [h, x].N So [hp

n
, x] = [h, x]p

n
= 1 for n large, and hence

[h, x] = 1, a contradiction. □

5.5. The Frattini subgroups.

Definition 5.17. Let G be a group of finite Morley rank. The connected
Frattini subgroup of G, denoted Φ(G), is the intersection of all maximal
connected proper definable subgroups of G◦.

We do not claim that the “connected Frattini” subgroup is itself con-
nected. Still it is a straightforward analog of the ordinary Frattini subgroup
relativized to connected subgroups. One could also replace this group by its
connected component, and perhaps this is the better notion. But it behaves
quite well with the definition we are using.

Lemma 5.18. Let G be a group of finite Morley rank, and H ◁ G a
subgroup of Φ(G). Then Φ(G/H) = Φ(H)/H.

Proof. It is easy to see that the maximal connected subgroups of G
and of G/H correspond. □

Lemma 5.19. Let G be a connected group of finite Morley rank, and H
a definable subgroup such that HΦ(G) = G. Then H = G.

Proof. Note that [HΦ(G) : H◦Φ(G)] is finite, and hence H◦Φ(G) = G.
If H < G, then let M ≤ G be a maximal definable connected subgroup of
G containing H◦. Then by definition Φ(G) ≤M , and G = H◦Φ(G) ≤M , a
contradiction. □

Lemma 5.20. Let G be a unipotent p-group of finite Morley rank, and
Gp the set of p-th powers of elements of G. Then ⟨G′ ∪Gp⟩ ≤ Φ(G).

Proof. Let M be a maximal definable connected subgroup of G. By
nilpotence,M ◁ G, and by maximality G/M has no proper infinite definable
subgroups, hence is abelian. G′ ≤M . As G/M is a minimal infinite abelian
p-group of finite exponent, it has exponent p, that is Gp ⊆M . So ⟨G′∪Gp⟩ ≤
Φ(G). □
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One expects Φ(G) = ⟨G′∪Gp⟩ but this is not necessarily correct. In any
case one may pass to the quotient Ḡ = G/⟨G′∪Gp⟩, which is an elementary
abelian p-group. As it is not clear what the pattern of definable subgroups
will be, we cannot say anything more. In some cases one might prefer to
substitute the group ⟨G′ ∪ Gp⟩ for the Frattini: it is a definable subgroup
which gives the largest possible elementary abelian quotient.

We take note of the “ordinary” Frattini subgroup, which also has its
uses.

Definition 5.21. Let P be a p-group. Then the ordinary Frattini sub-
group of P , denoted ϕ(P ), is the subgroup generated by P ′ and {xp : x ∈ P}.

Lemma 5.22. Let P be a nilpotent p-group of finite Morley rank. Then
ϕ(P ) is definable, and is the intersection of the maximal subgroups of P .

Proof. Let P̄ = P/P ′. Then ϕ(P ) is the preimage in P of pP̄ , so is
definable.

Let ϕ0(P ) be the intersection of its maximal subgroups (which would

be taken to be P if there are none). Now P̂ = P/ϕ(P ) is an elementary
abelian p-group, and the intersection of the maximal abelian subgroups of
P̂ is trivial, thus ϕ0(P ) ≤ ϕ(P ).

Let Q be a maximal subgroup of P . By the normalizer condition in
nilpotent groups, Q is normal in P , and P/Q is a simple nilpotent group,
hence cyclic of prime order. Thus ϕ(P ) ≤ Q, and ϕ(P ) ≤ ϕ0(P ). □

5.6. p-Tori.

Definition 5.23. A p-torus is a divisible abelian p-group.

Lemma 5.24. Let G be a group of finite Morley rank. Then there is a
constant w such that for any prime p and any p-torus T we have [NG(T ) :
CG(T )] ≤ w.

Proof. Let us write InnT for NG(T )/CG(T ), thought of as the induced
group of G-inner automorphisms.

First, since T [pn] is finite for all n, NG
◦(T ) centralizes T . Hence Inn(T )

is finite.
Now we need to relate these finite sets to a family of uniformly definable

finite sets, to get the uniform bound.
For T a p-torus, let T̂ = Z(CG(T )). Let S be the maximal p-torus in

T̂ . Then NG(T̂ ) acts on S, and as CG(S) ≤ CG(T ) ≤ CG(T̂ ) ≤ CG(S),

the quotient Inn(T̂ ) = NG(T̂ )/CG(T̂ ) embeds in Inn(S) = NG(S)/CG(S),
which is finite as seen at the outset.

On the other hand as centralizers are uniformly definable (Corollary 2.9

of Chapter I) the groups T̂ and hence also Inn(T̂ ) are uniformly definable,
and hence of bounded order.

Finally, Inn(T ) embeds into Inn(T̂ ) naturally, and this yields a uniform
bound on the size of Inn(T ). □
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Corollary 5.25. Let G be a group of finite Morley rank, T a p-torus
contained in G, and H a connected subgroup of G which normalizes T . Then
H centralizes T .

5.7. Locally finite p-groups.

Lemma 5.26. Let H be a group of finite Morley rank, and P ≤ H an
infinite locally finite connected p-subgroup for some prime p. Then Z(P ) is
infinite.

Proof. We have Z(P ) = CP (P0) for some finite subgroup of P by
Lemma 2.8 of Chapter I. In particular Z(P0) ≤ Z(P ), so the center is at
least nontrivial. Suppose it is finite; then working modulo the center we
have Z2(P ) > Z(P ), contradicting Lemma 3.9 of Chapter I. □

Lemma 5.27. Let G be a group of finite Morley rank, and P a locally
finite p-subgroup of G. Then P is nilpotent by finite.

Proof. We may suppose that P is connected, in which case we need
to prove that P is nilpotent. By the previous lemma, if P is nontriv-
ial then Z(P ) is infinite, and we may work inductively, replacing G by
C(Z(P ))/Z(P ). □

Proposition 5.28. Let G be a group of finite Morley rank, and P a
p-subgroup. Then the following are equivalent.

(1) P is locally finite.
(2) P is nilpotent by finite.
(3) P ◦ is nilpotent.

5.8. Generic equations.

Definition 5.29. Let G be a group. A commutator term over G is a
term composed by iterating the commutator operation on variables xi, their
inverses x−1

i , and constants c ∈ G. A commutator term is proper if it
involves at least one variable.

Note that the inverse operation is applied exclusively to variables. This
is convenient, but not limiting, in view of the identity [a, b]−1 = [b, a].

Lemma 5.30. Let G be a group, and γ a commutator term over G in-
volving the variables x1, . . . , xn explicitly. Then there is an identity of the
form

γ(xy, x2, . . . , xn) = γ(x, x2, . . . , xn)γ(y, x2, . . . , xn)Γ

where Γ is a product of commutator terms over G involving all n+1 variables
x, y, x2, . . . , xn explicitly.

Proof. We note at the outset that it will suffice to expand the term

γ(xy, x2, . . . , xn)

as a product in which the terms γ(x, x2, . . . , xn) and γ(y, x2, . . . , xn) are
present, and all other terms are commutators involving all the variables
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x, y, x2, . . . , xn, as then the desired rearrangement simply involves adding
some additional commutators of the same general type.

If γ is a constant or a variable, then Γ is the empty product. If γ has
the form x−1 then Γ is a commutator. For the rest, we proceed inductively,
taking γ = [γ1, γ2]. Here the variable x1 may appear in one or both of the
terms γi, and we will consider the case in which it occurs in both, leaving
consideration of the other similar and simpler case to the reader. Writing
x̄ = (x, x2, . . . , xn), ȳ = (y, x2, . . . , xn), and z̄ = (xy, x2, . . . , xn), we suppose
inductively γi(z̄) = γi(x̄)γi(ȳ)Γi(z̄) with Γi a product of commutator terms,
each of which involves all variables x, y, x2, . . . , xn.

Now

γ(z̄) = [γ1(x̄)γ1(ȳ)Γ1, γ2(x̄)γ2(ȳ)Γ2]

We may expand the right side using a variant of Lemma 1.2 of Chapter I,
namely

[ab, g] = [a, g] · [[a, g], b] · [b, g]
A little thought shows that the result involves the two desired terms

[γ1(x̄), γ2(x̄)] = γ(x̄), [γ1(ȳ), γ2(ȳ)] = γ(ȳ),

a number of higher order commutators involving terms from Γ1 or Γ2, au-
tomatically of the desired form, and two “cross terms” [γ1(x̄), γ2(ȳ)] and
[γ1(ȳ), γ2(x̄)], which we notice also involve all the variables. □

Lemma 5.31 ([117]). Let G be a group of finite Morley rank, H a defin-
able normal nilpotent subgroup of G, and w a word which can be expressed
as a product of proper commutator terms, each defined over G. If w is
generically constant on H, then w = 1 generically on H.

Proof. The assumption on w is that there is at least one value c such
that as the variables x1, . . . , xn run over H, the set of values x̄ for which
w(x̄) = c has rank n rk(H), in other words forms a set of full rank in Hn

(Cartesian power). It then follows that there are n cosets of H◦ in H such
that w is generically constant on the Cartesian product of these cosets. We
do not insist that this take place on H◦ itself.

Let k be the minimum number of variables occurring in a factor γ of w,
and let the variables of w be x1, . . . , xn, where x1 is present in γ. Applying
the previous lemma we arrive at an identity of the form

w(xy, x2, . . . , xn) = w(x, x2, . . . , xn)w(y, x2, . . . , xn)W (x, y, x2, . . . , xn)

where W is a product of commutator terms, each involving at least k + 1
variables.

Now take elements g, h, g2, . . . , gn in H lying in the appropriate cosets of
H◦ which are generic and independent over the base set B consisting of the
parameters of w together with the element c ∈ G which gives a generic value
of w on H. In other words, each of the elements chosen should be generic
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in its coset over all the others, together with the base set B. We then have
w(gh, g2, . . . , gn) = w(g, g2, . . . , gn) = w(h, g2, . . . , gn) = c, and thus

W (g, h, g2, . . . , gn) = c−1

This produces a new generic identity for H in which the minimum number
of variables occurring in a factor is at least k + 1. Continuing inductively,
we arrive eventually at a generic equation for H of the form

ŵ(x̄) = c±1

in which ŵ is a product of commutator terms each of which involve at least
n+1 variables, with n the nilpotency class of H. But since H is normal in G
and nilpotent, the factors of ŵ vanish identically on H, and thus c = 1. □

Proposition 5.32. Let w = 1 be an equation holding generically on a
connected nilpotent group G of finite Morley rank. Then w = 1 identically
on G.

Proof. We wish to write w as far as possible as a product of proper
commutator terms. For this, we move the constant parameters at the cost of
some commutator terms; thus xcy = 1 may be written in the form cx[x, c]y =
1 or xγy = c−1, and the general form is

w = c

where w is now a product of proper commutator terms and c is a constant.
By the preceding lemma, the parameter c equals 1.

Now take a1, . . . , an ∈ G arbitrary, and take x1, . . . , xn in G generic and
independent over the ai. We have an equation

w(a1x1, . . . , anxn) = w(ā)w(x̄)W (x̄)

where W depends on both ā and x̄, but may be thought of as a product
of commutator terms in which the ai occur as parameters. This equation
reduces to

1 = w(ā)W (x̄)

and thus W is itself generically constant, with value w(ā)−1. So again by
the previous lemma w(ā) = 1. □

6. Sylow theory

We do not have a good Sylow theory for arbitrary primes, and certainly
not in “characteristic 0” (what would be wanted in that case is a theory
of unipotence). However things will work out well for the prime 2, and
this leads to a distinction between “characteristic two” and all other cases,
which will be subdivided into a classification into four “types” which is
fundamental for the present work.
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6.1. 2-Subgroups. The theory of Sylow subgroups develops along lines
which are a mixture of the finite and algebraic cases. The theory only works
well for the prime 2, in general—in the case of solvable groups it works well
for all primes, and is subsumed under the Hall theory, see §8 of Chapter I.
It is not quite true that the Sylow 2-subgroups are nilpotent, but nearly so:
their connected components are nilpotent, and while they are not necessarily
definable, they satisfy much the same structure theory as definable nilpotent
groups—by inheritance from the definable closure,

The proof of conjugacy of Sylow 2-subgroups is arduous. Once it is in
hand, it has the same sort of immediate applications as are familiar in the
finite case.

The theory of Sylow subgroups also allows us to recognize the “character-
istic” of our group, or more properly to distinguish the case of characteristic
two from all other characteristics, directly from the structure of the con-
nected component of a Sylow subgroup. This is a very convenient organizing
principle, and indeed the bulk of the present work will be aimed at proving
the algebraicity of simple groups in two of the four resulting “types”—in
addition to the two natural types, namely “characteristic two” or “even”
type, and “characteristic not two” or “odd” type, we must also consider two
more formal possibilities: “both” (“mixed”) and “neither” (“degenerate”).

Definition 6.1. Let G be an arbitrary group, p a prime.

(1) A Sylow p-subgroup is a maximal p-subgroup of G.
(2) A Sylow◦ p-subgroup is the connected component of a Sylow p-

subgroup (not assumed definable).

Proposition 6.2. [51, Theorem 6.21] Let G be a group of finite Morley
rank, and P a 2-subgroup. Then P is nilpotent by finite, and is, in particular,
locally finite.

Proof. We proceed by induction on the rank and degree of G. In
particular we may suppose that G = d(P ), and that G is connected. Then
Z(G) ∩ P = Z(P ), and we may factor out Z(G), concluding by induction
unless Z(G) is finite.

By Lemma 3.9 of Chapter I we then have G/Z(G) centerless, and since
we may replace G by G/Z(G) we may now assume:

Z(G) = 1

In particular for x ∈ P×, we have CG(x) < G, and hence CP (x) is nilpotent
by finite.

The family of subgroups of the form CP (a) or CP (a, b) are uniformly
relatively definable, so we can apply the corresponding uniform chain condi-
tion of Lemma 3.13 of Chapter I. Thus the set {CP (a) : a ∈ P} has maximal
elements, and among all intersections of the form C(a) ∩ C(b) with C(a),
C(b) maximal, a, b ∈ P , and C(a) ̸= C(b), there are maximal ones. So let
D = A ∩ B be such a maximal intersection with A = C(a), B = C(b). As
seen above, A and B are nilpotent by finite.
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Let H = NG(D). Then H ∩A,H ∩B > D, by the normalizer condition,
Lemma 1.22 of Chapter I. Hence in H̄ = H/D there are elements ā ∈ Ā,
b̄ ∈ B̄ of order 2. Then ⟨ā, b̄⟩ is a dihedral group contained in P̄ , hence
in particular a finite 2-group, and ⟨a, b⟩ is therefore a nilpotent by finite 2-
group. Hence Z(⟨a, b⟩) ̸= 1 (Lemma 1.22 of Chapter I). Let c ∈ Z(⟨a, b⟩)×,
and let C ≤ P be a maximal centralizer of the form CP (c

′) containing CP (c).
Then A∩C,B ∩C > D, so by maximality A = C = B, a contradiction. □

6.2. Structure and conjugacy of 2-Sylow subgroups.

Proposition 6.3. Let G be a group of finite Morley rank, and S a p-
Sylow◦ subgroup. Suppose S is nilpotent. Then S has the form

U ∗ T

with U unipotent and T a p-torus.

Proof. The group d(S) is definable, nilpotent, and connected. Let S1
be a Sylow p-subgroup of d(S) containing S. Then S = S1

◦. As d(S) is
nilpotent, S1 = d(S)p (Lemma 1.17 of Chapter I). In particular S ◁ d(S).

Thus d(S) = Û ∗ T̂ with Û unipotent and T̂ radicable (Proposition 5.8 of

Chapter I). Now S ≤ ST̂ = T̂ ∗ (S∩ Û) ≤ T̂ ∗ Ûp, and the latter is definable,

so d(S) = Ûp ∗ T̂ , hence d(S) = U ∗ T̂ with U = Ûp
◦. Thus S = U ∗ T with

T = (S ∩ T̂ )◦.
Here U is unipotent, and T is a connected p-subgroup of a radicable

nilpotent group, hence contains only finitely much torsion of each order pn,
and is in particular abelian. It follows then from the connectivity that T is
itself radicable. □

Proposition 6.4. Let G be a group of finite Morley rank, and S a 2-
Sylow◦ subgroup. Then S has the form

U ∗ T

with U unipotent and T a 2-torus.

Proof. By Proposition 6.2 of Chapter I and Lemma 3.16 of Chapter I,
S is nilpotent, and the preceding result applies. □

This leads to a fundamental division of the class of groups of finite Morley
rank into four “types”, as follows.

Definition 6.5. Let G be a group of finite Morley rank, and S a Sylow◦

2-subgroup. Then G is:

(1) of degenerate type if S◦ = 1 (Sylow 2-subgroups are finite);
(2) of even type if S◦ is nontrivial and 2-unipotent;
(3) of odd type if S◦ is a nontrivial 2-torus;
(4) of mixed type in the remaining case: S = U ∗ T with U unipotent,

T a 2-torus, and both nontrivial.
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In Chevalley groups, only even and odd types occur, and the distinction
corresponds to the characteristic of the base field being 2, or not; in this
case lumping characteristic 0 under the “odd” case is an abuse of language.
Mixed type groups can most easily be constructed as products of the two
sorts. Nonsolvable connected groups of finite Morley rank of degenerate
type are not known, and there is no consensus as to whether they should
exist.

Lemma 6.6. Let G be a group of finite Morley rank whose Sylow 2-
subgroups are finite. Then the Sylow 2-subgroups of G are conjugate.

Proof. Suppose P,Q are nonconjugate Sylow 2-subgroups of G, chosen
so as to the maximize |P ∩ Q|. Let D = P ∩ Q, and H = NG(D). Then
H∩P,H∩Q > D. Let H̄ = H/D and take involutions ī, j̄ in P ∩H, Q ∩H.

If ī, j̄ are conjugate in H̄, then there is an element x ∈ H such that
j ∈ P x ∩ Q. Hence |P x ∩ Q| > |D| and by maximality P x and Q are
conjugate, hence P and Q are conjugate.

Suppose therefore that ī, j̄ are nonconjugate in H̄. Then they commute
with an involution k̄. Let R1 be a Sylow 2-subgroup containing ⟨D, i, k⟩,
and let R2 be a Sylow 2-subgroup containing ⟨D, j, k⟩.

Then P ∩ R1 > D, Q ∩ R2 > D, and R1 ∩ R2 > D, so by maximality
P and R1, Q and R2, and R1 and R2 are conjugate, hence P and Q are
conjugate as well. □

We now work toward the conjugacy of Sylow 2-groups in general, along
lines similar to the preceding.

Definition 6.7. Let G be a group, p a prime. Then Op(G) denotes the
maximal normal p-subgroup of G.

The group Op(G) is typically not definable. We are interested in the
condition Op(G) = 1, meaning that there are no normal p-subgroups of G.

Lemma 6.8. Let G be a group of finite Morley rank, and suppose that
G contains two nonconjugate Sylow 2-subgroups. Then there is a definable
quotient Ḡ of G, also containing two nonconjugate Sylow 2-subgroups, with
O2(Ḡ) = 1.

Proof. Let O2
◦(G) = U ∗ T with U 2-unipotent and T divisible. We

may factor out the definable subgroup U , and suppose therefore thatO2
◦(G) =

T . Then every Sylow 2-subgroup of G contains, and therefore centralizes,
T . Thus we may replace G by CG(T ), and assume now that T ≤ Z(G), so
d(T ) ≤ Z(G). We factor out d(T ) and assume that our result applies in the
quotient, so that any two Sylow subgroups P and Q may be assumed, after
conjugation, to satisfy Pd(T ) = Qd(T ). But then P ◦d(T ) = Q◦d(T ) is a
nilpotent group, so P ◦ = Q◦ and after factoring out this group P and Q
become finite, a case already treated. □

Lemma 6.9. Let G be group of finite Morley rank. Suppose that G con-
tains no nontrivial 2-torus. Then all Sylow 2-subgroups of G are conjugate.
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Proof. We proceed by induction on the rank and degree of G. By
Lemma 6.8 of Chapter I we may suppose that O2(G) = 1.

We show first that all maximal 2-unipotent subgroups of G are conju-
gate. Suppose toward a contradiction that U, V are maximal 2-unipotent
subgroups of G, not conjugate, and chosen to maximize rk(U ∩ V ). Let
H = NG(D). As O2(G) = 1 we have H < G. By the normalizer condition
of Proposition 5.3 of Chapter I, we have NU

◦(D), NV
◦(D) > D. Let U1, V1

be maximal 2-unipotent subgroups of H containing NU
◦(D) and NV

◦(D)
respectively. By induction, U1 and V1 are conjugate in H. Let U2, V2 be
maximal 2-unipotent subgroups of G containing U1 and V1 respectively.

Then rk(U ∩ U2), rk(V ∩ V2) > rk(D), so U is conjugate to U2 and V
to V2. As U1 is conjugate to V1 in H, there is a conjugate Ux

2 of U2 with
rk(Ux

2 ∩ V2) > rk(D), and hence Ux
2 , V2 are also conjugate. So U and V are

conjugate, a contradiction. □

Lemma 6.10. Let G be a group of finite Morley rank with O2(G) = 1.
Suppose P,Q are two 2-Sylow subgroups of G which are not conjugate. Then
there are nonconjugate 2-Sylow subgroups P ∗, Q∗ of G such that P ∗ ∩Q∗ >
P ∩Q, and P, P ∗ are conjugate.

Proof. We proceed by induction on the rank and degree of G.
We deal first with the case P ∩ Q = 1. Take i ∈ P , j ∈ Q involutions.

If they are conjugate, replace Q by a conjugate Q∗ containing i and let
P ∗ = P . If they are not conjugate, then by Lemma 2.20 of Chapter I, there
is an involution k commuting with both. Let Ri be a Sylow 2-subgroup
containing i and k, and Rj a Sylow 2-subgroup containing j and k. If P is
not conjugate to Ri, take P

∗ = P and Q∗ = Ri. If P is conjugate to Ri, and
not conjugate to Rj , take P

∗ = Ri and Q
∗ = Rj . Otherwise, take P ∗ = Rj

and Q∗ = Q.
Now suppose D = P ∩ Q > 1, H = NG(D), H̄ = H/D. Note that

H < G as O2(G) = 1. Let P1 = P ∩ H, Q1 = Q ∩ H. By the normalizer
condition (Fact 1.22 of Chapter I), P1, Q1 > D.

Let i ∈ P ∩H, j ∈ Q ∩H represent involutions ī, j̄ in H̄. If ī and j̄ are
conjugate in H, say īx = j̄, then P x ∩Q > D and we take P ∗ = P , Q∗ = Q.
Assume therefore that ī and j̄ are nonconjugate.

By Lemma 2.20 of Chapter I there is an involution k̄ ∈ H̄ commuting
with both ī and j̄, represented in H by a 2-element k. Extend ⟨i, k,D⟩ and
⟨j, k,D⟩ to 2-Sylow subgroups Ri, Rj of G. We have P ∩ Ri, Ri ∩ Rj , and
Rj ∩Q all larger than D.

If P and Ri are nonconjugate then take P ∗ = P , Q∗ = Ri; if P and Ri

are conjugate but Ri and Rj are not, then take P ∗ = Ri, Q
∗ = Rj , and

otherwise take P ∗ = Rj , Q
∗ = Q. □

Proposition 6.11. Let G be a group of finite Morley rank. Then any
two Sylow 2-subgroups of G are conjugate.
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Proof. We proceed by induction on the rank and degree of G. By
Lemma 6.8 of Chapter I we may suppose that O2(G) = 1. By Lemma 6.9
of Chapter I we may suppose that G contains a nontrivial 2-torus.

Let P be a 2-Sylow subgroup of G containing a nontrivial 2-torus. We
write P ◦ = UP ∗TP , the usual decomposition with UP 2-unipotent and TP a
2-torus. Let w be the bound afforded by Lemma 5.24 of Chapter I, so that
[NG(TP ) : CG(TP )] ≤ w for any such choice of P .

Let Q be a Sylow 2-subgroup assumed nonconjugate to P . By repeated
application of Lemma 6.10 of Chapter I, assume that |P ∩ Q| > w2 (the
intersection may well be infinite). Then |P ∩Q ∩ CG(TP )| > w.

If TQ ̸= 1 then P ∩ Q ∩ CG(TP ) ∩ CG(TQ) ̸= 1, so we take i ∈ P ∩ Q
centralizing both tori.

Then Hi = CG(i) < G since O2(G) = 1. Applying the conjugacy of
Sylow 2-subgroups in Hi, we may suppose that TP and TQ lie in a 2-group,
hence commute. Now work in HP = CG(TP ), which is definable by Lemma
2.9 of Chapter I. Then P ◦ ≤ HP , so P

◦ is a Sylow◦ 2-subgroup of HP , and
by the conjugacy of Sylow 2-subgroups in HP , TQ can be conjugated into
TP in HP . So we may take TP ≥ TQ, and arguing symmetrically we may
take TP = TQ. Working in NG(TP ) (a finite extension of CG(TP )) we see
that P and Q are conjugate, a contradiction.

Now suppose alternatively that Q◦ is unipotent. Take i an involution in
P∩Q∩CG(TP ). LetHi = CG(i). Note that Z(Q) ≤ Hi. Applying the conju-
gacy of Sylow 2-subgroups in Hi, we may suppose that Z(Q) commutes with
T . Then working in NG(Z(Q)) we see that Q can be conjugated to commute
with T , which violates the assumption that Q is a Sylow 2-subgroup. □

This gives us the usual Frattini argument.

Lemma 6.12 (Frattini). Let G be a group of finite Morley rank, H a
definable normal subgroup, and S a Sylow 2-subgroup of H. Then G =
H ·NG(S).

Proof. For g ∈ G we have Sg = Sh with h ∈ H, hence gh−1 ∈ N(S).
□

6.3. Formal properties.

Lemma 6.13. Let G be a group of finite Morley rank. Then

(1) The Sylow◦ 2-subgroups of G are conjugate.
(2) The maximal unipotent 2-subgroups of G are conjugate.
(3) The maximal 2-tori of G are conjugate.

Proof. Proposition 6.11 of Chapter I. □

Lemma 6.14. Let G be a group of finite Morley rank, and P a Sylow
2-subgroup. Then NG(P

◦) is definable.

Proof. Let P ◦ = U ∗ T with U 2-unipotent and T a 2-torus. Then
NG(P

◦) = NG(U) ∩ NG(T ) and both terms are definable: NG(U) because
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U is, and NG(T ) because it is a finite extension of CG(T ) (Lemmas 5.24 of
Chapter I and 2.9 of Chapter I). □

Lemma 6.15. Let G be a group of finite Morley rank, P a Sylow 2-
subgroup, H a normal subgroup. Then:

(1) P ∩H is a Sylow 2-subgroup of H.
(2) If H is definable and Ḡ = G/H, then P̄ is a Sylow 2-subgroup of

Ḡ.
(3) Every Sylow 2-subgroup of Ḡ is the image of some Sylow 2-subgroup

of G.

Proof.
Ad 1. Let Q be a Sylow 2-subgroup of G which contains a Sylow 2-

subgroup of H. As P and Q are conjugate in G, and H is normal, the same
applies to P .

Ad 2. We proceed by induction on the rank and degree of G.
Let Q̄ be a Sylow 2-subgroup of Ḡ containing P , and suppose Q̄ > P̄ . Let

Q̄1 = NQ̄(P̄ ), with Q1 its complete preimage in G. Then Q1 ≤ NG(PH) =

PH ·NG(P ) = H ·NG(P ) ≤ H ·NG(P
◦). So NG(P

◦) covers Q̄1, and as this
group is definable we may replace G by NG(P

◦) and assume P ◦ ◁ G.
If P ◦ = 1 then P is finite and Q1 ≤ HNG(P ) with NG(P ) definable, so

we may take P normal in G and factor it out as well; this reduces to the
case P = 1, in which case Lemma 2.18 of Chapter I applies.

Assume therefore that P ◦ ̸= 1 and let K = d(P ◦). Let G̃ = G/K. Then

by induction, the image P̃ of P in G̃ covers Q̃1, that is Q1 ≤ PK. As Q1

contains P , this gives Q1 = P (Q1 ∩K). Now the 2-torsion subgroup K2 of
K is connected (Lemma 5.12 of Chapter I) and is normalized by P , hence
coincides with P ◦. So Q1 ∩K ≤ P and Q1 ≤ P .

Ad 3. By (2) and the conjugacy of Sylow 2-subgroups. □

One also uses the connected version of this.

Lemma 6.16. Let G be a group of finite Morley rank, P a Sylow◦ 2-
subgroup, H a definable normal subgroup. Then the image P̄ of P in Ḡ =
G/H is a Sylow◦ 2-subgroup, and all Sylow◦ 2-subgroups of Ḡ are of this
form.

Proof. Extend P to a Sylow 2-subgroup S of G. Then S̄ is a Sylow
2-subgroup of Ḡ and (S̄)◦ = P̄ .

The final point follows again by conjugacy. □

6.4. Control of fusion.

Definition 6.17. Let G be a group, H and K subgroups. We say that
K controls fusion in H, if for any subsets X,Y of H with X,Y conjugate
in G, there is k ∈ K with Xk = Y .

Lemma 6.18. Let G be a group of finite Morley rank, and P a Sylow◦

2-subgroup with maximal 2-torus T . Then NG(T ) controls fusion in P .
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Proof. All we use here is the fact that T is central in P .
Take X,Y ⊆ P , g ∈ G with Xg = Y . Then Y ⊆ P ∩ P g ≤ CG(T, T

g).
Hence T and T g are maximal 2-tori in CG(Y ), which is definable by Corollary
2.9 of Chapter I, and hence T g, T are conjugate by some c ∈ CG(Y ): T gc =
T , gc ∈ NG(T ), and X

gc = Y c = Y . □

Lemma 6.19. Let G be a group of finite Morley rank. Suppose that G
contains a nontrivial unipotent subgroup and a nontrivial 2-torus. Then G
has at least two distinct conjugacy classes of involution.

Proof. Let P be a Sylow◦ 2-subgroup of G, P = U ∗ T with U 2-
unipotent and T a 2-torus. By our hypotheses, U, T ̸= 1. As T contains
only finitely many involutions, we may take i ∈ U an involution with i /∈ T .
Then i is not conjugate to any involution in T under the action of NG(T ),
and hence by control of fusion is not conjugate to any such involution under
the action of G. □

7. Generalized Fitting subgroup

The fundamental properties of the Fitting subgroup in solvable groups
are the following: it is normal; it has a simple structure (nilpotent); and it
contains its centralizer. It was realized somewhat belatedly, as the classi-
fication of the finite simple groups got properly underway, that there is a
generalized Fitting subgroup that plays the same role in general finite groups:
it is normal and contains its centralizer, and it also has a very simple struc-
ture, namely a central product of a nilpotent group with normal quasisimple
subgroups. The same theory goes through for groups of finite Morley rank,
and when working with connected groups one may work with connected
subgroups more or less throughout (though the centers of the quasisimple
factors tend to be finite).

Definition 7.1. Let G be a group of finite Morley rank. Then F ∗(G) =
⟨F (G), E(G)⟩

See Proposition 5.13 of Chapter I, Definition 1.7 of Chapter I for F (G)
and E(G).

Lemma 7.2. Let G be a group of finite Morley rank. Then:

(1) F ∗(G) = F (G) ∗ E(G).
(2) E(G) is the central product of finitely many definable quasisimple

subgroups.
(3) F ∗(G) is definable.
(4) Any subnormal quasisimple subgroup of G is normalized by G◦.
(5) E◦(G) = E(G◦) is the group generated by the subnormal quasisim-

ple subgroups H of G with H/Z(H) infinite.

Proof.
Ad 1. Lemma 1.10 of Chapter I.
Ad 2. Lemmas 2.10 of Chapter I, 1.9 of Chapter I, 3.33 of Chapter I.
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Ad 3. By the first two points.
Ad 4. G acts on the set of its subnormal quasisimple subgroups by

conjugation, and this set is finite, so Lemma 3.3 of Chapter I applies.
Ad 5. If H/Z(H) is finite, then by Lemma 1.13 of Chapter I H ′ is finite.

But then H = H ′ is finite. As G◦ acts on H, G◦ centralizes H. Thus
E(G◦) is the product of the subnormal quasisimple factors H with H/Z(H)
infinite. Then E(G◦) is connected, and of finite index in E(G) and hence
E(G◦) = E(G)◦ (denoted E◦(G)). □

Proposition 7.3. Let G be a group of finite Morley rank. Then:

(1) CG(F
∗(G)) = Z(F (G)).

(2) CG
◦(F ∗◦(G)) ≤ F (G).

Proof.
Ad 1. Let H = CG(F

∗(G)). Then E(H) ≤ E(G) ≤ F ∗(G) so by
definition of H, E(H) ≤ Z(H), forcing E(H) = 1. Furthermore F (H) =
F (G) ∩H = Z(F (G)). In particular F (H) = Z(H).

It suffices to show that H = Z(H). Supposing the contrary, let H̄ =
H/Z(H), and let L̄ be minimal normal definable in H̄, with full preimage
L in H. Then L1 = L∞ is definable (Lemma 3.34 of Chapter I) and covers
L̄ as well, hence is nontrivial.

Now L′
1 = L1, L1 ◁ H, and L1/Z(L1) is semisimple. Hence L1 is qua-

sisemisimple and L1 ≤ E(H) = 1, a contradiction.
Ad 2. Let H = CG

◦(F ∗◦(G)). Then E◦(H) ≤ E◦(G) ≤ F ∗◦(G). So by
definition of H, E◦(H) ≤ Z(H), forcing E◦(H) = 1. Furthermore F ◦(H) ≤
F ◦(G) ∩H ≤ Z(F ◦(H)). In particular F ◦(H) ≤ Z(H). It suffices to show
that H = F ◦(H).

Supposing the contrary, take a minimal normal connected subgroup L
of H properly containing F (H). As L is connected, [L,F (H)] ≤ F ◦(H). If
a ∈ F (H) then commutation with a produces a homomorphism γa : L →
F ◦(H). Varying a over F (H)modF ◦(H), we get a homomorphism γ from
L to a product of finitely many copies of F ◦(H), with kernel CL(F (H)). Let
L0 = CL(F (H))F (H). By minimality of L, either L = L0 or L0/F (H) is
finite. In the second case, since L/L0 is nilpotent, and [L,L0] ≤ F ◦(H) ≤
Z(H), it follows that L is nilpotent, hence L ≤ F (H), a contradiction.

So L = L0 = CL(F (H))F (H). As L is connected, L = CL(F (H))Z(H) =
CL(F (H)). Now L∞ is quasisemisimple, so L∞ ≤ E◦(H) = 1, a contradic-
tion. □

8. Solvable groups

We deal with the structure of solvable groups of finite Morley rank,
with Schur-Zassenhaus splitting and conjugation theorems, the Hall theory,
existence of the solvable radical, and some more specialized topics.

8.1. Structure. We begin with minimal modules in the sense of Defi-
nition 4.9 of Chapter I.
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Lemma 8.1. Let G be a connected group of finite Morley rank, and V
a nontrivial G-minimal module (Definition 4.9 of Chapter I). Then V̄ =
V/CV (G) is definably irreducible, and CV̄ (G) = (0).

Proof. By assumption CV (G) is finite. Let V̄ = V/CV (G). If W̄ is a
proper definable submodule of V̄ with preimageW in V , then by assumption
W is finite, and by connectedness W ≤ CV (G), so W̄ = 0. Thus V̄ is
irreducible.

If CV̄ (G) > 0 then CV̄ (G) = V̄ and [V,G] ≤ CV (G). So [V,G] is
connected and finite, hence trivial, a contradiction. □

Lemma 8.2. Let G be a connected solvable group and V a G-minimal
module. Then G′ acts trivially on V .

Proof. Proceed by induction on the solvability class of G. We may
take G to act faithfully.

Let U ≤ V be G′-minimal. Then V1 = ⟨UG⟩ is G-invariant, hence
V1 = V . By induction, G′′ acts trivially on U and its conjugates, hence on
V1 = V . In other words, G′′ = 1 and G′ is abelian.

We apply linearization, Proposition 4.11 of Chapter I. Then V becomes a
vector space over an algebraically closed field K, with G′ a group of scalars
and G linear. But the elements of G′ have determinant 1 and hence the
scalars involved are d-th roots of unity with d = dimV . Thus G′ is finite,
but also connected; hence G′ = 1, as claimed. □

Lemma 8.3. Let G be a connected solvable group of finite Morley rank.
Then G/F ◦(G) is divisible abelian.

Proof. Form a G-invariant series S : G = G0 > G1 > · · · > Gn = 1
with Ai = Gi/Gi+1 abelian and G-minimal, for example by refining the

series (G(i)). Let hS : G→
∏

Aut(Ai) be the map induced by the action of
G on each factor.

By the foregoing, the action of G on each Ai is abelian, and the quotient
Ai/CAi(G) is irreducible, so G acts as a subgroup of the multiplicative group
of a field. In particular G/ kerhS is a connected subgroup of a divisible
abelian group, hence is divisible abelian.

On the other hand kerhS stabilizes the chain S and hence has a nilpotent
action on G, and in particular on itself; so kerhS is nilpotent and normal in
G. Thus kerhS ≤ F (G).

Thus G/F (G) is divisible abelian. By Lemma 3.8 of Chapter I, G/F ◦(G)
is also divisible abelian. □

Corollary 8.4. Let G be a solvable group of finite Morley rank, and U
a unipotent subgroup (cf. Definition 5.4 of Chapter I). Then U ≤ F ◦(G).

Proof. We may take G to be connected. Then U/F ◦(G) is a unipotent
subgroup of a divisible abelian group, hence finite. □

Proposition 8.5. Let Q and E be subgroups of a group of finite Morley
rank such that Q is normal, solvable, definable and contains no π-unipotent
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subgroup, and E is a definable connected π-group of bounded exponent. Then
[Q,E]=1.

Proof. Replacing E by E/CE(Q), we may suppose that the action of
E on Q is faithful. Suppose that E is nontrivial. Then we may replace E
by a connected abelian subgroup. So assume that E is abelian, and hence
Q ⋊ E is solvable. As E has bounded exponent, E ≤ F ◦(Q ⋊ E). On the
other hand F ◦(Q⋊E) = U ∗T with U connected of bounded exponent, and
T radicable. So U = E · (U ∩Q)◦ and (U ∩Q)◦ = 1 by hypothesis. Hence
E = U ◁ (Q⋊ E) and [Q,E] ≤ Q ∩ E = 1. □

8.2. Hall subgroups.

Definition 8.6. Let G be a group, π a set of primes. A Hall subgroup
is a maximal π-group contained in G; in particular it is a torsion subgroup,
and typically is undefinable.

Proposition 8.7. Let G be solvable of finite Morley rank and let π be
a set of primes. Then any two Hall π-subgroups of G are conjugate.

Proof. We prove the result for the wider class of solvable groups having
a normal series as given in Lemma 3.36 of Chapter I:

G = G0 > G1 > · · · > Gn = 1

with Gi normal in G, such that each quotient Gi/Gi+1 is abelian, and is
either a π-group, or a π-divisible π⊥-group which satisfies the DCC for G-
centralizers.

We proceed by induction on the length n of such a series. We may
suppose the result holds for Ḡ = G/Gn−1. In particular if Gn−1 is a π-
group the result follows at once for G.

Assume therefore thatGn−1 is an abelian normal π-divisible π⊥-subgroup
of G with the d.c.c. on centralizers in G. Let H1, H2 be maximal π-
subgroups of G. Let K̄ be a Hall π-subgroup of Ḡ = G/G1, and K its preim-
age in G. By induction on n, after conjugation we may assume that H1 and
H2 are subgroups of K. By Proposition 1.28 of Chapter I, K splits as G1⋊L
for some L, and after further conjugation in K we may assume that H1 and
H2 are subgroups of L. Since L is a π-subgroup, we get H1 = H2 = L. □

Corollary 8.8. Let G be a solvable group of finite Morley rank. Then
any two maximal locally finite subgroups of G are conjugate.

Lemma 8.9. Let G be a solvable group of finite Morley rank. Then:

(1) G has a Sylow basis.
(2) Any two such are conjugate.

Proof. Let U be a maximal locally finite subgroup of G. By Lemma
1.35 of Chapter I, U belongs to U. By Lemma 1.37 of Chapter I, U contains
a Sylow basis for U , and any two such are conjugate in U . By Corollary 8.8
of Chapter I, this Sylow basis is a Sylow basis for G, and any two Sylow
bases for G are conjugate to ones in U , hence to each other. □
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Lemma 8.10. Let G be a solvable group of finite Morley rank, H a normal
subgroup, π a set of primes, and U a Hall π-subgroup. Then U ∩H is a Hall
π-subgroup of H.

Proof. Let V be a Hall π-subgroup of G containing a Hall π-subgroup
of H, and conjugate U to V . □

Lemma 8.11. Let G be a solvable group of finite Morley rank, π a set of
primes, U a Hall π-subgroup, H a definable normal subgroup, and Ḡ = G/H.
Then Ū is a Hall π-subgroup of Ḡ. Furthermore, all Hall π-subgroups of Ḡ
are of this form.

Proof. We prove this more generally with G arbitrary, under the as-
sumption thatH has a characteristic series (Hi) as in Lemma 3.36 of Chapter
I: each quotient Hi/Hi+1 is abelian, and is either a π-group, or a π-divisible
π⊥-group which satisfies the DCC for G-centralizers.

By induction on the length of this series, we suppose that a Hall π-
subgroup of G/H1 covers a Hall π-subgroup of G/H. This then reduces the
problem to the case H = H1, and if H is a π-group there is no problem.
So suppose that H is an abelian π-divisible π⊥-group with the DCC for G-
centralizers. Let V be the pullback to G of a Hall π-subgroup V̄ of H̄. Then
by Proposition 1.28 of Chapter I, V splits over H1, and the complement V0
can be chosen to contain U . As V0 is also a π-group, we have U = V0 covers
V̄ .

The last point then follows by conjugacy. □

Proposition 8.12. Let G be a connected solvable group of finite Morley
rank, π a set of primes, and U a Hall π-subgroup. Then U is connected.

Proof. We proceed by induction on the rank of G. The group G con-
tains a nontrivial definable connected abelian normal subgroup A, for ex-
ample the last term of the commutator series G(i). Fix one such group A.
Using Lemma 2.13 of Chapter I, it is easy to see that the π-torsion subgroup
Aπ is connected. Furthermore, as Aπ ◁ G, we have Aπ ≤ U .

Suppose that H is a definable subgroup of G such that U ∩H has finite
index in U . Then H contains Aπ. Let A0 = d(Aπ). If A0 = 1 then U
is definably isomorphic with its image in G/A, and we may conclude by
induction. So suppose A0 > 1.

Then we apply induction to G/A0 and conclude that UA0/A0 is con-
nected, hence U ≤ HA0. But A0 ≤ H, so U ≤ H, as required. □

8.3. Splitting.

Proposition 8.13. Let G be a group of finite Morley rank and H ◁ G
definable and nilpotent, with G/H abelian. Suppose that for some g ∈ G we
have CH(g) = 1. Then

(1) G = H ⋊ CG(g);
(2) Any two complements of H in G are conjugate.
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Proof.
Ad 1. Let Ḡ = G/Z(H), H̄0 = CH̄(ḡ), H0 the preimage in G. Then com-

mutation with g defines a homomorphism γg : H0 → Z(H). By assumption
this is injective and as H0 contains Z(H) we find that H0 = Z(H). Hence
in Ḡ we have CH̄(ḡ) = 1.

Proceeding by induction on the nilpotency class of H, we may suppose
that Ḡ = H̄ ⋊ CḠ(ḡ) and hence G = H · CG(gmodZ(H)).

Let G1 = CG(gmodZ(H)). Then by our first remark, G1 ∩H = Z(H).
It suffices therefore to show that G1 splits as Z(H) ⋊ CG1(g), or in other
words, we may now take H to be abelian. Then commutation with g defines
a homomorphism λg : G→ H which is injective and hence surjective on H.
So for x ∈ G we have [g, x] = [g, h] with h ∈ H and hence x ∈ hCG(g) ⊆
H ⋊ CG(g).

Ad 2. Again by induction on the nilpotency class, we may reduce to the
case in which H is abelian.

Let T be a complement to H in G. Let g = ht, h ∈ H and t ∈ T .
Then CH(t) = CH(g) = 1, so T = CG(t). It suffices to show that g and t
are conjugate. The equation g = tx may be rewritten as h = [x, t−1]. So
consider the commutation map γ : H → H given by γ(x) = [x, t−1]. This is
injective, hence surjective, on H, and hence the equation can be solved. □

Proposition 8.14. Let G be a connected group of finite Morley rank
which is solvable of class 2 and has finite center, with G′ G-minimal. Then

(1) G splits as G′ ⋊ T for some definable divisible abelian connected
complement T containing Z(G).

(2) Any two complements to G′ in G are conjugate.

Proof. We show that Z(G) ∩G′ = 1.
If G′ is central in G then G is nilpotent and has infinite center, a con-

tradiction. Take g ∈ G \CG(G
′). Consider the homomorphism γg : G′ → G′

induced by commutation with g. Its kernel is G-invariant and proper, hence
finite.

Let K = Z(G)∩G′. Note the G-equivariance of γg: for x ∈ G′, γg(x)
y =

[gy, xy] = [g, xy] = γg(x
y). As K is normal in G, its inverse image under γg

is also normal in G, hence central; hence K is trivial.
Now as observed, CG′(g) is finite and G-invariant, hence contained in

Z(G) ∩ G′ = 1. Thus the hypotheses of Proposition 8.13 of Chapter I are
satisfied. □

Lemma 8.15. Let G be a connected solvable nonnilpotent group of finite
Morley rank. Then G has a definable quotient Ḡ with trivial center such
that Ḡ′ is abelian and G-irreducible.

Proof. Let H be maximal normal connected so that G/H is nonnilpo-
tent. Replace G by G/H: then every quotient of G by a nontrivial definable
connected normal subgroup is nilpotent. We may factor out the (finite)
center of G and suppose that G is centerless (Lemma 3.9 of Chapter I).
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If G′′ ̸= 1 then G/G′′ is nilpotent and hence G is nilpotent by Lemma
1.19 of Chapter I, a contradiction. So G′′ = 1 and G′ is abelian.

The chain Gk eventually stabilizes at a nontrivial group, since G is non-
nilpotent. Then Gk is G-irreducible, since a proper connected G-invariant
definable subgroup would produce a nonnilpotent quotient, and a finite G-
invariant subgroup would belong to Z(G).

It suffices to show that G′ = Gk. Supposing the contrary, let Ḡ = G/Gk

and let Ā ≤ Ḡ′ be Ḡ-minimal, with preimage A > Gk. Note that Ḡ is
nilpotent, so Ā ≤ Z(Ḡ). For g ∈ G, as G′ is abelian, CA(g) is normal in
G. Hence [G,CA(g)] ◁ G, while [G,CA(g)] ≤ CGk(g). Taking g outside
CG(G

k), we find that [G,CA(g)] is a proper G-invariant subgroup of Gk,
hence trivial. Hence CA(g) ≤ Z(G) = 1, and commutation with g defines
an injection γg : A→ Gk, a contradiction, since A > Gk. □

Definition 8.16. Let G be a group and H a subgroup. Then H is
abnormal in G if g ∈ ⟨H,Hg⟩ for all g ∈ G.

Lemma 8.17. Let G be a group, H a normal subgroup, and U a subgroup
of G containing H. Then U is abnormal if and only if in Ḡ = G/H, the
image Ū is abnormal.

Proof. Immediate. □

Proposition 8.18. Let G be a solvable connected and nonnilpotent group
of finite Morley rank. Then G has a proper abnormal subgroup.

Proof. By Lemma 8.15 of Chapter I, G has a definable quotient Ḡ of
class 2 with Ḡ′ G-irreducible and nontrivial. By the preceding lemma, it
suffices to find an abnormal subgroup in Ḡ, so we will take G = Ḡ.

By Proposition 8.14 of Chapter I G splits as G′ ⋊ T . We claim that
T is abnormal. If g ∈ G, and T1 = ⟨T, T g⟩, then T1 = T · (T1 ∩ G′) with
T1 ∩ G′ T -invariant, hence either trivial or equal to G′. Hence g ∈ T1 in
either case. □

Lemma 8.19. Let G be a connected solvable group of finite Morley rank.
Then the following are equivalent:

(1) G is nilpotent;
(2) G′ ≤ Φ(G);
(3) G/Φ(G) is nilpotent.

Proof.
(1) =⇒ (2): Let M be a maximal definable connected subgroup of

G. By nilpotence, M ◁ G, and by maximality G/M has no proper infinite
definable subgroups, hence is abelian by Lemma 3.10 of Chapter I. Thus
G′ ≤ Φ(G).

(3) =⇒ (1):
Suppose that Ḡ = G/Φ(G) is nilpotent, and G is not nilpotent. Then by

Proposition 8.18 of Chapter I, G has a proper abnormal subgroup H. Now
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H̄ is abnormal in Ḡ, a nilpotent group, so by the normalizer condition we
have H̄ = Ḡ, that is HΦ(G) = G, and hence H = G, a contradiction. □

8.4. Carter subgroups.

Definition 8.20. A Carter subgroup of a group G is a self-normalizing
and nilpotent subgroup.

Lemma 8.21. If G is a group of finite Morley rank and Q a Carter
subgroup, then Q is definable.

Proof. The group d(Q) is nilpotent; if d(Q) > Q then the normalizer
condition yields Nd(Q)(Q) > Q, contradicting the definition. □

Lemma 8.22. Let G be a connected solvable group of finite Morley rank
and Q an abnormal subgroup. Then Q is definable and connected.

Proof. We proceed by induction on the rank of G. Let A ◁ G be G-
minimal, and Ḡ = G/A. Then by induction Q̄ is definable and connected,
and the same applies to QA. Therefore we may suppose that G = QA. In
particular Q∩A ◁ G. If Z(G) is infinite we take A ≤ Z(G) and hence Q ◁ G,
Q = G, and we are done. So we suppose Z(G) is finite. We may factor it
out and suppose Z(G) = 1 (Lemma 3.9 of Chapter I). In particular A is
G-irreducible.

If A ≤ Q then G = QA = Q. So we may suppose that A ∩ Q < A and
then A ∩Q = 1 by G-irreducibility. Thus Q is a complement to A in G.

We may suppose A ≤ G′. Suppose first that A = G′. Then by Proposi-
tion 8.14 of Chapter I, Q is definable and connected.

Now suppose A < G′, so Q ∩ G′ ̸= 1. Then Q ∩ G′ is normal in Q. As
G′ is nilpotent (Lemma 8.3 of Chapter I) and A is G-irreducible, it follows
that G′ centralizes A, so Q ∩G′ is normal in G. As Z(G) is trivial, Q ∩G′

contains a G-minimal (connected, definable) subgroup of G, which can be
factored out to conclude by induction. □

Proposition 8.23. Let G be a connected solvable group of finite Morley
rank, A a G-minimal abelian subgroup, and H a subgroup of G containing
Z◦(G) such that G = CG(A)H and HA is definable and connected. Then
H is abnormal in HA.

Proof. If H contains HA then the claim is vacuous.
Otherwise, A does not centralize G since Z◦(G) ≤ H, and hence A does

not centralize H. But G = CG(A)H, so A is H-minimal. Again by Lemma
8.3 of Chapter I, H ′ acts trivially and A is H/H ′-irreducible, by Lemma
4.10 of Chapter I. Thus A ∩ Z(G) = 1, and A ∩H = 1.

Now suppose g ∈ HA, g /∈ H. Let H1 = ⟨H,Hg⟩. Then H1 = H · (H1 ∩
A), and H1 ∩ A is H-invariant. If H1 = A our claim is clear. Otherwise,
by H-minimality, H1 is finite, and by connectivity, central, hence trivial.
So g ∈ N(H). Then writing g = ha, we find a ∈ NA(H). Then [a,H] ≤
A ∩H = 1, and hence a ∈ CA(H) ≤ Z(G) ∩A = 1. Thus g ∈ H. □
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Proposition 8.24. Let G be a connected solvable group of finite Mor-
ley rank, H an abnormal subgroup of G, and K a subgroup of H which is
abnormal in H. Then K is abnormal in G.

Proof. We know thatK andH are connected and definable. Supposing
the result fails, minimize the rank of G, and then maximize the rank of K.

Note that G = G′H (by passage to G/G′) and H = H ′K, so G = G′K.
Taking A ◁ G abelian and G-minimal, we have in particular G = CG(A)K
(via Lemma 8.3 of Chapter I). Furthermore Z(G) ≤ H, and then Z(G) ≤ K,
by abnormality each time. So the Proposition 8.23 of Chapter I applies, and
shows that K is abnormal in KA.

By induction on rank, KA/A is abnormal in G/A, so KA is abnormal
in G.

We show that K is abnormal in G. Suppose that g ∈ G. Let K1 =
⟨K,Kg⟩. By abnormality of KA in G, g ∈ ⟨KA, (KA)g⟩ = AK1. Let

g = ak with k ∈ K1, a ∈ A. Then Kg−1

1 = Ka−1

1 , so K ≤ K1,K
a−1

1 , and
K,Ka ≤ K1. By abnormality of K in KA, a ∈ ⟨K,Ka⟩ ≤ K1. So g ∈ K1,
as required. □

Proposition 8.25. Let G be a connected solvable group of finite Morley
rank, and Q a minimal abnormal subgroup. Then Q is a Carter subgroup.

Proof. Certainly Q is self-normalizing. By Proposition 8.21 of Chapter
I, it is also definable and connected. We need to see that it is nilpotent.

If not, then by Proposition 8.18 of Chapter I, Q has a proper subgroup
K which is abnormal relative to Q. Then Proposition 8.24 of Chapter I
contradicts the minimality of Q. □

Proposition 8.26. Let G be a connected solvable group of finite Morley
rank. Then any two Carter subgroups of G are conjugate.

Proof. We proceed by induction on the rank of G.
We take Q1 and Q2 Carter subgroups in G. Then both contain Z(G),

so in the quotient Ḡ = G/Z(G), Q̄1 and Q̄2 are again Carter subgroups. If
Z(G) is infinite, we conclude by induction. So suppose Z(G) is finite. We
may still factor it out, to get Z(G) = 1.

Take A a G-minimal subgroup of G. We claim that in Ḡ = G/A, the
groups Q̄1 and Q̄2 are Carter subgroups, or in other words that Q1A and
Q2A are self-normalizing in G. Consider for example Q1A. If Q1A = G our
claim certainly holds, and if Q1A < G then by induction we may suppose
that the Carter subgroups of Q1A are conjugate, and hence by a Frattini
argument N(Q1A) ≤ Q1AN(Q1) = Q1A. Thus the claim holds.

Now applying induction in G/A, we may suppose that Q1A = Q2A.
Hence we may suppose that G = Q1A. Since CQ1(A) is normal in the
nilpotent group Q1, if this centralizer is nontrivial then it meets Z(Q1), and
hence meets Z(Q1A) = Z(G), a contradiction. So CQ1(A) = 1.

But by minimality G′ centralizes A (Lemma 8.3 of Chapter I), so G′ = A.
Then Proposition 8.14 of Chapter I completes the argument. □
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Corollary 8.27. Let G be a connected solvable group of finite Morley
rank, Q a Carter subgroup. Then Q is connected, definable, and abnormal.

Proof. Abnormality follows from Propositions 8.26 of Chapter I and
8.25 of Chapter I, and implies connectedness and definability by Proposition
8.21 of Chapter I. □

Proposition 8.28. Let G be a solvable group of finite Morley rank.
Then Φ◦(G) is nilpotent; if the Sylow subgroups of G are all nilpotent, then
Φ(G) is nilpotent.

Proof. Since Φ(G) = Φ(G◦), we may suppose G is connected.
Let Q be a Carter subgroup of Φ◦(G). Then by the Frattini argument,

G = Φ(G)NG(Q). As G is connected we have G = Φ(G)NG
◦(Q). Hence G =

NG
◦(Q), and in particular Φ◦(G) normalizes Q. As Q is self-normalizing,

we find Φ◦(G) = Q is nilpotent.
Similarly for any prime p, if P is a Sylow p-subgroup of Φ(G), then

P ◁ G and hence P ◁ Φ(G).
Thus F (Φ(G)) contains Φ◦(G), and if the Sylow subgroups are nilpotent

then F (Φ(G)) contains all the Sylow p-subgroups of Φ(G), but the latter
cover Φ(G)/Φ◦(G), so in this case Φ(G) is nilpotent. □

Proposition 8.29. Let G be a connected solvable group of finite Morley
rank, Q a Carter subgroup, K a normal subgroup, and Ḡ = G/K. Then Q̄
is a Carter subgroup of Ḡ, and all Carter subgroups of Ḡ have this form.

Proof. By Corollary 8.27 of Chapter I Q is abnormal in G, and hence
Q̄ is abnormal in Ḡ, and therefore self-normalizing. (One could also use the
Frattini argument we used just above.)

The last statement follows by conjugacy. □

Corollary 8.30. Let G be a connected solvable group of finite Morley
rank and Q a Carter subgroup. Then G′Q = G.

Proof. The image of Q in G/G′ is a Carter subgroup of an abelian
group, hence Q covers the quotient. □

The more general form of this lemma in which G′ is replaced by any nor-
mal subgroup with nilpotent quotient also has its uses, but for our purposes
the foregoing is the important point.

Lemma 8.31. Let G be a connected solvable centerless group of class two
and Q a Carter subgroup. Then G = G′ ⋊Q.

Proof. We have seen that G = G′Q quite generally, so we need only
consider H = Q ∩ G′. By hypothesis G′ is abelian, so G′ ≤ C(H). As H
is normal in the nilpotent group Q, if H is nontrivial then it meets Z(Q)
nontrivially. But then H∩Z(Q) centralizes G′Q = G, producing a nontrivial
center. □
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8.5. The solvable radical.

Proposition 8.32. Let G be a group of finite Morley rank. Then there
is a unique maximal normal solvable subgroup of G, and it is definable.

Proof. It is clear that there is a unique maximal definable connected
normal solvable subgroup of G, and that we may factor it out, assuming
therefore that every definable solvable normal subgroup of G is finite. In
particular Z(G◦) is finite and after factoring this out, by Lemma 3.9 of
Chapter I we may assume that Z(G◦) = 1. At this point, G◦ has no non-
trivial solvable definable normal subgroup. In fact, by considering definable
hulls, it follows that G◦ has no nontrivial solvable normal subgroup at all.

Now let H ◁ G be solvable. Then H ∩ G◦ = 1. There is therefore a
bound on the size of H, and hence a maximal such H, which is finite, hence
definable. □

Notation 8.33. Let G be a group of finite Morley rank. The largest
normal solvable subgroup of G is called the solvable radical, and is denoted

σ(G)

8.6. The socle.

Lemma 8.34. Let G be a group of finite Morley rank and suppose that
σ(G) = 1. Let Soc(G) be the subgroup of G generated by its minimal nor-
mal subgroups. Then Soc(G) = E(G) = F ∗(G) is a direct sum of finitely
many simple definable normal subgroups of G, and every nontrivial normal
subgroup of G meets Soc(G) nontrivially.

Proof. Observe that G has no nontrivial abelian normal subgroup A,
as otherwise d(A) ≤ σ(G). By Lemma 3.31 of Chapter I we have Soc(G) =
E(G), and since F (G) = 1 also E(G) = F ∗(G). Furthermore Z(E(G)) ≤
σ(G) = 1 so E(G) is a direct sum of finitely many simple definable normal
subgroups of G.

For the last point, we can quote Proposition 7.3 of Chapter I or argue
directly as follows. Let H be any nontrivial normal subgroup of G. Then
H contains a minimal normal definable subgroup by the descending chain
condition, and these are nonabelian by hypothesis, so by Lemma 3.31 of
Chapter I they are minimal normal. □

In general, the appropriate socle to work with is the subgroup generated
by minimal normal definable subgroups. But the groups F ∗(G) on the one
hand, and σ(G) on the other, play a more important role.

8.7. Unipotent radicals. Unipotent and p-unipotent groups were de-
fined in Definition 5.4 of Chapter I. We now consider the associated unipo-
tent radicals.

Notation 8.35. Let G be a group of finite Morley rank and π a set
of primes. Then Uπ(G) is the subgroup of G generated by its unipotent
π-subgroups.
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Observe that in a simple Chevalley group of characteristic p, Up(G) is
equal to G.

Lemma 8.36. Let G be a solvable group of finite Morley rank, and p a
prime. Then Uπ(G) is π-unipotent, and is contained in F ◦(G).

Proof. By Corollary 8.4 of Chapter I, we have Uπ(G) ≤ F ◦(G). So
by the structure of nilpotent groups, Proposition 5.8 of Chapter I, Uπ(G) is
π-unipotent. □

For the most part we take π = {p} in practice. The previous lemma
may be read as saying that the general notion is not, in fact, much more
general.

9. Schur-Zassenhaus

9.1. A solvable factorization. We introduced Uπ in the previous sec-
tion, and now we introduce a complementary notion. We will get a rough
analog of the structure theory for connected nilpotent groups in the solvable
context.

Definition 9.1. Let G be a group of finite Morley rank, and π a set
of primes. A definable subgroup H of G is a π∗-group if it is solvable and
connected, and every definable connected abelian section of H is π-divisible.

Lemma 9.2. Let G be a solvable group of finite Morley rank, π a set
of primes. If U = Uπ(G), H ◁ G is a π∗-subgroup, and Ḡ = G/H, then
Ū = Uπ(Ḡ).

Proof. Proceeding inductively, we may suppose that H is G-minimal.
Let V be the preimage in G of Uπ(Ḡ). Then V/H has bounded exponent,
H ≤ F ◦(V ), and V/F ◦(V ) is divisible abelian, so V is nilpotent. As V/H
is a π-group of bounded exponent, V = Uπ(V )H. But Uπ(V ) = U . □

Lemma 9.3. Let π be a set of primes and let G be a solvable group of
finite Morley rank.

(1) If 1 → K → G→ Ḡ→ 1 is a short exact sequence with K definable
normal and connected in G, then G is a π∗-group if and only if K
and Ḡ are.

(2) If G is a π∗-group and H is a normal Hall π-subgroup of G, then
H ≤ Z(G) is connected and divisible.

Proof.
Ad 1. It suffices to check that if K and Ḡ are π∗-groups, then G is. Let

H1 ◁ H2 be connected definable subgroups of G with H2/H1 abelian. Then
we have a short exact sequence

1 → (H2 ∩K)/(H1 ∩K) → H2/H1 → H2K/H1K → 1

As this is in the category of abelian groups, and the connected components
on both ends are π-divisible, with the middle term connected, the section
H2/H1 is π-divisible.
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Ad 2. Proceed by induction on the solvability class of G. Then H ∩G′

is a normal Hall π-subgroup of G′, so A = H ∩G′ ≤ Z(G′). As G′ is a π∗-
group, A[n] is finite for each n. Hence A ≤ Z(G). For h ∈ H, commutation
with h defines a homomorphism γh : G → A. As h is a π-element, the
image is a π-group of bounded exponent; as a definable image of G, it is a
π∗-group. Therefore [h,G] = 1 and H ≤ Z(G).

By Proposition 8.12 of Chapter I, H is connected. As H ≤ Z(G) and G
is a π∗-group, H is divisible. □

Proposition 9.4. Let G be a connected solvable group of finite Morley
rank and π a set of primes. Then

(1) Any two maximal π∗-subgroups of G are conjugate;
(2) If H ≤ G is a maximal π∗-subgroup, then G = Uπ(G) ·H.

Proof. We proceed by induction on the rank of G. We may suppose
that G is not nilpotent. Let U = Uπ(G). Note that in the presence of
condition (1), condition (2) reduces to:

(2′) G = Uπ(G) ·H for some π∗-subgroup.

Suppose first that G has a nontrivial normal π∗-subgroup K, and let
Ḡ = G/K. By Lemma 9.2 of Chapter I, we have Ū = Uπ(Ḡ), and hence
by induction we have G = UH with H̄ a maximal π∗-group of Ḡ, and H
its preimage in G. Then H is a π∗-group, so we have (2′) in G. We also
have conjugacy, by induction, since any two maximal π∗-subgroups of G will
contain K. So we assume

(2) G has no nontrivial normal π∗-subgroup

In particular F ◦(G) = U .
Let H be a Carter subgroup of G. By Proposition 8.29 of Chapter I, in

G̃ = G/F ◦(G), which is abelian, H covers a Carter subgroup, which must be

G̃ itself. So G = F ◦(G)H = UH. As H is nilpotent and connected (Lemma
8.22 of Chapter I) there is a π∗-subgroup L of H for which H = Uπ(H)L,
hence G = UL.

Now let L1 be any maximal π∗-subgroup of G, and K = UL1. As G =
UL, we have K = U(K ∩ L)◦ and hence (K ∩ L)◦ is a maximal π∗-group of
K. If K < G, then after conjugation we may suppose that L1 = K ∩L and
hence L1 = L by maximality, contradicting K < G. So we have UL1 = G.

Now L1 ∩ U is finite and normal in L1, hence central, and L1/L1 ∩ U
embeds in G/U , which is abelian. Thus L1/L1∩U is abelian and connected,
and L1 ∩ U is finite, which implies that L1 is abelian.

Let H1 = L1CU (L1). Then H1 is nilpotent and L1 is characteristic in
H1. Hence NG(H1) ≤ NG(L1) = L1NU (L1). If u ∈ NU (L1) then [u, L1]
is a connected subgroup of the finite group U ∩ L1, so [u, L1] = 1. Thus
NG(H1) ≤ H1 and H1 is a Carter subgroup of G. We may therefore assume
after conjugation that H = H1, and it follows that L = L1. □
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9.2. Neoclassical Schur-Zassenhaus. The following purely algebraic
statement is a useful variation on the classical Schur-Zassenhaus theorem.

Fact 9.5 ([171, Lemma 2.26]). Let G be a group with a normal abelian
subgroup A, and let H be a subgroup of G such that A ≤ H and [G : H] =
m < ∞. Assume that the map a 7→ am is bijective on A, and that H splits
over A. Then G splits over A.

9.3. Existence of complements.

Proposition 9.6. Let G be a solvable group of finite Morley rank, π
a set of primes, and H a normal Hall π-subgroup of G. Then H has a
complement in G.

Proof. We consider a hypothetical counterexample G of minimal rank
and degree.

Recall that for any definable quotient Ḡ of G, the image H̄ of H is a
Hall subgroup of Ḡ (Lemma 8.11 of Chapter I).

We show first

(1) G has no infinite, definable, normal π⊥ subgroup A.

Assuming the contrary, applying induction to Ḡ = G/A one finds G = HT
with A ≤ T , H ∩ T ≤ H ∩A = 1, and we have the desired complement.

(2) H ≤ G◦

Let G̃ = G/G◦. Then H̃ is a normal π-subgroup of G̃ and hence G̃ splits as

H̃ ⋊ T̃ by the ordinary Schur-Zassenhaus theorem. Let T be the preimage
of T̃ in G. If H ̸≤ G◦ then T < G, and hence by induction T splits as
(H ∩ T )⋊ T0, and G = HT = HT0 splits as well. So (2) follows.

Now let U = Uπ(G), and let K be a maximal π∗-subgroup of G. Then
G◦ = UK by Proposition 9.4 of Chapter I, and by the Frattini argument
G = UNG(K). So if NG(K) < G then from a splitting

NG(K) = (H ∩NG(K))⋊ T

we get a splitting G = HT . We conclude that K is normal in G. As
[U,K] ≤ U ∩K is finite and connected, we find [U,K] = 1.

We claim:

(3) U = 1; G◦ is a π∗-group

G◦/K is a nilpotent π-group, and G/G◦ is a finite π′-group. By Lemma 1.27
of Chapter I, we have a splitting of Ḡ = G/K as Ḡ◦ ⋊ T̄ with T̄ finite. Let
T be the preimage of T̄ , a finite extension of K. In particular T is definable
and we have G = G◦T = UKT = UT . If U ̸= 1 then by induction we
split T as (H ∩ T )T0 and get G = HT0 split. So U = 1, and G◦ = K is a
π∗-group.

In particular, by Lemma 9.3 of Chapter I, we have H ≤ Z(G◦), and H
is divisible. Let L = (G◦)′. Then L is a connected nilpotent π∗-group, and
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L = L1 ∗ L2 with L1 of bounded exponent and L2 divisible. By (1), L1 is a
π-group, hence trivial. So L is radicable, and L splits further as Ltor × L0

with Ltor divisible abelian and L0 torsion free (Proposition 5.11 of Chapter
I). As Ltor[n] is finite for each n, Ltor ≤ Z(G). Furthermore L′ = L′

0 is
torsion free, connected, and definable, so by (1) we have L′ = 1 and L is
abelian.

We claim

(4) L ≤ Z(G◦)

Take g ∈ G◦. Then L̃ = [L, g] = [L0, g] is torsion free by Lemma 2.18 of

Chapter I. Hence ⟨L̃G⟩ ≤ L is also torsion free, by Lemma 2.19 of Chapter
I. By (1) this group is trivial, so [L, g] = 1 and L ≤ Z(G◦).

It follows from (4) that G◦ is nilpotent and hence splits as a product
H × T for some π⊥-subgroup T . By Lemma 1.24 of Chapter I we may take
T normal in G. Then by Lemma 1.26 of Chapter I we can split G/T , that

is we have G = HT̂ with T̂ ∩H = T ∩H = 1. □

9.4. Conjugacy.

Proposition 9.7. Let G be a solvable group of finite Morley rank, π
a set of primes, and H a normal Hall π-subgroup of G. Let T1, T2 be two
definable complements to H in G. Then T1 and T2 are conjugate.

Proof. We proceed by induction on the rank and degree of G. Note
that T1 and T2 provide complements to H in any subgroup of G containing
H. We may suppose that G is infinite.

If G has an infinite definable normal π⊥-subgroup, then we conclude
easily by induction. It follows that G has a unique maximal definable π⊥-
subgroup, which is finite, and may be factored out. So we assume

(1) G has no nontrivial definable normal π⊥-subgroup

Let H1 = T1∩HCG(H). Then H1/CG(H) is a π-group and a π⊥-group,
hence trivial: H1 ≤ CG(H). So HCG(H) = H × H1. For g ∈ G, we have
H1H

g
1 ≤ HCG(H) with H1H

g
1 a π⊥-group, and hence Hg

1 = H1, H1 ◁ G,
and by (1) H1 = 1, CG(H) ≤ H. In particular H is infinite, as otherwise
G◦ ≤ CG(H) ≤ H and hence G is finite.

(2) H is G-minimal

We show first that H contains no proper definable nontrivial G-invariant
subgroup.

Suppose on the contrary 1 < A < H is definable and G-invariant. We
may assume that AT1 = AT2. Furthermore AT1 < G, so we may conclude
by induction.

On the other hand [G,H] is a G-invariant and nontrivial definable sub-
group contained in H in view of Corollary 3.29 of Chapter I. So H = [G,H]
is definable. Thus (2) follows.
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In particular, H is connected and abelian. If G > G◦ then G◦ = HT1
◦ =

HT2
◦ and by induction we may take T1

◦ = T2
◦, so T1, T2 ≤ NG(T1

◦). But
by (1) NG(T1

◦) < G, and we can conclude by induction in this case. So we
suppose G is connected.

As CG(H) ≤ H we find [H,G] ̸= 1 and hence H = [H,G] ≤ G′. Hence
Z(G′) ≤ H and as G′ is connected, nilpotent, its center is infinite. Thus
Z(G′) = H by minimality, and thus G′ ≤ H; so G′ = H.

Now Proposition 8.14 of Chapter I applies to conclude. □

Proposition 9.8. Let G be a solvable group of finite Morley rank, π
a set of primes, and H a normal Hall π-subgroup of G. If H has bounded
exponent, then the complements to H in G are definable, and conjugate, and
such complements exist.

Proof. Existence of some complement was proved in Proposition 9.6
of Chapter I. We will prove their definability, after which the conjugacy
follows by Proposition 9.7 of Chapter I.

Let G = H ⋊ T . Then G◦ = H◦T ◦. Accordingly, it suffices to treat the
case in which G is connected. Then H is also connected.

If K < H is infinite, definable, and G-invariant, then we conclude by
induction. So we assume H is G-minimal, and, in particular, connected and
abelian.

If [G,H] = 1 then as H has bounded exponent and T is π-radicable, T is
definable. So suppose that [G,H] = H. Then H ≤ G′ < G and by induction
we have T ′ = T ∩G′ definable. Now T ≤ NG(T

′), so if NG(T
′) < G then by

induction we have T definable, a contradiction.
So T ′ ◁ G. If T ′ ̸= 1 then T ′ is infinite, and factoring it out, we may

again conclude by induction. So T ′ = 1, T is abelian. Thus T ≤ Z(CG(T )),
and the latter is definable. So we may suppose T ≤ Z(G). Then [G,H] = 1,
contradicting our case assumption. □

9.5. Lifting centralizers.

Proposition 9.9. Let G = H ⋊T be a group of finite Morley rank, and
Q ◁ H. Suppose that Q is a T -invariant solvable definable π-subgroup of
bounded exponent, and T is a definable π⊥ subgroup of G. Then

CH(T )Q/Q = CH/Q(T ).

Proof. It suffices to show that CH(T modQ) ≤ CH(T )Q. Let L =
CH(T modQ). Then [L, T ] ≤ Q. We have QT ≤ LT ≤ HT . We will apply
Proposition 9.7 of Chapter I to QT . For x ∈ L, T x ≤ QT . Therefore, by
Proposition 9.7 of Chapter I, we have T x = T h for some h ∈ Q. This implies
that xh−1 ∈ NL(T ) = CL(T ), and therefore x ∈ QCL(T ) ≤ QCH(T ). □

Corollary 9.10. Let G = H ⋊ T be a solvable group of finite Morley
rank with H and T definable. Assume that H is a π-group of bounded
exponent and T is a π⊥-group. Then H = [H,T ]CH(T ).
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Corollary 9.11. In the situation of the previous corollary, if H is
abelian and T is locally finite then

H = [H,T ]⊕ CH(T )

Proof. Using additive notation, we just need to show that CH(T ) ∩
[H,T ] = 0 and as T is locally finite this reduces to the case in which T is
finite. Then the endomorphism E =

∑
T t satisfies E([H,T ]) = 0 while on

CH(T ) it satisfies E(x) = |T | · x. The claim follows. □

Proposition 9.12. Let G = H ⋊ T be a group of finite Morley rank,
with T a π-group of bounded exponent and Q ◁ H a T -invariant π⊥-subgroup.
Suppose that Q and T are solvable, and definable in G. Then

CH(T )Q/Q = CH/Q(T ).

Proof. It is enough to show that we have CH(T modQ) ≤ CH(T )Q.
Let L = CH(T modQ). Then [L, T ] ≤ Q, so L normalizes QT . For

x ∈ L, T x ≤ QT is a Hall subgroup of QT . Therefore, by Proposition 8.7
of Chapter I T x = T a for some a ∈ Q. This implies that xa−1 ∈ NL(T ) =
CL(T ) and therefore, x ∈ QCL(T ) ≤ QCH(T ). □

Corollary 9.13. Let G = H ⋊ T be a solvable group of finite Morley
rank with H and T definable. Assume that H is a π⊥-group and T is a
π-group of bounded exponent. Then H = [H,T ]CH(T ).

Corollary 9.14. Let G = H ⋊ T be a solvable group of finite Morley
rank with H and T definable. Assume that H is an abelian π⊥-group and T
is a π-group of bounded exponent. Then

H = [H,T ]⊕ CH(T )

Proof. As in Corollary 9.11 of Chapter I. □

Proposition 9.15. Let G = H ⋊ T be a group of finite Morley rank,
with T a π-group of bounded exponent and Q ◁ H a T -invariant definable
π-divisible subgroup. Suppose that Q and T are solvable and H is connected.
Then

CH(T )Q/Q = CH/Q(T ).

Proof. Proceeding inductively we may suppose that Q has no proper,
definable, π-divisible, definably characteristic subgroup. In particular Q is
abelian. If Q contains no π-torsion we apply Proposition 9.13 of Chapter I.
If Q does contain π-torsion then by our initial reduction Q is the definable
hull of its π-torsion subgroup Qπ. But Qπ has finitely many elements of
each finite order and is therefore centralized by H. □

9.6. Generation.

Proposition 9.16. Let Q⋊V be a group of finite Morley rank, with Q a
definable, connected, solvable group with no nontrivial p-unipotent subgroup,
and V a finite abelian p-group. Then Q = ⟨CQ(V0) : V/V0 is cyclic⟩.
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Proof. We proceed by induction on the rank and degree of Q. Let
V = {V0 ≤ V : V/V0 is cyclic}.

Suppose Q is not V -minimal, and Q0 < Q is infinite and V -invariant.
Then by induction and Proposition 9.15 of Chapter I, we have

Q/Q0 = ⟨CQ/Q0
(V0) : V0 ∈ V⟩ = ⟨Q0CQ(V0) : V0 ∈ V⟩

and again by induction, we have Q0 = ⟨CQ0(V0) : V0 ∈ V⟩, so Q = ⟨CQ(V0) :
V0 ∈ V⟩ as well.

So we suppose that Q is V -minimal. In particular Q′ = 1, and Q is
abelian. It follows that CQ(V0) is normal in QV for V0 ≤ V . Let Q1 =
⟨CQ(V0) : V0 ∈ V⟩, and suppose Q1 < Q. For V0 ∈ V, we have CQ/Q1

(V0) =
Q1CQ(V0) ≤ Q1 (Proposition 9.15 of Chapter I), so replacing Q by Q/Q1,
we may suppose that CQ(V0) = 1 for all such V0.

If Q is definably V -reducible, with Q0 < Q nontrivial and V -invariant,
then Q0 is finite and we may suppose it to be V -irreducible. Hence the nat-
ural map V → End(Q0) goes into a field, and its kernel contains a subgroup
in V, a contradiction.

If Q is definably V -irreducible, then the image of the natural map V →
End(Q) generates a subfield, and hence again the kernel contains a subgroup
in V. □

Lemma 9.17. Let G be a group of finite Morley rank, Q a definable,
normal, connected, solvable p⊥-subgroup, and T a p-torus of Prüfer rank n.
Then

Q = ⟨CQ(T0) : T0 ≤ T , and the Prüfer rank of T0 is n− 1⟩

Proof. We may suppose that Q is a minimal definable T -invariant
counterexample. Then n ≥ 2.

Let T = {T0 ≤ T : the Prüfer rank of T0 is n− 1}.
Let T0 = CT (Q). If T0 is infinite, we may consider the action of T inside

d(T )/d(T0), and reduce the Prüfer rank. Assume therefore that T0 is finite,
of exponent pk. Let V = T [pk+1], V = {V0 ≤ V : V/V0 cyclic}. Then
Q = ⟨CQ(V0) : V0 ∈ V⟩, and it suffices to show that each subgroup CQ(V0)
with V0 ∈ V is contained in ⟨CQ(T0) : T0 ∈ T ⟩.

For V0 ∈ V we have V0 ̸⊆ T [pk] and thus CQ(V0) < Q. Hence by
minimality of Q, CQ(V0) is contained in ⟨CQ(T0) : T0 ∈ T ⟩. □

9.7. A criterion for nilpotence.

Proposition 9.18. Let G be a connected solvable group of finite Morley
rank containing no unipotent p-subgroup, p a prime, and E an elementary
abelian p-group of p-rank at least 3 acting on G. Suppose that CG(a) is
nilpotent for a ∈ E×. Then G is nilpotent.

Proof. We proceed by induction on the Morley rank of G. Observe
that a p-Sylow subgroup of G is connected (Proposition 8.12 of Chapter I),
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and hence is a p-torus by our hypothesis and Proposition 6.3 of Chapter I. It
follows easily that any connected abelian definable section of G is p-divisible.

Let A be a minimal definable connected E-invariant normal abelian sub-
group of G contained in Z◦(G′). Then G/A is nilpotent by induction, and
[G,A] is either A or 1. It suffices to show that [G,A] ̸= A. For this we may
replace G by A⋊ (G/G′) and hence assume that G/A is abelian.

Let E0 ≤ E be elementary abelian of p-rank 2, and for v ∈ E×
0 let

Gv = CG(vmodA). Then G is generated by the groups Gv for v ∈ E×
0

(Proposition 9.16 of Chapter I), and these groups are normal in G. Thus
it suffices to prove that the Gv are nilpotent. If Gv < G this follows by
induction on the Morley rank of G. Suppose therefore that Gv = G for some
v ∈ E×

0 . Then by Proposition 9.15 of Chapter I, we have G = CG(v)A. Now
A = CA(v) × [A, v] (Proposition 9.15 of Chapter I). Now CA(v) and [A, v]
are normalized by CG(v) and hence by G. If these groups are nontrivial,
then by induction G/CA(v) and G/[A, v] are nilpotent, and hence G, which
embeds into G/CA(v)×G/[A, v], is nilpotent.

Accordingly we may suppose A = CA(v) or CA(v) = 1. In the first case
G = C(v) is nilpotent by hypothesis. Suppose therefore that CA(v) = 1.
Take E1 ≤ E of p-rank 2, not containing the element v. Then by the
foregoing, we may suppose that E×

1 also contains an element w centralizing
G/A. Hence the subgroup E2 = ⟨v, w⟩ of E centralizesG/A, and our analysis
shows that CA(x) = 1 for x ∈ E×

2 . However A = ⟨CA(x) : x ∈ E2⟩ by
Proposition 9.16 of Chapter I, a contradiction. □

10. Automorphisms

10.1. Finite centralizers.

Lemma 10.1. Let G be a connected group of finite Morley rank and α a
definable automorphism of G such that CG(α) is finite. Then the set [α,G]
is generic in G.

Proof. The function γ : G → G given by γ(g) = g−1α(g) has finite
fibers: if g−1α(g) = h−1α(h) then α(gh−1) = gh−1 and g ∈ CG(α)h. Hence
the rank of the image of γ is the rank of G, □

We may rephrase this as follows.

Lemma 10.2. Let G be a group of finite Morley rank and g ∈ G an

element such that CG◦(g) is finite. Then the conjugacy class gG
◦
is generic

in gG◦.

Proof. If x ∈ G◦ then gx = g[g, x]. □

Lemma 10.3. Let G be a connected group of finite Morley rank, and α
a definable involutory automorphism of G with CG(α) finite. Then G is
abelian and α inverts G.
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Proof. LetX = {[α, g] : g ∈ G}. Then α invertsX and rk(X) = rk(G).
Fix x ∈ X and let Y = X∩x−1X. Then for y ∈ Y we have y = α(y−1) =

α(xy)−1α(x) = xyx−1, and y ∈ C(x). As the rank of Y is equal to the rank
of G, we find that C(x) = G and X ⊆ Z(G). As the rank of X is equal to
the rank of G, we find that Z(G) = G. □

Lemma 10.4. Let G be a group of finite Morley rank without involutions,
and α a definable involutory automorphism of G. Then G = CG(α)G

−,
where G− = {g ∈ G : gα = g−1}. Furthermore the decomposition is unique,
or in other words the multiplication map CG(α)×G− → G is a bijection.

Proof. First, every element of G has a unique square root. If x ∈ G
then d(⟨x⟩) is abelian and contains no involutions, hence is 2-divisible. So
there is y ∈ d(⟨x⟩), y2 = x. If also z2 = x then x ∈ C(z) and hence y ∈ C(z),
so (y−1z)2 = 1 and y = z.

In particular if x ∈ G− and y2 = x, then (yα)2 = x−1 = (y−1)2 and thus
y ∈ G−, so G− is also uniquely 2-divisible.

Suppose cg1 = g2 with c ∈ C(α) and g1, g2 ∈ G−. Then c = g2g
−1
1

and applying α, we have g−1
2 g1 = g2g

−1
1 , or g21 = g22, and g1 = g2. So the

multiplication map is injective. It suffices therefore to prove the first claim.
Let x ∈ G, and let y2 = [α, x]. Then y ∈ G− since [α, x] ∈ G−. Now

(xy−1)α = xαy = xy−2y = xy−1, so xy−1 ∈ C(α) and x ∈ C(α)G−. □

Lemma 10.5. Let G be a connected group of finite Morley rank without
involutions, and α a definable involutory automorphism of G. Then CG(α)
is connected.

Proof. By the preceding lemma, G is in a definable bijection with
CG(α) × G−. As G has Morley degree one, each factor has Morley degree
one. □

10.2. Relatively prime actions.

Lemma 10.6. Let G be a connected solvable p⊥-group of finite Morley
rank and P a finite p-group of definable automorphisms of G. Then CG(P )
is connected.

Proof. Let A be a definably characteristic connected infinite abelian
subgroup of G. We may suppose inductively that CG/A(P ) is connected,
and hence we may replace G by CG(P modA). Thus according to Fact
9.13 of Chapter I, G = ACG(P ). As G is connected, G = ACG

◦(P ) and
CG(P ) = CA(P )CG

◦(P ). But A = [A,P ] ⊕ CA(P ) by Corollary 9.14 of
Chapter I, so CA(P ) is also connected, and CG(P ) is connected. □

Proposition 10.7. Let G be a group of finite Morley rank, π a set of
primes, and let Q and X be definable subgroups with Q a solvable π-group of
bounded exponent, X a π⊥-group, and X acting on Q. Suppose that X acts
trivially on the factors Qi/Qi+1 of a definable normal series for Q. Then X
acts trivially on Q.
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Proof. We may deal with the elements of X individually, so replacing
X by d(x) for some x ∈ X, we may suppose X is abelian.

Then we may proceed by induction on the length of the series, and hence
assume that X acts trivially on Q1 as well as on Q/Q1. By Proposition
9.9 of Chapter I, we have Q = CQmodQ1(X) = Q1 · CQ(X) = CQ(X), as
claimed. □

Lemma 10.8. Let A be an abelian p-group of finite exponent, Q a de-
finable p⊥-group of automorphisms of A acting trivially on Ω1(A). Then Q
centralizes A.

Proof. It will suffice to show that Q acts trivially on each quotient
Vi = Ωi+1(A)/Ωi(A). We have an embedding π : Vi → Ω1(A) induced by
multiplication by pi, and Q respects this map. The claim follows. □

Proposition 10.9. Let G be a group of finite Morley rank, π a set of
primes, and let Q and X be definable subgroups with Q a solvable π⊥-group,
X a π-group of bounded exponent, and X acting on Q. Suppose that X acts
trivially on the factors Qi/Qi+1 of a definable normal series for Q. Then X
acts trivially on Q.

Proof. We may proceed by induction on the length of the series, and
hence assume that X acts trivially on Q1 as well as on Q0/Q1. By Proposi-
tion 9.12 of Chapter I, we have Q = CQ(QmodQ1) = Q1 · CQ(X) = Q, as
claimed. □

10.3. Connected 2-group actions. Our goal here is to show that
unipotent 2-groups can only act trivially on groups without unipotent 2-
subgroups. In our analysis the minimal case will be a very special config-
uration known as a strongly embedded subgroup. This will be an important
configuration for thorough analysis in Chapter VI. The appearance of the
same configuration at this early stage seems to be merely a coincidence.

Definition 10.10. Let G be a group, M a proper subgroup. We say that
M is strongly embedded in G if M contains an involution, M < G, and for
all g ∈ G \M , the intersection M ∩Mg contains no involutions.

Lemma 10.11. Let G be a group of finite Morley rank which contains an
involution. Let M be a proper definable subgroup of G. Then the following
are equivalent

(1) M is strongly embedded in G.
(2) M contains the normalizer of a Sylow 2-subgroup S of G, and for

any involution i ∈ S, we have CG(i) ≤M .
(3) M contains an involution, and contains the normalizer of each of

its nontrivial 2-subgroups.

Proof.
(1) =⇒ (3). Let P ≤M be a nontrivial 2-subgroup, g ∈ NG(P ). Then

P ≤M ∩Mg, so g ∈M .
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Evidently (3) =⇒ (2).
(2) =⇒ (1). For any involution i ∈ M there is h ∈ M so that ih ∈ S

(here the definability ofM is invoked to allow application of Proposition 6.11
of Chapter I, and hence CG(i

h) ≤M . Conjugating by h, we find CG(i) ≤M
for all involutions of M .

Now if i ∈ M ∩Mg we may suppose ig
−1 ∈ S. Let j ∈ Z(S) be an

involution. Then jg ∈ CG(i) and hence jg ∈ M . As Sg ≤ CG(j
g), we find

Sg ≤ M . Hence Sg = Sh, some h ∈ M , and gh−1 ∈ NG(S) ≤ M . Thus
g ∈M , as required. □

Lemma 10.12. Let G be a group of finite Morley rank with a strongly
embedded subgroup M . Then all involutions in G are conjugate in G, and
all involutions in M are conjugate in M .

Proof. We prove the first statement, since the second then follows by
the definition of strong embedding.

By assumption, M contains an involution i, and as M < G there is an
involution j outside M : if g ∈ G \M , then j = ig is one such. Hence it
suffices to prove that for any involutions i, j with i ∈ M and j /∈ M , we
have i conjugate to j.

If i and j are not conjugate then by Lemma 2.20 of Chapter I we have an
involution k commuting with both. Then k ∈ CG(i) ≤M , and j ∈ CG(k) ≤
M , a contradiction. □

Proposition 10.13. Let G be a group of finite Morley rank, and H
and U definable subgroups. Suppose that H contains no nontrivial unipotent
2-subgroup, and U is 2-unipotent and normalizes H. Then [U,H] = 1.

Proof. We proceed by induction on the rank and degree of H. We
may suppose G = HU . U ∩H must be finite as H contains no 2-unipotent
subgroups.

We may assume toward a contradiction that the action of U on H is
faithful, and U is nontrivial. We may also suppose that U is elementary
abelian.

(1) NH(U) = CH(U)

If h ∈ NH(U) then [h, U ] ≤ U ∩H so [h, U ] is connected and finite, hence
trivial, and h ∈ CH(U).

In particular, if H normalizes U then H centralizes U , a contradiction.
Suppose that H contains a proper definable G-invariant subgroup H1.

By induction we may suppose that [U,H1] = 1. If H1 is infinite, then after
factoring it out induction applies, so we get [U,H] ≤ H1. But for h ∈ H,
commutation with h defines a homomorphism γh : U → H1, with unipotent
image; so [U, h] = 1 and [U,H] = 1, a contradiction. Thus:

(2) Any definable G-invariant proper subgroup of H is finite
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Hence if H1 is any definable U -invariant proper subgroup, then since U
is connected we have H1 ≤ CH(U). Thus if we factor out CH(U), H will
have no nontrivial definable proper U -invariant subgroup. If now the action
of U becomes trivial, then [U,H] ≤ CH(U) and arguing as before we find
[U,H] = 1. Accordingly we may factor out CH(U), and assume

(2′) H has no nontrivial proper definable G-invariant subgroup

In particular H is connected.
If H is abelian, then H ⋊U is solvable, and by Corollary 8.4 of Chapter

I we have U ≤ F (H ⋊ U). Now U is maximal 2-unipotent in H ⋊ U , and
hence H normalizes U , a contradiction. So H is nonabelian and Z(H) < H;
thus by (2),

(3) Z(H) = 1

Suppose Z(G) ̸= 1. Then as Z(G)∩H = 1, Z(G) is a 2-group of bounded
exponent. If Z(G) is infinite then Z◦(G) ≤ U , contradicting the faithfulness
of the action. So Z(G) is finite. Let Ḡ = G/Z(G). Then we claim that
properties (1, 2′, 3) are preserved.

(1): Suppose that h ∈ H and Uh ≤ UZ(G). Then Uh = (UZ(G))◦ = U ,
so h ∈ CH(U).

(2′, 3): H → H̄ is a G-equivariant isomorphism.
Furthermore, the action of U on H is still faithful: if [u,H] ≤ Z(G) then

as H is connected, [u,H] = 1. Now arguing as before, in Ḡ, we conclude
that Z(Ḡ) is finite, hence pulls back to a finite normal subgroup of G. As
G is connected, this shows Z(Ḡ) = 1, and replacing G by Ḡ we now have:

(4) Z(G) = 1

Let M = NG(U). We claim that M is strongly embedded in G.
Let S be a Sylow 2-subgroup of G containing U . Then U is the maximal

2-unipotent subgroup of S◦, and hence NG(S) normalizes U .
In view of Lemma 10.11 of Chapter I, it suffices now to check that

CG(i) ≤ CG(U) for i an involution in S. As U is abelian and NH(U) =
CH(U), we have i ∈ C(U).

As i ∈ CG(U), the group CH(i) is U -invariant. If i ∈ C(H), then
i ∈ Z(G), a contradiction. So CH(i) < H. By induction, therefore, we find
that U centralizes CH(i), so CG(i) = CH(i)U ≤ CG(U), as required.

Now as M is strongly embedded in G, it follows that the involutions
of U are conjugate in M by Lemma 10.12 of Chapter I; but M centralizes
U . □

10.4. Automorphisms of p-tori.

Definition 10.14. Let A be a torus. The Prüfer p-rank Prp(A) is the
p-rank of A[p], that is the dimension of A[p] as a vector space over Fp.
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The reason for the terminology is the following: the p-torsion subgroup
Ap of A factors as a sum of quasicyclic abelian groups Z/p∞Z, called “Prüfer
p-groups” (finitely many, in the case of finite Morley rank).

Proposition 10.15. Let A be a p-torus of Prüfer p-rank d (finite). Then
Aut(A) ≃ GL(d,Zp), naturally, where Zp is the ring of p-adic integers.

Proof. A is the direct limit of the characteristic subgroupsA[pn]. These
groups also form an inverse system with respect to multiplication maps
rather than inclusions: µn : A[pn] → A[pn−1] is given by multiplication by

p. The inverse limit Â is a free module of rank d over Zp. This gives a

canonical embedding Aut(A) → Aut(Â), and after choosing a basis we have

Aut(Â) ≃ GL(d,Zp). Conversely, any automorphism of Â acts on the quo-
tients A[pn], and commutes with multiplication by p, and hence acts on the

direct limit A. So we have an identification of Aut(A) and Aut(Â). □

This can also be extended to describe the endomorphism ring of a p-
torus with the same proof (which implicitly goes via the associated Tate
module).

This result can be used to make calculations of the following type.

Lemma 10.16. Let A be a p-torus of rank 2 and α an automorphism of
A of order p, with finite centralizer in A. Then either p = 2 and p operates
by inversion, or p = 3 and CA(α) is cyclic of order 3.

Proof. We think of α as an element of GL(2,Qp). The eigenvalues of α
are p-th roots of unity, and the cyclotomic polynomial ϕp is irreducible over
Qp, by Eisenstein’s criterion applied to ((x + 1)p − 1)/x. As the minimal
polynomial for α has degree 2, this forces p ≤ 3.

The eigenvalue 1 cannot occur, as it would give rise to a fixed vector in
Z2
p and then to an infinite fixed subgroup in the torus.
So if p = 2 then α has the form[

−1 0
0 −1

]
which is inversion.

If p = 3 then, up to conjugacy, α has the form[
0 1
−1 −1

]
whose centralizer in A (as opposed to Â) consists of all pairs (a, b) ∈ A
satisfying:

b = a;−a− b = b

or 3a = 0; b = a. This corresponds to a “diagonal” subgroup in A, with
respect to the chosen decomposition of A, of order 3 (working modulo 3n,
the elements in question have the representation i(3n−1, 3n−1), i = 0, 1, 2, a
representation which depends on the choice of n). □



96 I. TOOLS

The one-dimensional case is also useful.

Corollary 10.17. If Z is a quasicyclic p-group, then Aut(Z) is iso-
morphic to the group of units in the ring Zp

Lemma 10.18. Let Z be a quasicyclic p-group, with p > 2. Then Z has
no nontrivial automorphism of order p.

Proof. By the last corollary, such an automorphism would represent
an element of order p in the p-adic field Qp. But the usual proof of the irre-
ducibility of the cyclotomic polynomial ϕp, namely by Eisenstein’s criterion
applied to ϕp(1 + x), works over Qp; so this polynomial is irreducible over
Qp. □

10.5. Continuously characteristic subgroups.

Definition 10.19. Let H ≤ K be a pair of groups interpreted in a third
group G, which has finite Morley rank. Then H is continuously characteris-
tic in K, relative to the ambient group G, if H is invariant under the action
of every connected group of automorphisms of K which can be interpreted
in G.

The next lemma will be used at a couple of technical junctures in Chapter
VI.

Lemma 10.20. Let G be a group of finite Morley rank, and H ◁ K a
pair of connected definable subgroups of G with K/H a good torus and H
nontrivial. Then H contains a nontrivial connected, definable, continuously
characteristic subgroup of K.

Proof. If the commutator subgroup K ′ is nontrivial, then as it is con-
nected and contained in H, it will do. Assume therefore that K is abelian.

If K is not divisible abelian, then for some prime p the annihilator of p
in K is infinite by Lemma 2.13 of Chapter I, and the connected component
of this group is contained in H, so this will do.

Now K contains a unique maximal definable good torus T , and T is
normalized, and hence centralized, by any connected definable group of au-
tomorphisms of K. If H contains any nontrivial good torus, then it follows
that any such is continuously characteristic in K.

So we may suppose that K is divisible abelian and that H contains no
nontrivial good torus. Now we claim that any minimal nontrivial definable
torus T0 in H is torsion free. If not, then T0 must be the definable hull of its
torsion, and being minimal is a good torus, which is a contradiction. Now
there is a maximal torsion free definable torus T1 in K, which is nontrivial
as we have just seen. As K/H is a good torus and the image of T1 in the
quotient is torsion free, it follows that T1 ≤ H, and we again have the desired
subgroup. □
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11. Modules

11.1. Composition series. For the most part we are concerned here
with a definable action of a group G of finite Morley rank on an abelian
group V . This means that we are working in a context in which both G
and V are definable, and the action of G on V is definable, and all of this
is interpreted into some group of finite Morley rank. In such cases one can
always take the ambient group to be the semidirect product V ⋊ G, with
predicates distinguishing its subgroups V and G present in the language.

Lemma 11.1. Let G be a connected group of finite Morley rank acting
definably on an abelian group V . Let W ≤ V be an infinite nontrivial G-
submodule, not necessarily definable. Then W contains an infinite definable
G-submodule of V .

Proof. [G,W ] ≤W is connected and definable. □

Lemma 11.2. Let G be a connected group of finite Morley rank acting
definably on an abelian group V . Then there is a series of G-invariant
definable submodules

V = V0 > V1 > · · · > Vn = (0)

such that each quotient Vi/Vi+1 is either G-irreducible or trivial.

Proof. We proceed by induction on the rank and degree of V . Accord-
ingly we may suppose that V is infinite and has no proper infinite definable
G-invariant subgroup. In particular V is connected.

We may suppose that G acts nontrivially on V . Therefore V1 = CV (G) is
finite. Then V/V1 is G-irreducible; otherwise, we have V0 > V1 G-invariant
and finite, hence G acts trivially on V1 as it is connected. □

When we have a groupG acting definably on an abelian group V we must
distinguish irreducibility of V as a G-module and definable irreducibility—
the absence of nontrivial proper definable submodules. When G centralizes
V these are very different notions. But otherwise, they tend to coincide.

Lemma 11.3. Let G be a connected group of finite Morley rank acting
definably and nontrivially on an abelian group V . If V is definably irreducible
as a G-module then V is irreducible.

Proof. By Lemma 11.2 of Chapter I V has a definable nontrivial sub-
module V0 on which the action is either trivial or irreducible, and by defin-
able irreducibility V = V0. □

Definition 11.4. Let G be a connected group of finite Morley rank act-
ing on an abelian group V , and V = V0 > V1 > · · · > Vn = (0) a series with
trivial and irreducible quotients, as above. Then the quotients Vi/Vi+1 on
which G acts nontrivially are called the composition factors with respect to
the given series.
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Lemma 11.5. Let G be a connected group of finite Morley rank acting on
an abelian group V . Let Ai (i ∈ I) and Bj (j ∈ J) be the set of nontrivial
composition factors with respect to two series for V under the action of
G. Then |I| = |J | and after relabeling appropriately with J = I, we have
Ai ≃ Bi.

Proof. Let the series be (Vi) and (Wj) respectively, with Ai = Vi/Vi+1

(1 ≤ i ≤ m) and Bj = Wj/Wj+1 (1 ≤ j ≤ n); then I and J are the
corresponding sets of indices, for which the factors are nontrivial.

For any i, j we have:

Vi+1 + (Vi ∩Wj)

Vi+1 + (Vi ∩Wj+1)
≃ Vi ∩Wj

(Vi ∩Wj+1) + (Vi+1 ∩Wj)
≃ Wj+1 + (Vi ∩Wj)

Wj+1 + (Vi+1 ∩Wj)

For i ∈ I, j ≤ n, let i → j mean that j is maximal such that Vi =
Vi+1 + Vi ∩Wj . Then Vi ∩Wj+1 ≤ Vi+1 and

Wj+1 + (Vi ∩Wj)

Wj+1 + (Vi+1 ∩Wj)
≃ Vi+1 + (Vi ∩Wj)

Vi+1 + (Vi ∩Wj+1)
=

Vi
Vi+1

which is assumed irreducible.
On the other hand

Wj+1 + Vi ∩Wj

Wj+1 + Vi+1 ∩Wj
≤ Wj

Wj+1 + Vi+1 ∩Wj

which must therefore be a nontrivial module, and which is also a quotient of
Wj/Wj+1; so the latter is nontrivial and hence irreducible by construction.
It follows that Wj ∩ Vi+1 ≤ Wj+1, and by irreducibility Wj+1 + Vi ∩Wj =
Wj . Thus j → i in the reverse sense, and the foregoing shows also that
corresponding quotients are isomorphic. □

11.2. Clifford Theory.

Lemma 11.6. Let G be a group of finite Morley rank acting definably
and irreducibly on an abelian group V , and let H ◁ G. Suppose that H acts
irreducibly on U ≤ V with U infinite. Then V is completely reducible as an
H-module, and in fact V is a finite direct sum of conjugates Ug of U under
the action of G.

Proof. Let V0 be a maximal H-submodule of V which is expressible
as a direct sum of conjugates of U . Such a maximal submodule exists since
rk(V ) ≥ rk(V0) = n rk(U), where n is the number of conjugates involved.

For g ∈ G, Ug is again an irreducible H-module. Thus V0 = ⟨Ug : g ∈
G⟩, since if g ∈ G with Ug not contained in V0, we find Ug ∩ V0 = (0) and
hence V0 can be extended to V0 ⊕ Ug.

It follows that V0 is a nontrivial G-module, so V0 = V by irreducibility.
□
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11.3. Faithful solvable actions.

Proposition 11.7. Let H be a connected solvable π⊥-group of finite
Morley rank acting faithfully on a nilpotent π-group V of bounded exponent.
Then H is a good torus.

Proof. We work in G = V ⋊H. Observe that F (G) = V (F (G) ∩H)
and that F (G) ∩ H centralizes V , hence is trivial by faithfulness. Thus
F (G) = V and H ≃ G/F (G) is a torus.

Take a normal G-invariant series V = V0 > V1 > · · · > Vn = (0) with
successive quotients finite or G-minimal. The stabilizer of this chain in H
is trivial by Proposition 10.7 of Chapter I. Thus by considering the action
on all of the quotients Ai = Vi/Vi+1, we get a definable injection of H into∏

i H̄i, where H̄i is the image of H in AutAi.
Now the H̄i are subgroups of multiplicative groups of fields of finite

characteristic, and hence are good tori by Proposition 4.20 of Chapter I. So
H is a good torus by Corollary 4.22 of Chapter I. □

Lemma 11.8. Let G = H⋊T be a group of finite Morley rank with H,T ,
and the action of T on H definable. Assume that H is a nilpotent π-group
of bounded exponent and T is a connected solvable π⊥-group. Then

H = [H,T ]⊕ CH(T )

Proof. We know H = [H,T ] · CH(T ) by Corollary 9.10 of Chapter I,
and the claim holds if T has bounded exponent by Corollary 9.14 of Chapter
I.

We may suppose that T acts faithfully on H, and then by Proposition
11.7 of Chapter I it follows that T is a good torus, and in particular abelian.

We will argue by induction on the rank and degree of H. Suppose
T ̸= 1 and pick a nontrivial torsion element t ∈ T . Then by the bounded
exponent case we have H = [H, t] ⊕ CH(t). Let H1 = CH(t) < H. By
induction we have H1 = [H1, T ] ⊕ CH1(T ) = [H1, T ] ⊕ CH(T ). Thus H =
([H, t]⊕ [H1, T ])⊕ CH(T ).

Now as [H, t] and [H1, T ] are T -invariant, we have [H,T ] = [[H, t], T ]⊕
[H1, T ] ≤ [H, t]⊕ [H1, T ] and hence [H,T ] centralizes CH(T ) and is disjoint
from it, as claimed. □

12. Thompson A×B

Lemma 12.1. [171, (1.13), p. 8] Let G = HK be a group of finite Morley
rank, where H is a definable normal π-subgroup of bounded exponent and K
is a definable π⊥-subgroup. Then [[H,K],K] = [H,K].

Proof. By Lemma 3.30 of Chapter I, [H,K] and [[H,K],K] are defin-
able subgroups of G. Let N = [H,K]K. Then N is definable and normal
in G. Furthermore, N is the smallest normal definable subgroup of G such
that G/N is a π-group: if M is definable normal in G and Ḡ = G/M is
a π-group, then K̄ is a π⊥-group hence K ≤ M (Lemma 2.18 of Chapter
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I), hence also [H,K] ≤ M . In particular N is a definably characteristic
subgroup of G.

Similarly N1 = [[H,K],K]K is the smallest definable normal subgroup
of N such that N/N1 is a π-group, and N1 is definably characteristic in N .
Hence N1 ◁ G. But K ≤ N1, hence N1 = N , and [[H,K],K] = [H,K]. □

We state the A×B-lemma in two equivalent forms:

Proposition 12.2. [171, (1.15), (1.15)′] Let G be a group of finite Mor-
ley rank. The following conditions on G are equivalent:

(i) Let A be a definable p⊥-subgroup of G. Let B be a definable p-
subgroup of CG(A) of bounded exponent. Suppose A × B normal-
izes a definable subgroup p-subgroup P of bounded exponent. If A
centralizes CP (B) then A centralizes P .

(ii) Let Q be a definable p-subgroup of G of bounded exponent and U
be a definable subgroup of Q such that CQ(U) ≤ U . Suppose A is

a definable p⊥-subgroup of G that normalizes Q and centralizes U .
Then A centralizes Q.

Proof. We first prove (i) implies (ii). Let U and Q be as in (ii).
The group A × U normalizes Q. By the assumption A centralizes CQ(U).
Therefore we can apply (i) with B = U and P = Q and conclude that A
centralizes Q.

Now we prove (ii) implies (i). By considering the semidirect product
P⋊(A×B), we may assume that B∩P = 1. In particular, NP (B) = CP (B).
Let Q = BP . Q is a definable p-group. If U = NP (B)B then A centralizes
U and CQ(U) ≤ CQ(B) ≤ NQ(B) = NP (B)B = U . An application of (ii)
proves the result. □

We will prove Proposition 12.2 of Chapter I (ii). First a special case:

Lemma 12.3. [171, (1.16)] Let G be a group of finite Morley rank. Let
X be a definable π-subgroup of bounded exponent of G and Y be a normal
definable subgroup of X such that CX(Y ) ≤ Y . Suppose that A is a definable
π⊥-subgroup of G that normalizes X and centralizes Y . Then A centralizes
X.

Proof. As [A, Y ] = 1 and Y ◁ X, we have [[X,Y ], A] = 1. Clearly,
[[Y,A], X] = 1. By the three subgroups lemma, [[A,X], Y ] = 1. Therefore,
[A,X] ≤ CX(Y ) ≤ Y . Lemma 12.1 of Chapter I implies that [A,X] =
[[X,A], A] = 1. □

Now we prove the A×B-lemma:

Proposition 12.4. [171] Let G be a group of finite Morley rank whose
Sylow p-subgroups are nilpotent-by-finite and of bounded exponent. Let Q be
a definable p-subgroup of G and U be a definable subgroup of Q such that
CQ(U) ≤ U . Suppose A is a definable p⊥-subgroup of G that normalizes Q
and centralizes U . Then A centralizes Q.
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Proof. Let Y = CQ(A). Then U ≤ Y and we have CQ(Y ) ≤ CQ(U) ≤
U ≤ Y . Let X = NQ(Y ). By Lemma 12.3 of Chapter I, A centralizes X.
Therefore, X ≤ Y . But Q is a nilpotent-by-finite p-group and thus satisfies
the normalizer condition. Therefore, X = Y = Q. □

13. Complex reflection groups

Definition 13.1. A linear transformation on a finite dimensional vector
space is a (generalized, or complex) reflection if it is diagonalizable and has
a fixed space of codimension exactly one. A real or ordinary reflection is a
complex reflection of order two. Note that the identity is not considered to
be a reflection.

The finite groups generated by reflections were originally classified by
Shephard and Todd [162], and their numbering is referred to as the Shephard-
Todd numbering. The table at the end of this section gives some of the prop-
erties of “sporadic” finite irreducible complex reflection groups in dimen-
sion at least two, organized according to the following scheme: Shephard-
Todd Number; dimension of the representation; Coxeter Label (if applicable);
Group order; Order of the Center; Orders of reflections, where the last item
refers to the orders of the complex reflections occurring in the group. In
groups defined over the real field these reflections must have order 2. There
are also three infinite families: the first contains the standard representa-
tion of the symmetric group (Coxeter type An), the third consists of dihedral
groups acting in dimension 2 and the second is a series G(m, l, n) to which
we will return below.

It will be observed that four of the groups listed are crystallographic
Coxeter groups associated with exceptional Dynkin diagrams. Other than
that, the most interesting group is probably the one with number 12, which
crops up in various contexts such as singularity theory.

Series #2 in the Shephard-Todd classification is a family of groups de-
noted G(m, ℓ, n), where n is the dimension of the associated vector space,
and m, ℓ are parameters with ℓ a divisor of m, which for m = 2 correspond
to the Coxeter groups Bn (or Cn) and Dn. The groups G(m, l, n) may be
described explicitly as follows [75, p. 386]. Let A(m, l, n) be the group of

diagonal matrices D for which Dm = 1 and det(D)m/l = 1. Then G(m, l, n)
is the semidirect product A(m, l, n)⋊Πn with Πn the group of permutation
matrices.

We use the foregoing information to derive a criterion for a finite group
to be isomorphic to an irreducible Coxeter group.

Theorem 13.2. Let W be a finite group, I ⊆ W a subset, and n an
integer, satisfying the following conditions.

(1) The set I generates W , consists of involutions, and is closed under
conjugation in W ;

(2) The graph ∆I with vertices I and edges (i, j) for noncommuting
pairs i, j ∈ I is connected;
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(3) For all sufficiently large prime numbers ℓ, W has a faithful rep-
resentation Vℓ over the finite field Fℓ in which the elements of I
operate as complex reflections, with no common fixed vectors.

Then one of the following occurs.

(a) W is a dihedral group acting in dimension n = 2, or cyclic of order
two.

(b) W is isomorphic to an irreducible crystallographic Coxeter group,
that is, An, Bn, Cn, Dn (n ≥ 3, En (n = 6, 7,or 8), or Fn (n = 4),

(c) W is a semidirect product of a quaternion group of order 8 with the
symmetric group Sym3, acting naturally, represented in dimension
2.

If, in addition, over some field, W has an irreducible representation of di-
mension at least 3, in which the elements of I act as reflections, then case
(b) applies.

Proof. Note that as W is generated by finitely many reflections, the
dimensions of the representations Vℓ are bounded. Let V be a nonprincipal
ultraproduct of these representations, which is a representation of W over
the field F obtained as the corresponding ultraproduct of the finite fields Fℓ.
Then the field F has characteristic zero and cardinality 2ℵ0 , and can be iden-
tified with a subfield of the complex field C. Let Ṽ be the complexification
of V ; we consider W with its complex representation Ṽ .

Then V and Ṽ are finite dimensional as well, over their respective fields,
and the elements of I operate as (ordinary) reflections on V and hence on Ṽ .

We claim that the action ofW on Ṽ is irreducible. The action is completely
reducible since W is finite and the characteristic is zero. If Ṽ is reducible
then it factors as V1 ⊕ V2 with V1, V2 nontrivial invariant subspaces. Then
setting Ii = {w ∈ I : [w, Ṽ ] ≤ Vi}, it follows that (I1, I2) is a partition of I
into commuting subsets, one of which must be empty. So we may suppose
[I, Ṽ ] ⊆ V1, so [I, V ] < V ; as V is an ultraproduct this yields [I, Vℓ] < Vℓ for
infinitely many ℓ, a contradiction.

We remark that the same argument shows that for ℓ not dividing the
order of W , if the elements of I act as complex reflections on a vector space
over Fℓ and have no common fixed vectors there, then the representation in
question is irreducible.

Now returning to our complex representation, the classification of the
irreducible complex reflection groups applies. Leaving aside the Coxeter
groups, we have to deal with the groups numbered 4–27 or 29–34, as well as
those of the form G(m, l, n) with m > 2.

By a slight variation of Schur’s lemma, we claim that the center of W
acts via scalar matrices in every representation V0 in which the generating
set I acts via reflections. Take z ∈ Z(W ) and take i ∈ I. Then z preserves
the one-dimensional space [i, V0] and hence has an eigenvalue α on this space.
The α-eigenspace for z is W -invariant and hence equal to V .
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Accordingly, the order of the center of W divides ℓ−1 for all sufficiently
large primes ℓ. By Dirichlet’s theorem, there are arbitrarily large primes
congruent to −1 modulo |Z(W )|, and hence |Z(W )| divides 2. But after
leaving aside the crystallographic Coxeter groups, |Z(W )| > 2 with the
exception of the groups numbered

4, 12, 23, 24, 30, 33

in the table following. As the last column in the table shows, group #4 con-
tains no ordinary reflections, and may be excluded. Group #12 is referred
to in case (c).

We claim thatW cannot occur twice on our list. IfW ≃ G(m, ℓ, n), then
in any representation over C, A(m, ℓ, n) is diagonalizable and its eigenspaces
are permuted by W , so the representation is imprimitive. But the individ-
ually listed groups are primitive. So there is no overlap between the family
G(m, ℓ, n) and the groups listed. As the Fitting subgroup of G(m, ℓ, n) is
A(m, ℓ, n), it is easy to recover both m and n from the group G(m, ℓ, n);
so any group G(m, ℓ, n) occurs at most once. The remaining groups on our

list are of distinct orders. So the dimension n of the representation Ṽ is
independent of the nonprincipal ultrafilter chosen, and hence all but finitely
many of the representations Vℓ have dimension n.

For the groups numbered 23, 24, 30, 33 one works with the order, which
must divide the order of GLn(ℓ) for almost all primes ℓ. We use the fact that
the orders shown are divisible by the values 5, 7, 52, and 34 respectively,
in dimensions 3, 4, 5, 5 respectively. For example in case 33 we may take
ℓ congruent to 2 mod 34, so that |GL5(ℓ)| is congruent to 210(25 − 1)(24 −
1)(23 − 1)(22 − 1)(2− 1), and the only factors divisible by 3 here are 24 − 1,
22 − 1 giving a factor of 32 but not 34, a contradiction.

It remains to consider the groups G(m, l, n) with m > 2. We will work
with particular elements of G(m, l, n). Let ζ be a primitivemth root of unity
and let D1, D2 be the following diagonal matrices, considered as elements of
W :

diag (ζ, ζ−1, . . . ); diag (ζ, ζ, ζ−2, . . . )

where diagonal entries not shown all equal 1. The coefficients are not nec-
essarily in the base field F ; this is the representation after complexification.
However the traces τ1 = ζ + ζ−1 and τ2 = 2ζ + ζ−2 are in the base field,
and as this is an ultraproduct, with respect to whatever ultrafilter we like,
it follows that we have similar elements τ1, τ2 in any field prime Fℓ with
ℓ sufficiently large; that is, there is a primitive mth root of unity ζℓ in an
extension of Fℓ for which the corresponding formulas hold.

Now one finds that (τ1− 2)ζ = τ2− τ21 +1, and over Fℓ this implies that
either τ1 = 2 or ζ ∈ Fℓ. But when τ1 = 2 the equation ζ + ζ−1 = 2 yields
ζ = 1, and hence in either case ζ ∈ Fℓ. This means that m divides ℓ− 1 for
almost all ℓ, and hence m ≤ 2, which corresponds to a Coxeter group.

This exhausts the treatment of all cases and proves that one of cases
(a− c) occurs.
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Turning to the final point, if W has a faithful representation in which
the elements of I act as reflections, in dimension d ≥ 3, then it is certainly
not dihedral. As far as the group listed as #12 is concerned (case (c)), this
is generated by three reflections and hence has no suitable representation in
dimension 4 or more. In dimension 3, since the commutator subgroup of W
is the extension of a quaternion group Q by a cyclic group of order 3, and
the center of Q is central in W , we find first that the central involution of
Q is scalar, and secondly that it has no square root in SL3, hence none in
Q, and this is a contradiction. □
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Number Dim. Name |W | |Z(W )| |r| (possible)
4 2 #4 23 ∗ 3 2 [ 3 ]
5 2 #5 23 ∗ 32 6 [ 3 ]
6 2 #6 24 ∗ 3 4 [ 2, 3 ]
7 2 #7 24 ∗ 32 12 [ 2, 3 ]
8 2 #8 25 ∗ 3 4 [ 4 ]
9 2 #9 26 ∗ 3 8 [ 2, 4 ]
10 2 #10 25 ∗ 32 12 [ 3, 4 ]
11 2 #11 26 ∗ 32 24 [ 2, 3, 4 ]
12 2 #12 24 ∗ 3 2 [ 2 ]
13 2 #13 25 ∗ 3 4 [ 2 ]
14 2 #14 24 ∗ 32 6 [ 2, 3 ]
15 2 #15 25 ∗ 32 12 [ 2, 3 ]
16 2 #16 23 ∗ 3 ∗ 52 10 [ 5 ]
17 2 #17 24 ∗ 3 ∗ 52 20 [ 2, 5 ]
18 2 #18 23 ∗ 32 ∗ 52 30 [ 3, 5 ]
19 2 #19 24 ∗ 32 ∗ 52 60 [ 2, 3, 5 ]
20 2 #20 23 ∗ 32 ∗ 5 6 [ 3 ]
21 2 #21 24 ∗ 32 ∗ 5 12 [ 2, 3 ]
22 2 #22 24 ∗ 3 ∗ 5 4 [ 2 ]
23 3 H3 23 ∗ 3 ∗ 5 2 [ 2 ]
24 3 #24 24 ∗ 3 ∗ 7 2 [ 2 ]
25 3 #25 23 ∗ 34 3 [ 3 ]
26 3 #26 24 ∗ 34 6 [ 2, 3 ]
27 3 #27 24 ∗ 33 ∗ 5 6 [ 2 ]
28 4 F4 27 ∗ 32 2 [ 2 ]
29 4 #29 29 ∗ 3 ∗ 5 4 [ 2 ]
30 4 H4 26 ∗ 32 ∗ 52 2 [ 2 ]
31 4 #31 210 ∗ 32 ∗ 5 4 [ 2 ]
32 4 #32 27 ∗ 35 ∗ 5 6 [ 3 ]
33 5 #33 27 ∗ 34 ∗ 5 2 [ 2 ]
34 6 #34 29 ∗ 37 ∗ 5 ∗ 7 6 [ 2 ]
35 6 E6 27 ∗ 34 ∗ 5 1 [ 2 ]
36 7 E7 210 ∗ 34 ∗ 5 ∗ 7 2 [ 2 ]
37 8 E8 214 ∗ 35 ∗ 52 ∗ 7 2 [ 2 ]

Table 1. Sporadic complex reflection groups

14. Notes

We generally follow [51]. The main exceptions are the material on Carter

subgroups, where we follow Frécon, and our treatment of two more specialized

topics: the Thompson A×B-theorem, which was treated in [4], and the material
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on complex reflection groups, for which we follow [59], which varies somewhat from

the earlier [33].
The main focus of this set of tools can be seen to lie in the theory of solvable

groups, and the closely related Schur-Zassenhaus material. A natural complement

to the solvable theory for our purposes is furnished by the theory of Chevalley

groups, covered in the next chapter. Putting the two together, we will get the

theory of “K-groups”.

§1 of Chapter I General group theory

Our first section is a miscellaneous collection of results from a variety of sources,

many of them collected in [51]—frequently in the form of exercises.

One may notice a preoccupation with the commutator calculus and some as-

pects of the theory of groups with various finiteness conditions (locally finite, mini-

mum condition on centralizers) and localization of finite notions (locally nilpotent,

locally solvable), which go hand in hand. This furnishes very useful tools for the

extension of results from finite group theory to our context. In the generalizations

of these results to broader classes of interest in model theory, this aspect of the the-

ory takes on a particular importance, as can be seen in the development of [180].
Here we get by with comparatively little in this vein, as our strong rank hypothesis

simplifies some matters.

Whether the theory of E(G) belongs here is uncertain, but it is closely tied to

the three subgroups lemma, and a portion of this theory is completely general.

The versions of the Schur-Zassenhaus theorem given in this section are needed

for the Hall theory in §8 of Chapter I, and are due to Hartley.

The forms of Schur-Zassenhaus more commonly used in analyzing groups of

finite Morley rank are given in §9 of Chapter I.

§2 of Chapter I Rank

This section contains not only the key definitions but a number of powerful

results from the early days of the subject.

We have reworded the rank axioms slightly. These were originally intended

to serve as axiomatizations of Morley’s rank notion “in a single model”—which,

however, does not entirely obviate the need for an occasional compactness argu-

ment. Poizat devised the formulation given here (in a slight variant) and proved

its equivalence to Morley’s notion in the context of groups—outside that context,

the equivalence fails. This analysis is fully developed in his [150], which is the

essential reference for this point. From a practical point of view, the main point is

that these axioms are true, in groups, whenever one has finite Morley rank—with

additivity coming (to the model theorist) as an unexpected bonus.

As a result of these foundational matters being well in hand, the bulk of the

later developments have been more group theoretic than model theoretic, with

consequences of Wagner’s results on fields of finite Morley rank in §4 of Chapter I,

coming as the major exceptions to this rule, to date.

We use the terms “definable” and “interpretable” interchangeably here; they

refer, technically, to first order definability, with parameters, in Geq (the extension
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of G by all equivalence classes for 0-definable equivalence relations). We sometimes

say “definable” over rather than in to emphasize this point.

Lemma 2.7 of Chapter I would be considered fundamental from a model the-

oretic point of view. It gives the “stability” of the theory, and points toward

generalizations of much of the theory. In our context (finite rank) it can usually,

but not always, be replaced by more brutal, less combinatorial, considerations.

Lemma 2.8 of Chapter I is the chain condition of Baldwin and Saxl [22], one
of the more subtle of the early results in the area.

The definable hull is an important tool in coming to terms with the need to

work with undefinable groups, a line which has been considerably developed in

Frécon’s work on the theory of solvable groups, and which enters the theory early

on, as soon as one takes up the Sylow theory.

The structure of abelian groups of finite Morley rank (Lemma 2.13 of Chapter

I) was given by Macintyre in [134] in preparation for his work on fields ([133],
§4 of Chapter I below). This pair of articles were the first to suggest that sta-

bility assumptions had conventional algebraic content, and sparked a good deal of

research, playing a role in the formulation of Zilber’s conjectures (later, the Zariski

structures of Hrushovski/Zilber) as well as the line of work represented here.

The Basic Fusion Lemma (Lemma 2.20 of Chapter I) is a familiar group theo-

retic fact which fails badly in “superstable” groups. Its truth in our context, while

not subtle, has a major impact on the theory. It is not out of the question that some

of the structural analysis given here can be generalized substantially to contexts

where this principle fails, but this would have to be reexamined from scratch, as

everything we do with involutions here goes back to this principle.

§3 of Chapter I Connected groups

Lemma 3.6 of Chapter I is given in [67].
Lemma 3.10 of Chapter I is a version of an early result of Reineke. .

The versatile Proposition 3.19 of Chapter I comes from [189], along with var-

ious applications given here. The simplest form—definability of groups generated

by connected subgroups—will be used in a variety of further ways later on. It more

or less guarantees the existence of a decent “connected” version of any subgroup in

use in finite group theory.

A recurrent theme, and one we do not address systematically, is the behavior

of all of our notions under elementary extension. We remark that if G∗ is an

elementary extension of G then the natural relations hold:

(G◦)∗ = (G∗)◦; [G : G◦] = [G∗ : G◦]

and are straightforward. One should be careful however: although G◦ is definable,

it does not follow from this that the function H → H◦ is itself definable (this is

meaningful whenever H varies over a uniformly definable family). Cf. Fact 3.17 of

Chapter I.

The simplicity of “definably simple” nonabelian groups (Lemma 3.25 of Chapter

I) is one of its less obvious consequences, also given by Zilber.
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The full story on definability of commutators, including the troublesome “finite

bits,” is given in [51] as Corollary 5.31.

§4 of Chapter I Fields

The fundamental linearization results come from Zilber’s abstract [188].
The result of Macintyre given as Proposition 4.2 of Chapter I was one of the

earliest results relating to the meaning of stability in algebraic contexts, contempo-

raneous with his analysis of abelian groups in Lemma 2.13 of Chapter I [134, 133].
Lemma 4.3 of Chapter I is a quirk of the finite rank context, but useful. It can

be strengthened considerably: there is no proper definable multiplicative subgroup

containing a (not necessarily definable) infinite subfield.

Evidently, fields of finite Morley rank can have nontrivial automorphisms: pow-

ers of the Frobenius provide an example. These are the only examples known, and

the problem of the existence of further examples is one of the outstanding open

problems; Wagner’s result, Proposition 4.18 of Chapter I, casts some light on this.

Proposition 4.27 of Chapter I is due to Rose [157].
Bad fields made their appearance early, in Zilber’s first field interpretation

results, as emphasized here. The name came considerably later, as their relevance

to the structure of simple groups of finite Morley rank became clearer. Wagner’s

result, Proposition 4.18 of Chapter I [182] has a number of practical consequences.

Some consequences for the theory of linear groups of finite Morley rank are given

in [154], and applied to groups of even type with strongly embedded subgroups in

[10].
The theory given here (in Parts B and, notably, C) was initially developed

without the benefit of Wagner’s result, but it has allowed us to considerably extend

the scope of our results beyond our initial intentions.

For example, the material given in Chapter VI went through three stages of

development. In the first instance the results were proved for even type K∗-groups
not involving bad fields, beginning with [1]. After Jaligot’s thesis [122] the “no

bad field” hypothesis fell out of use in even type. At this stage more solvable group

theory came into play, along with a much closer analysis of involutions and their

fusion.

The difficulty with these approaches is that even if one is completely successful,

in the end one is only dealing with groups having no simple degenerate sections. On

the other hand Proposition 10.13 of Chapter I, from [2], suggests a “decoupling”

of the degenerate type sections from the group theoretic analysis. But in following

up this idea it turned out that Wagner’s results, and the general theory of good

tori to which they naturally lead, were essential [11, 12, 13].
When this idea came along quite a bit of material was already in print based

on the K∗ hypothesis, and we had to go back to the beginning and rework it in the

L∗ case. The material in Chapters VI and VII became considerably more delicate

in the process, and everything afterward required some degree of adaptation, some-

times more, sometimes less, to fit the more general context. As a result of all this

reworking, the publication of the K∗ case was interrupted, and subsumed under

the material in the present work.
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§5 of Chapter I Nilpotent groups

The notion of nilpotence lends itself to considerable development outside the

context of finite groups, and in the finite rank context is well behaved, and close to

the abelian theory. Proposition 5.8 of Chapter I [143] was intended to be a direct

analogue of Macintyre’s analysis in the abelian case, and plays much the same role.

The Fitting subgroup was introduced in [142] and in [27] (in the latter case, along

with the generalized Fitting subgroup).

The Frattini subgroup has seen less use, but it begins to play more of a role in

the work of Wagner and Frécon.

The results on generic equations in nilpotent groups are due to Jaber [117], in
a broader context (stable groups).

The notion of unipotence has been extended to torsion free groups in [59] and
has found substantial applications, notably in the theory of groups of odd type and

the general theory of Carter subgroups (not necessarily in solvable groups).

§6 of Chapter I Sylow theory

The theory comes from [52], with the second point in Lemma 6.15 of Chap-

ter I added in [153]. The type classification it produces is fundamental for the

approach taken in the present work, modeled on techniques of finite group theory.

These can say very little about groups without involutions, as the techniques of the

Feit-Thompson Theorem—and certainly the character theory—find no echo in our

context. Our emphasis in the present work is on the more complete part of the

theory, dealing with mixed type and even type. We will say something about the

status of the other two cases, where considerable information is also available, at

the end.

Recently there has been some improvement in our understanding of p-torsion
for arbitrary primes p [46, 63]. Some of this is may be seen in Chapter IV.

§7 of Chapter I Generalized Fitting subgroup

The generalized Fitting subgroup plays a central role in the analysis of finite

simple groups, one which was noticed comparatively late. Its generalization to our

context, given the Fitting subgroup, is straightforward.

§8 of Chapter I Solvable groups

The exploitation of field interpretability results to elucidate the structure of

solvable groups comes from Zilber’s abstract [188], which includes the analog of

the Lie-Kolchin theorem, rediscovered by Nesin ([141]).
The most incisive recent work on the general theory of solvable groups of finite

Morley rank is in Frécon’s thesis [88] and subsequent publications. There is now a

very substantial body of theory which has considerable application in the structural

analysis of groups of odd type, a subject which could take up another book the size

of this one. See in particular [92], a review article by Frécon and Jaligot.

The Carter subgroup was treated first by Wagner in [180], and a full theory

given by Frécon in a series of papers beginning with his thesis [88]. We have

followed [90] here. His theory is considerably more general and more extensive
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than the one given here. We remark that the detailed theory of solvable groups is

particularly relevant to the structural analysis of minimal simple connected groups,

which in even type is not handled as a separate topic, but which comes into its own

in the treatment of odd type, where problems are often reduced to the minimal

simple connected case and then handled by close analysis there.

The theory of Carter subgroups is very powerful. To some extent it has given

way in the study of even type groups to the closely related, but more specialized,

theory of good tori. We will revisit this topic in §1 of Chapter IV.

The final argument in the proof of 8.24 of Chapter I is given by D. R. Taunt

[115, Theorem 11.17].
For the Hall theory we follow [14] This would actually follow from earlier results

in the locally finite case, given the special case stated as Corollary 8.8 of Chapter

I. However, there seems to be no more direct route to that specific result.

For the Schur-Zassenhaus theory (§9 of Chapter I) we follow the treatment of

[51], based on papers of Borovik and Nesin.

§9 of Chapter I Schur-Zassenhaus

§9.1 of Chapter I: See also Frécon’s formation theory in [90], cf. also [92].

§10 of Chapter I Automorphisms

This is largely a miscellany, consisting of results on automorphisms (and in par-

ticular, centralizers of elements) which do not fall neatly anywhere else. But these

are important results. The result on actions of unipotent 2-groups on groups with-

out unipotent 2-subgroups is fundamental, and many of the other topics covered

here recur in our analysis.

For more on strong embedding see the notes to Chapter 5. Regarding the

definition of strong embedding, we mention the following here.

Remark 14.1. Let G be group of finite Morley rank with a subgroup M
satisfying any of the conditions of Lemma 10.11 of Chapter I. If a Sylow
2-subgroup of G is infinite then M is definable.

Compare Lemma 4.16 of Chapter II.

Example 14.2. Let G be a generalized dihedral group A ⋊ ⟨i⟩ where i
is an involution inverting the divisible abelian torsion free group A. Let
M = A0 ⋊ ⟨i⟩ with A0 ≤ A arbitrary. Then M is typically not definable,
and satisfies conditions (2, 3) of Lemma 10.11 of Chapter I. On the other
hand M is strongly embedded if and only if A0 is 2-divisible.

§11 of Chapter I Modules

This is all modeled tightly on the usual theory, but we cannot work with mod-

ules of finite length because of the possible presence of trivial composition factors

(not necessarily submodules). The notion of G-irreducibility tends to give way to

the related but distinct notions of definable G-irreducibility, and more particularly
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G-minimality. The connection between these definable irreducibility and minimal-

ity is given in Lemma 8.1 of Chapter I, and the connection between ordinary and

definable irreducibility is given in Lemma 11.3 of Chapter I. The three notions do

not differ by much.

§12 of Chapter I Thompson A×B.

The proof of Thompson’s A × B-lemma that we give is a translation of the

arguments in [171]. It was worked out in [4], in connection with “elimination of

cores in C(i)”.

§13 of Chapter I Complex reflection groups

The idea of bringing the theory of complex reflection groups to bear in the

theory of groups of finite Morley rank as a way of recognizing Coxeter groups is

introduced in [33].
The classification of finite complex reflection groups was given in [162] and

again, modernized, in [75]. Theorem 13.2 of Chapter I is a weaker form of the

criterion given in [35], and will be used in §10 of Chapter III, following [35]. The
analysis we give was presented in detail in [59, p. 98], from which we take also the

table, in essentially the same form.

Remark The Hall and Carter theories have useful generalizations to the “prime”

p = 0, which turns out to split into infinitely many primes of the form 0r with r a

rank. This is very useful for the analysis of groups of odd type, but is not needed

in even type. This theory should be part of any comprehensive treatment of the

general theory of groups of finite Morley rank. The generalized Hall theory includes

a Sylow theory for these “primes”. We refer to [61] for this theory, and to [65] for
an application.





CHAPTER II

K-groups and L-groups

. . . as we know, there are known
knowns; there are things we know we
know.

— D. Rumsfeld, 2002

Introduction

Having laid out the more general features of our theory, largely analogous
to the finite case but with a number of quite distinctive features which will
play a prominent role in the applications, we turn now to an examination
of the properties of K-groups—that is, groups whose definable connected
simple sections are Chevalley groups. We deal only with those properties,
a motley crew, which we will actually need in our inductive analyses. In
the main, these can be expressed as properties of the simple sections, or
occasionally their central extensions. So we collect some general facts about
simple Chevalley groups, or from another point of view, simple algebraic
groups. Another useful class of properties, and one which is not directly
expressed in terms of properties of the simple or quasisimple factors, consists
of the verifications of the conclusions of our various classification theorems
from Part C, in the particular context of K-groups. This will provide the
basis for our inductive treatment of these problems.

We must also go beyond the class of K-groups, to L-groups, which are
permitted to have definable connected simple sections of degenerate type. In
general our results for L-groups follow quickly from the corresponding results
for K-groups, using the general principle given in Lemma 6.3 of Chapter II,
which may be expressed loosely as saying that the active portion of an L-
group is a K-group. This is an incarnation of Lemma 10.13 of Chapter
I.

The first three sections concern Chevalley groups or algebraic groups.
The availability of two different languages for discussing this material presents
certain choices and complications. At some level these two languages be-
come interchangeable, but they represent distinct points of view. What we
aim at in our classification theorems is the recognition of our groups as
Chevalley groups. The fact that they are then algebraic is really a theorem
about Chevalley groups—though since it is a theorem that comes early in
the subject, one tends to lose sight of this. At the same time, the language
of algebraic groups is probably more convenient for discussing both the facts

113
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themselves and their proofs. So we adopt the policy that our primary lan-
guage for discussing the subject is the language of algebraic groups, but that
when the focus is moving in the direction of generators and relations one
may speak more of Chevalley groups.

We emphasize that we do not use the classification of the simple algebraic
groups, but rather its converse. This is the natural flow of argument.

We begin with some general properties of algebraic groups, utilitarian
and miscellaneous in character. This is supplemented by a discussion under
the heading of Chevalley groups in the following section. We need also the
theory of central extensions of simple Chevalley groups, and we remark that
there are normally three different theories of central extensions: one in the
category of algebraic groups, one in the category of abstract groups, but
limited to extensions with finite kernel, and one in the category of abstract
groups as such. We have a fourth category: groups of finite Morley rank.
Using the abstract theory we show that our central extensions fall in the
algebraic category. Again, this is the concatenation of two distinct results:
one, that in our finite Morley rank category the universal central extension
is the one given by Steinberg in the Chevalley context (one can hardly call
this a category); and two, that this is also the universal extension in the
algebraic category, which is we simply quote from Steinberg.

Because a group of finite Morley rank which is a perfect central extension
of a simple Chevalley group is in the algebraic category, we may conclude
from the algebraic theory (or for that matter directly from the Chevalley
theory) that the center is finite, and is contained in a maximal torus.

From §4 onward, we deal withK-groups and L-groups as a class. We deal
first with the issue of how much “additional structure” a simple algebraic
group over an algebraically closed field can carry, in an enriched language.
By constructions of Hrushovski and others, a considerable amount of pathol-
ogy is possible (the rank of the base field can be greater than one, there can
be more than one field structure on a given set, and so forth). But results of
Wagner and Poizat limit the impact of this sort of pathology on the groups
defined over such fields, particularly in positive characteristic.

The general structure of K-groups is very straightforward. We saw in
the previous chapter that a for a connected solvable group H of finite Morley
rank, H modulo the Fitting subgroup is abelian. Similarly, for a connected
K-group H, H modulo the solvable radical is a direct sum of finitely many
simple algebraic groups. Using the theory of central extensions, one has
a similar result modulo the connected part of the solvable radical, using
quasisimple factors. Both versions are useful throughout.

At this point we enter into a consideration of a more technical issue
that are inspired by the techniques of finite group theory: weak embedding.
As preparation for later analysis, we describe the K-groups with weakly
embedded subgroups. In the last subsection we prove a small but useful
result on the existence of Sylow 2-subgroups invariant under the action of a
given group.
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The discussion of K-groups continues at length in §5 of Chapter II with
the focus shifting to groups of even type, reflecting the specific properties
of algebraic groups in characteristic two, viewed as abstract groups. In
particular we relate the Borel subgroups to the Sylow 2-subgroups, and
discuss some other more or less abstract features of tori, O2, and O2⊥ .
Reductivity can be expressed by the condition O2(G) = 1, and characterized
also by the condition G = E(G) ∗ O(G). This is a point which occurs
frequently in structural analyses, and sharpens the more general structural
observations of the preceding section.

We take up also the structure of K-groups of even type with abelian
Sylow 2-subgroups and more generally strongly closed abelian 2-subgroups.
It turns out that the latter topic is not required for our classification results
(and as this section shows, once one has the classification results everything
is known), but it is part of the finite group theoretic approach, and our
treatment of abelian Sylow 2-subgroups in general in Part C can be arranged,
with some additional effort, to include this case. This is in fact how it
appears in the literature [5]. There are a number of other topics treated in
this section, aimed at the specific needs of our classification results later on,
and reflecting either the structure of algebraic groups or some ideas from
finite group theory (or, frequently, both).

The next section moves this body of K-group theory into the framework
of L-groups, beginning with the fundamental Lemma 6.3 of Chapter II.
Everything done up to this point has L-group versions, many coming cheaply
from the fundamental lemma, while others require some further analysis.

One topic which would fall naturally into this chapter has been post-
poned to §5 of Chapter III, namely various characterizations of the natural
module for SL2. In general, the theory of “pushing up” and the “amalgam
method”, which are interrelated, make use of some representation theory,
which in recent times has become quite elaborate. But we have neither a
representation theory nor any obvious prospects for developing one. Still, we
can get just enough information to support these two approaches to group
theoretic analysis, as we shall see.

Overview

In our first chapter we laid the foundations of our subject and then devel-
oped general group theory in this context. Here and there we encountered
results more reminiscent of algebraic group theory than of group theory
in general (structure of Sylow 2-subgroups, structure of connected solvable
groups) and an occasional bizarrerie having to do with “mixed characteris-
tic” (actions of 2-unipotent groups on sections of degenerate type).

The present chapter deals with topics of a comparably general flavor,
but controlled by the specific theory of Chevalley groups, and ultimately by
the yoga of Coxeter groups and Dynkin diagrams. The reader looking for an
overview of the theory will not linger long here—these topics will presumably
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be familiar. But there are some unexpected twists—simplifications, but also
complications—which we will point out.

There are three levels to the theory: (1) Chevalley groups and algebraic
groups; (2) K-groups (where the interesting sections are Chevalley groups);
(3) L-groups (where the interesting sections are still Chevalley groups, but
there are more uninteresting, or in any case annoying, sections).

Algebraic groups—specifically, linear algebraic groups—naturally con-
stitute the framework one is most likely to adopt in order to think about
these groups. A perennial question is the extent to which the notions in this
subject go over to the context of groups of finite Morley rank. We have seen
the notion of connectivity pass to the broader context, and come into use.
The definition of “Borel subgroup” can be repeated, though some of the
supporting machinery, such as the notion of complete variety, is lost, and
the question of conjugacy becomes very difficult. We also lose the notion of
tangent space (and for that reason, it will never be mentioned again), and
with it, the Lie algebra. Unipotence and semisimplicity become problematic,
but not entirely hopeless.

The material in §1 of Chapter II, dealing with algebraic groups, is in-
tended mainly to set the stage in a few respects. Some of the results given
there are of use when applied later to definable sections of our ambient
group, and they also may motivate some of the things we later do more
broadly, but in this section we avoid dealing with the fine structure of the
group, as encoded in the Dynkin diagram, which we think of as sitting in
the context of Chevalley groups, to which we devote the second, far more
utilitarian, section.

The section on Chevalley groups as such, §2 of Chapter II, consists
largely of standard fare. One exception is in the fourth subsection, a miscel-
lany of remarks about the structure of Borel subgroups and the associated
root systems that happen to be called on later, and would not otherwise
be mentioned. But the main topics treated are the Chevalley commutator
formula, the Bruhat decomposition, central extensions, and automorphisms,
along with groups normalized by maximal tori and identification of groups
in Lie rank two (also standard, though less standard than the others). All of
this is enormously useful in the sequel, and some of it calls for further com-
ment now, namely: automorphisms, identification, and central extensions.

The description of the automorphism group of a Chevalley group is stan-
dard, but we are interested in definable automorphisms, and more specifi-
cally in definable groups of automorphisms, which as we might expect based
on the previous chapter eliminates field automorphisms. The net result,
since our base fields are algebraically closed, is that the automorphisms of
interest are inner·graph. In particular connected groups of automorphisms
are always inner, and definable groups of automorphisms of SL2 (our favorite
group, in practice) are always inner. So here we have a simplification to be
exploited systematically.
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As far as identification is concerned, there is nothing special in our case.
But whereas the Curtis-Tits theorem says in Lie rank three or higher that a
Chevalley group is determined by its pattern of root SL2-subgroups, which
are encoded in the Dynkin diagram, matters are more difficult in the key
case of Lie rank two (which is where our inductive analysis will really begin),
and here a theorem of Tits fills the gap and says that it suffices to add in the
structure of the normalizer of a maximal torus to have a defining amalgam
determining the group. So we will be using this (in conjunction with the
amalgam method) in Chapter IX.

Finally, the theory of central extensions is complicated in interesting
ways by the fact that we work outside the algebraic category: so compli-
cated, that we add an additional section to resolve the resulting difficulties.
So in §2 of Chapter II we lay out the theory of central extensions of Cheval-
ley groups as given by Steinberg, and in §3 of Chapter II we then work out
the theory of central extensions of finite Morley rank. There are three cat-
egories of groups here, and three central extension theories: the category of
algebraic groups, the category of groups of finite Morley rank (this is actu-
ally several categories, but let it pass), and the category of abstract groups.
Chevalley groups live in all three categories of course, and have a central
extension theory in each category. The algebraic and abstract central ex-
tension theories are very different: in fact the abstract central extension
theory depends heavily on the base field. The finite rank central extension
theory happens to coincide with the algebraic, and this is what needs to be
proved in §3 of Chapter II. The method of proof is purely K-theoretic. We
know from Steinberg that the difference between the algebraic and abstract
central extension theories, working over the base field F , is measured by the
K-group K2(F ). There is also a “definable” K-group (representing K2 in
terms of “Steinberg symbols”, and imposing a definability condition) and it
is the definable K-theory that measures the gap between algebraic central
extensions and central extensions interpretable in a given theory of finite
Morley rank. So we need to prove that “definable K2 = 0” and this uses the
technology of §4 of Chapter I, in particular the Newelski-Wagner genericity
principle. The Steinberg symbols behave like bilinear maps, and are trivial
on the algebraic closure of the prime field, so by treating them as linear
maps, holding one variable fixed, one can apply the genericity principle to
their kernels, and continue on in this vein. See the proof of Proposition 3.2
of Chapter II.

With this out of the way, we can take up systematically the structure
of K-groups, and more particularly K-groups of even type, as well as the
structure of L-groups. Let us give proper definitions first: a K-group is
one whose definable connected simple sections are Chevalley groups; an L-
group is one whose definable connected simple sections of even or mixed type
are Chevalley groups. In particular, an L-group of even type is permitted
to have simple sections of degenerate type (and an L-group of mixed type
enjoys—if one may use this term—even greater liberty).
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One can easily imagine the theory of K-groups, bootstrapped up from
the theory of Chevalley groups. It is true that K-groups may have arbitrary
finite simple sections, but this turns out not to be a complicating factor,
and one hardly notices it.

The theory of L-groups is enormously simplified by the following cir-
cumstance. For H a group of finite Morley rank, we define the subgroup
U2(H) as the group generated by all of its 2-unipotent subgroups. As these
groups are connected, the subgroup U2(H) is definable, and as it contains
all the 2-unipotent subgroups it contains, in a sense, the most active and
interesting part of the group. But by Proposition 6.2 of Chapter II, if H
is an L-group of finite Morley rank then U2(H) is a K-group. Notice that
if G is a simple group of even or mixed type which is not algebraic, and if
G is furthermore minimal with these properties, then its proper definable
connected simple sections are L-groups, to which this result applies.

But one should not swing from despair to euphoria: this result does not
solve all our problems, just enough of them. Some of the K-group theory
goes over to L-groups by quoting Proposition 6.2 of Chapter II at them.
Others demand a little more analysis.

As far as the K-group theory is concerned, our main interest will be in
even type. From the general theory, perhaps the outstanding result is the
treatment of weakly embedded subgroups. For G a group of finite Morley
rank with a nontrivial Sylow◦ 2-subgroup, and M a definable subgroup, we
say that M is weakly embedded in G if it contains a Sylow◦ 2-subgroup
of G, but M ∩Mg has trivial Sylow◦ 2-subgroup whenever g /∈ M . Then
by Proposition 4.20 of Chapter II, if G is a nonsolvable connected K-group
with a weakly embedded subgroup M , then G/O(G) ≃ (P ) SL2(K), where
K is an algebraically closed field. (The core O(G) is the largest definable
connected normal solvable subgroup without involutions.) This is not a
subtle result, though it does rely on some preliminary structural analysis of
K-groups.

Passing to K-groups of even type, there is a rich body of relevant results.
Indeed, as far as preparation for the main work in the classification theorem
is concerned, this is where that preparation is largely found. Let us enter
into some detail here. So fix H a K-group of finite Morley rank (sometimes
it could even be a K∗-group, that is a possibly simple group of unknown
type whose proper definable connected simple sections are algebraic).

The Sylow 2-subgroups are definable and connected, and their normal-
izers are Borel subgroups; these are called standard Borel subgroups. This is
a case in which the K∗ case is important, as one then has very little control
of the ambient group, or its other Borel subgroups.

Any torus, or more generally a connected definable subgroup without
involutions, leaves invariant a Sylow◦ 2-subgroup.

A connected definable group without involutions which acts definably
and faithfully on a semisimple K-group of even type is a good torus.
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If H is connected then O2(H) is connected and definable, and O2⊥(H)
is definable.

If O2(H) = 1 then H = E(H) ∗O(H) (this is a form of “reductivity”.)
We also give the structure of H when the Sylow 2-subgroups are abelian,

or contain strongly closed abelian subgroups, or when there is a weakly em-
bedded subgroup. Furthermore, there are versions of the Borel-Tits lemma
and the L-balance property. All of this is familiar material in the finite case,
and while being easily verified in the K-group context presents substantial
challenges when one wishes to prove the same thing, or something similar,
for an unknown simple group whose proper sections are K-groups (or for
that matter, L-groups).

This list of special properties is still not complete, but nearly so, and so
we will complete it, very briefly. We deal also with quasisimple subgroups
normalized by Sylow 2-subgroups (useful in dealing with parabolic subgroups
in §5 of Chapter VIII), a generation (by U2(C(·))) property, and finally some
characterizations of the natural module for SL2 which feed in to the amalgam
method in Chapter IX and belong as much to Chapter I as the present one.

In the final section of the chapter, we move much of theK-group material
over to L-groups, first proving the general Proposition 6.2 of Chapter II.
Some of the K-group material is only needed for U2(H) later on, and in
such cases we do not attempt to generalize it, as the K-group result is fully
adequate.

1. Algebraic groups

1.1. Algebraic groups. An algebraic group is an algebraic variety
equipped with a group structure such that the multiplication map and the
inversion map are morphisms of algebraic varieties. Similarly, an affine al-
gebraic group is an algebraic group whose underlying variety is an affine
algebraic variety.

We assume a great deal from the structure theory for algebraic groups,
particularly simple algebraic groups. Another point of view is possible: what
we really need is the explicit classification of algebraic groups, for example
as Chevalley groups or via an explicit presentation (Curtis-Tits relations,
for example), together with detailed knowledge of the latter class of groups,
which can be very conveniently derived within the algebraic theory, but can
also be obtained by direct calculation. As we have mentioned, since our
methods in Parts B and C are inductive, and we identify the groups in
question by one or another form of the Curtis-Tits relations, our groups are
only recognized as algebraic groups after the fact, so that strictly speaking
the theory of algebraic groups is not the one most tightly bound to our own
approach. Still, that said, this theory provides a very convenient route to
the required information about these simple sections.

For a fuller introduction to the subject we suggest [161], and for a
historical overview see [39]. For the structure theory, see either [112] or
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[165]. The roots of the subject are found in [73, 38]. A particularly useful
summary of the main facts, oriented toward the kind of material which is
concretely useful in classification problems, is found in [102, Chapter A1]
(30 pp.), though without detailed references.

1.2. Linear and complete. In algebraic geometry the special classes
of affine and complete varieties play an important role. An algebraic group
is called affine or complete, respectively, if its underlying variety has the
corresponding property. Affine groups are also called linear, on the basis of
the following result.

Fact 1.1. [112, 8.6] An algebraic group is affine if and only if it is
isomorphic to a closed subgroup of some GLn, or in other words has a finite
dimensional linear algebraic representation.

On the other hand, connected algebraic groups whose underlying variety
is complete are called abelian varieties, and are commutative [138] (more
generally, any morphism between abelian varieties is a translate of a ho-
momorphism). Furthermore, a connected algebraic group has a maximal
normal Zariski closed affine subgroup with complete quotient, a tricky re-
sult due independently to Chevalley and Barsotti [74, 159, 76]. In this
connection, we should mention the following.

Fact 1.2. [112] Let G be a linear algebraic group, H a Zariski closed
subgroup. Then G/H is again a linear algebraic group.

It follows from this discussion that simple algebraic groups are in the
affine category, and for our purposes nothing would be lost in taking “alge-
braic” to mean “affine algebraic”. As indicated at the outset, this type of
information is not actually required for later sections of this book, but on
the other hand it explains why our later definitions and results are consistent
with the known special case of algebraic groups.

1.3. Borel subgroups. By definition, a Borel subgroup is a maximal
connected solvable subgroup (such a group is automatically Zariski closed).
The following basic fact about algebraic groups is not known in our more
general setting, and its absence represents a serious obstacle to our classifi-
cation project.

Fact 1.3. [112] Let G be a connected nonsolvable algebraic group over
an algebraically closed field, and B a Borel subgroup. Then Z(B) ≤ Z(G).

Lemma 1.4. Let G be a connected nonsolvable algebraic group over an
algebraically closed field, and B a Borel subgroup. Then B is nonnilpotent.

Proof. We reduce easily to the case Z(G) = 1, using Lemma 3.9 of
Chapter I if Z(G) is originally finite. We conclude Z(B) = 1 by the previous
Fact. □
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Another point worth noting is that Borel subgroups of algebraic groups
are conjugate [112, 21.3]. Again, this is a point that does not go over easily
into our more abstract setting.

1.4. Unipotent and semisimple. An element of a linear group is
called unipotent if all of its eigenvalues are equal to 1, or in other words it
can be written as I+N with I the identity and N nilpotent. At the opposite
extreme, it is semisimple if it is diagonalizable over the algebraic closure of
the base field. These notions extend coherently to affine algebraic groups
(that is to say, in a way independent of any particular linear representation)
but not to the full category. A general element is a product of commuting
factors, one unipotent and the other semisimple, but we will be mainly
concerned with elements of one or the other special type.

As we will mix together various notions of algebraic group theory and
finite group theory subsequently, we are particularly interested in the status
of involutions (elements of order two). Observe that in an affine algebraic
group, involutions are unipotent if the characteristic is two, and are semisim-
ple otherwise. In the present work, devoted to analogs of algebraic groups in
characteristic two, one of our goals will be to show that involutions behave
like unipotent elements (and then to exploit this fact).

Definition 1.5.

(1) An affine algebraic group is said to be unipotent if all of its elements
are unipotent.

(2) The unipotent radical of an affine algebraic group is the maximal
connected normal unipotent subgroup.

(3) An affine algebraic group is reductive if its unipotent radical is
trivial.

(4) A torus is a connected affine abelian algebraic group all of whose
elements are semisimple.

We remark that unipotent groups are nilpotent [112, 17.5]. With this
terminology, one can clarify the structure of a Borel subgroup.

Fact 1.6 ([161, p. 52], [112, 19.3], [102, 1.5.1]). Let G be an affine
algebraic group and B a Borel subgroup. Let T be a maximal torus of B
and U the unipotent radical of B. Then T is a maximal torus of G, U is a
maximal unipotent subgroup of G, and

B = U ⋊ T

One can also show that the maximal tori of G, like the Borel subgroups,
are conjugate in G, or more precisely that the pairs (B, T ) where T is a
maximal torus contained in the Borel subgroup B are conjugate. In our
more abstract context we will have better control over tori than over Borel
subgroups, and a generalization of this conjugacy result will be given in
Lemma 1.15 of Chapter IV.
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The detailed structure of Borel subgroups in simple algebraic groups
leads in the direction of generators and relations, and will be deferred to the
next section, which goes more in that general direction.

We comment further on the situation in positive characteristic, having
in view the case of characteristic two.

Lemma 1.7. Let G be a connected affine algebraic group in positive char-
acteristic p, realized over an algebraically closed field. Then the Borel sub-
groups are the groups of the form N(S) with S a Sylow p-subgroup. In
particular, Sylow p-subgroups of G are connected, and conjugate.

Proof. Let S be a Sylow p-subgroup of B and U its connected compo-
nent. Then U is a maximal connected unipotent subgroup of G, and thus
N◦(U) = B is a Borel subgroup. As B is self-normalizing N(U) = B. Hence
S ≤ B and S = U , B = N(S). □

1.5. Reductive groups.

Fact 1.8 ([161, p. 52], [112, 22.3,26.2]). If G is reductive and T is a
maximal torus of G, then C(T ) = T . More generally, the centralizer of any
torus in G is connected and reductive.

In particular, in this context the action of a maximal torus T on a root
subgroup U0 is nontrivial, and hence[U0, T ] = U0.

Another consequence is that the center of a reductive group consists of
semisimple elements. This then leads to the following.

Lemma 1.9. Let G be a connected reductive algebraic group in charac-
teristic p. Then the unipotent radical of G is its largest normal p-subgroup.

Proof. Let P be a normal p-subgroup of G. We claim P is contained
in the unipotent radical.

We may suppose P is Zariski closed. Then its connected component is
certainly contained in the unipotent radical U of G. Passing to Ḡ = G/U ,
the image P̄ is a finite normal p-subgroup of the connected reductive group
Ḡ. Thus P̄ is central in Ḡ and hence consists of semisimple elements, forcing
P̄ = 1. □

Thus in characteristic p, the unipotent radical can also be denoted Op(G)
by analogy with finite group theory.

Definition 1.10.

(1) Let G be an affine algebraic group and T a torus in G, A root sub-
group of G (with respect to T ) is a minimal nontrivial T -invariant
unipotent subgroup of G.

(2) A group H is directly spanned by an ordered sequence of subgroups
H1, . . . ,Hn if every element of H has a unique representation as a
product h1 · · · · · hn with hi ∈ Gi.



1. ALGEBRAIC GROUPS 123

Fact 1.11 ([112, 28.1]). If G is a reductive algebraic group, T is a
maximal torus of G, and U is a unipotent T -invariant subgroup, then U is
directly spanned by its root subgroups, in any order. In particular [T,U ] = U .

Up to this point we have defined “root subgroups” without defining
roots. The root subgroups afford 1-dimensional representations of a maximal
torus T , which correspond to certain characters of T . These distinguished
characters (finite in number), are the roots. The terminology arises from
the study of the so-called Weyl group W = N(T )/T ), which has a finite
dimensional representation in which generators of W act as reflections in
hyperplanes. In the theory of finite reflection groups, the one associates to
W a finite set of vectors perpendicular to the hyperplanes in question, and
invariant under the action of W , and these vectors, also called roots, are
correlated with the roots in our present sense. This comes into play in the
next statement, in which the language of root systems is used.

We will return to this subject more fully in the next section.

Fact 1.12. [112, Theorem 26.3]. Let G be a reductive algebraic group,
T a fixed maximal torus and Φ = Φ(G,T ). Let ∆ be a base of Φ. Let Zα

denote CG(Tα) where Tα = (kerα)◦ and α ∈ Φ. Then G is generated by the
Zα (α ∈ ∆), or equivalently by T along with all Uα (±α ∈ ∆).

1.6. Centralizers of semisimple elements.

Definition 1.13.

(1) A connected algebraic group is said to be simple (as an algebraic
group) if it contains no nontrivial proper connected closed normal
subgroup; equivalently, the center is finite and modulo the center the
group is simple. We will however refer to such a group as quasisim-
ple, using a terminology which is compatible with the terminology
for abstract groups. When dealing with algebraic groups which are
simple in the abstract sense, we tend to emphasize this point with
the phrase “abstractly simple”.

(2) A connected algebraic group is said to be semisimple if it has no
nontrivial connected normal abelian subgroup (or, equivalently, no
nontrivial connected normal solvable subgroup).

The motivation for the term “semisimple” is a structural result: modulo
the (finite) center, the group is a direct product of abstractly simple Zariski
closed subgroups. Compare Lemma 4.8 of Chapter II in the abstract setting.

We have referred above to the structural significance of the “unipo-
tent/semisimple” distinction, and now we arrive at a concrete statement of
one of the central structural points.

Fact 1.14. [166, Corollary 4.6] Let G∗ be a semisimple algebraic group

and x a semisimple element of G∗ of prime order p. Let π : G̃→ G∗ be the
canonical map from the simply connected cover. If p does not divide | kerπ|
then CG∗(x) is connected.
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Fact 1.15. [166, 3.19] Let G∗ be a semisimple algebraic group and and
y any semisimple element. Then CG∗(y) is reductive.

Combining these two:

Corollary 1.16. With the hypotheses and notation of Fact 1.14 of
Chapter II, CG∗(x) is connected and reductive. In particular, if G∗ is one of
the groups SL3, Sp4, or G2 over an algebraically closed field of characteristic
two and x is a semisimple element of prime order p > 3, then CG∗(x) is a
torus or the product of a torus with SL2.

Proof. CG∗(x) is reductive of Lie rank two, and contains a central
element of order greater than 3. The claim follows. □

In a similar vein we have the following.

Fact 1.17 ([66]). Let L be a quasisimple algebraic group and α a semisim-
ple automorphism of L. Then CL(α) is reductive.

Fact 1.18 ([112, Section 27.5]). Let G be a perfect algebraic group such
that G/Z(G) is a simple algebraic group. Then G is a simple algebraic group.

1.7. Field definability implies group definability.

Fact 1.19. [150, Corollaire 4.16], In a simple algebraic group over an
algebraically closed field, definability from the field and definability from the
pure group coincide.

Proposition 1.20. In a quasisimple algebraic group over an algebraically
closed field, definability from the field and definability from the pure group
coincide.

Proof. Let G = G(F ) be a quasisimple algebraic group over an al-
gebraically closed field F . We will use -notation to denote quotients by
Z(G).

If B is a Borel subgroup of Ḡ, then by Lemma 1.4 of Chapter II, B is
nonnilpotent. Therefore, we can interpret an algebraically closed field K
in Ḡ using a Borel subgroup. As K is interpretable in F , these two fields
are definably isomorphic in F by Fact 4.30 of Chapter I. We denote this
isomorphism by θ.

Let G(K) be a linear algebraic group over K isomorphic to G(F ) by
an isomorphism ψ induced by θ. We claim that the isomorphisms ψα :
Xα(F ) −→ Xα(K) defined by ψα(xα(t)) = xα(θ(t)) are definable in G. The
isomorphism ψα can be written as the composition of the following maps: the
isomorphism Xα(F ) −→ Xα(F ) induced by the canonical homomorphism

G −→ G, the isomorphism Xα(F ) −→ Xα(K) given by

xα(t) 7−→ xα(θ(t)),

and the isomorphism Xα(K) → Xα(K) which is inverse to the map induced

by G(K) → G(K). Here the map xα(t) 7−→ xα(θ(t)) is F -definable in Ḡ
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and hence Ḡ-definable in Ḡ by Fact 1.19 of Chapter II. So the maps ψα are
G-definable.

The isomorphisms ψα are induced by the isomorphism ψ : G(F ) −→
G(K), and conversely ψ is definable from the collection (ψα), since every
element of G is a product of a bounded number of elements from the root
groups Xα. Therefore, ψ is G-definable.

Now, let A be a subset of G(F )n definable from F . Then ψ(A) is de-
finable in G(K)n from K and hence is definable in G. But ψ and K are
definable in G. Hence, A = ψ−1(ψ(A)) is definable in G. □

1.8. Constructible groups.

Fact 1.21. [150, Théorème 4.13] Let G be a group which is definable
over an algebraically closed field. Then G is isomorphic to an algebraic
group.

1.9. Borel-Tits.

Definition 1.22. Let G be an algebraic group. A parabolic subgroup is
a connected algebraic subgroup containing a Borel subgroup.

Actually, any subgroup containing a Borel subgroup will be algebraic
and connected.

Fact 1.23 ([112, §30.3]). Let G be an algebraic group, P a proper par-
abolic subgroup, and U the unipotent radical of P . Then CP (U) ≤ U .

Fact 1.24 ([40], cf. [112, Corollary 30.3 A]). Let G be a reductive
algebraic group and let U be a Zariski closed unipotent subgroup of G.
Then NG(U) is contained in a parabolic subgroup P(U) of G such that
U ≤ RU (P(U)), where RU denotes the unipotent radical.

We will need the next result in characteristic two.

Proposition 1.25. Let G be a simple algebraic group over a field of
positive characteristic, let U be a nontrivial Zariski closed unipotent subgroup
of G, and let H = NG(U). Then CH(RU (H)) ≤ RU (H), where RU denotes
the unipotent radical.

Another way to express the conclusion here is as follows:

F ∗(H) = Op(H)

Proof. Embed H into a parabolic subgroup Ĥ = P(U) as in Fact 1.24

of Chapter II. Let Q = RU (H) and V = RU (Ĥ). We claim C(Q) ≤ Q.
Observe that C(Q) ≤ C(U) ≤ H. In particular CV (Q) ≤ V ∩ H ≤ Q

since V ∩H is a normal p-subgroup of H.
First we show that C(Q) is a p-group. Otherwise, we can find a definable

p⊥-group A contained in C(Q). Now we apply Proposition 12.4 of Chapter
I with G,Q, V,A here playing the role of G,Q,U,A there. So Proposition
12.4 of Chapter I applies and yields A ≤ CĤ(V ) = V , a contradiction.
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So C(Q) ◁ H is a p-group and thus C◦(Q) ≤ RU (H) = Q. Hence
C(Q)/C◦(Q) is a finite normal p-subgroup of H/Q; but the latter is re-
ductive in characteristic p and hence contains no central p-elements. Thus
C(Q)/C◦(Q) is trivial and C(Q) ≤ Q. □

Lemma 1.26. Let G be a quasisimple algebraic group over an alge-
braically closed field of characteristic two, and P a definable connected 2-
subgroup of G (in an expanded language, in which G has finite Morley rank).
Then O(NG(P )) = 1.

Proof. Let P̂ be the Zariski closure of P in G. By Lemma 3.22 of
Chapter I we have O(NG(P )) = O(CG(P )), and the same applies to P̂ .

Since CG(P ) = CG(P̂ ), we may suppose that P is Zariski closed.
Let Q be the unipotent radical of NG(P ). Then Q is a 2-group, and

O(NG(P )) commutes with Q. By Proposition 1.25 of Chapter II we have
O(NG(P )) ≤ Q and hence O(NG(P )) = 1. □

Fact 1.27 (L-balance). Let L be a quasisimple algebraic group in char-
acteristic two, U ≤ L a nontrivial 2-subgroup of L. Then E(CL(U)) = 1.

Proof. This follows from Fact 1.24 of Chapter II, as explained in [99,
13-4] or [100, §3]. □

2. Chevalley groups

2.1. Origins (existence). Remarkably enough, most finite simple
groups are forms of groups associated with simple Lie algebras over C. The
classification of these Lie algebras was initiated by Killing and completed
Cartan; Dynkin later introduced the very simple “Dynkin diagram” de-
scription of the classification which encodes the essential information in a
small finite graph; these graphs were introduced independently a little ear-
lier by Coxeter in the study of crystallographic groups. It was realized early
on that the so-called “classical matrix groups” (general linear, symplectic,
orthogonal, unitary) had analogs over finite fields, though it was apparently
not realized until 1937 that the underlying geometry could be treated co-
herently in that context (a point on which Leonard Dickson had expressed
skepticism).

In three papers in the period 1901–1908 Dickson, who came under the
direct influence of both Lie and Jordan, gave constructions of the finite sim-
ple groups corresponding (from the modern point of view) to Lie algebras of
type G2, and E6. This point went largely undeveloped until Chevalley’s arti-
cle in 1955 [72], which introduced the full correspondence (enriched rapidly
thereafter by the so-called “twisted” versions). In this approach, one begins
by showing the highly nontrivial fact that finite dimensional simple complex
Lie algebras L have bases with respect to which the “structure constants”
(giving the Lie bracket) are rational integers (this involves a substantial
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refinement of Cartan’s analysis). The resulting basis is not uniquely deter-
mined, but is rigidly constrained. At this point one may consider the Lie
algebra LZ spanned by this basis over Z, and its tensor product with any
field K:

LK = LZ ⊗K

which is a Lie algebra over K. The Chevalley groups are constructed as sub-
groups of the automorphism group of LK, which however contains Aut(K)
and other unwanted elements. To overcome this, one first defines “root
groups” over K as groups of automorphisms of LK , and one then takes as
the corresponding Chevalley groups the subgroup of Aut(LK) generated by
these root groups. In particular, in making computations one has, initially,
only unipotent elements available, and the initial phase of analysis is heavily
computational in this approach.

It remains to say a word about root groups. One has in mind subgroups
of Aut(LK) parametrized explicitly by the additive group of K. These may
be constructed first for the original algebra L, where the notation used is
xr(ζ), with ζ running over C and r a root associated with L. The matrix
representation of these elements, with respect to a Chevalley basis, has en-
tries of the form mζd with m and d integers, d ≥ 0. These are replaced in
an ad hoc manner by entries of the form mtd, with t varying over K, and
it is then checked that these matrices do indeed represent automorphisms
of LK (for this point, see [66, p. 63]). So one may consider the subgroup
of Aut(LK) generated by these automorphims, and consider it as the group
G(L)(K) associated with L over K.

For our purposes, this construction and the subsequent calculations jus-
tify the existence of these groups (though existence is not, strictly speaking,
our concern here) as well as the fact that they have a structure parallel
to the structure of simple algebraic groups over algebraically closed fields,
a point with a wide variety of practical consequences. The first phase of
analysis produces generators and relations for the groups, and from these
everything else which is needed can be derived.

The discussion above concerns only the adjoint forms of Chevalley groups;
a more general construction uses lattices in representation spaces for L rather
than L itself produces certain perfect central extensions, including the so-
called “universal Chevalley group”, which, though not the universal central
extension in the category of abstract groups, turns out to be universal among
the perfect central extensions with finite center, when working over an al-
gebraically closed field. For the more general construction, see [167] or the
very accessible account in [114, Chap. 27].

The algebraicity (and of course linearity) of all forms of Chevalley groups
follows directly from the construction: by definition, they are generated
inside some GL(V ) by the root groups, represented as automorphisms of a
lattice. Since these root groups are isomorphic to the additive group Ga, as
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is seen early on the group they generate inside GL(V ) is also algebraic [167,
Theorem 6].

2.2. Coxeter groups and Dynkin diagrams. We will touch on the
theory of Coxeter groups in very broad terms here, as this provides the
standard framework for classifying and analyzing both simple complex Lie
algebras and the associated Chevalley groups. While this is a central topic as
far as structure theory is concerned, we refer to [66] or [113] for a satisfactory
account of the matter.

A Coxeter group is a finite group generated by Euclidean reflections. A
Euclidean reflection is a reflection in a hyperplane in a vector space over
R. More geometrically, one may allow reflections in an arbitrary Euclidean
hyperplane, but as the group is finite it follows that it fixes a point, and
taking a fixed point as origin reduces the situation from affine space to a
vector space.

In more vivid terms, a Coxeter group corresponds to a finite set of mir-
rors such that in each mirror one sees only finitely many images of the other
mirrors.

If the group in question also preserves a lattice in the space, em is said
to satisfy the crystallographic condition. The Coxeter groups relevant to the
theory of algebraic groups all satisfy the crystallographic condition.

An E6

Bn E7

Cn E8

Dn F4

G2

Table 1. Dynkin diagrams

The explicit classification of the Coxeter groups involves the following
notions. A root system in a vector space is a finite collection of vectors, called
roots, which spans the space and is invariant under the reflections in the
hyperplanes determined by these vectors (their orthogonal complements).
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A basis for a root system is a basis for the space such that every root is
either a positive integral combination of the roots or a negative integral
combination of the roots. Bases are described by the angles between pairs
of roots, which are very limited, and even more so under the crystallographic
condition. With a basis fixed, its elements are called simple roots, and in
general most pairs of simple roots are orthogonal. If one forms the so-called
Dynkin diagram, a graph with vertices the simple roots and with edges
between nonorthogonal pairs, this will be a tree, and in fact a tree which is
not much more elaborate than a path. In addition, the edges are generally
labeled by data indicating the precise angle involved, and if adjacent roots
are of different lengths then an arrow is added pointing from the longer to
the shorter. With these additions, the diagram completely determines the
structure of the root system and the associated group.

The following fact is fundamental to this point of view.

Fact 2.1. [112, Lemma 10.1] Let G be a Chevalley group, and let Φ be
a root system for G. If ∆ is a base of Φ, then (α, β) ≤ 0 for α ̸= β in ∆,
and α− β is not a root.

The root system is indecomposable if its Dynkin diagram is connected;
so the general root system is an orthogonal sum of indecomposable root
systems, and the corresponding Coxeter groups are direct products of the
factors corresponding to the indecomposable constituents. In addition, the
Coxeter group has a presentation in which the reflections associated to the
simple roots are the generators, and the relations give the order of these
reflections (2) as well as the orders of all products of two simple reflections
(2 if they are orthogonal, and more otherwise).

As an example, the symmetric group Symn on {1, . . . , n} is a Cox-
eter group, whose reflection representation is given by restricting the nat-
ural representation on Rn to the hyperplane orthogonal to the fixed vector
(1, . . . , 1)T . Relative to the standard basis (ei) of Rn, the simple roots may
be taken to be the n − 1 vectors vi = ei − ei+1 and the corresponding re-
flections correspond to the elementary transpositions (i, i + 1). Adjacent
roots vi, vj are those with adjacent indices i, j, with the angle in question
always 120◦. All roots have the same length. For an example with distinct
root lengths, take the symmetries of the square, with roots pointing to the
midpoints of the edges, and the corners; or in three dimensions, in the case
of a cube, include the centers of the faces. These two examples are labeled
An−1, Bn where the subscript indicates the dimension of the representation
space and the letter goes from A to G according to the form of the root
system (with various more or less severe restrictions on n); or indeed from
A to H if one includes the non-crystallographic cases. More precisely, types
A − D classify the classical groups, GLn and the symplectic and orthogo-
nal groups, and the exceptional diagrams E6, E7, E8, F4, G2 are associated
with non-classical Chevalley groups; in the case of G2, the associated finite
groups were constructed explicitly by Dickson in analogy with the complex
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case, while the construction of the others was achieved only by Chevalley in
the context of a general theory.

This is all generalized by the theory of complex reflection groups, which
we summarized in §13 of Chapter I, though the Coxeter groups are scat-
tered randomly through that classification, which contains a large number
of sporadic additions.

The point to emphasize is that the Coxeter group, occurring as the
Weyl group N(T )/T in a Chevalley or simple algebraic group, is a finite
combinatorial object which together with the base field completely deter-
mines the structure of the associated group. As a result, computations in
Chevalley groups frequently become computations in Coxeter groups, and
these become computations with roots. An example of this is the Chevalley
commutator formula itself.

At this juncture, we note that there is an extended Dynkin diagram which
also comes into play in some computations. In this diagram, one adjoins the
negative of the sum of the simple roots to the set of simple roots and forms
the associated diagram. So in the case of An the additional vector is en−e1,
which completes the cycle and gives rise to a graph which is no longer a
tree, but in fact a circuit.

2.3. The Chevalley commutator formula.

Fact 2.2. [167, Corollary to Lemma 15], Let α, β be roots with α+β ̸=
0. Let k be a field. Then

(xα(t), xβ(t)) =
∏

xiα+jβ(cijt
iuj)

where (g, h) = ghg−1h−1, and the product on the right is taken over all roots
iα+jβ (i, j ∈ Z) arranged in some fixed order, and where the cij are integers
depending on α, β and the chosen ordering, but not on t and u.

It is useful to fix a reasonable ordering and give the constants explicitly,
particularly since they have to be interpreted as elements of the base field,
and may therefore degenerate in some characteristics. Ordering the roots
by height, the computation may be made as follows.

The roots of the form α+ iβ form a so-called chain α− pβ, . . . , α+ qβ
where 0 ≤ p, q and p+q ≤ 3, and similarly there is a chain β−p′α, . . . , β+q′α.
We then have

|c1j | =
(
p′+j
j

)
|ci1| =

(
p+i
i

)
|c32| = 1
|c23| = 2
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We will mainly be interested in characteristic two, in which case these
coefficients are equal to 1 (when defined), with the following exceptions:

(∗)
ci1 = 0 if p = 1, i = 1 (root system of type B2 or G2), and
similarly for c1j ;
c23αβ = 0

Bear in mind that p+ i ≤ 3.
The next fact will be needed once, in §5 of Chapter VIII. While cer-

tainly suggested by the general formulas, it does require some verification,
particularly in view of the possibility of some degeneracy in the coefficients
in certain characteristics.

Lemma 2.3. Let G be a Chevalley group, and U a maximal unipotent
subgroup corresponding to the set of positive roots Φ. Then [U,U ] is the
product of the root groups Sα, with α running over the roots of Φ which are
not simple.

Proof. It is best to treat G2 as a separate case (especially in charac-
teristic two), which we leave to the reader. In the other cases we proceed as
follows. We claim that for any positive root γ which is not a simple root, the
root subgroup Sγ is generated by commutators of the form [Sα, Sβ], with α
simple and β positive, (but not necessarily with α + β = γ). Once one has
this result, it can be applied repeatedly to prove our claim, since the group
is nilpotent and there is therefore a limit to the number of times it can be
iterated.

So fix a positive root γ which is not simple. We will prove by downward
induction on the height of γ that Sγ lies in the group spanned by [Sα, Sβ],
with α varying over simple roots and β varying over positive roots. Now γ
can be expressed as α + β with α simple and β positive. Now unless the
coefficient pα,β is 1 (which means that the chain associated with α, β begins
with α − β), we will have [xα(t), xβ(u)] = xγ(tu) · higher root elements. In
this case, by our induction hypothesis, we can remove the higher order terms.

It remains to consider the case in which pαβ = 1, and the first root in
the (α, β)-chain is α−β. Then we need to consider the commutator formula
for [Sα′ , Sβ] with α′ = α − β and to show that Sα+β is contained in this
commutator, leaving aside the case of a root system of type G2. In this case
we may take α′ and β to be a basis for a root system of type B2, and the
commutator formula has two terms, involving the commuting groups Sα and
Sγ , of the form x1(tu)x2(tu

2), with distinct exponents. So one may easily
extract Sγ from a combination of such expressions. □

We give another simple result in the same vein.

Lemma 2.4. Let G be a simple Chevalley group of Lie rank two, α, β a
fundamental system of roots, and Sα, Sβ the corresponding root subgroups.
Then Sα, Sβ generate a maximal unipotent subgroup.
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Proof. As the exponents i, j occurring in the commutator formula vary
with the root iα + jβ, and all of these root groups together generate a
maximal unipotent subgroup, if all of the coefficients cij are nonzero the
result follows.

In this context, we have p = p′ = 0 and thus c1i = cj1 = 1, which
cannot degenerate regardless of the characteristic. This covers all relevant
coefficients except in the case of G2. But here, if we take α short and β
long, then we need only consider the further coefficient c32 = 1. □

We remark that the Chevalley commutator formula gives a very clear
picture of the structure of a Borel subgroup; it gives an explicit description
of the unipotent radical U , which is the product of the root subgroups rel-
ative to a choice of positive roots; and the full Borel subgroup has the form
U ⋊ T with T a maximal torus contained in B, acting on the root groups
via characters which in the algebraic theory are natural representatives of
the positive roots. We touch here on the point of transition between the al-
gebraic theory and the Chevalley theory, which belongs within the algebraic
theory, and is covered in [112]. This correlation is crucial, in the sense that
it allows us to continue our discussion from the point at which it left off in
the previous section, rather than redefining everything from scratch.

From this point onward, it seems reasonable to mix the language of
algebraic groups freely with the language of Chevalley groups.

In particular Fact 1.11 of Chapter II, concerning the structure of unipo-
tent groups invariant under a maximal torus, can be seen as belonging to
the present context.

2.4. Structure. We expand on the structure of Borel subgroups, with
more detail concerning the action of tori. We first repeat our closing remarks
from the last subsection in a more explicit form. Throughout this subsection,
one can consult [112, 165] for the theory from an algebraic point of view, or
[66] for the same results, in some instances with different terminology, from
a computational point of view. Note that we are working toward results
which are helpful when the groups in question are considered as abstract
groups.

Notation 2.5. Let G be a Chevalley group, Φ the associated root system,
Xα the root group attached to α, and ∆ a set of positive roots. Set S∆ =
⟨Xα : α ∈ ∆⟩

Fact 2.6. Let G be a Chevalley group, Φ the root system associated with
G, and a maximal torus T , ∆ a system of positive roots. Then N(S∆) is a
Borel subgroup of G.

Fact 2.7. Let G be a Chevalley group, Φ the root system associated
with G and a maximal torus T , and ∆ a system of positive roots. Then
N(S∆) = S∆ ⋊ T .
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Fact 2.8. Let G be a Chevalley group, B a Borel subgroup of G, and
T ≤ B a maximal torus of G. Then there is an involution w ∈ N(T ) such
that B ∩Bw = T . For such an involution, G = ⟨B,Bw⟩.

One refers to B,Bw in the foregoing as a pair of “opposite” Borel sub-
groups.

Lemma 2.9. Let G be a Chevalley group over a field of characteristic p,
Φ the associated root system, ∆ a system of positive roots, and S∆ = ⟨Xα :
α ∈ ∆⟩. Then S∆ is a Sylow p-subgroup of G.

Proof. Evidently S∆ is a p-group. If it is not a Sylow p-group, then
N(S∆) contains a larger p-group, and hence the torus T of Fact 2.7 of
Chapter II contains a nontrivial p-group, a contradiction. □

Lemma 2.10. Let H be a quasisimple Chevalley group, B a Borel sub-
group, S = U(B). If S = S1S2 with [S1, S2] = 1 and S1, S2 ◁ B then S = S1
or S2.

Proof. S1 and S2 are products of root groups, more precisely they are
directly spanned by root groups in the sense of Definition 1.10 of Chapter
II, by [112, Proposition 28.1]. Furthermore, we claim that every root group
lies in one or the other of these two groups: if an element s of a root group
is written as s1s2 with s1 ∈ S1, s2 ∈ S2, where s1 and s2 are expressed as
products of elements of distinct root groups (so that in particular no root
group makes a nontrivial contribution to both s1 and s2) then necessarily
one of these elements is s and the other is trivial.

In particular the set of fundamental roots is expressed as the union of
two sets A and B of roots, so that if r ∈ A \B and s ∈ B then r+ s is not a
root, and similarly with A and B reversed. Since the Dynkin diagram for H
is connected, this forces one of these two sets to contain all the fundamental
roots (even in characteristic two the coefficients in the Chevalley commutator
formula do not degenerate sufficiently to affect this, though one has to check
the various cases, such as G2, individually). □

The foregoing extends to central products of quasisimple groups as a
decomposition lemma. This is another result needed in the context of §5 of
Chapter VIII, and only there.

Lemma 2.11. Let H be a central product of quasisimple algebraic groups,
B a Borel subgroup of H, and S the unipotent radical of B. Suppose that
S = S1∗S2, a central product, with S1, S2 ◁ B. Then H = H1∗H2, a central
product, where for i = 1, 2 the group Si∩Hi is a maximal unipotent subgroup
of Hi. If in addition S = S1 × S2 is a direct product, then Si is a maximal
unipotent subgroup of Hi, and H1 = E(CH(S2)), H2 = E(CH(S1)).

Proof. For the first claim, we may factor out the center of H and
suppose that it is a direct product of simple factors. Let L be one of the
simple components of H, and U = S ∩ L. Then U = U1 ∗ U2 with Ui the
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projection of Si into L. As S1, S2 are invariant under the action of a maximal
torus T of L, we have Ui = [T,Ui] = [T, Si] ≤ Si and thus Ui = Si ∩L. Now
by the preceding lemma U = Ui for at least one i = 1 or 2. Thus if we let
H1 be the product of the factors L for which S1 ∩L is a maximal unipotent
subgroup, and H2 the product of the remaining factors, we have our first
claim.

The second claim then follows directly from the first. □

2.5. The Bruhat decomposition. The Weyl group associated to a
Chevalley group is the group N(T )/C(T ), with T a maximal torus, viewed
as a group of automorphisms of T . In view of Fact 1.8 of Chapter II this
may be written more simply as N(T )/T .

A fundamental fact about the Weyl group is that it is the Coxeter group
associated with the root system of G, The information in the Dynkin di-
agram, the Coxeter group, or the root system are all interchangeable; the
Dynkin diagram encodes the geometry of a system of fundamental roots and
is in this sense a minimal amount of information.

The Weyl group parametrizes a double coset decomposition of G with
respect to a Borel subgroup containing the torus T . This is referred to as
the Bruhat decomposition.

Fact 2.12. G is the disjoint union of the double cosets BwB (w ∈W ).

Observe that w is an element of N(T )/T rather than G, but the notation
BwB is unambiguous as T ≤ B.

At this point we have arrived in a chapter of the subject conveniently
handled in the context of (B,N)-pairs, a matter on which we will enlarge
subsequently. This material is discussed from that precise point of view in
[112].

A parabolic subgroup of a Chevalley group is one which contains a Borel
subgroup. Generally one fixes the Borel subgroup B in advance and con-
siders the parabolic subgroups containing that fixed group. These are cor-
related with subgroups of the Weyl group generated by some of the simple
reflections; so there are few such groups, and their structure is clear. For a
brief account see [161, §3.2], and for details see [112, §29.3]. One can also
get rather good control over the class of groups containing a maximal torus,
to which we turn in the next subsection.

Our identification procedure for simple groups of finite Morley rank re-
lies heavily on the properties of parabolic subgroups. More precisely, these
properties motivate our approach, and are occasionally useful in a more
concrete way as properties holding inductively in simple sections. For an
elaboration on this point, see the notes at the end of the chapter.

Fact 2.13 ([112, 30.2]). Let G be a Chevalley group and P a proper
parabolic subgroup. Then the unipotent radical of P is nontrivial.

Fact 2.14. Let G be a Chevalley group, and B a Borel subgroup. Then
G is generated by the minimal parabolic subgroups properly containing B.
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Fact 2.15. [112, Corollary 32.3] A semisimple Chevalley group of Lie
rank 1 is isomorphic to SL2(K) or PSL2(K).

2.6. Groups normalized by a maximal torus.

Definition 2.16. If G is a Chevalley group and T is a maximal torus
of G, then a subsystem subgroup of G (relative to T ) is a central product of
Zariski closed quasisimple subgroups normalized by T .

Fact 2.17 ([161, Prop. 3.1], [160, 2.5]). Let G be a Chevalley group
over an algebraically closed field, T a maximal torus of G, and X a Zariski
closed subgroup of G which contains T . Let U be the unipotent radical of
X. Then X = DZU with D a subsystem subgroup and Z a subtorus of T
commuting with D.

Definition 2.18. The root SL2-subgroup associated to a root α is the
group ⟨Uα, U−α⟩ generated by the root subgroups corresponding to α and its
opposite.

The name is a bit loose, as these groups may well be of the form PSL2.

Fact 2.19. A root SL2-subgroup is isomorphic to either SL2 or PSL2.

Lemma 2.20. If K and L are root SL2 subgroups of the Chevalley group
A with respect to a fixed maximal torus, and K and L do not commute, then
⟨K,L⟩ is a Lie rank 2 Chevalley group.

Proof. Let M = ⟨K,L⟩. We have M = DZU with U the unipotent
radical of M , by Fact 2.17 of Chapter II. There is an automorphism of the
root system for A carrying a root to its opposite, and this gives rise to an
automorphism ϕ of A normalizing T and switching root subgroups with their
opposites, hence leaving K and L, and also M , invariant. If U is nontrivial
then as it is T -invariant U contains a root subgroup, and applying ϕ we see
that U also contains the opposite root subgroup, a contradiction. So U = 1.

Now in view of the Chevalley commutator formula the semisimple group
M , which is generated by two pairs of opposite root subgroups, has a root
system of rank two. Everything follows. □

2.7. Central extensions. The theory of central extensions of simple
algebraic groups has a number of different aspects, depending on the cat-
egory in which one works, and we will have to revisit this topic at length
in the next section, in the broad context of groups of finite Morley rank.
But here we are concerned mainly with the structure of quasisimple groups
already known to be algebraic groups or Chevalley groups.

Mainly, we need the following.

Lemma 2.21. Let G be a quasisimple group with G/Z(G) a simple Cheval-
ley group. Then the following are equivalent.

(1) G is algebraic
(2) Z(G) finite,
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There are two distinct theorems here, one from the general theory of al-
gebraic groups, cf. [112], and the other from the theory of Chevalley groups,
working heavily with generators and relations (and leading eventually to K-
theory), see [167].

Definition 2.22. A quasisimple algebraic group is said to be simply
connected if it has no proper algebraic perfect central extension.

For the following minor fact see again [112] or [66].

Lemma 2.23. PSL2 is simply connected in characteristic two.

In particular there is no point, or little point, in distinguishing PSL2

and SL2 in characteristic two, a point considerably more evident than the
full lemma. One of the less pleasant consequences of this is that when
working exclusively in characteristic two one is faced with the choice of using
a single not always appropriate notation, or varying the notation according
to the context, either of which produces some peculiar effects. The groups in
question are not the same as algebraic groups, but we are actually working
with their realizations over particular fields.

Fact 2.24 ([167, §7]). If G is a Chevalley group over a field of charac-
teristic p then p does not divide |Z(G)|.

In fact the center of the universal Chevalley group lies in a torus.
We remark also that the Chevalley commutator formula is essentially

a presentation of the universal Chevalley group, which corresponds to the
universal central extension of the corresponding simple group, taken in the
algebraic category. One must of course add the basic relations giving the
structure of the root groups themselves:

xr(s+ t) = xr(s)xr(t)

and in rank 1 it is also necessary to give relations determining the structure
of a torus; these relations are also taken as part of the definition in higher
rank, but have been shown to be superfluous.

We will return to this in a more explicit way in the next section, when
we deal with central extensions in a broader category.

2.8. Automorphisms.

Fact 2.25. Let G be a group of finite Morley rank, and H a definable
group of automorphisms acting (faithfully) on G. Assume that G is an
infinite simple Chevalley group over an algebraically closed field F . Then
H ≤ G⋊ Γ, where G is identified with the group of inner automorphisms of
G, and Γ is the group of graph automorphisms of G relative to a choice of
maximal torus and Borel subgroup.

Proof. By Theorem 27.4 of [112], Aut(G) = GΓAut(F ) where Aut(F )
acts naturally. The subgroup GΓ consists of algebraic automorphisms, and
G is of finite index, so it is definable. If H is not contained in GΓ then
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HGΓ contains a definable automorphism induced by Aut(F ). As F can be
interpreted in a Borel B and the action of Aut(F ) on F can be interpreted
via its action on B, H ∩Aut(F ) defines a definable group of automorphisms
on F , which is trivial by Lemma 4.5 of Chapter I.

So H ≤ GΓ. □

Corollary 2.26. Let G be a group of finite Morley rank, and L a
normal subgroup isomorphic to a quasisimple algebraic group over an al-
gebraically closed field K. Suppose that G is connected, or has no graph
automorphisms. Then G = L ∗ CG(L).

Proof. Suppose first that L is centerless. Then G acts by inner auto-
morphisms by the previous Fact, and the claim follows.

Now in general, the center Z(L) is finite, and the result applies modulo
Z(L). So we get G = L ·H with [H,L] ≤ Z(L). But since H is connected,
so is [H,L] (Corollary 3.29 of Chapter I), and as [H,L] is finite it is trivial,
and G = L ∗ CG(L). □

Lemma 2.27. Let G be a quasisimple Chevalley group of finite Morley
rank, and α a definable involutory automorphism of G such that CG

◦(α) is
solvable. Then α is inner.

Proof. We may take G to be simple. We use the detailed information
given in [20, §§8,19]. This deals with groups over arbitrary finite fields of
characteristic two, and goes over easily to the algebraically closed case.

We know that either α is inner or α lies in the coset of an involutory
graph automorphism modulo inner automorphisms, and in the latter case
the associated Dynkin diagram is of type An (n ≥ 2), Dn (n ≥ 4), or E6.
If α is itself conjugate to a graph automorphism then the result is standard
(and of course included in [20] as well), as the centralizer is the associated
twisted group. But other cases arise.

Type Dn is dealt with in §8 of [20]. According to (8.10) given there, the
relevant involutions are those of “type b” in the notation of that section (and
the previous section). The centralizer for this type of involution is discussed
in (8.7).

For types An and E6 we turn to §19 of [20], beginning with the bottom
of p. 78. The classification of the relevant involutions is given in (19.8); up
to conjugacy we are dealing either with a graph automorphism or a product
σt with σ a graph automorphism and t a 2-central involution commuting
with σ. The centralizers in all cases are described in (19.9) and for those of
the form C(σt) we have the following.

(1) In type An: the centralizer of a transvection in PSp(n).
(2) In type E6: the centralizer of a 2-central involution in F4.

Descriptions of these centralizers are given in (7.10) and (13.2), though the
latter is given more explicitly just after the statement of (13.1); it contains
a factor of the form Sp(6). □
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2.9. Identification in Lie rank two. The following result of Tits lays
out the information needed to identify a Chevalley group of Lie rank two.

Fact 2.28. Let G be a Chevalley group of Lie rank 2 and let P1, P2 be
minimal parabolic subgroups containing a common Borel subgroup B. Let
N be the normalizer of a Cartan subgroup of B. Then G is the universal
closure of the triple amalgam of P1, P2, and N .

An elegant proof of this has been given by Bennett and Shpectorov
[30]. The idea of the proof is to adjoin to the natural point/line geometry
associated with G a third kind of object, the set of apartments, where an
apartment is incident with its elements. This has the effect of making the
geometry simply connected, and a very general result of Tits [178] on groups
acting flag-transitively on simply connected geometries then applies.

The analogous statement in Lie rank greater than 2 does not require
the additional group N . This gives a very flexible criterion for the final
identification of simple groups of this type.

Fact 2.29 (Curtis-Tits, [102, Theorem 2.9.3],[176]). Let Σ be an inde-
composable root system of rank at least two with a fundamental system Π,
and let F be a field. Let G be the universal Chevalley group constructed from
Σ and F . For each r ∈ Σ denote by Xr the root subgroup {xr(t) : t ∈ F}
and for J ⊆ Π let GJ be the subgroup of G generated by all Xr for ±r ∈ J .
Then G is the universal completion of the amalgam (GJ : J ⊆ Π, |J | ≤ 2).

This includes the fact that G is generated by the minimal parabolic
subgroups containing a fixed Borel subgroup (which may also be considered
as an instance of the classification of parabolic subgroups).

3. Central extensions

In this section we show that groups of finite Morley rank which are
perfect central extensions of quasisimple Chevalley groups are themselves
Chevalley groups.

Proposition 3.1. Let G be a perfect group of finite Morley rank such
that G/Z(G) is a quasisimple Chevalley group. Then G is a Chevalley group
over the same field. In particular, Z(G) is finite.

Once the first point is proved, the second point follows from Fact 1.18
of Chapter II.

The center of the universal extension of a simple Chevalley group, as
an abstract group, is not finite in general; this only holds in the algebraic
category. Thus the finite Morley rank assumption cannot be omitted.

We will prove this proposition in the following more technical form, to
be explained below:

Proposition 3.2. Let G be a perfect group of finite Morley rank and
let C◦ be a definable central subgroup of G such that G/C◦ is a universal
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Chevalley group over an algebraically closed field; that is G is a perfect
central extension of finite Morley rank of a universal Chevalley group. Then
C◦ = 1.

The main model theoretic ingredient in the argument is Lemma 4.16 of
Chapter I, which eliminates certain “very bad fields” from consideration.

The second ingredient in the proof is the theory of central extensions of
linear algebraic groups as explained in [167], blended with a dose of model
theory needed for definability arguments. This theory runs as follows. We
begin with a fuller statement of the relations holding in Chevalley groups
and their central extensions, elaborating on Fact 2.2 of Chapter II.

Notation 3.3. Let F be a field and Φ a root system. Consider the
following relations over a set of formal symbols {xα(t) : α ∈ Φ, t ∈ F}.

(A) xα(t) is additive.
(B) If α, β are roots and α+β ̸= 0, then (xα(t), xβ(u)) =

∏
xiα+jβ(cijt

iuj),
where i and j are positive integers and the cij are integers depend-
ing on α, β, and the chosen ordering of the roots, but not on t or
u. Here (g, h) = ghg−1h−1.

(B′) wα(t)xα(u)wα(−t) = x−α(−t−2u) for t ∈ k∗, where

wα(t) = xα(t)x−α(−t−1)xα(t)

for t ∈ k∗.
(C) hα(t) is multiplicative in t, where hα(t) = wα(t)wα(−1) for t ∈ k∗.

(1) We define the group Xu as follows:
(a) Xu is the group presented by relations (A) and (B) if the rank

of Φ is greater than 1;
(b) Xu is the group presented by the relations (A) and (B′) if the

rank of Φ is equal to 1.
(2) X is the quotient of Xu obtained by adding the relation (C); this is

called the universal Chevalley group ([167]) of type Φ over F .

Fact 3.4. [167, Lemma 39, p. 70] Let α be a root and Xu be as above.
In Xu, set f(t, u) = hα(t)hα(u)hα(tu)

−1. Then:

• f(t, u2v) = f(t, u2)f(t, v).
• If t, u generate a cyclic subgroup of k∗ then f(t, u) = f(u, t).
• If f(t, u) = f(u, t), then f(t, u2) = 1.
• If t, u ̸= 0 and t+ u = 1, then f(t, u) = 1.

Fact 3.5. [167, Theorem 9, p. 72], Assume that Φ is indecomposable
and that F is an algebraic extension of a finite field. Then the relations (A)
and (B) (or (B′) if rank Φ = 1) suffice to define the corresponding universal
Chevalley group, i.e. they imply the relations (C).

Fact 3.6. [167, Theorem 10, p. 78] Let Φ be an indecomposable root
system and k a field such that |k| > 4, and if rank Φ = 1, assume further
that |k| ≠ 9. If X is the corresponding universal Chevalley group (abstractly
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defined by the relations (A), (B), (B′), (C) above), if Xu is the group defined
by the relations (A), (B), (B′) ( (B′) is used only if rank Φ = 1), and if π
is the natural homomorphism from Xu to X, then (π,Xu) is a universal
central extension of X.

Fact 3.7. [167, Corollary 2, p. 82] Xu is centrally closed. Each of its
central extensions splits, i.e. its Schur multiplier is trivial. It yields the
universal central extension of all the Chevalley groups of the given type.

Fact 3.8. [167, Theorem 12 (Matsumoto, Moore)],
Assume that Φ is an indecomposable root system and k a field with |k| >

4. If X is the universal Chevalley group based on Φ and k, if Xu is the group
defined by (A), (B), (B′), and if π is the natural map from Xu to X with
C = kerπ, the Schur multiplier of X, then C is isomorphic to the abstract
group generated by the the symbols {t, u} (t, u ∈ k∗) subject to the relations:

(a) {t, u}{tu, v} = {t, uv}{u, v}; {1, u} = {u, 1} = 1
(b) {t, u}{t,−u−1} = {t,−1}
(c) {t, u} = {u−1, t}
(d) {t, u} = {t,−tu}
(e) {t, u} = {t, (1− t)u}

and in the case Φ is not of the type Cn (n ≥ 1) the additional
relation

(ab′) { , } is bimultiplicative.
In this case relations (a)-(e) may be replaced by (ab′) and

(c′) { , } is skew.
(d′) {t,−t} = 1.
(e′) {t, 1− t} = 1.

The isomorphism is given by ϕ : {t, u} 7−→ hα(t)hα(u)hα(tu)
−1, α a fixed

long root.

We now consider a perfect central extension G of finite Morley rank of a
universal linear algebraic group X over an algebraically closed field K. Let
(π,Xu) be the universal covering extension of X, C = kerπ and C◦ = kerψ
where ψ is the covering map from G onto X. By the universality of (π,Xu),
there exists a map θ from Xu into G such that ψθ = π.

G
ψHHHHj

Xu

�
���*θ

X-
π

As G is a perfect group, one can show that θ is surjective and C =
θ−1(C◦). By Fact 3.8 of Chapter II C is generated by f(t, u) where f is as
in Fact 3.4 of Chapter II. We must prove the interpretability in G of the
function f̂ = θ ◦ f in order to understand the structure of C◦.
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Proposition 3.9. [3, Proposition 4.12], Let G be a group of finite Mor-
ley rank. Assume that G is a perfect central extension of a universal Cheval-
ley group X, such that the kernel of the covering map from G onto X is a
definable central subgroup of G. If Xu is the universal central extension of
X and θ : Xu → G is the unique induced map, and f : K ×K → Xu is the
function defined in Fact 3.4 of Chapter II, then the function f̂ = θ ◦ f is
interpretable in G.

Proof. In order to prove Theorem 3.6, Steinberg proves that the rela-
tions (A), (B) and (B′) can be lifted from a universal linear algebraic group
X to any of its central extensions. To do so he starts with a central exten-
sion (ψ,G) of X and he constructs a map ϕ from the root subgroups of X
into G. We will make use of this map in order to show that the function
θ ◦ f is interpretable in G.

The first step in the proof is to show that ϕ is interpretable in G. To
do so, we need to look at the definition of ϕ. First, an element a of K∗ is
chosen so that c = a2−1 ̸= 0. In G/C, (hα(a), xα(t)) = xα(ct) for all α ∈ Σ,
t ∈ K. Then ϕ(xα(t)) is defined so that:

i) ψ(ϕ(xα(t))) = xα(t)
ii) (ϕ(hα(a)), ϕ(xα(t))) = ϕ(xα(ct)).
Steinberg observes that this determines ϕ as a map from the root group

Xα = ⟨xα(t) : t ∈ K⟩ into G. The xα are definable from the field over which
X is defined. Therefore, by Proposition 1.20, they are definable from the
pure group G. On the other hand, the following formula defines ϕ:

ϕ(x) = y

if and only if

∃x1, y1(ψ(x1) = y1 & (g◦, y1) = y & ∃t(x1 = xα(t) & x = xα(ct))),

where g◦ is the group element defined by hα(a). As a result, we conclude
that ϕ is an interpretable map from Xα into G. One can do the same thing
for all roots and get a map ϕ which lifts (interpretably in G) the Xα from
X to G.

Now we define the following functions from K into G:

wα(t) = ϕ(xα(t))ϕ(x−α(−t−1))ϕ(xα(t))

hα(t) = wα(t)wα(−1)

As ϕ and the xα are interpretable in G, so is wα and therefore, hα.
Hence, using Proposition 1.20, the following function also is interpretable in
G:

f̄ : K∗ ×K∗ → G

(t, u) 7−→ hα(t)hα(u)hα(tu)
−1 .

But f̄ = f̂ since (i) and (ii) hold in Xu for xα(t) and are preserved by
homomorphisms. This finishes the proof. □
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Before we start the proof of Theorem 3.2 of Chapter II we need one
last ingredient, coming from K-theory. The kernel of the covering map π is
known in K-theory as K2(K), where K is the field over which the Chevalley
group is defined. Facts 3.4 of Chapter II and 3.8 of Chapter II describe how
the group K2(K) is presented. The definition of K2 can be generalized to
commutative rings, and K2 is actually a functor from commutative rings to
abelian groups. We will make use of some properties of the functor K2 to
show that in our case the algebraically closed field K contains an infinite
subfield over which the generators f are trivial.

The characteristic p of the fieldK plays an important role. If p ̸= 0, then
Fact 3.5 of Chapter II proves that over the algebraic closure of the prime
field, the generators f(t, u) are all equal to 1. This will provide the necessary
infinite subfield. When p = 0, the following two results from K-theory imply
that f is trivial on Q×Q:

Fact 3.10. [158, Proof of Theorem 4.4.9, p. 225] The group K2(Q) is a
direct limit of finite abelian groups.

Fact 3.11. [23] If F is an algebraically closed field, then K2(F ) is a
divisible torsion-free group.

Lemma 3.12. The function f is trivial on Q×Q (where we are viewing
Q as a subfield of an algebraically closed field K).

Proof. The functor K2 is covariant, that is the values f(a, b) for a, b ∈
Q can be interpreted as the images in K2(K) of the corresponding symbols
in K2(Q). As these symbols can be taken to lie in a finite group and their
image lies in a torsion free group, the natural homomorphism must kill
them. □

Now we can prove our main result.

Proof of Theorem 3.2 of Chapter II. The arguments above show
that in all characteristics K has an infinite subfield K◦ such that for t,
u ∈ K◦, f(t, u) = 1. Let t ∈ K∗. We define Bt = {u ∈ K∗ : f(t, u) = 1}.
As K is an algebraically closed field, Bt is a subgroup of K∗ by Fact 3.4 of
Chapter II (a). We will show that for any t ∈ K∗ \ {1}, Bt = K∗. This will
prove the theorem. First, suppose t ∈ K◦. Since Bt ≥ K∗

◦ , Corollary 4.16
of Chapter I implies that Bt is generic in K∗. But K∗ is connected (Fact
4.2 of Chapter I), therefore Bt = K∗. Now choose t to be any element of
K∗ \ {1}. For any u ∈ K \ {1}, f(t, u) = f(u−1, t) by Fact 3.8 of Chapter
II (c). But if u ∈ K∗

◦ then f(u−1, t) = 1 by the first part of the argument.
Hence, Bt ≥ K∗

◦ and we conclude again by Corollary 4.16 of Chapter I that
Bt = K∗. □

Proof of Theorem 3.1 of Chapter II. We start with a perfect group
G of finite Morley rank such that G/Z(G) is a quasisimple algebraic group.
Let X be the universal group of the same type as G/Z(G). Then we have
the following diagram:
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G
π1HH

HHj

X π2���
�* G/Z(G)

We form the pullback of this diagram:

G
HH

HHj

π1

X���
�*

π2

G/Z(G)Y

θ1

θ2

��
��*

H
HHHj

Then Y ≃ {(g, x) ∈ G × X : π1(g) = π2(x)}. In this diagram, π1
and G/Z(G) are interpretable in G. On the other hand, as X is an al-
gebraic group, it is interpretable in G/Z(G) and hence in G. Moreover,
the triple (X,G/Z(G), π2) is algebraic and hence interpretable in G, say

as (X∗, G
∗
, π∗), where G

∗ ∼= G/Z(G) definably; hence we may take G
∗
=

G/Z(G) and π∗ : X∗ → G/Z(G).

The pullback Ỹ of π1 and π∗ is interpretable in G. Hence it is of finite
Morley rank. Since Ỹ ≃ Y , Y also has finite Morley rank. Moreover, Y
is a definable central extension of X. Therefore, we can apply Theorem
3.2 of Chapter II to Y and X and conclude, using [167, (iii), p. 75] that
Y ≃ X ∗A, where A is abelian. Note that θ1(Y

′) = (θ1(Y ))′ = G′ = G. But
Y ′ ≃ X is an algebraic group. Therefore, G is a quotient of an algebraic
group by a finite group. We conclude that G also is an algebraic group. □

Proposition 3.13. Let G be a connected group of finite Morley rank,
and suppose that G/Z(G) is a quasisimple Chevalley group, and L = G(∞).
G = Z(G) ∗ L is a central product and L is a quasisimple Chevalley group.

Proof. Certainly G = Z(G) ∗ L. Now L/Z(L) is quasisimple and per-
fect, so L is a quasisimple Chevalley group. □

We have worked in the context of Chevalley groups rather than algebraic
groups throughout, and with good reason as we depend on [167]. However
there is considerable value in knowing that we have not left the category
of algebraic groups, and we record this fact, which will be applied without
explicit mention.

Fact 3.14 ([167, §5]). A universal Chevalley group is an algebraic group.
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Indeed, we will generally read Proposition 3.1 of Chapter II as saying
that the group in question is algebraic.

4. Structure of K-groups

4.1. K-groups and K∗-groups.

Definition 4.1.

(1) A K-group is a group G of finite Morley rank such that every de-
finable connected simple section of G is isomorphic to a Chevalley
group over an algebraically closed field.

(2) A K∗-group is a group G of finite Morley rank such that every
proper definable connected simple section of G is isomorphic to a
Chevalley group over an algebraically closed field.

Proposition 4.2. If G is a simple algebraic group, with no further struc-
ture, then G is a K-group.

Proof. Fact 1.21 of Chapter II. □

Our discussion in this subsection is directed not so much toward methods
to be used in the classification phase, as toward a general discussion of some
results we find quite striking that bear on the Algebraicity Conjecture in
the context of locally finite or linear groups.

The following result is striking in itself, and leads via Wagner’s results
to results of considerably greater generality, if one opens up the proof a bit
(the statement as we give it omits the uniformities in the proof, which are
useful).

Fact 4.3. [172] Let G be a locally finite simple group of finite Morley
rank. Then G is isomorphic to a Chevalley group over an algebraically closed
field of positive characteristic.

The proof of this theorem involves a reduction to properties of finite
simple groups, and requires the classification of the finite simple groups.
Using the material in Parts B and C of the present book, and taking pains
never to invoke this result one can get a reasonably self-contained proof
which needs nothing beyond the Feit-Thompson theorem—but only because
it runs a miniaturized version of the classification of the finite simple groups
through to the end. In order to carry this through one has to eliminate the
uses of Proposition 4.4 of Chapter II below, as they involve results on locally
finite simple groups which in turn depend on the classification of the finite
simple groups. This is done by restricting oneself to the class of K∗-groups
throughout, which suffices for the proof of Fact 4.3 of Chapter II. In that
context it turns out that Proposition 4.4 of Chapter II is not needed. In the
locally finite case it provides a mechanism for verifying the algebraicity of
sections of degenerate type, which by Theorem 4.1 of Chapter IV contain
no involutions, which requires at worst the Feit-Thompson Theorem—and
in particular configurations, somewhat less.
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Here we find it useful to apply the “change of group” idea alluded to in
§2 of Chapter I.

Proposition 4.4. [154] Let G be a simple group of finite Morley rank
with a definable finite dimensional representation over a definable field F of
characteristic p > 0. Then G is definably isomorphic to an algebraic group
over the same field.

Proof. (Sketch)
By considering the Zariski closure of G we easily eliminate the possibility

that G would have bounded exponent. Then replacing G by an elementary
extension, we may suppose it contains an element g of infinite order. As we
are in finite characteristic, replacing g by a suitable power we may suppose
that g is semisimple. Let T = d(g). By Proposition 3.19 of Chapter I the
groupG is generated (in finitely many steps) by a finite number of conjugates
Ti = T gi of T . Now T sits in an algebraic torus of GLn(F ) for some n, which
we identify with (F×)n. We view (F, T ) as a structure in its own right, F
being a field and T a multiplicative subgroup of (F×)n, and we note that G
is parametrically definable in (F, T ).

Now we invoke Proposition 4.15 of Chapter I; the structure (F, T ) has
an elementary substructure (Falg, T ∩ Falg) where Falg = F ∩ acl(∅) consists
of the elements of F which in (F, T ) are model theoretically algebraic. As
the Frobenius x 7→ xp is an automorphism of (F, T ), any 0-definable subset
is invariant under the Frobenius and hence algebraic in the field theoretic
sense. So the structure (Falg, T∩Falg) is locally finite, as is any group defined
in it. Thus the group G satisfies any sentence belonging to the theory of all
locally finite groups.

For the rest, one enters in to the classification of the locally finite groups
of finite Morley rank [172]. Here what is needed is a slight refinement; after
fixing some parameters associated with the group G (notably the length of
chains of centralizers), the methods of [172] force any locally finite group into
one of a finite number of families, in each of which a field can be interpreted
and the structure of the group completely elucidated, in a way that can be
encoded by a single rather elaborate first order statement. This statement
then goes over to G by “transfer”, as it is something true of all locally finite
groups: if their basic parameters are sufficiently restricted, they are of the
stated form. One then finds that the underlying field must be algebraically
closed. To show that the field in question is the one with which we began
then requires some further inspection of the situation within GLn(F ), and
tends not to play a role in applications in any case.

This completes our sketch. □

Proposition 4.5. Let G be a group of finite Morley rank with a definable
finite dimensional representation over a definable field F of characteristic
p > 0. Then G is a K-group.
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Proof. We work in the group GL(n, F ) with F a an algebraically closed
field of characteristic p > 0. We assume that the pair (GL(n, F ), G), with
whatever structure G carries, has finite Morley rank. What we need to see
is that an arbitrary connected simple section of GL(n, F ) which is definable
in the extended language is isomorphic to a Chevalley group.

Let H/N be the simple section in question, and let R be the Zariski
closure of σ(H). Then R is solvable, so H ∩ R = σ(H). Now N(R) is a
linear algebraic group, so N(R)/R is also a linear algebraic group.

Working in the linear algebraic group N(R)/R, the group H is replaced
by H/σ(H). Thus we may suppose σ(H) = 1. As H is connected, it follows
that F ∗(H) is a finite product of infinite simple groups normalized by H
(Lemma 7.2 of Chapter I). Furthermore F ∗(H) embeds in N(R)/R, hence
by Poizat’s result (Proposition 4.4 of Chapter II) each factor is algebraic.
Therefore by Fact 2.25 of Chapter II, for each simple factor L of F ∗(H), we
have H = L · CH(L). It follows that H = F ∗(H)CH(F ∗(H)) = F ∗(H) by
Proposition 7.3 of Chapter I. Accordingly, H/N is a must be isomorphic to
one of the factors of F ∗(H). □

The following variation does not require the assumption of positive char-
acteristic. The proof involves a subtle calculation with traces which seems
to have no natural extension to more general groups.

Fact 4.6. [154] If K is a field of finite Morley rank, every definable
subgroup of GL2(K) is either solvable-by-finite or contains SL2(K).

Proposition 4.7. Let G be a group of finite Morley rank which is de-
finable over a bad field of positive characteristic. Then G is a K-group.

Proof. Let F be the field involved. Varying the parameters of the
definition, G belongs to a uniformly definable family G of groups of finite
Morley rank. Arguing as in Proposition 3.25 of Chapter I, one can express
the property that G is generated by each of its nontrivial conjugacy classes
(in a bounded number of steps). Hence we may require that property of
each group in the family, forcing them all to be simple.

By Proposition 4.18 of Chapter I, Falg is an elementary substructure
of F . Over Falg, the groups in the family G are locally finite, hence are
Chevalley groups by Fact 4.3 of Chapter II. One can then bound their
dimensions by using the uniform bound on lengths of chains of centralizers,
and find a first order sentence that expresses the fact that they are Chevalley
groups; this then passes to the field F . □

4.2. Structure.

Proposition 4.8. [1] Let G be a connected nonsolvable K-group. Then
G/σ(G) is isomorphic to a direct sum of finitely many simple algebraic
groups over algebraically closed fields. In particular the definable connected
2⊥-sections of G are solvable.
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Proof. We may suppose that σ(G) = 1. Then F ∗(G) is a finite prod-
uct of infinite simple groups, each of which is a Chevalley group over an
algebraically closed field (Lemma 7.2 of Chapter I).

G normalizes the factors of F ∗(G), and arguing as in the proof of Propo-
sition 4.5 of Chapter II we see that G = F ∗(G)CG(F

∗(G)) = F ∗(G). □

Corollary 4.9. Let G be a connected group of finite Morley rank with
no definable connected simple sections. Then G is solvable.

Proposition 4.10. Let G be a connected nonsolvable K-group. Then
G/σ◦(G) is isomorphic to a central product of finitely many quasisimple
algebraic groups over algebraically closed fields.

Proof. We may assume that σ◦(G) = 1 and hence that σ(G) = Z(G)
as G is connected. Furthermore Ḡ = G/Z(G) is a direct product of simple

algebraic groups. Let H = G(∞). Then H̄ = Ḡ. By Lemma 3.38 of Chapter
I, H is a central product of quasisimple groups, which by Proposition 3.1 of
Chapter II are Chevalley groups. Now G = H ·Z(G) and as G is connected
and Z(G) is finite, we have G = H. □

Lemma 4.11. Let G be a connected perfect K-group of finite Morley
rank, with σ◦(G) = Z◦(G). Then G is a finite central product of quasisimple
Chevalley groups. In particular, σ◦(G) = 1.

Proof. G/Z◦(G) is a finite central product of quasisimple Chevalley
groups, each of which is covered by a perfect normal subgroup H of G
which has the property that H/Z(H) is a quasisimple Chevalley group. In
other words, we may suppose that G/Z(G) is a quasisimple Chevalley group.
In particular σ(G)/Z(G) is finite, and [G, σ(G)] ≤ Z(G), so by the three
subgroups lemma we have σ(G) ≤ Z(G) and G is a perfect central extension
of a simple Chevalley group, to which the theory of central extensions applies
(Proposition 3.1 of Chapter II). □

Lemma 4.12. Let G be a connected K-group of finite Morley rank and
H a product of quasisimple factors of E(G) (the main cases are: H = E(G);
H = L a single such factor). Then G = H ∗ CG

◦(H).

Proof. The quasisimple factors of H are quasismple Chevalley groups
normal in G. If L is one such, then by Fact 2.25 of Chapter II G acts on
L via inner automorphisms. Hence G acts on H via inner automorphisms.
This yields G = H ∗ CG(H) and as G is connected our claim follows. □

Proposition 4.13. Let G be a connected K-group. Then CG(F
◦(G)) ≤

F ∗(G).

Proof. We have G = E(G) · CG
◦(E(G)) and E(G) ≤ CG(F

◦(G)).
Hence

CG(F
◦(G)) = E(G) · CG

◦(F ◦(G)E(G))
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But F ◦(G)E(G) = F ∗◦(G), and we have CG
◦(F ∗◦(G) ≤ F (G) by Proposi-

tion 7.3 of Chapter I, so

CG(F
◦(G)) ≤ E(G)F (G) = F ∗(G)

□

4.3. Weak embedding.

Definition 4.14. Let G be a group and M a proper definable subgroup.
We say that M is weakly embedded in G if M contains an infinite 2-
subgroup, and for g ∈ G\M ,M∩Mg does not contain an infinite 2-subgroup.

Proposition 4.15. Let G be a group of finite Morley rank of even type,
M a proper definable subgroup of G, and S a Sylow 2-subgroup of M . Then
the following are equivalent.

I M is weakly embedded in G
II (i) M has infinite Sylow 2-subgroups.

(ii) For any infinite Sylow 2-subgroup P of M , we have NG(P ) ≤
M .

III (i) M has infinite Sylow 2-subgroups.
(ii) For any unipotent 2-group U of M , NG(U) ≤M .
(iii) For any 2-torus T of M , NG(T ) ≤M .

IV (i) S is infinite
(ii) For any unipotent 2-group U of S, NG(U) ≤M .
(iii) For any 2-torus T of S, NG(T ) ≤M .

Proof. (II =⇒ I): Suppose M ∩Mg has an infinite Sylow 2-subgroup
Q, and let R ≤ G be a Sylow 2-subgroup containing Q. Then by hypothesis
NG(Q) ≤ M and similarly, conjugating, NG(Q) ≤ Mg, so NR(Q) = Q. By
the normalizer condition Q = R is a Sylow 2-subgroup of G. Hence Q and

Qg−1
are Sylow 2-subgroups ofM . Now for some x ∈M we have Qx = Qg−1

,
so xg ∈ N(Q) ≤M and g ∈M .

(III =⇒ II): Clear, since P will contain a definably characteristic sub-
group which is either 2-unipotent or a 2-torus.

(IV =⇒ III): With Q = U or T we have Qg ≤ S for some g ∈ M and

hence NG(Q) = [NG(Q
g)]g

−1 ≤M .
(I =⇒ IV): With Q = U or T , if g ∈ N(Q) then Q ≤M ∩Mg and hence

g ∈M . □

The definability hypothesis is superfluous here.

Lemma 4.16. Let G be a group of finite Morley rank, M a subgroup
satisfying any of the conditions of Lemma 4.15 of Chapter II, where however
we allow “unipotent” subgroups to be intersections of definable subgroups of
G with M , rather than insisting that they be definable in G. Then M is
definable in G.
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Proof. With S a Sylow 2-subgroup of M , our hypotheses imply that
d(S◦) ≤ M and thus M contains nontrivial G-definable connected sub-
groups. Let M0 be the subgroup of M generated by its G-definable con-
nected subgroups. ThenM0 contains S

◦ and by a Frattini argumentN(M0) ≤
M0N(S0) ≤M . Thus M = N(M0) is definable. □

Corollary 4.17. Let G be a group of finite Morley rank, M a weakly
embedded subgroup, and H a definable proper subgroup of G containing M .
Then H is weakly embedded in G.

Lemma 4.18. Let G be a group of finite Morley rank and M a weakly
embedded subgroup. Then M is definable.

Proof. Let M0 = ⟨NG
◦(S) : S a Sylow 2-subgroup of M⟩. Then M0 ≤

M is definable by Lemma 6.14 of Chapter I, andM ≤ N(M0). It will suffice
to show that M = N(M0).

If g ∈ N(M0) and S is any Sylow 2-subgroup of M , then S, Sg ≤ M0

and Sg = Sx for some x ∈M0. Hence gx
−1 ∈ N(S) ≤M , and g ∈M . □

Proposition 4.19. Let G be a group of finite Morley rank, H a definable
normal subgroup, Ḡ = G/H, and M a weakly embedded subgroup of G. If
M < Ḡ and M has an infinite Sylow 2-subgroup, then M is weakly embedded
in G.

Proof. We take P̄ ≤ M an infinite 2-subgroup, and P a Sylow 2-
subgroup of its preimage in G. Then P covers P̄ (Lemma 6.15 of Chapter
I). Let K̄ = NḠ(P̄ ), with preimage K in G. Then K = NG(HP ). For
k ∈ K we have P k = P h with h ∈ H, hence K ≤ NG(P )H ≤ MH, and
K̄ ≤M . □

Proposition 4.20. If G is a nonsolvable connected K-group with a
weakly embedded subgroup M , then G/O(G) ≃ (P)SL2(K), where K is an
algebraically closed field.

Proof. We know that G = G/σ◦(G) is a central product of quasisimple
Chevalley groups. We will show that σ◦(G) = O(G), and that Ḡ has Lie
rank one, and apply Fact 2.15 of Chapter II.

Suppose first that O(G) = 1. If O2(G) is infinite then O2(G) ≤ M and
G = N(O2(G)) ≤ M , a contradiction. As the Sylow 2-subgroup of F ◦(G)
is connected by Proposition 8.12 of Chapter I, we find that it is trivial
and F ◦(G) ≤ O(G) = 1. Accordingly σ◦(G) = σ◦(G)/F ◦(G) is abelian
and hence contained in F ◦(G) = 1. So by Proposition 4.10 of Chapter II,
G is a central product of finitely many quasisimple Chevalley groups over
algebraically closed fields.

In this case, weak embedding of M forces G to consist of a single qua-
sisimple Chevalley group. Suppose G has Lie rank greater than one. In
characteristic two, M contains a Borel subgroup NG(S) with S a Sylow 2-
subgroup, and every minimal parabolic containing B normalizes a connected
subgroup of S, soM contains these minimal parabolics, which generate G, a
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contradiction. If the characteristic is not two, then the Sylow◦ 2-subgroups
of G are contained in maximal tori. Let Tα and Zα be as in Proposition 1.12
of Chapter II. As the Lie rank is greater than one, we have Tα ̸= 1 for any
α ∈ ∆. Moreover, Zα ≤ M . This forces M = G, a contradiction. So in all
cases we arrive at a contradiction, and the Lie rank of G must be one. This
proves the result in the case O(G) = 1.

Next, suppose

O(G) ≤M

Let Ḡ = G/O(G). Then M is a weakly embedded subgroup of Ḡ, and
O(Ḡ) = 1, so the case just treated applies.

Accordingly we now suppose

O(G) is not contained in M .

Suppose M contains a nontrivial unipotent subgroup U . Then U cen-
tralizes O(G) by Proposition 10.13 of Chapter I. Hence by weak embedding
O(G) ≤M , a contradiction.

So a Sylow◦ 2-subgroup S ofM is a 2-torus. If the Prüfer rank is greater
than 1, then O(G) is generated by centralizers of nontrivial 2-tori contained
in S, by Lemma 9.17 of Chapter I, forcing O(G) ≤M by weak embedding,
a contradiction. So S is a 2-torus of Prüfer rank 1.

Suppose σ◦(G) > O(G). Then S ∩ σ◦(G) is connected by Proposition
8.12 of Chapter I, and nontrivial. As S has Prüfer rank 1, this gives S ≤
σ◦(G), and hence G/σ◦(G) has a finite Sylow 2-subgroup. This contradicts
Proposition 4.10 of Chapter II. We conclude that σ◦(G) = O(G).

Thus G/O(G) is a central product of simple Chevalley groups, and has
Prüfer rank 1, as claimed. □

5. K-Groups of even type

According to the classification presented in §6 of Chapter I, a group G
of finite Morley rank is of even type if its Sylow 2-subgroups are infinite and
of bounded exponent. We will be concerned with the structure of K-groups
of even type in this section.

What we really need to understand is the structure of L-groups, but in
most cases this follows readily from the K-group analysis. We will make
this extension in the next section.

5.1. Borel subgroups.

Lemma 5.1. If G is of even type then its Sylow 2-subgroups are definable.

Proof. Let S be a Sylow 2-subgroup. By Proposition 6.4 of Chapter I,
S◦ has the form U ∗T with U unipotent and T a 2-torus; as S has bounded
exponent, T = 1 and S◦ = U is definable. Hence S is definable. □

Proposition 5.2. Let G be a K∗-group of finite Morley rank and of
even type, and S a Sylow◦ 2-subgroup. Then
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(1) N◦(S) is a Borel subgroup of G, and the only one which contains
S.

(2) N◦(S) splits as S ⋊ T with T a definable complement.

Proof.
Ad (1). Let H = N◦(S)/S. Then H is connected, and has a finite

Sylow 2-subgroup by Lemma 6.15 of Chapter I. The same applies to any
definable section of H, and as H is a K-group, it has no definable connected
simple sections, hence is solvable by Corollary 4.9 of Chapter II. So N◦(S)
is solvable.

Now let H be any connected solvable definable group containing S. As
S is unipotent, we have S ≤ F (H) by Corollary 8.4 of Chapter I, and hence
S is the unique maximal 2-unipotent subgroup of F (H), hence normal in
H.

So N◦(S) is a Borel subgroup, and the only one containing S.
Ad (2). Any solvable connected groupH containing S will split definably

by Propositions 9.6 of Chapter I and 9.8 of Chapter I. □

5.2. Tori.

Proposition 5.3. [3, Proposition 3.4], Let G be a connected K-group
of even type, and T a connected 2⊥-group acting definably on G. Then T
leaves invariant a Sylow◦ 2-subgroup of G.

Proof. Suppose first that G is a simple algebraic group over an alge-
braically closed field of characteristic two. Then by Fact 2.25 of Chapter
II, T acts by inner automorphisms, and its image in G is again a connected
2⊥-group (Lemma 2.18 of Chapter I), As G is a K-group, Corollary 4.9 of
Chapter II implies that the image of T in G is solvable. Hence so is its
Zariski closure T̂ . The connected component T̂0 of T̂ in the sense of alge-
braic groups is definable in G by Fact 1.19 of Chapter II. As the image of
T is connected, it is contained in T̂0, and hence in a Borel subgroup of G.
So T acts as a subgroup of a Borel subgroup, and therefore leaves invariant
a Sylow◦ 2-subgroup.

More generally, if
σ(G) = 1,

then by Fact 4.8 of Chapter II G is a product of simple algebraic groups over
algebraically closed fields of characteristic two, and the first case applies in
each factor.

We now deal with the general case. Applying the previous case to
G/σ(G), we may suppose that G/σ(G) is a unipotent 2-group. In par-
ticular G is solvable. Then by Proposition 5.2 of Chapter II, S = U2(G) is
T -invariant. □

Proposition 5.4. Let G be a connected K-group of even type, and T a
connected 2⊥-group acting definably on G. If U is a T -invariant unipotent
2-subgroup of G, then U is contained in a T -invariant Sylow◦ 2-subgroup of
G.
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Proof. We may suppose that U is a maximal T -invariant and unipotent
s-subgroup of G. Applying Proposition 5.3 of Chapter II to NG

◦(U), it
follows that U is a Sylow◦ 2-subgroup of NG

◦(U), and hence of G. □

Lemma 5.5. Let G be a connected K-group of even type, and T a con-
nected 2⊥-group acting definably on G and faithfully on G/σ(G). Then T is
a good torus.

Proof. This reduces at once to the case σ(G) = 1, so that G is a
direct sum of simple Chevalley groups on which T acts. By Corollary 4.22
of Chapter I it suffices to treat a single simple factor, replacing T by its
image in that factor. So we may suppose that G is a simple algebraic group
over an algebraically closed field of characteristic two, and T is a definable
subgroup of G containing no involutions.

By Proposition 5.3 of Chapter II, T normalizes a Sylow◦ 2-subgroup of
G, and hence lies in a Borel subgroup B of G. As B = U ⋊ T0 with T0 a
maximal torus, and T ∩U = 1, there is a definable embedding T → T0. Now
T0 is a good torus by Proposition 4.20 of Chapter I and Corollary 4.22 of
Chapter I. □

5.3. O2 is connected. The notation Op(G) is may be problematic: it
stands for the largest normal p-subgroup of G, but it is perhaps better to
restrict its use to cases where this group is definable. In the most commonly
occurring case there is no difficulty, in view of the following.

Lemma 5.6. Let G be a connected K-group of even type. Then O2(G)
is connected and definable.

Proof. By Proposition 4.10 of Chapter II, G/σ◦(G) is a central prod-
uct of quasisimple algebraic groups Li over algebraically closed fields of
characteristic two. The image of O2(G) in

∏
i Li is a central 2-subgroup.

But Z(Li) consists of semisimple elements by Lemma 1.8 of Chapter II, so
O2(G) ≤ σ◦(G). Thus the problem reduces to the case in which G is solvable
and connected.

In this case, the Sylow 2-subgroup S of G is connected by Proposition
8.12 of Chapter I, and is unipotent as G is of even type. Hence S = O2(G)
by Proposition 8.4 of Chapter I. □

5.4. O2⊥.

Definition 5.7. Let G be a group of finite Morley rank, p a prime.
Then Op⊥(G) is the group generated by the definable normal p⊥-subgroups
of G.

Lemma 5.8. Let G be a group of finite Morley rank and of even type.
Then O2⊥(G) is definable.

Proof. Passing to a quotient, we may suppose that G has no nontrivial
connected definable normal 2⊥-subgroup. We may also suppose that G is
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connected. Then the definable normal 2⊥-subgroups of G are finite and
central, so O2⊥(G) = O2⊥(Z(G)), and we may suppose that G is abelian.

By Lemma 2.13 of Chapter I, G = A+B with A a 2-group of bounded
order and B 2-divisible, and both factors definable. As G is of even type,
B is a 2⊥-group, and hence O2⊥(G) = B is definable (and indeed B = 1 at
this point, in view of earlier reductions). □

5.5. Reductive groups.

Definition 5.9. A group G of finite Morley rank and even type is said
to be reductive if O2

◦(G) = 1.

Proposition 5.10. Let G be a connected reductive K-group of finite
Morley rank of even type. Then G = E(G) ∗O(G).

Proof. We have G = E(G) ∗ CG
◦(E(G)) and it suffices to show that

CG
◦(E(G)) = O(G).
Let G1 = CG

◦(E(G)). Then O2(G1) = 1 by reductivity, and E(G1) = 1.
We claim that G1 = O(G1). It suffices to show that U2(G1) = 1.

Let H = U2(G1). Then O2
◦(H) = E(H) = 1 and U2(H) = H. By

Proposition 10.13 of Chapter I, H centralizes O(H). Furthermore σ◦(H) =
O(H) = Z◦(H) and thus H/Z◦(H) is a finite product of quasisimple Cheval-
ley groups over algebraically closed fields of characteristic two.

For each quasisimple factor L̄ of H/Z◦(H), with preimage L in G1, we
have L = Z(L) ∗ L1 with L1 quasisimple by Proposition 3.13 of Chapter II.
Thus H = Z◦(H) ∗ E(H) = Z◦(H). Then as H = U2(H) and O2

◦(H) = 1
we find H = 1, as claimed. □

Corollary 5.11. Let G be a connected K-group of even type. Then the
Sylow 2-subgroups of G are connected.

Proof. This holds in G/O2
◦(G) by the previous lemma and inspection,

which gives the result in general. □

We will take advantage of this corollary to lighten the notation a little,
but the connectedness must then be borne in mind as it is not recalled by the
notation. But in a K∗ context we must be careful to observe the distinction.

5.6. Perfect groups.

Lemma 5.12. H be a K-group of finite Morley rank of even type, gener-
ated by its 2-unipotent subgroups. Then H(∞) is generated by its connected
2⊥-subgroups.

Proof. Let K = H(∞). As the group H/O2(H) is generated by 2-
unipotent groups, it is perfect, by Proposition 5.10 of Chapter II. Hence
H = KO2(H) and K/O2(K) ≃ H/O2(H). In particular, K/O2(K) is a
central product of algebraic groups, and it suffices to show that the subgroup
K1 ofK generated by its connected 2⊥ groups coversK/O2(K), since it then
follows that K/K1 is both solvable and perfect, hence trivial.
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Now K/O2(K) is generated by its maximal tori. Consider a maximal
torus T̄ in a quasisimple factor of K/O2(K), and its preimage T in K. Then
T/O2(K) = T̄ and T splits by Schur–Zassenhaus as O2(K) · T0, with T0 the
desired connected 2⊥-group. □

5.7. Abelian Sylow 2-subgroups.

Proposition 5.13. Let G be a connected K-group of finite Morley rank
and of even type with abelian Sylow 2-subgroups. Then

G = L1 × · · · × Ln × σ(G)

is a direct product, with Li ≃ SL2(Fi) for suitable algebraically closed fields
Fi of characteristic two.

Proof. Let Ḡ = G/O2(G). Then by Proposition 5.10 of Chapter II,

we have Ḡ = O(Ḡ)E(Ḡ) = σ◦(G)H̄ where H is the preimage in G of E(Ḡ).
Hence we may suppose G = H, or in other words G/O2(G) is a central
product of quasisimple Chevalley groups with abelian Sylow 2-subgroups
of bounded exponent (Lemma 6.15 of Chapter I), each of the form Li =
SL2(Fi), with Fi algebraically closed of characteristic two (Lemma 2.23 of
Chapter II). In particular G = U2(G).

As Sylow 2-subgroups are abelian and O2(G) is connected (Lemma 5.6
of Chapter II), we find that O2(G) ≤ Z(G), and hence for each quasisim-
ple factor L̄ of Ḡ, its preimage L in G is of the form Z(G) ∗ L1 with L1

quasisimple. Thus G = Z(G) ∗ E(G) and our claim is proved. □

5.8. Strongly closed abelian subgroups.

Definition 5.14. Let G be a group, A ≤ H ≤ G subgroups. We say
that A is strongly closed in H, relative to G, if every element of H which is
conjugate, in G, to an element of A, is in A.

Lemma 5.15. Let G be a group with an abelian 2-subgroup A which
is strongly closed in some Sylow◦ 2-subgroup S containing it. Then A is
strongly closed in any Sylow 2-subgroup containing it.

Proof. Let S1 be a Sylow◦ 2-subgroup containing A. Then S1 = Sg

for some g ∈ G and B = Ag is strongly closed in S1. Now Bg−1
= A ≤ S1,

so by strong closure of B in S1 we have A = B. Thus A is strongly closed
in S1. □

Lemma 5.16. Let G be a group of finite Morley rank having a Sylow◦

2-subgroup S with a strongly closed abelian subgroup A. and let B ≤ A be
N(A)-invariant. Then B is strongly closed in S.

Proof. Suppose that bg ∈ S, with b ∈ B and g ∈ G. Then bg ∈ A and
A,Ag ≤ C(b), so conjugating further in C(bg) we may suppose that Ag = A,
g ∈ N(A), and then by assumption bg ∈ B. □
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Lemma 5.17. Let G be a group of finite Morley rank, A ≤ S where S
is a Sylow◦ 2-subgroup, and H ◁ G. Suppose that A is strongly closed in S.
Then in Ḡ = G/H, we have A strongly closed in S̄.

Proof. We take a ∈ A and g ∈ G such that ag ∈ S̄. We claim ag ∈ Ā.
We have ag ∈ SH. We may conjugate ag by an element h of H into S,

which is a Sylow 2-subgroup of SH. So ag = agh ∈ Ā. □

Lemma 5.18. Let G be a connected K-group of finite Morley rank and of
even type with a nontrivial abelian 2-subgroup A which is strongly closed in a
Sylow 2-subgroup of G. Then G is a finite direct product G = L1×· · ·×Ln×H
with the following properties.

(1) L1, . . . , Ln are groups of type PSL2 in characteristic two.
(2) A ∩ Li is a Sylow 2-subgroup of Li for each i.
(3) A ∩H ◁ H.
(4) A = (A ∩ L1)× · · · × (A ∩ Ln)× (A ∩H)

Proof. Let G1 be the subgroup of G generated by the conjugates of A.
Then all of our hypotheses apply to G1, and G1 ◁ G. If G1 has the specified
structure than the same picture lifts easily to G. In particular, we will have
the Li ◁ G since they are permuted by G and G is connected, and our results
on definable groups of automorphisms show then that G = L×CG(L) with
L = L1×· · ·Ln. The last point is that CA(L) should be normal in G. Indeed
CG1(L) ◁ G so by a Frattini argument, if S is a Sylow 2-subgroup of CG1(L)
then G ≤ CG1(L)N(S) ≤ N(CA(L)) as A ∩ S = CA(L). So we may make
the additional hypothesis

G is generated by conjugates of A

Now supposing the center of G is infinite, we make a further reduction.
The preceding lemma allows us to pass to Ḡ = G/Z(G) and do induction
on rank. This gives us a decomposition (not a direct product) of G into
connected groups L1 · · · · · Ln ·H with L̄i ≃ PSL2 in characteristic two and
Ā normal in H̄. Then Li = KiZ(G) with Ki a perfect and quasisimple,
hence a covering group of PSL2 in characteristic two, hence Ki is itself of
type PSL2. Furthermore AZ(G)∩Li is a Sylow 2-subgroup of Li and there
is a maximal torus T of Ki such that T̄ normalizes Ā, and so T normalizes
AZ(G). For t ∈ T we have At ≤ AZ(G) commuting with A, so AAt belongs
to a Sylow◦ 2-subgroup, and by strong closure At = A, also [t, A] ≤ A. It
follows that A meets Ki in a Sylow 2-subgroup of Ki, and the rest of the
structure of Ḡ easily pulls down to G in similar fashion.

So let us suppose that Z(G) is finite. We claim then that O2
◦(G) = 1.

Suppose first that A ∩ O2
◦(G) is infinite. By strong closure it then follows

that A ∩O2
◦(G) ◁ G. So any conjugate of A centralizes A ∩O2

◦(G) and as
these conjugates generate G this group is central in G, a contradiction. So
A∩O2

◦(G) is finite. On the other hand AO2
◦(G) is contained in a Sylow◦ 2-

subgroup of G, so O2
◦(G) normalizes A and hence [A,O2

◦(G)] ≤ A∩O2
◦(G)
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is finite; being connected, it is trivial, and now we find O2
◦(G) ≤ Z(G). So

if Z(G) is finite then O2
◦(G) is trivial.

By Proposition 5.10 of Chapter II we now have G = O(G) ∗E(G); as G
is generated by conjugates of A, we have

G = E(G)

There is a maximal torus in E(G) normalizing a Sylow 2-subgroup of G
containing A, and by strong closure also normalizing A. Consequently by
the structure of such groups, A is a product of its intersections with the
quasisimple components L of E(G). Now we can use the classification of
the quasisimple Chevalley groups. Invariance under the action of a maximal
torus implies that A is a product of root groups, and strong closure, together
with the irreducibility of the root system, implies that A is a full Sylow 2-
subgroup. So we are dealing with groups with abelian Sylow 2-subgroups,
and the factors are of type PSL2. □

5.9. Quasisimple subgroups normalized by a 2-Sylow subgroup.

Proposition 5.19. Let L be a K-group of even type with L = L1 ×
. . .×Lt, where the Li are simple algebraic groups. If K is a definable simple
subgroup of L normalized by a Sylow 2-subgroup of L, then K = Li for some
i.

Proof. Let U be a Sylow 2-subgroup of L which normalizes K. Then
U = U1 × . . . × Ut where each Ui is a Sylow 2-subgroup of Li. For some i
we have 1 ̸= [K,Ui] ≤ K ∩ Li ◁ K. Therefore K ≤ Li, and we may assume
L = Li is simple.

We claim that U ≤ K. Since U normalizes K, U ∩ K is a Sylow 2-
subgroup of K. Now U acts on K by inner automorphisms by Corollary 2.26
of Chapter II, so U acts on K as U ∩K does, and U = CU (K)× (U ∩K).

Let V = CU (K) and consider the subgroup H = NL(V ). Note that
K,U ≤ H. By Proposition 1.25 of Chapter II, CH(O2(H)) ≤ O2(H). But
V ≤ O2(H) ≤ U so O2(H) = V ×(O2(H)∩K) = V . ThusK ≤ C(O2(H)) =
O2(H), a contradiction. This shows V = 1. So U ≤ K ≤ L.

Let w ∈ K be an involution with U ∩ Uw = 1 (that is, taking the Borel
subgroup of K containing U to its opposite). Then ⟨U,Uw⟩ = L and thus
K = L. □

Proposition 5.20. Let H be a connected K-group of finite Morley rank
and even type, and L a definable quasisimple subgroup of H such that N◦(L)
contains a Sylow 2-subgroup of H. Then L ◁ H.

Proof. Let S ≤ N◦(L) be a Sylow 2-subgroup ofH. Let H̄ = H/O2(H).
By Proposition 5.10 of Chapter II H̄ = E(H̄) ∗ O(H̄), and by Proposition
5.19 of Chapter II, L̄ is normal in E(H̄) and hence in H̄. In terms of H we
have LO2(H) ◁ H. But O2(H) ≤ S so [L,O2(H)] ≤ L∩O2(H) ≤ Z(L), and
as L is quasisimple [L,O2(H)] = 1 by the three subgroups lemma. Thus
L = E(LO2(H)) ◁ H. □
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5.10. Borel-Tits.

Lemma 5.21. Let G be a K-group of even type and H a definable con-
nected subgroup of G such that H = NG

◦(O2(H)). Then H contains a
Sylow◦ 2-subgroup of G.

Proof. We may suppose that G is connected. We set Q = O2(H).
By Lemma 5.6 of Chapter II, Q and O2(G) are connected. The subgroup
QO2(G) is a connected 2-subgroup, hence nilpotent. Thus NO2(G)

◦(Q) is
nontrivial. As this group is contained in H and normalized by H, it is a
subgroup of Q. Hence, NQO2(G)(Q) = Q and thus O2(G) ≤ Q. Thus we
may factor out O2(G) and assume that O2(G) = 1. By Proposition 5.10 of
Chapter II, G = E(G) ∗O(G). We may therefore assume that G = E(G).

As Q = O2(QZ(G)), NG(QZ(G)) = H and hence we may pass to Ḡ =
G/Z(G), a direct product of simple algebraic groups over algebraically closed
fields of characteristic two. This is almost the situation to which Fact 1.24
of Chapter II applies, though as the base fields of the factors may vary one
cannot say that this is literally so. While it would suffice to apply that result
to each factor, we may argue more directly as follows.

Let G∗ be an elementary extension of G in which each direct summand
is uncountable, and of fixed cardinality. Then the base fields of the factors
may be identified and G∗ becomes an algebraic group over an algebraically
closed field of characteristic two. Thus after replacing G by G∗ we may
suppose that G is itself algebraic. Then the condition on H implies that
Q is Zariski closed and hence by Fact 1.24 of Chapter II H is contained in
a parabolic subgroup P of G whose unipotent radical U contains Q. Then
NU (Q) ≤ O2(H) = Q so U = Q and H is a parabolic subgroup of G. □

5.11. L-Balance. The next result is referred to as the L-balance prop-
erty:

Proposition 5.22. Let H be a K-group of finite Morley rank of even
type, and U a 2-subgroup of H. Then E◦(C(U)) ≤ E◦(H).

Proof. Let T be a torus contained in a component of E◦(C(U)). Let
P be O2(H). Now CP (U) ≤ O2(C(U)), so T commutes with CP (U). By the
Thompson A×B-lemma, Proposition 12.4 of Chapter I, with A = T , T com-
mutes with O2(H). As such tori generate E◦(C(U)), E◦(C(U)) centralizes
O2(H). On the other hand E◦(C(U)) also centralizes O(H) since E◦(C(U))
is generated by unipotent 2-subgroups (Proposition 10.13 of Chapter I).
Thus E◦(C(U)) centralizes F ◦(H) = O2

◦(H) ∗ O(F (H)). But the con-
nected component of the centralizer of F ◦(H) in H is Z◦(F ◦(H)) ∗ E◦(H)
by Proposition 4.13 of Chapter II, so E◦(C(U)) ≤ E◦(H). □

Proposition 5.23. Let H be a connected K-group of finite Morley rank,
of even type, and let U be a 2-subgroup of H. Then E◦(CH(U)) ◁ E(H).
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Proof. By Proposition 3.1 of Chapter II, Z(E(H)) is finite, and E(H)
is a central product of quasisimple Chevalley groups. As H is connected, it
acts by inner automorphisms on E(H). Hence so does U .

By Proposition 5.22 of Chapter II, E◦(C(U)) ≤ E(H), so E◦(C(U)) =
E(CE(H)

◦(U)). As U acts by inner automorphisms, CE(H)(U) is the central
product of CL(U) as L varies over the factors of E(H), and E◦(C(U)) is
correspondingly the central product of the groups E◦(CL(U)).

For any factor L of E(H), U acts on L as a 2-subgroup Ū of L. If this
group is trivial then E(CL(U)) = L, and otherwise E(CL(U)) = E(CL(Ū)) =
1 by Fact 1.27 of Chapter II. □

Proposition 5.24. Let H be a connected K-group of finite Morley rank
and even type. Let α be a definable automorphism of G of order an odd
prime p. Then O2(CH(α)) ≤ O2(H).

Proof. We may suppose that O2(H) = 1. Then by Proposition 5.10
of Chapter II H = O(H) ∗ E(H). So it suffices to consider the action of α

on E(H), and more particularly the action of α on the group ⟨L⟨α⟩⟩, with
L a single component of E(H). This is either L itself, or a central product
of p groups cycled by α. In the latter case the centralizer covers a diagonal
subgroup modulo the center. This contributes nothing to O2(C(α)).

So suppose α normalizes the component L. Then Fact 1.17 of Chapter
II gives the desired result. □

5.12. Weak embedding. We apply the weak embedding classification
to the case of even type.

Lemma 5.25. If G is a nonsolvable connected K-group of even or mixed
type with a weakly embedded subgroupM , then G ≃ PSL2(K)×O(G), where
K is an algebraically closed field of characteristic two.

Proof. By Proposition 4.20 of Chapter II, G/O(G) has the stated
structure. By Proposition 10.13 of Chapter I, G centralizes O(G). Fur-
thermore, since O2(G) = 1, by Proposition 5.10 of Chapter II we have G =
O(G)∗L with L = E(G), which in the present case means L = SL2(K). □

5.13. Generation.

Lemma 5.26. Let A be an elementary abelian p-group with mp(A) ≥ 2,

contained in a p-torus Â, and let H be a K-group of even type which is
generated by its 2-unipotent subgroups, with Â acting definably on H. Then

H = ⟨U2(C
◦(x)) : x ∈ A×⟩

Proof. We may suppose toward a contradiction that H is a counterex-
ample of minimal Morley rank. Let H0 = ⟨U2(C

◦(x)) : x ∈ A×⟩
By Lemma 5.6 of Chapter II O2(H) is connected. By Proposition 9.16 of

Chapter I O2(H) is contained in H0. If O2(H) is nontrivial then induction
applies to H̄ = H/O2(H) and hence H̄ = ⟨U2(CH̄(x)) : x ∈ A×⟩. But
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CH̄(x) = CH(x)O2(H)/O2(H) by Proposition 9.12 of Chapter I. So in this
case our claim follows for H.

There remains only the case O2(H) = 1. Then by Proposition 5.10 of
Chapter II we have H = E(H) ∗ O(H) and by our hypotheses we have

H = E(H). The p-torus Â must normalize the quasisimple components of
H, so by our minimality hypothesis H = L is a quasisimple algebraic group
in characteristic two.

The p-torus Â induces inner automorphisms of L, and acts faithfully
(otherwise our claim would be immediate). So we may take A to be a

subgroup of a maximal torus T of L. In particular Â normalizes two oppo-
site Borel subgroups of L. In particular O2(B) ≤ H0 for each such Borel
subgroup B. As these two groups generate L, our claim follows. □

5.14. Properties of SL2. The present subsection contains a number
of characterizations of the natural module for SL2, beginning with Lemma
5.31 of Chapter II, which are needed for the amalgam method beginning in
§special:Baumann.

We begin with a general lemma of Timmesfeld, which may applied in its
original form.

Definition 5.27. Let G be a group and V an elementary abelian 2-group
on which G acts, and A a subgroup of G. The action of A on V is said to
be quadratic if [V,A,A] = 0.

Fact 5.28. [174, Proposition 2.7], Let V be a ZX-module where X ≃
SL2(K) with K a field. Suppose the following:

(1) CV (X) = 0 and [V,X] = V
(2) [V,A,A] = 0, where A is a maximal unipotent subgroup of X.

Then for some field action on ⟨vX⟩, the vector space ⟨vX⟩ is a natural
module for each v ∈ CV (A)

×.

Lemma 5.29. Let G be group of finite Morley rank which is isomorphic
to SL2(K) as an abstract group with K an algebraically closed field. Suppose
A is an infinite definable unipotent subgroup of G. Then for some conjugate
B of A, ⟨A,B⟩ = G.

Proof. Let A be such; we may suppose A connected. Let U = C(A)
be the maximal unipotent subgroup of G containing A, and let B be a
conjugate of A which does not normalize U . Let H = ⟨A,B⟩. Then H is
a definable connected subgroup of G by Corollary 3.29 of Chapter I. If H
is solvable then H is contained in a Borel subgroup of G, and this must be
N(U), contradicting the choice of B. Thus Fact 4.6 of Chapter II applies
and H = G. □

Lemma 5.30. Let G be a group of finite Morley rank which is isomor-
phic to SL2(K) as an abstract group with K an algebraically closed field of
characteristic two. Let S ⋊ R be a Borel subgroup of G, with S a Sylow
2-subgroup of G and R a maximal torus. Then the following hold:



160 II. K-GROUPS AND L-GROUPS

(1) G is generated by S together with any involution i not in S.
(2) Let V be an elementary abelian 2-group on which G acts faithfully

so that the structure (G,V ) has finite Morley rank, and set f =
rk(K). Then
(a) If CV (G) = 0, then for some v ∈ V , rk(CG(v)) ≤ f ;
(b) rk(V ) ≥ 2f .

Proof.
Ad (1). This follows from Fact 4.6 of Chapter II applied to ⟨S, Si⟩.
Ad (2a). Let V be as stated.
Assume toward a contradiction that CV (G) = 0, and rk(CG(v)) > f for

all nontrivial v ∈ V .
Fix v ∈ CV (S)

×. As rk(CG(v)) > f , we have CG
◦(v) > S and thus

CG
◦(v) has the form S ⋊R0 with R0 a nontrivial torus, which is not neces-

sarily algebraic. Let w be an involution that inverts R0 and set v1 = v+vw.
Note that v1 ̸= 0; in fact, if w ∈ CG(v) then by Lemma 5.29 of Chapter II,
we have CG(v) = G, contradicting our hypothesis.

Now, ⟨w,R0⟩ ≤ CG(v1). As rk(CG(v1)) > f , CG
◦(v1) has a nontrivial

Sylow◦ 2-subgroup Q, which is normal in C◦(v1) and in particular is nor-
malized by R0 and by w. But there is no such 2-group Q in G since the only
Sylow 2-subgroups normalized by R0 are S and Sw.

Ad (2b). We may suppose that V is irreducible and faithful, and apply
(2a). □

Lemma 5.31. Let G be a group of finite Morley rank which is isomor-
phic to SL2(K) as an abstract group with K an algebraically closed field of
characteristic two. Let V be an elementary abelian 2-group on which G acts
definably and faithfully. Let f = rk(K), and suppose rk(V ) = 2f . Then V
is a natural module for G.

Proof. We use Fact 5.28 of Chapter II. As rk(V ) = 2f , and the action
is faithful, it follows from Lemma 5.30 of Chapter II (2) that V is irre-
ducible, and thus [V,G] = V . The only point that needs to be checked is
the quadratic action: [V, S, S] = 0 where S is a Sylow 2-subgroup of G.

Let V0 = CV (S). and X =
⋃
{V g

0 ) : g ∈ G}. Distinct conjugates of V0
intersect trivially since CV (G) = 0. Thus X has rank rk(V0) + f , and it
follows that rk(V0) ≤ f . We claim

(∗) rk(V0) = f

Suppose the contrary. Let O1 be an orbit of maximal rank for T in V0,
and T1 = CT

◦(O1). Since rk(O1) < f , the group T1 is nontrivial as well as
connected. Furthermore V1 = CV0

◦(T1) is nontrivial: V1 contains O1, and if
rk(O1) = 0 then the orbits of T on V0 are all finite, in which case T1 = T
and V1 = V0.

Now take an involution w inverting T1. For v ∈ V ×
1 , the element v+ vw

is centralized by T1 and by w, and is nontrivial since ⟨S,w⟩ = G. Now the
group CG

◦(v + vw) is solvable since it is not G, and its unipotent radical
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is w-invariant and normalized by T1, hence trivial. Thus CG
◦(v + vw) is a

torus and hence has rank at most f . Since the rank of the orbit of v + vw

under G is at most 2f , it follows that CG
◦(v+ vw) is a maximal torus; since

it contains T1 it is T , and CG(v + vw) = ⟨T,w⟩. In particular the orbit of
v + vw is generic in V .

Now if v1, v2 ∈ V1 are distinct and nontrivial, then the elements v1 + vw1
and v2 + vw2 both have centralizer ⟨T,w⟩ and a generic orbit in V , hence
are conjugate under the action of G. This conjugation must preserve the
centralizer, and normalize T . But as v1 and v2 are centralized by NG(T ), we
conclude v1 = v2, contradicting our choice. This contradiction proves (∗).

Thus X =
⋃
V G
0 is generic in V , or in other words, a generic element of

V is fixed by a Sylow subgroup of G.
We claim that every element v ∈ CV (S)

× has CG
◦(v) = S. Suppose the

contrary. We suppose v ∈ CV (S)
× is centralized by a nontrivial torus R and

we take w inverting R. Consider v1 = v + vw. Then as above, CG(v1) must
be a torus. In particular rk(CG(v1)) = f and thus vG1 is also generic in V .
But this contradicts the result of the previous paragraph.

Let T be a maximal torus in NG(S). For v ∈ C◦
V (S)

× as C◦
G(v) = S,

the orbit vT is generic in C◦
V (S) and as C◦

V (S) is connected, C◦
V (S)

× is a
single orbit under T . But if S1 ̸= S is a conjugate of S normalized by T
then V = CV (S) ⊕ CV (S1) as a T -module and thus V̄ × = (V/CV (S))

× is
also a single orbit under T . Since CV̄ (S) ̸= 1, it follows that CV̄ (S) = V̄ , or
in other words [V, S] ≤ CV (S), and [V, S, S] = 0. □

Proposition 5.32. Let G be a group of finite Morley rank which, as an
abstract group, is isomorphic to SL2(K) with K an algebraically closed field
of characteristic 2. Let A be an infinite definable 2-subgroup of G, and V a
connected elementary abelian 2-group which is a G-module such that (G,V )
has finite Morley rank. Suppose CV (G) = 0. Then:

(1) rk(A) ≤ rk(V/CV (A));
(2) Equality holds only if A is a Sylow 2-subgroup of G, and V is a

natural G-module.

Proof. Let f = rk(K). By Lemma 5.29 of Chapter II, we have G =
⟨A,B⟩ with B some conjugate of A. As CV (G) = 0, the natural map

V −→ [V/CV (A)]× [V/CV (B)]

is injective, and thus rk(V ) ≤ 2 rk(V/CV (A)). By Lemma 5.30 of Chapter
II (2),

rk(V/CV (A)) ≥ f ≥ rk(A)

This proves the first point.
Now suppose rk(A) = rk(V/CV (A)). Then rk(A) = f and A is a Sylow

2-subgroup of G. Furthermore rk(V/CV (A)) = f so rk(V ) ≤ 2f and by
Lemma 5.30 of Chapter II, rk(V ) = 2f . So by Lemma 5.31 of Chapter II,
V is a natural module. □
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The following corollary is an analog of a result given in [169] and [170].

Proposition 5.33. [170], [169, (2.1)] Let G be a group of finite Morley
rank which is isomorphic to SL2(K) with K an algebraically closed field
of characteristic two. Let V be a faithful F2G-module. Let S be a Sylow
2-subgroup of G. Assume that T ≤ S is definable and nontrivial, and:

(i) [V, T, T ] = 1,
(ii) rk(V/CV (T )) ≤ rk(T ).

Then the following hold:

(a) rk(T ) = rk(V/CV (T )),
(b) T = S,
(c) V/CV

◦(G) is a natural F2-module for G,
(d) CV (S) = [V, S]CV (G).

Proof. Point (d) is a special case of (c). We have proved (a− c) under
the assumption that CV (G) = 0. All that we need to prove now is that
CV/CV

◦(G)(G) = 0.

Let V0/CV
◦(G) = CV/CV

◦(G)(G). Then [V0, G,G] = 1 so by the Three

Subgroups Lemma [V0, G] = 1, as claimed. □

6. L-Groups and L∗-groups

6.1. L-groups and L∗-groups. The notion of K-group must be ex-
tended as follows, given that groups of odd and degenerate type are poorly
understood.

Definition 6.1. Let G be a group of finite Morley rank.

(1) G is an L-group if every definable connected simple section of G of
even type is isomorphic to a Chevalley group over an algebraically
closed field of characteristic two.

(2) G is an L∗-group if every proper definable connected simple sec-
tion of G of even type is isomorphic to a Chevalley group over an
algebraically closed field of characteristic two.

(3) G is a U2-type group if G is generated by its 2-unipotent subgroups.

In the case of L-groups of even type, the only doubtful sections are
those of degenerate type. In the case of L-groups of mixed type, a priori
the situation could be fairly wild, but in part B we will show that simple
mixed type groups of finite Morley rank do not exist, and after that we will
know that only odd and degenerate type sections are problematic. For that
matter, when we prove the nonexistence of simple groups of finite Morley
rank of mixed type, we will consider a hypothetical minimal counterexample,
so even in that context we will know that there can be no proper simple
definable sections of mixed type. So we now prepare some tools for the
study of L-groups without proper definable simple sections of mixed type.

Proposition 6.2. Let G be an L-group of finite Morley rank, with no
definable simple sections of mixed type. Then U2(G) is a K-group.
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Proof. We may suppose G = U2(G) and σ(G) = 1.
By Fact 8.34 of Chapter I, Soc(G) is a direct sum of definable simple

subgroups. As G is an L-group, these factors are either algebraic groups,
or odd type, or degenerate, and as G is connected they are normal in G.
Suppose there is a degenerate or odd type factor K. Then by Proposition
10.13 of Chapter I, the unipotent subgroups of G centralize K, and as G =
U2(G), we find that K is central in G, a contradiction. Thus Soc(G) is a
finite sum of simple algebraic groups (of even type), and in view of Fact 2.25
of Chapter II, as G is connected it follows that G = Soc(G)CG(Soc(G)). If
CG(Soc(G)) ̸= 1, then Z(G) = CG(Soc(G)) ∩ Soc(G) ̸= 1 by Fact 8.34 of
Chapter I, hence σ(G) ̸= 1, a contradiction. So G = Soc(G). □

Lemma 6.3. Let G be an L-group of finite Morley rank with no definable
simple sections of mixed type. Then U2(G) is a K-group of even type.

Proof. We may suppose that G = U2(G), and by the preceding, G
is a K-group. We may factor out U2(σ(G)) and suppose that U2(σ(G)) =
1. Then G centralizes σ(G) by Proposition 10.13 of Chapter I. Let H =

G(∞). Then H is a perfect central extension of H/σ(H), hence H is a finite
central product of quasisimple algebraic groups. Then G = H ∗CG(H) and
CG(H)/Z(H) is a solvable group of U2-type, hence 2-unipotent. But then
U2(CG(H)) ≤ U2(σ(G)) = 1, so CG(H) = Z(H) and G = H. In particular,
H is also of U2-type and hence, as a central product of quasisimple Chevalley
groups, is of even type. □

The following is a typical consequence, following from the K-group ana-
log.

Corollary 6.4. Let G be a connected L-group of even type. Then
O2(U2(G)) is connected and definable.

This can be improved, cf. Lemma 4.19 of Chapter IV.

6.2. Weak embedding.

Lemma 6.5. Let H be a connected L-group of even type with a weakly
embedded subgroup M . Then

H = L×D

where L = U2(H) ≃ SL2(K) with K algebraically closed of characteristic
two, and D = CH(L) a subgroup of degenerate type. Furthermore,

M◦ ∩ L is a Borel subgroup of L; D ≤M

Proof. We define L = U2(H) and D = CH(L). Let S be a Sylow◦

2-subgroup of M . Then S ≤ L, and by a Frattini argument we have H ≤
L ·N(S). So if we had L ≤M , we would get H ≤M , a contradiction.

It follows thatM∩L is weakly embedded in L, which is aK-group of even
type by Lemma 6.3 of Chapter II. So L ≃ PSL2(K) for some algebraically
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closed field K of characteristic two, by Lemma 5.25 of Chapter II. It follows
easily that M ∩ L is a Borel subgroup of L.

Now by Fact 2.25 of Chapter II we have H = LD, and since L is simple
we have L∩D = 1. It follows then thatD is of degenerate type. Furthermore
D ≤ C(L) ≤ C(S) ≤M , and all of our claims are proven. □

6.3. Strongly closed abelian subgroups. In much the same vein as
the preceding, we may state the following, derived from the K-group case.

Lemma 6.6. Let G be a connected L-group of finite Morley rank and of
even type, with a nontrivial abelian 2-subgroup A which is strongly closed in
a Sylow◦ 2-subgroup of G. Then G is a finite direct product G = L1 × · · · ×
Ln ×H with the following properties.

(1) L1, . . . , Ln are groups of type PSL2 in characteristic two.
(2) A ∩ Li is a Sylow 2-subgroup of Li for each i.
(3) A ∩H ◁ H.
(4) A = (A ∩ L1)× · · · × (A ∩ Ln)× (A ∩H)

Proof. G0 = U2(G) is a K-group, and thus by Lemma 5.18 of Chapter
II the stated result holds for G0 in place of G, say G0 = L × H0 with
L =

∏
i Li. Then easily G = L×H with H = CG(L) and H0 ◁ H. So with

S a Sylow◦ 2-subgroup of H0 containing A∩H0, we have H = H0 ·NH(S) ≤
N(A) and everything follows. □

In particular, a connected simple L-group of even type with an abelian
Sylow◦ 2-subgroup is of type SL2, and one of our tasks later on will be to
extend this to the L∗ case, in Chapter VII.

6.4. Borel-Tits. We give the L-group version of the Borel-Tits Theo-
rem.

Lemma 6.7. Let G be an L-group of even type and H a definable con-
nected subgroup of G such that H = NG

◦(O2(H)). Then H contains a
Sylow◦ 2-subgroup of G.

Proof. LetG0 = U2(G) andH0 = (H∩G0)
◦. Then these areK-groups.

Furthermore O2(H) ≤ O2(H0) ≤ O2(U2(H)) ≤ O2(H) so these groups all
coincide and H0 = NG0

◦(O2(H0)).
So by the K-group version, Lemma 5.21 of Chapter II, H0 contains a

Sylow◦ 2-subgroup of G0, which is a Sylow◦ 2-subgroup of G. □

We also give the L-groups version of Proposition 5.20 of Chapter II.

Proposition 6.8. Let H be a connected L-group of finite Morley rank
and even type, and L a definable quasisimple subgroup of H such that N◦(L)
contains a Sylow◦ 2-subgroup of H. Then L ◁ H.

Proof. L ≤ U2(H) and L ◁ U2(H) by Proposition 5.20 of Chapter II.
But H normalizes the quasisimple components of U2(H). □
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6.5. Reductivity.

Notation 6.9. Let G be a group of finite Morley rank. We write Ô(G)
for the largest connected normal definable subgroup of G of degenerate type

In a K-group, the group Ô(G) coincides with O(G).

Lemma 6.10. Let H be a reductive L-group of even type. Then U2(H) =

E(U2(H)), and H = U2(H) ∗ Ô(H).

Proof. As U2(H) is a connected K-group with O2 trivial, the struc-
ture of U2(H) is given by Proposition 5.10 of Chapter II, together with
the definition of U2. Writing L = U2(H), Fact 2.25 of Chapter II yields
H = L ∗ CH(L), with finite intersection, and it is clear then that CH(L) =

Ô(H). □

7. Notes

§1 of Chapter II Algebraic Groups

We use the theory of algebraic groups as a framework for understanding the

structure of Chevalley groups. Hence for our purposes, the point is not that a

simple algebraic group is a Chevalley group, but the converse.

§2 of Chapter II Chevalley Groups

The Borel-Tits theorem plays an important role. The original form is in [40],
and its relevance to the analysis of even type groups (or their finite analogues) is

discussed in [99, 100].
We have already mentioned the central role played by parabolic subgroups

in our classification results, where we follow primarily a unipotent rather than a

semisimple strategy. As we will be treating the even type case, which is parallel

to the case of characteristic two in algebraic group theory, our involutions behave

as unipotent elements, and it is natural to work directly with parabolic subgroups.

This is not the method used in finite group theory, which aims at a more rapid

identification of semisimple elements, and focuses ultimately on semisimple elements

in all characteristics; but it is the central idea of the so-called “third generation”

approach in the finite case. (For more on the “semisimple” strategy see [164],
notably pp. 338-9 and 344-5.

The usual notion of Borel subgroup is available in groups of finite Morley rank:

maximal definable connected solvable subgroups (one can omit “definable” here),

and thus the notion of parabolic subgroup is also available. However, with this

definition, the theory of Borel subgroups is less satisfactory in our context than in

the algebraic context, and there are various ways to build in a bit more of the theory

into the definition. In characteristic two, a Borel subgroup is also the normalizer of

a Sylow 2-subgroup, and if we replace the normalizer by its connected component,

we get another notion of Borel subgroup which is well adapted to our abstract

setting. We call these “standard” Borel subgroups. It is not obvious a priori that

these groups are even solvable. It turns out that on one hand the solvability can
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be proved, eventually, and on the other hand it is not absolutely necessary for

our arguments; to bypass the solvability argument it would be sufficient to build

appropriate subgroups of our standard Borel subgroups consisting of the extension

of the Sylow 2-subgroup in question by a suitable maximal torus. Lining up the

tori involved in different Borel subgroups then requires some effort, but we remark

that this kind of modification of Borel subgroups is already a standard part of the

amalgam method in the finite case.

In any case, our primary notion of parabolic subgroup is really standard para-
bolic, that is, containing a fixed standard Borel subgroup, (however the latter term
is defined). We will not get any real control over these groups until §5 of Chapter

VIII; everything up to that point can be viewed as very extensive preparation, and

it is precisely at this point that the proof of the classification in even type really

gets underway.

We are indebted to Richard Lyons and Franz Timmesfeld for discussions of the

Curtis-Tits theorem. Each has pointed out in his own way that the matter involves

certain subtleties, in its general formulation.

§3 of Chapter II Central extensions

Our treatment follows [9]. A model theoretic definability result of Wagner and

Newelski [181, 144] plays a major role.

§4 of Chapter II Structure of K-groups

Sometimes a K∗-group is defined as one such that every proper definable sub-

group is a K-group. Our K∗-groups have a stronger property, but as far as simple

groups go the definitions are equivalent. With our definitions, a K∗-group is either

a K-group, or else is a simple group which violates the Algebraicity Conjecture.

The structural information in Proposition 4.8 of Chapter II and its later elab-

orations shows that connected K-groups have a very limited structure, unlike their

finite counterparts.

At this point we begin to prepare the technical K-group results needed for

various phases of the classification argument later. Most of these are in the next

section, since we concentrate on even type groups in the present section.

Proposition 4.4 of Chapter II comes from [154], where the proof is given in

more detail, though one must still consult [172] to complete the argument.

In connection with Proposition 4.7 of Chapter II, one may wonder if there is a

theory of algebraic geometry over bad fields which would allow a full development

of the theory of algebraic groups over bad fields. This seems unlikely. It is more

probable that there are no bad fields in positive characteristic, which would trivialize

Proposition 4.7 of Chapter II. Whether bad fields in characteristic zero (with no

additional structure) have the potential to produce new simple groups of finite

Morley rank remains completely unclear. If one has a bad group, there are general

methods for combining the theory of a strongly minimal subset with the theory of

an arbitrary algebraically closed field to produce a field with enriched structure over

which the group is now definable, but the additional structure will have nothing to

do with the field structure.
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The notion of weak embedding, and the criteria given in Proposition 4.15 of

Chapter II, appears first in [3]. See the discussion of strong and weak embedding

in the notes to Chapter 5.

§5 of Chapter II K-groups of even type

The first four sections elaborate on the structure of K-groups in the even type

case, and continue the analysis of the preceding section. The remainder prepare

technical points which serve as the basis for the inductive analysis of K∗-groups.
The L-balance theorem of Gorenstein and Walter reads as follows.

Fact 7.1. Let G be a finite group. For any 2-local subgroup H of G we
have

L2′(H) ≤ L2′(G)

Here the subgroup L2′(G) is defined as the subgroup of the full preimage of

G/O(G) generated by 2-elements.

The material in sections 5.7–5.9 comes from [5]. The study of strongly closed

abelian subgroups in the context of groups of finite Morley rank began in the

concluding section of [4].
For our purposes, the use of the classification theorem for Chevalley groups

in the proof of Lemma 5.18 of Chapter II is somewhat beside the point, since in

our inductive framework the only sections that can occur at any point are those

on our list of known groups. So if we chose to redefine K∗-groups and L∗-groups
in terms of the explicitly known groups, we would actually wind up deriving this

classification as a byproduct. (The same is true in the finite case.)

The treatment of natural modules for SL2 is essential preparation for applica-

tions of the amalgam method in §§5 of Chapter III and 2 of Chapter VIII. The use

of 4.6 of Chapter II could be seen as overkill, as that result is considerably more

subtle than the special cases actually needed, but at the same time it seems like

the natural approach.

§6 of Chapter II L-groups and L∗-groups

The notion of L-group was introduced in [2] as a proposed inductive framework

allowing one to prove results on groups of even type without necessarily disposing

of the degenerate case first. One of our main goals in the present text is to bring

this line of thought to completion.

We will show in Part C that simple L∗-groups of even type are Chevalley

groups, which implies that simple groups of even type are Chevalley groups. The

material in Chapter VI becomes distinctly more difficult in this extended setting,

relative to the K∗-case. The material in Chapter VII also would seem to pose

some challenges, but these relate mainly to the theory of pseudoreflection groups

and the necessary adjustments will be made in the preparatory material, notably

§5 of Chapter IV, after which the analysis itself does not vary widely from the

K∗-case. Later sections tend to run quite parallel to their K∗-versions, with a

fairly systematic alteration in some key definitions and a reliance on Lemma 6.3 of



168 II. K-GROUPS AND L-GROUPS

Chapter II (and, frequently, a Frattini argument). We have already seen examples

of this kind of bootstrapping in this section.

Also, in Part B, we show that mixed type simple L∗-groups are algebraic, so

that once the work of Part C is complete the induction terminates, and we have

our main results: simple groups of finite Morley rank with nontrivial unipotent

2-subgroups are algebraic, in characteristic two. The analogous results limited to

K∗-groups are easier, but to pass from those results to a general conclusion would

then require a separate analysis of the problematic degenerate type groups, which

is not presently in view.

From a technical point of view, everything we do depends on this section.

A major open problem is to develop a parallel theory in odd type groups, at a

comparable level of generality.

We note that the implementation of this line of analysis is also facilitated by

the results of §4 of Chapter IV, which however will not available when it was first

worked out. The structure of the argument is not noticeably affected by this, but

there are fewer distractions along the way as a result.



CHAPTER III

Specialized Topics

I remember that during the whole of that memorable day he
lost himself in a monograph which he had undertaken upon
the Polyphonic Motets of Lassus.
— A. Conan Doyle,

The Adventure of the Bruce-Partington Plans

Introduction

In this chapter we prepare a number of special topics, which in their
own more limited spheres are as useful as the Schur-Zassenhaus splitting
and conjugacy theorems or K-group facts are in a broader sphere. This
includes a number of topics with a distinctly geometric flavor: the classi-
fication of groups generated by pseudoreflection groups, with the flavor of
linear algebra, the theory of Zassenhaus groups in permutation group theory,
(B,N)-pairs, buildings, and more particularly Moufang polygons, and Niles’
Theorem. In addition we have some topics well known in finite group the-
ory: the theory of Suzuki 2-groups, the analysis of a another special 2-group
configuration of Landrock and Solomon in which one can pin down very
tightly the structure of a Sylow 2-subgroup, a theorem of Baumann proved
by the amalgam method following Stellmacher, and signalizer functor the-
ory. Several of these ingredients will be combined in the present chapter to
provide a “generic identification theorem” which can serve as an alternative
to the use of the theory of buildings in the generic case, while still leaving
the theory of Moufang polygons as the natural way to complete the analysis
in the exceptional cases where the amalgam method applies.

It is in this chapter, more than any other, that our subject makes contact
with a range of mathematical subjects that yield conclusive information in
various particularly well structured configurations that arise—or that can
be made to arise—in the analysis of more general cases. That is, the key
configurations are all treated here, each by its own method, and the rest of
the work in Parts B and C is largely a matter of induction. But before we
reach that point, we will need some other, more model theoretic and global
methods, given in the next chapter.

169
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Overview

We pick up where we left off at the end of Chapter I, developing group
theoretic topics which require a more extended analysis than those of Chap-
ter I, and which are generally less standard fare, but which can be obtained
with a similar mix of model theoretic and group theoretic ideas, and which
are for the most part topics of group theory adapted to our category of
groups.

0.1. Pseudoreflection groups. The first of these topics is the most
difficult to place: the classification of groups generated by pseudoreflection
groups. It has the feeling of a “connected” version of the theory of complex
reflection groups, but very little in common with that theory at a technical
level; and the only group resulting is GLn. This theory is absent from finite
group theory. We use it to classify groups with abelian Sylow◦ 2-subgroups,
and we could use it similarly to classify groups whose Sylow◦ 2-subgroups
contain strongly closed abelian subgroups (cf. [5]), though we will take a
different tack here. These are results obtained by a very different line of
argument in the finite case, and incidentally they present one of the major
challenges in passing from K∗-groups to L∗-groups.

Pseudoreflection groups should be groups which act trivially on a co-
dimension one subspace and preserve a complementary subspace; but we
need to define them without the crutch of an auxiliary vector space structure.
The setting in which they arise involves the action of a connected group on
an elementary abelian group (for us, a 2-group), and a subgroup resembling a
one-dimensional torus both in structure and action—coming from an actual
copy of SL2 found in the ambient group. We define a pseudoreflection group
as a divisible abelian group T acting on an elementary abelian 2-group A in
such a way that A = CA(T )⊕ [A, T ], with T acting faithfully on [A, T ] and
transitively on its nontrivial elements. This last condition is both more and
less than 1-dimensionality; in any case it is both very strong, and satisfied
in practice.

We show that in a K-group context, if a group H acts faithfully and
irreducibly on an elementary abelian 2-group A, and contains a nontrivial
group of pseudoreflections, then A carries a vector space structure and H is
GL(A) (Theorem 1.5 of Chapter III). The weight of the argument is borne
by the K-group assumption, and the thrust of the argument is: what else
could it be?

But this is not enough. We will need this result in the L-group context,
and the magic wand of Proposition 6.2 of Chapter II, wave it as one might,
is but hand-waving. So we will return to this again in §5 of Chapter IV
after preparing some further model theoretic techniques. and settle it in the
L-group case as well.
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0.2. Zassenhaus, Suzuki, Landrock, and Solomon. The next three
topics, Zassenhaus groups, Suzuki 2-groups, and the Landrock-Solomon con-
figuration, deal with three extreme configurations in which either the group
or the Sylow 2-subgroup can be pinned down. In the context of Zassen-
haus groups one can give the recognition theorem for SL2 to which all our
subsequent recognition theorems reduce, and the only one in which SL2 is
recognized as such. This result was also given in [51] but we give it a full
treatment here. The Suzuki 2-group configuration is somewhat different,
but equally extreme, and in the so-called “free Suzuki” case reduces to ho-
mocyclic abelian groups (largely because our base fields are algebraically
closed, and in particular quadratically closed). The Landrock-Solomon con-
figuration arises, for us, in the context of weakly embedded groups which
are not strongly embedded, by considering centralizers of appropriate involu-
tions. Here the conclusion is that the Sylow◦ 2-subgroup is either homocyclic
abelian or of a very particular and explicitly determined type, to be elimi-
nated from configurations subsequently by special pleading. The treatment
of Zassenhaus groups and Suzuki 2-groups is not very close to the treatment
in the finite case. The Landrock-Solomon analysis on the other hand is quite
reminiscent of its model.

A Zassenhaus group is a doubly transitive group acting on a set with at
least three points, where the stabilizer of any three points is trivial. Sup-
pose G is an infinite Zassenhaus group of finite Morley rank with one-point
stabilizer B and two-point stabilizer T , and suppose in addition B splits as
U ⋊ T , and that

Z(U) contains an involution

Under these hypotheses Theorem 2.2 of Chapter III shows that the group
G either acts sharply transitively, or can be identified with PSL2 acting
naturally, in characteristic two.

We will not say much about the proof. One considers the subgroup U0

of U generated by the involutions of U , which lies in Z(U). One may show
first that the pair (U0, T ), with the action of T on U0, can be identified
with a pair (K+,K

×) with K a field of characteristic two, and the natural
action, and one can check fairly directly that if U0 = U then the whole group
embeds into, and then coincides with PSL2 in its customary action on the
projective line. One is left desiring the relation

U0 = U

at which point an inordinate use is made of elements of order three, and not
for the last time. This seems to be an occupational hazard associated with
PSL2. These arguments are found in the proofs of Lemmas 2.10 of Chapter
III and 2.11 of Chapter III.

A Suzuki 2-group is defined as a nilpotent 2-group S on which an abelian
group T acts in such a way that all involutions of S form a single orbit. A free
Suzuki 2-group is one for which the action is free, or in other words, regular.
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The important theorem for our purposes is that a free infinite Suzuki group
of finite Morley rank is abelian and homocyclic.

A good deal of induction is possible in this context, with a little care.
One disposes of various extreme cases by careful inspection and calculation
of the behavior of commutators. Typical of the analysis in these cases is the
following result.

Lemma 3.10 of Chapter III. Let K,F be fields of characteristic two,
with K ⊆ F as sets and with compatible multiplication operations, but possi-
bly different addition operations. Let γ : K → F be an additive map. Then
the following are equivalent.

(1) γ(x−1) = x−2γ(x) for all x ∈ K
(2) γ is linear over the subfield K2.

However while this disposes of a number of critical cases it does not
dispose of the problem. The key argument is as follows. Let A be a maximal
normal abelian T -invariant subgroup of S (automatically definable since
A = C(A)). If Ω2(S) ≤ A we arrive at a previously treated special case,
essentially by induction. So we can fix an element g of order 4, lying outside
of A.

Also by induction, we may suppose S = N(A) and S̄ = S/A is T -
irreducible. So the subring of End(S̄) generated by T is a field K, and a
general lemma shows that T must be the multiplicative group of K in this
case.

By computation with the functional equation one shows

S′ ≤ 2A

(using additive notation); one works with one commutation map at a time.
Accordingly V = S/2A can be viewed as a T -module. Everything comes
down to an analysis of the subring R of End(V ) generated by T . In view
of the two-layer structure of V (V/A, A/2A) it is not surprising that this is
a local ring whose maximal ideal m satisfies m2 = 0. One then succeeds in
embedding the field K into R, giving V a vector space structure, and hence
one can find a proper T -invariant subgroup Â of S not contained in A. By
induction we may also suppose Â abelian, and this configuration is one of
the “special” configurations treated at the outset, computationally.

The thrust of the argument is the following: one can just about envision
the canonical counterexample to the theorem, but a close consideration of
the endomorphism ring in this case leads to a contradiction. This general
line of analysis is useful elsewhere, and is quite separate from the use of
functional equations to analyze minimal cases.

The Landrock-Solomon configuration looks as follows. We have a unipo-
tent 2-group S, a divisible abelian group T acting on S, and an elementary
abelian T -invariant 2-group A ≤ S such that the pair (A, T ), with its ac-
tion, can be identified with a pair (K+,K

×), associated with a field K of
characteristic two. Finally, we have a definable involutory automorphism α
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of S × T whose centralizer is A⋊ T , and the whole configuration, of course,
has finite Morley rank.

One finds that S is either homocyclic abelian or of a specific form (in par-
ticular of exponent four) which is subsequently eliminated in applications.
One may note a certain similarity to the Suzuki 2-group situation.

The main point here, we feel, is not the analysis of this configuration,
but its isolation as a distinct configuration This comes up quite naturally
in the case of groups with weakly embedded but not strongly embedded
subgroups, as will be copiously visible in Chapter VI. The order of events
is as follows: the pair (A, T ) is extracted from a group of type SL2 (AT is
a Borel subgroup), and then S is chosen as a Sylow◦ 2-subgroup invariant
under T (and with some attention paid to α, which begins its life as an
involution in the ambient group).

The next few sections survive transplantation from abstract categories
to the context of finite Morley rank with little disarray.

0.3. Baumann. We consider the following situation: a group G of fi-
nite Morley rank and even type, a definable connected subgroup of G of
minimal parabolic type (Definition 5.1 of Chapter III), and the following
condition holds

(P)
No nontrivial definable connected subgroup of S is normal-
ized by both M and NG(S).

Under these hypotheses, the structure of M is closely determined (and
the matter is taken up again in §2 of Chapter VIII).

Here we follow the theory of finite groups very closely indeed, both in
the content of the result, and the proof. Still there is a good deal to be said.

First, we consider P as an obstacle to further analysis. If we have a
group X normal in M and also in NG(S), then its normalizer is a group
we are looking for: it contains M , and it also contains NG(S), and in par-
ticular contains NG

◦(S), which we have encountered before as a standard
Borel subgroup. In other words, we are trying to push M into a (standard)
parabolic subgroup—and failing, at the moment.

Conversely, if M does sit in a parabolic subgroup, then the theory of
algebraic groups would lead one to expect that group to be 2-local (as we
work in characteristic two) and thus the group X referred to ought to exist.

So much for the context. As regards the proof, we follow closely the
method of Stellmacher, who showed that the amalgam method is effective
here. In particular, this constitutes an introduction to the amalgam method,
which will be applied on a much broader scale (again, following Stellmacher)
in Chapter IX. This amalgam method is remarkably indifferent to the cate-
gory in which one works—in essence one works in the category of abstract
groups throughout much of the analysis. In adapting it to our context, we
have to pay some attention to connected components, and some attention
to issues of definability, so we cannot just carry it over, but nonetheless it
is very robust.
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0.4. Generalized polygons, buildings, and BN-pairs. Critical for
our recognition of groups of Lie rank two, once the lengthy amalgam analysis
of Chapter IX is over, is the classification of Moufang polygons of finite
Morley rank; this is the Tits rank case version of the classification of Moufang
buildings.

This is based on the full classification of Moufang polygons, and can be
found in [126]. We will give details, modulo the results of [179].

The higher dimensional theory, the theory of buildings, is also useful for
recognition purposes, though we will offer an alternative approach; the last
two sections of this chapter are in fact devoted to setting up the machinery
for this approach.

We will just add a few words here about the notions involved. A typical
example of a simple Chevalley group is the projective special linear group
PSLn, which acts naturally on the projective space of dimension n−1 whose
points are the lines of a vector space of dimension n. In the case n = 3 we
have a Lie rank two group acting on a projective plane, also known in the
modern terminology as a generalized triangle in view of the generalization
due to Tits, to generalized polygons. An “ordinary triangle” in this ter-
minology would be an extremely degenerate geometry, consisting of three
points, any pair of which forms a line. One notes that this satisfies all of the
axioms of projective geometry except the axiom that lines should contain
more than two points (since the order of a line is the order of the base field
plus one, this is morally speaking the same thing as 0 ̸= 1).

Of course, not all projective planes can be coordinatized by fields, or even
division rings. A nice class of projective planes, now called Moufang planes
was introduced in [137] in connection with the little Desargues theorem.
These turn out to be classified by alternative division rings, which are not
necessarily associative, and are also characterized by a certain richness of
their automorphism groups; it is this latter condition which Tits adopted as
the definition of Moufang polygon, and more generally Moufang building,
rather than some intrinsic definition from synthetic geometry.

We showed in Proposition 4.27 of Chapter I that Moufang projective
planes of finite Morley rank are coordinatized by fields, and this is typical
of the way the theory collapses in general. In fact, if one looks at the
classification of finite Moufang polygons as derived in [179], one will see
that the same line of argument works in the finite Morley rank case.

0.5. Niles’ theorem. This is a transposition to the case of finite Mor-
ley rank of a theorem in the finite case. For “generic” groups of even type
it produces a definable spherical BN -pair in the group, after which one
can invoke the classification of the latter from [126], or, alternatively, make
a direct reduction to an identification theorem of Curtis-Tits type, using
mainly the fact that Niles’ Theorem brings the Weyl group and the associ-
ated Dynkin diagram under control.
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This alternative argument, bypassing the classification of buildings (in
Tits rank at least three), is prepared by the next two sections.

0.6. Signalizer functors and a generic identification theorem.
These are two entirely different subjects, but they go together nonetheless.
For us the signalizer functor theory is a way of killing the core, or much of
it, in a 2-local subgroup.

The generic identification theorem gives a reduction to the Curtis-Tits
theorem of a somewhat more general configuration which can be briefly
described as “generation by reductive centralizers”. Here reductivity is es-
sentially the killing, or control, of the core in the centralizer of an element
of odd prime order.

As we have suggested, one can proceed directly to the theory of buildings,
or pass through this more elementary approach. We give the details for the
latter.

1. Pseudoreflection groups

The present section does not have any clear antecedents in the context
of finite groups. It is to a degree a semisimple analog of the theory of groups
generated by root subgroups. It seems likely that one can give a finite analog
of this theory using the classification of the finite simple groups; whether
one can turn that around as we do here, and develop the theory also in
the finite setting as a tool for use in classification, is unclear, and motivates
some of the discussion in our last chapter.

1.1. Definitions.

Definition 1.1. If A is an elementary abelian 2-group, then a torus T
acting on A is called a group of pseudoreflections on A if A = CA(T )×[A, T ]
and T acts faithfully on the second factor, and transitively on its nonzero
elements.

Intuitively, the main idea is that T should act trivially on a subspace of
codimension one. We assume both less than this (in that we have no useful
vector space structure) and substantially more, in that transitivity is a very
restrictive condition. In the end, we will show that the “more” wins out
over the “less”, and that under moderate hypotheses the only interesting
group generated by groups of this type is the group GL(V ) with V , indeed,
a vector space.

Our analysis of groups generated by pseudoreflections depends on a the-
orem of McLaughlin, involving groups of root type in the following sense.

Definition 1.2. Let V be a vector space of dimension n ≥ 2 over a field
K.

(1) For U ≤ V a K-subspace of codimension one, and L ≤ V a K-
subspace of dimension one, X(L,U) is the group of linear transfor-
mations of the form I + T where T = 0 on U , and T [V ] ≤ L.
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(2) A subgroup of GL(V ) is said to be of root type if it has the form
X(L,U) for suitable L and U .

Note that a group of root type is in fact contained in SL(V ).
The theorem we need is the following.

Theorem 1.3. [132, Theorem] Let V be a vector space of dimension
at least two, over a field with more than two elements, and G a subgroup
of SL(V ) which is generated by subgroups of SL(V ) of root type. Suppose
furthermore that G has no nontrivial normal unipotent subgroup. Then there
is a decomposition of V as a direct sum ⊕iVi of G-invariant subspaces, and
a corresponding decomposition of G as a direct product

∏
iGi, such that

(1) each Gi acts trivially on Vj for j ̸= i;
(2) Gi induces either SL(Vi) or Sp(Vi) on Vi.

We also make use of the following below.

Lemma 1.4. Let V be a vector space of dimension greater than two over
a field K. Then

(1) The normalizer of Sp(V ) in GL(V ) consists of the group generated
by Sp(V ) and the scalars;

(2) This group contains no pseudoreflection subgroups.

Proof.
Ad 1. Certainly the normalizer G of Sp(V ) contains the group generated

by Sp(V ) and the scalars. Conversely, for g ∈ G, if V0 ≤ V is maximal
isotropic then it is easy to see that g[V0] is also maximal isotropic, and after
adjusting by an element of Sp(V ) we may suppose g leaves V0 invariant. We
may then consider the subgroup H of Sp(V ) which leaves V0 invariant. This
induces GL(V0) on V0 and so after a further adjustment we may suppose
g = 1 on V0. Then [g,H] ≤ Sp(V ) acts trivially on V0 and thus [g,H] = 1.
Let V1 be a maximal isotropic subspace complementary to V0. Let H0 be
the subgroup of H leaving V0 and V1 invariant. Then g commutes with
H0 and hence leaves it invariant, and thus g leaves V1 invariant. Since g
commutes with the action of H0 on V1, again g is a scalar on V1. Since V1
is any maximal isotropic subspace complementary to V0, and the dimension
of V is greater than 2, it follows easily that this scalar is 1.

Ad 2. In this linear context, a nontrivial pseudoreflection r will have
two eigenspaces, of dimension 1 and n − 1, with n the ambient dimension,
and the same applies to a product rα with α scalar. We wish to see that an
element of this explicit form cannot belong to the symplectic group. Indeed,
taking v nontrivial in the 1-dimensional eigenspace and v′ a nonorthogonal
element in the complementary eigenspace, consider the restriction of rα to
W = ⟨v, v′⟩⊥. As rα leaves W invariant, and W is disjoint from the one-
dimensional eigenspace for r, r acts trivially on W and thus rα acts both
as a scalar and as a symplectic transformation on W ; so α = 1, and r is
symplectic. Then as r has a trivial eigenspace of dimension n−1, this would
force r to be trivial. □
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1.2. K-groups. Our main result is the following classification theorem,
which will be extended to the L-group case afterward (in §5 of Chapter IV).

Theorem 1.5. Let A⋊H be a connected K-group of finite Morley rank
and of even type, in which A is an elementary abelian definable 2-subgroup
and H acts irreducibly and faithfully on A. Assume that H contains a group
T of pseudoreflections on A. Then A can be given a vector space structure
over an algebraically closed field K in such a way that H ≃ GL(A) acting
naturally.

Proof. Observe that since A⋊H is infinite and connected, and H acts
faithfully, the group A is also infinite and connected.

Furthermore O2(H) = 1, since O2(H) centralizes a nontrivial subgroup
B of A, and by irreducibility we have B = A. Therefore H = E(H) ∗O(H)
by Proposition 5.10 of Chapter II.

It follows from Lemma 8.2 of Chapter I that O(H) is abelian: indeed,
if B ≤ A is minimal nontrivial O(H)-invariant, then O(H)′ centralizes B
and hence by irreducibility CA(O(H)′) = A, and O(H)′ = 1. Thus O(H) =
Z◦(H).

The question as to whether the group Z◦(H) is trivial or not provides a
major case division. Assume first that

(∗) Z◦(H) > 1

Then by Proposition 4.11 of Chapter I, A has a natural vector space
structure over an algebraically closed field K, with Z◦(H) acting via scalars
and H acting linearly. We assume dimA > 1, as otherwise there is nothing
to prove.

Now T has some eigenspace L ≤ A on which T does not act trivially
(Proposition 10.7 of Chapter I), and as T is a group of pseudoreflections, T
must act transitively on L \ (0), and hence L is 1-dimensional, and T acts
via scalars on L. Thus the elements of T are pseudoreflections also from a
linear point of view.

Let H1 be the subgroup of H generated by pseudoreflection subgroups.
As H acts irreducibly and H1 ◁ H, the action of H1 on A is completely
reducible (Lemma 11.6 of Chapter I). Write A = A1 ⊕ · · · ⊕ An as a sum
of irreducible H1-submodules. Each pseudoreflection subgroup acts nontriv-
ially on exactly one factor Ai. Hence H1 is the direct product of subgroups

H
(i)
1 , where H

(i)
1 acts trivially on all factors Aj for j ̸= i; Ai is an irreducible

H
(i)
1 -module. In particular the Ai are all the irreducible H1-submodules of

A, and these factors are therefore permuted by H, which is connected and
irreducible. Accordingly there is only one such factor, and A is irreducible
as an H1-module.

In particular there are two pseudoreflection subgroups T1, T2 of H which
do not commute. The group ⟨T1, T2⟩ fixes a subspace of codimension 2 and
acts on a complementary space as a subgroup of GL2(K). It follows by
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inspection that this group contains a subgroup of root type in the sense of
Definition 1.2 of Chapter III.

Let H0 be the subgroup of H generated by subgroups of root type.
Consider an irreducible H0-submodule B of A. Note that dimB > 1, as
otherwise H0 acts trivially on B and hence on A. By McLaughlin’s theorem,
Theorem 1.3 of Chapter III, H0 induces SL(B) or Sp(B) on B. If T is a
pseudoreflection subgroup of H then T fixes a subspace of codimension 1,
and hence fixes a nonzero vector in B. Therefore B is T invariant: for t ∈ T ,
Bt is an irreducible H0-submodule meeting B nontrivially. Thus B is H1-
invariant, and thus A = B is H0-irreducible. Now SL(A) or Sp(A) is normal
in H. In the former case we have H = GL(A) as claimed, since H also
contains a pseudoreflection group. and in the latter case H is an extension
of Sp(A) by the scalars, which does not in fact contain a pseudoreflection
group except in dimension 2, where in any case Sp(A) = SL(A) (Lemma 1.4
of Chapter III).

Now suppose that

(¬∗) Z◦(H) = 1

In other words, H = E(H). In this case we will arrive eventually at a
contradiction. Note that we can no longer view A as a finite dimensional
vector space.

We show first that H is simple. Let T be a pseudoreflection subgroup of
H and let H1 be a simple factor of H not commuting with T . Using Lemma
1.5 of Chapter I, we have [T,H1] = H1. Then T normalizes H1 and acts by
inner automorphisms, so T normalizes a pair of opposite Sylow 2-subgroups
(maximal unipotent subgroups) S+, S− of H1. Set A± = CA(S

±). Then
A+∩A− = 0, in additive notation, since H1 is generated by S+∪S− and has
no fixed points on A. As the groups A± are T -invariant, T acts trivially on
at least one of them, say A+. Let B ≤ A be H1-irreducible. Then B meets
A+ and thus T stabilizes B. If B = A then evidently H = H1. Suppose
B < A. As A is completely reducible as an H1-module and T acts as a
pseudoreflection group, we may suppose that the action of T on B is trivial.
Then H1 = [T,H1] acts trivially on B, a contradiction.

ThusH is simple. Let P be a maximal parabolic subgroup corresponding
to deletion of a terminal node in (a component of) the Dynkin diagram,
and L the associated Levi factor. Now L contains a maximal torus of H and
hence contains a pseudoreflection group T .

Suppose that V is a composition factor for A as an L-module, and that
T acts trivially on V . As L′ is simple, either L′ acts trivially on V , or
[T, L′] = 1, in which case [T, L] = 1.

We may exclude the case T ≤ Z(L) as follows. If T ≤ Z(L) then T is
a root torus in H. Hence T and some conjugate T g generate a subgroup
L1 ≃ SL2 in H such that A/CA(L1) has Morley rank 2t, where t = rk T .
We consider the action of L1 on A1 = A/CA(L1). T is a torus of L1 and
normalizes two “opposite” Sylow 2-subgroups S+, S− in L1, each of which
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centralizes a nontrivial T -invariant subgroup of A1; and the two subgroups
involved are disjoint as S+, S− generate L1. Now the Weyl group stabilizes
CA1(T ) and interchanges the centralizers of S+ and S−, so T acts nontriv-
ially on each of these two subgroups. However as T is a pseudoreflection
group this is not possible.

Our conclusion is that L′ acts trivially on any composition factor on
which T acts trivially. However L′ cannot act trivially on all the factors
of a composition series for A, as the 2⊥ elements of L′ would then act
trivially on A itself (Proposition 10.7 of Chapter I). Accordingly, let V be a
composition factor of A on which L′ acts nontrivially. By the above, T also
acts nontrivially on V , and therefore acts as a pseudoreflection group on V .
By induction on rk(H) we may suppose therefore that L ≃ GL(V ) acting
naturally on V . In particular Z(L) acts as an algebraically closed field K
on V .

We may suppose that V = A1/A0 where L normalizes A0 and A1, and
L′ acts trivially on A0. As A0 is T -invariant and T acts nontrivially on V ,
T acts trivially on A0. Thus L acts trivially on A0. Let T1 = Z(L) and let
a ∈ T×

1 . Then commutation with a induces an isomorphism γ : V → [a,A1]
which is an isomorphism of L-modules. Thus we may suppose that V is a
subgroup of A. Furthermore T acts trivially on every composition factor
of A/V and hence by the above L acts trivially on every such composition
factor, forcing L to act trivially on A/V since it is generated by 2⊥-elements.

In particular if T̂ is a maximal torus ofH contained in L, then V = [T̂ , A]
and thus the Weyl group W of H acts on V . Let w ∈ W invert T1: then
for v ∈ V × and α a scalar we find (αv)w = α−1vw and on considering
((α+ β)v)w this yields (α+ β)−1 = α−1 + β−1, a contradiction. □

2. Zassenhaus groups

Definition 2.1.

(1) A permutation group (G,X) is a structure consisting of a group G
acting on a set X, with the action included as part of the struc-
ture; a permutation group has finite Morley rank if and only if this
structure does.

(2) A permutation group is a Zassenhaus group if it is doubly transitive,
the underlying set contains at least three points, and the stabilizer
of any three points is trivial.

A Zassenhaus group G (really, (G,X)) is said to be split if for a pair of
points x, y ∈ X the point stabilizer Gx splits as U ⋊Gxy for some subgroup
U . By double transitivity, if this holds for one pair x, y it holds for all such
pairs. We need the classification by DeBonis and Nesin of a particular class
of split Zassenhaus groups, as follows.

Theorem 2.2. Let G be an infinite Zassenhaus group of finite Morley
rank with one-point and two-point stabilizers B and T respectively. Assume
that B splits as U ⋊ T where Z(U) contains an involution. Then either
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• G is sharply 2-transitive, or
• G is of the form PSL2(K), for some algebraically closed field K of
characteristic two.

This is the fundamental recognition theorem as far as the various unique-
ness cases of our even type analysis (Part C) are concerned, and we will give
the proof. We will see in a moment that under our hypotheses, the stabilizer
of a point in G is a strongly embedded subgroup of G (§10.3 of Chapter I).
In Chapter VI we will reduce the classification of groups with a strongly
embedded subgroup to this particular configuration, and even extend this
considerably to the case of weak embedding (§5.12 of Chapter II).

We begin with a definability result which can be proved in considerably
greater generality [82].

Lemma 2.3. Let G be a group of finite Morley rank which has a faithful
representation as a split Zassenhaus group with associated subgroups B, T, U ,
where Z(U) contains an involution i. Then CG(i) = U , the groups B, T ,
and U are definable, and the action of G on X is interpretable in G.

Proof. The fixed point set of i is the point x ∈ X associated with B.
Hence CG(i) fixes x, that is CG(i) ≤ B. On the other hand for t ∈ T×,
the fixed point set of t is the set {x, y} associated with T (and no more,
as G is a Zassenhaus group). Hence CG(t) leaves {x, y} invariant and thus
CB(t) ≤ T . Taken all together then we have U ≤ CG(i) ≤ B and CT (i) = 1,
hence CG(i) = U and U is definable.

Now the fixed point set of U is {x} and hence N(U) ≤ B; so B = N(U)
is definable. Hence the action of G on X is interpretable in G, and thus also
T is interpretable in G. □

For the remainder of this section, assume the following.

(∗)
• G is a split Zassenhaus group of finite Morley rank
with associated subgroups B, T, U ;

• Z(U) contains an involution

By the preceding lemma, the groups B, T, U and the action of G on X may
all be considered within the same ranked universe as G.

Lemma 2.4. With hypotheses and notation as in (∗), we have the fol-
lowing.

(1) The involutions of B are conjugate in B, and lie in Z(U); the
involutions of G are conjugate in G.

(2) N(T ) contains an involution w inverting T , and T is abelian.
(3) G = B⊔UwTU , with uniqueness of representation for g ∈ UwTU ;

that is, g = u1wtu2 with u1, t, u2 unique.

Proof. Suppose there is an involution t ∈ T . Then letting t act on
the torsion subgroup of Z(U) of exponent 2, t commutes with an involution
i ∈ U . But the fixed point set of t is {x, y} and hence i leaves this invariant,
while fixing x. So i fixes y and we have a contradiction.
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Therefore every involution in B fixes a single point. It follows easily that
B is strongly embedded in G, and hence all involutions of B are conjugate
in B (Lemma 10.12 of Chapter I). In particular, they all lie in Z(U). By
the same token, all involutions of G are conjugate in G. This proves the
first point.

For the second point, we have T = Gx,y and we consider an element w
switching x and y. Then w ∈ N(T ) − T , and w2 ∈ T . We may take w to
be a 2-element (Lemma 2.18 of Chapter I). As T contains no involutions,
by the first point, it follows that w is an involution. Hence w has exactly
one fixed point z and since w leaves {x, y} invariant, we have z ̸= x, y. Now
CT (w) fixes z and hence is trivial. It follows that w inverts T , and that T
is abelian.

As G is doubly transitive, and w /∈ B, it follows that G = B ⊔BwB (for
g ∈ G − B, take b ∈ B taking xg to y; then xgbw = x and gbw ∈ B). We
have BwB = UTwTU = UwTU , and it remains to deal with uniqueness.

As T normalizes U , a failure of uniqueness will lead to

uw1 = tu2

with u1 ̸= 1, u1, u2 ∈ U , t ∈ T . But then u1 ∈ B ∩ Bw fixes {x, y} and as
u1 ∈ U we find u1 = 1. □

From this point onward we put aside the sharply 2-transitive case, that
is we assume

T > 1

We will also assume that

G is infinite

As a consequence of the uniqueness of representation, we find

rk(G) = 2 rk(U) + rk(T )

Lemma 2.5. With the hypotheses and notation of (∗), and assuming
T > 1 and G infinite, the groups G, B, U , and T are connected.

Proof. If G◦ fixes a point then as the action of G is transitive, G◦ is
trivial, a contradiction. So G◦ ̸≤ B.

Fix some g ∈ G◦ −B ⊆ BwB, which after conjugation under B may be
taken to be of the form

g = bw

with b ∈ B.
It follows from the uniqueness of representation that the subset X =

U◦wU◦gT ◦ = U◦wU◦bT ◦ · w has rank equal to rk(G) and hence is generic
in G◦. Hence for u ∈ U we have a nontrivial intersection X ∩ uX, and by
uniqueness of the representation this means uU◦ meets U◦, hence u ∈ U◦.
Thus the group U is connected.

Now U ≤ G◦ acts transitively on the set X\{x}, and G◦ is not contained
in B, so the action of G◦ on X is doubly transitive, and therefore G◦ is a
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Zassenhaus group, satisfying the same hypotheses as G. In particular we
may take w ∈ G◦.

So we have G◦ = B0 ⊔ UwUT0 with B0 = B ∩G◦ and T0 = T ∩G◦. By
the uniqueness of the representation, T0 is connected and T0 = T ◦.

We have shown that T contains no involutions. So T is 2-divisible.
Let t = s2 with s ∈ T . Then t = [w, s] ∈ G◦ since w ∈ G◦, and hence
t ∈ T0 = T ◦, and T is connected. Thus B is also connected and as

G = B ⊔ UwUT
with uniqueness of representation, the Morley degree of G is one and G is
connected. □

Lemma 2.6. Let U0 = ⟨I(U)⟩. Then the pair (U0, T ), with T acting on
U0, is equivalent to a pair of the form (K+,K

×) with K an algebraically
closed field of characteristic two, where the multiplicative group acts natu-
rally.

Proof. The involutions of U are conjugate under the action of B and
hence lie in Z(U), so U0 is an elementary abelian 2-group and T acts regu-
larly on U×

0 . Also T is abelian. So Proposition 4.11 of Chapter I applies. □

Lemma 2.7. Suppose U = U0. Then G ≃ PSL2(K) for some alge-
braically closed field of characteristic two.

Proof. By Lemma 2.6 of Chapter III the action of B on X can be
identified with the natural action of a one dimensional affine group on the
projective line, where the element x ∈ X corresponds to ∞, and where y
corresponds to 0. The involution w has a unique fixed point z which we
identify with the point 1; as w inverts T , its action on X corresponds to
inversion. Accordingly the group G is embedded naturally into PGL2(K)
with its usual action on the projective line, where as we have seen the field
K is algebraically closed. But PGL2(K) ≃ PSL2(K) is sharply 3-transitive,
and G is 3-transitive since T is transitive on U×, so G = PSL2(K) under
this identification. □

So the missing ingredient in all of this is the relation

U = U0

For this, the only known approach is extensive calculation with elements of
order three.

We make the following observation.

Lemma 2.8. If t ∈ T has order three then the set

{u ∈ U : uutut
2
= 1}

is generic in U .

Proof. We have CU (t) = 1 since t ∈ T×, so [t, U ] is generic in U and
this identity holds on [t, U ]. □
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The following lemma simplifies calculations.

Lemma 2.9. Every element of G−B is conjugate under T to an element
of UwU .

Proof. It suffices to treat elements of wTU . So let g = wtu with u ∈ U ,
t ∈ T . As T is 2-divisible we may take s ∈ T with s2t = 1. Then

gs = wu

□

Lemma 2.10.

(1) There is an involution i ∈ U with (wi)3 = 1.
(2) If u ∈ U and (wu)3 = 1, then u is an involution.

Proof.
Ad 1. Let t ∈ T have order three. Then wtw = t has order three. Let

j = wt. Note that j and w lie in distinct conjugates of B, as otherwise they
commute. If j, w lie in the conjugates Bj , Bw of B, then we may conjugate
the pair (Bj , Bw) to the pair (B,Bw) by double transitivity, replacing j by
an involution j′ ∈ U and w by an involution w′ ∈ Bw. Now B ∩ Bw is a
two-point stabilizer and hence acts transitively on the involutions of Bw.
Hence after a further conjugation, we replace j′ by another involution i of
U , and w′ by w.

Ad 2. Suppose (wu)3 = 1 and fix i ∈ I(U) with (wi)3 = 1.
Then (wu)iwu = u−1wiwuiwu = u−1iwiuiwu = u−1iwuwu = u−1iu−1w =

u−2iw, and hence u−2iw has order three as well.
Then

(iu)wu−2w = wu2wiuwu−2w = wu(uwu)iwu−2w
= wuwu−1wiwu−2w = wuwu−1iwiu−2w
= u−1wu−2iwu−2iw = u−1w(u−2iw)2

= u−1iu2 = iu

and hence (u−2)w commutes with iu, forcing either iu = 1 or u−2 = 1 and
in either case u2 = 1. □

Lemma 2.11. U = U0.

Proof. Fix an element t ∈ T of order three. We define a function

f : U× → U

as follows. For u ∈ U×, write uw = u1wu2s with u1, u2 ∈ U and s ∈ T . Set

f(u) = u−t
1 u−st−1

2 . In principle one expects f(u) = u−1, which may explain
why the function f has useful properties.

We show first that

f(ux) = f(u)x
−1

(u ∈ U, x ∈ T )

With uw = u1wu2s we find

(ux)w = (uw)x
−1

= ux
−1

1 wx−1
ux

−1

2 s
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As wx−1
ux

−1

2 = wux2x
−2 this gives f(ux) = (u−tx−1

1 )(u
x·(−sx−2t−1)
2 ) = f(u)x

−1
.

Now let X be the (generic) set of u ∈ U× such that

uutut
2
= 1

For u ∈ X, we claim that (wf(u))3 = 1. Conjugating by T , we may suppose
that uw = u1wu2, and we compute:

f(u)w = u−wt−1

1 u−wt
2 = (u2wu

−1)t
−1
(u−1wu1)

t

= ut
−1

2 wu−tu−1wtut1 = ut
−1

2 [ut
2
]wtut1

= ut
−1

2 (u1wu2)
ttut1 = ut

−1

2 ut1wu
t−1

2 ut1 = f(u)−1wf(u)−1

So by the preceding lemma, f [X] ⊆ I(U). We claim that this implies that
X ⊆ I(U), and as X is generic therefore U = U0.

Suppose then that u ∈ X. Again, conjugating by T , we may suppose
that uw = u1wu2. As f(u) ∈ Z(U), we have also

f(u) = f(u)u
−t
1 = u−t−1

2 u−t
1

and we can compute f(u)w a second time:

f(u)w = u−wt
2 u−wt−1

1 = u−twut
−1
u2wut

−1 = u−t[f(u)]−twut−1

= u−t(f(u)wf(u))t
−1
ut−1 = u−tf(u)t

−1
wf(u)tut

2

So by uniqueness of representation we find

f(u)−1 = u−tf(u)t
−1

and as f(u) ∈ I(U) it follows that u ∈ I(U). □

This completes the proof of Theorem 2.2 of Chapter III.

3. Suzuki groups

Definition 3.1.

(1) A Suzuki 2-group is a nilpotent 2-group S which is equipped with
the action of an abelian group T such that the involutions of S lie
in a single orbit under the action of T .

(2) A Suzuki 2-group is said to be free if the action is free, that is the
nontrivial elements of T have no nontrivial fixed points in S.

The next result will play an important role in the treatment of groups
with strongly embedded subgroups in §1 of Chapter VI, and also in the
analysis of groups with standard components of type SL2 in Chapter VII.

Theorem 3.2. Let (S, T ) be an infinite free Suzuki group of finite Morley
rank. Then S is abelian and homocyclic.

The following principles will be applied freely. Recall the notation Ωi(S)
(Notation 1.1 of Chapter I), which is very useful in this context.

Lemma 3.3. Let S be a Suzuki 2-group with operator group T .
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(1) S is free if and only if the action of T on the involutions of S is
regular.

(2) Z(S) = Ωi(S) for some i.
(3) Setting A = Ω1(S), the action of T/CT (A) on A is regular, and

A may be identified with the additive group of a field (algebraically
closed if A is infinite) in such a way that T/CT (A) is identified
with K× acting naturally.

(4) Let S be a Suzuki 2-group of exponent greater than 2, with Ω2(S)
abelian. Then S̄ = S/Ω1(S) is a Suzuki 2-group with the same
group of operators T , and the T -modules Ω1(S) and Ω1(S̄) are nat-
urally isomorphic. In particular, if S is a free Suzuki 2-group then
S̄ is as well.

Proof. The first point is immediate.
For the second point, suppose that g ∈ Z(S) and h ∈ S both have order

2i. Then h2
i−1

is an involution and in view of the action of T , there is an

element g′ ∈ Z(S) such that g′2
i−1

= h2
i−1

and thus (g′h−1)2 = 1. Now the
action of T shows that g′h−1 ∈ Z(S) and thus h ∈ Z(S).

The third point is essentially Schur’s Lemma. Let K be the additive
subgroup of End(A) generated by the image of T . Then K is a commutative
ring and for each element of K, its kernel and range are T -invariant. Thus
K is a field and as T̄ = T/CT (A) is transitive on A×, T̄ is its multiplicative
group. If A is infinite then Proposition 4.2 of Chapter I applies.

For the last point, observe first that Ω1(S̄) is Ω2(S)/Ω1(S). There is a
natural map Ω2(S) → Ω1(S) given by squaring, which is surjective in view
of the action of T . This induces the desired isomorphism. □

By the field associated with a Suzuki 2-group S, we mean the field K
described above, with its action on Ω1(S). If the Suzuki group is not free,
then this field need not act naturally on S.

This result is helpful also when Ω1(S) is finite, as it implies that the
involutions are permuted cyclically, and as this was required by Higman’s
original definition of Suzuki 2-group in the finite case, this means that the
finite free Suzuki 2-groups are actually the Suzuki 2-groups classified by
Higman. In particular we have the following, following from an explicit
classification.

Fact 3.4 (Hi-SG). A finite nonabelian free Suzuki 2-group has exponent
4.

The last point in Lemma 3.3 of Chapter III can be iterated, and yields
the following.

Corollary 3.5. Let A be an abelian Suzuki 2-group with operator group
T , and H a proper T -invariant subgroup of A. Then the following hold.

(1) H = Ωi(A) for some i.
(2) Ā = A/H is a Suzuki 2-group with respect to the same group T .
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(3) There is a natural isomorphism between the T -modules Ω1(Ā) and
Ω1(A).

Lemma 3.6. Let S be a free Suzuki 2-group with operator group T , and
H ◁ S a T -invariant abelian subgroup. Then the action of T on S/H is free.

Proof. Suppose that t ∈ T , g ∈ S, and [t, g] ∈ H, with t ̸= 1. We
claim then that g ∈ H.

By Corollary 3.5 of Chapter III and induction it is easy to see that
[t,H] = H. Hence [t, g] = [t, h] for some h ∈ H and then t commutes with
gh−1, and g = h ∈ H. □

3.1. Special cases. Now we take up the topic of Theorem 3.2 of Chap-
ter III. We will focus initially on cases in which S′ ≤ Ω1(S).

First, we consider a functional equation which arises in this context.

Lemma 3.7. Let K be a field of characteristic two and let f : K → K
be a function which satisfies the following condition for x ̸= 0, 1:

(∗) xf(y/x) + (1 + x)f(y/(1 + x)) = f(x+ y) + f(x)

Then f(x2) = xf(1) for all x ∈ K.

Proof. Taking y = 0 we get f(0) = 0.
Now in (∗) the left hand side is invariant under the substitution x 7→

1 + x, and hence the right hand side is as well:

f(x+ y) + f(x) = f(1 + x+ y) + f(1 + x)

Taking y = x this gives the additive law

f(1 + x) = f(x) + f(1)

Now it suffices to take y = x(1 + x) in (∗) to get

xf(1 + x) + (1 + x)f(x) = f(x2) + f(x)

and then simplifying by the additive law we have

f(x2) = xf(1)

as claimed. □

This yields the following group theoretic result which will also be useful
in §4 of Chapter III.

Proposition 3.8. Let S be a unipotent 2-group of exponent at most 4.
Assume that

0 → Z → S → S/Z → 0

is an exact sequence, where Z is central and both Z and S/Z are isomorphic
to K+, K a perfect field of characteristic two. Assume also that T ≃ K∗

acts on S, inducing the natural action on both Z and S/Z. Then S is
abelian, and it is either homocyclic or else is elementary abelian of the form
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S = S1 ⊕ S2, splitting as a T -module. In the case where S is homocyclic, it
is isomorphic to the group on K ×K with operation

(x, y) · (x′, y′) = (x+ x′, y + y′ +
√
xx′)

Proof. We identify T∪{0} withK and assumeK acts on S with g0 = 1
for g ∈ S, where the action on S/Z and on Z gives each the structure of a
1-dimensional vector space.

Fix two elements g ∈ S\Z and h ∈ Z×, and coordinatize S by associating
the pair s, t ∈ K with gsht.

For x ∈ K we have

ggx = g1+xhf(x)

with some function f : K → K. Writing out the law (ggx)gy = g(ggx
−1y)x)

in terms of f yields

f(x) + (1 + x)f(y/(1 + x)) = xf(y/x) + f(x+ y)

This is equivalent to the functional equation of Lemma 3.7 of Chapter III,
so f(x2) = xf(1), or since K is perfect we may write:

f(x) = f(1)
√
x

To work out the full product in terms of coordinates we compute

(gsht)(gs
′
ht

′
) = gsgs

′
ht+t′

and then

gsgs
′
= (ggs

−1s′)s = gs+s′hs(1+f(s−1s′))

Now as far as the function f is concerned there are really only two
cases. If S has exponent 2 then f(1) = 0 and thus f(x) = 0, and S splits as
a T -module.

If S has exponent 4 then we can choose g to have order 4 and then choose
h = g2, getting f(1) = 1 and f(x) =

√
x, and again everything is clear. □

In particular we arrive at the following critical case of Suzuki 2-groups
in exponent 4. Whereas in the previous lemma we did not need to assume a
priori that our group S is abelian, here we need that assumption to recover
the situation of the foregoing lemma.

Corollary 3.9. Let S be an abelian free Suzuki 2-group of exponent four
over a perfect field K. Then S is isomorphic to the group with underlying
set K ×K, and multiplication defined as follows.

(x, y) · (x′, y′) = (x+ x′, y + y′ +
√
xx′)

and with K× acting by multiplication, componentwise.

The next result will show that when K is quadratically closed, it does
not allow a free Suzuki 2-group of one critical type. In the course of the
analysis the following functional equation will arise.
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Lemma 3.10. Let K,F be fields of characteristic two, with K ⊆ F as sets
and with compatible multiplication operations, but possibly different addition
operations. Let γ : K → F be an additive map. Then the following are
equivalent.

(1) γ(x−1) = x−2γ(x) for all x ∈ K
(2) γ is linear over the subfield K2.

Proof. Since x−1 = x−2 · x, the second hypothesis implies the first.
For the converse, we use the identity

(x+ x2z)−1 = x−1 + (x+ z−1)−1

Applying the functional equation for γ and multiplying through by (x+x2z)2

we find

γ(x+ x2z) = (1 + xz)2γ(x) + x2z2γ(x+ z−1) = γ(x) + x2z2γ(z−1)

which simplifies to
γ(x2z) = x2γ(z),

and this is our claim. □

Lemma 3.11. Let S be a free Suzuki 2-group over a perfect field K, and
suppose that S contains two distinct K-invariant abelian subgroups M and
N of exponent four, with M normalizing N . Then MN can be coordinatized
by the base field K so that the underlying set is identified with K ×K ×K,
with T acting by multiplication coordinatewise, and with multiplication given
by

(∗) (u, z) · (u′, z′) = (u+ u′, z + z′ +
√
B(u,u′))

with B a bilinear form over K for which the associated quadratic form
B(u,u) is nonisotropic.

Proof. We may suppose that S =MN and N is normal in S. Observe
thatMN is nonabelian by Corollary 3.5 of Chapter III. Then S′ = [N,M ] <
N and as N has exponent four, that same corollary shows that S′ ≤ Ω1(S).
Hence S′ = Ω1(S). Similarly, M ∩N = Ω1(S), and, in particular, M is also
normal in S.

The structure of M and of N is given by Corollary 3.9 of Chapter III.
We may now coordinatize as follows. Fix g ∈ M , h ∈ N of order four with
g2 = h2, and set a = g2. Every element of S may be expressed uniquely
as gxhyaz with x, y, z ∈ K, and will be identified with the corresponding
triple (x, y, z). Then K acts coordinatewise, and it remains to work out
the multiplication in S, which has the form (∗), but with B at the moment
simply some bi-additive function of u and u′. We need to show that B is
K-linear in each variable and that the associated form Q is nonisotropic.

Note that (u, z)2 = (0, Q(u)) and as all involutions have u = 0 it follows
that Q is anisotropic, so it is only the K-linearity which is in question.
Furthermore this is known already separately on M and on N , so it suffices
to consider the commutation map M ×N →M ∩N , with respect to a fixed
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element ofM or N . Without loss of generality we may restrict our attention
to B(g, x) with x varying over N . In other words, we consider the function
f : K → K defined by

[g, hx] = af(x)

This is an additive map. We have the additional relations

[gx, h] = [g, hx
−1
]x; [gx+y, h] = [gx, h][gy, h],

and these combine to give the functional equation

xf(x−1) + yf(y−1) = (x+ y)f((x+ y)−1)

Replacing x and y by 1 and (1+x)−1 respectively, and multiplying through
by (1 + x), this gives

f(x−1) = xf(x)

Since the field is perfect, the function is K-linear by Lemma 3.10 of Chapter
III. □

In the previous case S is “short and fat”. The next one is more Laurelian.

Lemma 3.12. Let S be a Suzuki group over a perfect field K. If Ω2(S)
is abelian and S′ ≤ Ω1(S), then S is abelian.

Proof. We suppose the contrary. Let S̄ = S/Ω1(S), an abelian group.
By Lemma 3.3 of Chapter III the group S̄ is a Suzuki 2-group, with the
same associated field K.

Now Ω1(S) ≤ Z(S) < S, and by Lemma 3.5 of Chapter III the groups
S/Z(S) and S̄ also have the same associated field K. Furthermore S/Z(S)
is elementary abelian since S′ ≤ Ω1(S) ≤ Z(S). So the K-module S/Z(S)
is naturally isomorphic with V = Ω1(S).

Fix nontrivial elements ḡ ∈ S/Z(S) and i ∈ I(S). We consider the
commutation map γ : S/Z(S) → Ω1(S) given by γ(x) = [g, x], using “coor-
dinates” from K. That is, we define a map f : K → K as follows:

[g, gt] = if(t)

We claim that the function f(t) has the following properties.

f is additive; f(1) = 0; f(t−1) = tf(t−1)

The first is immediate as the commutation map S/S′ × S/S′ → S′ ≤ Z(S)
is bilinear, and the second is equally clear. For the “functional equation”
given by the last clause, we make the following computation.

[g, gt
−1
] = [gt, g]t

−1
= [g, gt]t

−1

which indeed becomes f(t−1) = f(t)t−1.
Observe then that the function γ(x) = f(x)2 satisfies the functional

equation of 3.10 of Chapter III and as K is perfect, it is a linear function of
one variable, vanishing at x = 1, and hence identically 0. This means that
g lies in Z(G) and yields a contradiction. □
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Combining these two yields a generalization of our first case.

Lemma 3.13. Let S be a free Suzuki 2-group over a quadratically closed
field K. Then the T -invariant abelian subgroups of S are linearly ordered by
inclusion.

This can also be expressed as follows: ifA is maximal abelian T -invariant,
then all other abelian T -invariant subgroups are of the form Ωi(A) for some
i.

Proof. Suppose that M and N are abelian T -invariant subgroups of
S. We claim that one is contained in the other. We may suppose S =MN .
Then M ∩N is central in S and hence is Ωi(S) for some i.

If i > 1 then Ω2(S) is abelian. Since Ω1(S) ≤M∩N , passage to S/Ω1(S)
allows us to conclude by induction.

So we may suppose that M ∩ N = Ω1(S). Hence also S′ = [M,N ] =
Ω1(S). If one of M or N is Ω1(S) our claim is clear, while if neither one is
Ω1(S) then the groups Ω2(M) and Ω2(N) are incomparable, and we aim at
a contradiction. We may suppose therefore that M and N have exponent
four, and as S =MN with S′ ≤ Ω1(S) it follows easily that S has exponent
four. Now Corollary 3.11 of Chapter III applies and the structure of S is
determined. As it involves a nonisotropic quadratric form, we contradict the
hypothesis that the base field is quadratically closed. □

Now we arrive at a broader case, but under model theoretic restrictions.
We first make a small remark which will be useful again a little further on.

Lemma 3.14. Let (K.L) be a structure of finite Morley rank with K and
L infinite fields of positive characteristic p. Suppose that their multiplicative
groups are related by K× ≤ L×, without any restriction on their respective
additive groups. Then K = L as sets.

Proof. Both K and L are algebraically closed, and have the same tor-
sion elements (multiplicatively). Hence as a set, the algebraic closure F̃p of
Fp in K or L is the same.

By Lemma 4.16 of Chapter I the set K× is generic in L×, and as these
are connected groups it follows that K = L as sets. □

Lemma 3.15. Let S be an infinite free Suzuki 2-group of finite Morley
rank. If S′ ≤ Ω1(S), then S is abelian.

Proof. Let us first deal with the case in which Ω1(S) is finite. Then
(S◦)′ is a connected subgroup of Ω1(S) and hence S◦ is abelian. As S◦ is
infinite it follows that S◦ contains elements of order 2n for all n, and hence
S = S◦. So the claim holds in this case. For the remainder of the argument
we assume Ω1(S) is infinite.

If Ω2(S) is abelian we apply Lemma 3.12 of Chapter III So we may
suppose that S = Ω2(S) and thus S has exponent four. We assume S is
nonabelian. Thus Z(S) = Ω1(S) = S′.
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In particular S̄ = S/Ω1(S) is a nontrivial elementary abelian 2-group,
which we consider as a K-module. We may suppose that every proper
definable T -invariant subgroup of S is abelian.

Let A be a maximal T -invariant abelian subgroup of S. Then A = C(A)
is definable.

Take v ∈ S̄, v /∈ Ā, and let V = ⟨[T, v]⟩.
Let v = ḡ with g /∈ A. We show first that [T, ⟨g⟩] = S.
If [T, ⟨g⟩] < S then [T, ⟨g⟩] is abelian, and by Lemma 3.13 of Chapter

III we find [T, ⟨g⟩] ≤ A, and in particular [T, g] ≤ A. Take any t ∈ T×.
Then t acts freely on A and hence [t, A] = A. Thus we have [t, g] = [t, x] for
some x ∈ A, and t fixes gx−1, forcing g = x and g ∈ A, a contradiction. So
[T, ⟨g⟩] = S.

On the other hand [T, ⟨g⟩] ≤ ⟨[T, g]⟩S′. So ⟨[T, g]⟩S′ = S and it follows
from Lemmas 5.19 of Chapter I and 5.20 of Chapter I that ⟨[T, g]⟩ = S. In
particular, V = S̄.

Consider the additive subgroup L of End(S̄) generated by the image
of the field K associated with S. What we have shown is that L acts
transitively on S̄. Furthermore by our choice of S, S̄ is definably irreducible,
and thus L is a field by Schur’s Lemma. By Lemma 4.8 of Chapter I K is
definable.

We have an inclusion of multiplicative groups K× ≤ L×, though the
additions operations may be incompatible. By Lemma 3.14 of Chapter III
we have K = L as sets. Since the addition operations are not necessarily
related, it is nonetheless important to distinguish the two fields.

Now fix elements g, a ∈ S of order four and two respectively, and define
a function f : L→ K by

[g, gx] = af(x)

As usual f is additive, and from [gx, g] = [g, gx
−1
]x we derive f(x) =

xf(x−1). So applying Lemma 3.10 of Chapter III to f̂(x) = f(x)2, we
find that f(x)2 is L-linear. As f(1) = 0, it follows that f ≡ 0. So ⟨gT ⟩ is
commutative. In particular S = ⟨[T, g]⟩ is commutative, a contradiction. □

3.2. The general case. We can now treat the general case. If we wish
to treat a Suzuki group as an abstract group (that is, without assuming
that all elementarily equivalent groups are Suzuki groups), then we cannot
immediately assume it has bounded exponent. But the following remark
eliminates any cause for concern on this point.

Lemma 3.16. Let S be an infinite nonabelian free Suzuki group. Then
there is a definable section S1 of S of bounded exponent which is also an
infinite nonabelian free Suzuki group, with the same operator group.

Proof. Suppose first that S is not nilpotent of class two. Then we may
factor out Z(S) unless Z(S) has finite index in S. On the other hand if Z(S)
has finite index in S, then either Z(S) has bounded exponent and then so
does S, or Z(S) has unbounded exponent and then S = Z(S) is abelian.
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Iterating this argument, we may suppose S is nilpotent of class two.
Then Ωi(S) has exponent at most 2i+1 for each i, since for x, y ∈ Ωi(S) we
have (xy)2 = x2y2[x, y] with [x, y] central and of order at most 2i. So it
suffices to choose i so that Ωi(S) is nonabelian, and of exponent at least 8,
so that by Fact 3.4 of Chapter III it is again an infinite group. □

Proof of Theorem 3.2 of Chapter III. We suppose toward a con-
tradiction that S is an infinite nonabelian free Suzuki 2-group of finite Mor-
ley rank, with operator group T identified with F×, where F is a field inter-
preted in S. As just seen, we may suppose that S has bounded exponent.
It follows easily that Ω1(S) is infinite.

Let A be a maximal normal abelian T -invariant subgroup of S. Then
A = C(A) is definable in S. If Ω2(S) ≤ A then by Lemma 3.3 of Chapter
III, induction applies to S̄ = S/Ω1(S), which is therefore abelian. Thus S′ ≤
Ω1(S) and now Lemma 3.12 of Chapter III applies to give a contradiction.
So we may fix an element g ∈ S \A of order four.

We may suppose that any proper definable T -invariant subgroup of S
is abelian, and hence by Lemma 3.13 of Chapter III is contained in A. In
particular S = NS(A), that is A ◁ S, and furthermore S/A is T -minimal.
By Lemma 4.10 of Chapter I, S̄ = S/A is T -irreducible and hence by Schur’s
Lemma the subring of End(S̄) generated by T is a field K. The action of T
on S/A is free by Lemma 3.6 of Chapter III, so T ≤ K×. As in the proof of
Lemma 3.15 of Chapter III, K is interpretable in S, and by Lemma 3.14 of
Chapter III we have K = F as sets.

Now we can begin to compute.
Let B = 2A (in additive notation). We show first

(∗) S′ ≤ B

We know S′ ≤ A and [S,A] ≤ B.
Fix g ∈ S. Commutation with g gives a function S → [g, S] ≤ A, and

the induced map S → A/B is a homomorphism since [g, xy] = [g, y][g, x]y

and [y,A] ≤ B. Furthermore [g, S′] ≤ [g,A] ≤ B, so there is an induced
homomorphism

γ : S/S′ → A/B

We claim that this map is trivial, that is [g, S] ≤ B, which will prove (∗).
For the sake of coordinatization, fix an element ā ∈ (A/B)×. Define an

additive function f : K → F by

γ(gt) = āf(t)

As usual by considering [gt, g] we find f(t−1) = t−1f(t) and then Lemma
3.10 of Chapter III shows that f is K-linear. Since f(1) = 0 we find f ≡ 0
and [g, S] ≤ B.

We may now consider the T -module V = S/B and the submodule U =
A/B. Note that S = A⟨Ω2(S)⟩ and hence V is an elementary abelian 2-
group. Our assumptions at this point are that V > U and that any proper
definable submodule of V is contained in U .
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Let R be the subring of End(V ) generated by T . Let R→ K be the map
induced by restriction to U , and m the kernel of this map, the annihilator
of U .

Let r ∈ R \m. We claim that r acts freely on V . Consider V [r] = {v ∈
V : rv = 0}. Then V [r] is T -invariant and proper in V , hence contained in
U . But then V [r] = U [r] = 0.

Now we claim that mV ≤ U . Let v ∈ V and a ∈ m. Consider the
submodule ⟨Tav⟩ of V . This is definable. If ⟨Tav⟩ = V then we have rv = v
for some r which is in the additive closure of Ta, and hence lies in m. Thus
(1− r)v = 0 and 1− r ∈ m, and thus 1 ∈ m, a contradiction. So ⟨Tav⟩ < V
and thus ⟨Tav⟩ ≤ U , and in particular av ∈ U . Thus mV ≤ U . As mU = 0
we find

m2 = 0

Extend the inclusion T → R to a map ι : K → R by ι(0) = 0. We claim
that this is an embedding of the field into R. It suffices to check additivity
for pairs s, t ∈ T with s+K t ̸= 0, with +K computed in K. In R, we have√
s+

√
t ∈

√
s+K t+m, and after squaring this yields s+ t = s+K t. So we

have a natural embedding of K into R, and V becomes an K-vector space
in a way compatible with the K-structure of U . Now take a complement U1

to U in V as an K-space, which lifts to a proper T -invariant subgroup of S
not contained in A. This gives a contradiction. □

4. Landrock-Solomon

4.1. The Landrock-Solomon configuration. The configuration dealt
with in the following theorem arises in the course of the analysis of groups
with weakly embedded subgroups which are not strongly embedded.

Theorem 4.1. Let H = S ⋊ T be a group of finite Morley rank, where
S is a definable, connected 2-group of bounded exponent, and T is definable.
Assume

(1) S has a definable subgroup A such that A ⋊ T ∼= K+ ⋊ K× for
some algebraically closed field K of characteristic two, with the
multiplicative group acting naturally on the additive group.

(2) There is a definable involutory automorphism α of H such that
CH

◦(α) = A⋊ T .

Then S is isomorphic to one of the following groups.

(A) If S is abelian then either
(1) S is homocyclic with I(S) = A×, or
(2) S = E ⊕ Eα, with E an elementary abelian group isomorphic

to K+.
In the second case, A = {xxα : x ∈ E}.
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(B) If S is nonabelian then S is an algebraic group over K whose un-
derlying set is K×K×K and the group multiplication is as follows:

(∗)
(a1, b1, c1) · (a2, b2, c2)

= (a1 + a2, b1 + b2, c1 + c2 + ϵ
√
a1a2 +

√
b1b2 +

√
b1a2)

for a1, b1, c1, a2, b2, c2 ∈ K, where ϵ is either 0 or 1.

In this case, α acts by (a, b, c)α = (a, a + b, a + b + c +
√
ab) and

[α, S] = {(0, b, c) : b, c ∈ K}.
In particular, if S is nonabelian then S has exponent 4.

4.2. Around Suzuki 2-groups.
It is not surprising that §3 of Chapter III has some relevance here, since

in the conclusion of Theorem 4.1 of Chapter III, in the important case (A.1),
the pair (S, T ) constitutes a free Suzuki 2-group of finite Morley rank. In
particular Lemma 3.8 of Chapter III gives the analysis of an important
special case.

We mention here a cohomological splitting argument which enters into
the proof of Theorem 4.1 of Chapter III, and is of use elsewhere. For the
moment the one-dimensional case is of interest.

Lemma 4.2. Suppose T is a divisible abelian group of finite Morley rank
acting definably on each term of short exact sequence

0 →M◦ →M →M1 → 0

of T -modules, where M◦ is finite, and the action of T on M1 is that of the
multiplicative group of a field K on a vector space. Then the sequence splits,
definably.

Proof. We fix x ∈M \M◦ (in other words, the lift toM of a nontrivial
element of M1), and we write xg+h = xg + xh + a(g, h) (taking x0 = 0).
Then a is a definable function from (T ∪ {0}) × (T ∪ {0}) into M◦ which
satisfies the standard cocycle condition for every g, h, k ∈ T ∪ {0}:

a(g, h) + a(g + h, k) = a(g, h+ k) + a(h, k)

Since M◦ is finite, for fixed g the function a(g, ) generically takes on
a fixed value ag. This yields a definable function from T into M◦ which
associates to every g ∈ T the corresponding generic value ag. Applying the
cocycle condition with an arbitrary pair g, h of elements from T , and with
k ∈ T independent from g and h, one obtains a(g, h)+ag+h = ag +ah. This
means that a(g, h) is a definable coboundary, and hence the extension splits
definably. □

4.3. Action of T . In the present subsection we will show that T acts
freely on S, and derive some consequences.

Lemma 4.3. CS(t) is finite and equal to CS(T ) for every t ∈ T×.
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Proof. Fix t ∈ T . Since CS(t) is T -invariant and T is connected, it
suffices to show the first point, namely that CS(t) is finite.

By assumption, T acts freely on A and A = CS
◦(α). Let Q = CS(t).

Then Q is an (⟨α⟩ × T )-invariant 2-group. Now CQ
◦(α) ≤ CA(t) = 1, so

CQ(α) is finite and hence Q is finite. □

Lemma 4.4. Let S, T and α satisfy the hypotheses of Theorem 4.1 of
Chapter III. Let R be a nontrivial definable connected ⟨α, T ⟩-invariant sub-
group of S. Let R1 be a maximal proper definable connected normal ⟨α, T ⟩-
invariant subgroup of R which contains R′. Then the following hold:

(a) R/R1 is an elementary abelian group.
(b) CR/R1

(α) = R/R1, or in other words [α,R] ≤ R1.
(c) rk(R) = rk(R1) + rk(A).

Proof. (i) As Ω1
◦(R/R1) is a nontrivial definable connected subgroup

of R/R1, R/R1 is an elementary abelian 2-group.
(b) By Lemma 10.3 of Chapter I CR/R1

◦(α) is a nontrivial definable
connected subgroup of R/R1. Thus, CR/R1

(α) = R/R1.

(c) We will use -notation to denote quotients by R1. By Lemma 4.3 of
Chapter III we can find x ∈ R \ CR(T )R1. By Proposition 9.9 of Chapter I
and Lemma 4.3 of Chapter III, CT (x) = 1, so rk(x̄T ) = rk(T ) = rk(A). We
have x̄T ⊆ R/R1 and thus rk(x̄T ) ≤ rk(R) − rk(R1), so rk(R) ≥ rk(R1) +
rk(A). Since we also have rk(R) = rk(CR(α)) + rk(αR) and αR ⊆ αR1 by
(ii), we conclude rk(R) ≤ rk(A) + rk(R1). □

Proposition 4.5. Let S and T be as in the the statement of Theorem
4.1 of Chapter III. Then for every t ∈ T×, CS(t) = 1.

Proof. Let Q = CS(t). By Lemma 4.3 of Chapter III, Q = CS(T ) and
Q is finite. We suppose toward a contradiction that Q ̸= 1. Let R be a
minimal definable connected ⟨α, T ⟩-invariant subgroup of S which contains
Q. Let R1 be a maximal proper definable connected normal ⟨α, T ⟩-invariant
subgroup of R which contains R′. By Lemma 4.4 of Chapter III (i) and
(iii), R/R1 is a connected elementary abelian 2-group of rank rk(T ). We
therefore have the following short exact sequence

0 →M◦ →M →M1 → 0

where M = R/R1, M1 is the natural T -module K+ (by Lemma 4.10 of
Chapter I, T acts on M1 by scalar multiplication) and M◦ = QR1/R1 is the
kernel of the action of T on M . By choice of R and R1, M◦ ̸= (0).

By Lemma 4.2 of Chapter III, this sequence splits definably, contradict-
ing the connectedness of R, and we conclude that Q = 1. □

Corollary 4.6. Let S, T , and α satisfy the hypotheses of Theorem 4.1
of Chapter III. Then the following hold.

(1) If X is a definable normal T -invariant subgroup of S, then for any
element t of T×, CS/X(t) = 1.
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(2) Any definable normal T -invariant subgroup X of S is connected.
(3) CS(α) = A.

Proof.
Ad 1. Let T1 be the definable hull of ⟨t⟩. Then T1 is a definable 2⊥-group

and CS/X(t) = CS/X(T1) = CS(T1)X/X by Proposition 9.9 of Chapter I.
By Proposition 4.5 of Chapter III this is trivial.

Ad 2. As T is connected, it centralizesX/X◦. By the preceding corollary,
we get X = X◦.

Finally, the third point is an instance of the second, withX = CS(α). □

4.4. The abelian case.

Lemma 4.7. If A < S, then rk(CS/A(α)) = rk(A) and CS/A(α) is an el-
ementary abelian group. Furthermore CS/A(α) is isomorphic as a T -module
with A.

Proof. Let X/A = CS/A(α), which is nontrivial by Lemma 10.3 of
Chapter I. Commutation with α induces an isomorphism of X/A with A.
It is surjective because the image is nontrivial and T -invariant. □

The next proposition classifies the abelian 2-groups which satisfy the
conditions of Theorem 4.1 of Chapter III:

Proposition 4.8. Let S be an abelian 2-group satisfying the conditions
of Theorem 4.1 of Chapter III. Then either

(1) S is homocyclic with I(S) = A×, or
(2) S = E ⊕ Eα, where E is a T -invariant elementary abelian group.

In the second case, A = {xxα : x ∈ E} and both E and Eα are T -modules.

Proof. Note that the assumption that S is abelian implies that for
x ∈ S, xxα is centralized by α, and thus xxα ∈ A. As a result α inverts
S/A.

If I(S) = A∗. By Lemma 1.16 of Chapter I, S is a direct sum of cyclic
groups. Since Aut(S) is transitive on I(S), it follows that S is homocyclic,
as claimed. So we will assume on the contrary that I(S \A) ̸= ∅.

Let S0 = Ω1(S), an (⟨α⟩ × T )-invariant definable subgroup of S. By
Corollary 4.6 of Chapter III, S0 is connected. As S/A is inverted by α,
S0/A ≤ CS/A(α). Lemma 4.7 of Chapter III and the connectedness of
definable normal T -invariant subgroups of S imply that S0/A = CS/A(α).
In particular, S0 and T satisfy the conditions of Proposition 3.8 of Chapter
III. Thus, S0 is an elementary abelian subgroup which is the direct sum of
two T -modules E1 and E2. As the actions of α and T commute, we may
assume that E2 = Eα

1 .
So it suffices now to show that S = S0. Let R = Ω2(S). For x ∈ R,

as xxα ∈ A, we have x2(x2)α = (xxα)2 = 1, which implies that x2 is
an involution inverted by α, hence x2 ∈ A. Therefore R is a T -invariant
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subgroup of S such that R/A ≤ CS/A(α). But from the previous paragraph
we know that CS/A(α) = E/A. Thus R = E and hence S = E. □

4.5. Exponent 4. With the abelian case disposed of, there remains a
considerable amount of analysis to be carried out to complete the proof of
Theorem 4.1 of Chapter III. In essence the point is to show that in exponent
4 the nonabelian examples are as stated, and then to use this to show that
there are no others.

For the remainder of the proof of Theorem 4.1 of Chapter III we assume
that S is nonabelian, unless the contrary is explicitly noted. We choose S1
to be a maximal definable proper normal (⟨α⟩ × T )-invariant subgroup of S
containing S′. Note that, by Corollary 4.6 of Chapter III, S1 is connected.
Lemma 4.4 of Chapter III applies to S and S1. We note the resulting
conclusions, which will be used in the sequel:

• S/S1 is an elementary abelian group.
• CS/S1

(α) = S/S1, or in other words [α, S] ≤ S1.
• rk(S) = rk(S1) + rk(A).

We will show first that S1 = [α, S] which will implies that this group is
uniquely determined.

Proposition 4.9. S1 = [α, S] is abelian, and α inverts S1.

Proof. Let X = {[α, x] : x ∈ S}, a subset of S1 inverted by α, of rank
rk(S) − rk(A) = rk(S1). Thus X is generic in S1. As S1 is connected, we
find S1 = ⟨X⟩ and furthermore X ∩ gX is generic in S1 for any g ∈ S1. If
g, h, gh ∈ X then α inverts all three elements and hence [g, h] = 1. Thus for
g ∈ X, CS1(g) contains the generic subsetX∩g−1X, and hence CS1(g) = S1,
X ⊆ Z(S1). As X is generic we conclude that S1 is abelian and then
S1 = [α, S].

As S1 is abelian, the subset of S1 inverted by α is a subgroup, and as
this set contains the generic set X, S1 must be inverted by α. □

In particular α centralizes the involutions of S1, hence:

Corollary 4.10. Ω1(S1) = A, and thus A ◁ S.

Corollary 4.11. A ≤ Z(S).

Proof. As A is normal in S, A∩Z(S) ̸= 1. But A∩Z(S) is T -invariant
and T acts on A transitively. Therefore, A ≤ Z(S). □

Next we prove a special case of Theorem 4.1 of Chapter III. The proof
makes use of computations very similar to those of §3 of Chapter III.

Proposition 4.12. Let α, S, A and T be as in Theorem 4.1 of Chapter
III, with S is of exponent 4. Then the conclusions of Theorem 4.1 of Chapter
III hold.
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Proof. We have assumed that S is nonabelian. If S1 = A then S, T
and the actions of T on A and S/A are as described in Proposition 3.8 of
Chapter III, which forces S to be abelian. Thus S1 > A. As Ω1(S1) = A, S1
is of exponent 4. Moreover the action of T on A and S1/A is as described in
the assumptions of Proposition 3.8 of Chapter III; note that commutation
with α (i.e., squaring) gives a T -module isomorphism of S1/A with A. Hence
S1 is homocyclic of exponent 4.

For x ∈ S, commutation with x gives an endomorphism hx of S1. Since
A = Ω1(S1) lies in the kernel of hx, the image is elementary abelian. In
other words: [S, S1] ≤ A.

We will now see that the map

adα : S/S1 −→ S1/A
xS1 7−→ [α, x]A

is a well-defined T -module isomorphism.
As [S, S1] ≤ A the map from S to S1/A induced by commutation with

α is a homomorphism: [α, xy] = [α, y][α, x]y ≡ [α, x][α, y] modulo A. The
kernel of this map contains S1, so we have an induced homomorphism adα,
which is surjective by Lemma 4.9 of Chapter III. As S/S1 and S1/A have
the same rank as A, the kernel of adα is finite; since it is also T -invariant,
it is trivial by Corollary 4.6 of Chapter III. As α commutes with T , it also
respects the T -module structure.

As S/S1 is elementary abelian and S is of exponent 4, for any x ∈ S we
have x2 ∈ Ω1(S1) = A. Thus S/A is elementary abelian. Combining the
T -module isomorphism given by adα with Proposition 3.8 of Chapter III,
we find that S/A splits as a T -module: S/A = S0/A⊕ S1/A

We can now completely coordinatize S in terms of the base field K. Fix
x0 ∈ S0 \ A, and set x1 = [α, x0], x2 = x21. Now A ⋊ T ∼= K+ ⋊ K× for
some algebraically closed field K of characteristic two. We identify K+ with
T ∪ {0}, and then we identify S as a set with K+ × K+ × K+: (a, b, c)
corresponds to xa0x

b
1x

c
2, where elements of T act by conjugation and x0i = 1.

For a1, b1, c1, a2, b2, c2 ∈ K, we have

xa10 x
b1
1 x

c1
2 x

a2
0 x

b2
1 x

c2
2 = (xa10 x

a2
0 )(xb11 x

b2
1 )([xb11 , x

a2
0 ]xc12 x

c2
2 ).

If we let [x1, x
t
0] = x

g(t)
2 and apply Proposition 3.8 of Chapter III to S0

and S1, we get the following formula:

(a1, b1, c1)(a2, b2, c2) = (a1+a2, b1+b2, c1+c2+ϵ
√
a1a2+

√
b1b2+b1g(b

−1
1 a2))

where ϵ is either 0 or 1 depending on whether S0 is elementary abelian or
homocyclic respectively. Note that g is an additive map.

The associativity of the group law implies

(b+ c)g((b+ c)−1a) = cg(c−1a) + bg(b−1a)

Letting a = (b+ c)x implies

bg(b−1cx) = cg(c−1bx),
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hence,

g(yx) = yg(y−1x)

In particular, if x = y then g(x2) = xg(1). By taking square roots we
conclude

g(x) =
√
xg(1).

We will show finally that g(1) = 1, in other words that [x0, x1] = x2.
We have

x20 = (x−2
0 )α = [(x−1

0 )α]2 = (x1x
−1
0 )2

and as S has exponent 4, this becomes: 1 = x1x
−1
0 x1x0 = x21[x0, x1]

−1, and
our claim follows.

This shows that the structure of S is determined by the structure of S0
and finishes the proof of the theorem apart from the calculation of α, which
may be done directly, using xα0 = x0[x0, α] = x0x

−1
1 :

(xa0x
b
1x

c
2)

α = (xα0 )
a(xα1 )

b(xα2 )
c

= (x0x
−1
1 )a(x−1

1 )bxc2
= (x0)

a(x1x2)
a(x1x2)

bxc2
= (a, a, a)(0, b, b+ c)

= (a, a+ b, a+ b+ c+
√
ab) □

4.6. The nonabelian case. Having handled the minimal nonabelian
case, we now assume that S is a counterexample of minimal rank to the
statement of Theorem 4.1 of Chapter III.

Proposition 4.13. 2S1 ≤ Z(S); equivalently, [S, S1] ≤ A.

Proof. The equivalence of the two conditions is straightforward, as
A = Ω1(S1) and S1 is abelian.

We may suppose inductively that Theorem 4.1 of Chapter III holds in
S/A, since by the assumption on the action of T on definable quotients of
S and Lemma 4.7 of Chapter III, the group S/A together with T and the
map induced by α satisfy the assumptions of Theorem 4.1 of Chapter III.
By induction, we have the following three possibilities for S/A:
(i) S/A is abelian:

In this case certainly [S, S1] ≤ A.
(ii) S/A is nonabelian and in part (ii) of Theorem 4.1 of Chapter III, ϵ = 1:

The analysis in Theorem 4.12 of Chapter III shows that S/A = S0/A ·
S1/A where S0/A is homocyclic of exponent 4, 2S0/A = 2S1/A.

Fix s1 ∈ S1 and choose s0 ∈ S0 such that s20 = s21. Then [S1, s
2
1] = 1 and

[S0, s
2
1] = [S0, s

2
0]. As S0/A is abelian, [S0, s0] ≤ A and [S0, s

2
0] = 1; thus s21

commutes with S0S1 = S.
(iii) S/A is nonabelian and in part (ii) of Theorem 4.1 of Chapter III, ϵ = 0:

In this case we will obtain a contradiction.
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The analysis in Theorem 4.12 of Chapter III shows that S/A = S0/A ·
S1/A where S0/A is elementary abelian. Let B/A = Z(S/A). B is a homo-
cyclic group of exponent 4. We will show that every element of S0\A inverts
B, which yields a contradiction by considering a triple x, y, xy of elements
in S0 \A.

The image x̄ of x in S/A acts on S1. Let X = {[x̄, s] : s ∈ S1}. Then
XA/A = B/A, by inspection in S/A, and the involution x̄ inverts the el-
ements of X, as well as the elements of A. Thus x̄ inverts XA = B, as
claimed. □

Corollary 4.14. S/A is abelian.

Proof. As in the preceding proof, if S/A is not abelian then by in-
duction we have S/A = S0/A · S1/A, where S0/A and S1/A are abelian.
Furthermore by the preceding proposition, these two factors commute. □

Proposition 4.15. [79] If S is not abelian then S \ S1 contains an
involution.

Proof. If S has exponent 4 then our claim follows from Theorem 4.12
of Chapter III. Assume that S has exponent greater than 4 and I(S) = A×.
We will show that this implies S is abelian.

S/Z(S) is an elementary abelian 2-group: if x, y are in S then as S/A is
abelian (Corollary 4.14 of Chapter III) we compute [x, y2] = [x, y][x, y]y =
[x, y]2 = 1.

We claim that S1 = Z(S). If S1 has exponent 4 then as S has exponent
greater than 4, there is an element of S whose square lies in S1 −A. Hence
S1 \ A meets Z(S) and as (S1/A)

× is a single T -orbit, and A ≤ Z(S), we
have S1 = Z(S) in this case. Now suppose the exponent of S1 is greater than
4 and Z(S) < S1, hence as Z(S) is T -invariant, Z(S) = 2S1. For x ∈ S \ S1
we can solve x2 = s2 with s ∈ S1, hence xs

−1 has order at most 4 and lies
in S \ S1. Then (xs−1)2 = s21 with s1 ∈ 2S1, so xs

−1s−1
1 is an involution,

which is a contradiction. Thus in all cases we get S1 = Z(S).
As (S/S1)

× is a single T -orbit, it will suffice to show now that for x ∈
S \ S1 the conjugates of x under T commute with each other.

Fix x ∈ S \ Z(S) and i ∈ A×. Define g : K → K by [x, xt] = ig(t)

following the line of §3 of Chapter III. Note that g depends only on xS1,
and therefore g is additive (the action of T on S/S1 is by multiplication on
K+). Furthermore g(1) = 0. Working modulo S1, the equations [x, xt] =

[xt, x] = [x, xt
−1
]t = ig(t

−1)t imply g(t−1) = t−1g(t). Then g2 satisfies the
functional equation of Lemma 3.10 of Chapter III and hence g2 is linear.
As g(1) = 0 we conclude g ≡ 0, and x commutes with its T -conjugates, as
claimed. □

Proposition 4.16. For every involution x ∈ S \ S1, [x, xα] ̸= 1.

Proof. Let xα = xs with s = [x, α] ∈ S1. If x and xα commute, then s
is an involution, hence s ∈ A. Accordingly there is s1 ∈ S1 with [s1, α] = s
and thus [xs1, α] = s2 = 1, xs1 ∈ A, x ∈ S1, a contradiction. □
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Proposition 4.17. The exponent of Z(S) is 2.

Proof. Suppose toward a contradiction that the exponent of Z(S) is
at least 4. As Z(S) is a T -invariant subgroup of S1, it is homocyclic.

Let y be an involution in S \ S1. Then yα = yx, where x ∈ S1. As
[S, S1] ≤ A, [y, yα] = [y, x] ∈ A. Let s ∈ Z(S) be such that s2 = [y, x].

Now 1 = (yα)2 = (yx)2 = y2x2[x, y] = x2s−2 = (xs−1)2. So xs−1 ∈
A and x ∈ Z(S). Thus [y, yα] = 1 and this contradicts the preceding
proposition. □

Corollary 4.18. The exponent of S is 4.

Proof. We know S′ ≤ A (Corollary 4.14 of Chapter III), so S2 ≤
Z(S). □

Proof of Theorem 4.1 of Chapter III. Proposition 4.8 of Chap-
ter III proves the theorem if S is abelian. The nonabelian case is handled
by Corollary 4.18 of Chapter III and Theorem 4.12 of Chapter III. □

It is also useful to have the formula for commutation in terms of coor-
dinates. This does not depend on the value of ϵ.

Corollary 4.19. If S is nonabelian, then in the notation of Theorem
4.1 of Chapter III we have the following commutation formula:

[(a, b, c), (a′, b′, c′)] = (0, 0,
√
ab′ + a′b)

We record some observations about the triple (A,S, α) which are useful
in practice.

Corollary 4.20. With the notation and hypotheses of Theorem 4.1 of
Chapter III, we have the following.

(1) If the action of α on S is induced by an inner automorphism, then
S = A.

(2) Ω1([α, S]) ≤ A.
(3) If S is nonabelian, then any ⟨α⟩ × T -invariant elementary abelian

subgroup of S is contained in A.
(4) Any proper nontrivial (⟨α⟩×T )-invariant subgroup S0 of S is abelian

homocyclic, with A = Ω1(S0).
(5) [α, S] is the unique maximal proper (⟨α⟩×T )-invariant subgroup of

S.
(6) α /∈ S.

5. A theorem of Baumann

5.1. The theorem. The main result of the present section is Theorem
5.3 of Chapter III following, analogous to a result of Baumann in the finite
case [26]. For the proof we follow [169] closely. For us this plays the role
of a strong and abstract form of the Borel-Tits Lemma 6.7 of Chapter II,



202 III. SPECIALIZED TOPICS

aimed at putting certain subgroups into parabolic subgroups, as will become
clear in Proposition 2.2 of Chapter VIII.

We need a little preliminary terminology.

Definition 5.1.

(1) Let M be a connected group of finite Morley rank and of even
type. We will say that M is of minimal parabolic type if F ∗(M) =
O2(M) and M/O2(M) ≃ SL2(K) for some algebraically closed field
of characteristic two.

(2) For any group G of finite Morley rank, O2(G) denotes the small-
est definable normal subgroup K for which G/K is a 2-group, or
in other words the definable hull of the subgroup generated by 2⊥-
subgroups.

There are several equivalent notations one can use here, and for the sake
of clarity we now compare them.

Lemma 5.2. IfM is of minimal parabolic type then O2(M) =M (∞), and
this is also the minimal normal subgroup H of M for which M = H ·O2(M).

Proof. For a normal subgroup H of M , M/H is a 2-group if and only
if M/(HO2(M)) is a 2-group, and as the latter is a quotient of SL2(K), this
means M = HO2(M). Thus O2(M) is the minimal normal subgroup H for
which M = H ·O2(M).

Evidently M (∞) covers M/O2(M), so O2(M) ≤ M (∞). Conversely,

M (∞)/O2(M) is a perfect 2-group, hence trivial. □

The present section will be devoted to the proof of the following theo-
rem, parallel to the main result (and proof) of [169] in the finite case. For
the present we retain a relatively technical formulation, deferring a more
intuitive version to a late stage of our classification project, in §2 of Chapter
VIII.

Theorem 5.3. Let G be a group of finite Morley rank of even type. Let
M be a definable connected subgroup of G of minimal parabolic type. Assume
that for S a Sylow 2-subgroup of M :

(P)
No nontrivial definable connected subgroup of S is normalized
by both M and NG(S).

Set Q = O2(M), L0 = O2(M), V = [L0, Q], and D = CQ
◦(L0).

Then the following hold:

(1) V is an elementary abelian 2-group central in Q.
(2) V/V ∩ Z(M) is a natural F2(M)-module.
(3) Q = DV .
(4) S/Ω1

◦(Z(S)) is an elementary abelian 2-group.
(5) Z◦(Q) is an elementary abelian 2-subgroup.

Observe that condition (P ) above is the “bad” case. If X ≤ S were
a nontrivial definable connected subgroup of S normalized by both M and
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NG(S), then N
◦(X) would be a parabolic subgroup in the sense that it con-

tains NG
◦(S), andM would be a subgroup of this parabolic subgroup. Note

that in condition (P ), we consider only connected X, but the full subgroup
NG(S); in both cases, we have taken the weak form of the condition, thereby
strengthening the result.

5.2. The associated graph. We begin the proof of Theorem 5.3 of
Chapter III, which will occupy us to the end of this section.

Suppose M , S, and G are as in the statement of the theorem. By
Lemma 5.6 of Chapter II S is a connected group. We let H = NG(S) and
G0 = ⟨M,H⟩. By Lemma 3.23 of Chapter I, G0 is definable in G, and we
may replace G by G0. So we assume G = ⟨M,H⟩. Set B = M ∩H. Note
that B is a Borel subgroup of M . We keep most of this notation fixed:
namely M , G, G0, and H are as above. We do not need to retain the
notation S for a particular Sylow 2-subgroup and in fact we will prefer to
vary the Sylow 2-subgroups under consideration.

We consider the bipartite coset graph Γ associated with the free product
M ∗B H corresponding to the pair of subgroups M and H. The two types
of vertices will be the cosets of M and H in G. The edges are the cosets of
B in G. An edge Bx has as its vertices the cosets Mx and Hx. The natural
action of G on Γ is definable. One may wish to look at §1.2 of Chapter IX
for a discussion of definability issues.

We will refer to a coset of M as a vertex of type M .
The following properties given in [96] apply here.

Lemma 5.4 ([169, 1.1]).

(1) Γ is connected and bipartite.
(2) G is edge but not vertex transitive on Γ.
(3) The vertex stabilizers in G are conjugate to M or H.
(4) The edge stabilizers in G are conjugate to M ∩H = B.
(5) For λ ∈ Γ, the vertex-stabilizer Gλ is transitive on the set of vertices

adjacent to λ.

Lemma 5.5. [169, 1.2] No nontrivial definable connected subgroup of G
is normal in the stabilizer of two adjacent vertices. The kernel of the action
of G on Γ is a finite subgroup of O2(Z(G)).

Proof. If K is a definable subgroup of G which is normal in the sta-
bilizers of two adjacent vertices, then by edge transitivity we may suppose
that these vertices are M and H. Then K ◁ M and K ≤ B, so K ≤ O2(M)
and condition (P ) applies. Hence K cannot be nontrivial and connected.

In particular if K is the kernel of the action of G on Γ then K ≤ O2(M)
and K◦ = 1. As G is connected, K ≤ Z(G) as well. □

Since we prefer to work with a faithful action, we will factor out the
kernel of the action of G on Γ, which will not affect our hypotheses. We will
also have to check the validity of our conclusions in the original context, at
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some point; this is actually done in the proof of Corollary 5.13 of Chapter
III. Thus we will generally suppose:

(*) G acts faithfully on Γ

5.3. The module Zα. What follows is typical of the setup in the amal-
gam method, though the definitions that follow, of the module Zα and the
parameter b, can be varied considerably with similar results.

Notation 5.6. Let α, α′ be vertices of Γ.

(1) d(α, α′) will denote their distance in Γ.

(2) G
(1)
α is the intersection of the vertex stabilizers Gβ, where β varies

over vertices for which d(α, β) ≤ 1.
(3) Qα = O2(Gα).
(4) Zα = ⟨Ω1

◦(Z(S)) : S a Sylow 2-subgroup of (Gα)⟩.
(5) bα = min{d(α, β) : β ∈ Γ, Zα ̸≤ G

(1)
β }. Let b = bδ with δ of type M .

(6) (α, α′) is a critical pair for Γ if α is of type M , d(α, α′) = b, and

Zα ̸≤ G
(1)
α′ .

Remark 5.7.

(1) Qα and Zα are of interest only when α is of type M ; otherwise, Qα

is the unique Sylow 2-subgroup of Gα, and Zα is Ω1
◦(Z(Qα)).

(2) For α of type M , Zα is the critical object of study. We will see
momentarily that this is an elementary abelian 2-group which af-
fords a nontrivial representation of Gα/Qα ≃ SL2(K), which will
essentially be the natural representation.

(3) The parameter bα is well-defined (finite) since Zα is nontrivial, Γ
is connected, and the action of G on Γ is faithful. Furthermore bα
evidently depends only on the type of α, so b is also well-defined.
Large values of b lead quickly to implausible (and contradictory)
configurations; our main concern will be with the possibilities b = 2
and b = 4.

(4) The definition of a critical pair implies that Zα ≤ Gα′.

Lemma 5.8. [169, 1.3, 3.1] Let α ∈ Γ be of type M . Then:

(1) Qα = O2(G
(1)
α ) is a Sylow 2-subgroup of G

(1)
α .

(2) For S a Sylow 2-subgroup of Gα, Zα > Ω1
◦(Z(S)).

(3) Zα ≤ Ω1
◦(Z(Qα)) and CGα(Zα) = Qα.

(4) b ≥ 2 is even.

In particular, Gα/Qα acts on Zα, and the action is nontrivial.

Proof.
Ad (1). We may suppose that α = M . For S a Sylow subgroup of M ,

the vertex β = N◦(S) is a neighbor of α and hence G
(1)
α ≤ N◦(S). Hence a

Sylow 2-subgroup of G
(1)
α is contained in O2(M) = Qα. On the other hand

M acts transitively on its neighbors, by edge transitivity, so they are of the



5. A THEOREM OF BAUMANN 205

form N◦(S) with S a Sylow 2-subgroup of M . Thus Qα ≤ G
(1)
α is a Sylow

2-subgroup of G
(1)
α .

Ad (2). If Zα = Ω1
◦(Z(S)) we contradict Lemma 5.5 of Chapter III

Ad (3). Again we suppose α =M . Let S be a Sylow 2-subgroup of M .
Then Z◦(S) ≤ CM

◦(Qα) ≤ Qα as F ∗(M) = O2(M), so Z◦(S) ≤ Z(Qα).
Hence Zα ≤ Ω1

◦(Z(Qα)) and CGα(Zα) ≥ Qα. But Gα/Qα is simple so by
point (2), CGα(Zα) = Qα.

Ad (4). As Zα ≤ Qα ≤ G
(1)
α we have b ≥ 1. It suffices now to check that

b is even, or in other words, taking (α, α′) to be a critical pair, we claim that
α′ is of type M . If this is not the case then O2(Gα′), which is the Sylow

2-subgroup of Gα′ , is contained in G
(1)
α′ . Since Zα ≤ Gα′ by the definition of

a critical pair, we have Zα ≤ O2(Gα′ ≤ G
(1)
α′ , a contradiction. □

Lemma 5.9 ([169, 1.4]). Let (α, α′) be a critical pair. Then:

(1) 1 ̸= [Zα, Zα′ ] ≤ Zα ∩ Zα′.
(2) [Zα, Zα′ , Zα′ ] = 1 = [Zα′ , Zα, Zα].
(3) (α′, α) is a critical pair.

Proof. By the minimality of b we have Zα ≤ Gα′ and thus Zα normal-
izes Zα′ . As this is a critical pair however, Zα ̸≤ Qα′ and thus [Zα, Z

′
α] ̸= 1

(Lemma 5.8 of Chapter III). So (1) holds.
In particular Zα′ ̸≤ Qα and thus the pair (α′, α) is also critical. This

gives (3).
Now applying Lemma 5.8 of Chapter III and (1) to both (α, α′) and

(α′, α) we get (2). □

Lemma 5.10 ([169, 2.2]). Let (α, α′) be a critical pair for Γ and set
Gα = Gα/Qα. Then:

(1) Zα/Zα ∩ Z(Gα) is a natural module for Gα.
(2) Zα′Qα is a Sylow 2-subgroup of Gα.
(3) Setting S = Zα′Qα, Ω1

◦(Z(S)) = [Zα, Zα′ ](Zα ∩ Z(Gα))
◦

Proof. As both (α, α′), and (α′, α) are critical pairs, we will first sup-
pose that for the pair under consideration we have:

(1) rk(Zα′/Zα′ ∩Qα) ≥ rk(Zα/Zα ∩Qα′)

We may also assume Gα =M .
We apply Proposition 5.33 of Chapter II to Ḡα and its subgroup T = Z̄α′ ,

acting on the module V = Zα. With this notation, the hypotheses of the
corollary are that Zα is a faithful module (Lemma 5.8 of Chapter III), that
[Zα, Zα′ , Zα′ ] = 1 (Lemma 5.9), and that:

rk(Zα/CZα(Z̄α′)) ≤ rk(Z̄α′)

which decodes to the condition (1).
Proposition 5.33 of Chapter II then yields the following four conditions:
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(1) rk(Z̄α′) = rk(Zα/CZα(Z̄α′)), and thus our results apply equally to
(α, α′) or (α′, α);

(2) Z̄α′ is a Sylow 2-subgroup of Ḡα, which was our second point;
(3) Zα/CZα(Ḡα) is indeed a natural module;
(4) CZα(Zα′) = [Zα, Zα′ ]CZα(Gα); this is our final claim, taking into

account: C◦
Zα

(Zα′) = Ω1
◦(Z(Zα′Qα)).

□

5.4. The case b = 2. We know that b ≥ 2 is even. In this subsection
we show that the case b = 2 leads to the configuration described in the
theorem, always assuming that G acts faithfully on Γ. Subsequently we will
show that the case b > 2 leads to a contradiction.

Since the present case does not lead to a contradiction, but rather to
the desired conclusions about the structure of G, at the end of our analysis
we will give the argument to pass from the special case of a faithful action
to the general case.

We recall the notation involved in analyzing the structure of M :

Q = O2(M) L0 = O2(M)
V = [L0, Q] D = CQ

◦(L0)

The following lemma will be useful in this subsection as well as in the
following.

Lemma 5.11. If α, β are vertices of type M in Γ with d(α, β) = 2, then
Gα ∩Gβ contains a unique Sylow subgroup of Gα and Gβ.

Proof. There is a vertex γ of the form N◦(S) adjacent to both α and
β, with S a Sylow 2-subgroup of Gα and Gβ. If the intersection contained
another Sylow 2-subgroup of Gα then by Lemma 5.30 of Chapter II the two
together would generate Gα. □

Proposition 5.12. [169, 3.2] Assume that b = 2 and that the action of
G on Γ is faithful. Then the following hold:

(1) Q = DV , and V is an elementary abelian 2-group central in Q.
(2) For S a Sylow 2-subgroup of M , S/Ω1

◦(Z(S)) is an elementary
abelian group.

(3) Zα = Z◦(Qα). In particular, Z◦(Q) is an elementary abelian group.

Proof. Let (α, α′) be a critical pair for Γ with α = M . Then the
subgroups Q,L0, D, V lie in Gα and in particular Q = Qα.

As b = 2, Lemma 5.11 of Chapter III implies that Gα ∩ Gα′ contains a
unique Sylow 2-subgroup S of Gα.

(1) S = ZαQα′

By Lemma 5.10 ZαQα′ is a Sylow 2-subgroup ofGα′ . Since it is contained
in Gα as well, it coincides with S. The same applies to Zα′Qα.

(2) Qα = Zα(Qα ∩Qα′)
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Zα ≤ Qα ≤ S = ZαQα′ . Thus (2) holds.

Now we introduce some additional notation. We fix g ∈ Gα so that
Gα = ⟨Zα′ , Zg

α′⟩Qα, which is possible since Zα′ covers a Sylow 2-subgroup
of Gα/Qα ≃ SL2(K). Set F = ⟨Zα′ , Zg

α′⟩.
(3) Zα ≤ [S,Zα][S

g, Zα]Z(Gα)

We work in the natural module Z̄α = Zα/CZα(Gα). Then [S, Z̄α] is a
1-dimensional subspace of Z̄α, as is [Sg, Z̄α]. On the other hand [S,Zα] =
[Zα′ , Zα] ≤ Zα′ ∩ Zα ≤ CZα(Zα′), so [S, Z̄α] ≤ CZ̄α

(Zα′) and [S, Z̄α] ∩
[S, Z̄α′ ] ≤ CZ̄α

(F ) = CZ̄α
(Gα) = 1.

Thus Z̄α = [S, Z̄α]⊕ [Sg, Z̄α] and (3) follows.

(4) Qα = Zα(Qα ∩Qα′ ∩Qg
α′)

By (1) [S,Zα] ≤ Qα′ and [Sg, Zα] ≤ Qg
α′ , so by (3) Zα ≤ (Zα ∩ Qα ∩

Qα′)Qg
α′ . Now Qα∩Qα′ ≤ Sg = ZαQ

g
α′ ≤ (Zα∩Qα∩Qα′)Qg

α′ so Qα∩Qα′ ≤
(Zα ∩Qα ∩Qα′)(Qα ∩Q′

α ∩Qg
α′) ≤ Zα(Qα ∩Q′

α ∩Qg
α′), and this combines

with (2) to give (4).

(5) Qα = CQα
◦(F )Zα

Evidently Qα ∩Qα′ ∩Qg
α′ ≤ CQα(F ) and thus (5) follows from (4).

(6) FZα ◁ Gα

We have Gα = FQα. Now [Qα, FZα] = [CQα(F )Zα, FZα] ≤ Zα, and
[F, FZα] ≤ FZα, so [Gα, FZα] ≤ FZα.

(7) Zα ≤ F ; in particular F ◁ Gα and L0 ≤ F .

By (3) Zα = [Zα′ , Zα][Z
g
α′ , Zα]CZα(Gα) = [F,Zα]Ω1

◦(Z(Gα)). Consider
the factors. We have Ω1

◦(Z(Gα)) ≤ Zα′ ≤ F . Also [Zα′ , Zα] ≤ Zα′ ≤ F and
[Zg

α′ , Zα] ≤ Zg
α′ ≤ F . Thus [F,Zα] ≤ F .

Thus Zα ≤ F and F = FZα ◁ Gα. As Gα = FQα, the quotient Gα/F
is a 2-group and L0 ≤ F .

(8) Qα = DV

We apply (5). C◦
Qα

(F ) ≤ D by (7). As

Zα/CZα(Gα) = [Gα/Qα, Zα/CZα(Gα)],

we have Zα ≤ [L0, Zα]CZα(Gα) ≤ V D. Thus (8) follows.

(9) Φ(S) ≤ DΩ1(Z(S)).

As [Zα, Zα′ ] centralizes Qα and Zα′ , and S = Zα′Qα, we find [Zα, Zα′ ] ≤
Ω1(Z(S)). Now S = Zα′Qα = Zα′DV . As V = [Qα, L0] ≤ [Qα, F ] =
[Zα, F ] ≤ Zα, we find S = DZαZα′ .

Let Ŝ = S/DΩ1(Z(S)). Then Ŝ = ⟨Ẑα, Ẑα′⟩. Furthermore [Zα, Zα′ ] ≤
Ω1(Z(S)) and thus [Ẑα, Ẑα′ ] = 1. Hence Ŝ is elementary abelian and (9)
follows.

(10) S/Ω1
◦(Z(S)) is elementary abelian.

The groups [Φ(S), S] and ℧1(Φ(S)) are contained in D by (9), and are
normal in S. Hence they are normalized by L0S = Gα. But as they are



208 III. SPECIALIZED TOPICS

characteristic in S, they are normal in N◦(S) as well. As these groups are
also connected, by our basic assumption (P ), this forces them to be trivial.
Thus Φ(S) ≤ Ω1(Z(S)), and as Φ(S) is connected, (10) follows.

(11) Z◦(S) is elementary abelian.

℧1(Z◦(S)) is connected, definable, and characteristic in S, and is con-
tained in CZ(Qα)(F ) which is contained in D. Thus ℧1(Z◦(S)) is normalized
by L0S = Gα and by N◦(S), which by our main assumption (P ) implies
(11).

(12) Zα = Z◦(Qα).

By Lemma 5.8 of Chapter III(2), Zα ≤ Z(Qα). As Qα = CQα(F )Zα,
we have Z(Qα) = CZ(Qα)(F )Zα. We have CZ(Qα)(F ) ≤ Z(S) so Z◦(Qα) ≤
Z◦(S)Zα = Zα by (11).

This proves all parts of the theorem. □

Corollary 5.13. Assume that b = 2. Then the following hold:

(1) Q = DV , and V is an elementary abelian 2-group central in Q.
(2) For S a Sylow 2-subgroup of M , S/Ω1

◦(Z(S)) is an elementary
abelian group.

(3) Zα = Z◦(Q). In particular, Z◦(Q) is an elementary abelian group.

Proof. This is the same statement as the previous one, without the
proviso that G act faithfully on Γ. So let K be the kernel of the action of G
on Γ, a finite central 2-group, and let G1,M1, S1 be the quotients of G,M,S
by K. Set:

Q1 = O2(M1) L1 = O2(M1)
V1 = [Q1, L1] D1 = CQ1

◦(L1)

By the previous proposition our three claims hold for these groups. Note
that Q1 = Q/K and L1 = L0K/K. Thus V1 = V K/K. We will check also

that D1 = DK/K. Certainly DK/K ≤ D1. Conversely, let D̂ be the

preimage of D1 in G. Then [D̂, L0] ≤ K, so by Corollary 3.29 of Chapter I,

[D̂◦, L0] = 1 and D̂◦ ≤ D. As D̂◦ covers D, D̂ ≤ D̂◦K ≤ DK.
Ad (1). From Q1 = D1V1 it follows that Q ≤ DVK. Since Q is con-

nected we conclude that Q = DV .
Ad (2). Let S0 be the preimage of ℧1◦(S1) in S. Then [S, S0] ≤ K.

As S is connected and K is finite, by Corollary 3.29 of Chapter I we find
S0 ≤ Z(S). Further S0/K is elementary abelian and Φ(S0

◦) is connected,
so S0

◦ is elementary abelian. Thus S0
◦ ≤ Ω1(Z(S)). Now Φ(S) ≤ S0 and

Φ(S) is connected so Φ(S) ≤ S0
◦ ≤ Ω1

◦(Z(S)).
Ad (3). Let Z1α be Zα computed in G1. It suffices to check that Zα

covers Z1α and that Z◦(Q) covers Z◦(Q1). Let A be the preimage in G of
Z◦(Q1). Then [A,Q] ≤ K. As Q is connected, A ≤ Z(Q). Thus Z◦(Q)
covers Z◦(Q1). The argument for Zα is similar. □
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5.5. The case b > 2. In this final subsection we eliminate the case
b > 2. As b is even, we have b ≥ 4. The case b ≥ 6 leads more quickly to a
contradiction, while the case b = 4 takes a closer analysis.

Notation 5.14. Let (α, α′) be a critical pair in Γ. A path of length b
from α to α′ is fixed, and its vertices are denoted by (α, α+1, . . . , α+ b) or,
counting from the other end, (α′ − b, . . . , α′ − 1, α′).

In the next Lemma we discuss the prolongation of a path linking a critical
pair “to the left” in a natural way.

Lemma 5.15. [169, 2.3] Let (α, α′) be a critical pair in Γ. Then there is
a vertex β such that d(α, β) = 2 and:

(a) Zβ ̸≤ Gα′,

With such a choice of β we have:

(b) ⟨O2(Gβ ∩Gα), Zα′⟩ = Gα.
(c) (β, α′ − 2) is a critical pair,
(d) If b > 2 then [Zβ, Zα′−2] ≤ Z(Gα).

Proof. Suppose first that β has been found satisfying (a) with d(α, β) =
2. Note that d(β, α′) = b + 2 as a consequence of condition (a). Let λ be
adjacent to α, β, and let S = O2(Gλ) = O2(Gα ∩ Gβ) by Lemma 5.11 of
Chapter III. As λ ̸= α + 1, S is distinct from O2(Gα+1) = Zα′Qα. Thus
⟨S,Zα′⟩ covers Gα/Qα and hence ⟨S,Zα′⟩ = Gα. This is condition (b). For

(c), note that d(β, α′ − 2) ≤ b while Zβ ̸≤ G
(1)
α′−2 as otherwise we would find

Zβ ≤ O2(Gα′−1) ≤ Gα′ . Thus (β, α′ − 2) is a critical pair. Thus (b) and (c)
both hold.

If b > 2 then [Zα′−2, Zα′ ] = 1. As (β, α′−2) is a critical pair [Zβ, Zα′−2] ≤
Zα′−2 ∩ Zβ. Thus the group [Zβ, Zα′−2] is centralized by Zα′ and also by S
as S = Zα′−2Qβ. Now (b) implies (d).

Accordingly we turn our attention to condition (a). Let λ ̸= α + 1 be
any other neighbor of α. Then as seen above, while checking (b), we have
⟨O2(Gλ), Zα′⟩ = Gα. We will find β adjacent to λ so that Zβ ̸≤ Gα′ . Then
as β ̸= α, we have d(α, β) = 2.

Suppose toward a contradiction that Zβ ≤ Gα′ for every neighbor β of λ,
so that in fact Zβ ≤ Gα′∩Gα′−2 for each such β. Let T = O2(Gα′∩Gα′−2) =
O2(Gα′−1) = ZαQα′ and set Vλ = ⟨Zβ : d(λ, β) = 1⟩. Then our hypothesis
amounts to: Vλ ≤ T . As T = ZαQα′ this yields [Vλ, Zα′ ] ≤ [Zα, Zα′ ] ≤ Zα ≤
Vλ, and hence Vλ is normalized by Zα′ .

As Vλ is normal in Gλ and ⟨O2(Gλ), Zα′⟩ = Gα, we find that Vλ is
normalized by Gα as well. This contradicts Lemma 5.5 of Chapter III. □

As a matter of notation, when we apply the foregoing lemma, we will
call the vertex β which is selected “α − 2”. Formally, this has no special
meaning, but it serves as an aide-mémoire.

Proposition 5.16. [169, 2.4] b < 6.
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Proof. Suppose toward a contradiction that b ≥ 6. Fix a vertex β =
α−2 as afforded by Lemma 5.15 of Chapter III, and let a common neighbor
of α and α− 2 be called α− 1. We consider the following groups:

Vα = ⟨ZGα
α−2⟩Zα Vα−2 = ⟨ZGα−2

α ⟩Zα−2

Then Vα ◁ Gα and Vα−2 ◁ Gα−2. As b > 2 we have Vα ≤ Qα and Vα−2 ≤
Qα−2.

(1) [Qα, Vα] ≤ Z(Gα).

It suffices to check that [Qα, Zα−2] ≤ Z(Gα). As Zα′−2Qα−2 is a Sylow
2-subgroup of Gα, we have [Qα, Zα−2] ≤ [Zα′−2Qα−2, Zα−2] = [Zα′−2, Zα−2]
and condition (d) of Lemma 5.15 of Chapter III applies.

The idea now is to “reflect” the “path” (α− 2, . . . , α′) around α− 2 and
to consider the view from within the resulting long “path”.

As (α − 2, α′ − 2) is a critical path, Zα′−2 covers a Sylow 2-subgroup
of Gα−2/Qα−2 and thus we may choose an element t ∈ Gα−2 such that
Gα−2 = ⟨Zα′−2, Z

t
α′−2⟩Qα−2. We consider the sequence of vertices

((α′ − 2)t, (α′ − 4)t, . . . , αt, α− 2, α, . . . , α′ − 2)

in which α − 2 is the central point, and only the even terms, as indicated,
play any real role.

(2) Vα ≤ G(α′−2)t .

We check first that

Vα ≤ G(α′−6)t

For g ∈ Gα we have d(α, (α − 2)g) ≤ 2, and d(α − 2, (α′ − 6)t) = d(α −
2, α′ − 6) ≤ b − 4. Thus d((α − 2)g, (α′ − 6)t) ≤ b. So Z(α−2)g ≤ G(α′−6)t

and Vα ≤ G(α′−6)t .
Now suppose toward a contradiction that Vα ̸≤ G(α′−2)t . Then Vα ̸≤

Q(α′−4)t . Thus we may fix i, i = 4 or 6, so that Vα ≤ G(α′−i)t while
Vα ̸≤ Q(α′−i)t . The two possibilities can be analyzed to some extent simul-
taneously.

We fix β ∈ (α− 2)Gα ∪ {α} such that Zβ ̸≤ Q(α′−i)t ; and we take β = α
if possible. Set R = [Zβ, Z(α′−i)t ].

As Zβ ≤ G(α′−i)t , we have R ≤ Z(α′−i)t . As d((α
′− i)t, (α′−2)t) ≤ 4 < b

we have [R,Z(α′−2)t ] ≤ [Z(α′−i)t , Z(α′−2)t ] = 1. Thus R centralizes Z(α′−2)t .

Now d((α′− i)t, α) ≤ (b− i)+4 ≤ b so Z(α′−i)t ≤ Gα and thus Z(α′−i)t ≤
O2(Gα−1). In particular R ≤ O2(Gα−1).

We now consider two cases separately:

(Case 1) Z(α′−i)t ≤ Qα.

Then R = [Zβ, Z(α′−i)t ] ≤ [Vα, Qα] ≤ Z(Gα) by (1). By the choice
of t, Gα−2 = ⟨Gα−2 ∩ Gα, Z(α′−2)t⟩ and thus R ≤ Z(Gα−2) as well. As

β ∈ (α− 2)Gα ∪ {α}, we have R ≤ Z(Gβ).
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On the other hand we have Z(α′−i)t ≤ Qα ≤ Gβ acting nontrivially

on Zβ. As Z̄β = Zβ/CZβ
(Gβ) is a natural module for Ḡβ = Gβ/Qβ, the

commutator R is nontrivial in Z̄β, and thus R ̸≤ Z(Gβ), a contradiction.

Now suppose:
(Case 2) Z(α′−i)t ̸≤ Qα.

As d((α′−i)t, α) ≤ (b−i)+4 we conclude that i = 4 and that (α, (α′−i)t)
is a critical pair. Hence β = α.

Now R = [Zα, Z(α′−i)t ] ≤ [Vα−2, Qα−2] ≤ Z(Gα−2) by (1).

We have Gα ≤ ⟨O2(Gα−1), Zα′⟩ and hence Gαt ≤ ⟨O2(Gα−1)
t, Z(α′)t⟩

But R centralizes Gα−2, hence O2(Gα−1)
t, and d((α′ − 4)t, α′t) = 4 < b,

so R ≤ Z(α′−4)t ≤ Qα′t and [R,Zα′t ] = 1. Thus R centralizes Gαt and as

t centralizes R, we have R ≤ Z(Gα) as well. But Z̄α = Zα/CZα(Gα) is
a natural module for Gα/Qα, and R̄ = [Z̄α, Z(α′−i)t ] with Z(α′−i)t acting
nontrivially, a contradiction.

(3) Vα, Zα−2Zα, and Qα ∩Qα−2 are normal in Gα−2.

Zα−2Q(α′−2)t is a Sylow 2-subgroup of G(α′−2)t as (α − 2, α′ − 2) is a
critical pair; but this is a subgroup of VαQ(α′−2)t which is a 2-group by
point (2). Hence Vα ≤ Zα−2Q(α′−2)t .

Gα−2 is generated by Gα−2 ∩Gα and Z(α′−2)t .
Now Gα normalizes Vα and [Vα, Z(α′−2)t ] ≤ [Zα−2Q(α′−2)t , Z(α′−2)t ] ≤

Zα−2 ≤ Vα. Thus Vα is normal in Gα−2.
Again, Gα−2 ∩ Gα normalizes Zα−2Zα and by the calculation of the

previous paragraph [Z(α′−2)t , ZαZα−2] ≤ [Z(α′−2)t , Vα] ≤ Zα−2 so Z(α′−2)t

also normalizes Zα−2Zα. Thus Zα−2Zα is normal in Gα−2.
Finally, Qα−2 ∩Qα = CGα−2(ZαZα−2).

(4) Qα ∩Qα−2 ◁ Gα.

Let X be the normal closure of Qα−2 ∩ Qα in Gα. Then X ≤ Qα and
our claim is that X ≤ Qα−2.

Let Y = [Vα, Qα∩Qα−2]. By (1) Y is central in Gα and thus Y = [Vα, X]
as well.

Since Y is central in Gα it centralizes a Sylow 2-subgroup of Gα−2. But
Y is normal in Gα−2 by (3), so Y is central in Gα−2. Thus [Zα−2, X] ≤
[Vα, X] ≤ Z(Gα−2). As Z̄α=2 = Zα−2/CZα−2(Gα−2) is a natural module
and [Z̄α−2, X] = 0, we find X ≤ Qα−2 as claimed.

The final contradiction is derived as follows. As α−1 is conjugate under
Gα to α + 1, (α − 2) is conjugate under Gα to a neighbor λ of α + 1.
Suppose λ = (α − 2)g with g ∈ Gα. As d(λ, α′ − 2) < b, we have Zα′−2 ≤
Qα ∩ Qλ = (Qα ∩ Qα−2)

g = Qα ∩ Qα−2 by (4). Then [Zα′−2, Zα−2] = 1,
while (α− 2, α′ − 2) is a critical pair, a contradiction. □
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Proposition 5.17. [169, 3.3] b ̸= 4.

Proof. Suppose toward a contradiction that b = 4. Fix a critical pair
(α, α′). Choose α − 2, and then α − 4, in accordance with Lemma 5.15 of
Chapter III so that d(α, α − 2) = d(α − 2, α − 4) = 2 and (α − 4, α) and
(α− 2, α+ 2) are critical pairs.

(1) Zα = (Zα ∩ Zα+2)[Zα, Zα−4]

This reflects the fact that the module Z̄α = Zα/CZα(Gα) is a natu-
ral module. Zα−4 covers a Sylow 2-subgroup of Gα/Qα so [Zα−4, Z̄α] is
a 1-dimensional subspace of this module, and similarly [Zα′ , Z̄α] is a 1-
dimensional subspace. As Zα′ and Zα−4 generate Gα modulo Qα, by Lemma
5.15 of Chapter III(b), we find Z̄α = [Zα−4, Z̄α]⊕ [Zα′ , Z̄α].

As the commutator [Zα′ , Zα] ≤ Zα′ ∩Zα centralizes Zα′Qα = O2(Gα+1),
we have [Zα′ , Zα] ≤ Zα ∩ Zα+2, and (1) follows.

We introduce the following additional notation.

U = ZαZα−2Zα+2; D̃ = Qα−4 ∩Qα−2 ∩Qα ∩Qα+2 ∩Qα′

We observe that U is a subgroup with U ′ = [Zα−2, Zα+2] ̸= 1, as Zα cen-
tralizes all three factors and [Zα−2, Zα+2] ≤ Zα−2 ∩ Zα+2, since b = 4.

(2) Qα = D̃ ∗ U .

This is similar to the proof of point (4) in Proposition 5.12 of Chapter
III. As Zα−2 ≤ Qα ≤ O2(Gα+1) = Zα−2Qα+2 we find Qα = Zα−2(Qα ∩
Qα+2). Similarly using successively Qα ∩ Qα+2 ≤ O2(Gα+3) = ZαQα′ and
Qα ∩Qα+2 ∩Qα′ ≤ O2(Gα−1) = Zα+2Qα−2 we find Qα ≤ U · (Qα−2 ∩Qα ∩
Qα+2 ∩Qα′).

For the final step, Qα−2 ∩ Qα ∩ Qα+2 ∩ Qα′ ≤ O2(Gα−3) = ZαQα−4 =
(Zα ∩ Zα+2)Qα−4, using (1), and as Zα ∩ Zα+2 ≤ Qα−2 ∩Qα ∩Qα+2 ∩Qα′ ,

we find Qα = U · D̃, and the two factors evidently commute.

(3) UZ(Gα) ◁ Gα.

Set
F = ⟨Zα−4, Zα′⟩

By Lemma 5.15 of Chapter III(b), Gα = FQα. By (2) [U,Qα] ≤ U so it
remains to be seen that [F,U ] ≤ UZ(Gα).

Let U0 = U [U,F ]. Then U0 = U(U0 ∩ D̃). Now U0 ∩ D̃ commutes with

D̃, since U0 does, and with U , since D̃ does, and thus with Qα. Furthermore
U0 ∩ D̃ commutes with F , since D̃ does. So U0 ∩ D̃ ≤ Z(Gα), and [F,U ] ≤
U0 ≤ UZ(Gα), as desired. Thus (3) holds.

(4) Ū = UZ◦(Gα)/ZαZ
◦(Gα) is a nontrivial Gα/Qα-module.

Point (3) implies that Gα/Qα acts on Ū . It remains to show that this
action is nontrivial.

If (α−1)g = α+1 we will show that g acts nontrivially. Let λ = (α−2)g.
Then d(λ, α + 2) ≤ 2 and hence [Zλ, Zα+2] = 1. As [Zα−2, Zα+2] ̸= 1 it
follows easily that the action of g on Ū is nontrivial.
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(5) Zα′ acts quadratically on Ū .

Ū = Z̄α−2Z̄α+2 where the bar refers to factoring out ZαZ
◦(Gα). As Zα′

centralizes Zα+2 it suffices to consider the action on Z̄α−2.
Now [Zα−2, Zα′ ] ≤ Qα+2. As Qα+2 ≤ O2(Gα′−1) = ZαQα′ , we have

[Qα+2, Zα′ ] ≤ [Zα, Zα′ ] ≤ Zα. Thus [Zα−2, Zα′ , Zα′ ] ≤ Zα and (5) follows.

(6) Ū is a natural module for F/CF (Ū).

Here F = ⟨Zα−4, Zα′⟩ as in (3). As Qα acts trivially on Ū and FQα =
Gα, F/CF (Ū) ≃ Gα/Qα is of type SL2.

We apply Proposition 5.33 of Chapter II with G = F/CF (Ū) and T =
Zα′ . In view of point (5), we need only check that rk(Ū/CŪ (Zα′)) ≤ rk(Zα′),
which is clear, to conclude that Ū/CŪ (F ) is a natural module. But rk(Ū) ≤
2f where f is the rank of the base field, so Ū must itself be a natural module.

(7) Z◦(Gα) ≤ Zα.

We know Z◦(Gα) ≤ Qα. We need to show that Z◦(Gα) is elementary
abelian. Let S = O2(Gα+1) = Zα′Qα. It suffices to show that Z◦(S) is
elementary abelian.

Z(S) ≤ Qα and U ∩ D̃ ≤ Z(Gα) so Z(S) = [Z(S)∩U ] ∗ [Z(S)∩ D̃]. By
(6) rk(Ū) = rk(Z̄α−2)+rk(Z̄α+2), so [U ∩Z(Gα)]

◦ ≤ Zα. Hence Φ(Z
◦(S)) ≤

Z(D̃) ≤ Z(Gα). Our original hypothesis (P ) forces Φ(Z◦(S)) = 1 and (7)
follows.

After these preparations we reach a contradiction as follows. By (7)
the action of Gα on Ū is induced by an action on U . By (6) this action
is transitive on (Ū)×. If u ∈ U \ Zα is an involution, then the class uZα

consists entirely of involutions. By transitivity of the action, U is elementary
abelian. But U ′ ̸= 1.

This contradiction shows that b ̸= 4. □

Proof of Theorem 5.3 of Chapter III. Lemma 5.8 of Chapter III,
Corollary 5.13 of Chapter III, and Propositions 5.16 of Chapter III and 5.17
of Chapter III yield the result. □

6. Generalized n-gons

In the present section we take up the theory of generalized n-gons insofar
as it relates to the identification of simple groups of finite Morley rank. In
the next section we will pass to the more general context of Tits’ buildings,
and the related topic of (B,N)-pairs.

Tits’ work on the classification of buildings provides a powerful tool for
the identification of simple groups. Buildings are very symmetrical com-
binatorial geometries which are intimately connected with the theory of
Coxeter groups, and every algebraic group acts on an associated building
which encapsulates the relations among its parabolic subgroups. So a nat-
ural strategy in group theoretic classification problems is to reconstruct the
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building from the group theoretic data, and then use Tits’ classification to
conclude.

Tits’ classification includes, and is modeled on, the classification of pro-
jective spaces via coordinatization. As is well known, this works well in
dimension three or greater, where Desargues’ theorem can be proved from
the combinatorial axioms, and is meaningless in dimension one, where the
geometry is just a set of points. In dimension two the matter is more subtle,
and the semi-classical notion of a “Moufang plane” has been generalized by
Tits to “Moufang buildings” generally. He in fact classifies the Moufang
buildings with a finite Coxeter group of rank at least two, and along the
way proves the fundamental fact that buildings with a finite Coxeter group
of rank at least three are always Moufang (a result of considerable depth,
proved in [177] and again in [187]).

In the case of rank two, Tits’ buildings are essentially the same thing
as generalized polygons (up to duality), and can be described by axioms
closely parallel to the case of projective planes (which are generalized trian-
gles in Tits’ sense). This case is of considerable importance to us, as these
buildings correspond to groups of Lie rank two, which are parallel to the
quasithin groups in the finite simple case, a class which tends to require spe-
cial methods for classification, being a bit too small for the generic methods,
and at the same time having some nontrivial internal structure that requires
analysis in its own right.

We will eventually show, using the “amalgam method”, that our qu-
asithin groups are associated with Moufang generalized polygons, so that
the known classification theorems apply. Note however that this method
of identifying groups, while it ends in some sense rapidly, in fact invokes a
very large body of material, found in [179]. As has been remarked in the
finite case, by the time one gets within reach of such general classification
results one has accumulated a very considerable body of additional infor-
mation, from which it may be possible in principle to obtain generators and
relations for the original group by a direct analysis. On the other hand, we
are interested only in the classification of Moufang polygons of finite Morley
rank, and the classification in this special case would not be so very long,
though it would necessarily follow the general lines of the full classification.

6.1. Definitions. A (rank 2) combinatorial geometry is a structure
(P,L; I) where P and L are disjoint sets and I ⊆ P×L is called the incidence
relation. As a rule the elements of P are called points, and the elements of
L are called lines or blocks. The associated incidence graph is the graph on
the set of vertices P ∪ L in which edges represent incident pairs. There is
at least one difference between a combinatorial geometry and its incidence
graph: interchanging P and L gives a new geometry, the dual of the original,
but leaves the incidence graph unaffected.

A generalized n-gon may be defined as a combinatorial geometry for
which the associated incidence graph is connected of diameter n and girth



6. GENERALIZED n-GONS 215

2n and every vertex has at least three neighbors. Here the girth is the length
of the shortest cycle. An ordinary n-gon is a combinatorial geometry whose
associated incidence graph is a circuit of length 2n. It may be observed
that such a geometry does indeed have the essential properties of an n-gon,
consisting of n distinct vertices connected cyclically by n distinct lines.

In the case n = 3, the axioms for a generalized triangle decode to give
the axioms for projective planes. As the incidence graph is bipartite, if the
diameter is three then two distinct elements of the same kind lie at distance
two precisely, or in geometrical terms two points lie on a line, two lines
contain a common point. The absence of cycles of length 4 signifies that the
line or point in question is unique. (We should also require a minimum of
three points per line to have a projective plane in the usual sense—otherwise
what we have is an ordinary triangle.)

The axioms for generalized n-gons may be decoded similarly, and may
be expressed in a variety of ways (cf. [136, §1.2]).

As is well known in the case of generalized triangles (projective planes),
there is an extensive coordinatization theory, and the class of projective
planes associated with division rings is characterized by the Desargues ax-
iom concerning triangles in perspective, while commutativity corresponds to
the Pappus axiom; cf. [111] for a thorough account of the coordinatization
theory in general, or [136] for a review of the essentials special cases relevant
here.

A broader class of projective planes is relevant here: the so-called Mo-
ufang planes. These turn out to be the planes coordinatized by alternative
division rings; they may be characterized in geometrical terms as those satis-
fying the Little Desargues theorem, and this is the essential content of [137].
(See [179, p. 176] for a more precise account of the history, worked out by
H. van Maldeghem.)

A third characterization is more important here, because it furnishes a
notion useful for generalized n-gons for any n. This goes as follows.

6.2. Moufang generalized n-gons. If Γ is a generalized n-gon, and
v a point or line of Γ, then ∆(v) (or ∆Γ(v), if we need to be more explicit)
denotes the set of neighbors of v in the incidence graph of Γ. More generally
let ∆(X) =

⋃
v∈X ∆(v).

Definition 6.1. Let γ = (x0, . . . , xn) be a path of length n in the gen-
eralized n-gon Γ, with n ≥ 3.

(1) An automorphism of Γ is called a γ-elation if it fixes the neighbors
of each xi for 1 ≤ i ≤ n − 1 pointwise (in particular, it fixes γ
pointwise).

(2) Uγ denotes the group of γ-elations; this group is called the root
group associated with γ.

(3) The generalized n-gon Γ is said to be Moufang if for every such path
γ, the root group Uγ acts transitively on ∆(xn)\{xn−1} (hence also,
by reversing the path, a similar condition applies at x0).
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The transitivity condition (3) may be expressed in another way. An
apartment in a generalized n-gon Γ is simply an ordinary n-gon contained in
Γ. It can be shown that every path of length n+1 lies in a unique apartment,
and hence the transitivity condition can be expressed also as follows: if
γ′ = (x0, . . . , xn) and γ = (x1, . . . , xn−1), then U(γ) acts transitively on the
set of apartments containing γ′ = (x0, x1, . . . , xn)

We will see later that in using the amalgam method (Chapter IX) we
arrive naturally at the Moufang condition (what is much harder to achieve
in that context is the verification of the basic axioms for generalized n-gons),
with the relevant root group actually being a root group in a copy of the
group SL2.

The monumental classification of all Moufang generalized n-gons is given
in [179], with the principle difficulties arising for n = 4.

From this point onward, to lighten the terminology, we use the term
“n-gon” or “polygon” in the sense of “generalized n-gon”. Since ordinary
n-gons are not n-gons in this sense, it is preferable to refer to them as
“apartments”.

6.3. Moufang n-gons. Our objective is the following.

Theorem 6.2 ([126]). If Γ is an infinite Moufang polygon of finite Mor-
ley rank, then Γ is either the projective plane, the symplectic quadrangle, or
the split Cayley hexagon over an algebraically closed field.

We describe these three examples (or rather, specific representations of
them) briefly. For the projective plane, as usual one takes a three dimen-
sional vector space V , and one considers the subspaces of V of dimensions
one and two respectively as the points and lines of a geometry, with inci-
dence being containment. For the symplectic quadrangle one begins with a
four dimensional space V equipped with a nondegenerate symplectic form
((x, x) = 0 identically); points are again one dimensional subspaces and lines
are now totally isotropic planes, that is subspaces of dimension two on which
the induced form is trivial. The axioms for a quadrangle (4-gon) are readily
verified.

The split Cayley hexagon is more subtle and less familiar. One begins
with an eight dimensional space V carrying a nondegenerate quadratic form
q of Witt index four. The associated quadric hypersurface defined by q(v) =
0 can be viewed as living in the associated seven dimensional projective space
P (V ), and by assumption contains three dimensional linear subspaces. One
may then introduce a certain trilinear form T : V × V × V → K (with K
the base field) related to the quadratic form q, in such a way that for fixed
v ∈ V − {0} the set of those w ∈ V for which the form T (v, w, x) vanishes
identically in x is a four dimensional totally isotropic q-space, or in other
words represents a three dimensional projective subspace of the associated
quadric. The same condition—T (v, w, x) vanishing—provides an incidence
relation which allows us to consider the points of P (V ) as representing both
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points and lines in an associated combinatorial geometry, which turns out
to be a generalized hexagon. For details, see [136, §2.4.6]. The description
in [179, Example 15.20, E = F ] is less geometrical.

The projective planes, symplectic quadrangles, and split Cayley hexagons
over arbitrary (but commutative) fields are referred to collectively as Pap-
pian polygons in [136]. These Pappian n-gons all have the property that
the root groups can be identified naturally with the base field, and, in par-
ticular, in the finite Morley rank context the root groups all have the same
Morley rank. The latter property will in fact already be known before the
classification theorem is applied in Chapter IX, and could be used to reduce
considerably the number of cases which need to be considered in the proof.

Other simplifications are also possible in the specific context of Chapter
IX. We will also know a priori that the value of n is 3, 4, or 6; this infor-
mation is obtained prior to the actual construction of the associated n-gon
we consider, and is used in that construction. Furthermore, all of our poly-
gons will be interpreted in groups, and in these groups the field structure
on the root groups will already be visible, so issues of coordinatization or
interpretability also trivialize.

We now discuss the proof of Theorem 6.2 of Chapter III. One begins
with the full classification of Moufang n-gons. Moufang n-gons exist only
for n = 3, 4, 6, or 8 by a theorem of Tits; this can be proved by passing to
the universal cover of the incidence graph, which is a tree, and studying the
situation there ([186], [136, 5.3.3]).

In general, it can be shown directly that the root groups Uγ , together
with their actions on the polygon, are uniformly interpretable in the polygon
itself, from the parameter γ; cf. [126, 3.2]. The group generated by all root
subgroups is called the little projective group. For each d, the subset Gd of
elements expressible as a product of at most d elations, together with its
action on the polygon, is interpretable in the polygon.

Using the classification, one proceeds to consider Moufang projective
planes, quadrangles, hexagons, and octagons individually.

For the case of projective planes one uses the coordinatization by alterna-
tive division rings [111], and Proposition 4.27 of Chapter I. The relationship
between the older geometric notion of Moufang plane and the current def-
inition in terms of root groups is covered by [111]; this point goes back to
[146].

Quadrangles are more complicated, and will be left to the next subsec-
tion.

In the case of Moufang hexagons, one studies the commutation relation
on a fixed sequence of six successive root subgroups, as described in [136,
5.5.13]. In particular it is shown that one of these root subgroups carries
the structure of a field K, and another that of a vector space V over K,
equipped with a quadratic mapping from V to GL(V ), all interpretable
directly in terms of the actions of the root subgroups (or somewhat less:
the structure of Gd with d small). This is shown to give rise to a quadratic
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Jordan algebra structure on V . There are six cases [136, p. 222], [179,
p. 148]; we will follow the latter listing, where however the base field is
called F and K denotes a possible extension field; but we continue to refer
to the base field here as K.

One possibility is V = K (which falls within type 1/F ), correspond-
ing to the split Cayley hexagon, as expected. Other possibilities included
under type 1/F involve nontrivial algebraic extensions of K, hence are ex-
cluded. The remaining constructions, all given explicitly in [179], involve
proper finite dimensional field or division ring extensions of K, and hence
are excluded since K is algebraically closed.

We note that it seems hard to avoid this line of argument even in the
context of Chapter IX, as the various cases envisaged appear to be consis-
tent with the group information obtained there, until the fact that K is
algebraically closed is invoked.

Moufang octagons are less numerous and are associated with Suzuki
groups. In particular they involve a field K of characteristic two and a field
automorphism whose square is the Frobenius. This structure is visible in the
root groups (see [136, 5.5.18] or [179, 16.9]) and hence the field in question
must be definable, hence algebraically closed, and no such automorphism
exists.

6.4. The case of quadrangles. We note that the analysis in Chapter
IX which makes use of the present section involves quadrangles in which,
among other things, the ranks of the two classes of root groups are equal,
and all root groups are abelian. Restricting to this case would eliminate
most of what follows.

In any case, the full classification of Moufang quadrangles in [179] is
completely explicit, always involving fields or division rings and some re-
lated subgroups and/or vector spaces, and relying on algebraic extensions,
imperfection, or anisotropic forms (or pseudoforms, see below). None of
these objects exist over algebraically closed fields, and over finite fields they
are finite (though one must check the definitions to verify this latter point,
as not everything is assumed to be finite dimensional). However, this obser-
vation does not suffice to read off the classification of Moufang quadrangles
of finite Morley rank, because the constructions give an interpretation of
the Moufang polygon in the associated structure, but not (immediately) the
converse. Implicitly, the classification theorem itself amounts among other
things to an interpretation of the auxiliary structures in the polygons, but
it would be tedious in the extreme to follow this through (and in case 16.4
of [179], it is not literally true; only approximations to the ambient field K
are definable in general).

In fact the situation can be handled very efficiently. Each Moufang
polygon is characterized by commutation relations involving the root groups,
and from this one can read off an explicit structure bi-interpretable with the
Moufang polygon. In some cases, however, the root groups themselves have



6. GENERALIZED n-GONS 219

a composite structure (see the examples below), and hence the structure
associated naturally with the commutation relations does not contain the
field structure in an explicit form, and it is necessary to extract it. This can
be done easily in all cases, and we follow this route below. There is a certain
inefficiency in this procedure, because in reality it suffices to treat three of
the six classes of Moufang quadrangles; the three more complicated classes
all contain Moufang quadrangles of a simpler kind as definable subpolygons,
and hence the field interpretation can be derived indirectly without close
examination of the data.

The six types of Moufang polygon are listed in [179, p. 165, Fig. 3] and
are described in paragraphs 16.2-16.7 of that source.

In case 16.2 of [179], the quadrangle is constructed from an involutory set
(K,K0, σ) (cf. §4.5 of Chapter I) in which K and K0 can be identified with
adjacent root groups, and the commutator relation between these two root
groups includes a component involving the multiplication map from K0×K
to K (living in three different root groups, which can however be definably
identified with subgroups of one copy of K). Hence we can interpret into the
polygon the structure consisting of the additive group of K together with
the subgroup K0 and the restriction of the multiplication map to K0 ×K.
In this case Lemma 4.29 of Chapter I shows that σ is trivial and K is an
algebraically closed field interpretable in the polygon. But in an involutory
set, K0 contains aσa for a ∈ K, hence in the present case K0 = K and we
have the desired class of quadrangles.

In case 16.3 the construction involves a quadratic space (K,V, q) where
q is an anisotropic quadratic K-form defined on V , where V is not assumed
to be finite dimensional. Using the commutator relations on the root groups
we may interpret this structure in our polygon, where we have the two sets
K and V , the quadratic form, and the action of K on V , as well as the
additive structure on each set. But from the action of K on V we at once
have also the field structure on K, which is then algebraically closed. As
the form is anisotropic it then follows that V is one dimensional. At this
point the definitions degenerate and we have the same quadrangles as in the
previous case.

In case 16.4, the construction involves a field K of characteristic two,
together with two additive subgroups K0 and L0, satisfying

(1) K2
0L0 ⊆ L0, K0L0 ⊆ K0

(2) K0 generates K as a ring.

Here the root groups correspond toK0 and L0, and the commutator relations
allow us to interpret the two multiplication maps

K0 × L0 → K0,K
2
0 × L0 → L0

in the polygon. When this structure has finite Morley rank, it follows readily
that the ranks and degrees of K0, K

2
0 , and L0 all coincide, and that the

indicated multiplication maps are bijections. In particular K0 and L0 both
contain the element 1, and hence L0 = K0 and K0 is a ring. Hence K0 = K.
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We note here that the definability of K depends strongly on our model
theoretic assumption.

At this point one can either treat the remaining cases, 16.5, 16.6, and
16.7, or use the fact that such examples involve examples of the kind already
analyzed as definable subpolygons. We indicate both lines of argument. We
note that the last two types are considerably more complicated to construct,
though not much more trouble to deconstruct (that is, to recover the un-
derlying field structure definably).

We begin with the analysis involving a reduction to the cases already
considered. We use the more explicit form of the classification theorem
given at the beginning of Chapter 21 of [179]. The Moufang quadrangles
are of three kinds, called indifferent, reduced, and wide [179, 21.2]; we have
considered the indifferent and reduced above, and in the wide case, every
such quadrangle Γ is an extension of a reduced polygon Ω in the following
sense (or rather, in a stronger sense).

(1) Ω contains an apartment of Γ
(2) The root subgroups of Ω are definable subgroups of the root sub-

groups of Γ (in one case coinciding with the original root sub-
groups), and they act faithfully on Ω.

Note then that the associated data we use (root subgroups, commutator
relations) are all interpretable in the original polygon. Hence the analysis
above forces these reduced quadrangles to be orthogonal or symplectic over
an algebraically closed field.

The relevant results are given as 21.8-21.12 in [179]. The reduced quad-
rangles fall under cases 16.2 and 16.3, where in the former case we may
suppose σ is nontrivial. The indifferent quadrangles fall under case 16.4,
and as noted the wide cases are extensions of reduced cases.

As we have treated cases 16.2 to 16.4, and the cases of 16.2 with σ ̸=
1 do not arise, this leaves us with extensions of quadrangles of type 16.3
where the quadratic space involved is one dimensional. There are three
cases [179, 21.12], all involving quadratic spaces of dimension greater than
one: either V carries a division ring structure, and is a proper extension ofK
of finite dimension, or V is a quadratic space associated with quadrangles
of exceptional types (E6, E7, E8 or R4). In the Ei cases, the dimensions
involved are respectively 6, 8, and 12, and not in any case 1. In the F4 case,
the dimension is at least 5, by definition [179, 14.1]. So this eliminates all
cases.

We now take note of a second approach in each of the remaining cases,
continuing directly along the lines of those used for cases 16.2, 16.3, and
16.4.

In case 16.5, the construction involves an anisotropic pseudo-quadratic
space (K,K0, V, σ, q). For the most part it is not necessary to go into the
details, as it will suffice to exploit the structure of the field K.
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In the associated polygon, one family of root groups may be identified
with the additive group of the field K, and the other with a slightly more
complicated group whose underlying set is T = V × K. The structure of
T is irrelevant here: the commutation conditions include a function from
T ×K to K corresponding to multiplication in K:

(v, a)× b 7→ ab

With b = 1 this allows us to treat the set K as a definable quotient of T ,
and then to recover the multiplication on K. Hence K has finite Morley
rank. In particular K is a field, either finite or algebraically closed, and σ
becomes an automorphism of K of order at most two; either σ is trivial or
K is finite. To complete the analysis one needs to look into the definitions,
notably the notion of an anisotropic pseudoquadratic form. So we now give
the rest of the description of this case.

Here (K,K0, σ) is an involutory set, V is a right vector space over K,
and q is a pseudoquadratic form on V with respect to K and σ. The latter
condition means the following.

(1) There is a σ-skew hermitian bilinear form (a, b) on V such that
q(u+ v)− q(u)− q(v) ∈ (u, v) +K0 for all u, v ∈ V ;

(2) q(vt) ∈ tσq(v)t+K0 for t ∈ K, v ∈ V .

The form q is also anisotropic in the sense that q(v) /∈ K0 for v ̸= 0.
When σ is trivial then the definition of involutory set implies that K0

contains K2 and hence in all relevant cases K0 = K and there are no
anisotropic forms. When σ is nontrivial, the field K is finite and K0 is
its fixed field. Then again as q is anisotropic, V is finite as well.

In case 16.6, the construction involves a triple (K,V, q) where K is a
field, V a vector space over K of dimension 6, 8, or 12, and q an anisotropic
quadratic form of a very specific type on V . One family of root groups can be
identified with the additive group of V , and the other has a more complicated
structure, whose underlying set S = X0 × K involves an auxiliary finite
dimensional vector space X0 whose structure is inessential at this point.
Among the maps recoverable from the commutator relations there is one of
the form

f : V × V → {0} ×K ≤ S

which corresponds to the bilinear form V × V → K associated to q. In
particular the image of this map yields a copy of the additive group of K.
As noted in [179, 12.12], the definitions (which we have omitted) force the
associated bilinear form to be nondegenerate, so we may easily restrict f to
a pair of 1-dimensional spaces which are nonorthogonal. At this point we
can recover the multiplication on K from f , and it follows that either K and
V are finite, or K is algebraically closed. However there are no examples for
K algebraically closed (V would be at most 1-dimensional).

Essentially the same argument works in case 16.7, though in this case
neither root group is entirely straightforward. The construction involves
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a highly degenerate quadratic form (K,V, q), on a not necessarily finite
dimensional space. The root groups are parametrized by the sets A = X0×K
and B =W0 ×F with F = q(V ) a subfield of K. Here W0 is a vector space
of dimension 4 over K equipped with a specific quadratic form arising from
a norm on a quadratic extension of K. Among the data recoverable from
the commutation relations is a map

ϕ : B ×B → {0} ×K

corresponding to the (nondegenerate) bilinear form on W0 associated with
its quadratic form f(w,w′), that is

ϕ((w, a), (w′, a′)) = (0, f(w,w′))

From this one recovers W0 as a definable quotient of B and then the multi-
plication on K.

6.5. Groups acting on n-gons.

Proposition 6.3 ([126]). Let G∗ be a group of finite Morley rank acting
faithfully and definably as a group of automorphisms on a Moufang polygon
Γ, and containing the little projective group of Aut(Γ). Then G∗ is a Cheval-
ley group of Lie rank two over some algebraically closed field.

Proof. The little projective group G is by definition the group of au-
tomorphisms generated by the root subgroups, and in these classical cases
is a Chevalley group of Lie rank two; the full automorphism group of the
n-gon is the extension of this group by Aut(K), where K is the underlying
field ([177, 5.10]). As these groups are finite products of root subgroups, the
group G is a definable subgroup of G∗. As G acts transitively on the points,
its centralizer in G∗ is trivial and thus G∗ induces a group of definable au-
tomorphisms of G; by Fact 2.25 of Chapter II this is an extension of G by
at most a graph automorphism. But a graph automorphism interchanges a
point and line stabilizer, so cannot act on Γ. □

6.6. Groups acting on graphs. In conjunction with the amalgam
method in Chapter IX, we will need a result from [83] concerning the uni-
versal cover of a generalized n-gon on which a group acts subject to certain
conditions. This will be needed in §9 of Chapter IX, and will be more
transparent in that context.

Our setting is as follows (cf. [83, p. 73]).

Hypothesis 6.1. Γ is a tree, and G is a group of automorphisms of Γ
with the following properties.

(1) G operates faithfully and edge transitively, but not vertex transi-
tively, on Γ.

(2) The vertex stabilizers Gδ have finite Morley rank for each δ.
(3) CGδ

(O2(Gδ)) ≤ O2(Gδ) for each vertex δ.
(4) For α, β adjacent vertices, Gα,β contains a Sylow 2-subgroup of Gα

and Gβ.
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Of course, Delgado and Stellmacher assume the vertex stabilizers are
actually finite. There is a difference in the two settings, and we will explain
this before resuming our account of their theory.

Notation 6.4. With the hypotheses as above, let δ be a vertex of Γ, and
k ≥ 0.

(1) ∆k(δ) is the set of vertices within distance k of δ.
(2) Gk(δ) is the set of elements of G which are products of at most k

elements of G, with each element stabilizing some vertex in ∆k(δ).

Now if the vertex stabilizers are finite, then the sets Gk(δ) are finite, and
this happens in particular if Γ is obtained as the universal cover of a graph
associated with a finite group. The analog for finite Morley rank is slightly
different, and requires a further definition.

Definition 6.5. With G,Γ as above, we say that G is locally of finite
Morley rank if Gk(δ) has finite Morley rank for all vertices δ and all k,
where this structure carries a partial group operation as well as a partial
action on ∆k(δ).

We do not claim that this condition follows from the corresponding con-
dition on vertex stabilizers (the case k = 0), but it is this condition which
will matter ultimately.

After these preliminaries we return to the algebraic development.

Definition 6.6. Let α, β be adjacent vertices in Γ.

(1) A Cartan subgroup of Gα ∩Gβ is a subgroup K whose normalizer
contains elements tα, tβ not in (Gα ∩Gβ) with t

2
α, t

2
β ∈ K.

(2) We associate to a Cartan subgroup the Weyl group W defined as
⟨tα, tβ⟩K/K ≤ N(K)/K.

This definition is very weak (but adequate); it does not force K to be
nontrivial, and there is no conjugacy theorem.

Definition 6.7. Suppose that α, β are adjacent vertices in Γ and K is
a Cartan subgroup of Gα,β with associated Weyl group W . Then the graph

induced on the set αW ∪ βW is called the associated apartment.

The following is elementary, but clearly depends on the hypothesis that
Γ is a tree.

Lemma 6.8 ([83, 3.5, p. 75]). If T is the apartment associated to a pair
α, β and a Cartan subgroup K as above, then T is a 2-way infinite path
whose vertices are fixed by K. Furthermore, for every vertex δ of T , the
reflection of T about δ is induced by some element of W .

Definition 6.9. Let T be an apartment in Γ, and s a positive integer.

(1) T satisfies the uniqueness condition if every path of length s in Γ
is contained in a unique G-conjugate of T .
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(2) T satisfies the exchange condition at δ ∈ T if for every pair of paths
γ−, γ+ contained in T of length s− 1, with right and left endpoint
respectively equal to δ, and for every x ∈ Gγ+, there is y ∈ Gγ− so

that xy carries γ− to γ+.
(3) T satisfies the exchange condition if it satisfies this condition with

respect to each of its vertices.

Here finally is the key result.

Proposition 6.10 ([83, 3.6, p. 77]). With G and Γ satisfying the hy-
potheses above, let T be an apartment and suppose that it satisfies the unique-
ness and exchange conditions. Then there is a G-invariant equivalence rela-
tion on T such that the corresponding quotient Γ̃ of Γ is a generalized n-gon,
and such that the kernel of the action of G on Γ̃ is disjoint from the vertex
stabilizers Gδ in Γ. Furthermore, if G is locally of finite Morley rank on Γ,
then the induced automorphism group G/GΓ̃ has finite Morley rank.

The last statement of course varies considerably from that in [83], and
has a slightly different proof. They show that if the vertex stabilizers are
finite, the quotient group is finite. The corresponding statement for finite
Morley rank requires slightly more attention, as it involves issues of defin-
ability. We will give some elements of the proof, but omit the issues treated
explicitly in [83].

Proof. Write δ1 ∼ δ2 if the vertices in question lie at distance 2(s −
1), and the path between them lies in a conjugate of T . Let ≈ be the
equivalence relation generated by the relation ∼. This is G-invariant, and
in the quotient Γ̃ we take two equivalence classes to be adjacent if they have
adjacent representatives.

For the (efficient and rapid) verification of the axioms for a generalized
n-gon we refer to [83]. We turn to the last statement.

The point here is that the graph Γ̃ has finite diameter, and even more:
for δ any vertex of Γ, the extended neighborhood ∆s−1(δ) contains a set of
representatives for the quotient. This is an explicit and important part of
the proof in [83], and when the vertex stabilizers are finite it follows that
∆s−1(δ) is finite and hence the induced group is finite.

Now consider the case in which the group G is locally of finite Morley
rank. Fix a vertex δ of Γ. For g ∈ G, the vertex δg is represented by a
vertex δ1 whose distance from δ is at most s− 1, and even, since G respects
a bipartition of Γ. If δ0 is the midpoint of the path from δ to δ1, then
there is a sequence of at most (s − 1)/2 elements from vertex stabilizers of
intermediate vertices that carries the path from δ0 to δ1 to the path from δ0
to δ. After adjusting g by this short sequence, the product fixes δ/ ≈; so the

action of g on Γ̃ is expressible as a product, of length at most (s− 1)/2+ 1,
of elements of G(s−1)/2(δ). Accordingly, G/GΓ̃ has a set of representatives
of finite Morley rank. Furthermore, two such representatives are equivalent
if and only if their actions on ∆s−1(δ) induce the same action on Γ̃; we need
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to see that this last relation, which is an equivalence relation, is definable
from the structure induced on Gs−1(δ). For this we need to check that
the equivalence relation ≈ on ∆s−1(δ) is definable. Since the quotient is a
generalized (s− 1)-gon, it follows from our hypotheses that the relation ≈,
on ∆s−1(δ), may be characterized as follows.

(≈)
α ≈ β iff d(α, β) = 2(s − 1) and the path from α to β is
conjugate under G to a subpath of T

This is not quite the desired definition, because of the presence of the full
group G and the full apartment T here.

Obviously the apartment T can be replaced by a fixed path of length
2(s− 1) which may be supposed to lie in ∆s−1(δ) and have endpoints in the
appropriate orbit under G. So it suffices to define the conjugacy relation for
short paths in ∆s−1(g) using only local data, and this can easily be done
using the fact that vertex stabilizers act transitively on their neighbors.
Namely, we can assume that the two paths have the same initial point, and
then the question becomes one of determining whether the vertex stabilizer
of an initial segment of one path carries one neighbor of an endpoint to
another, and this is part of the local structure. □

We require one further definability result in the same vein, in order to
verify that the graphs of interest to us carry automorphism groups of locally
finite Morley rank. This is a corollary of the following.

Lemma 6.11. Let P = (P,Q,B) be a structure consisting of two groups
P,Q. Let G = P ∗B Q be the free product with amalgamation and let Γ be
the associated tree of cosets, on which G acts naturally. Then the structure
G = (G,Γ) consisting of G acting on Γ is locally interpretable in P in the
following sense: for any vertex δ ∈ V (Γ) and any k ≥ 0 the graph ∆k(δ),
the partial group Gk(δ), and the partial action of Gk(δ) on ∆k(δ) are all
interpretable in P.

Proof. Let X = P ∪ Q and let Rk(x1, . . . , xk) be the relation on X
defined by: “x1 · · ·xk = 1 in G”. Everything comes down to the definability
of this relation in P, which is proved by induction based on the following
property of free products with amalgamation: if x1, . . . , xk are alternately
from P \B and Q\B then the product is nontrivial. In the remaining cases,
either the product can be shortened, and induction applies, or else k = 1.
Bearing in mind that the natural maps of P and Q into G are embeddings,
the claim follows. □

Corollary 6.12. Under the stated hypotheses, if P has finite Morley
rank then (G,Γ) is locally of finite Morley rank.

7. Buildings and (B,N)-pairs

7.1. Buildings. We record the definition, or in any case one of the
definitions, of Tits’ buildings, and some facts about them. This section can
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be skipped since we will give the same information in the language of BN -
pairs in the next subsection, but as the more geometric language of buildings
is actually used to carry out classification arguments, it seems worth giving
here, even very briefly.

Definition 7.1.

(1) A chamber system with index set I is a set ∆, whose elements are
called chambers, together with a system of equivalence relations ∼i

for i ∈ I.
(2) Two chambers in a chamber system are i-adjacent if they are i-

equivalent and distinct. A gallery between two chambers x, y is a
sequence of chambers x = x0, x1, . . . , xn = y such that xj ̸= xj+1 for
i < n, and xj is ij-adjacent to xj+1 for some ij ∈ I; the sequence
(i0, . . . , in−1) is the type of the gallery. The distance from x to y
is the length of the shortest gallery (or ∞).

(3) Let W be a Coxeter group with Dynkin diagram Π and associated
generating set I (corresponding to a fundamental system of roots,
or to the vertices of Π). A building of type Π (or type W ) is a
chamber system of type I together with a “W -metric” δ, namely a
function

δ : ∆×∆ →W

such that the following two conditions are satisfied:
(a) Every i-equivalence class is nontrivial (contains at least two

elements);
(b) If w ∈ W and ŵ is a reduced word in the generators I repre-

senting w, then for x, y ∈ ∆ we have δ(x, y) = w if and only
if there is there is a gallery of type ŵ from x to y.

One can show that the building (taken as a chamber complex) uniquely
determines the associated Coxeter groupW , which is called the Weyl group,
and theW -metric δ. By definition, the rank of the building is the rank of the
Coxeter group, which is just the cardinality of the index set I. A building is
said to be spherical if the Weyl group is finite (and hence acts naturally on
a sphere in the associated reflection representation). The building is called
irreducible if the group W is irreducible.

Example 7.2. The building ∆(W ) (more properly, ∆(W, I)) associated
to a Coxeter group W with distinguished generators I has as its set of cham-
bers the elements of W , with w1, w2 r-equivalent, for r ∈ I, if and only if
w2 ∈ w1⟨r⟩; the W -metric is given by δ(w1, w2) = w−1

1 w2.

A building is called thick if every i-equivalence class contains at least
three chambers; and thin if every i-equivalence class contains exactly two
chambers; the buildings ∆(W ) are thin.

Definition 7.3. Let ∆ be a building of type Π. An apartment in ∆ is
any isomorphic copy of ∆(Π).
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Let us connect this with Moufang polygons. The flags of a Moufang
polygon Γ are the pairs (v, e) with v a vertex and e an edge incident with
v. These flags make up a chamber system of rank two with the two natural
equivalence relations whose classes are the vertices and edges of Γ, respec-
tively. An adjacent pair of flags corresponds either to two vertices linked
by an edge, or to two edges with a common vertex. The Weyl group W is
the associated dihedral group D2n, and its associated building ∆(W ) is an
ordinary n-gon.

Now we define roots and Moufang buildings in general. We begin with
roots. Recall that a root in an n-gon is a half-apartment, or a path of length
n.

Definition 7.4. Let ∆ be a building of type Π, with Weyl group W .

(1) A root of ∆(W ) is a subset of the form

{w : d(w, x) < d(w, y)}
where (x, y) is an ordered pair of adjacent chambers, and d is the
distance in ∆(W ).

(2) A root of ∆ is a root of any apartment of ∆.
(3) The interior α◦ of a root α is the set of all i-equivalence classes in

∆ (for any i ∈ I) which contain two chambers of α.

Note that in an apartment, each such equivalence class contains two
chambers, or none.

Now we may define root groups and Moufang buildings; as always,
comparison with the case of polygons may be useful.

Definition 7.5. Let ∆ be a building.

(1) If α is a root of ∆, then define the “root group” Uα as

{g ∈ Aut(∆) : g acts trivially on each i-equivalence class in α◦}
(2) A building is called Moufang if it is thick, irreducible, of Tits rank

at least two, and for each root α of ∆ the root group Uα acts tran-
sitively on the set of apartments containing α.

We have piled up quite a few definitions here; but essentially, all that
has happened is that the dihedral group has been replaced by an arbitrary
Coxeter group in the definitions of the preceding section.

We will give the classification of Moufang buildings in the notation of
[179], referring to that source not only for the proof but also for a complete
elucidation of the notation, which however is a mixture of standard notation
for Coxeter groups together with some terminology we have largely seen in
the case of Moufang polygons.

In order to state this classification one must fix an apartment Σ and
a chamber c ∈ Σ, and associate a system of roots αi (i ∈ I) relative to
the fixed pair (c,Σ); namely, αi is the root of Σ which contains c and does
not contain the unique chamber of Σ which is i-adjacent to c. With these
conventions, the main result goes as follows (rather schematically):
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Fact 7.6 ([179, 40.22]). Let ∆ be a Moufang spherical building of Cox-
eter type Π, and I the set of vertices of Π and rank ℓ ≥ 3. Let Σ be an
apartment of ∆ and c a chamber of Σ. Then there is a parameter system
(algebraic structure) Ξ and a root group labeling of Π of a standard form
which is isomorphic to the induced root group labeling and satisfies one of
the following:

(1) Π = Aℓ: Ξ is a division ring;
(2) Π = Bℓ: Ξ is an anisotropic quadratic space;
(3) Π = Cℓ: Ξ is an involutory set, either proper, quadratic, or (for

ℓ = 3 only) honorary;
(4) Π = BCℓ: Ξ is a proper anisotropic pseudoquadratic space;
(5) Π = Dℓ (ℓ ≥ 4), or Eℓ (ℓ = 6, 7, 8): Ξ is a field;
(6) Π = F4: Ξ is a quadratic or honorary involutory set.

The precise root group labelings are given in [179, 40.25,40.50,40.51].
This is considerably more precise than one needs in the finite Morley rank
context to conclude that the underlying parameter set is just an algebraically
closed field in that context. We note that the proof given in [179] is effi-
cient and inductive, and when specialized to the case of finite Morley rank,
since most of the candidate n-gons disappear, the analysis is even shorter.
However, to bring all this to bear one more result is crucial.

Fact 7.7. Every thick irreducible spherical building of Tits rank at least
three is Moufang.

For this one needs [177, 4.16] (see [179, 40.3]). A recent exposition is
given in [187].

One may deduce from this the following.

Proposition 7.8. Let ∆ be an irreducible spherical building of Tits rank
at least three and finite Morley rank. Then the subgroup of Aut(∆) generated
by the root groups is an algebraic group over an algebraically closed field.

Compare [179, 41.16]; one may also argue more abstractly that the
group in question is definable over an algebraically closed field, and apply
Fact 1.21 of Chapter II. Cf. [126, Theorems 5.1 and 5.3] (Fact 7.11 of
Chapter III below).

7.2. BN-pairs. The notion of BN -pair is an abstraction of the situ-
ation arising in algebraic groups when one considers a Borel subgroup B,
a maximal torus T contained in B, and the normalizer N = N(T ) in the
ambient group.

Definition 7.9. Let G be a group, and B,N subgroups of G; set T =
B ∩N .

(1) We say that the pair (B,N) is a BN -pair for G if the following
conditions hold, with respect to some subset X of N/T :

BN 1. G = ⟨B,N⟩.
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BN 2. B ∩N ◁ N . We write T = B ∩N and W = N/T .
BN 3. X is a set of involutions generating the group W .
BN 4. Bs ̸= B, for all s ∈ X.
BN 5. nBs ⊆ BnB ∪BnsB for all n ∈ N and all s ∈ X.

(2) If (B,N) is a BN -pair for G, the pair is said to be definable if B
is.

(3) A BN -pair (B,N) is spherical if W = N/T is finite.
(4) If X is finite, its cardinality is called the (Tits) rank of the BN -pair

(B,N).

Note that a BN -pair is more properly speaking a triple (B,N, S). One
can reproduce a good deal of the structure theory of algebraic groups in this
context.

Fact 7.10 ([112]). Let G be a group with a BN -pair. Then

(1) W is a Coxeter group with distinguished generators X;
(2) The subgroups containing B are those of the form PI = ⟨B, I⟩ where

I ⊆ X
(3) G is the disjoint union of the double cosets BwB (w ∈W ).

This includes the case of algebraic groups, with B a Borel subgroup, and
the terminology is extended to the present more combinatorial settings; in
particular groups containing B (and their conjugates) are called parabolic.

One may convert BN -pairs into buildings as follows, bearing in mind
that we have defined buildings as chamber complexes. The chambers are
the conjugates of B; the set of types I may be identified with the fixed set X
of generators for W , or with the minimal parabolic subgroups P containing
B; two chambers are P -adjacent, for such a subgroup P , if they lie jointly
in a conjugate of P .

When buildings are defined as complexes rather than as chamber com-
plexes, then the associated building becomes the complex of parabolic sub-
groups (that is, those containing a conjugate of B).

As a matter of convention we may transfer all of the building terminology
to BN -pairs. With those conventions, we have the following.

Fact 7.11. [126, Theorems 5.1 and 5.3] Let G∗ be an infinite simple
group of finite Morley rank with a definable spherical BN-pair of Tits rank
at least 3. Then G∗ is a Chevalley group over an algebraically closed field.

Fact 7.12. [126] Let G∗ be an infinite simple group of finite Morley
rank with a spherical Moufang BN-pair of Tits rank 2. Then G∗ ≃ PSL3(F ),
PSp4(F ), or G2(F ) for some field F .

In the above, the field in question must be algebraically closed as it will
also have finite Morley rank.

7.3. Pairwise BN-pairs. We will need a weakening of the BN -pair
condition, easier to verify in practice.
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Definition 7.13. Let G be a group, B and N subgroups of G, T = B∩N ,
and X a subset of N/T . Then we say that (B,N,X) forms a pairwise BN -
pair if the following conditions hold.

BN 1 G = ⟨B,N⟩.
BN 2 B ∩N ◁ N .
BN 3 X generates N/T and s2 = 1 for all s ∈ X.
BN 4 sBs ̸= B for all s ∈ X.

BN 52 For all u, v ∈ X, n ∈ ⟨u, v⟩ and s ∈ {u, v}. nBs ⊆ BnB ∪BnsB

Notation 7.14.

(1) If R ⊆ X, denote NR = ⟨B ∩ N,R⟩ and WR = NR/B ∩ N . It is
well-known (and easily follows from BN 5) that PR = BNRB is a
subgroup (known as a parabolic subgroup).

(2) In a spherical definable BN -pair, every parabolic subgroup PR is a
finite union

PR =
⋃

w∈WR

BwB

and therefore is definable.
(3) We set BR =

⋂
r∈⟨R⟩B

r for R ⊆ X, writing, in particular, Bs for

B{s}.

The next result is a purely algebraic fact, proved by Niles in the form
we use, which applies to groups which may be finite or infinite. We impose
no model theoretic hypotheses.

Fact 7.15. [145, Theorem A] Let G be a group with a pairwise BN -pair
(B,N, S). Assume the following condition.

(∗)
If X is a T -invariant subgroup of B
such that B = XBs and B = XBt,
then B = XBs,t.

Then (B,N, S) forms a BN -pair for G.

Hidden within this fact is a similar characterization of Coxeter groups,
due to Goldschmidt.

8. A theorem of Niles

8.1. The theorem. Our principal tool for identifying the “generic”
group of finite Morley rank will be the following.

Theorem 8.1. Let G be a group of finite Morley rank and even type.
Let S be a Sylow◦ 2-subgroup of G, and B ≤ NG(S) a connected solvable
group. Assume that G contains definable connected subgroups P1, . . . , Pr

which satisfy the following conditions:

(A) G = ⟨P1, P2, . . . , Pr⟩.
(B) NPi

◦(S) = B for all i = 1, . . . , r.
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(C) Setting Li := U2(Pi) and L̄i = Li/O2
◦(Pi), we have Li ≃ SL2(Ki),

with Ki some algebraically closed field of characteristic two, for
i = 1, . . . , r.

(D) Setting Lij := ⟨Li, Lj⟩, and L̄ij = Lij/O2
◦(Lij), the group L̄ij

is either a quasisimple Chevalley group of Lie rank two over an
algebraically closed field of characteristic two:

PSL3(K), SL3(K), Sp4(K), G2(K)

or a direct product of two Chevalley groups of Lie rank one:

SL2(K1)× SL2(K2)

with K1 and K2 two algebraically closed fields of characteristic two.

Let G0 = ⟨L1, L2, . . . , Lr⟩. Then

(1) G0 is normal in G, and
(2) G0 has a definable spherical BN -pair of Tits rank r.

Corollary 8.2. Assume that G is a simple group which satisfies all the
requirements of Theorem 8.1 of Chapter III. Then G is a simple Chevalley
group over an algebraically closed field K of characteristic two.

Proof. By Theorem 8.1 of Chapter III, G has a definable BN -pair of
Tits rank r. Notice that if r ≤ 2, then G/O2

◦(G) has the desired form by
the assumptions of Theorem 8.1 of Chapter III. Therefore we can assume
that r ≥ 3. Now we are in a position to apply Fact 7.11 of Chapter III which
states that, in this situation, G is a Chevalley group over an algebraically
closed field. □

We take up the proof of Theorem 8.1 of Chapter III. We can deal quickly
with the issue of normality.

Lemma 8.3. Under the hypotheses of Theorem 8.1 of Chapter III, setting
Pij = ⟨Pi, Pj⟩, we have the following.

(1) Pi = LiB
(2) Lij = U2(Pij)
(3) G0 is normal in G.

Proof.
1. By the Frattini argument and connectedness, Pi = LiNPi

◦(S) = LiB.
2. Pij = ⟨LiB,LjB⟩ = ⟨Lij , B⟩. Furthermore B normalizes Li, Lj , and

Lij , so Pij = Lij ·B. As U2(B) = S ≤ Lij , it follows that U2(Pij) = Lij .
3. By the second point, Pij normalizes Lij , and in particular Pi normal-

izes all Lij for j = 1, . . . , r. Hence Pi normalizes G0, for all i, and thus G
normalizes G0. □

8.2. The proof. From now on, we work under the hypotheses and
notation of Theorem 8.1 of Chapter III. We disposed of normality above, so
we are concerned with the construction of a spherical BN -pair associated
with G. We have a group B furnished by the hypotheses of the theorem. We



232 III. SPECIALIZED TOPICS

will look for an appropriate group N and set X of generators to accompany
it.

We may factor B as S ⋊ T , by Proposition 9.6 of Chapter I. For i =
1, . . . , r, let Ni = TNLi(T ), and set N = ⟨Ni : i = 1, . . . , r⟩. Recall that
Li = U2(Pi) and L̄i = Li/O2(Li) ≃ SL2(Ki) for some field Ki depending on
i.

Lemma 8.4. With the notations and hypotheses as above, and letting
Ti = T ∩ Li, we have the following.

(1) T̄i is a maximal torus of L̄i.
(2) Ni ∩ Li = NL̄i

(T̄i)

Proof.
1. As B ≤ Pi, B normalizes Li. Then by Proposition 9.4 of Chapter I

T contains a complement to S in NLi
◦(S), which covers a maximal torus of

L̄i.
2. We work in P̄i = Pi/O2

◦(Pi). We have Ni ∩ Li = NLi(T ). Let
s̄ ∈ NL̄i

(T̄ ). Then lifting s̄ to s ∈ Li, we have T s ≤ O2(Pi)
◦T . Hence there

is an element x ∈ O2
◦(Pi) conjugating T

s to T , again by Proposition 9.4 of
Chapter I. So sx ∈ NLi(T ) and sx represents s̄ in L̄i. □

Notation 8.5. Let ri ∈ Ni represent the involution of NL̄i
(T̄i). Let

X = {ri : i = 1, . . . , r}.

Lemma 8.6. G0 = ⟨B,N⟩.

Proof. We have Li = ⟨STi, ri⟩ for all i, 1 ≤ i ≤ r. Therefore ⟨L1, . . . , Lr⟩
= ⟨S, T1, . . . , Tr, N⟩ ≤ ⟨B,N⟩. □

Lemma 8.7. B ∩N ◁ N

Proof. By our constructionB∩N ≤ NB(T ) = NS(T )·T = CS(T )×T ≤
B ∩N . Now for each i, CS(T ) ≤ CS(Ti) ≤ O2(Li). So CS(T ) = CO2(Li)(T )
for each i, and CS(T ) is normalized by each Ni, hence by N . Thus B ∩N ◁
N . □

Lemma 8.8. The triple (B,N,X) provides a pairwise BN -pair for G0.

Proof. The first two conditions, G0 = ⟨B,N⟩ and B ∩ N ◁ N , have
just been verified. By construction, X generates W = N/(B ∩ N). Now
r2 = 1 in W for r ∈ X, since this holds in L̄i, and O2(Li) ≤ B. Similarly,
Bri ̸= B by inspection in L̄i.

Finally, the main condition, (BN 52), can be verified by inspection in
Pij = LijT , as the structure of Lij is known. □

Lemma 8.9. Assume that L is isomorphic to one of the following:

PSL3(K),SL3(K),Sp4(K),G2(K),SL2(K1)× SL2(K2)

where K,K1,K2 are algebraically closed fields of characteristic two. Let B
and N be subgroups of L which form a BN -pair for L, with B a Borel
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subgroup. Let S be a Sylow 2-subgroup of B, and let P1, P2 be two parabolic
subgroups containing B. Set Ui := O2

◦(Pi) for i = 1, 2 and let T be a
complement to U in B. Then there is no proper T -invariant subgroup S0 of
S such that S = S0U1 and S = S0U2.

Proof. In each case the Weyl group has two generators, say S =
{s1, s2}, such that Pi = B⟨si⟩B for i = 1, 2. Assume that S0 is a T -
invariant subgroup of S satisfying S = S0U1 and S = S0U2.

Now by Fact 1.11 of Chapter II, S0 is a product of root subgroups, and
every element of S0 can be written as a product of root elements in a unique
way. Now S = S0U1 implies that S0 contains the root subgroup Ss2 corre-
sponding to s2. Similarly S0 contains the root subgroup Ss1 corresponding
to s1. But S = ⟨Ss1 , Ss2⟩ by Lemma 2.4 of Chapter II. Hence S0 = S, which
completes the proof. □

Lemma 8.10. G0 has a BN -pair of Tits rank r.

Proof. We have constructed a pairwise BN -pair (B,N,X) satisfying
Niles’ condition (Lemma 8.9 of Chapter III), so by Fact 7.15 of Chapter III
this is a BN -pair.

Now as L̄i = ⟨S̄, s̄i⟩, the elements si are distinct, and |X| = r. □

To conclude the proof of Theorem 8.1 of Chapter III, it suffices to check
that our definable BN -pair is of spherical type. We give this in a more
general form.

Lemma 8.11. Let G be a group of finite Morley rank and (B,N,X) a
definable BN -pair in G, with B connected. Then the BN -pair (B,N,X) is
spherical.

Proof. Let W = N/(B ∩N). The minimal parabolic subgroups Ms =
B ∪BsB, s ∈ X are definable. We claim

(1) Ms is connected

Note that B < Ms
◦ since Bs ̸= B. Thus BsB is a generic subset of Ms. On

the other hand the multiplication map

B ×B → BsB

has fibers of constant rank, namely rk(B ∩ Bs). Since B is connected it
follows that the image BsB has Morley degree 1. Thus Ms has Morley
degree 1, and is connected.

Now G is generated by the groups Ms, and hence is the setwise product
of finitely many of them in view of Proposition 3.19 of Chapter I. Then by
expanding the representation of G as M1 ·M2 · . . . ·Mn for some n, where
Mi = B ∪ (BsiB) for some si ∈ X, using axiom BN 5, we find that G is
the union of finitely many double cosets of the form BwB, w ∈W . On the
other hand the decomposition

G =
⋃

w∈W
BwB
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is a disjoint union (Fact 7.10 of Chapter III), so W is finite. □

Now Lemmas 8.3 of Chapter III, 8.10 of Chapter III, and 8.11 of Chapter
III prove Theorem 8.1 of Chapter III.

9. Signalizer functors

In the next section we give a generic identification theorem which can
be used in place of the theory of buildings to complete the identification
of the generic simple group of even type. The present section prepares an
ingredient needed in order to verify a hypothesis of that generic identification
theorem in practice.

9.1. Definitions.

Notation 9.1. Let G be a group of finite Morley rank, and p a prime.
Then Op⊥(G) is the largest definable connected normal solvable p⊥-subgroup
of G. For example, O2⊥(G) = O(G).

Definition 9.2. Let G be a group of finite Morley rank, p a prime, and
E ≤ G an elementary abelian p-subgroup of G.

(1) An E-signalizer functor is a function θ with domain E×, satisfying
the following conditions.
(a) For a ∈ E×, θ(a) is an E-invariant connected subgroup of

Op⊥(C(a));

(b) For a, b ∈ E×, we have

(Balance) θ(a) ∩ C(b) ≤ θ(b)

(2) An E-signalizer functor θ on X is nilpotent if θ(a) is nilpotent for
all a ∈ E.

(3) If θ is an E-signalizer functor, then
(a) θ(E) = ⟨θ(a) : a ∈ E×⟩.
(b) θ is E-complete if θ(E) is a solvable p⊥-group and for a ∈ E×,

θ(E) ∩Op⊥(C(a)) = θ(a).

Our goal in this section is to prove that nilpotent E-signalizer functors
on groups of finite Morley rank are E-complete, for E of p-rank at least 3.

Proposition 9.3. Let G be a group of finite Morley rank, p a prime, E
an elementary abelian p-subgroup of G of rank at least 3, and θ a nilpotent
E-signalizer functor on G. Then θ is E-complete.

Proof. We will proceed by induction on the rank of G.
A subgroup Q of G will be called a θ-subgroup if Q is a connected,

definable, solvable p⊥-subgroup of G normalized by E, and for all a ∈ E×

we have:

Q ∩ θ(a) = CQ(a)
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Note that here CQ(a) is connected (Lemma 10.6 of Chapter I). Furthermore,
a θ-subgroup Q will be nilpotent since CQ(a) is nilpotent for a ∈ E× and
Proposition 9.18 of Chapter I applies.

In view of the balance condition, each of the groups θ(a) is a θ-group
for a ∈ E×. Furthermore any connected definable E-invariant subgroup of
a θ-subgroup is a θ-subgroup. To prove completeness of θ it suffices to show
that the group ⟨θ(a) : a ∈ E×⟩ is a θ-subgroup. This follows at once from
the following claim:

(1) There is a unique maximal θ-subgroup in G

Indeed, if Q is the unique maximal θ-subgroup then Q contains ⟨θ(a) : a ∈
E×⟩ which is therefore also a θ-subgroup. So we will prove (1).

Suppose first that the intersection of any two distinct maximal θ-subgroups
is finite. Let P be a maximal θ-subgroup. Then P contains any θ-subgroup
whose intersection with P is infinite. By Proposition 9.16 of Chapter I,
P = ⟨CP (E0) : E0 ≤ E, [E : E0] = p⟩. In particular CP (E0) is nontrivial for
some E0 ≤ E with [E : E0] = p. If Q is another maximal θ-subgroup then
similarly CQ(E1) is nontrivial for some E1 ≤ E with [E : E1] = p. In partic-
ular if a ∈ E0 ∩ E1 is nontrivial, then CP (a) = P ∩ θ(a), CQ(a) = Q ∩ θ(a)
are nontrivial; but these groups are connected by Lemma 10.6 of Chapter
I, hence infinite, and hence by our case assumption θ(a) ⊆ P ∩ Q, forcing
P = Q. Thus in this case (1) holds.

Now suppose that there are distinct maximal θ-subgroups with infinite
intersection, and let P,Q be two such, with the rank of P ∩Q maximal. Let
R = (P ∩ Q)◦, H = N◦(R), H̄ = H/R. Then θ induces a function θ̄ on H
by

θ̄(ā) = θ(a),

which however depends on a choice of representatives for Ē in E. In any
case, θ̄ is a nilpotent Ē-signalizer functor on H̄, because in the balance
condition we may apply Proposition 9.12 of Chapter I, and we find:

θ̄(ā) ∩ CG(b̄) = Cθ̄(ā)(b̄) = C
θ(a)

(b̄) = Cθ(a)(b)

and here the original balance condition applies.
Now R is infinite so the rank of H̄ is less than that of G, and by induction

the nilpotent Ē-signalizer functor θ̄ is E-complete. In particular ⟨P̄ , Q̄⟩ is
a θ̄-subgroup of H̄. We claim that S = ⟨P,Q⟩ is a θ-subgroup of H, which
contradicts the maximality of P and Q. What needs to be checked is the
condition CS(a) ≤ θ(a), and indeed: CS(a) ≤ θ̄(ā), so CS(a) ≤ Rθ(a), and
thus CS(a) ≤ CRθ(a)(a) = θ(a)CR(a) = θ(a). Thus S is a θ-subgroup and
we have a final contradiction. □

Proposition 9.4. Let G be a reductive K∗-group of finite Morley rank
and of even type, p > 2 prime, and T a p-torus in G of Prüfer p-rank 3.
Suppose that

(∗) G = ⟨U2(C
◦(a)) : a ∈ Ω1(T )

×⟩
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Then for a ∈ T of order p, CG
◦(a) is reductive.

Proof. Let E = Ω1(T ), an elementary abelian p-group of p-rank 3.
For a ∈ E× let θ(a) = O2(CG

◦(a)), which is connected by Lemma 5.6 of
Chapter II. We claim that θ is a nilpotent E-signalizer functor on G; it
is the balance condition that needs to be checked. For a, b ∈ E, we have
θ(a)∩C(b) = Cθ(a)(b) connected by Lemma 10.6 of Chapter I. Thus writing
H = C◦(b), we have θ(a) ∩ C(b) ≤ O2(CH(a)) ≤ O2(H) ≤ θ(b), using
Proposition 5.24 of Chapter II,

Now by Proposition 9.3 of Chapter III θ is E-complete, andQ = ⟨O2(C(a)) :
a ∈ E×⟩ is a nilpotent subgroup of G, and in particular is a proper 2-
subgroup.

Now suppose toward a contradiction that Q is nontrivial. Then M =
NG(Q) < G, by reductivity. Let A ≤ Tp be elementary abelian of rank at
least two. Then Q = ⟨CQ

◦(a) : a ∈ A×⟩ by Proposition 9.16 of Chapter I.
In particular N(A) normalizes Q, that is N(A) ≤M .

Now we will show that U2(C
◦(a)) ≤M for all a ∈ Ω1(T ), contradicting

our hypothesis (∗).
For x ∈ Ω1(T ) choose A ≤ Ω1(T ) elementary abelian of rank two and

not containing x. Let H = U2(C
◦(x)). Then by Lemma 5.26 of Chapter

II, H = ⟨CH
◦(a) : a ∈ A×⟩ = ⟨CH(⟨x, a⟩) : a ∈ A×⟩ ≤ M since each of

the groups Aa = ⟨x, a⟩ involved is elementary abelian of rank two. This
contradicts our hypothesis (∗). □

10. Generic identification

The material in the present section gives a method for identifying the
“generic” group of even type by a direct reduction to standard generators
and relations. In our treatment of even type we can avoid this analysis by
invoking Tits’ powerful classification of buildings of spherical type and Tits
rank at least three. The approach given in the present section is less general
but more efficient in our particular case. The main result will be Theorem
10.2 of Chapter III, but it reduces in turn to a theorem of Curtis-Tits-Phan
type, with which we begin.

10.1. A theorem of Curtis-Tits-Phan type. Our first result is purely
algebraic, and does not involve any model theoretic hypotheses.

Proposition 10.1. Let I be a connected Dynkin diagram of Tits rank
at least three, let F be an algebraically closed field, and let G∗ be the simply
connected quasisimple algebraic group of type I over the field F . Let G be a
group, and suppose that for each vertex i of I there is an associated subgroup
Li of G isomorphic to SL2(F ) or PSL2(F ), and a fixed maximal torus Ti of
Li, for which the following conditions hold.

R1 G is generated by the groups Li for i ∈ I.

R2 The groups Ti commute.
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R3 For any pair of vertices i, j of I, the structure of the group Lij =
⟨Li, Lj⟩ ≤ G is compatible with the diagram I in the following sense:

R3.0 If there is no edge (i, j) in I then Li, Lj commute.
R3.1 If there is a simple edge (i, j) in I then Lij is isomorphic to

SL3(F ) or PSL3(F )
R3.2 If there is a double edge (i, j) in I then Lij is isomorphic to

Sp4(F ) or PSp4(F ); if the characteristic is not two, there is a
suitable isomorphism in which Li corresponds to a root group
for a long or short root according as the vertex i in I corre-
sponds to a long or short root respectively, as indicated by the
orientation of the corresponding edge in the Dynkin diagram.

Then there is a homomorphism from G∗ onto G which carries the root SL2

subgroup of G∗ corresponding to the vertex i onto the group Li in G.

Proof. In the simply connected group G∗ we fix a maximal torus T and
the associated root SL2 groups as indexed by the diagram I, which we may
denote L∗

i , and we consider the groups L∗
ij = ⟨L∗

i , L
∗
j ⟩ corresponding to pairs

of vertices in I, which are the simply connected ([167, p.47,§6]) versions of
the Lie rank two groups encoded by the corresponding rank two Dynkin
diagrams induced by I (including the reducible case, A1+A1 corresponding
to a product). We also consider the tori T ∗

i = T ∩ L∗
i and Tij = T ∩ L∗

ij .
Our hypotheses amount to a family of surjective homomorphisms hij :

L∗
ij → Lij , not necessarily respecting any further structure, other than the

condition imposed in the case L∗
ij ≃ Sp4(F ), with characteristic not two. We

need first to adjust this family so that each homomorphism hij carries the
quadruple (L∗

i , L
∗
j , T

∗
i , T

∗
j ) onto the corresponding quadruple (Li, Lj , Ti, Tj),

so that furthermore for each i the homomorphisms hi : L
∗
i → Li arising by

restriction are independent of j.
To begin with, we adjust the hi,j separately, for those pairs for which

there is an edge (i, j) in the Dynkin diagram, without regard for the com-
patibility condition. By an inner automorphism of Li,j we carry the image

of T ∗
i,j to Ti,j . Then the images L̃i, L̃j of L∗

i and L∗
j are root SL2 subgroups

for Ti,j , each one corresponding to a pair of opposite roots. If Li,j ≃ SL3

or PSL3 then the pair (L̃i, L̃j) can be moved to (Li, Lj) by a combination
of a Weyl group element and graph automorphism (possibly trivial), which
leave Ti,j invariant. If Li,j ≃ Sp4 or PSp4, then by hypothesis if the char-
acteristic is not two, and using an “extra” automorphism available if the
characteristic is two, we may suppose that L̃i, L̃j correspond to roots of the

appropriate lengths, and use the Weyl group to align (L̃i, L̃j) with (Li, Lj).
Now we begin again with our system Li,j (for pairs (i, j) corresponding

to edges in the Dynkin diagram). As the Dynkin diagram is a tree, the
vertices may be ordered so that the graph induced on any initial segment
is connected. Inductively, we will adjust the maps further, so that for i0 <
i < j with (i0, i) and (i, j) edges, the homomorphisms hi0,i and hi,j agree
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on L∗
i . For the first two vertices we need do nothing, and otherwise at

stage j we have a unique i < j for which (i, j) is an edge of the Dynkin
diagram, and we need to adjust the single homomorphism hi,j to match a
given homomorphism hi : L∗

i → Li obtained by restricting hi0,i for some
neighbor i0 of i; by induction, this homomorphism hi is well defined. If hi
has a kernel, we may factor it out; to lighten the notation we will suppose
that hi is already an isomorphism. Then the map h′i induced by hi,j is
also an isomorphism, and we need to “untwist” hi,j by an automorphism
of Li,j which should preserve the data (Li, Lj , Ti, Tj) and operate on Li

as ιi = hi ◦ h′i
−1. Now ιi preserves Ti and is a combination of an inner

automorphism induced by an element of Ti with a field automorphism. Both
of these extend to Li,j preserving the data, so we succeed.

At this stage, we have a family hi,j of homomorphisms, for (i, j) an
edge of the Dynkin diagram, compatible on their overlap. We may then
extend this to a family hi,j defined for all pairs (i, j). This gives us a map
of amalgams from the data presenting G∗ to G, and applying Theorem 2.29
of Chapter II, we have a homomorphism from G∗ onto G, as stated. □

10.2. A generic identification theorem. Now we arrive at the main
result, which gives sufficient conditions for a reduction to the Curtis-Tits-
Phan type theorem above.

Theorem 10.2. Let G be a simple L∗-group of finite Morley rank and
even type, and p an odd prime. Let T0 be a maximal p-torus in G, supposed to
be of Prüfer rank at least 3. Assume the following generation and reductivity
hypotheses.

(G) G is generated by the subgroups

U2(C
◦
G(x)) for x ∈ T0 of order p

(R) For every element x of order p in T0 the following conditions are
satisfied.

(R.1) U2(C
◦
G(x)) contains no nontrivial p-unipotent subgroup;

(R.2) U2(CG
◦(x)) = F ∗(U2(CG

◦(x))).

Then G is a Chevalley group over an algebraically closed field of character-
istic two.

The “genericity” to which we refer is the assumption of Prüfer rank at
least three. Assumption (G) is a weak form of the generation of a Chevalley
group by “root SL2” subgroups associated with a fixed maximal torus, and
conversely when assumptions (G) and (R) are combined one is in a position
to reconstruct this pattern of root SL2 subgroups. By itself, assumption (R)
expresses the reductivity of centralizers of semisimple elements.

The proof makes use of the theory of complex reflection groups, and
aims at the reconstruction of the group G as generated by appropriate “root
SL2” subgroups. We will first present our general strategy for making this
reduction.
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Fix the notations and hypotheses of Theorem 10.2 of Chapter III relating
to G, p, and T0. In addition, we introduce the set Σ consisting of all definable
subgroups L of G with the following properties.

(1) T0 normalizes L.
(2) L is isomorphic to SL2 or PSL2 over some algebraically closed field.

These groups are intended to serve as root SL2-subgroups in our abstract
group G. We aim to show that with a suitable labeling, these groups can in
fact serve as the groups Li of Theorem 10.1 of Chapter III.

For L ∈ Σ, let TL = CL(T0). Then TL will be a maximal torus of L, and
its p-torsion belongs to T0. But TL may be larger than the definable hull of
T0 ∩ L.

In the first place, we should show that we have enough “root groups”.

Lemma 10.3. With the hypotheses and notation as above, G is generated
by the groups K for K ∈ Σ.

Proof. Let G0 = ⟨K : K ∈ Σ⟩. Let T̂ = CG(T0) (we make no special

claim about the structure of T̂ ).
We have by hypothesis G = ⟨U2(C

◦(x)) : x ∈ T0 of order p⟩. We claim
for x ∈ T0 of order p we have the following.

(∗) U2(C
◦(x)) ≤ G0T̂

This follows from our hypothesis on the structure of U2(C
◦(x)). We have

U2(C
◦(x)) = F (U2(C

◦(x)))E(U2(C
◦(x))), with

F (U2(C
◦(x))) ≤ T̂ ,

since this nilpotent group centralizes any p-torus contained in it, as well as
E(U2(C

◦(x))). As far as E(U2(C
◦(x))) is concerned, it is easy to see that

T0 acts on each component of E(U2(C
◦(x))) like the p-torsion in a maximal

torus. As Chevalley groups are generated by root SL2-subgroups relative to
a maximal torus, it follows that E(U2(C

◦(x))) ≤ G0. So (∗) holds.
Now applying our generation hypothesis we conclude that G = G0T̂ .

On the other hand T̂ normalizes G0 and hence G0 ◁ G. Since G ̸= T̂ , we
have G0 > 1, and thus G0 = G, as claimed. □

The second point is to get some control over the groups generated by
pairs of “root SL2-subgroups”.

Lemma 10.4. Let K,L ∈ Σ. Then CT0(⟨K,L⟩) > 1.

Proof. K and L are normalized by T0, which has Prüfer rank at least
three. The definable hull of T0 acts on K and L by inner automorphisms,
and hence the same applies to T0. The image of T0 in Aut(K)×Aut(L) has
Prüfer rank at most two, so the kernel is nontrivial. □

Note that in the foregoing lemma, as K and L are connected and defin-
able the group ⟨K,L⟩ is also definable.
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Lemma 10.5. Let K,L in Σ be noncommuting. Then ⟨K,L⟩ is isomor-
phic with a Lie rank two Chevalley group.

Proof. Let M = ⟨K,L⟩. We have M ≤ U2(C
◦(x)) for some x ∈ T×

0
of order p, by Lemma 10.4 of Chapter III. By hypothesis (R.2), we have
U2(C

◦(x)) = F ∗(C◦(x)) and hence K,L ≤ E(U2(C
◦(x))). Note that T0

is a maximal p-torus of C◦(x) and hence contains a maximal p-torus of
E(U2(C

◦(x))). As this normalizes K and L, it follows easily that each of
K and L is contained in a single component of E(U2(C

◦(x))); as K and
L do not commute, these two components coincide and M ≤ A with A
a quasisimple component of E(U2(C

◦(x))). Let TA = CA(T0), a maximal
torus of A. It will suffice to show that K and L are root SL2-subgroups of
A, with respect to TA, and then apply Lemma 2.20 of Chapter II.

Let U be a root subgroup of K, and Û its Zariski closure in A. Then Û
is abelian and T0 ≤ N(Û), hence TA ≤ N(Û). Also U ≤ [TA, Û ] and hence

Û = [TA, Û ] is unipotent, and a product of root subgroups for TA. Let T1
be the kernel of the action of T0 on U . Then T1 acts trivially on Û and
hence the Zariski closure T̂1 of T1 acts trivially on Û . As T0/T1 has Prüfer

rank 1, T̂1 is a torus of codimension one in TA. Thus Û is a root subgroup
for TA, say Û = Uα. Then the Zariski closure of the opposite root subgroup
in K must be U−α, since the pair generates a non-nilpotent subgroup. So

the Zariski closure K̂ of K is a root SL2-subgroup of A. Now consideration
of the embedding K → K̂ produces a definable inclusion between the base
fields, and hence must be the identity.

So K, and similarly L, is a root SL2 subgroup of A. □

As a consequence we have the following, which is not essential to the
argument, but is certainly welcome at this stage.

Lemma 10.6. The base fields of the groups K ∈ Σ are definably isomor-
phic.

Proof. Let ∆ be the graph whose vertex set is Σ, with edges between
noncommuting pairs. As G is generated by the groups in Σ, the subgroup
generated by those groups lying in one connected component of ∆ is normal
in G. Thus ∆ is connected. On the other hand, for two noncommuting
groups K,L ∈ Σ it is easy to find a definable isomorphism between their
base fields, in view of the structure of ⟨K,L⟩. □

Now we need to improve on the foregoing by finding a labeling of the root
subgroups by the vertices of a Dynkin diagram in the manner of Theorem
10.1 of Chapter III. We note that in practice, when we apply this result, we
may well have the necessary data already in hand, but we wish to work at a
substantial level of generality. So we will argue that our present hypotheses
allow us to find an appropriate Coxeter group in G, and to extract the
Dynkin diagram, and the relevant information, from the Coxeter group. For



10. GENERIC IDENTIFICATION 241

this we will take a detour through the theory of complex reflection groups,
for which the background is found in §13 of Chapter I.

10.3. The Coxeter group. Set T = ⟨TL : L ∈ Σ⟩. In view of the
structure of the groups ⟨K,L⟩ for K,L ∈ Σ, the tori TL commute for L ∈ Σ
and T is a definable divisible abelian group with T ≤ C(T0). One expects
T = C(T0), but this would be deduced after the identification has been made.
In the meantime we work with T as a well-behaved torus, not embedded as
yet in an algebraic group.

For each group L ∈ Σ we have a Weyl group N(TL)/TL of order two,
and we choose an element rL ∈ L representing a generator. Then rL acts as
an involution on T , and the action is independent of the choice of rL. So
rL represents an element wL of the “big Weyl group” W = NG(T )/CG(T ).
We will not work with W , but rather with the subgroup W0 = ⟨wL : L ∈ Σ⟩
generated by our distinguished involutions. We need to show that W0 is a
Coxeter group, that is a finite group generated by real reflections.

By the criterion of Theorem 13.2 of Chapter I, it suffices to show the
following points, where the group in question is W0, I is the distinguished
set of involutions generating W0, and n is the Prüfer p-rank of T

(1) The set I is closed under conjugation in W0.
(2) The graph ∆I on the vertex set I in which edges correspond to

noncommuting pairs of involutions is connected.
(3) For all sufficiently large prime numbers ℓ, W0 has a faithful irre-

ducible representation over Fℓ in which the elements of I act as
generalized reflections.

(4) In the action of W0 on T0, the elements of I act as reflections of
order two, and have no common fixed points.

(5) W0 has an irreducible representation of dimension at least three
over some field.

(6) W0 is finite.

Now W0 acts on the set Σ of distinguished “root SL2” subgroups, hence
preserves I. In view of the structure of the groups ⟨K,L⟩ for K,L ∈ Σ,
if K and L do not commute then wK and wL do not commute, so the
graph ∆I is connected. This disposes of the first two points. For the rest,
we must examine the action of W0 on T , and specifically on the subgroup
Tℓ = T [ℓ] consisting of the torsion of exponent ℓ. We claim that all of these
W0-modules are faithful and irreducible, with the generators rL acting as
reflections of order two. As the Prüfer p-rank is at least three, the module Tp
is at least three dimensional over Fp. Furthermore, as these representations
are finite, if they are faithful then W0 is finite. So this will suffice.

As far as the action of rL on Tp is concerned, we have T = TLCT (L) and
thus rL acts as a reflection of order two.

For the irreducibility, since the representations are generated by reflec-
tions and the graph ∆ is connected, it suffices to check that the rL have no
common centralizer in T . But an element of T which centralizes rL must



242 III. SPECIALIZED TOPICS

centralize L and hence CT (W0) centralizes the subgroup generated by all
L ∈ Σ, which is G (Lemma 10.3 of Chapter III).

So it remains only to check that these representations are faithful. Let
N = NG(T ). We claim that more generally the action of N/CG(T ) on each
Tℓ is faithful (for ℓ odd), or in other words that CN (Tℓ) centralizes T .

So consider x ∈ N(T ) centralizing Tℓ for some prime ℓ. Then x acts
on the set Σ. If L ∈ Σ then L ∩ Lx contains Tℓ ∩ L. If L ̸= Lx then
|L ∩Lx| ≤ Z(L) has order at most two, a contradiction. So for each L ∈ Σ,
x acts on L and centralizes Tℓ ∩ L. As x normalizes T ∩ L and acts as an
inner automorphism of L, it either inverts or centralizes T ∩ L; since. it
centralizes Tℓ ∩ L, x centralizes TL. Since this holds for all L, x centralizes
T .

So we have

W0 is a crystallographic Coxeter group

By the proof of that result, the generators rL correspond to reflections
in W0 (that is, elements of W0 which act as reflections in the usual real
representation of W0). We claim

All reflections of W0 are of the form rL (L ∈ Σ)

Since the set of generators rL is closed under conjugation, and since reflec-
tions corresponding to roots of fixed length are conjugate, there are only two
possibilities: either the reflections rL exhaust all reflections in W0, or else
there are two root lengths, and the rL vary over roots of one length. But
in the latter case the group generated by the rL is associated to the root
system consisting of roots of that fixed length, and is not the group W0. So
this proves our claim.

Now the group W0 largely determines the associated Dynkin diagram,
apart from an indication of root lengths. So let I0 be the Dynkin diagram
without the root length information, correlated with a set ri (i ∈ I0) of
reflections generating W0. Here ri = rLi for some Li ∈ Σ.

We claim the groups Li (i ∈ I0) generate G. Let L ∈ Σ. We claim that
⟨Li : i ∈ I0⟩ contains L. Since rL is conjugate to some ri, i ∈ I0 under the
action of W0, and W0 is generated by the ri, with ri ∈ Li, we may suppose
that rL = ri for some i ∈ I0. On the other hand if L and Li are distinct, we
have already determined the structure of ⟨L,Li⟩, a Chevalley group of Lie
rank two, and if L ̸= Li it follows that r ̸= ri. So we have L = Li in this
case, and our claim holds.

At this point we have the data needed for the application of Proposition
10.1 of Chapter III. As we are in characteristic two the condition R3.2 falls
away. So we conclude by applying that proposition.

11. Notes
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§1 of Chapter III Pseudoreflection groups

This material is applied in Chapter VII and represents a major departure from

the approach taken in the finite case.

§2 of Chapter III Zassenhaus groups

This material is used in Chapter VI.

The classification theorem of DeBonis and Nesin is given in [81], and makes

use of a body of material from [82]; it is also treated completely in [51, 11.90,
p. 245]. Its hypotheses are the goal to which all of the analysis in Chapter VI is

directed. The theorem is applied in §4 of Chapter VI; the remainder of that chapter

is devoted to obtaining contradictions in configurations that diverge from this one.

Of course, the extensive calculations with elements of order three are modeled

on DeBonis/Nesin. Calculations with a similar flavor occur also in the finite theory.

§3 of Chapter III Suzuki groups

This material deals with an extreme configuration which arises in Chapter VI,

specifically in §§1 of Chapter VI,7 of Chapter VI, and again in the last section of

Chapter VII. Some of its methods are also used in §4 of Chapter III.

In the finite case Suzuki 2-groups were both named and classified by G. Higman

[109, 116].
The topic was treated in the context of groups of finite Morley rank by Davis

and Nesin [79], whose treatment we follow with minor adjustments. They also

deal in part with Suzuki 2-groups without assuming freeness, a matter which we

generally leave aside.

Here we required Suzuki groups to be nilpotent. It suffices for the arguments

given to have them nilpotent by finite, which is no restriction at all in the context

of groups of finite Morley rank, since we deal with 2-groups. We do not know

whether the main result holds for quadratically closed fields, in the absence of a

model theoretic hypothesis. One might also wish to examine the broader framework

in which locally nilpotent groups are allowed.

We note that Nesin’s work on Zassenhaus groups and free Suzuki groups dealt

very early on with two essential minimal configurations on which the entire classi-

fication of groups of even type is based. It took quite some time before the theory

was sufficiently developed to make good use of these results.

§4 of Chapter III Landrock-Solomon

This result was given in [4, §4]. It corresponds closely in content to the re-

sult of Landrock and Solomon in [128]. The method of proof used here relies on

connectedness.

We noted the relationship of Proposition 3.8 of Chapter III with the analysis of

Suzuki 2-groups in [79]. There is a close connection between these two topics. This

proposition finds further application in a different situation arising in the detailed

analysis of a configuration we encounter late in Chapter VII, specifically in the

proof of Lemma 1.7 of Chapter VII.
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§5 of Chapter III A theorem of Baumann

In this section we carry over the results in [169] to the context of groups of

finite Morley rank of even type. The adaptation to groups of finite Morley rank

was given in [6, Appendix], following closely the notation and the arguments of

[169], which uses the amalgam method.

While that method is not intrinsically tied to the theory of finite groups, and

lends itself to much broader application, still there are some deviations here from

the arguments as given in [169], and that for a number of reasons: on the one

hand the representation theory of SL2(K) over the field of 2 elements now involves

infinite dimensional representations, and in particular ranks are used rather than

dimensions to compare sizes; secondly, rather than passing to a free product with

amalgamation (or in graph theoretical terms, a tree) we work here in the context

of an ambient group of finite Morley rank. However in Chapter IX, which concerns

“quasithin” groups, we will work with the amalgam method in another way, leaving

the category of groups of finite Morley rank and returning to it at the end, much

as occurs in the case of finite groups.

There is also an important deviation is in the statement of the theorem itself.

Our condition (P ) is weaker than the most natural analog of Stellmacher’s condi-

tion, and thus the result is stronger. It is essential for applications that the proof

goes through with this slightly weaker assumption.

Our main goal is the simpler statement given later as Proposition 2.2 of Chapter

VIII,

§6 of Chapter III Generalized n-gons

The classification in the case of finite Morley rank (Theorem 6.2 of Chapter

III) is from [126], and relies on a major classification theorem announced by Tits,

and proved by Tits and Weiss in a modified form. The proof of the classification

theorem is outlined in [136], and given in full in [179], along with existence proofs

and a great deal of clarifying material. They reduce the three complex cases to

simpler cases. This was prior to the publication of [179], and in that context

was by far the easiest approach to document. The potential nondefinability of the

ambient field in case 16.4 of [179] is noted in [126, 3.6].

§7 of Chapter III Buildings and (B,N)-pairs

The classification is from [126].
The criterion in terms of pairwise BN -pairs is from [145], and is the basis of

the proof of Theorem 8.1 of Chapter III in the following section.

We noted that Fact 7.15 of Chapter III incorporates within it a characterization

of Coxeter groups due to Goldschmidt. One of the essential points in any classifi-

cation project like ours is to pin down the Coxeter group at some point. We have

two different approaches to this; one uses the theory of complex reflection groups,

and the other goes via this result of Goldschmidt, but tacitly, when Fact 7.15 of

Chapter III is invoked.
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§8 of Chapter III A theorem of Niles

The finite version is in [145], and the adaptation to the case of finite Morley

rank is in [34].

§9 of Chapter III Signalizer functors

The nilpotent signalizer functor theorem generalizes a result given in [51]. In

the finite case one has also a solvable signalizer functor theorem, lacking in general

in the context of finite Morley rank because of difficulties with torsion-free groups.

In odd type groups, Burdges has shown that one can extract a nilpotent signalizer

functor from a solvable one.

§10 of Chapter III Generic identification

This material comes from [36], with variations incorporated from [59]. The

general approach was suggested to us by Lyons, and is similar to [102, Cor. 2.9.6].
Compare [176].

While this material allows us to circumvent the classification of buildings in Tits

rank at least three, we still rely on the classification of Moufang polygons in our

treatment of quasithin groups, in conjunction with the amalgam method. The mass

of material needed could be reduced by taking into account the full configuration

on hand, but it could not be easily done away with completely. The axioms for

Moufang polygons capture much of the essence of the information obtained by the

amalgam method, so in sense the logical continuation of the argument at that point

amounts to the classification of at some classes of Moufang polygons, though from

a point substantially farther along than at the beginning of that theory.

There is no particular reason to restrict the argument to characteristic two, but

in that case one would work with K∗-groups rather than with L∗-groups.





CHAPTER IV

Generic Covering and Conjugacy Theorems

If you already have group coverage, the experts
recommend hanging onto it no matter what . . .
— Teresa McUsic,

Heal (Summer 2007)

Introduction

The present chapter will complete our development of general tools use-
ful for the classification problems to be dealt with in Parts B and C. It is
complementary to the preceding chapter, dealing in topics in which global
model theoretic ideas take precedence over the close consideration of spe-
cific configurations, with a leading role being played by considerations of
genericity and generic conjugacy. We are particularly fond of this chapter,
as it represents an approach which is both geometrical and model theoretic,
whose DNA carries markers associated with the theory of algebraic groups.
This has a noticeable impact on the flavor of the theory as a whole, which
is not simply the transposition to our domain of the very powerful methods
of finite group theory.

In the first section we will again encounter good tori and begin to make
good use of them. In particular we will see in Proposition 1.15 of Chapter
IV that maximal good tori are conjugate. The following section introduces
generic covering arguments, based on very direct rank computations. These
lead in certain cases to the conclusion that the conjugates of a certain sub-
group, or coset, are generic in the ambient group, and this type of fact may
be used sometimes as a substitute for a conjugacy theorem, or in other cases
as a step on the way toward a conjugacy theorem (as is already the case in §1
with the conjugacy of maximal good tori). There are further results which
arise when one has a generic covering by good tori, and these are considered
separately in §3 of Chapter IV.

In the last two sections of the chapter we arrive at considerably more
concrete results.

In section §4 of Chapter IV we prove the striking Theorem 4.1 of Chap-
ter IV, which states that a connected group of degenerate type contains
no involutions. Here the model theoretic ideas of the present chapter are
combined with techniques we have not seen otherwise, coming from com-
putational group theory and specifically the theory of “black box groups”.
This result is a very convenient one to have available when working with
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248 IV. GENERIC COVERING AND CONJUGACY THEOREMS

L-groups, as it gives a measure of control over precisely those degenerate
sections about which we have assumed nothing. We would like to note,
however, that this result was not available when the material of Parts B
and C was first worked out, and its absence did not in fact lead to major
complications. Naturally, with that result in hand, we take advantage of
it wherever possible. Combining this result with the methods that we use
in Parts B and C to obtain classification results, we can also answer some
questions put forward by Poizat in the general theory of groups of finite
Morley rank. These were intended to cast some light on the difficulties as-
sociated with the classification project, so it seems appropriate that we can
now use the techniques developed for classification to settle some of these
problems, relating to generic equations and to the nontriviality of connected
centralizers.

In §5 of Chapter IV we come back to the further consideration of pseu-
doreflection groups, extending the existing K-group theory to the L-group
context. This has been deferred from its normal position in Chapter III to
allow us to make use of the model theoretic ideas of the present chapter.

One of the central techniques of this chapter is based on Lemma 3.6 of
Chapter I, the irreducibility of connected groups. The underlying philosophy
is as follows: one way to approximate a counterexample to the Algebraicity
Conjecture is by considering a disconnected group whose connected com-
ponent is algebraic; elements lying outside the connected component may
then exhibit pathological properties, if one thinks of them as elements of
the connected component. Configurations often arise in practice which can
be interpreted in this way. The problem is then to reach a contradiction by
showing that the group in question is disconnected, and this is often done by
constructing two disjoint generic sets. One can say a little bit more about
the origin of these generic sets. One of them would normally consist of the
generic elements of the connected component; another would consist of the
pathological elements (and their immediate relatives), making up a generic
subset of a distinct coset of the connected component. Still, sometimes one
cannot get the first generic subset at all, but one may compensate by getting
two generic, disjoint, pathological subsets. This happens in particular in the
analysis of groups of degenerate type.

The basic mechanism for constructing generic sets is the following: if an
almost self-normalizing subgroup is generically disjoint from its conjugates
(Def. 1.1 of Chapter IV) then the union of its conjugates is generic in the am-
bient group. This principle also applies to cosets of almost self-normalizing
subgroups (Lemma 1.8 of Chapter IV).

Overview

The main line of argument in the present chapter is the following. Let
G be a connected group of finite Morley rank, and H a definable connected
subgroup which is almost self-normalizing in the sense that H = NG

◦(H).
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Then heuristically one might expect the union
⋃
HG of its conjugates to be

generic, based on the expectation that

rk(
⋃
HG) = rk({Hg : g ∈ G})+rk(H) = rk(G)−rk(N(H))+rk(H) = rk(G)

Only the first equation is doubtful here; it will hold in the very common
case in which the conjugates of H are generically disjoint in the following
sense:

rk(H ∩
⋃

{Hg : g /∈ N(H)}) < rk(H)

or more generally, if the set of elements of H lying in infinitely many conju-
gates of H is non-generic in H.

Now the intersection of two generic subsets of G will itself be generic, so
the significance of this kind of result emerges when one either has another
generic subset already in view, or when the result can be applied to two
distinct groups.

For example, Proposition 1.15 of Chapter IV implies the following.

Conjugacy of Maximal Good Tori. Let G be a group of finite
Morley rank. Then any two maximal good tori of G are conjugate.

Here a good torus is one for which every definable subgroup is the de-
finable hull of its torsion subgroup. The result is proved more generally, for
decent tori (where the group in question is the definable hull of its torsion
subgroup) but this is a technical variation. Specific properties of good tori
are essential for the proof in either version.

Let us unpack this a little. Let T1 and T2 be two maximal good tori,
and consider the groups Hi = N◦(Ti) for i = 1, 2.

The first point is that with H = H1 or H2, the theory alluded to above
applies to H: H is almost self-normalizing and generically disjoint from
its conjugates. The first of these two claims is straightforward, the second
considerably more subtle. Both depend on rigidity properties of good tori,
three in number:

• N◦(T ) = C◦(T ).
• Any uniformly definable family of subgroups of T is finite.
• Any uniformly definable family of homomorphisms H → T (with
H and T both fixed) is finite.

The proofs of these rigidity principles are straightforward: the first holds
for decent tori by the results of Chapter I, and the other two are proved by
working in a highly saturated model (that is, a large elementary extension,
analogous to a universal domain) and observing that as the sets in question
are controlled by torsion elements, they have at most 2ℵ0 elements, and as
this is absolutely bounded regardless of the model considered, these sets
must be finite. The underlying idea here is captured quite well by the
following instance: if the cardinality of the set of rational points on a variety
is bounded, independently of the base field, then the variety is finite.
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So suppose we know that
⋃
HG

i is generic for i = 1 and 2; then we may
suppose in particular that H1 ∩ H2 > 1, and consider an element a ̸= 1
in the intersection. By the first rigidity principle, we have T1, T2 ≤ C◦(a).
If C◦(a) < G then we can argue inductively. The other possibility is that
Z(G) > 1, in which case either Z(G) is infinite and one argues inductively
again, after passing to a quotient, or else, finally, Z(G) is finite and after
factoring it out, one reduces to the case Z(G) = 1.

This line of argument illustrates quite well most of the themes of the
present chapter. There is one other point of an entirely different, and essen-
tial, character, coming from black box group theory, used in §4 of Chapter
IV in the proof that connected degenerate groups contain no involutions.
Here there are two quite distinct lines of argument. Supposing there are
involutions (and taking some pains to make sure they are noncentral) one
considers a fixed conjugacy class I0 of involutions, and one asks the following
question: for a generic pair (i, j) of involutions in I0, does d(⟨ij⟩) contain a
third involution? If the answer is No, black box group theory leads to the
conclusion that C(i) is connected, which is absurd, or rather becomes absurd
if one works in a minimal counterexample to our claim: a connected group
of degenerate type containing involutions, and so that no proper connected
definable subgroup contains involutions. If on the other hand the answer is
yes, we argue in a very different way, using a genericity computation of the
sort sketched above.

Let us examine this second genericity argument. Taking G once more
connected, of degenerate type, and containing (noncentral) involutions, and
minimal in the sense that no proper definable connected subgroup contains
involutions, we attach to an involution i the groupHi = N◦(. . . N◦(C◦(i)) . . . )
obtained from C◦(i) by taking normalizers until the sequence stabilizes. As
one easily reduces to the case in which the ambient group is simple, one has
Hi < G and by hypothesis i /∈ Hi, while of course i ∈ N(Hi). Now a close
examination of the coset iHi reveals that Hi is recoverable from any element
of this coset, and thus no element can belong to two distinct conjugates of
this coset. So we have the following: Hi is almost self-normalizing, and the
coset iHi is disjoint from its conjugates. Then a minor variation of the argu-
ment sketched above shows that the union

⋃
(iHi)

G is a generic subset of G.
Then arguing somewhat as in the case of maximal good tori, it follows that
the Sylow 2-subgroup of G is elementary abelian; the reason for this is that
we can work with elements of order four much as we work with involutions,
and arrive at two disjoint generic subsets of the same general form if there
are any such elements.

We have seen at this point that very simple genericity arguments give
a great deal of control over the Sylow 2-subgroup. Let us now sketch the
final contradiction toward which this all tends. Fix a Sylow 2-subgroup S.
Consider a generic pair of involutions (i, j) (they are all conjugate now, as
a consequence of our genericity arguments). Then (j, i) is another generic
pair, and has the same type over S as (i, j) does; this is an instance of
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the Fubini principle (or symmetry) of Chapter I. Suppose d(⟨ij⟩) contains
a third involution k. Then of course d(⟨ji⟩) contains this same involution.
From the pair i, j we define the set

Xij = {(a, b) ∈ S : ∃g(i, k)g = (a, b)}
and then with this definition we have

Xji = {(a, b) ∈ S : ∃g(j, k)g = (a, b)}
But as the pairs i, j and j, i have the same type over S, these sets coincide,
and hence the pairs (i, k) and (j, k) are conjugate, or in plainer language: i
is conjugate to j under the action of C(k). But by computation in d(⟨i, j⟩), j
is conjugate to ik under the action of C(k), and thus finally i is conjugate to
ik under this action, at which point we can replace the conjugating element
by a 2-element and conclude that the Sylow 2-subgroup is nonabelian, a
final contradiction.

Of course we simply invoked the hypothesis that for the generic pair
(i, j) above, we do find an involution in d(⟨ij⟩), which is not particularly
plausible. To eliminate the more plausible alternative we have recourse to a
black box group technique for which the reader can consult §4.4

Now let us mention some other results which play a leading role in later
chapters. The first repackages Wagner’s results on fields of finite Morley
rank in positive characteristic along with the conjugacy argument.

Lemma 1.6 of Chapter IV. Let A⋊H be a group of finite Morley rank
in which A, H, and the action are definable. Assume that A is 2-unipotent
and H is connected of degenerate type, and acts faithfully on A. Then the
Borel subgroups of H are good tori, and are conjugate in H.

The results in §2 of Chapter IV are proved by genericity arguments
involving cosets, like the one we gave above, but in the simpler case when the
group H under consideration is also generically disjoint from its conjugates,
so that the set

⋃
HG is already generic, and any other generic set must meet

it (generically).
In §3 of Chapter IV we encounter a covering lemma which seems rather

technical—and certainly the proof is rather technical—but proves to be very
handy. In this result, we assume the ambient group has finite Morley rank
and is also sufficiently saturated. Then, specializing the statement slightly,
we have the following.

Theorem 3.1 of Chapter IV. Let F be a uniformly definable family
of good tori in G such that

⋃
F is generic in G. Then there is a maximal

good torus in F .

Let us consider just the simplest case to see why this is plausible. Sup-
pose that G is itself a good torus. In that case, the family F is finite by a
rigidity principle. So then one of the groups in it must be G. Of course, the
statement as we give it is considerably more powerful, and involves some
extended rank computations, but in the end it comes down to the same
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principle. But we have not given it in its most general form, and this is
important for applications. We can extend the theory of good tori to rigid
abelian groups, with a similar definition but omitting connectedness. For ex-
ample, a definable subgroup of a good torus is a rigid abelian group, and this
allows for greater flexibility. We need the version of Theorem 3.1 of Chapter
IV corresponding to this broader setting. So with the same hypotheses on
G, we may state the following.

Theorem 3.1 of Chapter IV. Let F be a uniformly definable family
of rigid abelian subgroups of G such that

⋃
F is generic in G. Then there

is a group A ∈ F such that A◦ is a maximal good torus in C(A).

To see that this is really a stronger statement, imagine for a moment
that every group in F is finite. Then the orders of the groups in F are
bounded, and the elements of G are generically of finite order, a situation
that may be called “Poizat’s nightmare”. In that case, the conclusion is that
G contains no good tori, a result which is not entirely trivial.

The proof of Theorem 3.1 of Chapter IV is rather unpleasant, largely
because of unavoidable definability issues that lead to a very heavy nota-
tion. But the trivial instance we have given above really does capture the
underlying idea.

At the end of this chapter, we return to the consideration of pseudoreflec-
tion groups and finally show that the classification extends to the L-group
context. Here the pseudoreflection groups themselves tend to play the role
of maximal good tori, and the line of analysis is at points very much in the
same vein as the preceding.

1. Borel subgroups

1.1. Almost self-normalizing good tori. A good deal of what we
do here will be extended in the next subsection, notably by replacing almost
self-normalizing good tori by maximal good tori. But the methods here
are more direct and the special configurations considered are of particular
importance. Furthermore, the essential rank computations are the same.
Still, the more powerful version in the following subsection also plays a
central role.

Definition 1.1. Let G be a group of finite Morley rank and H a defin-
able subgroup of G.

(1) H is almost self-normalizing if H is of finite index in N(H), or in
other words, N◦(H) ⊆ H.

(2) H is generically disjoint from its conjugates in G if

H \
⋃

g∈G\N(H)(H ∩Hg) is generic in H

or, in other words,

rk(H \
⋃

g∈G\N(H)

(H ∩Hg)) = rk(H)
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In this definition, it is not necessary to take H to be connected.

Lemma 1.2. Let G be a connected group of finite Morley rank and H
a definable subgroup of G which is almost self-normalizing and generically
disjoint from its conjugates in G. Then the union of the conjugates of H in
G is generic in G.

Proof. Let X = H \
⋃

g∈G\N(H)(H ∩Hg)). We have assumed rk(X) =

rk(H). Observe that X is invariant under N(H), and hence we can speak of

Xγ for γ ∈ N(H)\G. Thus
⋃
XG =

⋃
X(N(H)\G) (here N(H)\G is a set of

cosets). Furthermore, if Xg meets Xg′ then N(H)g = N(H)g′ and thus the
latter union is disjoint: rk(XG) = rk(X) + rk(N(H)\G) = rk(H) + rk(G)−
rk(N(H)) = rk(G) by hypothesis. And of course

⋃
HG ⊇

⋃
XG. □

The condition of generic covering by conjugates is of fundamental im-
portance. In [119] a group such that the union of its conjugates is generic
is called generous. In reductive algebraic groups, these are the groups con-
taining maximal tori.

Lemma 1.3. Let G be a connected group of finite Morley rank, and let
K1, H1, H2 be definable subgroups of G with K1 ≤ H1. Suppose in addition:

(1) K1 is almost self-normalizing in G;
(2) K1 is generically disjoint from its conjugates in G
(3)

⋃
GH

G
2 is generic in G.

Then the conjugates of H2 in G generically cover H1, in the sense that
H1 ∩

⋃
HG

2 is generic in H1.

Proof. Let X = K1\
⋃

g∈G\N(K1)
Kg

1 . Then X is N(K1)-invariant, and

N(K1) is the full stabilizer of X in G, while distinct conjugates of X are
pairwise disjoint.

By hypothesis, rk(X) = rk(K1). For any Y ⊆ X which is N(K1)-
invariant, and for any group H containing K1, we find:

rk(
⋃
Y H) = rk(Y ) + rk(NH(K1)\H) = rk(Y ) + rk(H)− rk(K1)

and hence
⋃
Y H is generic in H if and only if Y is generic in X.

Taking H = H1 here, we see that it suffices to show that Y = X ∩
⋃
HG

2

is generic in K1.
Let Z =

⋃
HG

2 . If X \Z is generic in K1, then
⋃
(X \Z)G is generic in G,

by our first remark with H = G. But for any g, (X \Z)g ≤ G \Z, and Z is
generic in G by hypothesis, which, as G is connected, is a contradiction. So
X \Z is nongeneric in K1, and hence X∩Z is generic in K1, as required. □

Lemma 1.4. Let G be a connected group of finite Morley rank and sup-
pose that T is a good torus in G. Then T is generically disjoint from its
conjugates in G.

Proof. The family F = {T ∩ T g : g ∈ G} is a uniformly definable
family of subgroups of T . Hence by Lemma 4.23 of Chapter I, this family
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is finite. It follows that the union
⋃

g∈G\N(T ) T ∩ T g is a finite union, hence

nongeneric in G. □

The following is a special case of the principle that maximal good tori
are conjugate, which will be given below.

Lemma 1.5. Let G be a connected group of finite Morley rank, and T1, T2
almost self-normalizing good tori in G. Then T1 and T2 are conjugate in G.

Proof. We apply Lemma 1.3 of Chapter IV with K1 = H1 = T1 and
H2 = T2. As both are good tori, they are generically disjoint from their
conjugates and hence the union of their conjugates is generic in G. The
hypotheses of the lemma apply, and T1 is generically covered by the uni-
formly definable family {T1 ∩ T g

2 : g ∈ G}, which must be a finite family
since T1 is a good torus. So we have T1 ⊆ T g

2 for some g, and as T1 is almost
self-normalizing we find T1 = T g

2 . □

Lemma 1.6. Let A⋊H be a group of finite Morley rank in which A, H,
and the action are definable. Assume that A is 2-unipotent and H is con-
nected of degenerate type, and acts faithfully on A. Then the Borel subgroups
of H are good tori, and are conjugate in H.

Proof. The Borel subgroups of H are 2⊥-groups and hence are good
tori by Proposition 11.7 of Chapter I. Borel subgroups are always almost
self-normalizing, so the preceding corollary applies to show that the Borel
subgroups are conjugate. □

Corollary 1.7. Let A ⋊H be a group of finite Morley rank in which
A, H, and the action are definable. Assume that A is 2-unipotent, H is of
degenerate type, and the kernel of the action is a solvable subgroup of H.
Then the Borel subgroups of H are conjugate.

The following variant of Lemma 1.2 of Chapter IV is occasionally useful.
The proof is essentially the same.

Lemma 1.8. Let G be a connected group of finite Morley rank, H a
definable subgroup of G which is almost self-normalizing, and H1 a coset of
H in G which is generically disjoint from its conjugates in G. Then the
union of the conjugates of H1 in G is generic in G.

Proof. The only point requiring attention is the notion of generic dis-
jointness. Here one considers H1 \

⋃
g∈G\N(H)H

g
1 . A point to note is that

for g ∈ N(H) we have either Hg
1 = H or H1 ∩Hg

1 = ∅, so we may replace
N(H) here by N(H1), if we extend the notation so that the latter is in fact
defined. With these conventions one may then use the same proof. □

We will pursue this important theme further in Lemma 2.1 of Chapter
IV. What we have so far is sufficient for a number of applications.
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1.2. Maximal good tori and maximal decent tori.

Lemma 1.9. Let H be a connected group of finite Morley rank, T a good
torus of H. Suppose T is central in H. Let F be a uniformly definable
family of subgroups of H, none of which contain T .

Then the union
⋃
F is not generic in H.

Proof. There are only finitely many intersections of the form X ∩ T
for X ∈ F (Lemma 4.23 of Chapter I). So passing to a subfamily of F we
may suppose that the intersections X ∩ T for X ∈ F are independent of X.
After taking a quotient we may even suppose that X ∩ T = 1 for X ∈ F .

Now suppose
⋃
F is generic in H. Then by the Fubini principle (Lemma

2.1 of Chapter I (5)), there is a coset V of T in H such that V ∩
⋃
F is

generic in V . We may suppose that g ∈ V ∩
⋃
F is chosen to minimize the

rank and degree of the definable hull d(g).
Then for gt ∈ V ∩

⋃
F , we have d(gt) ≤ d(g) × T , and d(gt) ∩ T = 1.

Hence the projection π1 : d(gt) → d(g) is injective, and by the choice of
g, also surjective. It follows that the group d(gt) is the graph of a ho-
momorphism ht : d(g) → T . Furthermore, if gt ∈ X ∈ F , and we set

X̃ = X ∩ (d(g) × T ), then as d(gt) ≤ X̃ and X̃ ∩ T = 1, the same con-

siderations show that d(gt) = X̃. Thus the family of homomorphisms
{ht : gt ∈

⋃
F} is uniformly definable, and hence finite (Lemma 4.23 of

Chapter I).
On the other hand, for X ∈ F , we have |V ∩X| ≤ 1, and hence V ∩

⋃
F

is finite, contradicting the genericity. □

It is sometimes useful to extend the range of applicability of this result
a little, at the price of a few additional lemmas.

Definition 1.10. A divisible abelian group T of finite Morley rank is
called a decent torus if it is the definable hull of its torsion subgroup.

There are a number of alternative ways to formulate this notion.

Lemma 1.11. Let T be a divisible abelian group of finite Morley rank.
Then the following conditions are equivalent.

(1) T is the definable hull of its torsion subgroup.
(2) Any nontrivial quotient of T by a definable subgroup contains tor-

sion.
(3) Any quotient of T by a maximal proper connected definable subgroup

of T is a good torus.
(4) T/Φ(T ) is a good torus.

Proof. (1 =⇒ 2). If K is a proper definable subgroup of T , then by
(1) the torsion of T is not contained in K, and thus T/K contains torsion.

(2 =⇒ 3). Let H < T be a maximal proper connected subgroup of
T . If the torsion subgroup of T/H is finite then after factoring it out we
contradict (2). So the torsion subgroup of T/H is infinite and by minimality
of T/H, the latter is a good torus.
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(3 =⇒ 4). As Φ(T ) is a finite intersection of maximal proper de-
finable connected subgroups of T , this implication follows from the closure
properties of the class of good tori with respect to extensions.

(4 =⇒ 1). let T0 be the definable hull of the torsion subgroup of T . If
T0 < T then T0ϕ(T ) < T by Lemma 5.19 of Chapter I and thus T/T0ϕ(T )
is a nontrivial good torus. In particular this quotient contains torsion, and
as that torsion lifts to T (Lemma 2.18 of Chapter I), we contradict the
definition of T0. □

We need some formal properties as well.

Lemma 1.12.

(1) If T is a decent torus and T̄ is a definable quotient of T , then T̄ is
a decent torus.

(2) Let 1 → T0 → T → T1 → 1 be a short exact sequence with T0
◦ and

T1 decent tori and T divisible abelian. Then T is a decent torus.

Proof. We make use of criterion (2) for decency. Then the first point
is immediate. As for the second point, any quotient of T is the middle term
of a similar short exact sequence, and by criterion (2) it suffices to show that
T contains some torsion. This holds by lifting (Lemma 2.18 of Chapter I) if
T1 is nontrivial, and otherwise T = T0. □

Lemma 1.13. Let H be a connected group of finite Morley rank, T a
decent torus in H. Suppose T is central in H. Let F be a uniformly definable
family of subgroups of H, none of which contain T .

Then the union
⋃
F is not generic in H.

Proof. We consider H̄ = H/Φ(T ) and the corresponding family F̄ . If
X̄ ∈ F̄ contains T̄ , then T ≤ XΦ(T ) and T = Φ(T )(X ∩ T )◦, and thus
T ≤ X by Lemma 5.19 of Chapter I, contradicting our hypotheses. So
Lemma 1.9 of Chapter IV applies to H̄, T̄ , and F̄ and thus the union

⋃
F̄

is nongeneric in H̄, and its preimage
⋃
F is nongeneric in H. □

Lemma 1.14. Let G be a connected group of finite Morley rank, T a
decent torus in G, and H = C◦(T ). Then

(1) H is generically disjoint from its conjugates in H.
(2)

⋃
HG is generic in G.

Proof. Let T0 be the maximal decent torus contained in Z(H). Then
N◦(H) ≤ N◦(T0) = C◦(T0) ≤ C◦(T ) = H. Hence H is almost self-
normalizing in G. Furthermore we may suppose T = T0.

In view of Lemma 1.2 of Chapter IV, the second point will follow from
the first. So we focus on the first point.

Let F = {H ∩Hg : g ∈ G \ N(H)}. We claim that
⋃
F is not generic

in H. Suppose T ≤ H ∩Hg. Then as T g is central in Hg and is a maximal
decent torus of Hg, we have T ≤ T g, hence T = T g and H = Hg. So the
previous lemma applies to F . □
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Proposition 1.15. Let G be a group of finite Morley rank. Then any
two maximal decent tori of G are conjugate, and the same holds for maximal
good tori.

Proof. As the maximal good tori are contained in maximal decent tori,
it suffices to treat the case of decent tori.

We proceed by induction on the rank of G. We may suppose that G is
connected. Let T1, T2 be two maximal decent tori of G.

Suppose first that G is centerless. Let Hi = C◦(Ti). As
⋃
HG

i is generic
in G for i = 1, 2, we may suppose H1 ∩H2 ̸= 1. Let h ∈ (H1 ∩H2)

×. Then
T1, T2 ≤ C(h) and we may conclude by induction.

If G has an infinite center, then by induction we may suppose that
T2 ≤ Z(G)T1. But Z(G)T1 is nilpotent, and from the structure of nilpotent
groups of finite Morley rank it follows that T1 is central in Z(G)T1, so this
is an abelian group, and by maximality T2 = T1.

Now suppose that G has a finite center. Then G/Z(G) is centerless [51,
elementary], and the first case applies. So after conjugating we may suppose
T2 ≤ (T1 · Z(G))◦ = T1, and thus T2 = T1. □

We have the following corollary, where now we must return to the case
of good tori.

Corollary 1.16. Let G be a group of finite Morley rank, and F a
uniformly definable family of good tori in G. Then the tori in F fall into
finitely many conjugacy classes under the action of G.

Proof. Let T be a maximal good torus in G. Every torus in F is
conjugate to a subtorus of T , so we may as well suppose that every torus in
F is a subtorus of T . In that case F is finite by the second Rigidity Lemma
(Lemma 4.23 of Chapter I, part 2). □

1.3. Rigid abelian groups. The theory of good tori has another mild
extension, to the not necessarily connected case, which is well worth record-
ing.

Definition 1.17. A rigid abelian group is a group of finite Morley rank
which is abelian, whose connected component is a good torus.

An equivalent and highly relevant condition is the following: a rigid
abelian group is a good abelian group A such that the annihilator A[n] =
{a ∈ A : na = 0} is finite for all n.

These have much the same properties as good tori, notably the finite-
ness of families of uniformly definable subgroups, and in carrying out cer-
tain genericity arguments we will find we need to deal directly with discon-
nected groups (in some cases, one may even need to deal seriously with finite
groups).

Remark 1.18. A definable subgroup of a rigid abelian group is a rigid
abelian group.
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We can prove generic disjointness from the conjugates for these groups,
extending the result for good tori. This is based on the following useful
principle.

Lemma 1.19. Let H be a group of finite Morley rank such that H/H◦

is cyclic. Then the complement in H of a finite union of proper definable
subgroups has full rank.

Proof. This is little more than a combination of the result for the cases
of connected groups and finite cyclic groups.

In general, there is a coset C ofH◦ inH which generatesH. IfH1, . . . ,Hn <
H are proper definable subgroups, we consider their intersections with C.
Evidently these are proper as well. In particular any groups Hi which con-
tain H◦ are disjoint from the coset C, and the remainder meet C in a set of
lower rank. □

Lemma 1.20. Let G be a group of finite Morley rank and A a definable
rigid abelian subgroup with A/A◦ cyclic. Then A is generically disjoint from
its conjugates.

Proof. The proof is the same as for good tori, using the previous
lemma. □

1.4. Carter◦ subgroups. In §8.4 of Chapter I we gave a good deal
of the general theory of Carter subgroups of connected solvable groups of
finite Morley rank. There is also a very interesting theory for groups which
are not necessarily solvable, but in that case it is appropriate to loosen the
definition a little.

Definition 1.21. Let G be a group of finite Morley rank. A Carter◦

subgroup of G is a connected nilpotent subgroup of finite index in its nor-
malizer.

Example 1.22. Let A be a connected abelian group of finite Morley rank
and H an extension of A by an involution i acting on A by inversion. Then
A is a Carter◦ subgroup. If A is a 2⊥-group, then ⟨i⟩ is a Carter subgroup.
If A is a divisible abelian 2-group, then H has no Carter subgroup.

As this example shows, the two notions are quite distinct. Experience
suggests that it is the notion of Carter◦ subgroup which is the useful one.
In fact, the recent literature uses the term “Carter subgroup” in place of
our “Carter◦ subgroup”. We avoid this usage only because we include some
older material in Chapter I.

The existence of Carter◦ subgroups in arbitrary connected groups of
finite Morley rank has also been shown [91], but we do not have space here
to develop the relevant machinery.

It can be shown that for G connected solvable of Morley finite rank,
the two notions of Carter subgroup coincide [89]. We remark that by the
definition, a Carter◦ subgroup of G or of G◦ is the same thing.
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There is a conjugacy result which falls very much in the line of the
present chapter, which we will now give. The following terminology is a
recent and we think useful innovation by Jaligot.

Definition 1.23. Let G be a group of finite Morley rank and X a de-
finable subset. We say that X is generous in G if

⋃
XG is generic in G.

There are a number of related open problems concerning Carter◦ sub-
groups, of a fundamental character. One is the conjugacy of Carter sub-
groups, which seems to us out of reach at present. Another is the existence
of a generous Carter◦ subgroup. Linking these two problems is the following
noteworthy structural fact.

Theorem 1.24. Let G be a connected group of finite Morley rank. Then
any two generous Carter◦ subgroups of G are conjugate.

This is another “conjugacy of tori” result. While it has a different char-
acter from the conjugacy of maximal good tori, there is a certain affinity
not only in content but in the mechanism of the proof.

For the proof, we begin with yet another version of Lemma 1.2 of Chapter
IV.

Lemma 1.25. Let G be a connected group of finite Morley rank and H
a definable, connected, and almost self-normalizing subgroup of G. Let F be
the family of all conjugates of H in G. Then the following are equivalent.

(1) H is generous in G.
(2) The definable set

H0 = {h ∈ H : {X ∈ F : h ∈ X} is finite}
is generic in H.

(3) The definable set

G0 = {g ∈
⋃
HG : {X ∈ F : g ∈ X} is finite}

is generic in G.

Proof. We make a rudimentary geometry in which the points are the
elements of

⋃
HG, and the lines are elements of the family F of conjugates

of H in G, with incidence given by membership.
Observe that rk(F) = rk(G/N(H)) = rk(G) − rk(H) since H is al-

most self-normalizing. So considering the incidence relation I as a subset
of

⋃
HG × F , and projecting onto F , as the fiber above X ∈ F is the set

X ⊆
⋃
HG, whose rank is rk(H), we get

rk(I) = rk(F) + rk(H) = rk(G)

On the other hand, projecting in the other direction, onto
⋃
HG, the

fibers will be of variable rank, but one value, say r, will occur generically,
and then we have

rk(I) ≥ rk(
⋃
HG) + r
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NowH is generous if and only if rk(
⋃
HG) = rk(G), and by the preceding

equations this implies

r = 0

The fiber above g ∈
⋃
HG is the set {X ∈ F : g ∈ X} referred to in

condition (3). So we see that (1) implies (3).
Now observe that G0 =

⋃
HG

0 since the fiber ranks are invariant under
conjugation. If H0 is not generic in H, then by comparing the rank of the
union making up G0 to the rank of the corresponding disjoint union, we find

rk(G0) ≤ rk(H0) + rk(G/N(H)) < rk(G)

contradicting (3). So (3) implies (2).
Finally, supposing (2) holds we will prove (1). We make another rudi-

mentary geometry in which the points are the elements of
⋃
HG

0 and the
lines come from the family F0 of conjugates of H0 in G, with an incidence
relation I0 ⊆

⋃
HG

0 ×F0 given by membership.
Observe that the normalizer of the set H0 coincides with N(H), since H

is connected and therefore H0 generates H. Thus rk(F0) = rk(G/N(H)) =
rk(G)− rk(H0). Now the projection of I0 onto the second factor has fibers
in F0, all of rank rk(H0), so rk(I0) = rk(F0) + rk(H0) = rk(G).

Now observe that the projection of I0 onto the first factor has finite
fibers, since each conjugate of H contains a unique conjugate of H0. Thus
rk(

⋃
HG

0 ) = rk(I0) = rk(G). So (1) follows. □

Now the following very pretty result will give the theorem immediately.

Lemma 1.26. Let G be a connected group of finite Morley rank, and
F a uniformly definable family of Carter◦ subgroups of G, closed under
conjugation. If g ∈ G belongs to finitely many elements of F , of Q, then g
belongs to at most one element of F .

Proof. Let Fg be the set of elements of F which contain g, and X =⋂
Fg its intersection. Then Fg is also the set of elements of F which contain

X. Hence N(X) acts on the finite set Fg, by conjugation, and thus N◦(X)
normalizes each group in Fg. But these are Carter

◦ subgroups, and it follows
that N◦(X) is contained in each group in Fg, and thus N◦(X) ≤ X.

On the other hand if X ≤ Q ∈ Fg, then as Q is connected and nilpotent
and NQ(X) ≤ X, we find X = Q. Hence Fg contains at most one element.

□

Proof of Theorem 1.24 of Chapter IV. Let Q1 and Q2 be gener-
ous Carter◦ subgroups of G, and F the family consisting of all their con-
jugates. By Lemma 1.25 of Chapter IV, a generic element of G belongs
to finitely many elements of F , and hence by Lemma 1.26 of Chapter IV,
to just one. On the other hand a generic element of G belongs to both a
conjugate of Q1 and a conjugate of Q2; so these groups are conjugate. □

We make a further observation concerning the notion of generosity.
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Lemma 1.27. Let G be a group of finite Morley rank and H a definable
subgroup of G. If H is generous then H is almost self-normalizing.

Proof. Let X be the disjoint union of the conjugates of H, suitably
interpreted in G. Then

rk(X) = rk(H) + rk(N(H)\G) = rk(G)− (rk(N(H)/H))

Now X maps definably onto
⋃
HG, so if H is generous then rk(X) ≥ rk(G).

Hence rk(N(H)/H) = 0. □

2. Generic cosets

We deal here with variations on a standard genericity argument, contin-
uing in the line of Lemmas 1.2 of Chapter IV, 1.8 of Chapter IV, 1.25 of
Chapter IV, but with more emphasis on cosets and less on subgroups. The
underlying idea runs roughly as follows: if the conjugates of a Borel sub-
group B generically cover the connected group G, and if N(B) > B, then
one might expect that the conjugates of a coset of B in N(B) would give a
disjoint generic subset, and a contradiction. The matter is not so simple as
that: for example, in simple algebraic groups, the conjugates of a maximal
torus cover the group generically, but the normalizer of the torus is strictly
larger, and this is the source of the Weyl group. Admittedly, the underlying
geometry that allows this to happen is an interesting one in this case.

The basic principle is the following, which is more manageable in practice
than might immediately appear.

Lemma 2.1. Let G be a connected group of finite Morley rank and H
a proper definable almost self-normalizing subgroup of G such that

⋃
HG is

generic in G. Let x ∈ N(H) \H. Then the set

X = {x1 ∈ xH : x1 ∈ (⟨x⟩H)g for some g ∈ G \N(H)}
is generic in xH.

Proof. Suppose the contrary, and let Y = xH \ X. Then Y ⊆ ⟨x⟩H
and rk(Y ) = rk(H). For g ∈ G \N(H) we have Y ∩ Y g = ∅ since Y ∩ Y g ⊆
Y ∩ (xH)g = ∅. So the usual rank computation shows

rk(
⋃
Y G) = rk(

⋃
Y N(H)\G) = rk(Y ) + rk(G)− rk(H) = rk(G)

and
⋃
Y G is generic in G. As G is connected, it follows that

⋃
Y G meets⋃

HG, and thus Y meets some conjugate Hg of H. Since Y ∩ H = ∅, it
follows that g /∈ N(H), but then Y ∩Hg = ∅, a contradiction.

So Y is not generic in xH, and consequently X is generic in xH. □

As we will see, this result combines well with results about torsion ele-
ments such as the following.

Lemma 2.2. Let H be a group of finite Morley rank with H◦ abelian, and
let x ∈ H \H◦ be an element so that for some fixed integer n, the elements
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of xH◦ are generically of order n. Then every element of the coset xH◦ is
of order n.

Proof. We may suppose xn = 1. Then there is an element r in the
integral group ring Z[x], such that for h ∈ H◦ the condition

(xh)n = 1

can be expressed (additively) in the form rh = 0. Our assumption is that
the annihilator of r in H◦ is generic in H◦, and hence, as it is a subgroup,
is equal to H◦. □

The following is a specialized variant of this type of argument, needed
in Chapter VI.

Lemma 2.3. Let G be a connected group of finite Morley rank and sup-
pose that there is a definable divisible abelian subgroup T of G which is
almost self-normalizing and such that the intersection of any two distinct
conjugates of T is finite. Then for any x ∈ N(T ) \ T , the centralizer CT (x)
is finite.

Proof. By our hypothesis, the set {T∩T g : g ∈ G\N(T )} is a definable
family of finite sets; hence they are of bounded order, and as T is divisible
abelian, their union is finite. Accordingly T is generically disjoint from its
conjugates. Thus the union of the conjugates of T is generic in G.

We are now set up for a genericity argument. The set

X = {x1 ∈ XT : x1 ∈ (⟨x⟩T )g, some g ∈ G \N(T )}
is generic in xT . For each element x1 of X, if n = [N(T ) : T ] then we have
xn1 ∈ T ∩ T g for some g ∈ G \N(T ), a group of bounded order. So there is
an absolute exponent N such that xN1 = 1 for all x1 ∈ xT . As this holds
generically, it holds over the whole coset xT , by the preceding lemma. Now
for t ∈ CT (x), the conditions x

N = (xt)N = 1 imply tN = 1; as T is divisible
abelian, the subgroup defined by this condition is finite. □

3. Generic covering

We now take up the subject of generic covering from a different point of
view. We aim to show that a generic covering of a connected group by good
tori, and more generally by rigid abelian subgroups, necessarily involves
at least one “maximal” subgroup in an appropriate sense. A good torus
is maximal if it is maximal within the class of good tori. A rigid abelian
group A, on the other hand, will be considered maximal if A◦ is maximal
among good tori centralizing A. The proof of the next result is long and
technical, dealing mainly with issues of definability (if one chooses to ignore
those issues, only the last few paragraphs are relevant). We will also make
a saturation hypothesis here, which can be avoided at the cost of additional
combinatorics ([68, §3]). For our intended applications such a hypothesis is
harmless. We will call G “sufficiently saturated” if it is |L|+-saturated, with
L the underlying first order language.
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Theorem 3.1. Let G be a sufficiently saturated group of finite Morley
rank, and F a uniformly definable family of rigid abelian subgroups of G
such that

⋃
F is generic in G. Then there is a group A ∈ F such that A◦

is a maximal good torus in C(A).

An equivalent way to formulate the condition on A would be the follow-
ing.

If A ≤ Ã with Ã rigid abelian, then [Ã : A] <∞.

And it is equally clear in this formulation that this is a notion of maximality.

Proof. The family F is a definable subset of Geq , possibly involving
parameters. We may treat these parameters as constants and assume that
the family is 0-definable.

We will first make some adjustments to the family F . By Fact 3.17
of Chapter I, there is a finite bound m = mF on the indices [A : A◦] for
A ∈ F . Therefore m! · A = A◦ for all A ∈ F , and A◦ is uniformly definable
from A. Accordingly the modified family F̂ = {A◦⟨a⟩ : A ∈ F , a ∈ A} is
another uniformly definable family of rigid abelian subgroups, covering the
same subset of G, and with the added condition that A/A◦ is cyclic for all

A ∈ F̂ .
Now we will prove our claim for the family F̂ . Since each A ∈ F̂ is

contained in some B ∈ F our result then follows easily for F . So we may
again write F for F̂ , and assume that the groups in F are finite cyclic
extensions of good tori.

We may now begin. Suppose toward a contradiction that for every
A ∈ F there is a definable rigid abelian subgroup Ã of G such that A ≤ Ã
and [Ã : A] = ∞. We may suppose further that the groups in question

have the form Ã = A · Ã◦. We can put Ã into some 0-definable family of
subgroups of G, which may not necessarily all be rigid. We will find it useful
to make this precise, aiming at condition (∗) below.

With A and Ã fixed, there is a definition ϕÃ(x, ā) for Ã involving pa-
rameters ā from G. We may associate to any formula ϕ(x, ȳ) the uniformly
definable family

Cϕ = {ϕ[G, ḡ] : ϕ[G, ḡ] is an abelian group}
where ḡ varies over G. As the set

{ḡ ∈ Gl(ȳ) : ϕ[G, ḡ] is an abelian group}
is 0-definable, the family Cϕ is 0-definable, as a subset of Geq . In particular,

the group Ã belongs to CϕÃ
, but this family need not consist exclusively of

rigid abelian groups. We need to refine the construction further to get some
approximation to rigidity.

Fix mϕ so that the indices [A : A◦] are bounded by mϕ for A ∈ Cϕ. We
introduce the abbreviation “B ≪φ A” to stand for the condition

A = B ·mφ!A & [A : B] > mϕ
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For A ∈ Cϕ and B ∈ F this implies: A = B · A◦, hence A/A◦ is cyclic, and
A◦ > B◦. The converse also holds when A ∈ Cϕ and B ∈ F , if A is a rigid
abelian group (in which case mϕ!A = A◦ is a torus).

Let C∗
φ be

{A ∈ Cφ : ∃B ∈ F B ≪φ A}
Then for A ∈ C∗

φ, we have A◦ = mφ!A, and the quotient A/A◦ is cyclic. In
particular degree(A) is uniformly definable from A for A ∈ C∗

φ.

Since Ã is rigid, the set of intersections {Ã ∩ A : A ∈ C∗
φÃ

∪ F} is finite

(Lemma 4.23 of Chapter I), of size kÃ, say. For any finite k and any formula
φ(x, y), we may consider the family

C∗
φ,k = {A ∈ C∗

φ : |{A ∩B : B ∈ C∗
φ ∪ F}| ≤ k}

The family C∗
φ,k is uniformly definable over ∅ (i.e., 0-definable as a subset of

Geq ) since F ∪ C∗
φ is, and k is fixed.

By our choice of kÃ, we have Ã ∈ C∗
φÃ,kÃ

.

The preceding discussion may be summarized as follows:

(∗) For every A ∈ F there exists a finite number k, a
formula φ, and some A ∈ C∗

φ,k such that A≪φ A.

We claim next that condition (∗) holds uniformly: there exist finitely
many pairs of the form (φ1, k1), . . . , (φn, kn), consisting of formulas φi and
natural numbers ki as in (∗), such that for any A ∈ F the pair (φ, k) in (∗)
can be taken to be one of the (φi, ki).

Indeed, consider the following 1-type p(S) in Geq , where φ varies over
all formulas defined over ∅ and k varies over all natural numbers, and S is
a variable. of a suitable sort for representing elements of F .

S ∈ F ; ¬∃X ∈ C∗
φ,k (S ≪φ X)

Observe that the cardinality of this 1-type is at most the cardinality of the
language |L|.

By condition (∗), the type p(S) is not realized in Geq . As we take G to
be |L|+-saturated, we conclude that p(S) is inconsistent. Hence there are
finitely many formulas φi and natural numbers ki (i ≤ n) such that

S ∈ F =⇒ ∃i ≤ n ∃X ∈ C∗
φi,ki

(S ≪φi X)

This is the desired uniformity.
Let C∗

i = C∗
φi,ki

. Before proceeding, it will be convenient to modify this

choice of the C∗
i . We would like the rank and degree rk(A), degree(A) for

A ∈ C∗
i to be constant; this is achieved by partitioning C∗

i into finitely many
subsets on which the rank and degree are constant—and the defining formula
φi is altered accordingly, while n, the number of formulas, increases. Let
ri = rk(A) for A ∈ C∗

i (a constant), and similarly di = degree(A) for A ∈ C∗
i .

We will write ≪i for ≪φi .
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Now with φi, ki (1 ≤ i ≤ n) as described, let C∗
i = C∗

φi,ki
and set

F i = {A ∈ F : ∃X ∈ C∗
i (A≪i X)}

Then F i is a uniformly definable family, over ∅.
We now pass to rank computations. We have

⋃
F generic in G, and F

is the union of the F i, so for some i the union
⋃
F i is generic in G. To reach

a contradiction it suffices to show that rk
(⋃

F i
)
< rk (

⋃
C∗
i ).

For A ∈ C∗
i , let XA =

⋃
{B ∈ F : B ≪i A} and let YA =

⋃
{A ∩ B :

B ∈ Ci, B ̸= A}. Note that if A ̸= B with A,B ∈ Ci, then A ∩ B < A, as
rk(A) = rk(B) and degree(A) = degree(B). Thus XA and YA are unions of
proper subgroups of A, and by the definition of the classes Cφ,k only finitely
many subgroups are involved. We consider these two sets in more detail.

The subgroups making up XA have infinite index in A, so their union
has rank less than ri. Furthermore ZA = A \YA has rank ri by Lemma 1.19
of Chapter IV

As ZA ∩ ZB = ∅ and rk(ZA) = ri for A ̸= B in C∗
i , we have rk (

⋃
C∗
i ) ≥

ri + rk(C∗
i ). On the other hand rk

(⋃
F i

)
≤ rk (

⋃
{XA : A ∈ C∗

i }) < ri +

rk(C∗
i ). Thus rk

(⋃
F i

)
< rk (

⋃
C∗
i ), as claimed. This contradicts the sup-

posed genericity of F i and proves the theorem. □

Lemma 3.2. Let G be a sufficiently saturated group of finite Morley rank,
T a good torus in G, and K = CG

◦(T ). Suppose that K is generically covered
by a family of intersections {K ∩ Kg} where g varies over some definable
subset of G, and where each of these intersections is a rigid abelian group.

Then K contains a good torus which is almost self-normalizing in G.

Proof. By Theorem 3.1 of Chapter IV, there is at least one intersection
B = K ∩Kg in the specified family which is maximal in the following sense:
B◦ is the unique maximal good torus of CK(B). We will show that B◦ is
almost self-normalizing in G.

As T is central in K, we have T ≤ B. Thus C◦(B◦) ≤ C◦(T ) = K.
Similarly T g ≤ C◦(B) ≤ K. Since T g ≤ CK(B), the maximality condition
implies T g ≤ B. So again, C◦(B◦) ≤ C◦(T g) = Kg.

So N◦(B◦) = C◦(B◦) ≤ K∩Kg = B, and B◦ is almost self-normalizing.
□

4. Degenerate type groups

In this section we will prove the following result about groups of degen-
erate type. The proof is given in §4.5 of Chapter IV

Theorem 4.1. Let G be a connected group of finite Morley rank and
degenerate type. Then G contains no involutions.

This result is of considerable use in treating groups which may have
sections of degenerate type, and yet it is not actually essential to any of the
applications given in Parts B or C, though it has other applications which
we will give in the present section.
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4.1. The function d(g). In a group G of finite Morley rank, we con-
sider the function d(g) which associates to an element g its definable hull in
G. This function d, with G as its domain and range among the definable
subgroups of G, is not usually a definable function. Indeed, for g of finite
order, d(g) is nothing but the cyclic group generated by g, and thus typically
the values of d include finite sets of unbounded size, something which is not
possible for a definable function.

On the other hand it is convenient to use the function d to define other
definable functions, and it is useful to systematize this process. One way
to proceed is by introducing a definable approximation d̂ to the function d
which has analogous properties. In principle such an approximation can be
refined arbitrarily, and there is no canonical choice. However the following
will cover all of our needs (and if one replaces 2 by an arbitrary prime, it
appears to cover every application of the method currently envisaged).

Lemma 4.2. let G be a group of finite Morley rank with Sylow 2-subgroups
of bounded exponent. Then there is a definable function d̂(a), from elements
of G to definable subgroups of G, with the following properties.

(1) d(a) ≤ d̂(a);

(2) If d(a) = d(b), then d̂(a) = d̂(b);

(3) For g ∈ G, we have d̂(ag) = d̂(a)g;

(4) d̂(a) is abelian;

(5) The groups d(a) and d̂(a) have the same Sylow 2-subgroup;

(6) If x ∈ G conjugates a to its inverse, then x normalizes d̂(a) and
acts on it by inversion.

Proof. Consider the following two functions.

• d1(a) = Z(C(a)).
• d2(a) = d1(a)

q⟨a⟩ where q is a bound on the order of the 2-torsion
in G.

One sees easily that d1 is definable and satisfies our first four conditions.
As [d2(a) : d1(a

q)] ≤ q it follows easily that d2 is also a definable function,
and it also satisfies condition (1), and inherits conditions (2− 4) from d1.

Furthermore, d2(a) also satisfies the fifth condition, since d1(a) is abelian
and d1(a)

q is 2-torsion free.
Now to achieve the final point, let d3(a) be the subgroup of d2(a) con-

sisting of elements inverted by every element that inverts a. □

4.2. Minimization. We examine the structure of a minimal counterex-
ample to Theorem 4.1 of Chapter IV.

Lemma 4.3. Let G be a connected group of finite Morley rank and degen-
erate type, containing an involution, and minimal among all such groups.
Then Ḡ = G/Z(G) is simple and contains an involution, while no proper
definable connected subgroup of Ḡ contains an involution.
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Proof. By our minimality hypothesis no proper connected subgroup of
G contains involutions. If H < G is a nontrivial definable connected normal
subgroup, then passing to G/H we contradict the minimality of G. So Z(G)
is finite and G/Z(G) is simple. It suffices to show that G/Z(G) contains
involutions.

Supposing the contrary, after passing to a quotient of G we may suppose
that Z(G) is a 2-group. We now introduce a function

η : G→ Z(G)

which though not necessarily a homomorphism will be covariant with respect
to the action of Z(G). This is defined as follows.

For g ∈ G, we consider the subgroup d̂(g), which splits as d̂(g)q × Sg,

with q the exponent of Z(G) and Sg ≤ Z(G) the Sylow 2-subgroup of d̂(g)

(or of d(g)). So the projection π2 : d̂(g) → Sg is well-defined, and we may
set η(g) = π2(g) ∈ Z(G).

The desired covariance property is the following.

η(zg) = zη(g) for z ∈ Z(G), g ∈ G

Writing g = g0s with g0 ∈ d(g)q and s ∈ Sg, we have gq0 ∈ d(zg) and as
d(gq0) is 2-divisible, and d(g0) is uniquely 2-divisible, we have g0 ∈ d(zg).

But zg = g0zs and hence zs ∈ d(zg) ≤ d̂(zg) as well, and our claim follows.
Now in view of the covariance of the map η, its fibers have constant

rank. Thus G is partitioned by the fibers of η into finitely many sets of
equal rank, and as G is connected this yields a contradiction (Lemma 3.6 of
Chapter I). □

We will use a similar argument again in §4.5 of Chapter IV.

4.3. Genericity. Let us now suppose the following.

(†)
G is a simple group of finite Morley rank and degenerate
type, containing an involution, while no proper connected
definable subgroup of G contains an involution.

Let q be a the exponent of a Sylow 2-subgroup of G.
We will show that the generic elements of G lie outside every proper

connected subgroup of G, and we will pin down their location with sufficient
precision to give useful structural information. In particular we will show
that the Sylow 2-subgroup of G is elementary abelian.

Definition 4.4.

(1) Let i ∈ G be an involution. Set

Hi = N◦(. . . (N◦(C◦(i))) . . . )

where the operator N◦ is applied sufficiently many times to ensure
that it stabilizes.

(2) Let a ∈ G, and suppose d(a) contains an involution i. Set Ha = Hi.
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Observe that Ha is well-defined in clause (2), as the Sylow 2-subgroup
of d(a) is cyclic, and that the two notations (1) and (2) are compatible. We
have the following formal properties whenever the groups in question are
defined.

(1) Ha is a proper definable connected subgroup of G;
(2) Ha = N◦(Ha) (“almost self-normalizing”);
(3) a ∈ N(Ha) \Ha;
(4) Hag = Hg

a .

We check the first and third points. Let i ∈ d(a) be an involution. For
the first point, note that C◦(i) > 1 in view of Lemma 10.3 of Chapter I. For
the third point, we have i /∈ Hi by our hypothesis on G, and hence a /∈ Hi.

The following property lies deeper.

Lemma 4.5. Let a ∈ G, and suppose d(a) contains an involution. Then
the following hold.

(1) For c ∈ aHa we have Ha = Hc, and hence aHa = cHc.
(2) The union

⋃
g∈G(aHa)

g is generic in G.

Proof. For any c ∈ aHa, there is some c′ ∈ d(c) ∩ iHa and hence some
involution j ∈ d(c′) ∩ iHa. In particular j ∈ d(c) and Hc = Hj .

Now the group Ha⟨i⟩ = Ha⟨j⟩ has a Sylow 2-subgroup of order two, and
hence i and j are conjugate under the action of Ha. But Hi = Ha and hence
Hj = Ha, so Hc = Ha. So the first claim holds.

For the second point, we show first that aHa is disjoint from its conju-
gates (aHa)

g for g /∈ N(Ha). So suppose we have an element c ∈ (aHa) ∩
(aHa)

g. Then Hc = Ha by the preceding lemma and similarly Hc = Hag =
Hg

a . So Ha = Hg
a , and g ∈ N(Ha).

Now we may apply Lemma 1.8 of Chapter IV to conclude that
⋃

g∈G(aHa)
g

is generic in G. □

This has the following structural consequence.

Lemma 4.6. Under the hypothesis (†), the Sylow 2-subgroup of G is
elementary abelian.

Proof. We claim there is no element of order four. If on the contrary a
is an element of order four, then the cosets aHa and a

2Ha consist of elements
c such that moduloHc the element c is of order four or two, respectively. But⋃
(aHa)

G and
⋃
(a2Ha)

G are both generic, and this is a contradiction. □

At this point, we shift gears and invoke quite different methods, inherited
from “black box” group theory.

4.4. Black box methods. We retain the hypothesis (†) of the preced-
ing subsection.

For the moment we need not invoke the results of our genericity argu-
ments. Rather we introduce a crucial case division, dispose of one case using
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so-called “black box” group theoretic methods, and then return to handle
the other case using the information from the last subsection.

We turn to the case division. Fix a conjugacy class of involutions C, and
note that as this set can be identified definably with G/C(i) for any fixed
i ∈ C, it has Morley degree one. Thus the notion of “generic element” or
pair of elements in C is robust. The first case we will treat is the following
one.

(Case I)
For generic and independent i, j ∈ C
the group d(ij) contains no involution.

The following two facts are elementary but important, and are used in
combination.

Lemma 4.7. Let G be a group of finite Morley rank and a an element of
G. Suppose that the Sylow 2-subgroups of G have bounded exponent. Then
the following conditions on the group d(a) are equivalent.

(1) d(a) contains no involutions.
(2) d(a) is 2-divisible.
(3) d(a) is uniquely 2-divisible.

On the other hand, if d(a) does contain an involution, then that involution
is unique.

Lemma 4.8. Let G be a group of finite Morley rank with Sylow 2-subgroups
of bounded exponent, and i, j involutions of G. Let a = ij. Then d(i, j) =
d(a)⋊ ⟨i⟩, where i acts by inversion on d(a). Furthermore, i and j are con-
jugate under the action of d(a) if and only if d(a) contains no involution.

Proof. Since i inverts a, i inverts d(a). If i ∈ d(a) then d(i, j) = d(a)
is abelian and we arrive quickly at a contradiction. So i /∈ d(a) and the
structure of d(i, j) is clear.

For b ∈ d(a) we have ib = b−1ib = ib2 and thus ib = j if and only if
b2 = a. If d(a) contains no involution then we can find b ∈ d(a) with b2 = a
and ib = j. Conversely, if d(a) contains an involution then as the Sylow
2-subgroups have bounded exponent, we have

d(a) = A× C

with A 2⊥ and C a cyclic 2-group. Then a = a1c with a1 ∈ A and c a
generator of C. Evidently the equation b2 = a has no solution in d(a). □

This leads to consideration of the following partial functions from the
group G to C(i), for any fixed involution i, under the hypothesis that the
Sylow 2-subgroups of G have bounded exponent.

(1) ζ0(g) is the unique involution in d(i · ig), if d(i · ig) contains an
involution;

(2) ζ1(g) is the unique element in gd(i · ig) ∩ C(i), if d(i · ig) contains
no involution
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Indeed, under our hypothesis ζ0 is well-defined on its domain. So suppose
d(i ·ig) contains no involution. Then this group is 2-divisible, and there is an
element x ∈ d(i · ig) conjugating i to ig, so gx−1 belongs to C(i)∩ gd(i · ig).
As far as uniqueness is concerned, if x, y ∈ C(i) ∩ gd(i · ig), then x−1y ∈
C(i) ∩ d(i · ig) is both centralized and inverted by i, hence is an involution
or trivial, and as there is no involution in d(i · ig) we conclude x = y.

One could also compute more directly that x−1 = xi = x[x, i] = xigi and
thus x2 = iig, so that x is uniquely determined within d(i · ig), symbolically

x =
√
iig, with the square root operation restricted to d(i · ig), though this

extra precision is useful mainly as a way of verifying the existence of x.
The functions ζ0 and ζ1 are definable, because we can replace d by

d̂ everywhere in their definitions, and the Sylow 2-subgroups remain the
same. The uniqueness argument also relies on the properties of d̂ given at
the outset, which mimic the properties of d.

Lemma 4.9. Case (I) does not occur.

Proof. Assume we are in Case (I). We again use a covariant function
in the manner of Lemma 4.3 of Chapter IV.

We fix i ∈ C and consider the definable partial function ζ1 : G → C(i)
discussed above, which is defined on a generic subset of G, namely

ζ1(g) ∈ C(i) ∩ gd(iig)
It follows by inspection of the definition that we have the covariance property

ζ1(cg) = cζ1(g)

for g in the domain of ζ1 and c ∈ C(i). This implies that the fibers of ζ1
are of constant rank, say f , and hence that any subset of C(i) of rank r
lifts under ζ1 to a subset of G of rank r + f . Now since i ∈ C(i) \ C◦(i),
the group C(i) is disconnected and hence has disjoint subsets of full rank,
and these lift under ζ1 to disjoint generic subsets of G, which contradicts
the connectivity of G. □

4.5. Proof of Theorem 4.1 of Chapter IV. In order to prove that a
connected group of degenerate type contains no involutions, it suffices now
to focus on the remaining Case II:

(Case II)
For generic and independent i, j ∈ C
the group d(ij) contains a unique in-
volution.

Supposing G to be a counterexample, then after applying Lemma 4.3 of
Chapter IV we arrive at the following minimal configuration.

• G is simple.
• No proper definable connected subgroup of G contains an involu-
tion.

Now fix a conjugacy class of involutions C in G. In view of Lemma 4.9
the following will hold.
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By Lemma 4.6 the Sylow 2-subgroups of G are elementary abelian. This
then yields the following.

Lemma 4.10. If i, j are involutions and k ∈ d(ij) is an involution, then
i and j are not conjugate under the action of C(k).

Proof. We show first that i and ik are not conjugate in C(k). Suppose

on the contrary iu = ik with u ∈ C(k). Then iu
2
= i and u acts on the

group ⟨i, k⟩ as a nontrivial automorphism of order two. It follows that d(u)
contains a 2-element with the same action, and as G has abelian Sylow
2-subgroups this is impossible.

On the other hand, as in the case of ordinary dihedral groups one may
see that the group d(i, j) has two conjugacy classes of noncentral involutions,
represented by i and j, and in particular j is conjugate to ik under the action
of d(ij), and in particular under C(k). If i is conjugate to j under C(k) then
i is conjugate to ik under C(k) and we have a contradiction. □

Now we may conclude our proof by a model theoretic argument.
Fix a Sylow 2-subgroup S of G and consider a pair i, j of involutions in

C which are independent and generic over S, that is to say with the elements
of S treated as constants. Define a subset Si,j ⊆ S × S as follows:

{(s, t) ∈ S × S : (i, k) ∼ (s, t)}

Here k is the unique involution in d(ij), and “∼” refers to conjugacy under
the action of G. As i and k commute, the set Si,j is nonempty.

Now the pair (i, j) and the pair (j, i) have the same type over S, so
Si,j = Sj,i. As the involution k is also the unique involution in d(ji), this
means that (i, k) and (j, k) are conjugate to the same pairs in S × S, and
hence to each other. But to conjugate (i, k) to (j, k) in G means that i
is conjugated to j in C(k). This contradicts the preceding lemma, and
completes the proof of Theorem 4.1 of Chapter IV.

4.6. No decent tori. Our results on degenerate type groups have an
interesting application to some very general problems put forward by Bruno
Poizat. He stressed their relationship to the classification project, and indeed
it turns out that the methods of the classification project are sufficiently
developed to shed some light on these problems, as we will see in the next
subsection. But we can avoid an appeal to the classification of even type
groups from Part C by treating the following special case.

Theorem 4.11. Let G be a connected group of finite Morley rank con-
taining no nontrivial decent torus. Then G/O2

◦(G) has degenerate type.

This is a reformulation of the content of the Algebraicity Conjecture in
this limited case. We leave it as an exercise for the interested reader to
derive this result directly from the Algebraicity Conjecture (or Theorem, as
we deal with even type).
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Before taking up the proof of Theorem 4.11 of Chapter IV, we will
examine both its main hypothesis and its conclusion more carefully. The
following clarifies the hypothesis.

Lemma 4.12. Let G be a group of finite Morley rank. Then the following
are equivalent.

(1) G contains no nontrivial decent torus.
(2) There is no prime p for which G contains a nontrivial p-torus.
(3) No definable section of G is a good torus.

These conditions are inherited by passage to definable sections or elementary
extensions.

Proof. Let us show first that condition (2) passes to elementary ex-
tensions. So suppose that in an elementary extension G∗ of G we have a
nontrivial p-torus T0, and consider A = d(T0). Then A is definable and
p-divisible, and contains p-torsion; this property passes to the elementary
substructure G and contradicts (2). So (2) is preserved by passage to ele-
mentary extensions.

As the third condition is inherited by definable sections, it suffices now
to check the stated equivalences.

The equivalence of the first two is clear.
The third condition implies the first, since every nontrivial decent torus

has a nontrivial good torus as a definable quotient (Lemma 1.11 of Chapter
IV).

It suffices to check now that (2 =⇒ 3), and since condition (2) is inher-
ited by definable subgroups, we need only concern ourselves with definable
quotients. So suppose that Ḡ is a definable quotient of G and that Ḡ con-
tains a good torus, and in particular contains a p-torus T̄0 for some p. Each
element t̄ of T̄0 lifts to a p-element t of G, and hence the groups Z(C(t)) as
t varies over G contain p-subgroups of unbounded order. It follows easily
that an elementary extension of G contains a p-torus, and thus as we have
seen G also contains a p-torus, contradicting (2). So (2 =⇒ 3). □

The conclusion of Theorem 4.11 of Chapter IV also deserves further
analysis.

Lemma 4.13. Let G be a connected group of finite Morley rank containing
no decent torus and U = O2

◦(G). Suppose that G/U is of degenerate type.
Then G = U · CG(U).

Proof. Let G be a counterexample of minimal rank. Let A = Z◦(U).
Then G/CG(A) is a group of degenerate type acting faithfully on A. By
Lemma 1.6 of Chapter IV, the Borel subgroups of G/CG(A) are good tori,
hence trivial, and thus G centralizes A.

On the other hand by the minimality of G, the group G/A = (U/A) ·
CG/A(U/A). Let H/A = CG/A(U/A). Then G = UH and [H,U ] ≤ A.

For any 2⊥-subgroup X of H we have [X,U ] = 1. It follows that
H/CH(U) is a 2-group, and thus H ≤ UCH(U), and G = UCG(U). □
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Let us now take up the structure of a minimal counterexample to the
theorem.

Lemma 4.14. Let G be a group of finite Morley rank containing no non-
trivial decent torus, and such that O2

◦(G) is not a Sylow◦ 2-subgroup of G.
Suppose that G is of minimal rank among such groups. Then the following
hold.

(1) Z(G) is finite and G/Z(G) is simple.
(2) For U ≤ G a nontrivial definable 2-subgroup, not contained in

Z(G), setting H = N◦(U) and V = O2
◦(H), we have H = V CH

◦(V )
and H/V is of degenerate type.

Proof.
Ad (1). It follows from the minimality hypothesis and Lemma 4.12 of

Chapter IV that O2
◦(G) = 1 and that U2(G) = G. We must show that

G contains no nontrivial proper definable connected normal subgroup H.
Supposing the contrary, with Ḡ = G/H our minimality hypothesis implies
that Ḡ/O2

◦(Ḡ) is of degenerate type; since also Ḡ = U2(Ḡ) we find that
Ḡ is a 2-group. Let S be a Sylow◦ 2-subgroup of G. Then G = HS, and
by Proposition 10.13 of Chapter I we have S ≤ C(H). Thus S ≤ O2

◦(G),
contradicting our hypothesis. This proves the first point.

Ad (2). With U , H, and V as specified, observe that H = N◦(U) < G.
Thus by minimality H/V is of degenerate type, and by Lemma 4.13 of
Chapter IV we have H = V CH(V ). □

Now let us fix our notation in accordance with the preceding lemma. We
may take G to be a group of finite Morley rank and even type, containing no
decent torus, and of minimal rank among such groups, and we may factor
out Z(G). We then have the following conditions.

(∗)
G is simple, and for U ≤ G a nontrivial definable 2-
subgroup, setting H = N◦(U) and V = O2

◦(H), we have
H = V CH

◦(V ), with H/V of degenerate type.

Now, using the notion of strong embedding, we can arrive quickly at a
proof of Theorem 4.11 of Chapter IV.

Lemma 4.15. Let G be a group of finite Morley rank and even type
satisfying the conditions (∗) above. Let S be a Sylow◦ 2-subgroup of G.
Then N(S) is strongly embedded in G.

Proof. We show first that

N(S) is weakly embedded in G

For this, it suffices to show that for U ≤ S nontrivial, connected, and
definable, we have N(U) ≤ N(S).

Supposing the contrary, take U ≤ S maximal connected definable such
that H = N(U) is not contained in N(S). Evidently U < S. Let V =
O2

◦(N(U)). As V is a Sylow◦ 2-subgroup of H, it follows that U < V and
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thus N(V ) ≤ N(S). Now N(U) ≤ N(V ) ≤ N(S), a contradiction. This
proves that N(S) is weakly embedded in G.

Now it suffices to prove that C(i) ≤ N(S) for any involution i ∈ N(S).
Let U = CS

◦(i), a nontrivial connected definable 2-group. Then N(U) ≤
N(S). Let V = O2

◦(C(i)). Then V is a Sylow◦ 2-subgroup of C(i) and
thus contains U . Furthermore NV (U) ≤ N(S) so NV

◦(U) ≤ CS
◦(i) = U . It

follows that V = U and N(V ) ≤ N(S). In particular C(i) ≤ N(S). □

Proof of Theorem 4.11 of Chapter IV. Assuming the theorem fails,
we find a group G of finite Morley rank and even type satisfying the hypoth-
esis (∗) above. Then with S a Sylow◦ 2-subgroup of G we find that N(S) is
strongly embedded in G. Setting H = N◦(S), we have H = S · CH(S).

Now all involutions of N(S) are conjugate under the action of N(S)
(Lemma 10.12 of Chapter I). In particular they all lie in Z(S). But H
acts trivially on Z(S) and hence S contains only finitely many involutions,
contradicting our assumptions. □

4.7. An application. Poizat has pointed out that the Algebraicity
Conjecture has some very general consequences, reflecting the presence of
a natural topology in the algebraic case; most notably, an equation which
holds generically in a connected group should hold identically. The case of
a generic equation of the simple form xn = 1 is particularly striking, and
apart from low values of n (2 or 3) or special contexts (solvable groups), this
problem has long resisted in analysis. We will prove the following, which is
a substantial step in a more general direction.

Proposition 4.16. Let G be a connected group of finite Morley rank
which generically satisfies the equation

xn = 1

for some fixed n. Then O2(G) is unipotent and G/O2(G) contains no invo-
lutions, and generically satisfies the equation

xn0 = 1

where n0 is the odd part of n.

This has the following noteworthy consequences.

Corollary 4.17. Let G be a connected group of finite Morley rank
which generically satisfies the equation

x2
k
= 1

Then G satisfies this equation identically.

Indeed, Proposition 4.16 of Chapter IV reduces this to the case in which
G is 2-unipotent, and hence nilpotent. We may conclude via Jaber’s Propo-
sition 5.32 of Chapter I.



5. PSEUDOREFLECTION L-GROUPS 275

Corollary 4.18. Let G be a connected group of finite Morley rank, and
a ∈ G an arbitrary element. Then C◦(a) is infinite.

Proof. If a ∈ G has a finite centralizer, then a has finite order and

its conjugacy class aG is generic in G, as is the conjugacy class of a−1G.
Thus a and a−1 are conjugate in G. By Proposition 4.16 of Chapter IV, the
quotient group Ḡ = G/O2(G) contains no involutions. However the images
ā and ā−1 are conjugate, and as Ḡ contains no involutions it follows that
ā = ā−1. Thus a ∈ O2(G) is a 2-element and by Corollary 4.17 of Chapter
IV G is 2-unipotent. Then passing to a nontrivial abelian quotient of G, the
image of aG is both generic and trivial, and we have a contradiction. □

Proof of Proposition 4.16 of Chapter IV. Let G be a connected
group of finite Morley rank of generic exponent n. Let U be a Sylow◦ 2-
subgroup of G.

We will proceed by induction on the rank of G. We claim:

G contains no decent torus

If G contains a nontrivial decent torus and if T is a maximal such, then
H = N◦(T ) is generically disjoint from its conjugates, that isH\

⋃
g/∈N(H)H

g

is nongeneric in H, and
⋃
HG is generic in G. Again, as H is generically

disjoint from its conjugates, the subset of H consisting of elements of order
n must itself be generic in H. As H = C◦(T ), some coset of hd(T ) in H
must also satisfy xn = 1 generically (Fubini), and hence h commutes with
d(T ), we conclude that d(T ) is itself of bounded exponent, a contradiction.
So there is no nontrivial p-torus in G for any p. In particular, taking p = 2,
we find that U is 2-unipotent.

As G contains no decent torus we may apply Theorems 4.11 of Chapter
IV and 4.13 of Chapter IV. Hence U is normal in G and G = U · CG(U).

Consider the quotientG/U , which again satisfies (∗) generically. AsG/U
is of degenerate type it contains no involutions, and thus we may replace n
by its odd part. □

We also can improve upon Lemmas 6.4 of Chapter II and 5.11 of Chapter
II at this point.

Lemma 4.19. Let G be a connected L-group of even type, and S a Sylow
2-subgroup of G. Then O2(G) and S are connected and definable.

Proof. The quotient G/U2(G) is of degenerate type, hence contains no
involutions. Thus O2(G) = O2(U2(G)) and S ≤ U2(G), and Lemmas 6.4 of
Chapter II and 5.11 of Chapter II apply. □

5. Pseudoreflection L-groups

It is now convenient to take up the theory of pseudoreflection groups
once more, continuing on from §1 of Chapter III. We extend the theory
from K-groups to L-groups, making use of Lemma 1.6 of Chapter IV along
the way. We recall the main definition.
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Definition 5.1. If A is an elementary abelian group then a torus T
acting on A is called a group of pseudoreflections on A if A = CA(T )×[A, T ]
and T acts faithfully on the second factor, and transitively on its nonzero
elements.

We will now pass to the L-group classification, with the same outcome
as in the K-group case. This depends on the treatment of the following
additional special case, where hypothetical degenerate type groups intervene
with a vengeance. We use Theorem 4.1 of Chapter IV to simplify the analysis
very slightly; the real difficulties lie elsewhere.

Proposition 5.2. Let H be a group of finite Morley rank of degenerate
type, acting faithfully and definably on a definable elementary abelian group
A. Suppose that H is generated by pseudoreflection subgroups. Then H is
abelian.

Proof. By Theorem 4.1 of Chapter IV, the group H contains no invo-
lutions.

We proceed by induction on the rank of the group AH, in other words,
on rk(A) + rk(H). As H is generated by connected definable subgroups, it
is connected. Thus [A,H] ≤ A◦, and it follows easily that H acts faithfully
on A◦. So we may suppose that A is connected. We may also suppose that
CA(H) = 1.

We suppose toward a contradiction that H is nonabelian, and we fix
two pseudoreflection subgroups T1, T2 of H which do not commute. By our
inductive hypothesis, we have H = ⟨T1, T2⟩.

Our first claim is the following.

(1) A is irreducible under the action of H

By Lemma 11.3 of Chapter I it suffices to check definable irreducibility.
Suppose the contrary, 1 < A0 < A with A0 H-invariant. Let V be

either of the H-modules A0 or A/A0. Then H/CH(V ) is still generated by
pseudoreflection groups (one of which may become trivial) and by induction
H/CH(V ) is abelian, so if K = CH(A0) ∩ CH(A/A0) then H/K is also
abelian. But K is a 2⊥-group so K acts trivially on A (Proposition 10.7 of
Chapter I) and thus K = 1, H is abelian.

Now we can limit the structure of H.

(2) σ◦(H) = 1

Assuming the contrary, H will have a normal infinite abelian definable
subgroup, and by Proposition 4.11 of Chapter I we may give A the structure
of a vector space over an infinite, definable field of characteristic two, on
which the group H acts linearly. Then by Fact 4.5 of Chapter II, H is a K-
group, and being both connected and of degenerate type, is solvable. Then
by Lemma 8.2 of Chapter I, H is abelian after all, a contradiction.

From this point onward, we no longer have any direct possibility of im-
posing a vector space structure on A. However, we may retain the intuition
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that [T,A] should be in some sense 1-dimensional. We will now fix just one
pseudoreflection subgroup T of H, and we set f = rk([T,A]), where “f”
stands, with pardonable optimism, for “field”. One might reasonably hope
that the rank of A would be a multiple of f , but at this point we know
nothing of the kind. However our next claim is very suggestive.

(3) rk(A) ≤ 2f and rk(CA(T )) ≤ f

Let H0 = ⟨T h : h ∈ H⟩. As H0 is connected and normal in H, it is
nonsolvable by (2). In particular, some conjugate T h of T does not commute
with T . So by minimality H = ⟨T, T h⟩. Then as A is irreducible, and the
sum

[T,A] + [T h, A]

is H-invariant (being T -invariant and T h-invariant), we have

A = [T,A] + [T h, A]

and rk(A) ≤ 2f . Again, A = CA(T ) ⊕ [T,A] and thus rk(CA(T )) ≤ f as
well.

(4) The Borel subgroups of H are good tori, and are conjugate.

This is Lemma 1.6 of Chapter IV. In our situation this is very strong.
It follows, in particular, that every Borel subgroup of H contains some
pseudoreflection subgroup of H, which it centralizes.

We next eliminate the extreme case in which CA(T ) = 1.

(5) CA(T ) > 1

Suppose the contrary: then the pseudoreflection subgroup T acts tran-
sitively on A×. As H acts faithfully on A, H = T · CH(a) for a ∈ A×.
Now if CH(a) is finite then we find H = T as H is connected, and this is a
contradiction as we assume H nonabelian. So CH(a) is infinite and contains
some infinite connected definable abelian subgroup H0. But then H0 is also
contained in a Borel subgroup, and hence commutes with a conjugate of T .
But H0 fixes a nontrivial point, and T acts acting transitively on A×, so the
fixed point set of H0 must be A, and we have a contradiction. This proves
(5).

(6)
If T1, T2 ≤ H are pseudoreflection groups with
[T1, A] = [T2, A], then T1 = T2.

If T1 and T2 commute, then [T2, CA(T1)] ≤ CA(T1) ∩ [T1, A] = 1, and
thus CA(T1) = CA(T2) = CA(T1T2). It follows easily that T1T2 acts freely
on [T1, A] and thus T1 = T2 in this case.

If T1 and T2 do not commute, then by minimality they generate H, and
hence [T1, A] = [T2, A] is H-invariant, forcing [T1, A] = A and contradicting
point (5). So (6) holds in either case.
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Now we make a case division, depending on whether or not we can find
two commuting pseudoreflection subgroups in H.

(Case I) There is a pair of commuting pseudoreflection subgroups of H.

For the duration of this case analysis, we fix such a commuting pair
T1, T2, and we set B = T1T2.

(I.1) B is a Borel subgroup of H.

Without loss of generality, the pseudoreflection group T considered pre-
viously is T1, and f = rk(T1) ≤ rk(T2). As T2 commutes with T1 it respects
the decomposition A = CA(T1) ⊕ [T1, A], and as T2 is a pseudoreflection
group, the subgroup [T2, A] is contained in one factor or the other. But
if [T2, A] ≤ [T1, A] then [T1, A] = [T2, A], forcing T1 = T2, which is not
the case. So [T2, A] ≤ CA(T1), and then by rank considerations we have
[T2, A] = CA(T1) and f = rk(T2). Thus the situation is symmetrical and
the decomposition of A can be written in a number of equivalent ways, e.g.,
A = [T1, A]⊕ [T2, A].

Now let B ≤ B1 with B1 a Borel subgroup of H. Then B1 is a good
torus and in particular is contained in C(T1T2). But it is easily seen from
the decomposition of A and the action of T1 and T2, that CH

◦(T1T2) = T1T2.
So B1 = B.

(I.2) The intersection of distinct Borel subgroups of H is finite.

Suppose on the contrary that (B ∩ B1)
◦ = X > 1 with B1 another

Borel subgroup of H. As Z(H) is finite, we have C◦(X) < H. But C◦(X)
contains B and B1, each of which is a product of pseudoreflection groups,
so by induction we may suppose that the subgroup generated by B and B1

is commutative. Since B and B1 are Borel subgroups, they then coincide.
Now we examine the conjugates of A1 = CA(T1).

(I.3) For g ∈ H \N(T1) we have Ag
1 ∩A1 = 1.

Suppose on the contrary a ̸= 1 belongs to CA(T1) ∩ CA(T
g
1 ). If T1 and

T g
1 do not commute, then by minimality they generate H, and a ∈ CA(H),

contradicting our initial setup. So T1 and T g
1 commute, in which case we

could take T2 = T g
1 and then as we have seen above CA(T

g
1 ) = [T1, A], so

the intersection is trivial.
Now we can arrive at a contradiction in this first case. We have rk(A1) =

f , rk(A) = 2f , and the conjugates of A×
1 under the action of H are pairwise

disjoint, while NH
◦(A1) = NH

◦(T1) = NH
◦(B) = B. Thus rk(H/B) ≤ f .

On the other hand for any g ∈ H \N(B) we have B ∩Bg finite, and hence
rk(H/B) ≥ rk(B) = 2f . So this is a contradiction.
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We pass to the second case.

(Case II) No two distinct pseudoreflection subgroups of H commute

As the Borel subgroups are abelian and conjugate, this produces the
following.

(II.1)
Every Borel subgroup of H contains a unique
pseudoreflection subgroup of H.

Let us fix a Borel subgroup B of H, and the corresponding pseudore-
flection subgroup T . Let HT = NH

◦(T ) = CH
◦(T ).

(II.2) HT is almost self-normalizing.

Observe that by our case hypothesis, T is the only pseudoreflection sub-
group of HT . Thus NH(HT ) ≤ NH(T ) and our claim follows.

(II.3) For g ∈ H \HT , we have HT ∩Hg
T ≤ Z(H).

Suppose on the contrary that X = HT ∩Hg
T is not central in H. Then

T, T g ≤ C◦(X) < H, and by minimality of H, T and T g must commute.
Then by our case assumption, g ∈ N(T ) = N(HT ).

As Z(H) is finite, we have the following as well.

(II.3) The union of the conjugates of HT in H is generic in H.

(II.4) For g ∈ H \N(T ), the rank of HT gHT is 2 rk(HT ).

We consider the natural map HT ×HT → HT gHT and we claim it has
finite fibers. So suppose

ugv = g

with u, v ∈ HT . That is, ug = v−1 ∈ Hg
T ∩ HT ≤ Z(H). It follows that

u = v−1 ∈ Z(H), and this is a finite set.
Now we may follow the line of argument of the previous case. Let AT =

CA(T ).

(II.5) For g ∈ H \N(T ) we have AT ∩Ag
T = 1.

By our case assumption T and T g do not commute, and so by minimality
of H we have H = ⟨T, T g⟩. But then H centralizes the intersection AT ∩Ag

T ,
which must be trivial.

(II.6) rk(H/HT ) ≤ f = rk(T )

We have rk(HT ) = rk(N(T )), rk(A) = rk(AT ) + f , and thus our claim
follows from the previous point.

Now combining (II.4) and (II.6), we will arrive at a contradiction. We
have f ≥ rk(H/HT ) ≥ rk(HT ). It follows that HT = T and rk(H) = 2f . In
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particular applying (II.4) to both g and g−1 with g ∈ H \ N(T ), we find
that TgT and Tg−1T are generic subsets of H, hence equal:

t1gt2 = g−1

for suitable t1, t2 ∈ T . Then (gt1)
2 ∈ T , gt1 /∈ T , and this produces an

involution, a contradiction. □

Theorem 5.3. Let A⋊H be a connected L-group of finite Morley rank
and of even type, in which A is an elementary abelian definable 2-subgroup
and H acts irreducibly and faithfully on A. Assume that H contains a group
T of pseudoreflections on A. Then A can be given a vector space structure
over an algebraically closed field K in such a way that H ≃ GL(A) acting
naturally.

Proof. We analyze the structure of H.

(1) O2(H) = 1

Indeed, CA(O2(H)) is nontrivial and H-invariant, hence equal to A, and
O2(H) = 1. By Lemma 6.10 of Chapter II, we then have U2(H) = E(U2(H)),

and H = U2(H) ∗ Ô(H).

(2) O(H) = 1

In the contrary case, our aim is to show that Ô(H) = O(H), which puts us
in the case of a K-group, treated in Theorem 1.5 of Chapter III.

We consider a series of definable Ô(H)-invariant subgroups

A = A0 > A1 > · · · > An = (0)

with successive quotients Ô(H)-minimal.
If O(H) acts trivially on some quotient Vi = Ai/Ai+1, then CAi(O(H))

covers Vi, by Proposition 9.9 of Chapter I. In particular, CA(O(H)) is
nontrivial in this case; but this group is H-invariant and must then be A,
forcing O(H) = 1, as desired.

So we suppose that O(H) acts nontrivially on every quotient Vi and

therefore by Proposition 4.11 of Chapter I we get a linear action of Ô(H)
on Vi with respect to some infinite definable field, varying with i. We apply
Proposition 4.5 of Chapter II to conclude that the quotient Ô(H)/CÔ(H)(Vi)

is aK-group, and hence solvable, for each i. Now considerH0 =
⋂

iCÔ(H)(Vi),

the kernel of all these actions. Then H0
◦ is a group of degenerate type, and

Proposition 10.7 of Chapter I applies, showing H0
◦ = 1. So H0 is finite,

hence central in Ô(H), hence solvable after all, and we find Ô(H) = O(H),
and H is a K-group, to which our earlier result applies. We therefore have
(2).

Again, leaving aside the K-group case already treated, we may suppose

(3) Ô(H) > 1
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Now we invoke the special case treated just above to reduce to the fol-
lowing case.

(4) U2(H) > 1

If H = Ô(H) is of degenerate type, we invoke Proposition 5.2 of Chapter
IV. Then H is abelian and it follows easily that H = GL(A) with A viewed
as 1-dimensional over a suitable field. Leaving this case aside, we have (4).

Now we may conclude. We fix a nontrivial torus R in U2(H), and a

definable simple normal subgroup K of Ô(H), using Lemma 8.34 of Chapter

I, bearing in mind that Ô(H) is connected and hence normalizes the simple
components of its socle. We consider the (R ×K)-module V = A/CA(R),
on which the torus R acts without fixed points. If we pass to a series of
definable (RK)-invariant subgroups

V = V1 > V2 > · · · > Vn = (0)

with successive quotients (RK)-minimal, then the action of R on each quo-
tient is nontrivial, by Proposition 9.9 of Chapter I. Accordingly, the action
of K on each factor is linear, by Proposition 4.11 of Chapter I, and thus as
K is simple and of degenerate type its action is trivial on each factor. Then
again by Lemma 10.7 of Chapter I we find that K is trivial, a contradic-
tion. □

6. Notes

The material in the present chapter has continued to evolve considerably as this

book was in preparation. Most of the more recent developments will have more of

an impact on the analysis of groups of odd type, but they combine neatly with our

results on even and mixed type to give some information about connected groups of

finite Morley rank in general, something that was not in view when we first began

work on the present text.

§1 of Chapter IV Borel subgroups The construction of Carter◦ subgroups in general

is found in [91]. It requires machinery we have no space for here, machinery which

has numerous applications to the study of groups of odd and degenerate type.

The theory of Carter◦ subgroups has implications for classification problems,

but is not involved in those aspects of the theory dealt with here, in Parts B and

C. At the present time it also has the flavor of an alternative to the classification

project, giving structural information of a geometric kind very reminiscent of the

behavior of tori in reductive algebraic groups, without passing through an inductive

analysis. The subject has interacted strongly with classification projects in odd type

groups and has potential for application in the very difficult degenerate type context

as well.

Our “Carter◦” subgroups are usually called simply Carter subgroups, and this

is justified by the fact that they coincide with the usual Carter subgroups in the
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connected solvable case. Our terminology is more cumbersome, but then we do not

actually use the more general theory here.

Maximal good tori are discussed in [68], which was inspired by arguments

found in early drafts of [13].

§2 of Chapter IV Generic cosets

The genericity argument used here is one of the earliest arguments developed

in the study of bad groups, and naturally depends on arguments in the style of §1
of Chapter IV. It has been developed further for various purposes, and was used

particularly heavily in [69].

§3 of Chapter IV Generic covering

The covering theorem, Theorem 3.1 of Chapter IV, first appears in [13], and
will be used toward the end of Chapter VI.

§4 of Chapter IV Degenerate type groups

The results on degenerate type groups are taken from [46], which contains

additional information about torsion in degenerate type groups, also for odd primes.

This section was not part of the first draft of the present book, but it eliminates a

host of minor complications which were treated originally by ad hoc modifications

of the main line of argument. But we stress that this plays an inessential role; as

one sees also in the case of finite groups, the main lines of argument are very robust

and can easily be adapted to handle a variety of complications, a point to which

we will return in the last chapter. Results which may seem to be essential when

one has them available for use often turn out to have been merely convenient, when

one is forced to work without them (see [29, p. 1] for a more forceful illustration

of this point).

The main line of argument, via the covariant map ζ1 : G → C(i), has an

unusual source: black box group theory [123], the study of efficient computation

in large groups for which random elements can be efficiently generated and (in most

cases) combined. Its direct antecedents may be found in [54, 16, 43]. This is a

very “global” line of argument, very different from what we do elsewhere, and not

particularly tied to any inductive framework. It has something in common with

techniques of finite group theory which are typically not available in our settings,

notably the transfer map, though as we use it here, the method is very tightly tied

to connectivity, which is of course not the case in the original black box setting,

where the global feature of interest is equidistribution.

This work was carried out at the Newton Institute, Cambridge, during the

month devoted to groups of finite Morley rank within the larger semester program

on model theory and its applications, in Spring 2005.
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§5 of Chapter IV Pseudoreflection L-groups

The treatment of pseudoreflection subgroups in the L-group context involves

some substantial issues relative to the K-group case, and in fact is the last point

in the adaptation of K-group methods to the L-group context that requires new

ideas. This material has not previously appeared, though the K-group version was

one of the central ingredients of [5]. With the pseudoreflection subgroup theory in

hand, the adaptation of the remainder of [5] is routine, given the technology already

developed at that point. This will be carried out in Chapter VII; the relevant L-
group techniques have already been presented in this first Part, and were developed

in [2] and a series of subsequent works aimed at the material we will give in Chapter

VI. There are some points in later chapters where the divergence between the K-

group theory and the L-group theory can be felt, but this is a matter of adaptation.

The most delicate point among these later developments is that “standard Borel”

subgroups continue to be solvable (Lemma 5.7 of Chapter VIII).

The proof of Lemma 5.2 of Chapter IV relies on Poizat’s linearization result

for the degenerate case, which goes through the theory of locally finite groups and

ultimately depends on the Feit-Thompson Odd Order Theorem.

The proof of point (II.2) within the proof of Proposition 5.2 of Chapter IV,

short as it is, is superfluous because pseudoreflection subgroups are good tori. This

suggests a point of contact between this result and earlier considerations in the

chapter.
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CHAPTER V

Mixed Type

Leges meas custodite
iumenta tua non facies coire
cum alterius in generis animantibus
agrum non seres diverso semine
veste quae ex duobus texta est non indueris

— Leviticus 19:19

Introduction

In this part, consisting of a single short chapter, we will prove the fol-
lowing.

Mixed Type Theorem. If every simple group of finite Morley rank of
even type is algebraic, then there is no simple group of finite Morley rank of
mixed type.

In Part C we will prove that every simple group of finite Morley rank of
even type is indeed algebraic. Hence we can eliminate simple groups of finite
Morley rank of mixed type absolutely. In an inductive approach, it may be
natural that we need to treat even type groups in order to treat mixed type
groups. But then we are very fortunate that we do not need to treat odd
type or degenerate type groups, which could also appear as sections of our
group.

We may sharpen the Mixed Type Theorem slightly, as follows. Recall
that a group of finite Morley rank is an L∗-group if every proper definable
connected infinite simple section of even type is a Chevalley group.

Mixed Type L∗ Theorem. There is no simple L∗-group of finite Mor-
ley rank of mixed type.

Another way to express the main result of Part C is that every group of
finite Morley rank is an L∗-group. One should observe that there is a strong
asymmetry in the L∗-hypothesis, as we make no assumption at all about the
structure of definable sections of odd type.

The proof of the Mixed Type L∗ Theorem is motivated by the following
considerations. If the group G in question were an L-group, then it would
follow that the subgroups U2(G) and T2(G) must commute, where U2(G)
is generated by its 2-unipotent subgroups, and T2(G) is generated by the
definable hulls of its 2-tori. This point will be established in §2 of Chapter
V. If one could establish this result for the ambient group G as well, this

287
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would furnish two nontrivial proper normal subgroups, in contradiction to
the assumed simplicity. Of course since G is not assumed to be an L-group
we have to reach some such conclusion by internal analysis.

Pursuing this line of thought, as the groups U2(G) and T2(G) are ex-
pected to commute, if we then fix a unipotent subgroup U or a 2-torus T ,
we find that T2(CG(U)) should be T2(G), and U2(CG(T )) should be U2(G).
Notice however that the groups T2(CG(U)) and U2(CG(T )) are necessarily
proper subgroups of the simple group G, so we have much better control
over them. We can therefore shift our goal slightly, and aim at proving that,
for example T2(CG(U)) is independent of the choice of U , in which case it
furnishes a nontrivial normal subgroup of G, and a contradiction reminiscent
of our original idea.

Now this second line of argument actually succeeds generically, namely
in the case where a certain graph U introduced below is connected, and
most of our actual analysis will be devoted to “mopping up” the specific
configurations that arise when the generic argument fails. This is of course
a common strategy in finite group theory, where however departure from
the main line often occurs at the outset, while the consideration of patho-
logical cases may then occupy hundreds of pages. Here the situation is more
balanced; the exceptional configuration in which the main line fails requires
as much attention as the main line, but not much more. The critical con-
figuration off the main line will be presented in §3 of Chapter V and then
exploited, twice, once in that section and once in the final §5 of Chapter
V. The two configurations involved have much in common. As is generally
the case in such circumstances, we are mainly concerned with the smallest
possible group, SL2(K).

To implement our overall strategy involves making use of the notions of
strong and weak embedding, which we now recall.

Definition. Let G be a group of finite Morley rank and M a subgroup.

(1) M is strongly embedded in G if for all g ∈ G we have

M ∩Mg contains an involution iff g ∈M

(2) M is weakly embedded in G if for all g ∈ G we have

M ∩Mg has an infinite Sylow subgroup iff g ∈M

We gave other criteria for strong and weak embedding in §§10.3 of Chap-
ter I and 4.3 of Chapter II.

These two notions are notions of largeness relative to G (or in more
graphic terminology, black hole properties relative to G). They become
interesting when M < G. Strong or weak embedding turns out to be a rare
occurrence in reality, but a common enough occurrence in configurations
which need to be driven to a contradiction—for example, when M is a well
understood subgroup of G which one hopes is in fact equal to G!
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Strategy

We will proceed as follows.
For U ≤ G 2-unipotent and nontrivial, we consider the group

U⊥ = T2(CG(U))

We show that if U1, U2 are two nontrivial 2-unipotent subgroups of G which
commute, then U⊥

1 = U⊥
2 . At this point, one considers the graph U(G)

whose vertices are the nontrivial 2-unipotent subgroups of G, with edges
between all commuting pairs. What we have just said is that U⊥ depends,
not on U itself, but rather on the connected component of the graph U(G)
containing the vertex U . So if the graph U(G) is connected, one sees that
the group U⊥ is independent of U , and then normal in G, as well as proper
and nontrivial, and we have the desired contradiction.

How does this go wrong—in other words, where does the case U(G)
disconnected take us? If G is a simple K-group with U(G) disconnected,
this forces G ≃ SL2 by Proposition 4.20 of Chapter II. So the methods
we use will be related to methods used to identify SL2 in the even type
context. There are several such methods, and we will become acquainted
with a variety of them in Part C, where all of Chapters VI and VII and
much of Chapter VIII are devoted to this single issue. The method we need
now is the first of these methods, corresponding to Chapter VI of Part C:
strong and weak embedding.

The way to exploit the disconnectedness of U(G) is by considering the
setwise stabilizer M of a connected component of U(G). In SL2, the graph
U(G) consists of isolated points, andM is a Borel subgroup, which is indeed
strongly embedded. In our context, if we can prove that M is strongly
embedded we will have an immediate contradiction, as this implies that
G has only one class of involutions, by Lemma 10.12 of Chapter I, but in
fact it has more than one conjugacy class by control of fusion, Lemma 6.18
of Chapter I. So in a mixed type context strong embedding is extremely
powerful.

Our strategy from this point on is clear. We must first show that M
is weakly embedded, and then improve this to strong embedding. In each
case, failure of the desired conclusion produces a definite configuration, and
it is fortunate that the two configurations that arise can be killed by a single
method. We will enter somewhat into the details. It will be helpful to bear
in mind what our nonexistent group G “really” is, or should be.

Since G is of mixed type, one should imagine that G is not actually
SL2 over a field of characteristic two, but rather T × SL2(K) with T the
multiplicative group of a field of odd characteristic, and K of characteristic
two. This is a mixed type group in which the graph U(G) again consisting
of isolated vertices, and with M of the form T ×B with B a Borel subgroup
of SL2. Here M is not actually weakly embedded, but satisfies a weaker
condition: the normalizer of any 2-unipotent subgroup of M is contained in
M . However the normalizer of T is all of G. This configuration, and a close
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relative, will reappear in the course of our general analysis, and will become
the focus of our attention.

To recapitulate, suppose that G is a simple L∗-group of mixed type,
U(G) the associated graph on the nontrivial 2-unipotent subgroups, C a
connected component of the graph U(G), and M the setwise stabilizer of
C under the natural action of G on C. After showing that U(G) is discon-
nected, we will argue that M is weakly embedded in G, encountering along
the way a configuration involving SL2 which will need to be eliminated by
technical considerations. Thinking in terms of the case G = T × SL2, one
may observe two more or less “local” properties that could be used to con-
tradict the hypothesis that G is simple without actually pinning down its
global structure: (1) the involutions in T and in SL2 form two commuting
conjugacy classes; (2) any involution in a conjugate of T (i.e., in the case at
hand, in T itself) lies in M . Both of these properties will in fact make an
explicit appearance in the course of our analysis, and suffice to dispose of
the general case.

In the case that M is not weakly embedded, we find a 2-torus T in
M such that NG(T ) is not contained in M , and the definition of M leads
quickly to the identification of L = U2(NG(T )) as a group of type SL2 over
an algebraically closed field of characteristic two. With some additional
adjustment we may take T to be a maximal 2-torus in G. This is one of
the key configurations which must be treated separately. We dispose of this
particular configuration in advance, in §3 of Chapter V.

Once we have M weakly embedded, then since M cannot be strongly
embedded, the criterion for strong embedding shows that the subgroup M
must contain so-called offending involutions in M ; these are involutions
α ∈ M such that CG(α) is not contained in M . One can quickly pin down
the structure of the connected centralizer CG

◦(α) of any offending involution
α, showing in particular that it contains a normal subgroup of the form
L = SL2(K) with K an algebraically closed field of characteristic two. The
picture begins to resemble the special case eliminated previously; the details
are different, but the key technical lemma, Lemma 3.3 of Chapter V, is
formulated so as to apply in both cases

There is an underlying idea behind the last part of this analysis, which
is not actually visible as one goes through it: use of the Thompson rank
formula. This formula provides a powerful general technique for analyzing
groups with more than one conjugacy class of involutions, if those conjugacy
classes are reasonably well understood, and if, more particularly, the struc-
ture of the centralizers of the various involutions is also well understood. It
will become clear in the course of our analysis here that one rapidly reaches
a point at which information of the appropriate type is available. Jaligot
found that as one then proceeds to pin down the relationships among the
involutions a little more closely, along the lines needed for a Thompson
rank computation, a technical lemma 3.3 of Chapter V leads to a “prema-
ture” contradiction, somewhat before the point at which one could actually
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make the relevant computation. Later we will apply the full Thompson rank
method, with no such premature contradiction, in our analysis of groups of
even type, specifically in Chapter VII.

The organization of this chapter is as follows. In the first two sections
we prepare the ground by discussing criteria for weak embedding, and the
general theory of U2(H) and T2(H) for H an L-group, on which our argu-
ment depends. We then present the particular configuration involving SL2

which was identified as crucial by Jaligot, and prove the relevant technical
lemma about the behavior of involutions in that context, as well as the ap-
plication that leads quickly to the elimination of the configuration critical
to the proof of weak embedding.

The proof of the Mixed Type L∗ theorem occupies the last two sections.
We use the U2/T2 theory and the criterion of §4.5 of Chapter V to produce
a weakly embedded subgroup, making use of Lemma 3.3 of Chapter V to
verify the weak embedding criterion, and in the last section we show that
the failure of strong embedding leads to a similar configuration to which
Lemma 3.3 of Chapter V again applies.

1. Weak embedding

The following is part of Proposition 4.15 of Chapter II.

Proposition 4.15 of Chapter II. Let G be a group of finite Morley
rank, M a definable subgroup having an infinite Sylow 2-subgroup S. Then
the following are equivalent.

(1) M is weakly embedded in G
(2) For every nontrivial subgroup Q of S◦ which is either

(a) 2-unipotent or
(b) a 2-torus,
we have NG(Q) ⊆M .

We will focus initially on the condition thatM contains the normalizer of
any nontrivial definable 2-unipotent subgroup of M . In groups of even type
this is equivalent to weak embedding, and in groups of mixed type it will
lead to a weakly embedded subgroup under suitable inductive hypothesis.

The following definition is fundamental.

Definition 1.1. For G a group of finite Morley rank, the graph U(G) is
the graph whose vertex set is the set of nontrivial 2-unipotent subgroups of
G, and whose edges are pairs of vertices U, V which commute: [U, V ] = 1.

Note that for any nontrivial unipotent subgroup U ofG and any maximal
unipotent 2-subgroup V of G containing U , the vertex V of U(G) is in the
connected component containing the vertex U , and indeed at distance at
most 2, with a connecting path going through Z◦(V ).

Proposition 1.2. Let G be a group of finite Morley rank and C a con-
nected component of the graph U(G). Let M be the setwise stabilizer of C
under the action of G by conjugation. Then we have the following.
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(1) M is the normalizer of the group generated by
⋃
C.

(2) M is definable.
(3) U(M) = C.
(4) For U ≤M nontrivial and unipotent, NG(U) ≤M .
(5) If C ̸= U(G), then M < G.

Proof. The group G acts on the graph U by conjugation. Furthermore,
as every component of U contains the connected component of a Sylow 2-
subgroup, G conjugates the connected components of U transitively. Let
M1 = NG(⟨

⋃
C⟩), and let S ∈ C be the connected component of a Sylow

2-subgroup. Observe that M1 contains the stabilizer M of C in G. In fact
M1 coincides with M , since by the Frattini argument M1 ≤ ⟨

⋃
C⟩N(S),

which evidently stabilizes C.
Thus we have proved our first claim, M1 =M , and it follows that M is

definable. Now as the maximal unipotent 2-subgroups of M are conjugate
under the action of M , they lie in C, and the same applies to any definable
2-unipotent subgroup of G. Thus the third claim holds, and this implies the
fourth and fifth claims. □

Lemma 1.3. Let G be a simple group of finite Morley rank of even type
and H a proper definable subgroup with infinite Sylow 2-subgroups, which
contains the connected component of the normalizer of any nontrivial unipo-
tent 2-subgroup of H. Let S be a Sylow◦ 2-subgroup of H. Then there is a
definable subgroup H1 of H containing S, for which N(H1) is weakly em-
bedded in G.

Proof. Let C be the connected component of U(G) which contains the
unipotent part of S. Let H1 = ⟨

⋃
C⟩. We claim that C is not all of U(G).

Observe that any U ∈ C is contained in H, by the assumption on H. So
H1 ≤ H, and if C = U(G) then H1 ◁ G, a contradiction.

So C ≠ U(G), and by Proposition 1.2 of Chapter V N(H1) is weakly
embedded in G. □

We apply this to complete a circle of ideas around weak embedding
developed in earlier sections in the K-group context.

Lemma 1.4. Let G be an L-group of even type with U(G) disconnected.
Then U2(G) ≃ SL2(K) for some algebraically closed field K of characteristic
two.

Proof. We may suppose G = U2(G). So G is an L-group of U2-type,
and by Lemma 6.3 of Chapter II it is aK-group of even type. The hypothesis
that U(G) is disconnected produces a weakly embedded subgroup M as the
stabilizer of any connected component of U(G), by Lemma 1.3 of Chapter
V. Hence G = O(G)× L with L ≃ SL2(K) by Proposition 5.25 of Chapter
II. Now as G = U2(G), we find G = L. □
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2. Subgroups of type U2 or T2

We defined the graph U(G) in §1 of Chapter V and the related subgroup
U2(G) as early as §3 of Chapter I. We will also make use of the parallel
notions for 2-tori in place of unipotent subgroups.

Definition 2.1. Let G be a group of finite Morley rank.

(1) T (G) the set of 2-tori in G, construed as a graph with edge relation
∼ given by centralization: T1 ∼ T2 if [T1, T2] = 1.

(2) T2(G) = ⟨d(T ) : T ∈ T (G)⟩.
(3) G is of T2-type if G = T2(G)

Note that for any group G of finite Morley rank, the groups U2(G) and
T2(G) are definable and connected by Proposition 3.20 of Chapter I.

We can also set up a Galois connection linking these notions, of which
the following is a special case. We will return to this point at the end of the
present section.

Notation 2.2. Let G be a group of finite Morley rank, U a unipotent
2-subgroup, and T a 2-torus.

(1) U⊥ = T2(CG(U)).
(2) ⊥T = U2(CG(T )).

We are getting ahead of ourselves. The basic result which makes all of
this reasonable is the following.

Lemma 2.3. If H is an L-group with no definable simple section of mixed
type, then U2(H) and T2(H) commute.

Proof. By Lemma 6.3 of Chapter II, K = U2(H) is a K-group.

Let T̂ be the definable hull of a 2-torus T , and let U be a unipotent
2-subgroup of H. We claim that T̂ centralizes U .

By Proposition 4.8 of Chapter II, K/σ(K) is a direct product of finitely
many simple algebraic groups, over fields of characteristic two. So by Corol-
lary 2.26 of Chapter II T̂ acts trivially on K/σ(K). In particular T̂ normal-
izes Uσ(K), a solvable group. By Corollary 8.4 of Chapter I, U ≤ U2(F (K)),

a T̂ -invariant unipotent 2-group. So we may suppose that T̂ normalizes U .
Then UT is a Sylow 2-subgroup of UT̂ and thus U and T commute, hence
U and T̂ commute. □

Proposition 2.4. Let G be a centerless L∗-group with no proper de-
finable simple section of mixed type, and U1, U2 ∈ U(G). If U1 ∼ U2, then
U⊥
1 = U⊥

2 .

Proof. Let H = T2(CG(U2)). The group U1 normalizes H, and N(H)
is an L-group with no proper definable simple section of mixed type. So
by Lemma 2.3 of Chapter V, U1 and H commute. Thus H ≤ U⊥

1 and by
symmetry we get equality. □
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Corollary 2.5. Let G be a centerless L∗-group with no proper definable
simple section of mixed type, and U1, U2 ∈ U(G). If U1 and U2 are in the
same connected component of U(G), then U⊥

1 = U⊥
2 .

Corollary 2.6. Let G be a centerless L∗-group with no proper definable
simple section of mixed type. If U(G) is a connected graph then U⊥ ◁ G, for
any unipotent 2-subgroup U of G.

Proposition 2.7. Let G be a centerless L∗-group of finite Morley rank
with no proper definable simple section of mixed type. Let T1, T2 ∈ T (G)
such that T1 ∼ T2. Then U2(CG(T1)) = U2(CG(T2)).

Proof. Let T1 and T2 be as in the statement of the proposition. Then
T1 normalizes U2(CG(T2)). By Lemma 2.3 of Chapter V, T1 centralizes
U2(CG(T2)). This forces U2(CG(T2)) ≤ U2(CG(T1)). We get equality by
symmetry. □

Corollary 2.8. Let G be a centerless L∗-group of finite Morley rank
with no proper definable simple section of mixed type. If T1 and T2 are in
the same connected component of T (G), then U2(CG(T1)) = U2(CG(T2)).

Corollary 2.9. Let G be a centerless L∗-group of finite Morley rank
with no proper definable simple section of mixed type. If T (G) is connected
then U2(CG(T )) ◁ G for every T ∈ T (G).

The next lemma is an analog of Proposition 1.2 of Chapter V.

Lemma 2.10. Let G be a group of finite Morley rank. Let C denote
a connected component of the graph T (G), and set M = NG(⟨C⟩). Then
T (M) = C.

Proof. Let T1 and T2 be two 2-tori in M such that T1 ∈ C. We will
show that T2 ∈ C. We may assume that T1 and T2 are maximal since any
2-torus is in the same connected component of T (M) as a maximal 2-torus
which contains it. By the Sylow theorem, there exists g ∈ M such that
T g
1 = T2. Therefore, T2 ≤ ⟨C⟩ and g can be taken to be in ⟨C⟩. It suffices

to treat the case in which g ∈ T ∈ C. In this case T1, T ∈ C and therefore
their conjugates T2 = T g

1 and T g = T are in C. □

Corollary 2.11. Let G be a group of finite Morley rank. Let C be
a connected component of T (G). Then NG(⟨C⟩) = Stab(C), the setwise
stabilizer of C. In particular, Stab(C) is definable.

To conclude this section, we give the actual Galois connection between
U2-type and T2-type subgroups of an L∗-group of finite Morley rank with
no proper definable simple section of mixed type. Let G be a group of
finite Morley rank. Let U and T denote the posets of U2-type and T2-type
subgroups of G respectively, ordered by inclusion. We define the following
mappings:
⊥· : T −→ U

Y 7−→ ⊥Y = U2(CG(Y ))
·⊥ : U −→ T

X 7−→ X⊥ = T2(CG(X))



3. THE SL2 CONFIGURATION 295

These mappings define a Galois connection (see [37]) between U and T .
That is, they satisfy the following properties.

Proposition 2.12.

• The mappings ·⊥ and ⊥· are order-reversing.
• If X ∈ U then X ≤⊥ (X⊥) and if Y ∈ T then Y ≤ (⊥Y )⊥.

The following properties of these operations (or of any Galois connection)
can be checked easily:

Proposition 2.13. Let X ∈ U and Y ∈ T . Then X⊥ = (⊥(X⊥))⊥ and
⊥Y =⊥ ((⊥Y )⊥).

Corollary 2.14. The operations ⊥(·⊥) and (⊥·)⊥ are closure operations
on T and U respectively, i.e. setting X = ⊥(X⊥) and Y = (⊥Y )⊥ for X ∈ U
and Y ∈ T , we have the following.

• For X ∈ U , Y ∈ T , we have X ≤ X = X and Y ≤ Y = Y
• Monotonicity: for X1 ⊆ X2 in U and Y1 ⊆ Y2 in T , we have
X1 ⊆ X2 and Y 1 ⊆ Y 2.

The closed elements of U and T are of the form X and Y respectively.

3. The SL2 configuration

Our aim is to deal with the following special case of the Mixed Type L∗

Theorem.

Proposition 3.1. Let G be a simple group of mixed type, with no proper
definable simple section of mixed type, and let T be a maximal 2-torus in
G. Then ⊥T = U2(CG(T )) cannot be of the form SL2(K) with K an alge-
braically closed field of characteristic two.

This is exactly the configuration which will arise in our proof of weak
embedding in the next section. Furthermore, the technical result on which
it rests is the key to both of the major steps of the proof. That technical
result, which occurs as Lemma 4.1 in [120], is given below as Lemma 3.3 of
Chapter V.

3.1. Sketch of the proof. We first sketch the broad outlines of the
proof of Proposition 3.1 of Chapter V. Assume therefore that G, T , and K
are as described, with ⊥T ≃ SL2(K). Set L = ⊥T .

Definition 3.2. An involution which lies in a 2-torus will be called toral,
and one which lies in a nontrivial unipotent group will be called unipotent;
we may also say these involutions are of toral or unipotent type. In principle
an involution can be of both types. Of particular importance are the properly
unipotent involutions, that is those which are of unipotent type and not of
toral type.
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We will argue first that each unipotent involution belongs to a unique
maximal 2-unipotent subgroup Ui of G, essentially because this holds in L,
and that whenever a toral involution normalizes a group of the form Ui, it
commutes with it.

Now use the simplicity of G to find a pair i, j of involutions, one of
unipotent type and the other toral, which do not commute (this is the point
at which it is clear that G is not a “simple version” of the group T×SL2(K)).
By the fusion principle, Lemma 2.20 of Chapter I, there is an involution k
in d(⟨ij⟩) commuting with both i and j. Now one argues that L = U2(C(k))

is of the form SL2 (more specifically, generated by Ui and U j
i , which are

distinct by our choice of i, j).
Now a close examination of the situation reveals that jk ∈ L, and in

particular the involution jk is of unipotent type; this is Lemma 3.3 of Chap-
ter V below. So we can now consider Ujk ≤ L; as both T and Ujk lie in
C(j), one can conclude in succession that T centralizes the following: Ujk;
k; L. So now both j and k centralize L, while jk lies in L, a contradiction.

3.2. The technical lemma. We now turn to the detailed proof of
Proposition 3.1 of Chapter V. We first state the technical lemma on which
it all depends, in a generalized form which will be applied again in §5 of
Chapter V; in the present case, we will take k = k′ to recapture the situation
described above.

Lemma 3.3. Let G be a group of finite Morley rank containing involu-
tions i, j, k, and k′, and set L = U2(CG(k)). Suppose the following five
conditions are satisfied.

(1) The involutions i and j are not conjugate.
(2) The group L is of the form SL2(K) with K an algebraically closed

field of characteristic two.
(3) The involution k′ is the unique involution in d(⟨ij⟩).
(4) i ∈ L; j ∈ CG(k)
(5) k′ /∈ L

Then jk′ is in L.

Under the hypotheses of this lemma it follows easily that jk′ is an in-
volution commuting with k; the question dealt with here is whether this
involution belongs to the subgroup L = U2(CG(k)) of CG(k), or lies outside
it.

Proof. Let a = ij, and A = d(⟨a⟩). By hypothesis i and j are in C(k),
and i ∈ L ◁ C(k). Thus a2 = iij ∈ A ∩ L.

If a ∈ L then as i ∈ L, also j ∈ L ≃ SL2(K) and hence i and j
are conjugate, a contradiction. Thus a represents an involution modulo
A0 = A ∩ L, and it follows that the coset aA0 contains a nontrivial 2-
element a1 by Lemma 8.11 of Chapter I. We claim that a1 = k′. Now a2

n

1 is
an involution for some n ≥ 0, and this involution can only be k′ (hypothesis
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3). If n > 0 then we find k′ ∈ L, a contradiction. So a1 = k′. This means
ijk′ ∈ L.

Since i ∈ L, we find jk′ ∈ L, as claimed. □

3.3. Local structure of G. Now let us examine the situation of Propo-
sition 3.1 of Chapter V. That is, we suppose the following.

(∗)
G is a simple group of mixed type and of finite Morley rank.
T a maximal 2-torus of G.
L = ⊥T is of type SL2(K) with K algebraically closed of
characteristic two.

We keep this notation fixed for the remainder of the section.
The next four lemmas show that in many ways the structure of G re-

sembles that of L×H for some group H of odd type.

Lemma 3.4. If U is a Sylow 2-subgroup of L then U × T is a Sylow◦

2-subgroup of G.

Proof. Since T commutes with L, we have T ∩ U = 1. Now U × T
is contained in a Sylow◦ 2-subgroup S of G, and S = T1 ∗ U1 with T1
the maximal 2-torus of S and U1 the maximal 2-unipotent subgroup of S.
So T = T1 by maximality, and U1 ≤ U2(C(T )) = L; thus U1 = U , and
S = U × T . □

Lemma 3.5. Any 2-unipotent subgroup in G is abelian, of exponent 2,
and is conjugate to a subgroup of L.

Proof. By the previous lemma, any 2-unipotent subgroup is conjugate
to a subgroup of L, and is therefore abelian of exponent 2. □

Lemma 3.6. Let i be an involution of G which belongs to a nontrivial
unipotent subgroup of G. Then the following hold.

(1) i is of properly unipotent type;
(2) i belongs to a unique maximal unipotent 2-subgroup Ui of G;
(3) Ui = U2(C(i)).

Proof. If an involution i belongs both to a nontrivial unipotent sub-
group U and to a nontrivial 2-torus T0, then after conjugating in C(i), we
may suppose that UT0 lies in some Sylow◦ 2-subgroup of G, which contra-
dicts the structure of that subgroup (Lemma 3.4 of Chapter V). So i is of
properly unipotent type, proving (1).

Now if i belongs to the unipotent subgroup U then U ≤ U2(C(i)) and
thus it suffices to prove that U2(C(i)) is unipotent.

We may suppose T ≤ C(i); then U2(C(i)) commutes with T2(C(i)),
which contains T , so U2(C(i)) ≤ L. On the other hand i ∈ U2(C(i)), so
i ∈ L and U2(C(i)) ≤ CL(i), which is a unipotent 2-group. □

Lemma 3.7. Let j be a toral involution of G, U a unipotent 2-subgroup
normalized by j, and T0 a 2-torus containing j. Then T0 centralizes U .
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Proof. CU
◦(j) is nontrivial by Corollary 5.2 of Chapter I and Lemma

1.23 of Chapter I. For i any involution of CU
◦(j), we have U ≤ U2(C(i))

and T0 ≤ T2(C(i)), since U2(C(j)) and T2(C(j)) commute. So U and T
commute. □

Lemma 3.8. Let i and j be commuting involutions of unipotent type.
Then Ui = Uj.

Proof. Since j normalizes Ui, V = CUi
◦(j) is a nontrivial unipotent

subgroup of Ui. But V ≤ U2(C(j)) = Uj , so Ui ∩ Uj is nontrivial and for
k an involution in the intersection we have Ui = Uk = Uj by Lemma 3.6 of
Chapter V. □

Now we begin a finer analysis. Since G is simple there must be some
involution i of unipotent type and some involution j of toral type such that i
and j do not commute. By the fusion principle, Lemma 2.20 of Chapter I, i
and j must commute with a third involution in d(⟨ij⟩), and we ask ourselves
how this one behaves. We fix the notation.

Notation 3.9. Fix i and j involutions with i unipotent, j toral, and
[i, j] ̸= 1.

Lemma 3.10. The group A = d(⟨ij⟩) contains a unique involution.

Proof. By Lemma 2.20 of Chapter I, there is at least one involution in
A.

By Lemma 2.16 of Chapter I, A is the direct sum of a finite cyclic
subgroup and a divisible group. We claim that in the case at hand, A
contains no 2-torus, and hence contains a unique involution.

Suppose on the contrary that T0 is a nontrivial 2-torus contained in A,
and hence inverted by i. Then i centralizes an involution j′ ∈ T0, and hence
by Lemma 3.7 of Chapter V, T0 commutes with i, which is a contradiction.

□

Notation 3.11. The unique involution of d(⟨ij⟩) is denoted k.

We are approaching the situation of Lemma 3.3 of Chapter V.

Lemma 3.12. U2(C(k)) is of the form SL2 over an algebraically closed
field of characteristic two.

Proof. We claim first that Ui ∩ U j
i = 1. If not, then Ui = U j

i and by
Lemma 3.7 of Chapter V we find that j, being toral, commutes with Ui, and
hence with i, a contradiction.

The involution k acts on U2(C(i)), and the latter group is Ui by Lemma

3.8 of Chapter V. So Pi = CUi
◦(k) is nontrivial. Also P j

i ≤ U2(C(k)).
Since distinct maximal unipotent subgroups of G intersect trivially, the same
applies to U2(C(k)), and as there are at least two such, the associated graph
U(U2(C(k))) is disconnected. By Lemma 1.4 of Chapter V, U2(C(k)) ≃
PSL2(K) for some algebraically closed field K of characteristic two. □
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And here is the last ingredient.

Lemma 3.13. The involution i belongs to U2(C(k)).

Proof. The involution i acts on L1 = U2(C(k)) and centralizes Ui∩L1.

So i acts on L1 like some element t ∈ Ui ∩ L1, and it ∈ Ui centralizes U
j
i .

Hence it = 1 and i = t ∈ L1. □

Proof of Proposition 3.1 of Chapter V. We have i an involution
of unipotent type, j a toral involution, which we may suppose is in T ,
with i and j not commuting, and k the unique involution in d(⟨ij⟩), with
L1 = U2(C(k)) of type SL2 in even characteristic.

We apply Lemma 3.3 of Chapter V to the involutions i, j, and k, taking
k′ = k as well. As i is of unipotent type and j is of toral type, they are
not conjugate. The remaining conditions of the lemma are all clear at this
point. The conclusion is

jk ∈ U2(C(k))

In particular jk is of unipotent type.
Now j is a toral involution commuting with jk, and j ∈ T , so by Lemma

3.7 of Chapter V, the torus T commutes with Ujk, and in particular with
jk, hence with k. So we have T ≤ C(k) and hence T commutes with
U2(C(k)) = L1. In particular the element j ∈ T commutes with element
i ∈ L1, contradicting our initial choice. □

4. A weakly embedded subgroup

In this and the next section we will carry out the proof of the Mixed
Type L∗ Theorem.

Theorem 4.1. There is no simple L∗-group of finite Morley rank of
mixed type.

Until the completion of this proof, we fix the following notation. We will
arrive at a contradiction in the next section.

Notation 4.2.

(1) G is a simple L∗-group of mixed type and of minimal rank. Accord-
ingly, all simple sections of G are either of degenerate type, of odd
type, or algebraic.

(2) U = U(G) is the graph whose vertices are the nontrivial 2-unipotent
subgroups of G, and whose edges consist of pairs of vertices which
commute.

(3) S is a fixed Sylow◦ 2-subgroup of G.
(4) S = U ∗ T with U 2-unipotent, and T a 2-torus.

Our goal in the present section is to show, first, that the graph U is
disconnected, and secondly, that the stabilizer of any connected connected
component of U , under the natural action of G, is a weakly embedded sub-
group of G. The resulting configuration will be analyzed in the next section.
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Lemma 4.3. The graph U is not connected.

Proof. This is a consequence of Corollary 2.6 of Chapter V. □

Notation 4.4. C is some connected component of the graph U , and M
is the setwise stabilizer of C with respect to the natural action of G on U .

The subgroup M is definable, and U(M) = C (Lemma 1.2 of Chapter
V).

Proposition 4.5. The subgroup M is weakly embedded in G.

Proof. As U(M) ̸= ∅, M has an infinite Sylow 2-subgroup S. By
the criterion of Proposition 4.15 of Chapter II, it suffices to check that the
normalizer in G of any subgroup of M which is either 2-unipotent, or a
2-torus, is contained in M .

(1)
For U a nontrivial 2-unipotent subgroup of M , we have
NG(U) ≤M .

Let U be such a subgroup. Then U ∈ U(M) = C, so N(U) must stabilize
C setwise, and N(U) ≤M .

(2) For T a nontrivial 2-torus in M , we have NG(T ) ≤M .

This is more substantial. Let T be such a subgroup, and let H = NG(T ).
Suppose H is not contained in M . We claim that U(H) is disconnected.

Now T is contained in a Sylow◦ 2-subgroup S ofM , and hence commutes
with the 2-unipotent factor U of S◦; so U ∈ U(M) = C and U ∈ U(H). On
the other hand, as H is not contained in M and M is the stabilizer of C,
there is h ∈ H for which Ch ̸= C. Now U(H) meets both C and Ch, and
U(H) is simply the restriction of the graph U(G) to its vertex set. So the
graph U(H) is disconnected.

Consider L = U2(H). Then L is a K-group by Lemma 6.3 of Chapter
II, and U(L) is disconnected since U(L) = U(H). Then by Proposition 5.25
of Chapter II, L must be of the form SL2(K) with K algebraically closed of
characteristic two. Furthermore, the group L is not contained in M , since
U(M) = C.

The next step is to trade in T for a maximal 2-torus. Let T1 be a
maximal 2-torus of G containing T . Then T1 normalizes L. By Lemma 2.3
of Chapter V, T1 commutes with L. Since L ∩M contains a nontrivial 2-
unipotent subgroup, it follows from (1) that T1 ≤M , and since L ≤ NG(T1),
T1 can play the role of T . So replacing T by T1 and L by U2(NG(T1)), we
will still have L of the form SL2, and now T is a maximal 2-torus of G. This
is the configuration we eliminated in §3 of Chapter V. This contradiction
proves (2), and the Proposition follows. □
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5. Offending involutions

We continue the proof of the Mixed Type L∗ Theorem, Theorem 4.1 of
Chapter V.

Notation 5.1.

(1) G is a simple L∗-group of mixed type. All simple sections of G are
either of degenerate type, or algebraic.

(2) M is a weakly embedded subgroup in G.
(3) S0 is a fixed Sylow◦ 2-subgroup of G.
(4) S0 = U0 ∗ T0 with U0 2-unipotent, and T0 a 2-torus.

An offending involution is an involution α in M whose centralizer is not
contained in M .

Lemma 5.2. There is an offending involution in M .

Proof. Otherwise, by the criterion for strong embedding of Lemma
10.11 of Chapter I, we would have M strongly embedded in G, and hence
by Lemma 10.12 of Chapter I all involutions in G would be conjugate. But
NG(T0) controls fusion in S0

◦, so involutions in T0 and U0 \ T0 cannot be
conjugate. □

Our task now is to analyze the structure of C◦(α) for α an offending
involution, which will produce a group of type SL2 which we can work with
in the manner of the preceding section. Indeed, there is a strong similarity
between our current offending involution and the similarly “offending” toral
involutions of the previous section.

Lemma 5.3. Let α ∈M be an offending involution. Then C◦(α) has the
form L×H, with the following properties.

(1) L is a group of type SL2(K) with K algebraically closed of charac-
teristic two.

(2) H is a group of degenerate type.
(3) L ∩M is a Borel subgroup of L.

The involution α does not belong to any Sylow◦ 2-subgroup, and in particular,
it is neither toral nor unipotent.

Proof. Let X = CG(α). We define L = U2(X), and H = CX
◦(L). We

show first that L is not contained in M . Let U be a Sylow 2-subgroup of
L. By the Frattini argument, if L ≤M then X ≤ N(L) ≤ L ·N(U) ≤M , a
contradiction.

Now α belongs to a Sylow 2-subgroup S of M , and hence centralizes
a nontrivial 2-unipotent subgroup of M . So L ∩M contains a nontrivial
unipotent subgroup, and since L is not contained in M , L also contains a
unipotent subgroup not contained in M . So U(L) is disconnected. Now by
Lemma 1.4 of Chapter V, L is of type SL2 in characteristic 2. Then the
decomposition X◦ = L×H follows from Corollary 2.26 of Chapter II.
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Now we have seen that L contains a nontrivial unipotent subgroup U0 of
M , and if U0 is chosen maximal unipotent in L, and then extended to a Sylow
2-subgroup of L, the strong embedding hypothesis says that NU

◦(U0) = U0

and hence that U = U0. So L∩M contains a Sylow 2-subgroup of L, which
is to say the unipotent radical U of a Borel subgroup B of L. As B ≤ N(U),
and M is weakly embedded, we find B ≤ M . As B is a maximal subgroup
of L and L is not contained in M , we find that B = L ∩M .

We claim that H is of degenerate type. If there is a nontrivial 2-torus
T ≤ H, then T ≤ M by weak embedding, and then L ≤ M by weak
embedding since T commutes with L. As this is a contradiction, H is of
degenerate type.

Finally, if α belongs to a Sylow◦ 2-subgroup, then C(α) contains a non-
trivial torus, contradicting the structure of C◦(α). □

Notation 5.4. For α an offending involution of M , set Lα = U2(C(α)),
and Aα = O2(Lα ∩M), a Sylow 2-subgroup of Lα.

Once more, we prepare for an application of Lemma 3.3 of Chapter V.
First, we need to clarify the nature of unipotent involutions.

Lemma 5.5.

(1) Any nontrivial unipotent group contains a properly unipotent invo-
lution.

(2) If α is an offending involution, then any involution in Lα is properly
unipotent.

Proof. Let U be nontrivial and unipotent, and let S be a Sylow◦ 2-
subgroup containing U . Then S = U ∗ T with T a 2-torus, and with U ∩ T
finite. Furthermore N(T ) controls fusion in S (Lemma 6.18 of Chapter I),
so involutions in U \ T are not conjugate to involutions in T , and hence are
not toral.

For the second point, every involution in Lα belongs to a nontrivial
unipotent subgroup U ≤ Lα, and these involutions are all conjugate; as
some of them are not toral, none of them are. □

Lemma 5.6. Let t be a toral involution not in M , α an offending invo-
lution in M , and i ∈ Aα. Then d(⟨it⟩) contains a unique involution β, and
β is an offending involution of M .

Proof. The involution i is properly unipotent, hence not conjugate to
t, and also not offending. Thus there is some involution β in A = d(⟨it⟩) by
the basic fusion principle.

As A is the direct sum of a finite cyclic group and a divisible group,
for the uniqueness claim it suffices to show that A contains no nontrivial
2-torus. Suppose on the contrary that T ≤ A is a nontrivial 2-torus and let
s be an involution of T . Then s ∈ C(i) ≤ M , and as s is toral it is not
offending. But then t ∈ C(s) ≤M , a contradiction. So β is unique.

Now β commutes with both i and t. As i is not offending, β is in M ; as
t is not in M , β is offending. □
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Now we can complete our analysis by “absorbing” toral involutions into
M , contradicting the simplicity of G.

Proof of the Mixed Type L∗ Theorem. Assuming the contrary, our
mixed type group G contains a weakly but not strongly embedded subgroup
M , and M contains an offending involution α0. As G is simple, it contains
a toral involution t outside M . If i0 ∈ Aα0 , then by the previous lemma,
there is a unique involution α ∈ d(⟨i0t⟩), and it is again offending. So we
now have an offending involution (in M) that commutes with t.

Take an involution i ∈ Lα. Then again there is a unique involution
α′ ∈ d(⟨it⟩).

We can now consider the involutions i, t, α, and α′, which play the roles
of i, j, k, and k′ in Lemma 3.3 of Chapter V. In particular Lα plays the
role of L. All of the conditions of that lemma hold; for example, α′ /∈ Lα

because α′ is an offending involution.
The conclusion is that tα′ ∈ Lα. Now t centralizes α and hence acts

on Lα. The action is by an inner automorphism, in view of Corollary 2.26
of Chapter II. Since t centralizes tα′, it centralizes Atα′ , and thus tα′ ∈
U2(C(t)). Now if T is a maximal torus containing t, then T is also in
C(t) and hence centralizes U2(C(t)), and in particular, tα′; in other words,
T centralizes α′, and T2(C(α

′)) is nontrivial, a contradiction as α′ is an
offending involution. □

With this, the proof of the Mixed Type Theorem for L∗-groups is com-
plete, and the analysis of mixed type groups therefore depends entirely on
the analysis of even type groups, to be carried out in the remainder of this
volume.

6. Notes

Groups of mixed type were first eliminated in [3], under the two additional

hypotheses that the group in question is a K∗-group and that it involves no bad

field. The second hypothesis was eliminated in Jaligot’s thesis [122, 120]. The

eliminability of the K∗-hypothesis became clear around the time of Altınel’s habil-

itation [2], where the idea of L∗-groups was first pursued systematically, and was

discussed in the first published paper on L∗-groups [10, §7], in the general form

given here. The overall structure of the argument is the same in all three cases.

Strong and weak embedding are typical “uniqueness conditions” on M in

the sense of finite group theory; strong embedding is the oldest of these uniqueness

conditions, and was introduced by Bender [28]. Weak embedding first appears

in [3]. While weak embedding has no direct analog in finite group theory, it has

the general flavor of “proper 2-generated” k-core for various values of k, notably
k = 2. For some discussion of the finite case, see [100, §I.1.20, p. 52]. In the

case of mixed or even type groups, weak embedding is much easier to achieve than

strong embedding, and in the long run equally powerful.

Once one has traced through the general line of argument of this chapter, it

becomes clear that the crucial configuration, corresponding to a potential failure
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of the main line of argument, is the SL2 configuration treated in §3 of Chapter V.

Earlier versions of the arguments given here differ in their treatment of this case.

The key to eliminating the hypothesis of “no bad fields” is Lemma 3.3 of Chapter

V, taken from Jaligot’s thesis. As we remarked in the introduction, the underlying

idea is an application of the Thompson rank formula, a powerful method which

over time has been somewhat supplanted in our treatment by other fusion-theoretic

arguments, but which still plays an important role, as we will see in Chapter VII.

We will expand on this point here.

Previous analyses strongly suggested that the configurations arising throughout

this chapter could be treated using the Thompson rank formula. Such an approach

involves first getting a good understanding of the conjugacy classes of involutions

in G, and then (in order to pin down the parameter f ) also the structure of their

centralizers. A close analysis of this problem led precisely to the configuration

described in Lemma 3.3 of Chapter V, which instead of producing the input for a

contradictory calculation, produced the desired contradiction directly. So while the

Thompson rank formula plays no role in the proof, we still consider this argument,

to a degree, as a successful application of that method. Lemma 3.3 of Chapter V

can be construed as an “invisible” use of the Thompson rank formula.
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Even Type Groups





CHAPTER VI

Strong Embedding and Weak Embedding

Ya tutarsa?
— Nasreddin Hoca

Introduction

We now take up our main subject, the inductive analysis of simple groups
of finite Morley rank of even type. In this long chapter, we deal with the
weak embedding classification (the notion was introduced in §5.12 of Chapter
II). The main result is the following.

Theorem 10.12 of Chapter VI. Let G be a simple L∗-group of fi-
nite Morley rank and even type with a definable weakly embedded subgroup.
Then G is of the form PSL(2,K) for some algebraically closed field K of
characteristic two.

This is a very flexible result, which ostensibly only characterizes one very
small group but in fact will be one of the main engines of our analysis in
general. The proof is long, and greatly complicated by the possible presence
of simple degenerate sections in G. The proof we give follows closely the
structure of the argument in the K∗-case, deviating more toward the end
when the older argument begins to rely in a substantial way on the structure
of solvable groups, as well as conjugacy theorems holding in solvable groups.

The proof takes place in three steps. The first point is the following;
the proof varies somewhat depending on whether one is in the strongly
embedded case or not.

Propositions 1.1 of Chapter VI and 2.1 of Chapter VI. Let G
be a simple L∗-group of finite Morley rank with a definable weakly embedded
subgroup M . Then U2(M) is 2-unipotent.

This can be rephrased in a number of ways, e.g.: U2(M) = O2
◦(M).

Observe that M/U2(M) is of degenerate type; so another way to express
this is that M contains a normal 2-unipotent subgroup with degenerate
quotient. In the K∗-context, an equivalent statement would be that M◦

is solvable (or M , if one invokes Feit-Thompson) and the foregoing result
provides the best approximation to solvability one can expect at this point
in the analysis.

One must distinguish between the cases of strong embedding (introduced
in §10.3 of Chapter I) and weak embedding here. When one has a subgroup
which is weakly embedded and not strongly embedded, a very particular

307
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configuration arises, which was analyzed in the finite case by Landrock and
Solomon; and the parallel analysis has been given in §4 of Chapter III.
This analysis produces a list of possible isomorphism types for a Sylow◦ 2-
subgroup S, from which one argues in the case at hand that S is abelian.
After that, the two cases, strong and weak embedding, run more or less in
parallel.

The remainder of the analysis leading to the identification of G splits in
two. One considers the following condition, which will eventually be proved.

(∗)
Whenever A1, A2 are two distinct conjugates
of Ω1(O2

◦(M)), the group CG(⟨A1, A2⟩) is fi-
nite.

This is the “expected” case, since we aim at showing G ≃ PSL2(K).
When the condition (∗) holds, we do get the desired result in a reasonably
natural way, ultimately by understanding the permutation representation of
G on the coset space G/M , showing that we have a split Zassenhaus group.

But this favorable case must be further subdivided. Assuming first that
M is strongly embedded, we head directly for the identification of G in terms
of the action of G on G/M . If, on the other hand,M is weakly embedded but
not strongly embedded, then we again pass through the Landrock–Solomon
analysis of §4 of Chapter III, which gives us a short list of configurations,
some quite distant from the desired one. In this case we first eliminate
the possibilities for nonabelian S, and shortly thereafter we return to the
main line and identify G as a Zassenhaus group. Since at this point we
have assumed M is not strongly embedded, and also used that hypothesis
to the full, the ultimate conclusion reached in this line of argument is a
contradiction, rather than an identification. All of this yields the following.

Proposition 6.20 of Chapter VI and Theorem 4.13 of Chapter
VI. Let G be a simple L∗-group of finite Morley rank and even type with a
definable weakly embedded subgroup, and assume that the condition (∗) above
holds. Then G is of the form PSL(2,K) for some algebraically closed field
K of characteristic two.

Finally, we must prove that the condition (∗) does in fact hold, and this
portion of the analysis is as long as all the rest together. Assuming that (∗)
fails, it is immediate that G contains proper subgroups of the form PSL2(K),
and in particular contains algebraic tori. We study these subgroups and their
tori in particular detail, arriving very belatedly at a contradiction.

In the first part of the analysis, we show that the tori in question can
all be conjugated into M , and that those which are contained in M break
up into finitely many conjugacy classes under the action of M . While not
difficult, this is a powerful conclusion, unpromising as it may seem at first.
It quickly allows us to show that for at least one such conjugacy class of
tori T , we have C(T ) ⊆ M , and we can control the rank of G accurately.
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After this, we quickly get detailed structural information for G, reminiscent
of PSL2(K), or perhaps PSL2(K)×O with O some degenerate type group.

This corresponds to a situation which arises late in Jaligot’s treatment
of the K∗-case [122, 121], where the internal information is largely self-
consistent but the group resists identification, and in fact satisfies a condi-
tion incompatible with the desired identification. At this point one switches
over to a careful examination of elements of order three, and eventually a
contradiction ensues. We will have information reminiscent of the (B,N)-
pair description of PSL2(K), meaning that while we lack explicit relations
among the generators we can compute a good deal, and apply the associative
law directly to an appropriate triple of elements closely related to the sub-
group M . For this, it seems to be necessary to work with certain elements
of order three which have a relatively clear description in these terms.

In this roundabout way we arrive at the following.

Proposition 10.1 of Chapter VI. Let G be a simple L∗-group of
finite Morley rank and even type with a definable weakly embedded subgroup.
Then the condition (∗) above holds.

The main theorem then follows. In the proof of this last Proposition,
we do not need to make any real distinction between weak and strong em-
bedding, or to invoke the Landrock–Solomon analysis. Most of the analysis
is sufficiently robust to go through in the case of weak embedding, and
then at a very late stage we prove finally that the subgroup in question is
strongly embedded, just before embarking on the final analysis leading to a
contradiction.

As the present chapter is a long one, the reader would be well advised to
omit some sections on a first reading. If the sections relating to the case of
weak but not strong embedding are omitted, then the line of analysis should
be quite clear. The last four sections, which have to be taken as a single
unit, seem to us the most interesting, and use increasingly geometrical lines
of reasoning to compensate for our inability to invoke the theory of solvable
groups in a useful way, given the weakness of our inductive hypothesis. One
may wonder if the whole thing might be put on a more geometrical footing.
We doubt it.

The treatment of the “weak but not strong” case may be viewed as
a perturbation in which some good control is provided at the outset by
an “offending involution”, which is then used to compensate for the lack of
control in other directions. As a result, many of the arguments proceed along
similar lines; that is, similar facts are proved (always reminiscent of SL2),
but in a different order, and their relative difficulty is not at all preserved
in passing from one case to the other.

One final point. It will take us quite some time to reach the point at
which the underlying strategy for the proof of Theorem 6.1 of Chapter VIII
(the classification of groups of finite Morley rank of even type) is ready to be
laid out—until §6 of Chapter VIII, in fact. But there is nothing to prevent
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the reader from beginning the proof with that section. Everything from this
point forward, up to that section, aims at setting up the argument outlined
there. And once one we are in a position to lay out the global strategy,
all that will remain to implement that strategy is one, admittedly lengthy,
amalgam argument (Chapter IX). A curious coincidence, if indeed it is a
coincidence, is that the result which makes that strategy viable in the first
place—namely the C(G,T )-theorem—also disposes of one of the three cases
that need to be treated.

1. Weak solvability: strong embedding

Our goal in the present section is the following.

Proposition 1.1. [1, 3] If G is a simple L∗-group of even type of finite
Morley rank with a definable strongly embedded subgroup M , then U2(M) is
2-unipotent.

We will prove the corresponding result for the case of weakly, not strongly,
embedded subgroups in the next section. In the case of strong embedding,
all involutions are conjugate in M , and there are additional simplifying
properties, which are not only useful in arguments but tend to lighten the
notation as well. When we turn to the weakly but not strongly embedded
case, we will have to revisit our notation. On the other hand, Theorem 4.1
of Chapter IV will serve to lighten the notation in that case.

We can phrase our goal as follows: U2(M) is solvable. This immediately
implies that U2(M) is 2-unipotent (Lemma 8.36 of Chapter I). We approach

this by setting M1 = (U2(M))(∞) and considering whether M1 is trivial or
not. This group is in any case a K-group, and we will eventually show that
it is quasisimple, hence has finite center, by the theory of central extensions,
while on the other hand we will show early on that its involutions are central,
and conclude that it is trivial.

We first show that the involutions of M are central in U2(M). We then
consider the subgroup M1 and the group O2

◦(M) which may be defined as
the largest connected normal 2-unipotent subgroup of M , and which equals
O2(U2(M)) (Proposition 6.2 of Chapter II). The next step is to show that
[M1, O2

◦(M)] = 1, and then we may show that M1 is a perfect quasisimple
K-group, and invoke the theory of central extensions to show that M1 = 1.

1.1. Ω1(U2(M)). Our first goal is to show that I(M)) ⊆ Z(U2(M)),
and in particular the involutions of M generate an elementary abelian sub-
group. The following is both basic and powerful.

Lemma 1.2. Let G be a group of finite Morley rank with a definable
strongly embedded subgroup M . Let i, a ∈ M and j ∈ G with with i, j
involutions, such that i centralizes a, j inverts a, and a ̸= 1. Then j ∈M .



1. WEAK SOLVABILITY: STRONG EMBEDDING 311

Proof. Let H = N(d(⟨a⟩)). If H ≤ M then our claim follows since
j ∈ H. And if not, then since H ∩ M is a proper subgroup of H con-
taining the involution i, it follows that H ∩ M strongly embedded in H,
and hence the involutions of H are conjugate in H (Lemma 10.12 of Chap-
ter I). So in this case i and j are conjugate in H, say by h ∈ H. Then

ah = (ai)h = (ah)i
h
= (ah)j = (ah)−1. So ah is an involution, and a is an

involution, and j commutes with a. Then by strong embedding, j ∈M . □

Lemma 1.3. Let G be a connected group of finite Morley rank, and M a
definable strongly embedded subgroup. Then there is a definable subgroup K
of M◦ normalized by an involution w ∈ G \M , such that for any involution
i ∈M we have M◦ = C◦(i) ·K◦.

Proof. Note first that as G is connected and contains an involution,
it has an infinite Sylow 2-subgroup by Theorem 4.1 of Chapter IV. As M
contains a Sylow 2-subgroup of G, there is an involution in M◦, and as
all involutions of M are conjugate in M (Lemma 10.12 of Chapter I), all
involutions in M lie in M◦.

Now all involutions in G are conjugate (Lemma 10.12 of Chapter I), so
the rank c = rk(C(i)) is constant for i ∈ I(G), and rk(I(G)) = rk(iG) =
rk(G/C(i)) = g − c where g = rk(G). Similarly rk(I(M)) = rk(M) − c <
rk(I(G)). Consider the function

π : I(G) \ I(M) → G/M◦

defined by π(w) = wM◦. This map takes a set of rank g − c into a set of
rank g− rk(M), and therefore it has a fiber of rank at least rk(M)− c. Such
a fiber amounts to a set X ⊆ I(G) included in a single coset of M◦ outside
M ; fixing one element w ∈ X, the set Y = wX is a subset of M◦ which is
inverted by w, and again is of rank at least rk(M)− c. Let K = d(Y ). Then
K is a subgroup of M◦ normalized by w, and w /∈M .

Now we claim that for any involution i ∈ M , rk(K/C(i)) ≥ rk(Y ), or
more concretely that the elements of Y lie in distinct left cosets of C(i).
Suppose on the contrary that y, y′ ∈ Y with y−1y′ ∈ C(i). Write y = wj,
y′ = wj′ with j, j′ involutions in X; then y−1y′ = jj′ is inverted by j and
centralized by i. So we have a nontrivial element y−1y′ of M , centralizing
an involution in M and inverted by j ∈ wM ; hence j ∈M , a contradiction.

It follows that rk(K/C(i)) ≥ rk(M) − c and hence rk(K◦/C(i)) ≥
rk(M) − c as well. Hence for i ∈ I(M◦) we have rk(iK

◦
) ≥ rk(M) − c =

rk(iM ), and it follows that rk(iK
◦
) = rk(iM ) = rk(iM

◦
). On the other hand

iM
◦
is in bijective correspondence with the set of cosets M◦/CM◦(i), which

has Morley degree one. As the sets iK
◦
are pairwise equal or disjoint as

i varies, it follows that iK
◦
= iM

◦
for i ∈ I(M◦), and this translates into

M◦ = CM◦(i) ·K◦.
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On the other hand, CM◦(i)·K◦ is a finite union of double cosets C◦(i)aK◦

with a ∈M◦. Furthermore each of these double cosets is of rank rk(M◦) be-
cause rk(K◦/C◦(i)a) = rk(K◦/C◦(ia)) ≥ rk(M)− c. So these double cosets
must all coincide as M◦ is connected. □

Remark 1.4. As K ≤M ∩Mw, K contains no involutions.

Let us retain a little more from the proof, namely the provenance of the
involution w.

Corollary 1.5. Let G be a connected group of finite Morley rank, and
M a definable strongly embedded subgroup. Then there is an involution
w ∈ G \M such that rk(I(wM◦)) ≥ rk(I(M)), and for any such involution
w, there is a definable subgroup K of M◦ normalized by w such that for any
involution i ∈M we have M◦ = C◦(i) ·K◦.

Proposition 1.6. Let G be a simple L∗-group of even type of finite
Morley rank with a definable strongly embedded subgroup M . Then the in-
volutions of M are central in U2(M).

Proof. We observed above that the involutions of M belong to M◦.
Let us fix a definable subgroup K of M , normalized by an involution w
outside M , such that M◦ ≤ C(i)K◦ for each i ∈ I(M), as given by Lemma
1.3 of Chapter VI. Then K contains no involutions. Recall that U2(M) is a
K-group (Lemma 6.3 of Chapter II).

In this situation, Lemma 5.3 of Chapter II applies, and K◦ normalizes
a Sylow 2-subgroup U of U2(M). Let i ∈ I(Z(U)). Note that as M◦ =
C◦(i)K◦, also M◦ = K◦C◦(i). So

U2(M) = U2(M
◦) = ⟨UM◦

⟩ = ⟨UK◦C(i)⟩ = ⟨UC◦(i)⟩ ≤ C(i),

that is, i is central in U2(M). Since all the involutions in M are conjugate,
they are all central in U2(M). □

This has the following important consequences.

Lemma 1.7. Let G be a simple L∗-group of even type of finite Morley
rank with a definable strongly embedded subgroup M . Then the set of in-
volutions of M has Morley degree equal to 1, and they are all conjugate in
M◦.

Proof. We know now that the involutions of M generate a normal
elementary abelian subgroup A, and A is infinite. As all involutions are
conjugate in M , they belong to A◦, and thus A = A◦ and I(M) = (A◦)×.
This set has Morley degree one, proving the first claim.

Consider any conjugacy class iM
◦
of involutions inM◦. The rank of this

set is

rk(M◦)− rk(CM◦(i)) = rk(M) \ rk(CM (i)) = rk(iM ) = rk(I(M))
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So iM
◦
is a set of full rank in I(M). As I(M) has Morley degree one, and

distinct conjugacy classes under the action ofM◦ are disjoint, it follows that
I(M) is a single conjugacy class under the action of M◦. □

Recall that strongly real elements are those inverted by involutions (Re-
mark 1.43 of Chapter I).

Lemma 1.8. Let G be a group of finite Morley rank with a definable
strongly embedded subgroup M such that the involutions of M generate an
elementary abelian subgroup. Then for each involution i ∈ G, any strongly
real element in the centralizer of i is an involution.

Proof. Let A = ⟨I(M)⟩ = I(M)∪{1}. We may suppose (conjugating)
that i ∈ A. If a ∈ C(i) is strongly real, inverted by j, then by Lemma 1.2
of Chapter VI we have j ∈ M . Now j and ja are involutions in M , hence
are both in A, and commute; so a is also an involution. □

1.2. M1, K
◦, and O2(M).

Lemma 1.9. Let G be a simple L∗-group of even type of finite Morley
rank with a definable strongly embedded subgroup M . Suppose that U2(M) is
nonsolvable, and K ≤ M is w-invariant for some involution w /∈ M . Then
K◦ is abelian.

Proof. We let M1 = (U2(M))(∞), and we suppose M1 is nontrivial.
We let M1 = M1/O2(M1). By Lemma 6.3 of Chapter II and Proposition
5.10 of Chapter II, M1 is a central product of quasisimple Chevalley groups.

The group K contains no involutions as w /∈M . We consider the action
of K◦ on M1, with kernel K0 = CK◦(M1). As K◦ acts on M1 by inner
automorphisms, and contains no involutions (Lemma 5.5 of Chapter II),
K◦/K0 is abelian. We phrase this as follows: (K◦)′ ≤ K0.

Now we claim
(K◦)′ = 1

Suppose (K◦)′ ̸= 1. Now w acts on (K◦)′, and either centralizes a nontrivial
element of this group, or inverts them all (Lemma 10.3 of Chapter I). So
take x ∈ (K◦)′ nontrivial, and either centralized or inverted by w.

We show that CM1(x) covers M1. This follows from Proposition 9.9 of
Chapter I, taking T = d(⟨x⟩), a 2⊥-group acting trivially on M1/O2(M1);
as T centralizes M1/O2(M1), CM1(x) = CM1(T ) covers M1 as claimed. In
particular, CM1(x) contains an infinite Sylow 2-subgroup S. Observe that
Sw∩M = 1 sinceMw∩M contains no involutions. So C◦(x) is not contained
inM , but contains S◦, and thusM∩C◦(x)) is a strongly embedded subgroup
of C◦(x).

This gives us the structure of C◦(x): C◦(x) = L × D, with L of PSL2

type, and D degenerate (Lemma 6.5 of Chapter II). Now C◦(x) ∩ M is
supposed to contain a subgroup covering M1, but this is a subgroup of
B × D with B solvable and D degenerate, and this is impossible. So we
have a contradiction, and (K◦)′ = 1. □
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Lemma 1.10. Let G be a simple L∗-group of even type of finite Morley
rank with a definable strongly embedded subgroup M . Suppose that U2(M)
is nonsolvable. Then O2(M) is abelian.

Proof. We set M1 = U2(M)(∞) and we let K be a group furnished by
Lemma 1.3 of Chapter VI, to which the preceding lemma will apply: so K◦

is abelian. We let K1 be the subgroup of K◦ inverted by w.
We consider the structure (O2(M),K1), where the second group is acting

on the first. Each element of K1 has trivial centralizer in O2(M) (Lemma
1.2 of Chapter VI). We wish to conclude by applying Nesin’s result on free
Suzuki groups, Theorem 3.2 of Chapter III. We have seen that the action
is free, and we claim also:

K1 acts transitively on the involutions of M

By Lemma 10.4 of Chapter I applied to the action of w on K and on K◦

we get: rk(K) = rk(CK(w))+rk(K−); rk(K◦) = rk(CK◦(w))+rk(K1). Now
rk(K) = rk(K◦) and rk(CK(w) = rk(CK◦(w)), so by cancellation rk(K−) =
rk(K1). Recall that by the choice of w, rk(K−) ≥ rk(I(M)). So this gives
us the following.

rk(K1) ≥ rk(I(M))

Furthermore, K1 ∩ C(i) = 1 for any i ∈ I(K) since the elements of K1

are inverted by w (Lemma 1.2 of Chapter VI). So rk(iK1) = rk(I(M)) for
all i ∈ I(M). Since the conjugacy classes with respect to K1 are pairwise
disjoint or equal, and of full rank in I(M), while I(M) has Morley degree
one, therefore I(M) consists of a single conjugacy class under the action of
K1. So by Theorem 3.2 of Chapter III, O2(M) is abelian. □

Lemma 1.11. Let G be a simple L∗-group of even type of finite Morley
rank with a definable strongly embedded subgroupM . LetM1 = (U2(M))(∞).
If O2

◦(M) is abelian, then [O2(M),M1] = 1.

Proof. Let X be any definable subgroup of M1 containing no involu-
tions. Let P = O2

◦(M). As Ω1(P ) ≤ Z(U2(M)), we have [X,Ω1(P )] = 1,
so [X,P ] = 1 (Lemma 10.8 of Chapter I).

As these groups generate M1 (Lemma 5.12 of Chapter II), we find
[M1, P ] = 1, as claimed. □

1.3. Weak solvability.

Lemma 1.12. Let G be an L∗-group of finite Morley rank of even type
with a weakly embedded subgroup M , with O2

◦(M) nontrivial, and suppose
that

[O2
◦(M), (U2(M))(∞)] = 1

Then σ◦((U2(M))(∞)) = 1.

Proof. We let M1 = (U2(M))(∞).
We consider H = σ◦(M1). We have U2(H) ≤ O2

◦(M) ∩M1 ≤ Z(M1),
and H splits as a semidirect product U2(H) · T (Proposition 9.6 of Chapter



2. WEAK SOLVABILITY: WEAK EMBEDDING 315

I), hence as a direct product in this case. Here T = O(M1) ≤ O(U2(M)),
and U2(M) centralizes T (Proposition 10.13 of Chapter I). Thus σ◦(M1) is
central in M1. But M1 is perfect, so by Proposition 4.11 of Chapter II it
follows that σ◦(M1) = 1. □

Proof of Proposition 1.1 of Chapter VI. G is a simple L∗-group
of even type of finite Morley rank with a definable strongly embedded sub-
group M . Let M1 = (U2(M))(∞).

If M1 = 1 our claim is proved. If not, then by the sequence of lemmas
above O2(M) is abelian and commutes with M1, and is nontrivial. So by
Lemma 1.11 of Chapter VI, σ◦(M1) = 1 and M1 is a central product of
quasisimple Chevalley groups in characteristic two. However, the involutions
inM are central in U2(M) by Proposition 1.6 of Chapter VI, while the center
of any quasisimple component ofM1 consists of semisimple elements by Fact
1.8 of Chapter II, and this is a contradiction. □

2. Weak solvability: weak embedding

Our goal in the present section is the following.

Proposition 2.1. [1, 3] If G is a simple L∗-group of even type of finite
Morley rank with a definable weakly embedded subgroup M which is not
strongly embedded, then U2(M) is 2-unipotent.

Definition 2.2. Let G be a group of finite Morley rank with a weakly
but not strongly embedded definable subgroup M . An offending involution in
M is an involution α ∈ I(M) for which CG(α) ̸≤M .

It is the presence of offending involutions which is characteristic for the
case we are now considering, and our analysis revolves around the structure
of C◦(α) with α offending: this will have the familiar form L×D with L of
type PSL2 and D degenerate, and with L meeting M in a Borel subgroup,
and in particular with M containing a unique Sylow 2-subgroup A of L, a
subgroup to which we will devote considerable attention. After invoking the
Landrock-Solomon analysis of §4 of Chapter III to conclude that the Sylow◦

2-subgroup of M is either abelian or of exponent 4, we show that O2
◦(M) is

nontrivial, that the subgroup A is central in U2(M), and, as in the previous

section, that O2(M) commutes with M1 = (U2(M))(∞). From this, as we
showed in the previous section, the structure of M1 is determined, which
leads to a rapid contradiction unless M1 = 1, and the result follows.

2.1. Offending involutions.

Lemma 2.3. Let G be a simple L∗-group of finite Morley rank and even
type, and M a definable subgroup which is weakly but not strongly embed-
ded. Then for any offending involution, writing Cα for CG(α), we have the
following

(1) M ∩ Cα
◦ is strongly embedded in Cα

◦;



316 VI. STRONG EMBEDDING AND WEAK EMBEDDING

(2) Cα
◦ = L×D with L ≃ PSL2(K), K algebraically closed of charac-

teristic two, and D of degenerate type;
(3) M ∩ Cα

◦ = B ×D with B a Borel subgroup of L.
(4) α /∈ Cα

◦.

Proof. The main point here is that Cα
◦ is not contained in M , as

otherwise taking Sα to be Sylow subgroup of Cα
◦, a Frattini argument gives

Cα ≤ Cα
◦ ·N(Sα) ≤M

and α is not offending.
Furthermore, α lies in a Sylow 2-subgroup S of M and Z◦(S) ≤ Cα

◦.
So Cα

◦ is an L-group with a weakly embedded subgroup, namely M ∩Cα
◦.

Now by Lemma 6.5 of Chapter II the structure of Cα
◦ is determined, as well

as the intersection with M .
It follows that α /∈ Cα

◦, as the factor D of degenerate type contains no
involutions.

□

In this situation, we will adopt the notation of the Landrock–Solomon
theorem, Theorem 4.1 of Chapter III. This requires an additional lemma.

Lemma 2.4. Let G be a simple L∗-group of finite Morley rank and even
type, M a definable subgroup which is weakly but not strongly embedded, α an
offending involution, L = U2(C(α)), B = M ∩ L a Borel of L, A = U2(B),
and T a complement to A in B (a maximal torus of L). Then there is an
⟨α⟩ × T -invariant Sylow◦ 2-subgroup of M .

Proof. Let Q be a maximal 2-unipotent subgroup of M normalized by
⟨α⟩ × T , and S a Sylow 2-subgroup of M containing Q⟨α⟩. We claim that
Q = S◦.

Supposing the contrary, letR ≤ S be the preimage in S of Z◦(NS(Q)/Q).
Then R > Q (Corollary 5.2 of Chapter I) and since α ∈ NS(Q) we have
[α,R] ≤ Q. Let K/Q be CU2(NG(Q)/Q)(α). Any subgroup of K containing
Q is α-invariant, and a Sylow◦ 2-subgroup of K properly contains Q. As
K is T -invariant, and is a K-group (Proposition 6.2 of Chapter II), there is
a T -invariant Sylow◦ 2-subgroup of K (Proposition 5.4 of Chapter II). As
this properly contains Q, we contradict the maximality of Q.

So Q = S◦, as claimed. □

So consider A = U2(M∩Cα), T is a torus of U2(Cα
◦) normalizing A, and

S a Sylow◦ 2-subgroup ofM normalized by ⟨α⟩×T and containing A. With
these choices, the hypotheses of Theorem 4.1 of Chapter III are fulfilled.

2.2. M1, A, O2(M).

Lemma 2.5. Let G be a simple L∗-group of finite Morley rank and even
type, and M a definable subgroup which is weakly but not strongly embedded.
Then O2

◦(M) ̸= 1.
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Proof. Supposing the contrary, we consider M1 = (U2(M))(∞). Note
that U2(M) is a K-group (Proposition 6.2 of Chapter II).

Now σ◦(M) is a 2⊥-group since O2
◦(M) = 1. Hence by Lemma 10.13

of Chapter I we have [σ◦(M), U2(M)] = 1. Thus M1 is a central product of
quasisimple algebraic groups (Lemma 4.11 of Chapter II).

The group M1 covers U2(M)/σ(U2(M)) and thus U2(M)/M1 is solvable
and contains no 2-unipotent subgroup. Thus U2(M) = M1 is a central
product of quasisimple Chevalley groups.

We take an offending involution α ∈ M and we consider its action on
U2(M). As CM

◦(α) has the form B × D with B solvable and D degen-
erate, α must normalize each quasisimple component of U2(M). Hence
A = U2(CM (α)) meets each such component. At the same time the con-
nected group T normalizes each factor, and acts transitively on A×, and so
M1 = U2(M) must consist of a single quasisimple Chevalley group.

Now CM1
◦(α) is the product of a solvable and a degenerate factor, both

connected, and the degenerate factor must also be solvable (Proposition 4.5
of Chapter II). So by Lemma 2.27 of Chapter II, α acts on M1 as an inner
automorphism.

Now α normalizes a Sylow◦ 2-subgroup S of M whose structure is given
by the Landrock-Solomon analysis, Theorem 4.1 of Chapter III. As α acts
as an inner automorphism it acts on S like an involution in S. By Fact 4.20
of Chapter III, this forces S = A.

So A is a Sylow 2-subgroup of M . In particular M1 has abelian Sylow
2-subgroups and hence is of the form PSL2(K). Now ⟨α⟩ × T acts on M1

by inner automorphisms, and as M1 contains no such subgroup the action
cannot be faithful. On the other hand the kernel of the action on A is just
⟨α⟩, and α acts faithfully on M1, so we arrive at a contradiction. □

Lemma 2.6. Let G be a simple L∗-group of finite Morley rank and even
type, and M a definable subgroup which is weakly but not strongly embedded.
Let α ∈ I(M) be an offending involution, and A = U2(CM (α)). Then
A ≤ Z(U2(M)).

Proof. By Lemma 2.5 of Chapter VI Z◦(O2(M)) is nontrivial, so CZ◦(O2(M))
◦(α)

is nontrivial, and contained in A. But there is a subgroup T of CM (α) acting
transitively on A, so A ≤ Z(O2

◦(M)).
On the other hand, consider B = Ω1(Z(O2

◦(M))). We have A ≤ B ≤ S
where S is an (⟨α⟩×T )-invariant Sylow◦ 2-subgroup ofM which contains A,
whose structure is given by the Landrock-Solomon Theorem 4.1 of Chapter
III.

Suppose S is nonabelian. Then as B is an (⟨α⟩×T )-invariant elementary
abelian subgroup of S, B must be contained in A by Fact 4.20 of Chapter
III, and thus B = A. Again, if S is abelian and not elementary abelian,
then B ≤ Ω1(S) = A. If S is elementary abelian, then B = A or B = S.

If B = A, then A is normal in M and hence is central in each conjugate
of S, and hence also in U2(M).
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If B = S, then U2(M) = S. So in either case our claim follows. □

Lemma 2.7. Let G be a simple L∗-group of finite Morley rank and even
type, and M a definable subgroup which is weakly but not strongly embedded.
Then [O2

◦(M), (U2(M))(∞)] = 1.

Proof. We fix an offending involution α of M and the usual associated
notation A, S. We set M1 = (U2(M))(∞).

If O2
◦(M) = S, then U2(M) = S and M1 = 1, and our claim holds.

So O2
◦(M) is a proper (⟨α⟩ × T )-invariant subgroup of S containing A.

In particular O2
◦(M) is abelian and homocyclic, with A = Ω1(O2

◦(M)),
(Fact 4.20 of Chapter III).

NowM1 is generated by its definable connected 2⊥-subgroups in view of
Lemma 5.12 of Chapter II. If X is one such, then X centralizes A in view
of the preceding lemma, and hence X centralizes O2

◦(M) in view of Lemma
10.8 of Chapter I. Thus M1 centralizes O2

◦(M), as claimed. □

Proof of Proposition 2.1 of Chapter VI. By Lemma 1.12 of Chap-
ter VI and the preceding results, M1 = (U2(M))(∞) is a central product of
quasisimple Chevalley groups. But α normalizes M1, so if M1 is nontrivial
then α centralizes a nontrivial 2-unipotent subgroup ofM1, and thus A∩M1

is infinite; but A ≤ O2
◦(M), so this is a contradiction. □

Lemma 2.8. If S is a Sylow◦ 2-subgroup ofM and i ∈ S, then C(i) ≤M .

Proof. Suppose on the contrary that i is an offending involution. By
Theorem 2.1 of Chapter VI, S = U2(M). Thus the Landrock-Solomon
Theorem applies and in particular Corollary 4.6 of Chapter III gives CS(i) =
A.

But then i ∈ A and hence i ∈ C◦(i), contradicting Lemma 2.3 of Chapter
VI. □

3. Recognition: strong embedding, I

We will now begin the “recognition” phase of our classification theorem
in the strong embedding case. In other words, we will assume the following
favorable hypothesis, and identify the group, in several stages.

(∗) Whenever A1, A2 are two distinct conjugates of Ω1(O2
◦(M)),

the group CG(⟨A1, A2⟩) is finite.
Later, we will show that the failure of this hypothesis leads eventually

to a contradiction.
The main result of this section concerns intersections of the formM∩Mw

with M strongly embedded and w a suitable involution.

Notation 3.1.

(1) For w ∈ I(G), let T (w) = {x ∈M◦ : xw = w−1}.
(2) Let I+M = {w ∈ I(G) \M : rk(T (w)) ≥ rk(I(M))}.
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We observe that T (w) ⊆ M ∩Mw but that T (w) is a group only if its
elements commute, and in particular there is no obvious reason to suppose
that T (w) will coincide with the intersection. In PSL2, however, it does,
and the goal of this section is to prove a version of this more generally. This
will then give us the point of departure for a close analysis of the ambient
group.

Theorem 3.2. Let G be a simple L∗-group of even type and finite
Morley rank with a definable strongly embedded subgroup M , and let A =
Ω1(O2

◦(M)). Assume the hypothesis (∗) above. Let w be an involution in
I+M . Then w inverts the group T = (M ∩Mw)◦.

We must first settle the general framework more precisely. We will keep
our basic notation fixed throughout this and the next section. So through-
out, G is a simple L∗-group of finite Morley rank and even type, and M is a
definable strongly embedded subgroup of G. We set A = Ω1(O2

◦(M)), and
hypothesis (∗) is assumed to hold.

Recalling that all involutions in M are conjugate in M , and that U2(M)
is 2-unipotent (§1 of Chapter VI), it follows that I(M) ⊆ Z(U2(M)) and,
in particular the group A is elementary abelian, and A = ⟨I(M)⟩. Later, in
dealing with the weakly embedded case, we will have to treat the group A
more circumspectly, but here it may be viewed in a wide variety of ways.

In particular rk(I(M)) = rk(A), and thus we will express the character-
istic property of involutions in I+M as follows: rk(T (w)) ≥ rk(A).

Observe also that

I+M ̸= ∅
This was argued earlier, in the proof of Lemma 1.3 of Chapter VI, and
noted as a corollary to that lemma. We run over the argument again. In
the first place, T (w) is equal to the set {wi : i ∈ I(wM◦)}, so the condition
rk(T (w)) ≥ rk(I(M)) can also be expressed as: rk(I(wM◦)) ≥ rk(I(M)).
Secondly, by a direct computation, the set of all involutions in G has rank
equal to the rank of I(M) plus the corank of M◦ in G (i.e., rk(G)− rk(M)),
and hence some coset other than M◦ must contain at least rk(I(M)) invo-
lutions.

Lemma 1.3 of Chapter VI states that for each involution w ∈ I+M , there
is a connected subgroup K of M such that M◦ = C◦(i)K for all involutions
i ∈M , with K ≤M ∩Mw.

3.1. Preparation. Notation and hypotheses were fixed above: G, M ,
A are fixed throughout. We prepare for the proof of Theorem 3.2 of Chapter
VI. The next result will be applied mainly with H = (M ∩ Mw)◦, and
occasionally to other subgroups of (M ∩Mw)◦.

Lemma 3.3. With hypotheses and notation as above, if w ∈ I(G) \M ,
then for any connected subgroup H contained inM∩Mw, the Borel subgroups
of H are good tori, and are conjugate in H.
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Proof. We have natural actions ofH on A and on Aw, hence on A×Aw,
and the kernel of this combined action is finite, according to hypothesis (∗),
hence central in H◦. By Corollary 1.7 of Chapter IV, the Borel subgroups
of H are conjugate, and are good tori after factoring out the kernel of the
action. In other words, if B is a Borel subgroup of H, then B/B0 is a
good torus for some finite normal subgroup B0. Then B

′ is both connected
and finite, so B is abelian, and hence B is a good torus by Lemma 4.21 of
Chapter I. □

Notation 3.4. We fix an involution w ∈ I+M and set T = (M ∩Mw)◦.

We will need to make a case distinction eventually depending on whether
CT

◦(A) is trivial or not, and we prepare now for the more problematic case,
in which it is trivial.

Lemma 3.5. With the hypotheses and notation above, if CT
◦(A) = 1,

then the intersection of any two distinct Borel subgroups of T is finite.

Proof. Suppose that B1, B2 are distinct Borel subgroups of T , and
B0 = (B1 ∩ B2)

◦ > 1. The Borel subgroups are good tori, and are in
particular abelian. As CT

◦(A) = 1, applying w we have also CT
◦(Aw) = 1,

and thus CB0
◦(A) = CB0

◦(Aw) = 1.
Let X = CT

◦(B0). Then X contains the two Borel subgroups B1 and
B2, so is nonsolvable. Now [A,B0] ̸= 1. Let A1 be an X-minimal subgroup
of [A,B0]. As A = [A,B0]⊕CA(B0) by Lemma 11.8 of Chapter I, it follows
that B0 acts freely on A1. Let K1 be the kernel in X of this action.

If the action of X on A1 is not irreducible, then there must be a finite
X-invariant subgroup of A1 which is then centralized byX, and in particular
by B0, contradicting our choice of A1. So A1 is irreducible as an X-module
and thus by Proposition 4.11 of Chapter I the quotient X/K1 has a linear
representation over the field generated by B0 in End(A1); this is a field of
characteristic two. So by Proposition 4.5 of Chapter II X/K1 is a K-group,
and as X contains no involutions, neither does the quotient, and X/K1 is
solvable. As X is nonsolvable, K1 is nonsolvable. In particularK1 is infinite,
as otherwise it would be central in X. In the remainder of the argument we
will show that K1 is solvable, getting a contradiction.

We claim the following.

(1)
For any connected definable nonsolvable subgroup K of K1,
CAw(K) is finite.

Suppose on the contrary that K ≤ K1 is connected, definable, and
nonsolvable, and CAw(K) is infinite. Now [K,A1] = 1, so CA(K) is infinite.
Since CAw(K) is also infinite, the group L = U2(C(K)) is of type PSL2 by
Lemma 6.5 of Chapter II.

Let S1 and S2 be the two Sylow 2-subgroups of L contained in A and
Aw respectively. There is a maximal torus T1 of L normalizing S1 and S2, so
T1 ≤M ∩Mw, that is T1 ≤ T . As T1 is inverted by an involution outsideM ,
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no element of T1 commutes with an element of A, by Lemma 1.2 of Chapter
VI.

Now T1 commutes with K. Let A = V0 > V1 > · · · > Vn = (0) be a
KT1-invariant series with KT1-minimal quotients. As T1 acts freely on A,
also T1 acts freely on the quotients, by Proposition 9.9 of Chapter I. So
again the image of KT1 in Aut(Vi/Vi+1) is linear over the field generated by
the image of T1, and hence, as it contains no involutions, also solvable, for
each i.

On the other hand, the kernel of the map from K into the product of
all Aut(Vi/Vi+1) is finite, by assumption. So K is solvable, a contradiction;
this proves (1).

Now consider a definableK1
◦B0-minimal subgroup V of [Aw, B0]. Again,

by Lemma 11.8 of Chapter I, B0 acts freely on V . So lettingK2 be the kernel
of the action of K1

◦B0 on V , we find as usual that K1
◦B0/K2 is linear and

solvable, and hence that K1/(K1 ∩K2)
◦ is solvable. So the subgroup (K1 ∩

K2)
◦ is nonsolvable. But this contradicts (1). With this final contradiction,

the proof is complete. □

Lemma 3.6. With the hypotheses and notations above, if CT
◦(A) = 1,

then for any Borel subgroup B of T we have [w,B] ̸= 1.

Proof. We suppose [w,B] = 1 for some Borel subgroup of T . Then B
contains no strongly real element, by Lemma 1.8 of Chapter VI.

Let y be an element of T which is inverted by w. Let K = CT
◦(y).

Note that by Lemma 3.11 of Chapter I the group K is nontrivial. Now w
normalizes K. By Lemma 3.3 of Chapter VI, the Borel subgroups of K
are conjugate. Fix a Borel subgroup B1 of K. We will find an involution
in the normalizer of B1 which, like w, inverts y. By the Frattini argument
N(K) = K ·N(B1), so w = kw1 with k ∈ K, w1 ∈ N(B1). Then w2

1 ∈ K.
Let X = d(w2

1). Then X ≤ NK(B1)∩C(w1) and X contains no involutions,
so X is 2-divisible. Let x ∈ X, x2 = w2

1. Then w
′ = w1x

−1 is an involution
normalizing B1. Furthermore w′ ∈ wK, so w inverts y.

Extend this Borel subgroup B1 of K to a Borel subgroup C of T . As
disjoint Borel subgroups of T have finite intersection, B1 determines C, and
hence C is normalized by w′ and by y. Since C is conjugate to B in T , C
contains no strongly real elements. Now w′ and w′y are two involutions that
normalize C, and as we have just seen they invert no elements of C, and
hence centralize C. So y also centralizes C. On the other hand y is strongly
real, so y is not in C.

Now Lemma 2.3 of Chapter IV says that this configuration cannot oc-
cur. We have a connected group of finite Morley rank (namely T ) whose
Borel subgroups are divisible abelian and almost self-normalizing, and in-
tersect pairwise in finite groups, and an element y normalizing one of these
groups (namely C), and lying outside it. But according to that lemma, this
configuration cannot occur. (We recall that the contradiction arises from a
genericity argument based on consideration of the set

⋃
(yC)G.) □
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This concludes our preparations.

3.2. Analysis of T . We retain the notation and hypotheses fixed above:
G, M , A, w and T are all fixed, and the condition (∗) is included among
our hypotheses. We aim to prove that w inverts T .

Assuming the contrary, CT (w) is nontrivial by Lemma 10.4 of Chapter
I, and is connected by Lemma 10.5 of Chapter I. So we work throughout
with this hypothesis.

(Hyp) CT (w) is connected and nontrivial.

We consider separately the cases in which CT (A) is finite, or infinite.

Case 1 CT (A) is finite.
Extend a Borel subgroup of CT (w) to a Borel subgroup B of T . By

Lemma 3.5 of Chapter VI, w normalizes B.
We have an action of T on A. By Lemma 1.7 of Chapter VI, A× = I(M)

is a single conjugacy class in M◦. By Corollary 1.5 of Chapter VI we have a
connected group K normalized by w for which M◦ = C◦(i)K, for i ∈ I(M),
and thus A× = iK . Of course, K ≤ T , and thus T acts transitively on I(M).

Fix w ∈ I+M . Then rk(T (w)) ≥ rk(A) so rk(T ) = rk(T (w))+rk(CT (w)) >
rk(A). Since T acts on A, we conclude that CT (u) is infinite for u ∈ A. This
will be the point of departure leading eventually to a contradiction.

We claim that u ∈ A× can be chosen so that CB(u) is infinite. Let
u ∈ A×, and let B0 be a Borel subgroup of CT (u). Extending B0 to a
Borel subgroup of T , and using the fact that the Borel subgroups of T
are conjugate in T , we may conjugate u so as to have B0 ≤ B. Then
B0 = CB

◦(u).
We claim that CA(B0) is infinite. We have B0 ≤ B, with B abelian, so

B normalizes CA(B0). If CA(B0) is finite then B centralizes CA(B0). On
the other hand, w normalizes B, and by Lemma 3.6 of Chapter VI w does
not centralize B, hence inverts an element y ∈ B. By Lemma 1.8 of Chapter
VI, y centralizes no involution in A, which would give a contradiction. So
CA(B0) is infinite, and B acts nontrivially on CA(B0). So far we have the
following.

B0 ≤ B is nontrivial, connected; A0 = CA
◦(B0) is nontrivial

Furthermore A0 < A by our case hypothesis, namely CT (A) is finite.
In the next part of the argument, we will show that NT (B) ̸≤ B, and

choose an element σ of NT (B) of prime order p modulo B, showing eventu-
ally that p = 3, and then that σ has order 3, after which we make a precise
analysis of the resulting configuration, or at least the part of it involving
elements of order three and associated involutions.

Now B0 and B are good tori. Fix a prime ℓ such that

Prℓ(B0) > 0

We claim
Prℓ(B) > Prℓ(B0)
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Supposing the contrary, then as Bw
0 ≤ B we find that B1 = (B0 ∩ Bw

0 )
◦ is

nontrivial. As A0, A
w
0 ≤ C(B1), letting L = U2(C(B1)) it follows by Lemma

6.5 of Chapter II that L is of type PSL2. In particular L contains a maximal
torus T0 which normalizes the Sylow 2-subgroups of L containing A0 and
Aw

0 , and hence lies in T . As T0 commutes with B1, we have T0 ≤ B. However
T0 is a full algebraic split torus, and hence Prℓ(T0) = 1. Furthermore T0 acts
freely on A and hence T0 ∩B0 = 1. So Prℓ(B) > Prℓ(B0), a contradiction.

Now we can examine NT (B). Our first claim is as follows.

(1) NT (B) ̸≤ B

Fix a definable B-invariant subgroup A1 of A containing A0, with Ā1 =
A1/A0 B-minimal. Then CĀ1

(B) is trivial: by Proposition 9.9 of Chapter I
this centralizer is covered by CA1(B), which as we have noticed is trivial. By
Proposition 4.11 of Chapter I, B acts on Ā1 like a multiplicative subgroup
of a field, and as Prℓ(B) > 1 it follows that B2 = CB

◦(Ā1) is infinite. Then
A2 = CA1(B2) covers Ā1. Let B3 = CB

◦(A2). Then B2 ≤ B3, and A2 is not
contained in A0.

Now take u ∈ A×
0 and t ∈ T such that ut

−1 ∈ A2\A0. Then B
t
3 ≤ C◦(u).

Now the Borel subgroups of C◦
T (u) are conjugate, so there is an element

t1 ∈ C◦
T (u) carrying Bt

3 into a Borel subgroup of C◦(u) containing B0; in

particular Btt1
3 ≤ B, and hence tt1 ∈ NT (B).

On the other hand u(tt1)
−1

= ut
−1

/∈ A0, so tt1 /∈ B. This proves (1).
Now [NT (B) : B] is finite. For the rest of our analysis, we fix the

following notation.

σ ∈ NT (B) is an element of order p, a prime, modulo B

We may adjust the element σ in the course of our analysis.
We will use a number theoretic argument to show that p = 3, first

showing that for each odd prime the Prüfer rank of B is either 1 or 2. For
this we need first to analyze the structure of B in considerable detail.

We have B = B+ ⊕ B− where B+ = CB(w) and B− is the subgroup
inverted by w (Lemma 10.4 of Chapter I).

Let Aw be the conjugate of A containing w, and let V = CAw(B
+).

Then w ∈ V . We claim that V is infinite. Supposing the contrary, there is a
conjugate V ∗ of V contained in A, and the corresponding conjugate R of B+

then lies in M◦, with CA(R) finite and nontrivial. Let M◦ = M◦/CM◦(A).

Since U2(M) ≤ C(A), the group M◦ is of degenerate type. Hence the Borel
subgroups of M◦ are abelian and conjugate, by Lemma 1.6 of Chapter IV.

Conjugating R again, we may suppose that R̄ and B
−
lie in a Borel subgroup

of M◦. Then B− normalizes the finite group CA(R), and hence centralizes
it. But as w inverts B−, this is a contradiction to Lemma 1.8 of Chapter
VI.

So CAw(B
+) is infinite. On the other hand B− ≤ C(B+) and B− is not

contained inMw = N(Aw), soMw∩C(B+) is a strongly embedded subgroup
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of C(B+). Let L = U2(C(B
+)). Then L is of type PSL2 by Lemma 6.5 of

Chapter II, and we have w ∈ V ≤ L.
We use L as a tool to analyze B. As B centralizes B+, B normalizes

L, and thus B ≤ L× C(L), by Corollary 2.26 of Chapter II. In particular,
elements of B− inverted by w have the form ti with t ∈ L, i ∈ I(C(L)), so
x2 ∈ L for x ∈ B−. As B− is 2-divisible, it follows that B− ≤ L. It follows
easily that

B− is contained in a maximal torus T0 of L.

Later we will show that B− is exactly a maximal torus of L.
At this point, we know that for each prime the Prüfer rank of B− is at

most one. We make the same claim for B+.

(2) For each prime, the Prüfer rank of B+ is at most one.

Let U be a Sylow 2-subgroup of L normalized by B, and let Â be the
conjugate of A containing U . By our hypothesis (∗), we have U < Â. Let

U < U1 ≤ Â with U1 definable, B+-invariant, and B+-minimal. The action
of B+ on U1/U is nontrivial, as usual, since CÂ(B

+) covers CU1/U (B
+). Let

U2/U = CU1/U (B
+), a finite quotient, and Ū1 = U1/U2. If condition (2) fails

for some prime then R0 = CB+(Ū1) is infinite, and Ū1 is covered by CU1(R0).
But U ≤ C(R0) as well, so U1/CU1(R0) is finite and hence U1 centralizes R0.
Thus U2(C(R0)) > U2(C(B

+)). This is impossible for a number of reasons.
For example, B+ centralizes R0 and hence normalizes L1 = U2(C(R0)),
while centralizing some involutions in L1; hence B

+ centralizes L1 and L1 ≤
U2(C(B

+)) after all. This contradiction proves (2).
From the analysis so far, it follows that for each prime, the corresponding

Prüfer rank of B is at most two. We wish to show that for odd primes, the
Prüfer rank is at least one. For this it will suffice to show that B− is a
maximal torus of L; but some preliminary analysis is needed, involving the
p-torsion of B, where p is the order of σ modulo B.

By Lemma 3.11 of Chapter I, the group CT (σ) is infinite. Let H0 be a
Borel subgroup of CT (σ), and extend H0 to a Borel subgroup H of T . Then
σ normalizes H, by Lemma 3.5 of Chapter VI. If σ is not in H, then this
is exactly the configuration ruled out by Lemma 2.3 of Chapter IV (taking
G = T , and T = H). So σ ∈ H. On the other hand, σ can be taken to be
a p-element; so H contains p-torsion, and as the Borel subgroups of T are
conjugate, the same applies to B. So the Prüfer p-rank of B is at least 1.

Let Bp be the p-torsion subgroup of B. By Lemma 2.3 of Chapter IV
again, it follows that CB(σ) is finite. But σ acts on Bp, and if B has Prüfer
rank one then this action is trivial, by Lemma 10.18 of Chapter I.

So the Prüfer p-rank of B is at least two, and by our analysis above it
is exactly two, with each of B+ and B− having Prüfer p-rank one.

Now we claim

(3) The conjugates of B+ under the action of ⟨σ⟩ intersect trivially
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Suppose on the contrary that x ∈ B+∩ (B+)τ is nontrivial, where τ ∈ ⟨σ⟩ is
nontrivial. Then U2(C(x)) contains L and Lτ . It follows easily via Lemma
6.5 of Chapter II that L = U2(C(x)) = Lτ . On the other hand B∩L contains
B− and is disjoint from B+, so this group, which is invariant under τ , has
Prüfer p-rank 1. Thus τ acts trivially on B− (Lemma 10.18 of Chapter I).
But CB(σ) is finite, a contradiction.

It follows that Ω1(Bp), a group of order p2, contains at least p2 − p
elements commuting with some involution. On the other hand B− consists
of strongly real elements. Thus B− contains the remaining elements of
Ω1(Bp), and is stabilized and hence centralized by σ.

Now we return to a consideration of L = U2(B
+). Let A0 be a B-minimal

subgroup of A. As the Prüfer p-rank of B is two, the Prüfer p-rank of CBA0

is positive. The elements of order p in CB(A0) lie in a conjugate under ⟨σ⟩
of B+, by the analysis just above. As we may conjugate by any element of
⟨σ⟩, we may suppose that these elements lie in B+. Fixing one such element
x, we find as usual that U2(C(x)) = L again. This shows that A0 ≤ L. Also
w ∈ L so Aw

0 ≤ L. It follows that A ∩ L and Aw ∩ L are Sylow 2-subgroups
of L. Therefore there is a maximal torus T1 of L which normalizes these two
subgroups, and is therefore in N(A) ∩ N(Aw) = M ∩Mw, that is T1 ≤ T .
On the other hand B− ≤ L ∩ N(A) ∩ N(Aw) = T1, so T1 ≤ B and finally
T1 = B−.

Let W = NT (B)/B. Recall that for α ∈ W×, CB(α) is finite (Lemma
2.3 of Chapter IV). Let n = |W |. For all sufficiently large primes ℓ, W acts
freely on Ω1(Bℓ) ≃ (Z/ℓZ)dℓ with dℓ equal to one or two. It follows that
in any case n divides ℓ2 − 1 for all sufficiently large primes. Now n is odd.
Take ℓ prime and congruent to 2 modulo n using Dirichlet’s theorem. Then
ℓ2 − 1 ∼= 3modn and thus n|3. So |W | = 3 and p = 3.

Now σ3 ∈ B, and σ may be taken to have order a power of three.
Furthermore, since CB(σ) is finite, it follows from Lemma 10.2 of Chapter
I that the conjugates of σ are generic in Bσ, and the same applies to any
other element of this coset, so all elements of Bσ have the same order m; so
m is a power of three.

(4) σ has order three

Suppose the order of σ is 3i with i > 1. We show first that CB3(σ) ⊆ ⟨σ⟩.
Let X = ⟨CB3(σ), σ⟩, a finite abelian 3-group. By assumption every element
of order three in ⟨σ⟩B is contained in B, and the same applies to X, that
is Ω1(X) ≤ B. But X ≤ C(⟨σ⟩), so X ∩ B3 is cyclic of order 3 by Lemma
10.16 of Chapter I. It follows that Ω1(X) is cyclic, and hence X is cyclic,
forcing X = ⟨σ⟩. So CB3(σ) ⊆ ⟨σ⟩.

Let U = Ω1(B3) and consider the action of σ on U . By our analysis so

far, [σ, U ] = CU (σ) and in particular taking τ = σ3
i−1

, we have [σ, u] = τ
for some u ∈ U . Then σu ∈ ⟨σ⟩ and u normalizes C(σ), hence also CT

◦(σ).
We consider the Borel subgroups of CT

◦(σ). By the Frattini argument
there is a Borel subgroup H0 of CT

◦(σ) normalized by an element ua with
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a ∈ CT
◦(σ). Then H0 is contained in a unique Borel subgroup H, of T ,

which is again normalized by σ and by ua. As CH(σ) is infinite, it follows
from Lemma 2.3 of Chapter IV that σ belongs to H. On the other hand σ
and u do not commute, so u /∈ H.

We claim that the pair (H,ua) is conjugate in T to the pair (B, σ).
We first conjugate H to B and ua goes to an element of σB or σ−1B. If
(H,uaH) is conjugate to (B, σ−1B then we have the element w available.
Clearly w does not commute with the action of σ on B, hence w carries σB
to σ−1B). So (H,uaH) is conjugate to (B, σB). After further conjugation
by an element of B, ua will go to σ. So (H,ua) is conjugate to (B, σ).

Now in (H,ua) we have the element σ ∈ H of order 3i, with [σ, ua] = τ .
Here τ has order three and τ commutes with both u (in B) and h, so

τ ∈ C(ua). Hence τ = (ua)±3i−1
. So conjugating H to B and ua to σ, we

find an element τ1 ∈ B of order 3i with [τ1, σ] = σ±3i−1
= τ±1. In particular

τ31 ∈ C(σ) and CB3(σ) = ⟨τ31 ⟩.
Now commutation with σ defines a homomorphism which we restrict to

the group ⟨τ1, u⟩, getting

γσ : ⟨τ1, u⟩ → ⟨τ⟩

The kernel of this map contains τ31 , and since CB3(σ) = ⟨τ31 ⟩, this is the
exact kernel. But the quotient ⟨τ1, u⟩/⟨τ31 ⟩ is isomorphic to (Z/3Z)2: as
u ∈ Ω1(B3) and [σ, u] ̸= 1, we have u /∈ ⟨τ1⟩. But the image of this group
under the commutation map is cyclic, so we have a contradiction. This
contradiction proves finally that σ is of order three.

Now we observed earlier that w acts by inversion on NT (B)/B, so in
particular CNT (B)(w) = B+. But by Lemma 10.4 of Chapter I we have

NT (B) = CNT (B)(w)N
− where N− = NT (B)− is the subset inverted by w.

Thus NT (B) = B+N−. It follows that the element σ may be taken to be
inverted by w.

Let X = Ω1(CB3(σ)), a cyclic group of order three. Then w inverts
X, and hence acts by inversion on the group Y = ⟨X,σ⟩ ≃ (Z/3Z)2. Take
any irreducible Y -invariant subgroup A∗ of A; then some nontrivial element
y ∈ Y centralizes A∗, and is inverted by w; this again is a contradiction.
But this final contradiction goes all the way back to our initial assumption
that CT

◦(w) is nontrivial. Thus, under our present case assumption, the
result is proved.

Case 2 CT (A) is infinite.
We letK1 = CT

◦(A) andK2 = CT
◦(Aw). Under our present assumption

these groups are nontrivial. Now [K1,K2] ≤ K1 ∩K2 ≤ C(A,Aw), and this
is assumed finite. Since the group [K1,K2] is connected it must therefore
be trivial, and the central product K1 ∗K2 is a subgroup of T .

By Lemma 3.3 of Chapter VI the Borel subgroups of K1 are conjugate
good tori; the same applies to K2.
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Let B1 be a Borel subgroup of K1. Then B = B1B
w
1 is an abelian group

on which w acts, and this group contains no involutions, so we have the
decomposition B = B+B− with respect to the action of w.

Let Aw be the conjugate of w containing w, and let V = CAw(B
+). We

claim that V is an infinite proper subgroup of Aw.

Observe that V is nontrivial since w ∈ V . If ⟨V B−⟩ ≤ Aw then it
would follow that B− normalizes Aw, but as w inverts B−, this leads to the

contradiction [w,B−] ≤ Aw ∩ B− = 1. So ⟨V B−⟩ ≤ C◦(B+) escapes from
N(Aw), and hence L = U2(C(B

+)) is a group of type PSL2, to which we
will return below. On the other hand, by (∗) this group cannot contain a
conjugate of A, so we find V < Aw.

Now suppose toward a contradiction that V is finite. Then conjugating
Aw to A, we find that there is connected group R conjugate to B+ such
that CA(R) is finite and nontrivial; in particular R ≤ M . Working in the
quotient M◦ =M◦/CM◦(A), as in the previous case, we may suppose after
conjugation that the action of R on A commutes with the action of B−.
Hence B− normalizes the finite group CA(R) and centralizes it, producing
a contradiction since the elements of B− are strongly real. So V is infinite,
and proper.

Now consider a Borel subgroup H of T containing B. Then H is a
good torus by Lemma 3.3 of Chapter VI. We claim that H is almost self-
normalizing in G. Let H1 = N◦(H) = C◦(H) (Lemma 4.23 of Chapter I).
ThenH1 centralizes B1 and hence normalizes U2(C(B1)). But B1 centralizes
A, and by hypothesis (∗) C(B1) cannot contain another conjugate of A, so
U2(C(B1)) = A and thus H1 ≤ N(A) = M . Similarly H1 ≤ Mw and thus
H1 ≤ T . As H is a Borel subgroup of T , we find H1 = H, and H is almost
self-normalizing in G.

Now H centralizes B+ and hence normalizes L. Hence H acts so as to
normalize two Sylow 2-subgroups of L, and also normalizes the two conju-
gates of A containing these two Sylow 2-subgroups. So take A1, a conjugate
of A, such that H normalizes A1 and A1 ∩ L is a Sylow 2-subgroup of L.
Then CH(A1) normalizes L and acts trivially on A1, and contains no invo-
lutions, hence centralizes L; by condition (∗), this implies that CH(A1) is
finite.

To recapitulate, we have H, an almost self-normalizing good torus in G,
and we have A and a conjugate A1 of A such that CH(A) is infinite, CH(A1)
is finite, and H normalizes A and A1. Conjugating A1 to A, we have H
and H1, each an almost self-normalizing good torus in G, so that CH(A)
is infinite, CH1(A) is finite, and H and H1 both lie in M = N(A). It now
follows from Lemma 1.5 of Chapter IV that H and H1 are conjugate in M ;
but as A is normal in M , this is a contradiction.

With this, all cases have been analyzed, and it follows, finally, that w
inverts T , under hypothesis (∗). This will give us all we need to carry out
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a detailed analysis of the action of G on cosets of M . First, we record some
direct consequences.

3.3. Consequences. We retain the same notation and hypotheses con-
cerning G, M , A, w and T , and we now know, therefore, that w inverts T .

Lemma 3.7. Under the notation and hypotheses fixed above, we have the
following.

(1) T is a good torus.
(2) T acts regularly on A×.
(3) rk(T ) = rk(A).
(4) For i ∈ A, CM◦(i) = CM

◦(A).
(5) M◦ = CM

◦(A)⋊ T .
(6) For any x /∈M , (M ∩Mx)◦ is abelian

Proof.
1. T is a good torus:
As w inverts T , T is abelian, and the rest follows Lemma 3.3 of Chapter

VI.
2. T acts regularly on A×:
By Lemma 1.3 of Chapter VI the action is transitive. On the other hand,

as every element of T× is strongly real, the action is free by Lemma 1.8 of
Chapter VI.

4. For i ∈ A, CM◦(i) = CM
◦(A).

Fix an involution i ∈ A. We have a decomposition

M◦ = CM◦(i)⋊ T

by Lemma 1.3 of Chapter VI and the regularity of the action.
This gives us a bijection betweenM◦, which has Morley degree one, and

the definable set CM◦(i)× T , so the factor CM◦(i) has Morley one as well,
and thus is connected, that is CM◦(i) = CM

◦(i).

Now suppose CM
◦(A) < CM

◦(i), and work in the quotient group M◦ =
M◦/CM◦(A). The Borel subgroups of this quotient are conjugate by Lemma
1.6 of Chapter IV. One such Borel subgroup is formed by taking a Borel
subgroup of CM◦(i) and extending it. The action of this Borel subgroup on
A is not regular. Therefore, to reach a contradiction it suffices to show that
T̄ is also a Borel subgroup of M◦.

The Borel subgroups ofM◦ are abelian, again by Lemma 1.6 of Chapter
IV. So it suffices to consider a connected abelian group T̄1 ≥ T̄ . Now
T̄1 = T̄2 × T̄ with T̄2 = T1 ∩CM

◦(i). Since T̄2 commutes with T̄ , which acts
transitively on A, it follows that T̄2 ≤ C̄M◦(A) = 1. So T̄1 = T̄ and T̄ is a

Borel subgroup of M◦. Our claim follows; and the fifth claim is simply a
reformulation of this one.

6. For any x /∈M , M◦ ∩Mx is abelian:



4. RECOGNITION: STRONG EMBEDDING, II 329

By the preceding point, M◦′ ≤ C(A); so A,Ax ≤ C([(M ∩Mx)◦]′); by
our hypothesis (∗) the commutator ((M ∩Mx)◦)′ must then be finite, and
being connected is trivial. □

Lemma 3.8. For any nontrivial subgroup H of T we have the following.

(1) w inverts C◦(H).
(2) NM

◦(H) = T .

Proof. w inverts C◦(H):
If not, then w centralizes a connected subgroup X of C◦(H), by Lemma

10.3 of Chapter I. Let Aw be the conjugate of A containing w. Then X
centralizes Aw by our fourth point above. As X is infinite, it follows from
our condition (∗) that U2(C(X)) = Aw. In particular H normalizes Aw,
giving the contradiction [w,H] ≤ H ∩Aw = 1. So w inverts C◦(H).

NM
◦(H) = T :

By Lemma 4.23 of Chapter I we have NM
◦(H) = CM

◦(H). Let Ĥ =

CM
◦(H). Then Ĥ = CĤ(A)⋊T since T ≤ Ĥ ≤M◦, and as Ĥ is connected

it follows that CĤ(A) is also connected. Now CĤ(A) = CM◦(AH), and we
need to prove that this group is finite, or in other words that C◦(AH) = 1.

But since w inverts C◦(AH) and this group commutes with A we have
C◦(AH) = 1 by Lemma 1.8 of Chapter VI. □

Lemma 3.9. For x ∈M◦ \N(T ), the intersection T ∩ T x is trivial.

Proof. If H = T ∩ T x is nontrivial then NM
◦(H) = T and similarly

NM
◦(H) = T x, so x ∈ N(T ). □

Lemma 3.10. For any nontrivial subgroup H of T , NM◦(H) = T .

Proof. Let H1 = NM◦(H). Then H1
◦ = T by Lemma 3.8 of Chapter

VI, and thus H1 ≤ N(T ). Now H1 = CH1(A) ⋊ T and [CH1(A), T ] ≤
C(A) ∩ T = 1, so CH1(A) ≤ CM◦(A, T ).

By Lemma 2.3 of Chapter IV applied toM◦ and T , for any x ∈ N(T )\T ,
the centralizer CT (x) is finite. Thus CM◦(A, T ) = 1 and H1 = T . □

Lemma 3.11. M◦ ∩ (M◦)w = T .

Proof. Let T̂ = M◦ ∩ (M◦)w. Then by definition T = T̂ ◦. So T̂ ≤
NM◦(T ) = T . □

4. Recognition: strong embedding, II

In this section we will conclude the “recognition” phase of our classifica-
tion theorem in the strong embedding case, under the the following favorable
hypothesis, finally identifying the group.

As in the last section, G is a simple L∗ group of finite Morley rank
and even type, and M is a definable strongly embedded subgroup of G.
A = Ω1(O2

◦(M)), and the standard hypothesis (∗) is assumed to hold.
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(∗) Whenever A1, A2 are two distinct conjugates of Ω1(O2
◦(M)),

the group CG(⟨A1, A2⟩) is finite.
In the last section we began the study of intersections of the formM∩Mw

with M strongly embedded and w a suitably chosen involution. We showed
in fact that T =M◦∩ (M◦)w is a connected abelian group, and even a good
torus, inverted by w, and we derived a number of structural consequences
from this, notably NM◦(T ) = T , and that M◦ = CM◦(A) ⋊ T . This last
point gives good control overM◦ (and eventually,M , once we prove that this
group is connected), in spite of the necessary vagueness about the structure
of C(A) which persists right up to the end of the analysis.

We can now proceed fairly directly to a close analysis of the permutation
representation of G acting on the cosets of M .

This proceeds by the following steps. First, one shows that a generic
involution is “suitable” in the sense of the preceding section. Using this,
one makes a fairly precise computation of the rank of the ambient group
G: rk(G) = rk(C(T )) + 2 rk(C(A)). Here the term rk(C(T )) has to be
considered as unsatisfactory and a further argument is needed to show that
rk(C(T )) = rk(T ), at which point the formula becomes really useful. One
can then pass to less technical matters, arriving quickly at the conclusion
that the action of G onM\G is doubly transitive, and then (finally) thatM
is connected. After that, given the structure of M already in hand, and the
subsequent understanding of its embedding into G achieved at that point,
one may verify directly that G is the sort of split Zassenhaus group identified
by the DeBonis–Nesin classification of §2 of Chapter III. In fact, the more
technical hypotheses of that theorem have been proved already, apart from
the connectedness ofM : M◦ = U⋊T where U = CM◦(A) certainly contains
a central involution. So what is mainly missing at this point is the basic
permutation theoretic information that G acts doubly transitively, and that
the stabilizer of three points is trivial. Note also that once we know that
M =M◦, then this will also tell us that the two-point stabilizer, which may
be taken to be M ∩Mw, is in fact T .

We now take up the analysis.

4.1. The rank of G. In the previous section we made a detailed study
of M ∩Mw for w an involution in I+M . Here we must switch our attention

briefly to the class I+M itself. We made the following definitions, which
depend not only on G but on a choice of strongly embedded subgroup M .
For w ∈ I(G) we defined T (w) as

{x ∈M◦ : xw = w−1}

We then defined I+M as the set of involutions for which rk(T (w)) ≥ rk(I(M)),
which turns out to be also the set of involutions characterized by

rk(T (w)) = rk(A)



4. RECOGNITION: STRONG EMBEDDING, II 331

as follows from the analysis of the preceding section.
We will need also consider, very briefly, the complementary set I−M con-

sisting of involutions w with rk(T (w)) < rk(A). Our claim is that the set
I+M is generic.

All we have shown so far about I+M is that it is nonempty; this is already

useful, so for the present we will fix some w ∈ I+M and work with

T = (M ∩Mw)◦ =M◦ ∩ (M◦)w

to elucidate the structure of M◦, the main points being that rk(T ) = rk(A),
and M◦ = C◦(A) ⋊ T = C◦(i) ⋊ T for any i ∈ I(M). Note that in fact
T = T (w), as follows from the fact that w inverts T .

Proposition 4.1. rk(I+M ) = rk(I(G))

Proof. It suffices to show that rk(I−M ) < rk(I(G)).

We consider the natural map π : I−M → G/M◦. Our estimate for rk(I−M )

will be a coarse one: rk(I−M ) ≤ rk(G/M) +m where m is the maximal fiber

rank; by definition of I−M , the number m is less than rk(A). So

rk(I−M ) < rk(G)−rk(M)+rk(A) = rk(G)−(rk(M)−rk(T )) = rk(G)−rk(C(i))

for any fixed i ∈ I(M), and of course this last term is rk(I(G)). □

Combined with the following, this result will give us a useful expression
for the rank of G.

Lemma 4.2. Suppose w1 and w2 are involutions in I
+
M . Then T1 = T (w1)

and T2 = T (w2) are conjugate under the action of C◦(A).

Proof. T1 and T2 are almost self-normalizing good tori in M◦ by the
results of the preceding section. By Lemma 1.5 of Chapter IV, they are
conjugate in M◦. On the other hand M◦ = C◦(A)⋊T1 so the claim follows.

□

Proposition 4.3. rk(G) = rk(C(T )) + 2 rk(C(A))

Proof. Since C◦(A) = C◦(i) for i ∈ I(M), and rk(G) = rk(I(G)) +
rk(C(i)), while rk(I(G)) = rk(I+M ), what we actually need to show is

rk(I+M ) = rk(C(T )) + rk(C(A))

Furthermore as C◦(A) ∩ C(T ) = 1 by Lemma 3.8 of Chapter VI, we have
rk(C(T )) + rk(C(A)) = rk(C(T )C(A)). So we need to compare the rank of
the two sets I+M and C(T )C(A), which we do by introducing explicit maps.

We have fixed one involution w ∈ I+M , and set T = T (w). We will now
define a certain function

Φ : I+M → wC(T )C◦(A)

For i ∈ I+M we have T (i) = T f for some f ∈ C◦(A). This element f is

unique by Lemma 3.10 of Chapter VI. Now if
−1

inverts T and hence if
−1
w
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centralizes T . We set

Φ(i) = wif
−1

w·f

Note that T (Φ(i)) = T (i).
We claim that the map Φ has finite fibers. Suppose therefore that Φ(i) =

Φ(j). Then T (i) = T (j). Accordingly, there is f ∈ C◦(A) for which we have

wif
−1

wf = wjf
−1

wf

and in fact f is constant along this fiber. After conjugation we have wif
−1

=

wjf
−1

, which reduces to wfi = wfj or (ij) ∈ C(wf ). But (ij) ∈ C(T f ) as
well, so (ij) ∈ C(T,w)f . Now by Lemma 3.8 of Chapter VI, w inverts
C◦(T ), and thus C(T,w) is finite. As the element f is fixed on this fiber,
the fiber is finite.

So we conclude that rk(I+M ) ≤ rk(wC(T )C◦(A) ≤ rk(C(T )C◦(A)), giving
us the desired value for rk(G), but only as an upper bound.

For the matching lower bound it suffices to show that

rk(wC(T )C(A)) = rk(C(T )C(A))

Let X = C(T )C(A) and consider the natural map X → wX . It will suffice
to check that the fibers of this map are also finite.

Note that for c ∈ C(T ), f ∈ C(A), we have T (wcf ) = T f ; so if cf , c′f ′

belong to the same fiber then T f = T f ′
and again f = f ′, wc = wc′ , and

c′c−1 ∈ C(w, T ), a finite group. □

To improve this estimate, we need to show C◦(T ) = T .

4.2. C◦(T ) = T . The idea of the proof that C◦(T ) = T is the following.
If C◦(T ) > T then let Y0 = C◦(T ) \ T and let Y = C◦(A)Y0C

◦(A). We will
show that this is a generic subset of G, and we will find another disjoint set
which is already generic, to get a contradiction. So there are three things to
do: find a “truly” generic set, show that it is disjoint from the “pretender”
Y , and check that Y is either empty or generic. The truly generic set we
will use is I+MM

◦.
There is a certain amount of bootstrapping involved: we have a good

estimate for rk(G), which yields structural information which gives us a
better estimate.

Our first calculation is straightforward, and could have been carried out
earlier.

Lemma 4.4. rk(I+MM
◦) = rk(G)

Proof. We know that any coset of M◦ meeting I+M meets the latter set
in a subset whose rank is rk(T (w)) = rk(T ). So

rk(I+MM
◦) = rk(I+M ) + rk(M◦)− rk(T ) = rk(I(G)) + rk(C(A)) = rk(G)

□
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Lemma 4.5. If c ∈ C◦(T ) \ M and f ∈ C◦(A) then the coset fcM◦

contains no involutions.

Proof. We suppose toward a contradiction that fcb is an involution
with b ∈ M◦ and since C◦(T ) and M◦ overlap in T we may take b to lie in
C◦(A). Then conjugating, the element bfc is also an involution, so replacing
f by bf we may suppose b = 1 and i = fc is an involution.

Take some nontrivial element t ∈ T and consider the commutator γ =
[i, t]. Then i inverts γ. On the other hand we compute γ = (fc)(fc)−t =
(fc)(c−1f−t) = [f−1, t] ∈ C(A). Now by Lemma 1.8 of Chapter VI, if γ
is nontrivial then γ is an involution, hence in A, and hence i = fc ∈ M ,
which is absurd since f ∈ M and c /∈ M . So γ = 1 and we conclude that
i ∈ C(T ). But i is an involution, and T consists of strongly real elements,
so we contradict Lemma 1.8 of Chapter VI. □

Proposition 4.6. C◦(T ) = T

Proof. If C◦(T ) ≤ M then by Lemma 3.8 of Chapter VI we have the
result. Suppose toward a contradiction that C◦(T ) ̸≤ M and let Y0 =
C◦(T ) \M . Then rk(Y0) = rk(C(T )).

We showed in preceding lemmas that I+MM
◦ is a generic subset of G and

that it is disjoint from Y = C◦(A)Y0C
◦(A). So it suffices to carry out a

rank computation showing that Y is generic to reach a contradiction.
Since rk(G) = rk(Y0)+2 rk(C(A0)) it suffices to show that the represen-

tation of the elements of Y is unique. So consider a relation c = uc′v where
u, v ∈ C◦(A) and c, c′ ∈ Y0; we claim that u = v = 1.

Consider the group X = [v, T ]. We will show that X = 1. We have

T v ≤ M and also T v = T u−1c ≤ M c, and since also T ≤ M ∩ M c we
have X ≤ M ∩ M c. Now c /∈ M and so by Lemma 3.7 of Chapter VI,
⟨X,T ⟩ ≤ (M ∩M c)◦ is abelian. Hence by Lemma 3.8 of Chapter VI, w
inverts X; as X ≤ C◦(A), by Lemma 1.8 of Chapter VI X ≤ A, and as
[X,T ] = 1 therefore X = 1. So v ∈ CM◦(A, T ) = CT (A) = 1 in view of
Lemma 3.10 of Chapter VI, and then as c = uc′ similarly u = 1, and so
c = c′.

Thus C◦(A)Y0C
◦(A) is a second generic subset disjoint from the first,

and we have a contradiction. □

So the situation now is as follows.

Lemma 4.7.

(1) rk(G) = rk(T ) + 2 rk(C(A))
(2) For g ∈ G \NG(T ) we have T ∩ T g = 1.
(3) For any g ∈ G \M , rk(M ∩Mg) ≥ rk(T ).

Proof. As rk(C(T )) = rk(T ) we obtain the first point.
For the second, if H = T ∩ T g is nontrivial then w inverts ⟨T, T g⟩ by

Lemma 3.8 of Chapter VI and thus T g ≤ C◦(T ) = T .
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For the last, we have rk(M∩Mg) = 2 rk(M)−rk(MMg) ≥ 2[rk(C(A))+
rk(T )]− rk(G) = rk(T ) □

4.3. Double transitivity. We can now enter into the final stage of
the argument which leads to a direct verification of the hypotheses of the
classification theorem of DeBonis-Nesin, Theorem 2.2 of Chapter III.

The first issue is double transitivity of the permutation representation of
G onM\G. AsM is the stabilizer of one point, double transitivity amounts
to the “Bruhat decomposition”

G =M ∪MgM

for one, or any, element of G \M . Since G is connected, an equivalent and
more accessible statement is that MgM is generic in G for any g ∈ G \M .
And in fact we will show that C◦(A)gM is generic for such g. We will need
a little preparation first.

Lemma 4.8. For i ∈ I(G) \M , i does not centralize (M ∩M i)◦.

Proof. We suppose the contrary. Let H = (M ∩ C(A)i)◦. Then i
centralizes H and H centralizes Ai and i, hence also A, and by hypothesis
(∗) H is finite and hence trivial. That is, M ∩ C(A)i is finite.

We consider the natural map θ : C◦(A)×M → C◦(A)iM . AsM∩C◦(A)i

is finite, one finds directly that this map has finite fibers and hence by a
rank computation C◦(A)iM is generic in G.

On the other hand, for w ∈ I+M , we also have M ∩ C◦(A)w finite as
the connected component of (M ∩C◦(A))w is inverted by w and commutes
with Aw, so that Lemma 1.8 of Chapter VI applies. So by the same token,
C◦(A)wM is generic in G and thus MiM =MwM .

We have mi = wm′ for some m,m′ ∈ M and hence Tmi = Tm′ ≤
M ∩M i. So by hypothesis i centralizes Tmi, and as the elements of this
group are strongly real, and are not involutions, we contradict Lemma 1.8
of Chapter VI. □

The following is essentially the statement of double transitivity.

Lemma 4.9. For any g ∈ G \M , the group C◦(A) ∩Mg is finite.

Proof. Suppose H = (C◦(A) ∩ Mg)◦ ̸= 1 and let i ∈ A×. Then
H ≤Mg ∩Mgi and A ≤ C(H). By hypothesis (∗) we have A = U2(C(H)).

Now X = (Mg ∩Mgi)◦ is abelian by Lemma 3.7 of Chapter VI so X
centralizes H and normalizes A. On the other hand i normalizes X, so
[i,X] ≤ X ∩ A = 1 and this contradicts the preceding lemma, applied to
Mg in place of M . □

Lemma 4.10. For g ∈ G \M we have G =M ∪M◦gM◦.

Proof. As C◦(A)∩ (M◦)g is finite, we find by direct computation that

rk(C◦(A)gM◦) = rk(C(A)) + rk(M◦) = rk(G)

and thus M◦gM◦ is generic. As G is connected, our claim follows. □
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Proposition 4.11.

(1) The action of G on M\G is doubly transitive.
(2) For g, h ∈ G \M , the groups M ∩Mg and M ∩Mh are conjugate

in G.

Proof. Since Mg is the point stabilizer of Mg, these two statements
are equivalent. On the other hand, as we have noted earlier, the direct trans-
lation of double transitivity into group theoretic language is the condition

G =M ∪MgM

for g ∈ G \M , a special case of the preceding lemma. □

Lemma 4.12. M is connected.

Proof. Observe that C◦(A) ∩Mw ≤ NM◦(T ) = T by Lemma 3.10 of
Chapter VI. So we have C◦(A) ∩Mw ≤ CT (A) = 1 and the map C◦(A) ×
M → C◦(A)wM is injective. However the image is generic in G and hence
has Morley rank one, so M has Morley rank one. □

At this point, a great deal of our notation collapses; in particular T =
M ∩ Mw and M = C(A) ⋊ T . Since M ∩ Mg is a conjugate of T for
any g ∈ G \M , all intersections of this form are connected. Furthermore
NM (T ) = NM◦(T ) = T .

We now have ample information to conclude our analysis.

4.4. Recognition. Finally we may prove a recognition theorem.

Theorem 4.13. Let G be a simple L∗-group of finite Morley rank and
even type with a definable strongly embedded subgroup. Assume that G also
satisfies hypothesis (∗). Then G is of the form PSL(2,K) for some alge-
braically closed field K of characteristic two.

Proof. We consider the permutation representation of G on cosets
M\G. This is a doubly transitive action for which the point stabilizer M
splits as C(A) ⋊ T , and as T > 1 it is not sharply 2-transitive. Thus to
apply Theorem 2.2 of Chapter III it will suffice to check that the stabilizer
of any three points is trivial.

The stabilizer of two points may be taken to be T =M ∩Mw. Suppose
that t ∈ T× stabilizes the point Mg, that is t ∈ Mg, and g /∈ M . We claim
then that Mg =Mw.

We have t ∈ T and t ∈ M ∩ Mg, which is a conjugate of T . So by
Lemma 4.7 of Chapter VI, we have g ∈ N(T ). On the other hand as
G \ M = MwC◦(A) we may also take g ∈ wC◦(A). So taking g = wf
with f ∈ C◦(A), we find f ∈ NM (T ) = T , hence f = 1 and g = w, as
claimed. □
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5. Recognition: weak Embedding, I

In this section we will begin the “recognition” phase of our classification
theorem in the case of weak but not strong embedding.

At the outset we will not invoke the usual favorable hypothesis:

(∗) Whenever A1, A2 are two distinct conjugates of Ω1(O2
◦(M)),

the group CG(⟨A1, A2⟩) is finite.
Rather, we will first clarify the structure of the Sylow 2-subgroup of G,

without making use of hypothesis (∗), and only introduce it afterward for
the finer analysis.

So let G be a simple L∗ group of finite Morley rank and even type, andM
a definable weakly embedded subgroup of G which is not strongly embedded
in G. Also, we fix an offending involution α, we set A = U2(CM (α)).

Now by Proposition 1.1 of Chapter VI, S = U2(M) is a Sylow◦ 2-
subgroup of M , and evidently unique. As we saw in §2 of Chapter VI,
the Landrock-Solomon analysis applies here, to give a catalog of possible
structures for S: namely, apart from two nonabelian possibilities, S is a
homocyclic abelian group in which either A = Ω1(S), or S is elementary
abelian and A is a “diagonal” subgroup with respect to the action of α.

The first step of the analysis will be to eliminate all “unusual” possibili-
ties for S, leaving the homocyclic abelian case with A = Ω1(S). One expects
S to be elementary abelian but this is neither proved, nor significant, dur-
ing the main part of the analysis. In fact the good configuration, after some
analysis which appears to be headed toward recognition, lead to a situation
in which it can be seen that the subgroup M is in fact strongly embedded,
which in the present context is a contradiction, and thus ends the analysis
abruptly.

This section deals only with the less plausible possibilities for S, and we
will return to the main line in the following section.

5.1. The nonabelian case. In this section we operate under the fol-
lowing hypothesis.

(NA) S is nonabelian

In this case, the Landrock-Solomon analysis gives two possible structures
for S, explicitly.

We seek a contradiction, and we focus primarily on the nature of the
conjugacy classes of involutions inM and in G. We aim to show in particular
that the involutions in S \A are not conjugate in G to involutions of A, and
that the involutions in M \ S are all conjugate, at which point we will be
able to get a contradiction, by comparing involutions outside M , but in the
conjugacy class of A, with those inside M .

Recall that S1 = [α, S] is abelian, and its involutions lie in A, while
S \ S1 also contains involutions. Also A = Ω1(S1) = Z(S), and S1 ◁ S.
Furthermore CS(α) = Z(S) (Corollary 4.6 of Chapter III) and as this is not



5. RECOGNITION: WEAK EMBEDDING, I 337

true for i ∈ S, the involutions of S are not offending. In particular S is not
a full Sylow 2-subgroup of M .

We begin with a few preparatory lemmas.

Lemma 5.1. All involutions in the coset αS are conjugate under the
action of S.

Proof. This may be phrased as follows: if s ∈ S and α inverts s, then
s ∈ [α, S]. Now we recall that in coordinates (from an associated field K)
we parametrized S by triples (a, b, c), with the action of α given by

(a, b, c)α = (a, a+ b, a+ b+ c+
√
ab)

and the multiplication given by addition in the first two coordinates, so if
s = (a, b, c) is inverted by α then a = 0; as we also checked that [α, S]
consists of the triples (0, b, c), our claim holds. □

Lemma 5.2. Let β ∈ I(M) be an offending involution, that is C(β) ̸≤M ,
and Lβ = U2(C(β)). If Lα ≤ Lβ then Lα = Lβ.

Proof. For any offending involution β ∈ M , the group Lβ is a group
of type PSL2, and setting Aβ = U2(Lβ ∩M), we have Aβ = Z(S) = A.

Now rk(Lβ) = 3 rk(Aβ) = 3 rk(A) = rk(Lα) and our claim follows. □

We will have to go beyond the Sylow◦ 2-subgroup S to a full Sylow 2-
subgroup. So let Ŝ be a Sylow 2-subgroup of M containing ⟨S, α⟩. Then

Ŝ◦ = S.

Lemma 5.3. Ŝ = S ⋊ CŜ(L)

Proof. We first consider the subgroup R ≤ Ŝ which is the preimage of
CŜ/S(α). For r ∈ R, we have αr ∈ αS and hence by Lemma 5.1 of Chapter

VI we have αr = αs for some s ∈ S, and rs−1 ∈ C(α). Then rs−1 acts on L
by an inner automorphism, in view of Corollary2.26 of Chapter II, and being
a 2-element it must act like an involution i ∈ A, that is, rs−1i ∈ C(L). So
r ∈ SCR(L). On the other hand CS(T ) = 1 by Proposition 4.5 of Chapter
III. So we have R = S ⋊ CR(L). We will adjust α in the remainder of the

argument to arrive at the same situation, but with R = Ŝ.
Now consider the group R1 defined as the preimage in Ŝ of Ω1(Z(Ŝ/S)).

Then S < R1 ≤ R. In particular R1 = S ⋊ CR1(L). Take β ∈ CR1(L),
nontrivial. Then β2 ∈ CS(L) = 1, so β is an involution, and L ≤ Lβ, so by
Lemma 5.2 of Chapter VI we have L = Lβ.

Now considering β in place of α, we repeat the first part of our argument
with a new subgroup Rβ replacing R, namely the preimage in Ŝ of CŜ/S(β).

But, by the choice of β, we now have Rβ = Ŝ, so we have the desired
decomposition. □

Lemma 5.4. The only involution in CŜ(L) is α.
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Proof. We may suppose that α belongs to Z(CŜ(L)). We take β ∈
I(CŜ(L)). Now α and β commute with T and with each other. Furthermore
S1 = [α, S] is the unique maximal proper (⟨α⟩×T )-invariant subgroup of S,
and hence is β-invariant. So if we let Sβ be the maximal proper (⟨β⟩ × T )-
invariant subgroup of S, we have S1 ≤ Sβ and by the same argument Sβ ≤
S1. But α inverts S1 by Proposition 4.9 of Chapter III and β inverts Sβ = S1,
so αβ centralizes S1. Now if αβ is an involution Lαβ = L and we have a
contradiction, so αβ = 1 and β = α. □

Lemma 5.5. I(M) \ I(S) consists of a single conjugacy class in M .

Proof. We noted earlier that the offending involutions lie outside S
and hence the set in question is not empty.

It suffices to show that any offending involution β in Ŝ is conjugate to
α. We have the decomposition β = sb with s ∈ S and b ∈ CŜ(L). Then

b2 ∈ CS(L) = 1, so b is an involution and hence b = α, β ∈ αS, and Lemma
5.1 of Chapter VI applies. □

Lemma 5.6. The involutions of A are not conjugate to involutions in
S \A, under the action of G.

Proof. Suppose i ∈ I(A), j ∈ I(S), and jg = i. Then Ag ≤ C(i) ≤ M
(Lemma 2.3 of Chapter VI), and thus g ∈M by weak embedding. Then as
A ◁ M , we have j ∈ A. □

Now we have sufficient information to reach a contradiction in this case,
eliminating the nonabelian case.

Proposition 5.7. Let G be a simple L∗-group of finite Morley rank and
even type, with a definable weakly embedded subgroup that is not strongly
embedded. Then the Sylow◦ 2-subgroups of G are abelian.

Proof. Suppose the contrary. Consider two involutions i, w ∈ I(G)
chosen so that i ∈ I(S), i /∈ A, and w /∈ M , but w is conjugate to an
involution in A. Then as we have just shown, these two involutions are not
conjugate in G. By the Basic Fusion Lemma 2.20 of Chapter I, there is a
third involution j commuting with both.

Now as i ∈ S, the involution i is not offending, by Lemma 2.3 of Chapter
VI, So j ∈ M . On the other hand as w /∈ M , j must be an offending
involution in M , and hence CS(j) = A. But i ∈ CS(j) \A, a contradiction.

□

5.2. The diagonal case. There is a second unusual case to be elim-
inated before we can return to the main line, the diagonal case. Our as-
sumption here is the following.

(Dg)
S = E⊕Eα with E and Eα definable T -invariant elementary
abelian groups; A = {xxα : x ∈ E}. Moreover, T acts
regularly on A, E, and Eα.
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The analysis is different from the preceding case, and begins with some
structural analysis in the vein of a recognition argument, terminating how-
ever with an early contradiction relating to the structure of the quotient
M◦ =M◦/CM◦(S), which turns out to be extremely tight.

Lemma 5.8. All elements of S× are conjugate under the action of M◦.

Proof. For i ∈ S× we have rk(iM
◦
) = rk(M)− rk(CM (i)) = rk(iM ) so

it suffices to show that iM = S×, as then iM has Morley degree one and can
contain only one M◦-conjugacy class of full rank. So we concern ourselves
only with conjugacy in M .

So suppose S× contains involutions not conjugate in M . If i, j ∈ I(S)
are conjugate in G, then they are conjugate in M : from ig = j we derive
Sg ≤ C(j) ≤ M (Lemma 2.3 of Chapter VI), and by weak embedding
g ∈ M . Thus S meets at least two distinct conjugacy classes of involutions
in G.

Now fix involutions i and j with i ∈ A and with j conjugate to an
involution in S which is not conjugate to i, but with j /∈M . Then there is a
third involution w commuting with both i and j, by Lemma 2.20 of Chapter
I. As w commutes with i, and i is not offending (Lemma 2.3 of Chapter VI),
we have w ∈ M . On the other hand j /∈ M , so w is offending. Since w can
play the role of α here, we will let L = U2(C(w)), but only until the end of
the present proof.

Now j /∈ L since j is not conjugate to i, and A is a Sylow 2-subgroup of
L. On the other hand j acts on L via an inner automorphism by Corollary
2.26 of Chapter II.

So there is an involution j′ ∈ L such that jj′ ∈ C(L). In particular j
and j′ commute, and their product is an involution. Furthermore jj′ ∈M .

Now j belongs to some conjugate S1 of S, and so does j′. So each of these
elements belongs to U2 of its own centralizer, and neither can be offending,
relative to any conjugate of M in which it sits. Let M1 be the conjugate of
M containing S1. Then j ∈ M1 and j commutes with j′, so j′ ∈ M1. As
j′ is not offending, there is a connected 2-subgroup of M1 containing j′ and
thus j′ ∈ S1 as well, and finally jj′ ∈ S1, so jj

′ is not offending either. But
jj′ commutes with L and we have a contradiction. □

Notation 5.9. Fix an involution w ∈ L which inverts T .

Lemma 5.10. If A1 is a 2-unipotent subgroup of S properly containing
A, then CG(A1, A

w) = 1.

Proof. Let x ∈ CG(A1, A
w) be nontrivial. As usual Lx = U2(C(x))

is then a group of type PSL2. This group contains L = ⟨A,Aw⟩ properly,
since A1 ̸≤ L. Let T1 be a maximal torus of Lx containing T . Then T1 is
the multiplicative group of a field, and T is the multiplicative group of a
subfield, all of this interpretable within G. As the fields in question have
finite Morley rank, they are equal by Lemma 4.3 of Chapter I. This forces
A = A1. □
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It is surprising that we can prove the following at this early stage.

Lemma 5.11. C◦(L) = 1; hence C◦(α) = L.

Proof. We suppose X = C◦(L) ̸= 1. Then X contains no involutions:
any such involution would be offending in any conjugate of M containing it,
forcing X to be of degenerate type in view of the structure of centralizers of
offending involutions (Lemma 2.3 of Chapter VI). Thus by Theorem 4.1 of
Chapter IV the group X contains no involutions.

Now we wish to show that S can be viewed as a two dimensional vector
space over some field whose multiplicative group can be identified with T .
So we consider T as a subgroup of the group of units in End(S); as T acts
regularly on various subgroups of S, this is at least a faithful representation.

Let R be the subring of End(S) generated additively by T . As the
group E is T -invariant, it is also R-invariant. So consider the restriction
map ρ : R→ End(E). On E, the group T acts like the multiplicative group
of a field K = ρ[R], so it suffices to check that ρ is injective.

Suppose r ∈ R annihilates E. As α commutes with T , it commutes with
R and thus r annihilates Eα. But as S = EEα it follows that r = 0.

Thus writing K in place of R, S becomes a K-vector space and K× = T .
Evidently S is two-dimensional.

Now X commutes with T and hence acts linearly on S. We claim that
this action is faithful. Indeed, CX(S) ≤ C(S,Aw) = 1 by the preceding
lemma.

By Proposition 4.5 of Chapter II, X is a K-group. As a connected 2⊥-
group X is therefore solvable. By Proposition 11.7 of Chapter I, X is a good
torus.

We consider the abelian group XT and the subgroup X1 = CXT (S/A).
Now we have the structure of S as a T -module explicitly, and T acts regu-
larly on the quotient S/A. As X is nontrivial, the group X1 is nontrivial.
Furthermore V = CS(X1) covers S/A by Proposition 9.9 of Chapter I.

Now in view of its definition, the group V is (⟨α⟩ × T )-invariant. In
particular CV (α) is nontrivial and T -invariant. But CS(α) = A, so it follows
that CV (α) = A and A ≤ V . Since V covers S/A, we have V = S, that is
X1 centralizes S.

As X1 commutes with X, it acts on U2(C(X)) = L. Since X1 contains
no involutions and centralizes A, it acts trivially on L. As X1 also centralizes
S, the previous lemma shows that X1 = 1. This contradiction shows that
C◦(L) = 1.

As C◦(α) = L×D we find D = 1, and C◦(α) = L. □

Now we arrive at a conclusion parallel to one reached in the case of
strong embedding, by another route.

Lemma 5.12. The involution w inverts C◦(T ).
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Proof. Supposing the contrary, X = C◦(w, T ) is nontrivial by Lemma
10.3 of Chapter I. The connected group X is normalized by α andX∩L = 1.
Accordingly CX(α) is finite and α inverts X. In particular, X is abelian.

Let Mw be the conjugate of M containing w, and Sw the corresponding
conjugate of S. We have X ≤Mw.

We will prove the following.

If X0 ≤ X is nontrivial, definable, and connected, then CSw(X0) is finite.

Suppose the contrary. As α inverts X, it normalizes X0, and as α commutes
with w it normalizes Sw, so α acts on CSw(X0) and hence centralizes a
nontrivial connected subgroup of CSw(X0). Let Aw be the conjugate of
A containing w; this is a Sylow 2-subgroup of L, and is CSw

◦(α). Now X0

centralizes ⟨T,CAw(X0)⟩ and this group is clearly nonsolvable, as T does not
normalize Aw, so by Fact 4.6 of Chapter II this group is L. But C◦(L) = 1 by
Lemma 5.11 of Chapter VI and this would force X0 = 1. This contradiction
proves our claim.

It follows that CSw(X) is a finite group, but nontrivial as it contains w.
Now work in the group Mw

◦ = Mw
◦/CMw

◦(Sw), and specifically with the

groups X̄ and T̄w acting on Sw, where Tw is a torus of L normalizing Aw.
By Lemma 1.6 of Chapter IV the Borel subgroups of Mw

◦ are abelian and
conjugate, so there is a conjugate Y of X under the action ofMw

◦ such that
Ȳ commutes with T̄w.

So T̄w acts on CSw(Y ), and this group is nontrivial and finite. So Tw
centralizes CSw(Y ). This contradicts the action of T on S. □

Lemma 5.13. NM
◦(T ) = T .

Proof. By Proposition 11.7 of Chapter I, T is a good torus and thus
NM

◦(T ) = CM
◦(T ).

We let H = CM
◦(T ). By the previous lemma, w inverts H, and in

particular H is abelian. It follows that CH(S) = CH(S, Sw) and hence by
Lemma 5.10 of Chapter VI, CH(S) = 1. In view of the action of T on
S, H ∩ S = 1. So H is of degenerate type. Being connected, it has no
involutions (Theorem 4.1 of Chapter IV—or more directly, as H is abelian).
By Proposition 11.7 of Chapter I again, H is a good torus.

Suppose H > T . As H is a good torus, it must contain torsion elements
that are not in T . Moreover, T is a full algebraic torus in characteristic two,
and H has no involutions. So there is a prime p for which the Prüfer p-rank
of H is at least two.

We noted that CH(S) = 1, so the action of H is faithful. Let V be an
H-minimal subgroup of S. By Proposition 4.11 of Chapter I H acts like a
subgroup of the multiplicative group of a field on V and by our Prüfer rank
condition it follows that H0 = CH

◦(V ) is nontrivial.
Now w inverts H0 and hence normalizes C(H0), so ⟨V, V w⟩ ≤ C◦(H0).

Then as usual L0 = U2(C(H0)) is a group of type PSL2 in characteristic two,
and w acts on this group, by an inner automorphism in view of Fact 2.25 of
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Chapter II. So w centralizes some Sylow 2-subgroup A1 of L0. Evidently A1

is contained in the Sylow◦ 2-subgroup Sw containing w. So H0 normalizes
Sw. As w inverts H0 we have [w,H0] ≤ Sw ∩ H0 = 1. As H0 contains no
involutions this is impossible. □

We are now ready to take up the consideration of M◦ = M◦/CM◦(S),
and we intend to argue that for various reasons this group both does, and
does not, contain involutions, which will provide a sufficient contradiction.

By Lemma 1.6 of Chapter IV as usual, the Borel subgroups of M◦ are
good tori, and are conjugate.

Lemma 5.14. T̄ is a Borel subgroup of M◦.

Proof. T is an almost self-normalizing good torus in M◦ and hence
has the same properties in the subgroup M1 = TCM◦(S). By Lemma 1.5 of
Chapter IV any almost self-normalizing good tori in M1 are conjugate, so
by a Frattini argument NM

◦(M1) ≤ M1NM
◦(T ) = M1. Hence T̄ is almost

self-normalizing in M◦ and thus is again a Borel subgroup there. □

Lemma 5.15. M◦ contains no involutions.

Proof. By the previous lemmaM◦ is of degenerate type, and Theorem
4.1 of Chapter IV applies. □

Now we take matters from another direction and produce an involution
in M◦, by examining the action of this group on the cosets of T̄ .

Lemma 5.16. For any i ∈ S×, CM◦(i) is finite.

Proof. If this group is infinite, extend a Borel subgroup of CM◦(i) to

a Borel subgroup of M◦ and after conjugating one may assume this Borel
subgroup is contained in T̄ , which however acts freely on S, giving a con-
tradiction. □

Lemma 5.17. The intersection of two distinct Borel subgroups of M◦ is
finite.

Proof. Let X̄ be a connected group contained in two distinct Borel
subgroups of M◦, and H̄ = CM◦◦(X̄); then H̄ contains these two Borel

subgroups and is therefore nonsolvable. Let V ≤ S be H̄-minimal. Recall
that the Borel subgroups of M◦ act freely on S, so X̄ acts faithfully on
V , and is central in H̄. By Proposition 4.11 of Chapter I we can view the
action of H̄ on V as linear. By Proposition 4.5 of Chapter II, since H̄ is of
degenerate type it follows that the faithful quotient H̄/CH̄(V ) is solvable.
Hence CH̄

◦(V ) must be nontrivial.
Now extending a Borel subgroup of CH̄

◦(V ) to a Borel subgroup of M◦,
which after conjugation we may take to be T̄ , we have a contradiction since
T̄ acts freely on S. □

Lemma 5.18. rk(M◦) = 2 rk(T )
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Proof. M◦ acts transitively on S× by Lemma 5.8 of Chapter VI, and
the centralizer of each element of S is finite. So rk(M◦) = rk(S) = 2 rk(T ).

□

Lemma 5.19. NM◦(T̄ ) = T̄ .

Proof. As T̄ is a Borel subgroup of M◦, W0 = NM◦(T̄ )/T̄ is finite. By

Lemma 2.3 of Chapter IV, any element of NM◦(T̄ ) \ T̄ has finite centralizer

in T̄ .
Now T̄ is a full algebraic torus of dimension one in characteristic two.

By Lemma 10.18 of Chapter I it has no automorphism of odd prime order
with a finite centralizer. So W0 is a finite 2-group. Again, M◦ contains no
involutions, so W0 = 1. □

Lemma 5.20. M◦ contains involutions.

Proof. We will show that the action ofM◦ on the cosets of T̄ is doubly
transitive; a doubly transitive permutation group of finite Morley rank must
have involutions, in view of Lemma 2.18 of Chapter I.

By the preceding lemma, for any γ ∈M◦ \ T̄ , the groups T̄ and T̄ γ are
distinct Borel subgroups, and hence have finite intersection by Lemma 5.17
of Chapter VI. Then a direct computation shows

rk(T̄ γT̄ ) = 2 rk(T̄ )

Since 2 rk(T̄ ) = 2 rk(T ) = rk(M◦), there is a unique double coset T̄ γT̄ apart
from T̄ , and thus the action is doubly transitive. □

So as the diagonal case (Dg) has also been eliminated, we may state the
following.

Proposition 5.21. Let G be a simple L∗-group of finite Morley rank
and even type, with a definable weakly embedded subgroup that is not strongly
embedded. Then the Sylow◦ 2-subgroups S of G are abelian homocyclic, and
the subgroup A associated to an offending involution normalizing S is Ω1(S).

6. Recognition: weak Embedding, II

In this section we will complete the “recognition” phase of our classi-
fication theorem in the case of weak but not strong embedding, under the
usual favorable hypothesis.

(∗) Whenever A1, A2 are two distinct conjugates of Ω1(O2
◦(M)),

the group CG(⟨A1, A2⟩) is finite.
This hypothesis was not invoked in the previous section, and is not

immediately needed here either, so we postpone that assumption briefly, as
we intend to make further use of results not depending on this assumption.

For the present, G is a simple L∗ group of finite Morley rank and even
type, and M a definable weakly embedded subgroup of G which is not
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strongly embedded in G. The previous section has whittled down the possi-
bilities offered by the Landrock-Solomon analysis to the ordinary homocyclic
abelian case, that is where A = Ω1(S) in our customary notation, in which
S is a Sylow◦ 2-subgroup, α is an offending involution normalizing S, and
A = U2(C(α) ∩M).

We will carry along the rest of our usual notation: L for U2(C(α)), T
for a torus in L normalizing A, and w for a fixed involution in L inverting
T .

Since our target group PSL2(K) contains no offending involutions this
case will also arrive eventually at a contradiction, but in reality the bulk of
the analysis simply drives us toward PSL2(K), with a belated recognition of
the incompatibility of the data with our initial assumption of the failure of
strong embedding. In fact, it is clear that offending involutions inM lie out-
sideM◦, so thatM cannot be connected, and if we follow our previous path
we will eventually conclude that M is connected and reach a contradiction
at this point. This is precisely what occurs.

6.1. Structure of M . As T acts transitively on A×, for any i ∈ A×

we have M = C(i)⋊ T , and similarly for M◦.

Lemma 6.1. For i ∈ A× we have CM◦(i) = CM
◦(A).

Proof. As T acts transitively on A× we have M◦ = CM◦(i) ⋊ T and
as M◦ has Morley degree one it follows that CM◦(i) is connected, that is:

CM◦(i) = CM
◦(i)

We claim that CM
◦(i) = CM

◦(A).
If this fails, we work in M◦ = M◦/CM◦(A). This is a degenerate type

group acting faithfully on on A, so by Lemma 1.6 of Chapter IV its Borel
subgroups are conjugate good tori.

If CM
◦(i) > CM

◦(A) then CM
◦(i) is nontrivial and thus some Borel

subgroups of M◦ do not act freely on A. To get a contradiction, it suffices
to show that T̄ is a Borel subgroup. Now T̄ is contained in a Borel subgroup
B̄ which is again abelian, and fixing an involution i ∈ A× we have B̄ =
CB̄(i) × T ; since T acts transitively on A we find CB̄(i) = CB̄(A) = 1.
So B̄ = T̄ is a Borel subgroup and we have our contradiction, proving the
claim. □

Lemma 6.2. For i ∈ A× we have C(i) = C(A). Hence M = C(A)⋊ T .

Proof. As M = C(i) ⋊ T we deal only with the first claim, and as
i ∈ U2(C(i)) it is not an offending involution, so C(i) = CM (i) and it
suffices to consider the group CM (i).

Let M̄ =M/C(A). By the preceding lemma we have M̄◦ = T̄ acting on
A like the multiplicative group of a field on a one-dimensional vector space.

Put an additive structure on T̄ by the condition (s + t)a = sa + ta for
s, t ∈ T̄ , a ∈ A (clearly this is coherent). Then M̄/T̄ acts on T̄ and respects
addition since for x ∈ C(i) we have (s + t)xi = (s + t)xix = (si + ti)x =
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(sx + tx)i. So M̄/T̄ induces a group of field automorphisms, which is trivial
by Lemma 4.5 of Chapter I. This means that M̄ centralizes T̄ .

So now from M̄ = CM̄ (i) × T̄ and the transitivity of T̄ on A×, we find
M̄ = T̄ . As CT̄ (i) = 1 our claim follows. □

Lemma 6.3. Let i, j ∈ I(G) be involutions conjugate to involutions in
A, and let g ∈ G be an element which commutes with i and is inverted by j.
Then i and j commute, and g2 = 1.

Proof. We may take i ∈ A×. Then g ∈ C(i) = C(A). Now either
U2(C(g)) = A or U2(C(g)) will be a group of type PSL2. In either case
U2(C(g)) is normalized by j and it follows that j centralizes some involution
i′ in a conjugate of A commuting with g, so we might as well assume that j
centralizes i. Then again j ∈ C(A) and if A1 is the conjugate of A containing
j, it follows symmetrically that A centralizes A1. So A1 ≤ Ω1(S) = A and
j commutes with g; g is an involution. □

6.2. The hypothesis (∗). We now invoke our favorable hypothesis:

(∗) Whenever A1, A2 are two distinct conjugates of Ω1(O2
◦(M)),

the group CG(⟨A1, A2⟩) is finite.
From this point to the end of the section, this will be assumed.

Lemma 6.4. For any g ∈ G \M , the group (M ∩Mg)◦ is abelian.

Proof. We consider the commutator subgroup H = [(M ∩ Mg)◦]′,
which is connected. By Lemma 6.2 of Chapter VI H is contained in C(A)
and similarly in C(Ag), so by hypothesis (∗) H is finite, and being connected
is trivial. □

In the next lemma, while one can certainly take w0 = w and T0 = T ,
there will be other examples subsequently.

Lemma 6.5. Let w0 be an involution lying in a conjugate of A, T0 a
connected subgroup of M inverted by w0, and suppose that T0 acts regularly
on A×. Then for any nontrivial subgroup H of T0 we have the following.

(1) w0 inverts C◦(H)
(2) CM

◦(H) = T0.

Proof. Observe that our hypotheses imply w0 /∈M .
We show w0 inverts C◦(H):
Otherwise, by Lemma 10.3 of Chapter I, the group X = C◦(H,w0) is

nontrivial.
Let M0 be the conjugate of M containing w0, and A0 the corresponding

conjugate ofA. ThenH ≤ C(A0) by Lemma 6.2 of Chapter VI. Accordingly,
the hypothesis (∗) implies C(H) ≤ M0. Hence H ≤ M0; but w0 inverts H
and thus [w0, H] ≤ A0 ∩ H = 1, which forces H to consist of involutions.
But then T0 contains involutions, and being connected has an infinite Sylow
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2-subgroup (either by Theorem 4.1 of Chapter IV or more directly, since T0
is abelian). As T0 ≤M ∩Mw0 this contradicts weak embedding.

CM
◦(H) = T0:

Otherwise, as T0 is transitive on A and C(i) = C(A) for i ∈ A×, we have
CCM

◦(H)
◦(A) nontrivial, and as w0 inverts this group, by our first point, we

get an infinite group commuting with A and Aw0 , violating our hypothesis
(∗). □

Lemma 6.6. Any two distinct conjugates of T in M have trivial inter-
section.

Proof. If H = T1 ∩ T2 is a nontrivial intersection of two conjugates of
T in M , then as we just showed, CM

◦(H) = T1 and CM
◦(H) = T2. □

Lemma 6.7. NM◦(T ) = T .

Proof. Let T̂ = NM◦(T ). Then T̂ = CT̂ (A) ⋊ T . Let H = CT̂ (A) =
C(A) ∩N(T ). We claim H = 1.

Now [H,T ] ≤ C(A)∩ T = 1. Once more we encounter the configuration
of Lemma 2.3 of Chapter IV. Any nontrivial element of H would be required
to have finite centralizer in T , so H = 1. □

Lemma 6.8. There are no offending involutions in M◦.

Proof. It suffices to show that our (arbitrarily fixed) offending involu-
tion α is not in M◦. Since it centralizes T , if α were in M◦ then the last
lemma would force α into T . □

Of course, at this point we also know that M is not connected, a fact to
be held in reserve until it is eventually contradicted.

6.3. The rank of G. We have enough general structural information,
and we can begin to focus more on involutions and a computation of rk(G).

Lemma 6.9. Let g ∈ G \M . Then M◦ ∩Mg contains no involutions.

Proof. If i were such an involution, it would normalize both A and Ag

and hence commute with nontrivial elements of each, forcing i ∈ C(A,Ag).
In particular i is then an offending involution, hence outside M◦ by Lemma
6.8 of Chapter VI, a contradiction. □

Lemma 6.10. If i ∈ I(G), i /∈M , and i is conjugate to an involution in
A, then either i inverts (M ∩M i)◦, or i centralizes (M ∩M i)◦.

Proof. Let H = (M ∩ M i)◦. Then H is abelian by Lemma 6.4 of
Chapter VI, and contains no involutions. So we have a factorization into
connected subgroups H = H+ ×H− where H± = {h ∈ H : hw = h±1}. We
assume that the factor H+ is nontrivial, and we show that the other factor
is trivial.

Let Ai be the conjugate of A containing i. Then H+ centralizes Ai

by Lemma 6.2 of Chapter VI, and by the hypothesis (∗) we must have
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C(H+) ≤ N(Ai), in particularH− ≤ N(Ai) and thus [i,H−] ≤ Ai∩H− = 1,
and H− = 1. □

We now introduce the following sets of involutions.

Notation 6.11.

(1) IA is the set of involutions in G which are conjugate to elements of
A.

(2) For i ∈ I(G), T (i) = {x ∈M◦ : xi = x−1}.
(3) I+A is the set of involutions i in IA for which rk(T (i)) ≥ rk(A).

(4) I−A = IA \ I+A .

We will determine more precisely the action of involutions in I+A , show
that this set of involutions is generic in IA, and then compute the rank of
G.

Lemma 6.12. For i ∈ I+A we have the following.

(1) T (i) = (M ∩M i)◦ and
(2) T (i) acts regularly on A.

Proof. Consider the not necessarily connected group H =M◦∩(M i)◦.
Here H◦ = (M ∩M i)◦. We show first that

H◦ ≤ T (i)

We have shown in Lemma 6.9 of Chapter VI that H contains no in-
volutions, so we have a factorization H = CH(i)H− where H− is the
set {h ∈ H : hi = h−1}, by Lemma 10.4 of Chapter I; we have a sim-
ilar decomposition for H◦. We have the corresponding rank computa-
tions: rk(H) = rk(CH(i)) + rk(H−), and similarly for H◦. Of course
rk(H) = rk(H◦), and furthermore rk(CH(i)) = rk(CH◦(i)), so the remaining
terms are equal as well:

rk(H−) = rk((H◦)−)

Now our assumption on i is that rk(H−) ≥ rk(A), hence we have
rk((H◦)−) ≥ rk(A). In particular, (H◦)− is nontrivial and hence by Lemma
6.10 of Chapter VI, i inverts H◦. So H◦ ≤ T (i).

Now rk(H◦) ≥ rk(A) and H◦ acts freely on A by Lemma 6.3 of Chapter
VI. So as A× has Morley rank one, it must be a single orbit under H◦, that
is:

H◦ acts regularly on A×

In particular (A,H◦) can be identified with a pair (K+,K
×) with the

action by multiplication. Now H acts on this situation and induces auto-
morphisms of the field K, which by Lemma 4.5 of Chapter I are trivial.
That is, H◦ is central in H. If g ∈ T (i) and g /∈ H◦ then the group ⟨H◦, g⟩
contains some element that commutes with an involution in A, and as H◦

is centralized by g we find that the group ⟨H◦, g⟩ is inverted by i, contra-
dicting Lemma 6.3 of Chapter VI. So T (i) = H◦ and all claims have been
verified. □
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Lemma 6.13. rk(IA) = rk(I+A )

Proof. As is customary in such cases, one aims at showing rk(I−A ) <
rk(IA).

We consider the natural map I−A → G/M◦. The fibers of this map, by

the definition of I−A , have ranks bounded strictly below rk(A), and so we
have the estimate

rk(IA) < rk(A) + rk(G)− rk(M◦) = rk(G)− [rk(M◦)− rk(T )]
= rk(G)− rk(C(A))

So using rk(C(A)) = rk(C(i)) for i ∈ A× (Lemma 6.2 of Chapter VI), we
get rk(IA) < rk(iG), and since iG = IA this is as desired. □

What happens next has been seen before, in §4.1 of Chapter VI.

Lemma 6.14. Suppose w1, w2 ∈ I+A . Then the following hold

(1) If T (w1) ̸= T (w2) then T (w1) ∩ T (w2) = 1.
(2) T (w1) and T (w2) are conjugate in M◦, and hence under C◦(A).

Proof. For the first point, suppose H = T (w1) ∩ T (w2) ̸= 1. Lemma
6.5 of Chapter VI applies to both w1 and w2 with respect to T1 and T2, and
we get CM

◦(H) equal to both T (w1) and T (w2).
For the second point, the groups T (w1) and T (w2) are almost self-

normalizing good tori in view of Lemma 6.5 of Chapter VI, and so Lemma
1.5 of Chapter IV applies. This gives conjugacy inM◦, andM◦ = CM

◦(A)⋊
T (w1). □

And now we have our rank computation.

Lemma 6.15. rk(G) = rk(C(T )) + 2 rk(C(A)).

Proof. As rk(G) = rk(IA) + rk(C(A)) = rk(I+A ) + rk(C(A)), we need
to show that

rk(I+A ) = rk(C(T )C◦(A)) = rk(C(T )) + rk(C◦(A))

As C(T ) ∩ C◦(A) = 1 by Lemma 6.7 of Chapter VI, the final equation
is clear, so our claim is just

rk(I+A ) = rk(C(T )C◦(A))

which is to be proved by making estimates in both directions.
In the first direction, we define a map

Φ : I+A → wC(T )C◦(A)

with finite fibers as follows.
For i ∈ I+A we have seen that T (i) = T f for some f ∈ C◦(A) and

thus if
−1
w centralizes T , so we may define Φ(i) = w(if

−1
w)f . Note that

TΦ(i) = T (i).
To see that Φ has finite fibers, if Φ(i) = Φ(j) then T (i) = T (j) and

the value of f is constant on the fiber. So Φ(i) = Φ(j) simplifies down to
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wfi = wfj or (ij)f
−1 ∈ C(T,w), and as w inverts C◦(T ), the latter is a finite

group.
In the other direction, we let X = C(T ) × C◦(A) and we consider the

natural map Ψ : X → wX , whose fibers we claim are also finite.
If wcf = wc′f ′

with c, c′ ∈ C(T ) and f, f ′ ∈ C◦(A), then T f = T f ′
and

again f = f ′. Hence c′c−1 ∈ C(T,w), and as this is finite we are done. □

6.4. C◦(T ). This subsection runs very much in parallel to §4.1 of Chap-
ter VI. We show that C◦(T ) = T by showing that C◦(T ) ≤ M , arguing in
the contrary case that we can find two disjoint generic sets. The first of
these is I+AM

◦.

Lemma 6.16. rk(I+AM
◦) = rk(G)

Proof. As a result of Lemma 6.12 of Chapter VI, we know that the
fibers of the natural map I+A → G/M◦) have constant rank, equal to rk(A).
Thus

rk(I+AM
◦) = rk(IA)− rk(A) + rk(M◦) = rk(IA) + rk(C(A)) = rk(G)

□

Lemma 6.17. If c ∈ C◦(T ) \M then C◦(A)cM◦ contains no involutions
in IA.

Proof. We suppose toward a contradiction that fcb is an involution in
IA with b ∈ M◦, and since C◦(T ) and M◦ overlap in T we may take b to
lie in C◦(A). Then conjugating, the element bfc is also an involution, so
replacing f by bf we may suppose b = 1 and i = fc is in IA.

Take some nontrivial element t ∈ T and consider the commutator γ =
[i, t]. Then i inverts γ. On the other hand we may compute

γ = (fc)(fc)−t = (fc)(c−1f−t) = [f−1, t] ∈ C(A)

Now by Lemma 6.3 of Chapter VI, if γ is nontrivial then i is in M , which
is false. □

Proposition 6.18. C◦(T ) = T

Proof. If C◦(T ) ≤ M then by Lemma 6.7 of Chapter VI we have the
result. Suppose toward a contradiction that C◦(T ) ̸≤ M and let Y0 =
C◦(T ) \M . Then rk(Y0) = rk(C(T )).

We showed in preceding lemmas that I+AM
◦ is a generic subset of G and

that it is disjoint from Y = C◦(A)Y0C
◦(A). So it suffices to carry out a

rank computation showing that Y is generic to reach a contradiction.
Since rk(G) = rk(Y0)+2 rk(C(A0)) it suffices to show that the represen-

tation of the elements of Y is unique. So consider a relation c = uc′v where
u, v ∈ C◦(A) and c, c′ ∈ Y0; we claim that u = v = 1.

Consider the group X = [v, T ]. We will show that X = 1. We have

T v ≤ M and also T v = T u−1c ≤ M c, and since also T ≤ M ∩ M c we
have X ≤ M ∩ M c. Now c /∈ M and so by Lemma 3.7 of Chapter VI,
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⟨X,T ⟩ ≤ (M ∩ Mx)◦ is abelian. Hence by Lemma 6.5 of Chapter VI w
inverts X; as X ≤ C◦(A), by Lemma 6.3 of Chapter VI X ≤ A, and as
[X,T ] = 1, therefore X = 1. So v ∈ CM◦(A, T ) = CT (A) = 1 in view of
Lemma 6.7 of Chapter VI, and then as c = uc′ similarly u = 1, and so c = c′.

Thus C◦(A)Y0C
◦(A) is a second generic subset disjoint from the first,

and we have a contradiction. □

Our previous rank computation now takes on the following form.

Lemma 6.19. rk(G) = rk(T ) + 2 rk(C(A))

6.5. M is connected. Now we reach a contradiction to the assump-
tions of this (and the last) section by showing that M is connected, after
all.

We consider the natural map

θ : C◦(A)×M → C◦(A)wM

and we claim that this is injective, which produces more than one subset of
maximal rank if M is not connected.

For this, we have only to check that C◦(A) ∩Mw = 1. Suppose x ∈
C◦(A) ∩Mw. Then x ∈ M◦. Now x normalizes T = (M ∩ Mw)◦, so
x ∈ NM◦(T ) = T by Lemma 6.7 of Chapter VI and x ∈ CT (A) = 1. This
completes the argument.

One way to state what we have achieved in the last two sections is as
follows.

Proposition 6.20. Let G be a simple L∗-group of finite Morley rank
and even type, with a definable weakly embedded subgroup M . Assume the
auxiliary hypothesis (∗) applies to G. Then M is strongly embedded.

And of course, as shown earlier, G is then of type PSL2.

7. ¬(∗), I: Toral blocks

In this section we will begin the proof of the hypothesis (∗) with which
we have been working up to this point. So from this point onward, we work
under the opposite hypothesis, and aim at a contradiction.

(¬∗) There are two distinct conjugates A1, A2 of Ω1(O2
◦(M)),

such that the group CG(⟨A1, A2⟩) is infinite.
This analysis will take up four sections, the remainder of this chapter.

Our main tool will be the use of generic conjugacy theorems of the type we
have exploited previously, in connection with good tori. This immediately
yields a finiteness theorem for the number of conjugacy classes of a particular
family of tori under the action ofM◦, after which it follows that exactly one
of these conjugacy classes is generic in the whole family. In previous analyses
it could be proved directly that the family reduced to a single conjugacy
class; here we work similarly with the generic conjugacy class and after
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carrying out a good deal of the structural analysis (and rank computations)
on this basis we arrive belatedly at the conclusion that the family does
indeed consist of a single conjugacy class.

We will set this up in the present section and lay out the framework
in which everything is proved. This material is related to both the rank
computations we have seen in earlier sections, and the issue of control of
C◦(T ) for suitable tori T , and as in the cases treated previously in the
literature, once we have it in hand we can proceed to a structural analysis,
which we will take up in the following two sections, going as far as double
transitivity. What happens after that is a deviation into a contradiction via
certain generators and relations, taking into account the elements of order
three. The purely computational arguments are all given in the final section.

In all of this analysis, we do not need to distinguish the cases of strong
and weak embedding, in part because the condition (¬∗) provides a copy
of a “large” group L of type PSL2 containing conjugates of Ω1(O2

◦(M)),
which looks a good deal like an extreme form of the situation created by
an offending involution, and in part because our prior results under either
strong or weak embedding (that is, those independent of the hypothesis (∗))
have led to parallel conclusions. But we will need to establish notation which
can be used uniformly in both cases.

So G is just an L∗-group of finite Morley rank of even type with a defin-
able weakly embedded subgroup M which may be strongly embedded, and
we will assume (¬∗) as well. Our goal then must be an ultimate contradic-
tion.

7.1. Notation and basic facts. We write S for U2(M), which is
O2(M) by §§1 of Chapter VI,2 of Chapter VI. In particular S is a Sylow◦

2-subgroup of M and M◦/S is connected of degenerate type and hence con-
tains no involutions, by Theorem 4.1 of Chapter IV. A fortioriM◦/CM◦(A)
is of degenerate type.

We write A for Ω1(S), and we remark that this is a definable, connected,
elementary abelian subgroup central in S. This was shown in the strongly
embedded case from Proposition 1.6 of Chapter VI, proved early on. In the
case of weak but not strong embedding, this follows from the elimination of
the nonabelian cases, which was carried out in §5 of Chapter VI, where as
we noted the hypothesis (∗) was not in force. Before long we will show that
S = A and simplify the notation accordingly.

The following should also be retained.

Lemma 7.1. If i ∈ I(S) then C(i) ≤M .

This is part of a standard criterion in the case of strong embedding. In
the case of weak but not strong embedding it is Lemma 6.2 of Chapter VI.

Now let us examine the consequences of (¬∗). By assumption we have
two conjugates A1, A2 of A, one of which may be supposed to be A itself,
such that H = C◦(⟨A1, A2⟩) is nontrivial. As usual L = U2(C

◦(H)) is a
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group of type PSL2 in characteristic two and L ∩M = A ⋊ T is a Borel
subgroup where now A = Ω1(S). Here we have T acting transitively on A.

Of course, L = ⟨A1, A2⟩ in view of the structure of L. We also have the
interesting group H = C◦(L) which by assumption is nontrivial. We have
H ≤ C(A) ≤M and C◦(H) ̸≤M . The group H is of degenerate type since
M is weakly embedded in G. This group contains no involutions, but it
plays a role analogous to that of the offending involution in the weakly but
not strongly embedded case. In particular the group T plays a role very like
that of the corresponding torus considered in the previous two sections, in
many though not all respects.

The following structural points have been proved previously under other
hypotheses; with T in hand the same proofs apply.

Lemma 7.2.

(1) CM◦(i) = CM
◦(A)

(2) M◦ = CM
◦(A)⋊ T

Proof. By the transitivity of T on A we have M◦ = CM◦(i) ⋊ T , so
the second point is a consequence of the first. And since M◦ is connected,
this decomposition also shows that CM◦(i) is connected, that is CM◦(T ) =
CM

◦(T ). So our claim is simply the following.

CM
◦(i) = CM

◦(A)

As usual, we work in M◦ =M◦/CM◦(A). If CM
◦(i) > CM

◦(A) then we

can construct a Borel subgroup of M◦ in which C(i) is infinite.
But the Borel subgroups of M◦ are conjugate (Lemma 1.6 of Chapter

IV), and thus no Borel subgroup of M◦ acts freely on A. To conclude, it
suffices to show that T̄ is a Borel subgroup of M◦.

Let B̄ ≥ T̄ be a Borel subgroup of M◦. Then B̄ is abelian and T̄ acts
regularly on A, while B̄ acts faithfully, so B̄ = T̄ . □

Lemma 7.3. For i ∈ A× we have C(i) = C(A), and M = C(A)⋊ T .

Proof. We may argue exactly as in the proof of Lemma 6.2 of Chapter
VI. □

Lemma 7.4. If i, j ∈ I(G) are conjugate to elements of A× and g ∈ G
centralizes i while being inverted by j, then g is an involution, and i and j
commute.

This is Lemma 1.8 of Chapter VI together with Proposition 1.6 of Chap-
ter VI in the case of strong embedding, and it is Lemma 6.3 of Chapter VI
in the case of weak but not strong embedding, and in fact it is the last
result proved in that case prior to the introduction of hypothesis (∗) in §6
of Chapter VI.

Definition 7.5. I1 is the set of involutions conjugate to elements of A.

Lemma 7.6.
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(1) I1 ∩M = A.
(2) If L is a definable subgroup of G of type SL2, then I1 ∩N(L) ⊆ L

Proof. For the first point, if j ∈ I1 ∩M then j acts on A and hence
centralizes an involution i ∈ A. It then follows that j centralizes A and hence
A centralizes the conjugate Aj of A containing j. Thus Aj ≤ C(A) ≤ M
and Aj ≤ U2(M) = A.

From this the second point follows. If i ∈ I1 ∩N(L) with L of type SL2

then by Fact 2.25 of Chapter II, i acts as an inner automorphism and hence
stabilizes a Sylow 2-subgroup of L, which we may take to be contained in
A. It then follows that i normalizes A and lies in M , and the first point
applies. □

7.2. SL2-blocks and toral blocks. The fundamental tool in our anal-
ysis will be the study of groups LH of the type alluded to in the preceding
section. We will now formalize the notions involved and note some of their
agreeable properties.

Definition 7.7.

(1) An SL2-block is a subgroup HL of G where L = U2(L) contains a
conjugate of A and is of type SL2 (= PSL2, as we are in charac-
teristic two), and H = C◦(L) is nontrivial.

(2) If HL is an SL2-block then L is called the SL2-component and H
is called the degenerate component.

(3) a toral block is a group of the form HT which is contained in
an SL2-block HL with T a maximal torus in the SL2-component
L = U2(C(H)).

It is necessary to say something more about what these definitions actu-
ally mean. Strictly speaking, an SL2-block or a toral block is more properly
defined as a pair of groups (H,L) or (H,T ) respectively. In the case of
SL2-blocks this is an inessential point, since we will see in a moment that
the group HL determines the groups L and H individually. In the case of
toral blocks it is really essential, and indeed situations in which a toral block
HT also factors in a second way as a toral block H1T1 occur in practice and
require analysis. To specify a toral block HT in a precise way one either
specifies the pair (H,T ), or the associated SL2-block HL (that is, the pair
(H,T ) will be determined by the pair of groups HT and HL). So we now
deal with these questions of uniqueness in a more precise way.

Lemma 7.8. Let HL be a toral block and let HT be an associated toral
block, that is, let T be a maximal torus of L.

(1) L = U2(HL) and H = C◦(L) are determined by HL. H has de-
generate type.

(2) U2(C
◦(X)) = L for any nontrivial subgroup X of H.

(3) The pair (H,T ) determines the pair (HT,HL), and conversely.
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Proof. For the first point, we may suppose that L contains A without
loss of generality. Then H ≤ C(A) ≤M and L is not contained in M . If H
contained a nontrivial unipotent 2-group then C(H) would be contained in
M by strong embedding, a contradiction. So H is of degenerate type and
L = U2(HL).

For the second point, U2(C
◦(X)) has a weakly embedded subgroup,

namely M ∩ U2(C
◦(X)), and hence is of type PSL2. So rk(U2(C

◦(X))) =
3 rk(A) = rk(L) and hence U2(C

◦(X)) = L.
For the last point, the pair (H,T ) determines HT , and H determines

L, so one direction is clear. Conversely, the group HL determines L and H,
and T = L ∩HT . □

So we will be fairly casual about our descriptions of SL2-blocks, and
more careful about our descriptions of toral blocks (often, by specifying the
associated SL2-block we have in mind). One can analyze the ambiguity a
bit more closely: in a toral block HT , T is a good torus central in HT ; if
this does not determine T , then H contains a nontrivial central good torus.
There is no reason why this should not be the case, and we will pursue this
in its proper place.

In spite of this ambiguity, it should be possible in practice to speak of
the degenerate component H and the toral component T of a toral block HT ,
as long as care is taken that this is determined by the context. For example,
the following makes sense.

Remark 7.9. The toral component of a toral block is a good torus.

Before coming to the main line of our analysis, we make one major
clarification of the structure of M .

Lemma 7.10. S = A.

Proof. The action of T on A = Ω1(S) shows that S is a free Suzuki
2-group, and hence abelian and homocyclic by Theorem 3.2 of Chapter III.

Suppose S > A. Let S1 = Ω2(S). Then squaring induces an isomor-
phism S1/A ≃ A which is compatible with the actions induced by M , that
is these are isomorphic M -modules.

Fix an SL2-block HL with H ≤ C(A). Then H centralizes S1/A. Now
let B be a Borel subgroup of H. As H is of degenerate type and B is solvable
connected, B contains no involutions. So V = CS1(B) covers S1/A by
Proposition 9.9 of Chapter I. Then V ≤ U2(C(B)) = L, a contradiction. □

The following is simple but useful.

Lemma 7.11. Let H be the degenerate component of an SL2-block. Then
distinct conjugates of H intersect trivially.

Proof. Suppose X = H ∩ Hg is nontrivial. Letting L = U2(C
◦(H))

we have L = C◦(X) = Lg and thus g ∈ N(L). As H = C◦(L), we have
g ∈ N(H). □
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Lemma 7.12. Any toral block is almost self-normalizing.

Proof. Apply Lemma 10.20 of Chapter I to H ◁ HT , where of course
H is associated with an SL2-block HL containing HT . Then H contains
a nontrivial subgroup Q which is continuously characteristic in HT . As
such, N◦(HT ) normalizes Q and hence by the previous lemma, N◦(HT )
normalizes H. Hence N◦(HT ) acts on L = U2(C(H)) and by Fact 2.25 of
Chapter II we have N◦(HT ) ≤ LC◦(L) = HL. So N◦(HT ) ≤ NHL(HT ) =
HT (Lemma 7.8 of Chapter VI). □

7.3. Covering by toral blocks.

Lemma 7.13. For any g ∈ G \N(H), the group (HT ) ∩ (HT )g is rigid
abelian.

Proof. Let A = (HT ) ∩ (HT )g. There are two projection maps π1 :
HT → T and π2 : (HT )g → T g, both of which can be restricted to A, and
together they produce a map π : A→ T × T g. The image is a rigid abelian
group, and we claim that this is an isomorphism.

Indeed, the kernel of the map is H ∩ Hg and if this is nontrivial then
g ∈ N(H), a contradiction. □

In particular, M◦/A contains no involutions, and in particular I(M◦) =
A×.

Proposition 7.14. Let HT be a toral block, and let G1 be a definable
connected subgroup of G containing HT . Then HT contains a subgroup K
which is almost self-normalizing and generically disjoint from its conjugates
in G1.

Proof. The group HT is almost self-normalizing and may possibly be
generically disjoint from its conjugates in G1, in which case there is nothing
to prove.

Let us suppose therefore that the set

X =
⋃

g∈G1\NG1
(HT )

[(HT ) ∩ (HT )g]

is generic in HT . For g ∈ G let Xg = (HT ) ∩ (HT )g.
Consider the following families of subgroups of HT .

F = {Xg : g ∈ G1 \NG1(HT )}
F1 = {Xg : g ∈ NG1(H) \NG1(HT )}
F2 = F \ F1

(2)

By assumption
⋃
F is generic in HT .

We show that
⋃
F1 is not generic in HT . For g ∈ NG1(H) \NG1(HT )

we have H ≤ Xg < HT . So Xg covers a proper subgroup of T . As this
gives us a uniformly definable family of subgroups of T , this family is finite
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by Lemma 4.23 of Chapter I, so its union is nongeneric in T . Hence
⋃
F1 is

not generic in HT .
Therefore

⋃
F2 is generic in HT . We now refine this generic covering

further. Let F̂2 be the following family.

{X◦⟨a⟩ : X ∈ F2, a ∈ X} \ {T}

This is an inessential alteration in the sense that
⋃
F̂2 =

⋃
F2 is still generic

in HT . But the elements of F̂2 are finite cyclic extensions of good tori.
One may take G to be sufficiently saturated by passing to an elementary

extension. Now Theorem 3.1 of Chapter IV applies and yield an element
K ∈ F̂2 with the property

K◦ is a maximal good torus in CHT (K)

Now by Lemma 1.20 of Chapter IV, all of the groups in F̂2 are generically
disjoint from their conjugates, so it suffices to check that K is almost self-
normalizing in G1. In any case, as K is rigid abelian, we have N◦(K) =
C◦(K). We must show that C◦(K) = K◦.

Fix g ∈ G1 \ (NG1(HT ) ∪NG1(H)) such that [(HT ) ∩ (HT )g]◦ ≤ K ≤
(HT )∩(HT )g. Now T is central in HT , so T ≤ CHT (K). Hence T ≤ K◦ by

our maximality condition. By the choice of F̂2, K ̸= T . So K = T×(H∩K)
and (H ∩K) ̸= 1.

Thus C◦(K) ≤ C◦(H ∩K) ≤ N◦(H) ≤ N◦(L) = HL. Hence C◦(K) ≤
CHL(T ) = HT . In particular T g ≤ HT .

Now since T g ≤ CHT (K), our maximality condition on K implies that
T g ≤ K. Hence arguing as we did for T , we find C◦(K) ≤ (HT )g. Thus
C◦(K) ≤ [(HT ) ∩ (HT )g]◦ ≤ K, as claimed. □

This result implies the following.

Lemma 7.15. For any connected subgroup G1 of G containing a toral
block HT , the union of the conjugates of HT in G1 is generic in G1.

Proof. By the previous lemma there is a definable subgroup K of HT
which is both almost self-normalizing and generically disjoint from its con-
jugates in G1. By Lemma 1.2 of Chapter IV, the union of the conjugates of
K in G1 is generic in G1. This then holds a fortiori for HT . □

7.4. Conjugacy. The following really begins the main line of our anal-
ysis of toral blocks.

Lemma 7.16. Any two toral blocks H1T1 and H2T2 such that H1, H2 ≤
C(A) and T1, T2 ≤M are conjugate in M◦.

Proof. We will make use of the associated groups Li = U2(C(Hi)) of
type PSL2 for i = 1, 2.

If the blocks in question are not conjugate in M◦, then we will show
first, by the argument used in the proof of Lemma 7.13 of Chapter VI, that
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any intersection of a conjugate of H1T1 with a conjugate of H2T2 under the
action of M◦ is rigid abelian.

We may take this intersection without loss of generality to be R =
(H1T1) ∩ (H2T2). We consider the map π : R → T1 × T2 induced by the
projections from R to T1 and T2. The image is a rigid abelian group and we
claim that the map is an isomorphism. The kernel is K = H1 ∩ H2. If K
is nontrivial then L1 = U2(C(K)) = L2 and accordingly H1 = H2. Then T1
and T2 are maximal tori in the Borel subgroup L1 ∩M = L2 ∩M and thus
are conjugate there. This contradiction proves that K = 1.

Now we apply Lemma 1.3 of Chapter IV to the present situation: we
have the two groups H1T1 and H2T2 contained in M◦, each containing an
almost self-normalizing subgroup generically disjoint from its conjugates,
and with the union of its conjugates in M◦ generic in that group. The
conclusion furnished is that the conjugates of H2T2 generically cover H1T1.
In other words, setting Xg = (H1T1) ∩ (H2T2)

g for g ∈ M◦, the family
F = {Xg : g ∈ M◦} is a generic covering of H1T1 by rigid abelian groups;
the same holds if we delete the group T1 from the family (if indeed it occurs).

So we may apply the covering principle Theorem 3.1 of Chapter IV,
(after saturating) and find that one of the groups Xg is maximal in H1T1 in
the sense that Xg

◦ is a maximal torus in CH1T1(Xg). To lighten the notation
we may take g = 1 here, and Xg = X = (H1T1) ∩ (H2T2).

Now since T1 ≤ Z(H1T1) we deduce that T1 ≤ X and thus T1 < X,
hence X ∩ H1 > 1. Now X ∩ H1 ≤ CH2T2(A) = H2, so H1 ∩ H2 > 1, and
hence H1 = H2. Accordingly L1 = L2; so call this group “L”. Then T1, T2
are conjugate within NL(A) ≤ M◦ and we have shown after all that H1T1
is conjugate to H2T2 in M◦. □

The foregoing leads to a number of additional useful facts of the same
general type.

Lemma 7.17.

(1) Any two toral blocks in G are conjugate under the action of G.
(2) Any two SL2-components in G are conjugate under the action of

G.
(3) Any two toral components—that is, tori occurring as components

of toral blocks—in G are conjugate under the action of G.

Proof. For the first point, we apply the preceding lemma. Consider
L = U2(H). Then T is a maximal torus in L. Now we may conjugate a
Sylow 2-subgroup of L to A, and then conjugate T into M ∩ L. So after
conjugation we have H ≤ C(A) ≤ M and T ≤ M and any two such blocks
are conjugate in M .

The second point then follows as the toral blocks determine their asso-
ciated SL2-components, as we have stressed in Lemma 7.8 of Chapter VI).

For the last point, we view the toral blocks in question inside their
corresponding SL2-blocks, which after conjugation we take to be equal, and
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as noted their decompositions into degenerate and SL2-type factors also
coincide. So we may adopt the following notation: HL is an SL2-block, and
T1, T2 are tori of L. Of course, T1 and T2 are then conjugate in L and our
final point is proved. □

The last point in the preceding lemma is of particular importance, and
we will incorporate it into an important piece of notation.

Notation 7.18.

(1) T denotes the set of tori occurring as components of toral blocks in
G.

(2) TM denotes the set of tori in T which are contained in M .

We have seen that T is a single conjugacy class of tori in G, and we will
want to see the same for TM under the action of M . As we have already
seen TM is nonempty. In addition the following finiteness theorem is a very
useful first step.

Theorem 7.19. The set TM breaks up into finitely many conjugacy
classes under the action of M .

Proof. Corollary 1.16 of Chapter IV. □

7.5. Toral block types. Of very great importance for all that follows
is the following classification of toral block types, for toral blocks whose toral
components lie inM . Here we definitely view a toral block not as consisting
of a single group of the form HT , but as a pair of specified groups H and
T ; in particular a toral block determines its associated SL2-block.

Definition 7.20. Let HT be a toral block with T ≤ M , and let HL be
the associated SL2-block.

(1) HT is of type I if CH(A) ̸= 1.
(2) HT is of type II if CH(A) = 1 and (H ∩M)◦ > 1.
(3) HT is of type III if H ∩M is finite.

In this classification of toral block types, the three types are exhaustive
and will be seen momentarily to be mutually exclusive. We transfer the
notion of “type” to the toral components T as well: a torus T ∈ TM is said
to be of type I, II, or III, respectively, if and only if it belongs to some
toral component of the corresponding type. One should not expect tori in
T to determine their toral blocks, so the types of tori are not mutually
exclusive—on the contrary. This is a useful point, in fact: we will show that
tori of type III must also be of one of the other types, so that it suffices to
analyze the first two types. Eventually, only type I will survive.

These notions are natural because the action of M by conjugation on
TM preserves type, and hence in approaching the question of the finiteness
of the set of conjugacy classes in TM , we will work with the individual types.

We refine our view of the first two types as follows.
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Lemma 7.21.

(1) If HT is a toral block of type I, then H ≤ C(A), and HT ≤M .
(2) If HT is a toral block of type II, then (HT ) ∩M is rigid abelian.

Proof. If HT is a toral block of type I, then X = CH(A) > 1. Then
L = U2(C(X)) = U2(C(H)). As A ≤ L ≤ C(H), we have H ≤ C(A) ≤ M ,
and HT ≤M .

Now suppose HT is a toral block of type II. By Lemma 7.3 of Chapter
VI, M/C(A) ≃ T is a good torus. As H ∩ C(A) = 1, H ∩M is isomorphic
with a subgroup of T and hence is rigid abelian. So (HT )∩M = (H ∩M)T
is rigid abelian. □

In the case of tori of type II the picture may look odd. We have M =
C(A)⋊T with both T and H disjoint from C(A), and (H ∩M)◦ nontrivial,
so (HT ) ∩M = [(HT ) ∩ C(A)]T , with H ∩M disjoint from both factors
(HT )∩C(A) and T . There is nothing immediately wrong with this, however.

We give further results on type I toral blocks.

Lemma 7.22. The type I tori in TM form a single conjugacy class with
respect to the action of M .

Proof. We consider H1T1 and H2T2 toral blocks of type I, with Ti the
toral component of HiTi with respect to HiLi, where Li = U2(C(Hi)). By
Lemma 7.16 of Chapter VI these toral blocks are conjugate under the action
of M , so we may suppose they are equal, H1T1 = H2T2.

Now by Lemma 7.21 of Chapter VI, we have H1 ≤ C(A), and as T1 is
inverted by an involution we have T1∩C(A) = 1 (Lemma 7.4 of Chapter VI).
So H1T1 ∩ C(A) = H1. Similarly H2T2 ∩ C(A) = H2 and thus H1 = H2.
Hence the SL2-blocks H1L1 and H2L2 associated with H1, T1 and H2, T2
also coincide, and thus AT1 = L1 ∩M = L2 ∩M = AT2, and it follows that
T1 and T2 are conjugate under the action of A. □

Lemma 7.23. Let HT be a toral block of type I. Then CM
◦(T ) = HT .

Proof. Set Ĥ = C◦(A, T ). Then Ĥ ≥ H, CM
◦(T ) = Ĥ · T , and we

claim Ĥ = H.
Let HL be the SL2-block associated with H, and w ∈ L an involution

inverting T . Let Γ = {[w, x] : x ∈ C◦(T )}. Our first claim is the following.

(1) rk(C◦(T )) = rk(Γ) + h

There is a natural commutation map from C◦(T ) onto Γ, and we claim the
fibers have rank h. For x, y ∈ C◦(T ) we have

[w, x] = [w, y] ⇐⇒ wxy−1
= w ⇐⇒ xy−1 ∈ C(Aw)

where Aw is the conjugate of A containing w, in view of Lemma 7.3 of
Chapter VI. On the other hand, xy−1 ∈ C(T ), and ⟨T,Aw⟩ = L, so xy−1 ∈
C(Aw) if and only if xy−1 ∈ C(L); as C◦(L) = H this gives us fiber rank
equal to h and thus (1) holds.
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Our next claim is as follows.

rk(Ĥ · Γ) = rk(Ĥ) + rk(Γ)

For this we show that the natural map Ĥ × Γ → ĤΓ is injective. So we
consider an equation

ĥγ1 = γ2

with ĥ ∈ Ĥ and γ1, γ2 ∈ Γ. We claim ĥ = 1.
Since w inverts every element of Γ, we find

ĥwγ−1
1 = (ĥγ1)

w = γ−1
1 ĥ−1

and this may be rewritten as ĥwγ−1
1 = ĥ−1.

Now wγ−1
1 turns out to be conjugate to w: writing γ1 = [w, x] we have

wγ−1
1 = wx−1wxw = wxw. In particular, wγ−1

1 is conjugate to an element

of A. Since ĥ commutes with the involutions of A, it follows from Lemma
7.4 of Chapter VI that ĥ is an involution commuting with wγ−1

1 . Since we

can replace the equation ĥγ1 = γ2 by the equation ĥ−1γ2 = γ1, we also have
ĥ commuting with wγ−1

2 by the same token. It follows that wγ−1
1 and wγ−1

2
are commuting involutions in I1. If these are equal, we are done. If they are
unequal, then their product lies I1: but this is wγ−1

2 wγ−1
1 = γ2γ

−1
1 = ĥ, so

ĥ ∈ I1∩M = A. As ĥ ∈ C(T ) we find ĥ = 1 and our second claim is proved.

Now we combine the two claims. We have Ĥ · Γ ≤ C(T ), so rk(Ĥ) +

rk(Γ) ≤ rk(Γ) + h and rk(Ĥ) ≤ rk(H); so Ĥ = H. □

Corollary 7.24. Let HT be a toral block of type I. Then any maximal
good torus of HT is also a maximal good torus of M .

We will take up the action of M on TM in detail at the beginning of the
next section. We show now that every torus in TM is of type I or II (and
we will not care greatly whether it is also of type III).

Lemma 7.25. Let T ≤ M be the toral component of a toral block HT .
Then T is of type I or II. (We do not make the same claim about HT ,
however.)

Proof. Let H1T1 be a type I toral block, and T ∗ a maximal good torus
ofH1T1. Then T

∗ is a maximal good torus ofM , and hence after conjugation
we may suppose that T ≤ T ∗.

Thus we have a toral block HT with toral component T ≤ M , and
another toral block H1T1 of type I, with T ≤ H1T1.

We have H1 ≤ C(A) and T1 is a complement to C(A) in M . Now
T , being a toral component of some toral block, is inverted by an involu-
tion. By Lemma 7.4 of Chapter VI, T is also disjoint from C(A). By rank
considerations H1T = H1T1.

We consider R = CH1T1
◦(T ). If T1 ≤ T then T = T1, and T is of type

I. Suppose therefore that T1 ̸≤ T . We claim now

R = CG
◦(TT1)
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We have TT1 > T and thus TT1 ∩ H1 > 1, so C◦(TT1) ≤ N◦(H1) =
H1L1. So C◦(TT1) ≤ CH1L1(T1) = H1T1 and C◦(TT1) ≤ CH1T1(T ) = R.
Thus R = CG

◦(TT1). Since TT1 is a good torus, it follows from Lemma 4.24
of Chapter I that R is almost self-normalizing in G.

We now shift our point of view somewhat, and consider R as a subgroup
of C(T ). We claim:

(2)
R contains a connected definable subgroupK which is almost
self-normalizing in C(T ) and is generically disjoint from it
conjugates in C(T ).

Of course, R may itself be such a subgroup. If not, we will show that
(after saturating) Lemma 3.2 of Chapter IV applies to produce a good torus
K in R which is almost self-normalizing in C(T ); then as K is a good torus
it is also generically disjoint from its conjugates.

So suppose for the moment that
⋃

g∈C(T )\N(R)(R ∩ Rg) is generic in R.

We would like to show that R∩Rg is rigid abelian for g ∈ C(T )\N(R), but
this is not certain; we will show instead that there are at most finitely many
exceptions to this claim, so that after discarding them the lemma applies.

So fix g ∈ C(T ) \ N(R). Lemma 7.13 of Chapter VI applies, and this
group is rigid abelian except possibly when g ∈ N(H1). On the other hand,
as N◦(H1) = H1L1 we have NC(T )

◦(H1) = CH1L1
◦(T ), and as T normal-

izes both factors H1 and L1 we have CH1L1
◦(T ) = CH1

◦(T ) × CL1
◦(T ) ≤

CH1
◦(T )T1 since T ≤ H1T1. But CH1

◦(T )T1 = R, so we have NC(T )
◦(H1) ≤

R.
Thus there are only finitely many conjugates of R of the form Rg, for

g ∈ NC(T )(H1), and if we discard these then Lemma 3.2 of Chapter IV
applies to the remaining family. So our claim (2) is proved.

We now fix such a connected definable subgroup K ≤ R, which is almost
self-normalizing and generically disjoint from its conjugates when C(T ) is
taken to be the ambient group. As K is almost self-normalizing, K contains
T , and as T is not almost self-normalizing, we have K > T .

We now bring the toral block HT into the picture. Note that HT ≤
C(T ). By Lemma 7.15 of Chapter VI, the conjugates of HT in C◦(T )
generically cover C◦(T ). We can apply Lemma 1.3 of Chapter IV to this
situation, taking C◦(T ) as the ambient group, and K, R, and HT as the
relevant subgroups. The conclusion is that the conjugates of HT in C◦(T )
generically cover R.

We now consider the intersections Rg = R ∩ (HT )g for g ∈ C(T ), and
the family F = {Rg : g ∈ C(T )}, which generically covers R. We must
consider whether or not the groups Rg are rigid abelian.

Since R ⊆ H1T1, for each intersection Rg we have a natural map π :
Rg → T1×T g induced by projections, and if the kernel H1∩Hg is nontrivial,
one finds as usual that Hg = H1, and thus H1T = (HT )g is a toral block
of type I in which T is the toral component, and T is of type I. So we may
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leave this case aside, and assume that each group Rg is rigid abelian, and F
is a generic covering of R by rigid abelian groups.

So one such group Rg must be maximal in R in the sense that Rg
◦ is a

maximal good torus of CR(Rg). But T1 ≤ Z(R) and hence T1 ≤ Rg
◦. As

(HT )g = HgT we find TT1 ≤ HgT ∩M and thus (HgT ∩M)◦ > T1, and
HgT is therefore a toral block, with T as a toral component, which meets
C(A) in an infinite subgroup, and is therefore of type I or II, as claimed. □

8. ¬(∗), II: Rank

We will now exploit our finiteness theorem to perform rank computations
and structural analyses which are analogous to those which were carried out
previously, by more direct methods, under the hypothesis (∗).

To begin with, we move to the study of involutions, specifically those
conjugate to elements of A. By considering the involutions which invert a
given torus in T , we will show that there is a unique conjugacy class in
TM which is generic in TM . We aim eventually at showing that this generic
conjugacy class consists exactly of the type I tori in TM , and then continuing
this analysis we will see that all tori are in TM are of type I, and in fact all
toral blocks are of type I. But we do not proceed directly using the type
classification, but indirectly by focussing initially on the generic conjugacy
class and its position relative to the type classification.

This involves a considerable amount of rank computation of a familiar
sort, and leads naturally into a conventional structural analysis.

8.1. Preliminaries.

Lemma 8.1. Let T ≤ M be a definable torus which is a complement to
C◦(A) in M◦. Then CM (A, T ) is infinite.

Proof. LetK = CM
◦(T ). Our claim is thatK > T . As T ≃M◦/C(A),

T is a good torus, and NM
◦(T ) = C◦(T ). So if K = T then T is an

almost self-normalizing subgroup of M◦ which is generically disjoint from
its conjugates in M◦.

We know that there is also some toral block H1T1 ≤M with H1 ≤ C(A),
and that the union of the conjugates of H1T1 inM

◦ is also generic inM◦, by
Lemma 7.15 of Chapter VI. So by Lemma 1.3 of Chapter IV, withM◦ as the
ambient group, we find that T is generically covered by its intersections with
conjugates of H1T1, and as it is a good torus there are finitely many such
intersections, one of which must be T . So we may suppose after conjugating
that T ≤ H1T1, which leads quickly to a contradiction.

Indeed, since K = T , we find T1 ≤ T and by rank considerations T1 = T ,
hence also H1 ≤ K = T , a contradiction. □

This then leads to the following.

Lemma 8.2. Let T ≤ M be a definable torus which is a complement to
C◦(A) inM◦, and suppose that T is inverted by some involution w conjugate
to an involution in A. Then C(T,w) is infinite.
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Proof. We consider T̂ = C◦(T ), and the action of w on T̂ .
Suppose toward a contradiction that CT̂ (w) is finite. Then by Lemma

10.3 of Chapter I, w inverts T̂ . By Lemma 7.4 of Chapter VI, T̂ ∩C(A) = 1,

and hence T̂ ∩M◦ = T . This contradicts the preceding lemma. □

8.2. Involutions. Recall that I1 is the set of involutions conjugate to
elements of A.

Definition 8.3.

(1) I∗1 is the set of involutions in I1 which invert some torus in TM .
(2) For T ∈ T , IT is the set of involutions in I1 which invert T .

Our early goals include the following: (1) I∗1 is generic in I1; (2) for
T1, T2 ∈ TM distinct, the corresponding sets of involutions IT1 and IT2 are
disjoint.

Now we briefly consider the following set I+1 of involutions, which we
will immediately prove coincides with I∗1 .

Definition 8.4. I+1 is the set of w ∈ I1 for which the set

{g ∈M : gw = g−1}

has rank at least rk(A).

Lemma 8.5. I+1 = I∗1 .

Proof. We need to show that every involution w in I+1 inverts some
torus in TM .

Let X = {g ∈ M : gw = g−1} and let K = d◦(⟨X⟩). We will use two
approaches, depending on whether K is abelian or not.

First suppose K is abelian. Then as the elements of X commute, K
is inverted by w. By Lemma 7.4 of Chapter VI, K is disjoint from C(A).
It follows that K contains no involutions. By rank considerations, and the
structure of M◦, K is a complement to C(A) in M◦. So by Lemma 8.2 of
Chapter VI, the group Q = C◦(K,w) is nontrivial.

Let Aw be the conjugate of A containing w. By Lemma 7.3 of Chapter
VI, Aw ≤ C◦(Q). Also K ≤ C◦(Q) and K does not normalize Aw, so
it follows that L = U2(C(Q)) must be a group of type PSL2, and L is a
component of an SL2-block HL in which Q ≤ H. Now K centralizes Q
and hence lies in HL. As w inverts K and centralizes H, and K ≤ HL
contains no involutions, we find K ≤ L. As rk(K) ≥ rk(A) and K contains
no involutions, it follows that K is a maximal torus of L. So K ∈ TM is
inverted by w. This disposes of the abelian case.

Now suppose that K is nonabelian. By Lemma 7.3 of Chapter VI, we
have K ′ ≤ C(A), and similarly K ′ ≤ C(Aw). So L = U2(C(K

′)) is a group
of type PSL2 in characteristic two, with A and Aw as Sylow 2-subgroups. Let
T be a maximal torus in L which normalizes A and Aw. Now w normalizes
K ′ and hence normalizes L, acting by an inner automorphism (Fact 2.25 of
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Chapter II) and interchanging the groups A and Aw. Accordingly, w acts
by inversion on T , and T ∈ TM , as desired. □

Lemma 8.6. I∗1 is generic in I1.

Proof. We work in fact with I+1 , and we show that I−1 = I1 \ I+1 is
nongeneric in I1, by estimating the rank.

By definition, for w ∈ I−1 , the set of elements of M inverted by w has
rank strictly less than rk(A), and hence the set of involutions in wM has
rank strictly less than rk(A), and therefore the rank of I−1 is strictly less
than

rk(G/M) + rk(A) = rk(G)− [rk(M)− rk(A)] = rk(G)− rk(C(A)),

bearing in mind the relations M = C(A) ⋊ T and rk(T ) = rk(A). But
C(A) = C(i) for i ∈ A and thus rk(G) − rk(C(A)) = rk(iG); since iG = I1,
our claim follows. □

Lemma 8.7. If T1, T2 ∈ TM are distinct, then IT1 ∩ IT2 = ∅.

Proof. Suppose w ∈ I1 inverts T1 and T2. Let K = (M ∩Mw)◦. Then
T1, T2 ≤ K, and T1, T2 act regularly on A×. If K is commutative then T1, T2
commute and it follows directly via Lemma 7.4 of Chapter VI that T1 = T2.
Therefore we will suppose K is noncommutative.

Then A,Aw ≤ C(K ′), so L = U2(K
′) is a group of type PSL2 in char-

acteristic two. Let H = C◦(L). Then, as usual, K ≤ N◦(L) = HL, and
K ′ ≤ H. Accordingly the projection KL of K into L is connected abelian,
and also of degenerate type, hence KL is contained in a maximal torus T
of L, that is K ≤ HT , where T normalizes A and Aw. Now w normalizes
L and hence lies in L by Lemma 7.6 of Chapter VI. So w inverts T and
centralizes H. Now T1 and T2 are inverted by w so T1, T2 ≤ T and thus
again T1 = T2 □

Lemma 8.8. There is a unique conjugacy class in TM , relative to the
action of M , which is generic (i.e., of full rank) in TM .

Proof. We attach to any conjugacy class C ⊆ TM , relative to the action
of M , the set I1(C) of involutions in I1 which invert some torus in C.

As the tori in T are conjugate in G, the rank of IT is independent of
T ; let this rank be r0. Then rk(I1(C)) = rk(C) + r0 since the various IT are
disjoint as T varies over C.

On the other hand as C varies over the conjugacy classes in TM , the sets
I1(C) give a partition of I∗1 , which is generic in I1 and hence has Morley
degree one. Hence there is exactly one conjugacy class C for which I1(C)
has maximal rank, and hence exactly one conjugacy class C for which rk(C)
is maximal. Again, as the classes are a finite partition of TM , our claim
follows. □

Notation 8.9. T ∗
M is the generic conjugacy class in TM ; a torus in TM

will be said to have generic type.
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8.3. Rank: Upper bounds.

Lemma 8.10. Let C be a conjugacy class in TM with respect to the action
of M , and T ∈ C. Then rk(C) = rk(C(A))− rk(C(A, T )).

Proof. We have

rk(C) = rk(M)− rk(NM (T )) = rk(M)− rk(T )− rk(NC(A)(T ))

Now rk(M) − rk(T ) = rk(C(A)) since M = C(A) ⋊ T . Furthermore
NC(A)(T ) = C(A, T ) since [T,NC(A)(T )] ≤ T ∩ C(A) = 1. So the formula
holds. □

We note that the only variable term in the formula for rk(C) is rk(C(A, T )),
so the tori in TM of generic type are those for which rk(C(A, T )) is least.

It is time to fix some numerical parameters for use in rank computations.

Notation 8.11.

(1) g = rk(G); c = rk(C(A)); a = rk(A) = rk(T ).
(2) h = rk(H) where H is the degenerate component of an SL2-block;

as these groups are conjugate, the number h is well-defined.
(3) c′ = rk(C(T )) for T ∈ T ; as these tori are conjugate in G, this

number is well-defined.

One may anticipate that c′ equals rk(T ) + h, which is certainly a lower
bound. This will emerge eventually.

Lemma 8.12. Let T ∈ TM be a torus of generic type. Then we have the
following estimates.

(1) rk(C(A, T )) ≤ h.
(2) rk(IT ) ≤ c′ − h
(3) rk(G) ≤ 2c− rk(C(A, T )) + c′ − h

Proof. For T a torus of type I we have rk(C(A, T )) = h, and for tori
of generic type this rank is minimized. So the first point is clear.

For the second point, take an SL2-block HL with T a maximal torus of
L. For w ∈ IT we have IT = {w′ ∈ I1 : w

′ ∈ wC(T )}. We will show that IT
meets each coset of H in C(T ) in at most one element.

So suppose w,w′ ∈ IT , and w = w′h, with h ∈ H nontrivial. Then
w inverts h ∈ C(A). By Lemma 7.4 of Chapter VI, h is an involution, a
contradiction. This proves the second point.

For the last, we work with the generic conjugacy class T ∗
M in TM and

the associated set of involutions I1(T ∗
M ), generic in I1. Bearing in mind the

equation C(i) = C(A) for i ∈ A× we have

rk(G) = rk(I1) + c = rk(I1(T ∗
M )) + c

Now rk(I1(T ∗
M )) = rk(T ∗

M )+rk(IT ) for T ∈ T ∗
M and rk(T ∗

M ) = c−rk(C(A, T ))
by Lemma 8.10 of Chapter VI. So

rk(G) = 2c− rk(C(A, T )) + rk(IT )

and our claim follows from the second point. □
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8.4. Rank: Lower bounds. In this subsection we consider the possi-
bility that we have tori in TM for which C(T ) is not contained in M . We
compute the rank of the set C◦(A)C(T )C◦(A) in this case and use it as a
lower bound for the rank of G; we also show that this set is disjoint from
a generic subset of G, making it a strict lower bound. Then in the case
of a torus of generic type we arrive at a contradiction and conclude that
C(T ) ≤M for T of generic type, which allows us to refine our previous rank
computations. All of this is very much parallel to our earlier analysis under
the hypothesis (∗).

We will begin with the “second” generic subset, which is, as usual, the
set I1M

◦.

Lemma 8.13. I1M
◦ is a generic subset of G.

Proof. We consider the multiplication map I∗1 ×M → G. The rank of
the domain is rk(I1) + rk(M) = (g − c) + (c+ a) = g + a. We wish to show
that the rank of each fiber of this map is a (actually an upper bound would
suffice, but we can make this computation precisely).

The rank of the fiber containing (w, x0) ∈ I∗1 ×M is

rk({x ∈M : wx0x
−1 ∈ I∗1}) = rk({x ∈M : wx ∈ I∗1})

By the definition of I∗1 , w inverts a torus T in an SL2-component of an
SL2-block and as rk(T ) = rk(A) the fiber rank is at least a. We turn to the
upper bound.

Note that for x ∈ M , if w inverts x then x ∈ M ∩ Mw. We divide
our analysis into two cases, depending on whether or not the latter group is
abelian.

If M ∩Mw is abelian, then the subset X ⊆ M ∩Mw inverted by w is
a subgroup and X = (X ∩ C(A)) × T . But by Lemma 7.4 of Chapter VI,
X ∩ C(A) = 1. So in this case X = T .

Now supposeK =M∩Mw is nonabelian. Then L = U2(C(K
′)) contains

A and Aw and is a group of type PSL2. Furthermore K acts on L by
inner automorphisms in view of Fact 2.25 of Chapter II, so K ≤ ĤL with
Ĥ = C(L). Furthermore w ∈ I1 ∩N(L) ⊆ L by Lemma 7.6 of Chapter VI.

So the subset X ⊆ M inverted by w is {ht : h ∈ Ĥ, h2 = 1, t ∈ T} with T
the maximal torus of L∩M inverted by w (the one which normalizes A and
Aw).

Now suppose w inverts x ∈ M ∩Mw and wx ∈ I1. Set w1 = wx and
express x as ht with h ∈ I(Ĥ) and t ∈ T . Note that w2 = wt ∈ I1 as well.
Thus h = ww1t

−1 = (w1w2)
w and as h commutes with w we have h = w1w2;

as this is an involution, w1 and w2 commute. So these involutions lie in the
same conjugate of A, with therefore contains h as well, and this conjugate is
contained in L since w2 is. So h ∈ L and as h ∈ C(L) we find h = 1. Thus
the fiber rank is a. □

We insert a small but useful lemma.
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Lemma 8.14. Let HT be a type I toral block contained in M , L =
U2(C(H)), and w ∈ L an involution inverting T . Then (M ∩Mw)◦ = HT .

Proof. The group M ∩ Mw normalizes ⟨A,Aw⟩ = L, hence lies in
LC(L), and the claim follows. □

Next we deal with the set C◦(A)C(T )C◦(A), for T ∈ TM for which
C(T ) ̸≤M .

Lemma 8.15. If T ∈ TM and c ∈ C(T )\M then C◦(A)cC◦(A)∩I1M◦ =
∅.

Proof. Supposing the contrary, we have ucv ∈ I1 for some u ∈ C◦(A),
v ∈ M◦, c ∈ C(T ) \M , and as v ∈ TC◦(A) and cT ⊆ C(T ) \M , we may
suppose v ∈ C◦(A) as well. Then conjugating by u we find ch ∈ I1 where
h = vu−1 ∈ C◦(A). Let w = ch.

Now [w, T ] = [h, T ] ≤ C◦(A). For t ∈ T× we have [w, t] ̸= 1 since
w ∈ I1, in view of Lemma 7.4 of Chapter VI. But [w, t] is inverted by w
and commutes with A, so by that same lemma we must have w commuting
with A, hence w ∈M , a contradiction. □

Now we concern ourselves with rk(C◦(A)C(T )C◦(A)).

Lemma 8.16. Suppose T ∈ TM , h1, h2 ∈ C◦(A), and c1, c2 ∈ C(T ) \M ,
with

h1c1C
◦(A) = h2c2C

◦(A)

Then h1 ∈ h2[C
◦(A) ∩ C(T )] and c1 ∈ [C◦(A) ∩ C(T )]c2[C◦(A) ∩ C(T )].

Proof. Write h1c1 = h2c2v with v ∈ C◦(A). Let u = h−1
2 h1 ∈ C◦(A).

We have
v = c−1

2 uc1; u, v ∈ C◦(A), c1, c2 ∈ C(T ) \M
We aim to show that v ∈ C(T ). Given this, we then have u ∈ C(T )

and our claims follow. We consider the group X = [T, v], generated by the
corresponding set of commutators. We suppose X ̸= 1, and we aim at a
contradiction.

Now X ≤ C◦(A). Furthermore X = [T, c−1
1 uc1] = [T, uc1] = [T, u]c1 ≤

C(Ac1). So L = U2(C(X)) contains ⟨A,Ac1⟩ and is of type PSL2 in charac-
teristic two.

Let H = C◦(L) and let T1 be the maximal torus of L contained in
M ∩M c1 . Let w ∈ L invert T1. Then M

w =M c1 .
Now T ≤M ∩M c1 since c1 ∈ C(T ), so T ≤ (M ∩Mw)◦ = HT1.
As Ac1w = A, the element x = c1w is in M . For t ∈ T we have

t = tc1 = txw, tx = tw. Writing t = ht1 with h ∈ H and t1 ∈ T1, we find

hxtx = ht−1
1

and reading this in M̄ = M/C(A) we find t̄1 = t̄−1
1 , which forces t1 = 1.

So T ≤ H ≤ C(A), which is nonsense. This contradiction completes the
proof. □
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Lemma 8.17. Suppose T ∈ TM , h ∈ C◦(A), and c ∈ C(T ) \M . Then
the rank of the set of pairs (h′, c′) satisfying

h′ ∈ C◦(A), c′ ∈ C(T ) \M,hcC◦(A) = h′c′C◦(A)

is 2 rk(C◦(A) ∩ C(T )).

Proof. We apply the preceding lemma. A necessary condition for
hcC◦(A) = h′c′C◦(A) is:

h′ = hu1; c
′ = u2cu3

for suitable u1, u2, u3 ∈ C◦(A) ∩ C(T ). If u1u2 = 1 then this condition is
also sufficient. So all that remains to prove is that, indeed, u1u2 = 1 here.

We may rewrite this as follows. Let cC◦(A) = ucC◦(A) with u ∈ C◦(A)∩
C(T ) and c ∈ C(T ) \M . We claim u = 1.

As cC◦(A) = ucC◦(A), we have uc ∈ C◦(A) and u ∈ C(A,Ac−1
). Sup-

pose u ̸= 1 and let L = U2(C(u)), a group of type PSL2.

Take an involution w ∈ L with Aw = Ac−1
. Then wc ∈ N(A) =M . Let

T1 be the torus of L normalizing A and Aw. Then w inverts T1.
Now T ≤ M ∩ M c = HT1. Also [w, T ] = [wc, T ] ≤ [M,T ] ≤ C(A).

As T ≤ HT1 with w inverting T1 and centralizing H, we have [w, T ] ≤
T1 ∩ C(A) = 1. Thus T ≤ H ≤ C(A), a contradiction, since T is inverted
by an involution. □

Lemma 8.18. Suppose that T ∈ TM and C(T ) is not contained in M .
Let Y = C(T ) \M . Then we have the following.

(1) rk(C◦(A)Y C◦(A)) = c′ + 2c− 2 rk(C(A, T ))
(2) g > c′ + 2c− 2 rk(C(A, T ))

Proof. For the first point, we have rk(Y ) = c′ by assumption, and
rk(C◦(A) × Y × C◦(A)) = 2c + c′. By the two previous lemmas, the fiber
ranks for the multiplication map C◦(A)× Y × C◦(A) → C◦(A)Y C◦(A) are
all equal to 2 rk(C◦(A) ∩ C(T )), which agrees with 2 rk(C(A, T )). So the
first point is proved.

Now for the second point, we have a generic subset I1M
◦ disjoint from

the set C◦(A)Y C◦(A). Hence the rank g of G is strictly greater than
rk(C◦(A)Y C◦(A)). □

8.5. Rank and C(T ). It is now an easy matter to combine the up-
per and lower bounds on rank from the preceding subsections, and derive
structural consequences.

Proposition 8.19.

(1) For a torus T ∈ TM of generic type, we have C(T ) ≤M .
(2) g = 2c+ a− h

Proof. Let T ∈ TM be a torus of generic type, and suppose that C(T )
is not contained in M . Then our two estimates are

c′ + 2c− 2 rk(C(A, T )) < g ≤ 2c− rk(C(A, T )) + c′ − h
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This simplifies to h < rk(C(A, T )), which contradicts the estimate in Lemma
8.12 of Chapter VI. So this proves the first point.

For the second point, we first compute

c′ = rk(C(T )) = rk(CM (T )) = rk(T ) + rk(C(A, T )) = a+ rk(C(A, T ))

and thus our upper bound becomes

g ≤ 2c+ a− h

On the other hand we can find a matching lower bound as follows.
Take w ∈ I1 associated with a type I toral block HT ≤M , that is w ∈

L = U2(C(H)) inverts T . Then g ≥ rk(MwM) = 2 rk(M) − rk(M ∩Mw).
As M ∩ Mw normalizes ⟨A,Aw⟩ = L, we have (M ∩ Mw)◦ ≤ HL and
(M ∩Mw)◦ = HT , thus g ≥ 2(c+ a)− (h+ a) = 2c+ a− h. □

9. ¬(∗), III: Structure

We continue to explore the consequences of the hypothesis (¬∗). We
are beginning to have good control of the structure of G and proceed with
a “recognition” phase in which G comes to look increasingly like PSL2.
However, there is one fundamental difference in structure from PSL2, present
throughout, namely the existence of the degenerate component in an SL2-
block, which affected the computation of rk(G) already. This will produce
a contradiction by a very explicit computation in the next and last section
of this chapter.

We recall that the various ranks we use in computations—mainly the
parameters g, h, a, c—were defined in the previous section.

9.1. Double transitivity.

Lemma 9.1. Let x ∈ G \M . Then rk(M ∩Mx) = h+ a.

Proof. We know g = 2c + a − h and of course g ≥ rk(MxM) =
2 rk(M) − rk(M ∩ Mx) = 2c + 2a − rk(M ∩ Mx), and this yields an in-
equality: rk(M ∩Mx) ≥ h+ a. We need to prove the reverse inequality

rk(M ∩Mx) ≤ h+ a

Let R = (M ∩ Mx)◦, and set K1 = CR(A), K2 = CR(A
x). Since

rk(R) ≥ h+ a > a, both K1 and K2 are infinite.
If (K1 ∩ K2)

◦ > 1, then L = U2(C(K1 ∩ K2)) is of type PSL2, and
H = C◦(L) ≤M . ThenMx =Mw for some w ∈ L, and R ≤ N◦(⟨A,Aw⟩) =
N◦(L) = HL, so R = H(R ∩ L) ≤ HT and rk(R) ≤ h + a in this case.
Accordingly, we will assume the contrary.

(K1 ∩K2)
◦ = 1

Now there is a natural map R → T × T x induced by the projections
M → T , Mx → T x, and the kernel is K1 ∩ K2, which is finite and hence
central in the connected group R. Since the image of R in T × T x is a good
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torus, it follows that R′ is finite and hence trivial, and R is a good torus as
well.

We show now that R is almost self-normalizing. It suffices to show that
N◦(R) ≤ M , as a similar argument will then show N◦(R) ≤ Mx, and thus
N◦(R) = R.

We have N◦(R) = C◦(R) ≤ N(U2(C(K1))). If U2(C(K1)) = A, then
this already shows N◦(R) ≤ M . So suppose that L1 = U2(C(K1)) is of
type SL2. Then N◦(R) acts on L1, with R acting like a maximal torus T1
normalizing A , and hence N◦(R) also acting like that maximal torus, and
therefore normalizing A. So N◦(R) ≤ M as claimed, and it follows that R
is almost self-normalizing.

Now Lemmas 1.3 of Chapter IV and 7.15 of Chapter VI apply to M◦

together with the subgroups R and HT , where HT is a type I toral block.
The conclusion is that R is generically covered by the conjugates of HT in
M◦. As R is a good torus we may therefore assume that R ≤ HT , which
yields the required estimate. □

Proposition 9.2. The action of G on the coset space M\G is doubly
transitive.

Proof. This means that G = M ∪MxM for any x ∈ G \M , and it
suffices to check that the double cosets MxM in question have full rank.
Indeed, by the previous lemma we have

rk(MxM) = 2 rk(M)− (h+ a) = 2c+ a− h = rk(G)

□

9.2. TM. We can now clarify the structure of TM : it is a single conju-
gacy class under the action of M , and there are no toral blocks of types II
or III.

Lemma 9.3. Let HT be a toral block with HT ≤ M . Then HT is of
type I.

Proof. Let L = U2(C(H)) and let w ∈ L invert the torus T . By double
transitivity, L1 = ⟨A,Aw⟩ is also the SL2-component of an SL2-block, and
is normalized by w. So w ∈ I1 ∩N(L1) ⊆ L1 by Lemma 7.6 of Chapter VI.
So w inverts the maximal torus T1 of L1 which normalizes A and Aw. By
Lemma 8.7 of Chapter VI, since w ∈ IT ∩ IT1 we have T = T1.

Again, w ∈ L ∩ L1 and hence the conjugate Aw of A containing w
is contained in L and in L1. So L = ⟨Aw, T ⟩ = L1. Thus A ≤ L and
H ≤ C(A); HT is of type I. □

Lemma 9.4. The tori of generic type in TM are those of type I, and
these tori are not of types II or III.

Proof. If T ∈ TM is of generic type, then C(T ) ≤ M by Proposition
8.19 of Chapter VI. So in an associated toral block HT we must have
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H ≤ M , and the previous lemma shows that T is of type I. Furthermore,
this argument shows that no associated toral block is of any other type.

Tori in TM of type I are conjugate under the action ofM by Lemma 7.22
of Chapter VI. Therefore they are all of generic type, so the same conclusion
applies. □

Lemma 9.5. TM consists of a single conjugacy class under the action of
M .

Proof. It suffices to show that all tori in TM are of type I. As we have
already shown that a torus in TM of type III must also be of type I or II, it
suffices to treat tori of type II. So fix T ∈ TM of type II, and an associated
SL2-block HL. Fix w ∈ L an involution inverting T .

By double transitivity and Lemma 8.14 of Chapter VI we have (M ∩
Mw)◦ = H1T1 for some type I toral block H1T1.

If Hw
1 meets H1 then w normalizes H1 and hence normalizes L1. But

L1 ∩HT1 = T1 and thus w normalizes T1. As CT1(w) = 1, w inverts T1, and
as w also inverts T it follows that T = T1, and T is of type I.

Alternatively, suppose H1 ∩ Hw
1 = 1. Then Hw

1 ≤ (H1T1) projects
injectively into T1, and H1 is a good torus. So H1 is central in H1T1, and
commutes with H ∩H1T1, hence normalizes H. As H is conjugate to H1 in
G, it is also a good torus and thus H1 centralizes H. Hence H normalizes
L1.

Now w centralizes H and H1 ∩ Hw
1 = 1, so H ∩ H1 = 1. Thus H

acts faithfully on L1. As H ∩ H1T1 is nontrivial, H normalizes T1 and
hence centralizes T1. But T1 ∈ TM is type I, and thus of generic type, and
C(T1) ≤M . So H ≤M and now Lemma 9.3 of Chapter VI shows that HT
is of type I. □

Lemma 9.6. For T ∈ TM we have NM (T ) = C(T ).

Proof. As T must be of generic type we have C(T ) ≤M . Conversely,
NM (T ) = NC(A)(T ) · T and [T,NC(A)(T )] ≤ T ∩ C(A) = 1. □

Proposition 9.7. M is connected.

Proof. We take a toral blockHT ≤M and an involution w ∈ U2(C(H))
inverting T . We claim

rk(C◦(A)wM◦) = rk(G)

We have

rk(C◦(A)wM◦) = rk(C◦(A)) + rk(M)− rk(C◦(A) ∩ (M◦)w)
= 2c+ a− rk(C◦(A) ∩ (M◦)w)

Now [C◦(A) ∩ (M◦)w]◦ = [C◦(A) ∩ (M ∩Mw)◦]◦ = [C◦(A) ∩ (HT )]◦ = H,
so rk(C◦(A)wM◦) = 2c+ a− h = g.

Now consider any g ∈ G\M and the corresponding double coset C◦(A)gM◦;
the rank of this double coset is computed as above with C◦(A) ∩ (M◦)g in
place of C◦(A)∩ (M◦)w. However by double transitivity the pairs (M,Mw)
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and (M,Mg) are conjugate in G, and such conjugation carries C◦(A) to
C◦(A), so the numbers involved are the same, and C◦(A)gM◦ is generic in
G for all g ∈ G \M .

Now suppose x ∈ M is arbitrary. We conclude that C◦(A)wM◦ and
C◦(A)wxM◦ are generic in G, and hence equal. So we arrive at an equation
cwM◦ = wxM◦ with c ∈ C◦(A). Thus cw ∈ xM◦ ⊆ M , and c ∈ C◦(A) ∩
Mw ≤ N(A) ∩N(Aw).

Consider L = ⟨A,Aw⟩. We have c ∈ N(L) and c ∈ C◦(A). So c acts
on L like an element of A, and also normalizes Aw, forcing c to centralize
L. In particular, c commutes with w. Hence our equation cwM◦ = wxM◦

becomes M◦ = xM◦ and thus x ∈M◦.
So M is connected. □

Lemma 9.8.

(1) I(G) = I1.
(2) M is strongly embedded in G.

Proof. We have I(M) = I(M◦) = A× and from this both claims follow.
□

Lemma 9.9. C(A) = C◦(A).

Proof. M = C(A) ⋊ T and as M has Morley degree one, so does
C(A). □

Lemma 9.10. Let T ∈ TM and let HL be a corresponding SL2-block
with T a maximal torus in L, and w ∈ L an involution inverting T . Let
Ĥ = C(L). Then we have the following.

(1) M ∩Mw = ĤT .

(2) C(A) ∩Mw = Ĥ.

Proof. For the first point, let R = CM∩Mw(A). Then M ∩Mw = RT ,

and Ĥ ≤ R. We claim that R centralizes L.
Now as all toral blocks are of type I we have (M ∩Mw)◦ = HT and

R◦ = H. Thus R normalizes H, and L. Furthermore R centralizes A, and
acts on L like a subgroup of A, that is R ≤ AĤ. Thus R = Ĥ(R ∩ A). As

(R ∩A) ≤ A ∩Mw = 1, we have R = Ĥ as claimed.

Then for the second point we have C(A)∩Mw = C(A)∩(ĤT ) = Ĥ. □

9.3. Final preparations. We have the structure of M and G firmly
under control. We now put our structural remarks in final form, before
embarking on the final computation of the next section.

Lemma 9.11. Let w ∈ I(G), w /∈ M , and set L = ⟨A,Aw⟩. Then we
have the following.

(1) L is of type PSL2, and NL(A) ∩ NL(A
w) is a torus inverted by w

and contained in M ∩Mw; w ∈ L.
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(2) G = M ⊔ C(A)wC(A)T , and the representation is unique, up to
the following ambiguity:

(3) If c1wc2t1 = c′1wc
′
2t

′
1 with c1, c2, c

′
1, c

′
2 ∈ C(A) and t1, t

′
1 ∈ T , then

t1 = t′1, and for some x ∈ C(L) we have c1 = c′1x and c2 = x−1c′2.

Proof. Most of the first point has been gone over in the past. L is
of type PSL2 by double transitivity of the action of G, and thus NL(A) ∩
NL(A

w) is a maximal torus, inverted by w since the action of w on L is inner,
and w interchanges A and Aw. Finally, w ∈ I1 ∩N(L) ⊆ L by Lemma 7.6
of Chapter VI.

The second point is simply a repetition of double transitivity in the form
G =M ⊔MwM , taking into account M = C(A)T .

In the last point, the equation can be written as

xw = c′2tc
−1
2

where x = c′1
−1c1 and t = t′1t

−1
1 . Thus x ∈ C(A) ∩Mw = C(L) by Lemma

9.10 of Chapter VI. But w ∈ L, so the equation can be written as x = c′2tc
−1
2

and hence t ∈ C(A). As t ∈ T we have t = 1 and t1 = t′1, x = c′2c
−1
2 , and all

claims have been verified. □

Lemma 9.12. For T ∈ TM and t ∈ T× we have C(t) = C(T ).

Proof. First we claim C(t) ≤ M . Let HL be an SL2-block associated
with T , and w ∈ L an involution inverting T . As G = M ∪ C(A)wC(A)T ,
it suffices to show that nothing in C(A)wC(A)T commutes with t, and for
this it suffices to deal with C(A)wC(A).

So suppose that c1wc2 ∈ C(t) with c1, c2 ∈ C(A). So c1wc2 = ct1w
tct2 =

ct1wt
2ct2. This can be put in the form xwt2 = wy with x, y ∈ C(A), or

xw = yt−2; so xw ∈ C(A)w ∩ M = C(L)w = C(L). As y ∈ C(A) this
implies t−2 ∈ C(A) and hence t2 = 1, t = 1. This contradiction shows that
C(t) ≤M .

Now w inverts t so also C(t) ≤Mw. Furthermore C(t) = C(t, A) ·T and
C(t, A) ≤ C(A) ∩Mw = C(L) ≤ C(T ), so C(t) ≤ C(T ). □

Lemma 9.13. Let T ∈ T and suppose T meets M nontrivially. Then
T ≤M .

Proof. Let T0 = T ∩M . Take w ∈ I(G) inverting T . As w inverts
T0, w /∈ M . So L = ⟨A,Aw⟩ is a group of type PSL2 and T0 acts on L,
normalizing A and Aw. So T0 normalizes the maximal torus T1 of L normal-
izing A and Aw, and as T0 is a 2⊥-group acting by inner automorphisms,
also T0 centralizes T1. So T1 ≤ C(T0) ≤ C(T ) by the preceding lemma, and
T ≤ C(T1) ≤M by Lemma 9.6 of Chapter VI. □

Lemma 9.14. Suppose T1, T2 ∈ T , and t1 ∈ T1, t2 ∈ T2 are nontrivial
elements, with t1 and t2 commuting. Then T1 = T2

Proof. As C(t1) = C(T1) and C(t2) = C(T2), the tori T1 and T2
commute. Let T1 be associated with the toral block H1T1. We may suppose
that H1T1 ≤M .
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Now C(T1) ≤ M . Let w ∈ L = U2(H1) invert T1. Then similarly
C(T1) ≤Mw. By Lemma 8.14 of Chapter VI, we have (M ∩Mw)◦ = H1T1,
so C◦(T1) = H1T1. Hence T2 ≤ H1T1 ≤ M ∩ Mw and then similarly
C◦(T2) ≤ (M ∩Mw)◦ = H1T1, so H2T2 ≤ H1T1 and by symmetry H1T1 =
H2T2.

As both H1T1 and H2T2 are type I toral blocks (there being no other
possibilities), we have H1 = CH1T1(A) = H2. Hence the associated SL2-
components L1 and L2 are equal, and the tori T1, T2 are commuting maximal
tori in L1, hence equal. □

Lemma 9.15. C(A) > AH

Proof. Suppose C(A) = A×H. Then as H is characteristic in AH, M
normalizes H. Also G =M ∪MwM with w centralizing H, so G normalizes
H, and H = 1. But the hypothesis (¬∗) contradicts this. □

10. ¬(∗), IV: Contradiction

Operating under the hypothesis (¬∗), with the structural information
afforded by the last section, we will now reach a contradiction by an explicit
calculation. In other words, we prove the following.

Proposition 10.1. Let G be a simple L∗-group of finite Morley rank and
even type with a definable weakly embedded subgroup. Then the condition (∗)
holds.

10.1. Elements of order 3. The following point is fundamental and
will be invoked without explicit reference. We will fix an involution w ∈
G \M ; by what we have proved in the previous section, it will not matter
which one we take. In particular we have G = M ⊔MwM . Bear in mind
also that M and C(A) are connected, which lightens the notation. We fix
T ∈ TM inverted by w.

Lemma 10.2. Let x = wct with c ∈ C(A) and t ∈ T . Then x3 = 1 if
and only if cw = c−twc−1t.

Proof. We expand x3 = 1, bearing in mind wt = t−1w. We find

(wct)3 = cwt−1cwct = cw(c−twc−1t)−1

□

Lemma 10.3. Suppose that wct1 and wct2 are elements of order three
with c ∈ C(A) and t1, t2 ∈ T . Then t1 = t2.

Proof. The representation of cw as c1wc2t is (sufficiently) unique (Lemma
9.11 of Chapter VI). □

We will make a close study of the set X3 introduced in the following
definition.

Definition 10.4.
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(1) An element t ∈ G is said to be toral if it belongs to some torus
T ∈ T .

(2) X3 = {c ∈ C(A) : For some t ∈ T , wct is toral and of order three}.

Lemma 10.5. X3 is invariant under conjugation by HT .

Proof. Let wct be a toral element of order three. For h1 ∈ H and
t1 ∈ T we find

(wct)h1t
−1
1 = wt−1

1 ch1t
−1
1 t = wt−2

1 ch1t
−1
1 t = wch1t1(t−2

1 t)

and it follows that ch1t1 ∈ X3. □

Lemma 10.6. X3 ∩AC(L) = A×

Proof. Working inside SL2 one can see that X3 meets A×, and since
A× is a single conjugacy class under the action of T , it follows that A× ⊆ X3.

Conversely, suppose ax ∈ X3, where a ∈ A and x ∈ C(L). Then we have
some t ∈ T for which waxt is a toral element of order three, and thus

(ax)w = (ax)−tw(ax)−1t = (a−1wat)x−2

On the other hand (ax)w = awx, and comparison of the two yields x3 ∈ L.
But x ∈ C(L), so x3 = 1. Comparing the expressions again, we find

aw = a−twat

Thus wat is a toral element of order three (working in L, where any element
of order three is toral).

As wat and waxt are commuting toral elements, the tori involved are
the same, and thus x ∈ L. As x ∈ C(L) we find x = 1. Thus ax = a ∈ X3,
and then clearly a ̸= 1. □

Lemma 10.7. rk(X3) = c− h.

Proof. Fix a toral element t0 ∈ T of order three. Then the toral
elements of order three belong to the conjugacy class tG0 (recall that t0 is
inverted by an element of G). There is a bijection between wM ∩ tG0 and
X3 defined by wct 7→ c for c ∈ C(A), t ∈ T with wct ∈ tG0 . This is bijective
because, as we have seen, c determines t.

We compute the ranks involved. First, rk(tG0 ) = rk(G) − rk(CG(t0)) =
rk(G)− rk(C◦(T )) = g − (h+ a) = 2(c− h).

Now TM is a single conjugacy class in M , and any torus in T that
contains a nontrivial element of M belongs to TM , so tG0 ∩M = {t0, t−1

0 }M .
Thus rk(tG0 ∩M) = rk(tM0 ) = rk(M)− rk(CM (t0)) = rk(M)− rk(C◦(T )) =
(c+ a)− (h+ a) = c− h.

From this it follows that tG0 lies generically outsideM . By double transi-
tivity, this set is evenly distributed over the cosets of M in G. Thus writing
r for rk(gM ∩ tG0 ), where g ∈ G \M , we find

2(c− h) = rk(tG0 ) = rk(G/M) + r = r + (2c+ a− h)− (c+ a) = r + c− h

and this yields rk(X3) = r = c− h, as claimed. □
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Notation 10.8. X ′
3 = X3 \A.

Lemma 10.9. X ′
3 is generic in X3.

Proof. By the last lemma, this means a < c− h, which is the content
of Lemma 9.15 of Chapter VI. □

Lemma 10.10. rk(X ′
3C(L)) = rk(C(A)), and the natural map X ′

3 ×
C(L) → X ′

3C(L) is a bijection.

Proof. As rk(X ′
3 × C(L)) = (c − h) + h = c, it suffices to check the

second claim. Suppose therefore that we have

ch ∈ X ′
3; c ∈ X ′

3, h ∈ C(L)

We must show that h = 1.
We have cw = c−t1wc−1t1 for some t1 ∈ T , and similarly

(ch)w = (ch)−t2w(ch)−1t2 = h−1c−t2h−1wc−1t2

for some t2 ∈ T . Comparing this equation with

(ch)w = cwh = c−t1wc−1ht1

and using the uniqueness of the T -coordinates in such decompositions, we
find t1 = t2 and hence

h−1c−t1h−1wc−1 = c−t1wc−1h

which can be written as

(ct1c−t1hh−2)w = c−1hc ∈ C(A) ∩ C(Aw) = C(L)

So hc ∈ C(L). If h ̸= 1 then easily c ∈ N(L) and thus c ∈ C(A)∩N(L) =
AC(L), and c ∈ X ′

3 ∩AC(L) = ∅ by Lemma 10.6 of Chapter VI. □

Lemma 10.11. C(L) = H

Proof. By the previous lemma the set X3C(L) is generic in C(A), and
since C(A) has Morley degree one, the same applies to X3C(L) and hence
also to X3 ×C(L). So C(L) has Morley degree one, and C(L) is connected.
So C(L) = C◦(L) = H. □

10.2. A computation and a contradiction. We now have enough
information in hand to make an explicit, and contradictory, computation.
We compute the representation of a single element of G = M ∪MwM in
two ways.

As usual we fix the toral block HT ≤ M and an involution w ∈ L =
U2(C(H)) inverting T . We also choose a base point a0 ∈ A× satisfying
aw0 = a0wa0 (find a0 in L so that a0w has order 3).

Now X ′
3H is generic in C(A) by Lemma 10.10 of Chapter VI, bearing in

mind C(L) = H. We consider the intersections cAH ∩X ′
3H for c ∈ C(A).

It follows that for a generic set of c ∈ C(A), the intersection of the coset
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cAH with X ′
3H is generic in cAH. Or in terms of the base point a0, the set

of c ∈ C(A) satisfying

(•) {t ∈ T : cat0 ∈ X ′
3H} is generic in T

is a generic subset of C(A).
As X ′

3H is generic in C(A), the set of c ∈ X ′
3H satisfying the same

condition (•) is generic in C(A). As this set is closed under multiplication
byH on the right, and as the multiplication mapX ′

3×H → X ′
3H is bijective,

the set X ′′
3 of c ∈ X ′

3 satisfying the condition (•) is generic in X3. Now X3 is
closed under inversion as can be seen by inverting both sides of the equation
cw = c−twc−1t. So the following set is generic in X ′

3.

{c ∈ X ′
3 : c, c

−1 ∈ X ′′
3 }

Accordingly, for a generic set of c ∈ X ′
3, the following set T0(c) is generic

in T :
T0(c) = {t ∈ T : cat0 ∈ X ′

3H; c−1at
−1

0 ∈ X ′
3H}

We now fix one such element c ∈ X ′
3. We will write T0 for T0(c).

As c ∈ X ′
3 we have cw = c−t1wc−1t1 for some t1 ∈ T . Choose an element

t0 ∈ T0 ∩ t−1
1 T0. Set a = at00 , and t = t−2

0 . We will carry out the calculation
of the element (ca)w in two different ways.

First and most simply, by the choice of t0 we have ca ∈ X ′
3H, and

(cah2) ∈ X ′
3 for some h2 ∈ H, and hence for some t2 ∈ T we have

(cah2)
w = (cah2)

−t2w(cah2)
−1t2

= h−1
2 at2c−t2wh−1

2 ac−1t2;

(ca)w =
[
at2h−1

2 c−t2
]
w
[
ah−1

2 c−1h−1
2

]
t2

For our second calculation we begin with (ca)w = cwaw. We have a
t−1
0
0 =

at, and hence

aw = a
wt−1

0
0 = atwat

cw = c−t1wc−1t1

(ca)w = cwaw = c−t1wc−1t1a
twat

= c−t1
[
c−1att

−1
1

]w
at1t−1

1 t

Since c−1att
−1
1 = c−1a

(t0t1)−1

0 ∈ X ′
3H we find h3 ∈ H and t3 ∈ T with

(c−1att
−1
1 h3) ∈ X ′

3

(c−1att
−1
1 h3)

w = (c−1att
−1
1 h3)

−t3w(c−1att
−1
1 h3)

−1t3

= h−1
3 att

−1
1 t3ct3wh−1

3 att
−1
1 ct3

(c−1att
−1
1 )w = att

−1
1 t3h−1

3 ct3wh−1
3 att

−1
1 ct3h

−1
3
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So

(ca)w = c−t1
[
c−1att

−1
1

]w
at1t−1

1 t

= c−t1 [att
−1
1 t3h−1

3 ct3wh−1
3 att

−1
1 ct3h

−1
3 ]at1t−1

1 t

= [att
−1
1 t3c−t1h−1

3 ct3 ]w[att
−1
1 +t1t

−1
3 h−1

3 ch−1
3 ]t−1

1 tt3

Comparing this with (ca)w =
[
at2h−1

2 c−t2
]
w
[
ah−1

2 c−1h−1
2

]
t2 we find

t2 = t−1
1 tt3(1)

att
−1
1 t3c−t1h−1

3 ct3 = at2h−1
2 c−t2h, some h ∈ H(2)

att
−1
1 +t1t

−1
3 h−1

3 ch−1
3 = h−1ah−1

2 c−1h−1
2(3)

Now let us put (3) in the form

at
∗

= h−1h−1
2 c−1h−1

2 h3c
−1h3

= h′c−1h′′c−1

with h′, h′′ ∈ H and t∗ = tt1 + t1t
−1
3 + 1 in T ∪ {0}, where at the end we

conjugate by h−1
3 before collecting terms. We can recast this further as

at
∗
= h∗(h′′c−1)2

with h∗ = h′h′′−1.
Then the element h′′c−1 centralizes at

∗
, hence also centralizes h∗. If h∗ ̸=

1 then h′′c−1 ∈ NC(A)(H) = AC(L) and hence c ∈ AC(L), a contradiction

to Lemma 10.6 of Chapter VI. We conclude that h∗ = 1 and hence at
∗
=

(h′′c−1)2, or after inversion:

at
∗
= (ch)2

with h = (h′′)−1 ∈ H. But M/A contains no involutions, so this implies
ch ∈ A, a contradiction.

This contradiction proves that Hypothesis (∗) always holds in simple L∗-
groups of finite Morley rank of even type with weakly embedded subgroups,
and hence our recognition theorem holds generally in the following form.

Theorem 10.12. Let G be a simple L∗-group of finite Morley rank and
even type with a definable weakly embedded subgroup. Then G is of the form
SL2(K) for some algebraically closed field K of characteristic two.

This has the following useful consequence.

Proposition 10.13. Let G be a simple L∗-group of finite Morley rank
and even type, and suppose that the associated graph U(G) is disconnected.
Then G ≃ SL2(K) for some algebraically closed field K of characteristic
two.

Proof. This graph was introduced in the introduction to Chapter V.
By Proposition 1.2 of Chapter V, if this graph is disconnected then there
is a proper definable subgroup M of G containing the normalizer of each of
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its nontrivial unipotent subgroups, or in other words, a weakly embedded
subgroup in the present context. So Theorem 10.12 of Chapter VI applies.

□

We find it useful to phrase this in yet another way.

Definition 10.14. Let G be a group of finite Morley rank of even type.
Then we associate the following graph U∗(G) with G. The vertices are the
Sylow◦ 2-subgroups of G, which in this context are the maximal 2-unipotent
subgroups of G. We join two vertices by an edge if their intersection is
infinite.

Lemma 10.15. Let G be a group of finite Morley rank and of even type.
Then the graph U(G) is connected if and only if the graph U∗(G) is connected.

Proof. If U(G) is connected, and S, T are vertices of U∗(G), then any
path linking S to T in U(G) immediately gives rise to one in U∗(G), simply
by extending each commuting pair of unipotent subgroups to a Sylow◦ 2-
subgroup.

Conversely, suppose U∗(G) is connected. Every nontrivial unipotent
subgroup U of G is connected to any Sylow◦ 2-subgroup S which contains U
by the path [U,Z◦(S), S] in U(G). So it suffices to show that any two Sylow◦

2-subgroups S, T of G with infinite intersection are connected in U(G). But
as just noticed, (S ∩ T )◦ is connected to S and T in U(G). □

So the following is just a rephrasing of the previous proposition.

Corollary 10.16. Let G be a simple L∗-group of finite Morley rank
and even type, and suppose that the associated graph U∗(G) is disconnected.
Then G ≃ SL2(K) for some algebraically closed field K of characteristic
two.

11. Notes

The material in this section has evolved considerably over more than a decade.

In the tame (i.e., without bad fields) K∗ case, it was dealt with in [1, 4]; then in

the general K∗ case (always, however, in even type) in [122, 121], which varied

in interesting ways from the previous argument while keeping to the same overall

strategy, and finally in a series of papers [10, 11, 12, 13] in the form given here,

again keeping to the same overall strategy but with considerable adaptation to the

new context—and noticeably greater length.

In the case of K∗-groups, the parallel to our sections §§1 of Chapter VI-2 of

Chapter VI is that the weakly embedded subgroupM has solvable connected com-

ponent; here we prove that U2(M) is solvable, and since U2(M) is the part of M
which is known to be aK-group in our context, this is a very natural generalization.

The failure to control M more completely leads to considerable complications at

later stages in the argument, and—particularly unfortunately—largely kills off the

value of the theory of solvable groups to us in this context.
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In the latter stages of the argument we replace the theory of Carter subgroups

by generic conjugacy results involving good tori. Our use of Theorem 4.1 of Chapter

IV is inessential and in fact this material was worked out before that result was

available. It does simplify some of the arguments.

The major case divisions used in the argument are similar to those occurring

in [86].

§§1 of Chapter VI–2 of Chapter VI gives material worked out in [10]

§§3 of Chapter VI–6 of Chapter VI gives material worked out in [11, 12] first in

the case of strong embedding and then in the weak but not strong context. The

rank estimates in §3 of Chapter VI are rather delicate but occur already in the

early work of Nesin.

The analysis of the tori in the family TM was a sticking point for the theory.

In [122, 121] this was handled using the theory of solvable groups. Our analysis

here uses properties of good tori via Theorem 1.15 of Chapter IV. In the first draft

of [13] the argument was similar but more ad hoc. That work led to Proposition

1.15 of Chapter IV, which was proved in [68], and was used in the final version of

[13], as here.

§4 of Chapter VI The rank computation in the proof of Proposition 4.3 of Chapter

VI was introduced in [80], and exploited in [1, 121].

§§7 of Chapter VI–10 of Chapter VI gives material worked out in [13]. The

structure of the argument follows [121], and our last section in particular reduces

to a slight variant of the argument which concludes [121] in that case.



CHAPTER VII

Standard components of type SL2

Introduction

In the present chapter we deal with groups with a standard component
of type SL2.

Definition 1. Let G be a group of finite Morley rank and even type,
and L a quasisimple definable connected subgroup of G. Then L is said
to be a standard component in—or “for”, but not “of”—the group G if
C(L) contains an involution, and L is normal in C◦(i) for all involutions
i ∈ C(L).

Theorem 1.1 of Chapter VII (Standard SL2). Let G be a simple
L∗-group of finite Morley rank and even type. Suppose that G has a standard
component L of type SL2 with U2(C(L)) > 1. Let A be a Sylow 2-subgroup
of L and U a Sylow◦ 2-subgroup of C(L). Then AU is a Sylow◦ 2-subgroup
of G.

This is a purely technical result which merits a chapter of its own only
because of the length of the analysis. It also has a tangled history, discussed
in the notes to this chapter. There are aspects of finite group theory, which
have parallels in groups of finite Morley rank, which explain the role of a
theorem of this type, and in the process generalize it enormously. But as
we do not need this material to carry through our classification project, we
have reduced what is needed to a minimum, leaving this one technical result
as the sole representative of a broader theory.

In the previous chapter we gave a characterization of SL2, which will
be followed in the next chapter, in rapid successions, by two more charac-
terizations of the same group. Theorem 1.1 of Chapter VIII characterizes
SL2 by the fact that its Sylow◦ 2-subgroups are abelian. Our final, most
flexible characterization of SL2 will be the “C(G,T )”-theorem, Theorem 3.3
of Chapter VIII, which says in essence that a simple L∗-group of even type
is either generated by proper parabolic subgroups, or is of type SL2. The
present chapter prepares for the proof of the C(G,T )-theorem. The reader
will very likely find it more natural to read the next chapter as far as that
proof before looking into this one.

All of our characterizations of one very small group, SL2, will eventually
produce a very efficient recognition method for the general group of finite
Morley rank and even type. The plan of attack will be seen at the end of

381
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the next chapter—rather late, but everything up to that point lays the basis
for it.

We make use of a number of powerful tools in the present chapter, no-
tably the theory of pseudoreflection groups and the Thompson rank for-
mula. The basis of our strategy is to aim at a reduction to the classification
of groups with weakly embedded subgroups. Just as in that classification,
where an initially vague configuration is driven toward SL2, we find that if
we avoid the weak embedding configuration, a second configuration emerges,
which eventually becomes extremely precise before succumbing to a final
contradiction. The group looks locally a good deal like SL3, but with some
striking deviations. The route to a final contradiction passes through the
Thompson rank formula; this gives a way to derive “global” contradictions
from “local” discrepancies—that is, the presence of two distinct local struc-
tures which one would not expect to see in a single group.

Finite group theorists may notice that our use in §1 of Chapter VII of
“continuously characteristic” subgroups eliminates the detailed considera-
tion of a number of configurations lying off the main line, which in finite
group theory would very likely occupy the bulk of the analysis.

We give our analysis, broadly, in the next section, and then return in
later sections to give each part in detail.

Overview

We will begin by outlining the proof of the following theorem, especially
the computations that eventually provide a contradiction.

Theorem 1.1 of Chapter VII. Let G be a simple L∗-group of finite
Morley rank and of even type, with a standard component L of type SL2

over an algebraically closed field K of characteristic two. Let A be a Sylow
2-subgroup of L, and let U be a Sylow◦ 2-subgroup of C(L). Suppose that U
is nontrivial.

Then AU is a Sylow◦ 2-subgroup of G.

In the proof of this theorem we will first analyze the configuration by
direct and elementary analysis, focussing on the structure of a Sylow 2-
subgroup. We show that a counterexample mainly resembles SL3, apart
from the mysterious subgroup U2(C(L)). Eventually we exploit the latter
group in a fusion analysis, via the Thompson rank formula. Ultimately we
compare the formulas rk(G) = rk(C(i)) + rk(iG) for two involutions i in
G, both of whose centralizers are fully controlled, and quite different, and
conflicting inequalities result. One of these suggests that the rank of G
should be something similar to 8f with f the rank of the base field for L
(which is what one would expect if G resembles SL3).

The proof. Our strategy is to use the criterion of Lemma 1.3 of Chapter
V, which takes us from a slight generalization of weak embedding—namely,
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N◦(U) ≤ M for U ≤ M nontrivial 2-unipotent—to a weakly embedded
subgroup.

We assume of course that

AU < S with S a Sylow◦ 2-subgroup of G.

In the first stage, one determines the structure of S. In such cases one
works with what one has, namely AU at the moment, and the “next layer”
of a Sylow◦ 2-subgroup S containing it, namely the preimage W in S of
Ω1

◦(Z(S/AU)). At this first stage, we identify a piece of S looking rather
like a Sylow 2-subgroup of SL3. It remains to show that W = S. For this,
supposing the contrary, and looking at the next “slice” of S, we find the
commutator structure is too tight to allow a further extension.

The basic facts are the following. Note that one proves this lemma first
for W in place of S, after which applying this information at the next stage
we show W = S; and afterward, we continue to make use of our detailed
knowledge of what is now S.

Lemma 1.5 of Chapter VII. For v ∈ AU \A we have the following.

(i) CS(v) = AU .
(ii) [S, v] = A.
(iii) S/A is elementary abelian.
(iv) Z(S) = A

Once we have this structure, we can deduce that S ◁ C(A). With some
further analysis we also arrive at C(a) = C(A) for a ∈ A×, for which it
suffices to have C(a) ≤ N(A) = C(A)T , in view of the action of T on A.

This provides the raw ingredients for a fusion analysis leading to a con-
tradiction.

Thompson maps. Our goal is to make two contradictory computations
involving the Thompson rank formula. In our context, the Thompson rank
formula arises whenever we have natural maps I × J → K between sets of
involutions for which we can calculate rk(I), rk(J), and rk(K) in terms of
the rank of G and related parameters, and also estimate the fibers of the
map. In this way we can exploit information about conjugacy classes of
involutions and the structure of their centralizers. Our first result will have
the form

(1) rk(G) = 6f + u+ t1

where f is the rank of the base field (associated with a copy of SL2), u =
rk(U), and t1 is the rank of another group introduced along the way. For
the sake of intuition it is reasonable to think of u and t1 as being about the
same size as f , in which case this formula says rk(G) = 8f , which is what
would happen in the case of SL3.

Our second calculation will give

(2) rk(G) = rk(C(u)) + rk(uG) = 3f + u+ rk(uG)
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with u an involution in U , and combined with (1) this leads to

rk(uG) = 3f + t1

Letting Iu be the union of the conjugacy classes in G of involutions in U ,
this will lead directly to the result

rk(Iu) ≤ 3f + u

All of this is, in some sense, the “truth”. But because of the presence of L
in the centralizer of U , another similar computation yields

rk(Iu) ≥ 4f + u

and thus a contradiction.

A few details. We consider the following sets.

Ia = {i ∈ I(G) : iG meets A}; Iu = {i ∈ I(G) : iG meets U}

Then Ia is a single conjugacy class, and the structure of Iu is unclear.
However, we can easily see that these classes are disjoint, and that Iu covers
AU −A.

With some more structural analysis one finds that C◦(u) = C◦(U) for
u ∈ U×, and hence the ranks of conjugacy classes of involutions in Iu are
constant.

There is a minor bifurcation in the analysis at this point, depending
on whether the subgroup A is strongly closed in S◦ or not. If A is not
strongly closed in S◦, one makes a little structural analysis of the resulting
configuration, and one pins down some alternative information: I(G) =
Iu ∪ Ia; S

◦ is a full Sylow◦ 2-subgroup of G. It turns out one gets much
the same results along either branch of the analysis, once the details of each
variant configuration have been clarified.

Now one considers the Thompson map θ : Ia × Iu → I(G) given by
associating a pair i ∈ Ia, j ∈ Iu to the unique involution in d(⟨ij⟩), which
exists since i and j are not conjugate. First one must check the first order
definability of this map, which is not obvious by the definition given. Next
we show that the map takes its values generically in Iu. Here, we split into
two cases, depending on whether A is strongly closed or not.

If A is strongly closed in S◦, one argues directly that the entire range of
θ is in Iu. If A is not strongly closed, then the values of θ lie in Ia ∪ Iu, and
it suffices to make a calculation showing that they do not lie, generically,
in Ia. For this the following preliminary estimate is useful (and eventually,
contradictory to our main calculation).

Lemma 2.11 of Chapter VII. Setting f = rk(A), and u = rk(U), we
have

rk(Iu) ≥ 4f + u
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This is not a direct estimate. What we do is to consider a second and
less natural, partial, Thompson map

τ : Iu × Iu → Iu

which is defined only for pairs i, j ∈ Iu such that d(⟨ij⟩) meets Iu. By
looking in the group UL we show that every fiber of this map has rank at
least u + 4f = rk(U) + 2 rk(I(L)). As the map is defined from a subset of
Iu × Iu → Iu, some of these fibers must have rank at most Iu.

By this estimate, the rank of a generic fiber of the Thompson map θ
should be at least 4f + u, and one checks that over Ia the fiber ranks are at
most 2f + u.

So the map θ exhibits similar behavior in both cases. In the sequel, we
restrict it to be generically defined on Ia × Iu, with image in Iu.

With this map in hand, and sufficiently well understood, we can use
it for its intended purpose: the calculation of rk(G). This produces the
following:

rk(G) = rk(C(A)) + 4f

Namely, one computes the fiber ranks above Iu, finding that they are
all of rank 4f . As θ carries Ia × Iu generically onto Iu, we find then that
4f = rk(Ia) = rk(G) − rk(C(a)) = rk(G) − rk(C(A)) for a ∈ A×, whence
our claim.

We are still not done. We need next to understand both C(U) and C(A).
For C(U), one shows quickly that C◦(U) = LU and thus rk(C◦(U)) = 3f+u.

For C(A), one may show, again by close examination, that C◦(A) =
S◦ ⋊ T1 with T1 a torus acting freely on U . So we introduce the parameter

t1 = rk(T1)

and we have rk(C(A)) = 2f + u + t1 as a result of our previous analysis,
giving the not entirely perspicuous formula

rk(G) = 6f + u+ t1

But since one might expect T1 to be a 1-dimensional torus, and U a 1-
dimensional unipotent group on which it acts, this formula suggests some-
thing like rk(G) = 8f , a reasonable value.

Turning to u ∈ U×, we also have rk(G) = rk(C(u))+ rk(uG) = 3f +u+
rk(uG) and thus we have

rk(uG) = 3f + t1

which is more interesting, since it is not so reasonable.
Consider the conjugacy classes contained in Iu as a definable set Cu;

then this set has a rank, which can be no greater than the rank of the set
of conjugacy classes in U , under the action of T1. The latter is u− t1.

So rk(Iu) ≤ (u − t1) + rk(uG) = u + 3f . Recall however that rk(Iu) ≥
4f + u, as shown above. So we have arrived at a contradiction.
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1. Sylow structure

1.1. On standard components of type SL2. Our goal in this and
the next two sections is the following result, which is more than we need at
this juncture, but will be useful subsequently as well.

Theorem 1.1. Let G be a simple L∗-group of finite Morley rank and of
even type, with a standard component L of type SL2 over an algebraically
closed field K of characteristic two. Let A be a Sylow 2-subgroup of L, and
let U be a Sylow◦ 2-subgroup of C(L). Suppose that U is nontrivial.

Then AU is a Sylow◦ 2-subgroup of G.

What we will actually need, and what amounts to the same thing, is the
same statement with the conclusion weakened as follows.

Proposition 1.2. Let G be a simple L∗-group of finite Morley rank and
of even type, with a standard component L of type SL2 over an algebraically
closed field K of characteristic two. Let A be a Sylow 2-subgroup of L, and
let U be a Sylow◦ 2-subgroup of C(L). Suppose that U is nontrivial.

Then AU is a Sylow◦ 2-subgroup of CG(A).

The full theorem follows easily from the weaker proposition, as we will
show immediately, but the latter result requires extensive analysis. Once we
have Proposition 1.2 of Chapter VII, the classification of groups of groups
of even type with abelian normal subgroups (Theorem 1.1 of Chapter VIII)
will also follow, as we shall see.

We now derive Theorem 1.1 of Chapter VII from Proposition 1.2 of
Chapter VII.

Proof of Theorem 1.1 of Chapter VII. We assume Proposition 1.2
of Chapter VII for the moment, that is, we assume that AU is a Sylow◦ 2-
subgroup of C(A). We wish to show that AU is also a Sylow◦ 2-subgroup of
G, and for this it suffices to show that it is a Sylow◦ 2-subgroup of N(AU),
in view of the normalizer condition (Proposition 5.3 of Chapter I).

So consider a Sylow◦ 2-subgroup S of N(AU). Note that N(AU) con-
tains a maximal torus T of L, commuting with U and normalizing A. Fur-
thermore, by Proposition 5.3 of Chapter II, we have a Sylow◦ 2-subgroup S
of N(AU) invariant under the action of T ; for this, we apply the proposition
to the subgroup U2(N(AU))T , which is a K-group. Now AU ≤ S, and we
claim AU = S. For this, it suffices to show that S lies in C(A), in other
words that A is central in S.

Now Z(S) ∩ AU is infinite, by Lemma 5.1 of Chapter I, and is also T -
invariant. If Z(S) meets A nontrivially, then in view of the action of T it
contains A, and we are done. The only alternative is

Z(S) ∩AU ≤ U

In this case, fix one element u ∈ Z(S)∩U×. As L is a standard component,
we find L ◁ C◦(u). So S normalizes L, and hence also normalizes L∩(AU) =
A. So now A ◁ S and hence Z(S) meets A nontrivially, after all. □
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1.2. C◦(A): The 2-Sylow◦. It remains only to prove Proposition 1.2
of Chapter VII. With the hypotheses and notation of the proposition in
force, we will assume that AU is not a Sylow◦ 2-subgroup of C(A), and
we will analyze the structure of a Sylow◦ subgroup of C(A) in considerable
detail. We will find that this structure is well determined, and looks much
like a Sylow subgroup of SL3 in characteristic two. We will also show that
U2(C(A)) is solvable, and that a Sylow◦ 2-subgroup of C(A) is also a Sylow◦

2-subgroup of the whole group G. This structural information will be ex-
ploited in the following section in a fusion analysis, via the Thompson rank
formula, leading afterward to a contradiction.

We now fix a considerable body of notation all at once. We will recall
the hypotheses and notation of Proposition 1.2 of Chapter VII, and add to
it. Some of this will require further comment.

Notation 1.3.

(i) G is a simple L∗-group of finite Morley rank and of even type.
(ii) L is a standard component in G, of type SL2 over an algebraically

closed field of characteristic two.
(iii) A is a Sylow 2-subgroup of L, and T is a maximal torus of L which

normalizes A.
(iv) U is a Sylow◦ 2-subgroup of C(L), and is nontrivial.
(v) S is a Sylow 2-subgroup of C(A), and S◦ is T -invariant.
(vi) S◦ > AU

(vii) Û = CS(L) and V = NS(L).
(viii) W is the preimage in S◦ of the group

W̄ = Ω1
◦(Z(NS◦(AU)/AU))

The existence of all these objects calls for very little comment. The
groups G,L,A,U, T are all part of our basic setup for Proposition 1.2 of
Chapter VII. For the choice of S, one first selects S◦, by applying Propo-
sition 5.3 of Chapter II to the K-group U2(C(A))T , and one then extends
this to a suitable group S. The assumption S◦ > AU is taken with a view
toward an eventual contradiction, which will prove the proposition. Evi-
dently Û , V , and W will all be of use in determining the structure of S,
and indeed the main point will be that S◦ = W , and also that the struc-
ture of W can be determined with considerable precision (with the former
statement a consequence of the latter). Evidently W is intended to be the
smallest interesting subgroup of S going beyond AU . There are a number
of elementary relationships among the 2-groups which should be borne in
mind, and treated as part of the basic setup; these are listed in the following
lemma.

Lemma 1.4. With notation and hypotheses as formulated above, we have
the following relationships.

(i) Û◦ = U .

(ii) V = A× Û .
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(iii) V ◦ = AU .
(iv) V is elementary abelian.
(v) W > AU

Proof.
(i) U is a Sylow◦ 2-subgroup of C(L), and is certainly contained in Û .
(ii) S centralizes A, so V acts on L like a subgroup of A; this does not

require connectedness as L has no graph automorphisms. As A ≤ V we find
V = A× CV (L) = A× Û .

(iii) Since V = A × Û , V ◦ = AU . (This brings V into a relationship
with W as well.)

(iv) With ϕ(V ) denoting the ordinary Frattini subgroup of V , the pull-
back to V of {v2 : v ∈ V/V ′}, our claim can be expressed by the equation

ϕ(V ) = 1. We have ϕ(V ) = ϕ(Û). If this is nontrivial, then NS(V ) ≤
NS(ϕ(V )) = NS(ϕ(Û)) ≤ NS(L), since L, being a standard component, is a

quasisimple component of C(ϕ(Û)), and S normalizes A. Thus NS(V ) = V
by definition of V . Then S = V , and S◦ = AU , a contradiction to our
current hypotheses.

(v) This is simply the normalizer condition; but it is also our point of
departure. □

We can now analyze W satisfactorily.

Lemma 1.5. With our standing hypotheses and notation, and with v ∈
V \A, we have the following.

(i) CS(v) = V .
(ii) [W, v] = A.
(iii) W/A is elementary abelian.
(iv) Z(W ) = A.

Proof. First, as far as v is concerned, we may write v = au with a ∈ A
and u ∈ Û . Then CS(v) = CS(u) and [W, v] = [W,u], so we may suppose
v = u ∈ U×. We now take up the points individually.

(i). As L is a standard component, it is a quasisimple component of
C◦(u). The group CS(u) permutes these components, and as S normalizes
A it follows that CS(u) normalizes L, that is CS(u) ≤ V . On the other
hand, as V is abelian, we have V ≤ C(u).

(ii). First, [W,u] is nontrivial since CS(u) = V and V ◦ < W . The group
[W,u] is also T -invariant, and in view of the action of T on A it suffices to
show that [W,u] ≤ A. So consider γ = [w, u] with w ∈W . We may suppose
w /∈ V .

Suppose first that γ ∈ V (this holds if u ∈ U , but is not yet clear for

general u ∈ Û). By the definition ofW and Lemma 1.4 of Chapter VII (iii),
we have w2 ∈ V ◦, hence 1 = [w2, u] = γwγ, so w ∈ C(γ). So by the first
point, if γ is not in A then we find w ∈ V , a contradiction. So γ ∈ A in this
case.
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Now we treat the general case. Take u′ ∈ U×. Then [w, u′] ∈ A by the

case just treated. So we find γu
′
= [wu′

, u] = [w, u] = γ since wu′ ∈ wA. So
γ ∈ CS(u

′) = V and we conclude by the former case.
(iii). We claim that w2 ∈ A for w ∈ W . We have w2 ∈ AU and

w ∈ C(w2), so by the first point, if w2 /∈ A we find w ∈ V , and then w2 = 1,
a contradiction.

(iv). Take v ∈ V \ A. Then Z(W ) ≤ CS(v) = V . If Z(W ) > A then
we can take v ∈ Z(W ) \ A and conclude W ≤ CS(v) = V , hence W = AU ,
contradicting our current hypothesis. □

At this point we have adequate control of W . It remains to be seen that
W = S◦, which involves a similar investigation of the next “layer” of S,
leading this time to a contradiction. We set up the following notation.

Notation 1.6.

(i) Ŵ is the inverse image in S of Ω1
◦(Z(NS(W )/W )).

(ii) W1 = [Z(Ŵ mod A) ∩W ]◦.

(iii) V1 = [Z(Ŵ mod A) ∩ V ].

We introduced continuously characteristic subgroups (those invariant
under connected groups of automorphisms) in Definition 10.19 of Chapter I,
and we will again find the notion useful here.

If S◦ > W then Ŵ > W as well, and Ŵ is the “next layer” of S.
While this notation is not particularly attractive, we will show shortly that
Ŵ = W = S◦. Similarly, our interest in V1 and W1 will be short-lived.
Observe that in definingW1 we take a connected component, and in defining
V1 we do not.

Lemma 1.7. With our accumulated hypotheses and notation, we have
V1 > A

Proof. Suppose toward a contradiction that V1 = A. We will aim
to show by a structural analysis that V ◦ is continuously characteristic in
W , hence normal in Ŵ , from which it follows by Lemma 5.1 of Chapter I,
applied in Ŵ/A, that V1 > A (even V1

◦ > A in this case), contradicting our
initial assumption.

We first examine W and W1. As W is normal in Ŵ , applying Lemma
5.1 of Chapter I in Ŵ/A we find that W1 > A.

On the other hand, by assumption V1 = A, so W1 ∩ V = A. Fixing
v ∈ V ◦ \ A, it follows that [W1, v] > 1. Now [W1, v] ≤ W1 ∩ V ◦ = A. As
the group [W1, v] is both nontrivial and T -invariant, we find [W1, v] = A.
As CW1(v) = V ∩W1 = A, we find rk(W1/A) = rk(A). Similarly, examining
[W, v] we find that rk(W/V ◦) = rk(A). It follows that rk(W ) = rk(V ◦W1)
and by connectedness

W = V ◦W1

We claim also that W1 is abelian. We have the sequence

1 → A→W1 →W1/A→ 1
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with T acting on each term. Now T acts on A as the multiplicative group
of a field, and we claim that W1/A is isomorphic to A as a T -module. For
this, simply use any commutation map W1/A → [W1, u] = A with u ∈ U×.
This puts us in a position to apply Proposition 3.8 of Chapter III, which
settles the matter: W1 is abelian.

We now have adequate structural information. We claim that V ◦ is
continuously characteristic inW , which then yields the contradiction alluded
to at the outset.

First, ifW1 is elementary abelian, then sinceW = V ◦W1, all involutions
in W are of the form vw with v ∈ V ◦ and w ∈W1 commuting, which forces
one of the two factors to lie in A. So the involutions of W all lie in V ◦ or
W1, and it follows that V ◦ andW1 are the only maximal elementary abelian
subgroups in W , so that each is continuously characteristic.

Suppose therefore that W1 is not elementary abelian. Now as W has
exponent at most 4, so does W1. Since W1 is abelian, with T acting transi-
tively on the subgroup A. It follows easily that we have W1 homocyclic of
exponent four in this case, with

A = Ω1(W1)

There are again two possibilities, one of which is trivial: if all involutions
of W lie in V , then V ◦ is characteristic in W . So we will suppose that there
is an involution i = vw in W with v ∈ V ◦ and w ∈ W1 \ A. (Then w /∈ V ,
since Ω1(W1) = A.)

The element v may be supposed to lie in U . We will analyze the structure
further, and show that V ◦ is the unique maximal connected elementary
abelian subgroup of W , and again it will be characteristic in W .

We have 1 = (wv)2 and thus wv = w−1. Suppose wv′ is another invo-

lution in wV . Then similarly wv′ = w−1, and [w, vv′] = 1. As w /∈ A we
find vv′ ∈ A. Thus the involutions in the coset wV are those of the form
wvA. Now T acts transitively on W/V ◦ ≃W1/A, so every coset of V ◦ in W
contains a T -conjugate of wv, say (wv)t = wtv. So we see that involutions
in W outside of V are those in W1v, where the element v ∈ U× is fixed.
Consider a commuting pair of such involutions wv and w′v with w,w′ ∈W1.
Then ww′−1 = (wv)(vw′−1) is an involution, hence in A under our current
hypotheses. In short, wv and w′v lie in the same coset of A. It follows that
V ◦ is the unique maximal connected elementary abelian subgroup of W in
this case, and again is continuously characteristic.

We have considered all possibilities, under the hypothesis V1 = A, and
reached a contradiction in all cases. □

We can now settle the structure of S◦.

Lemma 1.8. With our accumulated and hypotheses and notations, we
have S◦ =W . In particular, S◦/A is abelian.
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Proof. We take v1 ∈ V1 \ A, and we make free use of Lemma 1.5 of

Chapter VII. By definition, [Ŵ , v1] ≤ A, and A = [W, v1]. Accordingly we

find Ŵ =W ·CŴ (v1). As CŴ (v1) = V , we find Ŵ =W , and thus S◦ =W .
We saw earlier that W/A is abelian (Lemma 1.5 of Chapter VII). □

1.3. Some structural consequences. It is beginning to seem, for the
moment, that our ambient group G might be SL3. We will now examine
the structure of C◦(A) further, showing that it has a normal (hence unique)
Sylow◦ 2-subgroup S◦; so C◦(A)/O2

◦(C◦(A)) is of degenerate type.
We retain our standing hypotheses and notation, though after the clar-

ifying material of the last section some of the more esoteric features can
be dropped. As always, the main assumption is that we have a standard
component of type SL2 in characteristic two, commuting with a nontriv-
ial 2-unipotent subgroup, and the objects of interest are G, A, U , and S◦,
primarily, along with L, T , C◦(A), and N◦(A).

Lemma 1.9. With notation and hypotheses as fixed in this section, S◦ =
O2

◦(C(A)).

Proof. We let H = U2(C
◦(A)), a K-group, and it suffices to show that

this is solvable.
By Lemma 1.5 of Chapter VII H̄ = H/A has abelian Sylow◦ 2-subgroups,

hence has the form E(H̄)×σ(H̄) where E(H̄) is a product of simple groups
of type SL2.

If L̄1 is a simple component of H̄ of type SL2, where as usual the base
field is algebraically closed of characteristic two, then L̄1 is covered by some
definable perfect group L1 (that is, L′

1 = L1), where L1 ∩A ≤ Z(L1). So by
the theory of central extensions, L1 is a quasisimple algebraic group covering
SL2, which in characteristic two must be SL2 (Lemma 2.23 of Chapter II).

Accordingly the decomposition of H̄ lifts to a decomposition of H as
E(H) × H0 with E(H) a product of groups of type SL2 in characteristic
two, and H0 a 2-group, and we can decompose the Sylow◦ 2-subgroup S◦ in
the same way, as a product of elementary abelian two-groups with H0.

However, this is incompatible with the known structure of S◦. The center
of S◦ is A, which is central in H, whereas the factor L1 would contribute a
noncentral subgroup of H to the center of S◦. □

The next lemma is very general.

Lemma 1.10. Let G be a simple L∗-group of finite Morley rank and of
even type, containing a definable subgroup of the form A⋊ T isomorphic to
a Borel subgroup of SL2 over an algebraically closed field of characteristic
two, split as usual with A a Sylow 2-subgroup and T a maximal torus.

Then N◦(A) = C◦(A) · T .

Proof. We work with H = N◦(A) and H̄ = H/C(A), the latter acting
faithfully on A.
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The first point is that H̄ is of degenerate type, which is seen as follows.
We apply Proposition 5.3 of Chapter II to H̄, or rather to U2(H̄) ·T , and we
conclude that there is a Sylow◦ 2-subgroup S̄ of H̄ which is invariant under
the action of T . Then CA(S̄) is nontrivial (Lemma 5.1 of Chapter I), and
T -invariant. In view of our assumptions, CA(S̄) = A, that is S̄ centralizes
A, and is therefore trivial. So H̄ is of degenerate type.

Now we can make an application of a very special case of Proposition 5.2
of Chapter IV. The image T̄ of T in H̄ acts as a group of pseudoreflections on
A, although in this case CA(T ) = 1 and A = [T,A]. In this case, Proposition

5.2 of Chapter IV implies that the normal closure T̂ of T̄ in H̄ is abelian.
Again, as T̄ acts regularly on A it follows that it is self-centralizing, and
thus T̄ is normal in H̄.

On the other hand, in view of its action on A, T is a good torus (Lemma
11.7 of Chapter I, and hence is central in H̄. As T̄ is self-centralizing, finally
T̄ = H̄, and this is our claim. □

Lemma 1.11. With notation and hypotheses as fixed in this section, S◦

is a Sylow◦ 2-subgroup of G.

Proof. As usual, it suffices to show that for any 2-unipotent subgroup
S1 containing S◦ as a normal subgroup, we have S◦ = S1.

As S◦ = W , we have A = Z(S◦) and hence N◦(S◦) ≤ N◦(A). At the
same time, by Lemma 1.10 of Chapter VII we have N◦(A) = C◦(A)T where
T is our maximal torus of L normalizing A. Thus S◦ is a Sylow◦ 2-subgroup
of N◦(A). □

We aim next to show that C(a) = C(A) for a ∈ A×, but we will break
this down into several steps, beginning with an observation on the structure
of S◦.

Lemma 1.12. Let E be a definable elementary abelian subgroup of S◦.
Then rk(E) ≤ 2 rk(A).

Proof. We use the fact that S◦ = W and the detailed information
about the structure of W afforded by Lemma 1.5 of Chapter VII. So in the
present proof we write W rather than S◦ when using the relevant structural
information. We may take E to be connected.

Fix u ∈ U×. Then CS
◦(u) = AU We have a map E → A induced by

commutation with u. If rk(CE(u)) ≤ rk(A) we have our estimate, and if
rk(CE(u)) > rk(A) then CE

◦(u) must meet U nontrivially.
So now take u ∈ E∩U×. Then E ≤ CS

◦(u) = AU . Now fix w ∈W \AU .
Again, we have a commutation map E → A induced by commutation with
w, and since E ≤ AU we have CE(w) ≤ A, so again rk(CE(w)) ≤ rk(A) and
our claim again follows. □

Lemma 1.13. With notation and hypotheses as fixed in this section, and
with a ∈ A×, we have U2(C(a)) = U2(C(A)).



1. SYLOW STRUCTURE 393

Proof. Let H = U2(C(a)). If A ≤ Z(H) then H ≤ C(A) and our claim
follows. So we suppose toward a contradiction that A0 = A ∩ Z(H) < A.
Then we claim that

(∗) A0 is finite.

Let Ť = NT (H). Evidently Ť acts on A0, and we claim that the action
is transitive on A×

0 . We have a ∈ A0; if b ∈ A×
0 we then have b = at with

t ∈ T , and then H ≤ C◦(b) = C◦(at) = Ht, and by comparison of rank
we have H = Ht, and t ∈ Ť . So the pair (A0, Ť ) represents the additive
group of a field Ǩ with the multiplicative group acting on it; the pair (A, T )
represents a similar setup, with respect to a field K; and the embedding of
the pair (A0, Ť ) into (A, T ) gives an embedding of the field Ǩ as a subfield
of K, all definable. So Ǩ is finite Lemma 4.3 of Chapter I, and hence A0 is
finite.

Let B be a Borel subgroup of H containing S◦. Then B splits as S◦⋊T0
with T0 a definable connected 2⊥-group by Proposition 9.8 of Chapter I. As
A = Z(W ) = Z(S◦), we have T0 ≤ N◦(A). Now N◦(A) = C◦(A)⋊ T (with
T ≤ L as usual) (Lemma 1.10 of Chapter VII). As T acts regularly on A×

it follows that T0 ≤ C(A). As S◦ ≤ C(A), we have B ≤ C(A).
Now we will use the structure of the connected K-group H as given

by Proposition 4.8 of Chapter II. So H̄ = H/σ(H) is a product of simple
algebraic groups, and T0 covers a maximal torus in H̄. As T0 commutes with
A, this forces A into σ(H) (Fact 1.8 of Chapter II). But σ◦(H) ≤ B ≤ C(A),
so A ≤ Z(σ◦(H)).

Now we take an element w ∈ H representing an involution of H/σ(H)
which carries the image of B to an “opposite” Borel subgroup. Then
H = ⟨B,Bw⟩. Therefore A ∩ Aw ≤ Z(H), so by (∗) A ∩ Aw is finite,
and rk(AAw) = 2 rk(A). We observe then that AAw is a maximal connected
elementary abelian subgroup of S◦, by the previous lemma.

So now AAw = Ω1
◦(Z(σ◦(H))) ◁ H. Now the maximal torus of the

Borel subgroup B centralizes AAw ◁ H, and therefore the conjugates of T0
in H centralize this group; but taking into account the structure of H, the
normal closure of T0 in H covers H modulo σ◦(H). Thus AAw ≤ Z(H) and
we have a contradiction. □

Now we may “promote” this result to a fuller form.

Lemma 1.14. With notation and hypotheses as fixed in this section, and
with a ∈ A×, we have C(a) = C(A).

Proof. We claim first that

A = O2
◦(Z(U2(C

◦(a))))

The previous lemma implies that A ≤ Z(U2(C
◦(a))). In the opposite direc-

tion, O2(Z(U2(C
◦(a)))) ≤ Z(S◦) = A. So the claim holds, and it follows

that C(a) ≤ N(A).
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Consider H = N(A) and H̄ = N(A)/C(A). Then H̄◦ = T̄ by Lemma
1.10 of Chapter VII. Now H̄ acts naturally on A and on T̄ , with both actions
induced by conjugation in H and hence compatible with the action of T on
A. It follows easily that H̄ induces a finite group of field automorphisms
on the field K associated with the pair (A, T ). By Lemma 4.5 of Chapter
I, these automorphisms are trivial, or in other words H̄ commutes with T̄ ,
and as T acts transitively on A× we find that H̄ = T̄ , N(A) = C(A)⋊ T .

So C(a) ≤ N(A) = C(A) ⋊ T , and as T acts regularly on A× we find
C(a) ≤ C(A), as claimed. □

2. Fusion analysis

We enter the second, fusion-oriented, stage in the proof of Proposition
1.2 of Chapter VII, always under the contradictory hypothesis that AU is
not a Sylow◦ 2-subgroup of C(A).

2.1. The setup. In the previous section, assuming the failure of this
proposition, we gathered a considerable amount of structural information,
notably concerning the structure of a Sylow◦ 2-subgroup S◦ of CG(A). In
the present section, we pursue this analysis, focussing on fusion (conjugacy
of involutions) in G, and as a result we will reach a contradiction via the
Thompson rank formula in the next section. This will prove Proposition
1.2 of Chapter VII, and will also prove Theorem 1.1 of Chapter VIII, which
has previously been reduced to a configuration directly contradicting this
proposition.

The relevant notation and facts, taken over from the previous section,
are as follows.

Notation 2.1.

(i) G is a simple L∗-group of finite Morley rank and of even type.
(ii) S◦ is a Sylow◦ 2-subgroup of G.
(iii) A = Z(S◦) is an elementary abelian 2-group.
(iv) S◦/A is elementary abelian.
(v) U ≤ S is a unipotent, elementary abelian 2-group.
(vi) For u ∈ U×, we have CS◦(u) = AU and [u, S◦] = A.
(vii) L is a standard component of G of type SL2 over an algebraically

closed field of characteristic two, and [U,L] = 1.
(viii) A is a Sylow 2-subgroup of L, and T is a maximal torus of L nor-

malizing A (and acting regularly on A×).
(ix) N◦(A) = C◦(A)⋊ T .
(x) C(a) = C(A) for a ∈ A×

(xi) S◦ ◁ C◦(A), so U2(C
◦(A)) = S◦.

As we are entering upon a very detailed examination of this situation,
terminating at a contradiction, we will keep these hypotheses in force to the
end of the section, without further mention.

To this we add the following notation, with regard to involutions.
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Notation 2.2.

(i) Ia is the set of involutions in G conjugate to an involution in A.
(ii) Iu is the set of involutions in G conjugate to an involution in U .

We observe that Ia is a single conjugacy class of involutions in G, and
that the structure of Iu is considerably less clear.

Lemma 2.3.

(i) Ia ∩ Iu = ∅.
(ii) Iu contains AU \A.

Proof.
1. For a ∈ A×, we have U2(C(a)) = S◦, while for u ∈ U× we have

L ≤ U2(C(u)).

2. For u ∈ U× we have [u, S◦] = A and thus uA ⊆ uS
◦
. □

This is our point of departure: we have some involutions in G known
not to be conjugate.

2.2. C(u). We carry out some further structural analysis, now aimed at
understanding conjugacy classes of involutions. We begin with involutions
in U .

Lemma 2.4. For u ∈ U× we have U2(C
◦(u)) = LU , and C◦(u) = C◦(U).

Proof. Set H = C◦(u). As L is a standard component, we have L ◁ H,
hence H = L × CH(L). We have CH(L) ≤ C◦(A) and hence U2(CH(L)) ≤
CH(L)∩U2(C

◦(A)) = CH(L)∩S◦ ≤ CS◦(u) = AU . So U2(CH(L)) = U and
U2(C

◦(u)) = LU .
Now any element t ∈ CH(L) centralizes A and hence normalizes S◦ =

U2(C(A)). We examine the action of t on S◦, recalling that t centralizes
u ∈ U×.

For w ∈ S◦ we have [u,w] ∈ A and [u,w] = [u,w]t = [u,wt], thus
[w, t] ∈ CS◦(u) = AU . Hence for all u′ ∈ U we have [u′, w] = [u′, wt], and

since [u′, w] = [u′, w]t = [u′t, wt] = [u′t, w] we find [u′, t] ∈ C(w) as well;
taking w ∈ S◦ \ AU we find [U, t] ≤ A. It follows that t acts trivially on
AU/A and on A.

Now CH(L)/U2(CH(L)) has degenerate type and therefore contains no
involutions by Theorem 4.1 of Chapter IV. Furthermore U2(CH(L)) ≤
C(AU) so the quotient CH(L)/U2(CH(L)) acts on AU . By the above this
group acts trivially on the factors of the chain 1 < A < AU , so by Proposi-
tion 10.7 of Chapter I it centralizes U . That is, CH(L) ≤ C(U).

Thus H = LCH(L) ≤ C(U). □

It follows from this that the rank of each conjugacy class of involutions
contained in Iu is constant.



396 VII. STANDARD COMPONENTS OF TYPE SL2

2.3. Failure of strong closure. Our analysis occasionally bifurcates,
depending on whether A is strongly closed in S◦ or not. We have to prepare
some extra information for use in the case in which strong closure fails,
before returning to our general line of analysis. Our aim in this case is to
show that all involutions fall into either Ia or Iu.

The next lemma tells us what happens when A is not strongly closed in
S◦: the hypothesis of the lemma holds if A is not strongly closed, and the
converse is also valid, in view of point (i) of the lemma.

Lemma 2.5. Suppose that A1 be a conjugate of A in G, with A1 ̸= A
and A1 ∩ S◦ > 1. Set B = ⟨Ag : g ∈ G, [A,Ag] = 1⟩.

Then the following hold.

(i) A1 ≤ S◦

(ii) A1 ∩A = 1
(iii) S◦ = B ⋊ U
(iv) I(S◦) = (AU)× ∪B×

(v) B = A×A1 = ⟨AN(B)⟩
(vi) NG(A) ≤ N(B)
(vii) AU and B are normal in N(S◦).

Proof.
(i) Fix a1 ∈ (A1 ∩ S◦)×. Then A ≤ C◦(a1) = C◦(A1), so A1 ≤

U2(C
◦(A)) = S◦.

(ii) If a ∈ (A ∩ A1)
× then C(A) = C(a) = C(A1) and in particular

A1 ≤ Z(S◦) = A, and A1 = A.
(iii) We will prove this with B0 = AA1 in place of B, leaving the

verification that B0 = B until the proof of point (v). The group B0

is elementary abelian of rank 2 rk(A), in view of (ii). If B0 ∩ U > 1
then taking u ∈ (B0 ∩ U)× we have B0 ≤ CS◦(u) = AU . In particular

A×
1 ⊆ (AU \A) ⊆ Iu, contradicting the fact that Iu∩ Ia = ∅. So B0∩U = 1.
We remark that B0 ◁ S

◦ since A ≤ B0.
Now rk(S◦/AU) = rk(A), as follows easily from our assumptions on S◦.

So by rank considerations, S = UB0.
(iv) We consider an involution i = ub with u ∈ U and b ∈ B0. As u and b

are involutions, it follows that they commute, and then by our assumptions
either u or b is in A.

(v) It follows easily from the preceding point that AU and B0 are the
unique maximal elementary abelian subgroups of S◦. If A2 ̸= A is a conju-
gate of A commuting with A, then A2 ≤ U2(C

◦(A)) = S◦, and A2 can play
the role of A1; but then AA2 ̸= AU , so AA2 = B0. Thus A2 ≤ B0, and
B = B0.

Evidently ⟨AN(B)⟩ ≤ B. Now suppose A1 = Ag. Then Bg is generated
by A1 and any conjugate of A1 which commutes with A1; one such conjugate
is A, so Bg = A1A = B.

(vi) This point is clear from the definition of B.
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(vii) We have seen that AU and B are the two maximal elementary
abelian subgroups of S◦, and that they are not conjugate in G. □

Lemma 2.6. Suppose that A is not strongly closed in S◦. Set

B = ⟨Ag : g ∈ G, [A,Ag] = 1⟩

Then the following hold.

(i) N(B) acts transitively on B×.
(ii) rk(U) = rk(A).

Proof. We work with the group H = N(B) and its quotient H̄ =
H/CH(B) acting faithfully on B. We claim first

(1) B is irreducible under the action of H̄.

We consider B1 ≤ B H-irreducible, and in particular normal in S◦. Thus
B1 meets A nontrivially. Furthermore T ≤ H, so in view of the action of T
on A, we have A ≤ B1. But then B = ⟨AH⟩ ≤ B1, so B1 = B. This proves
(1).

Now by the irreducibility and the faithfulness of the action, we find
O2(H̄) = 1. In particular by Propositions 5.10 of Chapter II and 5.13 of
Chapter II, we find U2(H̄) = E(U2(H̄)) is a product of algebraic groups of
type SL2 in characteristic two. Let L̄H = U2(H̄); then H̄ = L̄HCH̄(L̄H) in
view of Fact 2.25 of Chapter II.

Let H̄1 = CH̄(L̄H). We have Ū ≤ L̄H and T̄ acts on L̄H centralizing
Ū , which is a Sylow◦ 2-subgroup, hence T̄ belongs to H̄1. Now H̄1 acts on
CB(Ū) = A, with T̄ acting transitively on A×. Applying Lemma 1.10 of
Chapter VII we find that N◦(A) = C◦(A) · T and hence H̄1 = CH̄1

(A) · T .
Now CH̄1

(A) is normalized by CH̄(L̄H) and by L̄H , hence by H̄, and thus
CB(CH̄1

(A)) is H-invariant; since this group contains A it is nontrivial,
hence equal to B, or in other words, by faithfulness, CH̄1

(A) = 1. Thus

H̄1 = T̄ and H̄ = L̄H × T̄ .
We can derive a field K from the action of T̄ on B with respect to which

the action of H̄ is linear, by Proposition 4.11 of Chapter I. Furthermore, in
view of the action of T̄ on A, T is the full multiplicative group of the field,
bearing in mind Lemma 4.3 of Chapter I, and thus A is 1-dimensional. On
the other hand rk(B) = 2 rk(A), so B is 2-dimensional.

Let L0 be a quasisimple component of E(H̄) (we drop the bars now, as
we are not much concerned with the relation to G). As B is 2-dimensional,
L0 is a copy of SL2(K1) contained in GL2(K2) whereK1,K2 are algebraically
closed fields of characteristic two. So L0 ≤ SL2(K2) (the commutator sub-
group) and by rank considerations L0 = SL2(K2). That is, we have now
identified the action of L0 on B. So we see that H̄ acts transitively on B.
Furthermore, U is a Sylow 2-subgroup of L0 and thus has the same rank as
the field K, which is rk(A). All claims are verified. □

Lemma 2.7. If A is not strongly closed in S◦, then we have the following.
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(i) I(G) = Iu ∪ Ia.
(ii) S◦ is a Sylow 2-subgroup of G

Proof.
(i) We will reduce this point to the next.
By Lemma 2.5 of Chapter VII, we have the group

B = ⟨Ag : g ∈ G, [A,Ag] = 1⟩

to work with, and I(S◦) = I(AU)∪I(B). By the previous lemma I(B) ⊆ Ia,
and we have already seen that I(AU) \ I(A) ⊆ Iu (Lemma 2.3 of Chapter
VII). So I(S◦) ⊆ Iu ∪ Ia. Accordingly, once we know that S◦ is a Sylow
2-subgroup of G we will be done.

(ii) Our point of departure is an element s ∈ NG(S
◦) satisfying s2 ∈ S◦.

We must show that s ∈ S◦. Again, we make use of the subgroup

B = ⟨Ag : g ∈ G, [A,Ag] = 1⟩

Since CA(s) > 1 we have s ∈ C(CA(s)) = C(A). Now s normalizes AU .
In particular one can find u ∈ U× with [s, u] ∈ A. But [B, u] = A and thus
we may replace s by some element sb with b ∈ B so as to obtain [s, u] = 1.
The standard component L is a simple component of C◦(u), and these are
permuted by s, while s centralizes A. Hence s normalizes L and acts on it
like an element of A. We may therefore make a second adjustment of s by
an element of A, and now we have [s, L] = 1. So s2 ∈ CS◦(L) = U .

As s also acts on B,. there is b ∈ B \ A such that [s, b] ∈ A. Then
1 = [s, b]2 = [s2, b], and as s2 ∈ U and b /∈ A we find s2 = 1.

Now rk(U) = rk(A), and it follows easily that [U, b] = A. Thus there is
u ∈ U with [u, b] = [s, b], and adjusting s by u we find [s, b] = 1. Now if we
have s = 1 after all these adjustments, then the original element was in S◦.
So assume that s ̸= 1.

Since L ≤ C◦(s) and s is an involution, while L is a standard component,
we have L ◁ C◦(s). Furthermore b permutes the components of C◦(s). As b
centralizes A, it normalizes L, and hence also normalizes C◦(L) ∩ S◦ = U .
But this is not the case, and we have a contradiction. □

2.4. The Thompson map. We are going to define a partial function
Ia × Iu → Iu, and show that it is generically defined (that is, defined for
a generic element of the domain). Then by comparing the ranks of the
domain, range, and fibers of this map, we will get useful information, first
numerical and then structural, and finally derive a contradiction from the
present configuration.

The starting point is Lemma 2.20 of Chapter I: for any pair of involu-
tions i, j in G which are not conjugate, there is an involution k ∈ d(⟨ij⟩)
commuting with both. This applies in particular when i ∈ Ia and j ∈ Iu,
and our first point will be that this gives rise to a definable function from
Ia × Iu into I(G); our second point will be that this function has an image
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which lies, generically, in Iu. With that in hand, we will be ready to un-
dertake our actual computations; these computations aim at getting some
sharp (and ultimately, unreasonable) estimate for the rank of G.

Lemma 2.8. Let G be a group of finite Morley rank of even type. Then
the following hold.

(i) For any pair i, j of involutions in G, there is at most one involution
in d(⟨ij⟩).

(ii) The function with domain all pairs of involutions (i, j) in G, for
which d(⟨ij⟩) contains an involution k, given by taking (i, j) to that
involution k, is a definable function.

Proof.
(i) Let a = ij. The group d(a) has the form D⊕C with D divisible and

C finite cyclic (Lemma 2.16 of Chapter I). In particular D is a 2⊥-group
and our claim follows.

(ii) Definability issues are handled by referring to the definable function

d̂ introduced in Lemma 4.2 of Chapter IV, which for these purposes has the
same properties as the function d. □

Notation 2.9. We use the preceding lemma to define a function θ, called
the Thompson map:

θ : Ia × Iu → I(G)

Here we use Lemma 2.20 of Chapter I to guarantee the existence of the
desired involution.

Now we claim that for generic elements of Ia×Iu we will have θ(i, j) ∈ Iu.
At this point we divide into cases, depending on whether or not A is strongly
closed in S◦.

Lemma 2.10. If A is strongly closed in S◦, then the image of the Thomp-
son map θ is contained in Iu.

Proof. This means that we consider an involution i (in the image)
commuting with involutions a and u in Ia and Iu respectively, where we
may suppose that u is actually in U . We claim then that i is in Iu.

By Lemma 2.4 of Chapter VII we have U2(C(u)) = LU and it follows
that i, which acts on C(u), normalizes L. Now i acts as an inner automor-
phism on L and hence centralizes a conjugate of A; we may suppose this
conjugate to be A itself. At the same time we have a lying in a conjugate
A1 of A, and i ∈ C(a) = C(A1).

Suppose first that A and A1 generate a 2-subgroup Q of C◦(i). Then by
strong closure in Q (Lemma 5.15 of Chapter II) these two groups coincide.
But then ua is an involution and i ∈ d(⟨ua⟩) = ⟨ua⟩, i = ua. As u ̸= 1, this
belongs to Iu (Lemma 2.3 of Chapter VII).

So we suppose now that A and A1 do not generate a 2-subgroup of
C◦(i). In particular, neither of these groups is normal in C◦(i) and hence by
Lemma 6.6 of Chapter II we get subgroups L1 and L2 normal in C◦(i), of
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type SL2, associated with A1 and A respectively. That is, L1 is normalized
by A1, and A1∩L1 is a Sylow 2-subgroup of L1, while L2 and A are similarly
related. As A normalizes L2, and centralizes the Sylow 2-subgroup A ∩ L2,
the group A acts on L2 like A ∩ L2 and therefore

A = L2 × CA(L2)

On the other hand C(a) = C(A) for a ∈ A×, so if CA(L2) > 1 we take
a ∈ CA(L2)

× and conclude (A ∩ L2) ≤ Z(L2), which is nonsense. It follows
that CA(L2) = 1 and thus A ≤ L2. Similarly A1 ≤ L1. As A and A1 do not
commute, we find L1 = L2 = ⟨A,A1⟩.

Now u ∈ C(i) and u centralizes A, hence normalizes L1. Also a ∈ L1

and ua ∈ ⟨u⟩L1, so i = θ(a, u) ∈ ⟨u⟩L1. Since L1 centralizes i, we cannot
have i ∈ L1; so i is in the coset uL1.

Now as u centralizes A and acts on L1, it acts like an element a′ of A.
Thus iua′ ∈ L1 ∩ C(L1) = 1, and i ∈ uA. So i ∈ AU \A ⊆ Iu. □

We prepared some additional information in the preceding subsection to
deal with the case in which A is not strongly closed in S◦. We will however
need one estimate before proceeding to this case.

Lemma 2.11. With f = rk(A) and u = rk(U), we have rk(Iu) ≥ 4f + u.

Proof. We consider another partial Thompson map

τ : Iu × Iu → Iu

defined for pairs of involutions u1, u2 ∈ Iu for which the group d(⟨u1u2⟩)
contains an element of Iu. This is a definable map, and the element in
question is unique when it exists.

Let u1, u2 ∈ U× be arbitrary and consider the set

X = {(a, b) ∈ I(L)× I(L) : d(⟨ab⟩) is a 2⊥-subgroup of L}
The elements of L are either semisimple 2⊥-elements lying in tori, or

involutions. The set I(L) × I(L) has rank 4f , and a generic pair (a, b) ∈
I(L) × I(L) belongs to the set X. Accordingly, with u ∈ U× fixed, the set
of pairs (u1a, u2b) subject to

u1, u2 ∈ U×;u1u2 = u; (a, b) ∈ X

has rank u + 4f . We claim that all such pairs belong to the fiber τ−1(u).
Certainly ua, ub ∈ Iu, as a, b are conjugate to elements of A in L and AU \
A ⊆ Iu. Furthermore u1a · u2b = u(ab) and thus d(⟨(u1a)(u2b)⟩) ≤ ⟨u⟩ ×
d(⟨(ab)⟩). As (uab)2 = (ab)2 ∈ d(⟨(ab)⟩) and (uab) /∈ d(⟨(ab)⟩), there is an
involution in d(⟨(uab)⟩); but d(⟨(uab)⟩) ≤ ⟨u⟩×d(⟨(ab)⟩) and this involution
can only be u. So τ(u1a, u2b) = u. In other words, above every point of U×,
and hence above every point of Iu, the fiber of τ has rank at least 4f + u.
At the same time, since τ carries a subset of Iu×Iu to Iu, in view of Lemma
2.1 of Chapter I (Fubini property) we must have some fibers of rank at most
rk(Iu) (which bounds the difference between the rank of the domain and the
rank of the image), giving the stated inequality rk(Iu) ≥ 4f + u. □
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Lemma 2.12. Suppose that A is not strongly closed in S◦. Then the
Thompson map

θ : Ia × Iu → I(G)

maps generically into Iu; that is, the image of a generic pair in Ia × Iu is
in Iu.

Proof. The main point is the exhaustive analysis of involutions in G
in this case: I(G) = Ia ∪ Iu. So it suffices to show that the set of pairs
(a, u) ∈ Ia × Iu with θ(a, u) ∈ Ia is not generic in Ia × Iu.

Now Ia is a single conjugacy class in G, so for i ∈ Ia, the rank of the
fiber θ−1(i) ⊆ Ia × Iu is independent of the choice of i. So if θ−1(Ia) is
generic in Ia × Iu, then the rank of the fiber is the difference of the rank of
domain and image, namely rk(Iu).

But we can in fact compute this fiber rank. We fix a ∈ Ia, and we may
suppose a ∈ A×. We consider a pair (a1, u) in Ia × Iu with θ(a1, u) = a. In
particular, a commutes with both a1 and u.

Now we have the subgroup B = ⟨Ag : g ∈ G, [A,Ag] = 1⟩ which we have
analyzed. The element a1 ∈ C(a) = C(A), and a1 belongs to a conjugate
A1 of A, with A ≤ C(a1) = C(A1); so a1 ∈ B. Similarly u ∈ C(a) = C(A).
Now S◦ = U2(C(A)), and by Lemma 2.7 of Chapter VII, S◦ is a full Sylow
2-subgroup of G. Since S◦ ◁ C(A), it follows that u ∈ S◦. Furthermore,
we have determined that I(S◦) = I(B) ∪ I(AU) and I(B) ⊆ Ia, hence
u ∈ AU \A. Then (a1u)

2 = [a1, u] ∈ A is an involution, and thus a = [a1, u];
conversely, given such elements a1 and u we will have θ(a1, u) = a, and thus
the fiber rank is determined: rk(θ−1(a)) = rk(B)+rk(AU)− rk(A) = 2f+u
(or 3f , since in fact u = f in this case).

Now the fiber rank for a map from a generic subset of Ia×Iu to Ia (with
constant fiber rank) should be rk(Iu) ≥ 4f + u, so we have a contradiction.

□

Notation 2.13. The Thompson map θ0 : Ia× Iu → Iu is the restriction
of θ : Ia × Iu → I(G) to the generic subset θ−1(Iu) ⊆ Ia × Iu

2.5. The rank of G. With the Thompson map θ0 in hand, we can
carry out our computation of the rank of G.

Lemma 2.14. rk(G) = rk(C(A)) + 4f

Proof. We claim that the rank of the fibers of the Thompson map θ0
is constant, and equal to 4f . As rk(Ia × Iu)− rk(Iu) = rk(Ia), we then find
4f = rk(Ia) = rk(G)− rk(C(A)).

We compute the ranks of these fibers much as we have just done above
points of Ia. We fix u ∈ U× and consider r = rk(θ−1(u)).

On one hand, for a, b ∈ I(L), we will have, generically, that d(⟨(ab)⟩)
is a 2⊥-group, as in our previous analysis, and in such cases we will have
θ(a, ub) = u, much as before. So this gives us a lower bound for the size of
the fiber rank: r ≥ 2 rk(I(L)) = 4f .
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In the reverse direction, consider any pair (a, v) ∈ Ia× Iu with θ(a, v) =
u. Here a ∈ A1 for some conjugate of A and u ∈ C(a) = C(A1). Hence
a ∈ U2(C

◦(u)) = LU by Lemma 2.4 of Chapter VII. Since a ∈ Ia it follows
that a ∈ L. On the other hand as v ∈ C(u) it follows that v normalizes
U2(C

◦(u)) and in particular v normalizes L. Hence d(⟨av⟩) ≤ L⟨v⟩ and as
θ(a, v) = u we have u ∈ L⟨v⟩\L = Lv, v ∈ Lu and thus v = ub with b ∈ I(L)
(since u commutes with L). So r ≤ 4f , and finally r = 4f as claimed. □

We will see later that rk(C(A)) ≤ 4f , which gives 8f as an upper bound
for rk(G), a possibility which is again suggestive of SL3.

3. Final analysis

3.1. On C◦(A). With the rank of G in hand we may return to our
structural analysis; a contradiction is not far off.

Lemma 3.1.

(1) ⟨S◦, L⟩ = G
(2) C(S◦) = A
(3) C◦(AU) = AU
(4) C◦(U) = LU

Proof.
Ad 1. We set H = U2(⟨S◦, L⟩), and we suppose H < G. Then H is a

K-group, and by Proposition 5.23 of Chapter II we have E(CH(U)) ◁ E(H).
But E(CH(U)) = L by Lemma 2.4 of Chapter VII, so L ◁ E(H). As H is
connected, it follows that L is normal in H, and hence S◦ normalizes L,
which is false.

Ad 2. We have C(S◦) ≤ C(U) = L×C(LU). So C(S◦) ≤ CL×C(LU)(A) =
A×C(LU), and hence C(S◦) = A×CS◦(LU). But the intersection C(S◦)∩
C(LU) centralizes ⟨S◦, L⟩ = G, so C(S◦) = A.

Ad 3. We have C(AU) ≤ N(A) ≤ N(S◦) (Lemma 1.9 of Chapter VII).
For g ∈ C(AU) and w ∈ S◦, u ∈ U× we have [u,w] = [u,w]g = [u,wg] and
hence [w, g] ∈ CS◦(u) = AU . Thus g acts trivially on S◦/AU as well as on
AU . On the other hand AU is a Sylow◦ 2-subgroup of C(AU) and thus for
a Borel subgroup B of C(AU)/AU , B is a 2⊥ group and hence acts trivially
on S◦ by Proposition 10.7 of Chapter I. But C(S◦) = A so B is trivial and
C(AU)/AU is finite.

Ad 4. C◦(U) = LCC(U)
◦(L) and CC(U)

◦(L) ≤ C◦(AU) = AU , whence
the claim. □

Lemma 3.2. C◦(A) = S◦ ⋊ T1 for some torus T1, where T1 acts freely
on U .

Proof. We consider the groups H = N◦(A) and H̄ = N◦(A)/S◦. Since
S◦ acts trivially on both S◦/A and on A, and N◦(A) normalizes S◦, the
group H̄ has a natural action on each of these groups. Our claim is mainly
concerned with the structure of CH̄(A).
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Note that H̄ is of degenerate type.

Let W̃ = S◦/A. We claim that CH̄(W̃ ) = 1. For this, we will compute

in H. Suppose h ∈ N◦(A) acts trivially on W̃ . Then for w ∈ S◦ we have

(w2)h = w2 and hence h acts trivially on A as well. Now CH̄(W̃ ) is a

2⊥-group, hence 2-divisible, and acts trivially on A and on W̃ , and thus
by Proposition 10.7 of Chapter I this group acts trivially on S◦ itself. But

C(S◦) = A and thus CH̄(W̃ ) = 1.

We consider a torus T in L normalizing A. We claim that T̄ acts on W̃
as a pseudoreflection subgroup.

The T̄ -module W̃/Ũ is isomorphic to A via any commutation map with

an element of U×. In particular W̃ = Ũ + [t̄, W̃ ] for any t ∈ T , and it

follows from this that [T̄ , W̃ ] = [t̄, W̃ ] as well. Now by rank considerations

U ∩ [t̄, W̃ ] must be finite. We must however consider the possibility that

U0 = U ∩ [T̄ , W̃ ] is a finite group centralized by T . But [T̄ , W̃ ] is connected,
and by Theorem 4.1 of Chapter III the sequence

1 → U0 → [T̄ , W̃ ] → A→ 1

(or one may prefer to write “0” for “1” here) splits definably. Thus U0 = 1.

So W̃ = Ũ ⊕ [T, W̃ ]. As U ∩ A = 1 and A ≤ [T, S◦] we see that S◦ =
[T, S◦]⋊ U .

Returning to W̃ , we have seen that T̄ acts as a pseudoreflection sub-
group. We will show that T̄ is central in H̄. We may consider the normal
closure T̂ of T̄ in H̄. As this is a degenerate type group, it follows by Propo-
sition 5.2 of Chapter IV that this normal closure is abelian, after factoring

out the annihilator of W̃ , which is a finite and hence central subgroup. It
follows that T̂ is itself abelian, being connected. Furthermore, in view of

its almost faithful action on W̃ , T̂ is a good torus; being normal in H, it is
central in H. In particular T̄ is central in H̄ (so, in fact, T̂ = T̄ ).

Now consider the group B = [T, S◦]. Then T̄ acts on B/A as it acts on
A, and H̄ acts on B/A commuting with T̄ , so H̄ = CH̄(B/A)× T

There are two possibilities for the structure of B. If B \ A contains an
involution b, then the coset bA consists of involutions, and by transitivity of
the action of T it follows thatB is an elementary abelian 2-group. Otherwise,
the elements of B \A are all of order four, and the pair (B, T ) constitutes a
free Suzuki 2-group, hence is abelian homocyclic by Theorem 3.2 of Chapter
III.

In either case, taking b ∈ B \ A, representing b̄ ∈ B/A, we have H̄ =
CH̄(b̄)× T̄ , and by the action of T we have CH̄(b̄) = CH̄(B/A); also CH̄(b̄)
is connected since H is. Now in the homocyclic abelian case, CH(b̄) ≤
CH̄(b2) = CH̄(A) and CH̄(b̄) centralizes B/A and A, hence CH̄(b̄) centralizes
B (apply Proposition 10.7 of Chapter I to a Borel subgroup).

One shows easily that C◦(B) = B using the commutator map

B/A× U → A
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(compare the proof that C◦(AU) = AU). So in the homocyclic abelian case,
exponent four, we find H̄ = T̄ and C◦(A) = S◦, a very strong form of our
claim.

Suppose therefore that B = [T, S◦] is elementary abelian. Again, with
b ∈ B \A, consider the decomposition H̄ = CH̄(b)× T̄ . Let T̄0 = CH̄(b). In
view of the action of T̄ , CB(T̄0) covers B/A; if CB(R̄0) meets A nontrivially
then we fall back into the same situation as in the exponent four case and
our claims hold in a strong form. Consequently we may suppose that A1 =
CB(T̄0) is a complement to A in B.

We claim that T0 acts freely on U . Suppose x ∈ T0 and u ∈ U× with
ux = u. Then taking b ∈ B× we have [u, b]x = [u, b] ∈ A× and thus B meets
A×, a contradiction.

Now for x ∈ T0 we can relate the action of x to the action of T as follows.
Fix u ∈ U×, b ∈ B×. We have [ux, b] = [u, b]x = [u, b]t = [u, bt] for some

unique t ∈ T . Furthermore, for b1 = bt
′ ∈ B×, t ∈ T , we have

[ux, b1] = [ux, bt
′
] = [ux, b]t

′
= [u, bt]t

′
= [u, (bt

′
)t]

and thus the choice of t depends only on x and u.
So if [ux1 , b] = [u, bt1 ] and [ux2 , b] = [u, bt2 ] with x1, x2 ∈ T0 and t1, t2 ∈

T , we find:

[ux1x2 , b] = [ux1 , b]x2 = [u, bt1 ]x2 = [u, bt1t2 ]

Thus T0 is commutative and acts freely on U . By Proposition 11.7 of Chap-
ter I, T0 is a good torus, and rk(T0) ≤ u by the freeness of the action.

Now H̄ = T0T and CH(A) is disjoint from T̄ . So C◦(A)/S◦ is a good
torus of rank at most u, and by Proposition 9.6 of Chapter I C◦(A) splits over
S◦ as stated, with the complement definable by Proposition 9.8 of Chapter
I. Since it is disjoint from T it acts freely on U . □

3.2. A final contradiction. We come to the final step in the proof of
Proposition 1.2 of Chapter VII: we can now kill off our configuration, using
the rank information coming from the Thompson map. Let t1 = rk(T1) in
the notation of the previous lemma.

We have

rk(G) = rk(C(A)) + 4f

Now rk(S◦) = 2f +u (recall the setup in Notation 2.1 of Chapter VII, point
(vi)). So by Lemma 3.2 of Chapter VII we have rk(C(A)) = 2f +u+ t1 and
rk(G) = 6f + t1 + u.

Compare this with the corresponding formula for i ∈ Iu. Then rk(G) =
rk(iG) + rk(C(i)) = rk(iG) + rk(C(U)), so

6f + u+ t1 = 3f + u+ rk(iG)

and 3f + t1 = rk(iG). Now each such conjugacy class iG has rank rk(G) −
rk(C(i)) = rk(G) − rk(C(U)) and thus these ranks are constant. On the
other hand the rank of the set of conjugacy classes in Iu is at most the rank
of the set of conjugacy classes in U with respect to the action of T1, which
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is u− t1, and hence rk(Iu) ≤ rk(iG) + (u− t1). By Lemma 2.11 of Chapter
VII we have the inequality rk(Iu) ≥ 4f + u, so this yields

rk(iG) ≥ 4f + t1

As rk(iG) = 3f + t1, we have a contradiction.
With this contradiction, the proof of Proposition 1.2 of Chapter VII is

complete.

As we see throughout, the group G “wants” to be SL3, but the group
U interferes with this. Much of the time U simply plays the part of a
subgroup of S◦ which should be of rank f , but the assumption that this
group commutes with L leads finally to a contradictory result.

4. Notes

4.1. General remarks. We deal here with groups with a standard compo-

nent of type SL2. Our approach to the classification of groups of even type avoids

extensive work with standard components, except at two extremes: the very small

(SL2, treated in this chapter to the limited degree actually needed later), and the

very large (components of parabolic subgroups).

Our definition of standard component, given in the introduction to the present

chapter, is not a faithful analog of the notion in the finite case, where one would

also assume a further “largeness” condition: L does not commute with any of its

conjugates. This additional condition can in fact be derived from our definition,

but only by using the machinery we develop here. By the time we are in a position

to recover the customary definition we have already completed our analysis. So

we merely emphasize that our terminology is best viewed as a significant deviation

from that customary in the finite case, though eventually reconcilable.

It should be mentioned that the possibility of using the theory of pseudoreflec-

tion groups in our context has no natural analog in finite group theory. This was

one of the original incentives for taking up our project, as it was clear that here,

at least, some dramatic simplification occurs. Other drastic simplifications encoun-

tered later (notably, on the way to the theory of amalgams), were not anticipated

at the outset.

The Thompson rank computations of §2 of Chapter VII are a direct analog of

the so-called Thompson order formula in finite group theory. For such purposes, one

should think of rk(X) as giving the order of magnitude of ln(|X|), where however

the base of the logarithm is in some sense infinite. This can be made more precise

in the case of Chevalley groups over finite fields, but in general is only intended to

be suggestive.

4.2. Strategic shifts. The material in this chapter (and the beginning of

the next) has had a complicated history. In addition to the substantial modifications

involved in passing from aK∗ context to an L∗ context, it has been greatly affected

by shifts in our overall strategy.
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At this point in the analysis, finite simple group theory offers an embarrassment

of riches, and we were initially seduced by it into a number of developments that

turned out not to be essential in our particular setting.

In finite group theory, standard components are an important point of depar-

ture for the recognition of simple groups. We have developed a standard component

theory for groups of finite Morley rank (unpublished) but soon thereafter we found

a shorter way to reach our goal, and we did not pursue this—once one succeeds

in classifying the simple groups of even type, by any method, this theory becomes

vacuous. But we require various fragments of that theory. In particular the proof

of Theorem 5.2 of Chapter VIII developed out of a treatment of the existence of
standard components parallel to [19], though this is no longer visible. The mate-

rial on standard components also exists in a more general form (cf. §7 of Chapter

VIII) in the K∗-case, and can easily be adapted to the L∗-case.
But in the present chapter we deal not with the existence of standard com-

ponents, but with a vestige of the analysis of groups having particular groups as

standard components, but only in the case of a component of type SL2. And we deal

with only the first part of this analysis, namely the size of the Sylow 2-subgroup in

the centralizer of the standard component, Theorem 1.1 of Chapter VII. (cf. [21])
Theorem 1.1 of Chapter VII has its own peculiar history, and for some time

our proof was entangled with the proof of a more general form of Theorem 1.1

of Chapter VIII from the next chapter, which treats the case of abelian Sylow 2-
subgroups. In finite group theory one should treat the more general case of Sylow

2-subgroups with strongly closed abelian 2-subgroups, and we initially followed

that path (with Sylow◦ 2-subgroups in place of Sylow 2-subgroups), but as we use

the amalgam method rather than fusion analysis in our identification of quasithin

groups it turns out that this falls away.

In our present treatment Theorem 1.1 of Chapter VII will only be needed once,

in the proof of the C(G,T ) theorem in the next chapter; namely, within the proof

of Theorem 3.1 of Chapter VIII.

While we have eliminated most of the standard component analysis (apart from

the case of SL2 as a standard component) by invoking the amalgam method at a

relatively early stage, this approach has not yet been made to work in finite group

theory, though something similar is under active investigation. There are various

reasons that our approach could be unworkable in the case of finite simple groups,

notably the obstructions associated with groups defined over fields of order 2.



CHAPTER VIII

The C(G, T ) Theorem and a Plan of Attack

Introduction

We arrive in this chapter at the third and last of our characterizations
of SL2: the C(G,T ) theorem.

Definition 1. Let G be a group of finite Morley rank and S a definable
subgroup of G. Then C(G,S) is the subgroup of G generated by all subgroups
of the form U2(N(X)) as X varies over definable connected subgroups of S
which are invariant under the action of NG

◦(S).

Here the “C” stands for “characteristic”, but we have drifted away from
the definition used in finite groups, and the notion we use looks more like
a notion from algebraic group theory; the condition of invariance under
NG

◦(S) can be read on the one hand as saying that the normalizer of X is
parabolic, or on the other hand as an approximation to “characteristic”. One
could call this the “parabolic-generated core” but in practice the notation
C(G,S) is sufficient.

One case interests us here: S is a Sylow◦ 2-subgroup, and in an L∗-group
of even type, it will follow eventually that NG

◦(S) is a Borel subgroup, so
we consider the normalizers of unipotent subgroups of S which contain this
Borel subgroup, or in more suggestive language: C(G,S) is generated by
the parabolic subgroups containing B = N◦(S).

Theorem 3.3 of Chapter VIII. Let G be a simple L∗-group of finite
Morley rank and of even type, and S a Sylow◦ 2-subgroup. If C(G,S) < G
then G ≃ SL2(K) for some algebraically closed field K of characteristic two.

The “T” in “C(G,T )” comes from the usage in finite group theory, where
T would be a (full) Sylow 2-subgroup. It seemed best to leave the name of
the theorem intact while adapting the content.

This theorem relies on two prior results. One is the main result of the
preceding chapter, Theorem 1.1 of Chapter VII. The other is the classifi-
cation of groups with abelian Sylow◦ 2-subgroups, given in §1 of Chapter
VIII.

Another important topic we take up, after dealing with the C(G,T )-
theorem, concerns the structure of the parabolic subgroups.

Definition 2. Let G be a group of finite Morley rank of even type.

(1) A Borel subgroup B of G is standard if it contains a Sylow◦ 2-
subgroup.

407
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(2) A definable subgroup H of G is parabolic if it contains a standard
Borel subgroup.

The structural result is as follows.

Theorem 5.2 of Chapter VIII. Let G be a connected simple L∗-group
of finite Morley rank, and of even type, and P a proper parabolic subgroup.
Then F ∗(P ) = O2(P ).

Among other things, this prepares us for the use of the amalgam method
in the next chapter. More generally, the structure of parabolic subgroups
together with the C(G,T )-theorem give us the key to the identification of
an L∗-group G as an algebraic group in all cases, with the amalgam method
used to handle the smallest cases.

We lay this all out at the end of the chapter, where we present the plan of
attack for the identification phase of the proof of the classification theorem
(§6 of Chapter VIII).

The first three sections of the chapter lead to the proof of the C(G,T )-
theorem, beginning with the classification of groups with abelian Sylow◦

2-subgroups, followed by an analog of a theorem of Baumann. The next two
sections analyze the structure of proper parabolic subgroups, after which
we give our plan of attack for the recognition phase in the classification of
simple groups of even type.

After our lengthy preparations, the recognition phase goes very quickly
for the most part, reducing to the “quasithin” cases treated by the amalgam
method in the next chapter, which require an extensive analysis. The amal-
gam method is only loosely tied to finite group theory in the first place,
and goes over quite directly to our context, modulo the usual additional
attention to be paid to connected components, and some technical issues of
interpretability.

We should note that the amalgam method does not actually produce
an identification of the desired groups, but provides all the data needed
for an identification via the theory of Moufang polygons—which may be
considered, from our point of view, as simply the logical continuation of the
amalgam method in favorable cases.

1. Abelian Sylow◦ 2-subgroups

In this section we provide the last ingredient needed for the proof of the
C(G,T ) Theorem, namely the classification of groups with abelian Sylow◦

2-subgroups.

Theorem 1.1 (Abelian Sylow◦). Let G be a simple L∗-group of finite
Morley rank and even type. Suppose that G has an abelian Sylow◦ 2subgroup
S. Then G ≃ SL2(K) for some algebraically closed field of characteristic
two.
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Well-placed SL2-subgroups. Our first lemma shows that under the
hypothesis that our group is not a copy of SL2, we arrive at once at a
configuration involving subgroups of type SL2 which are “well-placed” with
respect to certain subgroups of S, namely A ≤ S nontrivial, definable, and
N(S)-invariant. What will interest us in practice is the case in which the
group A is minimal among infinite definable N(S)-invariant subgroups.

Lemma 1.2 (SL2-components). Let G be a simple L∗-group of finite
Morley rank and even type. Let S be a Sylow◦ 2-subgroup of G, assumed
abelian, and A ≤ S definable, connected, and N(S)-invariant. Then either
G has a weakly embedded subgroup, or G contains a proper definable subgroup
L of type SL2 with the following properties.

(i) A ∩ L is a Sylow 2-subgroup of L.
(ii) A normalizes L.
(iii) U2(C(L)) > 1.

Proof. The group S is a Sylow◦ 2-subgroup of N(A). If for every
nontrivial unipotent 2-subgroup U of S, we have N◦(U) ≤ N(A), then
Lemma 1.3 of Chapter V applies and G has a weakly embedded subgroup.

So we fix U ≤ S nontrivial and unipotent for which N◦(U) ̸≤ N(A).
Notice that S ≤ N(U). By Lemma 5.16 of Chapter II the group A is
strongly closed in S, and by Lemma 6.6 of Chapter II as A is not normal in
N◦(U) there is a component L of type SL2, normalin in N◦(U), for which
A ∩ L is a Sylow 2-subgroup of L.

This already gives conditions (i, ii). Furthermore as U,L ◁ N◦(U), we
have [L,U ] = 1 and condition (iii) is satisfied. □

1.1. A ≤ L. We aim to show that when the groupA occurring in Lemma
1.2 of Chapter VIII is minimized, subject to the condition ofN(S)-invariance,
then it is forced inside the associated group L of SL2 type.

We first insert a general lemma which will be used repeatedly.

Lemma 1.3. Let G be a simple L∗-group of finite Morley rank and even
type with an infinite definable strongly closed abelian 2-subgroup A, which
normalizes a subgroup L of type SL2, and contains a Sylow subgroup of L.
Suppose AL ≤ H < G with H definable. Then L ◁ H◦.

Proof. Let H1 = U2(H), a K-group. Then A ≤ H1 and H1 factors as
E(H1)×CH1(E(H1)), using Lemma 5.18 of Chapter II. So easily L ≤ E(H1).

As A is strongly closed, A breaks up as a product of Sylow 2-subgroups
of components of E(H1), and a factor in the centralizer of E(H1). Hence
L = [A,L] lies in the corresponding product of components of E(Hi). So
L is normalized by a Sylow 2-subgroup in that product (namely, the corre-
sponding subgroup of A). It follows that L is a single component of E(H1),
by Proposition 6.8 of Chapter II, and is therefore normal in H◦. □

Corollary 1.4. Let G be a simple L∗-group of finite Morley rank and
even type with an infinite definable strongly closed abelian 2-subgroup A,
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which is also the Sylow 2-subgroup of a definable subgroup L of type SL2.
Suppose L ≤ H < G with H definable. Then L ◁ H◦.

We come now to the minimization of the subgroup A. This next step
requires a very substantial argument, and here we use the theory of pseu-
doreflection groups.

Proposition 1.5. Let G be a simple L∗-group of finite Morley rank
and of even type with an abelian Sylow◦ 2-subgroup S, and let A ≤ S be
minimal among infinite definable N(S)-invariant abelian 2-subgroups of S.
Let L be a definable subgroup of G of type SL2 over an algebraically closed
field of characteristic two, normalized by A, such that its intersection with
A is a Sylow 2-subgroup of L, and such that CG(L) contains a nontrivial
2-unipotent subgroup U . Then A ≤ L.

Proof. This proof is quite long. We assume

A ∩ L < A

From this we extract a definable weakly embedded subgroup in some lines,
or a direct contradiction in others.

Once we have a definable weakly embedded subgroup then by Theorem
10.12 of Chapter VI we have G ≃ SL2(K) with K algebraically closed in
characteristic two. Then easily L = G, U = 1, and we have a contradiction.

By Lemma 5.16 of Chapter II we have

A is strongly closed in S.

Our hypotheses relating L and A yield the following.

A = (A ∩ L)× CA(L)

We consider a maximal torus T in L normalizing A ∩ L. Then in view of
the structure of L (of type SL2), the torus T acts transitively on (A ∩ L)×,
and A ∩ L = [T,A]. That is, T acts as a pseudoreflection group on A.

We now pass to the group H = N(A)/C(A), thought of as a group
of automorphisms of A. Note that N(S) ≤ N(A). By our choice of A,
any proper definable H-invariant subgroup of A is finite, hence contained in
A0 = CA(H

◦). In view of the presence of T , A0 ̸= A and thus A0 is finite.
Thus

Ā = A/A0 is an irreducible H-module

Let A1 ≤ A be minimal among definable H◦-invariant infinite subgroups
of A. Then the pseudoreflection subgroup T of H◦ either acts trivially on
A1 or as a pseudoreflection group. As A is the sum of the conjugates of A1

under H, T will act as a pseudoreflection group on one of these conjugates,
which we may suppose to be A1. Then applying Theorem 5.3 of Chapter IV
to A1 with the action induced by H◦, A1/CA1(H

◦) carries a vector space
structure definably, relative to an interpretable algebraically closed field K,
and H◦ acts linearly (in fact, as GL(A1)). By Lemma 4.2 of Chapter III,

A1 splits definably as CA1(H
◦)⊕ Ã1 as a K-module. Here the first factor is
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finite and fixed by K. It is easy to see that the second factor is H◦-invariant,
and hence by the choice of A1, coincides with A1. So A1 is H◦-irreducible.
Thus A is completely reducible as an H◦-module. It follows that A0 = 1.

Now let us write A = ⊕iAi, with the Ai all H◦-irreducible, and H-
conjugate, and definable. All maximal tori in L act on one and the same
factor Ai as pseudoreflection subgroups, and trivially on any others (since
they do not commute), and hence L centralizes all the remaining factors. It
follows that L ∩A ≤ Ai for some i.

We split the analysis up into two cases, depending on whether there is
more than one factor Ai, or, alternatively, H

◦ acts irreducibly on A.

Case I: The number of factors Ai is at least two.

We may suppose L ∩ A ≤ A1. We will show in this case that L ∩
A = A1, and more generally that there is exactly one factor Li conjugate
to L and satisfying Li ∩ A = Ai, at which point one may check that the
factors Li commute and that the normalizer of their product (equivalently,
the normalizer of any one of them) satisfies the criterion of Lemma 1.3 of
Chapter V, which produces a weakly embedded subgroup.

We have noticed already that L centralizes A2. So L ≤ C◦(A2), and thus
L is a quasisimple component of C(A2) (Lemma 1.3 of Chapter VIII). On the
other hand H normalizes C(A2) and permutes its quasisimple components,
so

(I.1) H◦ normalizes L.

So H◦ normalizes A ∩ L and thus L ∩ A = A1. Furthermore, there can be
only one such component containing A1.

Now as the factors Ai are conjugate under the action of H, we can
similarly attach a unique H-conjugate Li of L to Ai, with A ∩ Li = Ai for
each i. Here Li acts trivially on Aj for j ̸= i.

We claim next that the various factors Li commute. First consider a
Sylow◦ 2-subgroup S containing A. Then S centralizes A and acts on each
of the groups Li, centralizing Ai. So it follows that S = A · CS(⟨Li : all i⟩).

Now if S > A then the group K = ⟨Li : all i⟩ is a proper subgroup of G
and thus each Li is a component of K, and they commute with one another
in this case.

Suppose alternatively that S = A. Then every proper connected defin-
able subgroup of G has the form given by Proposition 5.13 of Chapter II.
To lighten the notation, we will consider the groups L1 and L2.

The group L1 is generated by the subgroups A1, a torus T1 normalizing
A1, and NL1(T1). We already know A1 centralizes L2 and in particular
L2 ≤ N(A1). Since L2 is normalized by A, it follows that L2 is a component
of N◦(A1) and thus T1 normalizes L2; then since T1 centralizes A2 it follows
that T1 centralizes L2, and similarly T2 centralizes L1.

Now we pass to C◦(T1), which contains L2. Let S1 be a Sylow◦ 2-
subgroup of C◦(T1) containing CA(T1). Then S1 ≤ C(A2) and hence S1
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normalizes L1. As S1 centralizes T1, it follows that S1 centralizes L1 and
hence A1. So AS1 is a connected 2-subgroup of G and hence by our current
assumption S1 ≤ A, that is S1 = CA(T1) is a Sylow◦ 2-subgroup of C◦(T1).
This group normalizes L2 and it follows that L2 is a component of C◦(T1),
hence is normalized by NL1(T1). But NL1(T1) acts trivially on both A2 and
the corresponding torus T2, hence centralizes L2. So, finally, L1 centralizes
L2.

So in either case, the group K generated by the groups Li is their
product. Observe that for each i we have A ≤ N(Li) and in view of
Lemma 6.6 of Chapter II, we find that Lj ◁ N

◦(Li) for all i, j, in particular
N◦(K) = N◦(Li) for all i.

In order to get a weakly embedded subgroup in G, we use Lemma 1.3
of Chapter V, relative to the subgroup N(K). We must check that for
U ≤ N(K) nontrivial and 2-unipotent, we have N◦(U) ≤ N(K). Here we
may restrict U to any fixed Sylow◦ 2-subgroup of N(K).

Extend A to a Sylow◦ 2-subgroup S of N(K); then S = ACS(K) ≤
C(A). We may suppose U ≤ S. Then A ≤ N◦(U). Accordingly U2(N

◦(U))
has the structure afforded by Proposition 5.13 of Chapter II. Let K1 =
U2(N

◦(U)). If E(K1) > 1 then any component of E(K1) is one of the
components Li, and thus N◦(U) ≤ N(Li) = N◦(K).

Suppose finally E(K1) = 1, so N◦(U) has a normal Sylow◦ 2-subgroup.
It follows that A ◁ N◦(U). Hence as we have seen before N◦(U) normalizes
the components Li, and again normalizes K.

Hence, if the number of factors Ai is at least two, we arrive at a weakly
embedded subgroup via N◦(K).

We may pass to the second case.

Case II: A is H◦-irreducible.

AsH◦ contains a pseudoreflection subgroup, H◦ must act on A as GL(A)
with respect to some definable vector space structure on A making A finite
dimensional. But the Sylow◦ 2-subgroups of G are abelian, so the Sylow
2-subgroup of GL(A) must be trivial, and A is one-dimensional. This can
only occur if A is one-dimensional relative to the relevant field structure,
that is H◦ is acting like the multiplicative group of a field. But we supposed
that our pseudoreflection group T in L fixes points of A, and we arrive at a
contradiction.

So this case is eliminated quickly, and with this Proposition 1.5 of Chap-
ter VIII is fully proved. □

1.2. Standard components. Now we return to the main argument,
and we take a new tack. We continue to work with the strong “standard
component” condition furnished by Corollary 1.4 of Chapter VIII. We first
review the configuration reached in our analysis up to this point.

Suppose then that G is our simple L∗-group of finite Morley rank and
even type, with an abelian Sylow◦ 2-subgroup S, and not of the form SL2(K).
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We now take a subgroup A of S which is minimal among its nontrivial
definable N(S)-invariant subgroups. As we have seen in Lemma 5.16 of
Chapter II, the N(S)-invariance is equivalent to strong closure, and we use
this fact freely for the remainder of the argument.

As G is assumed to be not of the form SL2, it follows that G has
no weakly embedded subgroup, by Theorem 10.12 of Chapter VI. Hence
Lemma 1.2 of Chapter VIII applies and produces a subgroup L of type SL2

normalized by A, with A ∩ L a Sylow 2-subgroup of L, and with U2(C(L))
nontrivial. Then by Lemma 1.5 of Chapter VIII, the group A is a Sylow
2-subgroup of L.

Let U be a Sylow◦ 2-subgroup of C(L). Our main tactic now will be to
compare the group AU to a Sylow 2-subgroup of G. We show first that AU
is in fact a Sylow 2-subgroup of G; and then we show, at greater length,
that it is not. This contradiction then proves Theorem 1.1 of Chapter VIII.

Lemma 1.6. Let G be a simple L∗-group of finite Morley rank and even
type with an abelian Sylow◦ 2-subgroup S, and suppose L ≤ G is a group
of the form SL2(K) over an algebraically closed field K of characteristic
two, with a Sylow 2-subgroup A normalized by N(S). Let U be a Sylow◦

2-subgroup of C(L), and suppose U > 1. Then AU is a Sylow◦ 2-subgroup
of G.

Proof. We may suppose that AU ≤ S. We have A strongly closed in
S and thus L ◁ C◦(U) by Lemma 1.3 of Chapter VIII. As S is abelian we
have S ≤ C◦(U) as well. Thus S normalizes L and commutes with A, so S
acts on L like A. Since S also contains A, we find S = A × CS

◦(L). Now
U ≤ CS

◦(L) so U = CS
◦(L) and S = AU . □

Now we aim to prove the precise opposite of the foregoing result, always
under the assumption that our group G contains a group L of the specified
type.

1.3. The contradiction. As the analysis now becomes longer, we fix
the notation.

Notation 1.7. Let G be a simple L∗-group of even type of finite Morley
rank, with an abelian Sylow◦ 2-subgroup S. Assume that G is not of type
SL2, hence contains no definable weakly embedded subgroup. Fix a minimal
nontrivial N(S)-invariant definable subgroup A of S. Applying Lemma 1.2
of Chapter VIII and Proposition 1.5 of Chapter VIII, we obtain a definable
subgroup L of G with the following properties:

(1) L is of type SL2 over an algebraically closed field of characteristic
two;

(2) A is a Sylow 2-subgroup of L.
(3) U2(C(L)) > 1.

Let U be a Sylow◦ 2-subgroup of C(L).
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By Corollary 1.4 of Chapter VIII, whenever L ≤ H < G with H defin-
able and connected, we have L normal in H Furthermore by Lemma 1.6 of
Chapter VIII, AU is a Sylow◦ 2-subgroup of G.

Now we will show, in two stages, that the group AU is not a Sylow◦

2-subgroup of C◦(A), thus reaching a contradiction.

Lemma 1.8. Let G be a simple L∗-group of even type with an abelian
Sylow◦ 2-subgroup S and with an infinite definable subgroup A strongly closed
in S. Suppose that L is a definable subgroup of G of type SL2 over an
algebraically closed field of characteristic two, with A a Sylow 2-subgroup of
L, and that a Sylow◦ 2-subgroup U of C(L) is nontrivial. Suppose further
that AU is a Sylow◦ 2-subgroup of C◦(A).

Then N◦(A) ≤ N(L).

Proof. SinceG has an abelian Sylow◦ 2-subgroup, we have U2(C
◦(A)) =

F ∗(C◦(A)), in other words a product of copies of groups of type SL2 with
an abelian 2-group (Proposition 5.13 of Chapter II).

Fix T a maximal torus of the group L, normalizing A. Consider the
group K = E(U2(C(A))).

If K is nontrivial, then Q = AU ∩K is a Sylow 2-subgroup of K, and
is T -invariant. Since furthermore Q ≤ AU and Q ∩ A = 1, we find Q ≤ U .
Hence NK

◦(Q) ≤ N(L). Let R be a maximal torus of K normalizing Q. We
claim N(R) ≤ N(L).

Now R normalizes Q and L ◁ C◦(Q). Since R is connected, R normalizes
L. As R centralizes A and is a 2⊥-group, R acts trivially on L. In particular
L ≤ N◦(R) and hence L ◁ N◦(R), that is N◦(R) ≤ N(L).

Now if g ∈ N(R) and Lg ̸= L then Lg is another component of N◦(R).
In particular A ∩ Ag = 1 and AAg is contained in a Sylow◦ 2-subgroup of
G. But A is strongly closed in any Sylow 2-subgroup that contains it, by
Lemma 5.15 of Chapter II, so we get a contradiction. Thus N(R) ≤ N(L).

Now we have enough to conclude K ≤ N(L). As K centralizes A we
find K ≤ AC(L), and N◦(A) ≤ N◦(K) ≤ N◦(L) (Lemma 1.3 of Chapter
VIII).

There remains the possibility that K = E(U2(C(A))) is trivial, and
U2(C(A)) = AU . So N(A) ≤ N(AU). By Lemma 1.10 of Chapter VII we
have N◦(A) = C◦(A)T .

Let H0 be CN(A)
◦(AU/A). Then T ≤ H0 ◁ N(A). So H0 = (CH0(A)·T ).

Now CH0(A) contains U and acts trivially on the factors of the chain

1 < A < AU

Since AU is abelian, we can also consider the action of the quotient group
CH0(A)/AU on this chain, and as the quotient has degenerate type it con-
tains no involutions. So by Proposition 10.7 of Chapter I this group acts
trivially on AU . In other words, CH0(A) ≤ C(AU) ≤ C(U) ≤ N(L). So
H0 = CH0(A)T ≤ N◦(L).
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On the other hand, by a Frattini argument, letting T0 be a maximal
decent torus of H0 containing T , we find

N◦(A) ≤ H0NN◦(A)(T0) = H0C
◦
N◦(A)(T0) ≤ H0N

◦
N◦(A)(T )

Now U2(C
◦(AT )) = U and thusN◦(AT ) ≤ N◦(U) ≤ N(L), and we conclude

N◦(A) ≤ H0N
◦(AT ) ≤ N(L). □

Lemma 1.9. Let G be a simple L∗-group of even type with an infinite
abelian Sylow◦ 2-subgroup S, and A a strongly closed abelian subgroup of
S. Suppose that there is a definable subgroup L of G of type SL2 over an
algebraically closed field of characteristic two, with A a Sylow 2-subgroup of
L, and that a Sylow◦ 2-subgroup U of C(L) is nontrivial. Suppose further
that N◦(A) ≤ N◦(L). Then G has a weakly embedded subgroup.

Proof. Under our hypotheses, the group AU is a Sylow◦ 2-subgroup of
G, by Lemma 1.6 of Chapter VIII.

We examine the group H = N◦(L) and what we aim at is the following.

(∗) N◦(V ) ≤ H for V ≤ AU

Indeed, AU is a Sylow◦ 2-subgroup of H, so the condition (∗) is exactly what
is needed to get a weakly embedded subgroup using Lemma 1.3 of Chapter
V.

So we take up the proof of condition (∗). In the special case V = A, this
condition is one of our hypotheses.

We have V ≤ AU and we have A ≤ N◦(V ). If A is normal in N◦(V )
then N◦(V ) ≤ N◦(A) ≤ H and we are done.

So we assume that A is not normal in the group N◦(V ). We then have
some component L1 ◁ N

◦(V ) of type SL2 over some algebraically closed
field of characteristic two, where A normalizes L1 and A ∩ L1 is a Sylow
2-subgroup of L1 (Lemma 6.6 of Chapter II). As V and L1 are both normal
in N◦(V ), they commute.

We take a maximal torus T1 in L1 normalizing A. So now V, T1 ≤
N◦(A) ≤ N◦(L). We consider the action of V and T1 on L. The torus T1
acts faithfully on A, more particularly regularly on A ∩ L1, and hence acts
on L like a subgroup of T , that is, freely on A. Hence A ≤ L1, and T1 acts
regularly on A.

The group V centralizes A and hence acts on L1 like a subgroup of A.
At the same time V commutes with T1. So the action of V on L must be
trivial, and L ≤ N◦(V ), so N◦(V ) ≤ N◦(L). This proves (∗) in this last
case, and completes the argument. □

Corollary 1.10. Let G be a simple L∗-group of even type with an
abelian Sylow◦ 2-subgroup S. Suppose that L is a definable subgroup of G
of type SL2 over an algebraically closed field of characteristic two, with A a
Sylow 2-subgroup of L, and that a Sylow◦ 2-subgroup U of C(L) is nontrivial,
and A is strongly closed in S. Then AU is not a Sylow◦ 2-subgroup of C◦(A).
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Proof. Suppose AU is a Sylow◦ 2-subgroup of C◦(A). By Lemma 1.8
of Chapter VIII, we have

N◦(A) ≤ N(L)

Then by Lemma 1.9 of Chapter VIII, G has a weakly embedded subgroup.
By Theorem 10.12 of Chapter VI, Gmust be PSL2. But then this contradicts
our hypotheses. □

Proof of Theorem 1.1 of Chapter VIII. Under the hypotheses of
Theorem 1.1 of Chapter VIII, and in terms of Notation 1.7 of Chapter VIII,
Corollary 1.10 of Chapter VIII contradicts Lemma 1.6 of Chapter VIII. □

2. Baumann’s Pushing Up Theorem

Definition 2.1. Let M be a connected group of finite Morley rank
and of even type. We will say that M is of minimal parabolic type if
F ∗(M) = O2(M) and M/O2(M) ≃ SL2(K) for some algebraically closed
field of characteristic two.

The main result of this section is the following.

Proposition 2.2. Let G be a group of finite Morley rank and of even
type, and M a definable connected subgroup of minimal parabolic type. Let S
be a Sylow 2-subgroup of M . Then there is a nontrivial definable connected
subgroup P of S such that P ◁ M and P is NG

◦(S)-invariant.

The proof we give is not very direct. In Theorem 5.3 of Chapter III
we gave a set of conditions that hold when a slightly stronger condition
(involving NG(S) in place of NG

◦(S)) is not met. Analyzing this situation
further yields the foregoing conclusion.

There is a closely related result, with a similar proof, which is also useful,
In this case, we drop the requirement that P be connected.

Proposition 2.3. Let G be a group of finite Morley rank and of even
type, M a definable connected subgroup of minimal parabolic type, and S
a Sylow 2-subgroup of M . Suppose that there is no nontrivial definable
subgroup of S normalized by both M and NG(S). Then there is a definable
automorphism α of S such that S = O2(M) · Z(O2(M))α.

Let us now fix the notation for the remainder of this section: G has
finite Morley rank and even type, M is a definable subgroup of minimal
parabolic type, and S is a Sylow 2-subgroup of M . Under the hypotheses of
either Proposition 2.2 of Chapter VIII or 2.3 of Chapter VIII, we have the
assumption of Theorem 5.3 of Chapter III, as follows.

(∗) No nontrivial connected definable subgroup of
S is normalized by both M and NG(S).

So we will assume at least (∗) throughout this section. We adopt the
notation introduced in the statement of Theorem 5.3 of Chapter III: Q =
O2(M), L0 = O2(M), V = [Q,L0], and D = CQ

◦(L0).
We then have the following facts, by Theorem 5.3 of Chapter III.
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5.3 of Chapter III.1 V is an elementary abelian 2-group which is central in Q.
5.3 of Chapter III.2 V/V ∩ Z(M) is a natural (2-dimensional) module for M/O2(M).
5.3 of Chapter III.3 Q = D ∗ V , a central product.
5.3 of Chapter III.4 S/Ω1

◦(Z(S)) is an elementary abelian 2-group.
5.3 of Chapter III.5 Z◦(Q) is an elementary abelian 2-group.

Notation 2.4.

(1) f is the rank of the field K over which M/O2(M) is defined, that
is, M/O2(M) ≃ SL2(K).

(2) W = V Z◦(S)

Lemma 2.5. With the hypotheses and notation above, W has the follow-
ing properties.

(1) W is an elementary abelian 2-group contained in Z◦(Q)
(2) rk(W/Z◦(S)) = f
(3) For i ∈W \ Z(S), we have CS(i) = Q.

Proof. As Q = F ∗(M) and W centralizes Q, by Proposition 7.3 of
Chapter I we have W ≤ Z(Q). Thus W ≤ Z◦(Q), which is an elementary
abelian 2-group. The first point follows.

For the rank rk(W/Z◦(S)), it is necessary to evaluate rk(V/(V ∩Z◦(S))).
By 5.3 of Chapter III.4, we have

[S, V ] ≤ Z(S)

Now by 5.3 of Chapter III.2, V/(V ∩Z(M)) is a natural M/O2(M)-module.
Hence CV/Z(M)(S) is the image in V/Z(M) of [S, V ]. In particular V ∩
Z(S) ≤ [S, V ]Z(M) and thus V ∩ Z(S) = [S, V ](V ∩ Z(M)). Again, as
we know the module V/Z(M), we find that rk(V/(V ∩ Z(S))) = f . Thus
rk(V/(V ∩ Z◦(S))) = f and rk(W/Z◦(S)) = f as well.

Now let i ∈ W \ Z(S). We have Q ≤ CS(i) ≤ S, and we know the
action of S/Q on V/Z(M). If i is centralized by S modulo Z(M), then it
lies in [S, V ] ≤ Z(S), a contradiction. So i is not centralized by S modulo
Z(M), and hence, in view of the module structure, is not centralized by any
element of S/Q. Thus CS(i) = Q. □

In a more technical vein, the following lemma will serve as a complement
to the third point above.

Definition 2.6. Let X ⊆ Y be definable subsets of a group of finite
Morley rank. Then the co-rank co-rkX(Y ) is defined as rk(Y ) − rk(X); if
X and Y are groups then this is rk(Y/X) (the latter being a coset space).

Lemma 2.7. With the notation and hypotheses as above, let i ∈ I(S),
and suppose that co-rkS(CS(i)) = f . Then i ∈ Q ∪ (S ∩ L0)Z(M).

Proof. We will suppose i /∈ Q. We have S = (S∩L0)Q = (S∩L0)∗D,
the first equality by definition of L0, and the second by definition of D,
considering the action of S on L0. So we write i = i0i1 with i0 ∈ (S ∩ L0)
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and i1 ∈ D. Then i0 /∈ Q. Now i0 acts on the natural module V/(V ∩Z(M))
for L0/O2(L0), nontrivially since i0 /∈ Q, so the co-rank of i0 on V is at least
f . But CV (i) = CV (i0), so the same applies to i.

Now we have Q = V D and we claim that we have a corresponding
decomposition

(1) CQ(i) = CV (i)CD(i)

Suppose therefore that [vd, i] = 1 with v ∈ V and d ∈ D. Then [v, i] =
[d, i] ∈ D ≤ C(L0). Now as V/(V ∩Z(M)) is a natural module forM/O2(M),
it follows that [v, i] ∈ Z(M) and that v ∈ [S, V ](V ∩Z(M)) (as i ∈ S). But
[S, V ] ≤ Z(S) by 5.3 of Chapter III.4 and thus v ∈ C(i), and hence also
d ∈ C(i). So (1) holds.

Furthermore, V ∩ D ≤ Z(S) ≤ C(i). So we can work modulo V ∩ D;
working in Q̄ = Q/(V ∩D) we find that co-rkQ̄(CQ̄(i)) = co-rkV̄ (CV̄ (i)) +
co-rkD̄(CD̄(i)) ≥ f + co-rkD̄(CD̄(i)). Since we assume co-rkS(CS(i)) = f ,
we find D ≤ C(i); hence also D ≤ C(i1). So i1 commutes with L0DV =
L0Q =M . Our claim follows. □

Lemma 2.8. With the above hypotheses and notation, suppose that α is
a definable automorphism of S, and Wα ̸≤ Q. Then S =WαQ.

Proof. As S/Q is a Sylow 2-subgroup of M/Q, we have

(1) rk(S/Q) = f

Our aim is to show that Wα/(Wα ∩Q) also has rank f .
By Lemma 2.5, for i ∈ W \ Z(S) we have CS(i) = Q. Thus the co-

rank in S of CS(i) is f . It follows that for i ∈ Wα \ Z(S) we also have
co-rkS(CS(i)) = f . By Lemma 2.7 it follows thatWα\Z(S) ⊆ (S∩L0)Z(M),
and as Wα \ Z(S) generates Wα, we find Wα ≤ (S ∩ L0)Z(M) and also
Wα ≤ (S ∩ L0)Z

◦(M).
Now we have Wα ∩Q ≤ Q ∩ [(S ∩ L0)Z

◦(M)] = (Q ∩ L0)Z
◦(M). Now

since Q − DV , V ⊆ L0, and [D,L0] = 1 we have Q ∩ L0 = V , and thus
Wα ∩Q ≤ V Z◦(M). Recalling however that Wα meets S \Q, any element
of Wα ∩ V commutes with a nontrivial element of S/Q, and hence lies in
V ∩ Z(S); so we see that Wα ∩ Q ≤ Z(S). Hence rk(Wα/(Wα ∩ Q)) ≥ f ,
and our claim follows. □

Now both versions of Baumann’s Pushing-Up Theorem, Proposition 2.2
of Chapter VIII and 2.3 of Chapter VIII, follow easily.

Proof of Proposition 2.2 of Chapter VIII. We will show even-
tually that the normal closure of V under NG

◦(S) is normal in M . We
begin with the further study of W .

(1)
If α, β are automorphisms of S for which
Wα,W β ̸≤ Q, then Wα =W β.
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We have S = WαQ = W βQ. Take i ∈ Wα \ Q, and take j ∈ W β such
that iQ = jQ. Then ij ∈ Q = V D. Write ij = vd with v ∈ V and d ∈ D.
Then (vd)i = (vd)−1 = vd−1, so viv ∈ V ∩D ≤ Z(M), and i acts trivially
on the element v̄ represented by v in V̄ = V/(V ∩Z(M)). This is a natural
module, and [i, V̄ ] is covered by Z(S), so v ∈ Z(S) and thus ij = vd ∈ C(i).

But ij ∈ Q ∩ (L0Z(S)) = V Z(S), and CV Z(S)(i) = Z(S), so ij ∈ Z(S),

that is i ∈W βZ(S). ThusWα\Q ≤W βZ(S) and thusWα ≤ (W βZ(S))◦ =
W β. Our claim (1) follows.

Now we will show the following.

(2)
If X is a connected definable group of automor-
phisms of S, then

⋃
WX ⊆ Q.

Suppose on the contrary Wα ̸≤ Q for some α ∈ X. We consider the orbit
OW of W under X: OW = {W β : β ∈ X}. This contains a unique element
which does not commute with W , namely Wα. Hence, more generally,
for any W1 ∈ OW , there is a unique W ∗

1 ∈ OW not commuting with W1.
Furthermore, since the orbit OW is nontrivial and X is connected, this orbit
is infinite. This leads to a contradiction as follows.

There is a finite X0 ⊆ X such that C(
⋃
WX) = C(

⋃
WX0). There is

a noncommuting pair of elements W1,W
∗
1 ∈ OW such that neither lies in

WX0 . Hence W ∗
1 ≤ C(

⋃
WX0) = C(

⋃
WX) and thus W ∗

1 should commute
with W1, a contradiction. So (2) follows.

Now we conclude as follows. Taking X = NG
◦(S), the normal closure

of W under NG
◦(S) is contained in Q. Hence the normal closure V̂ =

⟨V NG
◦(S)⟩ of V under NG

◦(S) is also contained in Q. We claim that V̂ is
normalized by M .

Certainly V̂ is normalized by S. Furthermore [V̂ , L0] ≤ [Q,L0] = V , so

V̂ is normalized by L0 and hence by M . As V is connected, the group V̂ is
definable. This completes the proof. □

Proof of Proposition 2.3 of Chapter VIII. We claim that S =
WαQ for some definable automorphism α of S; Lemma 2.8 then applies.

Assuming the contrary, the normal closure of W under NG(S) is con-

tained in Q, and hence the same applies to the normal closure V̂ = ⟨V NG(S)⟩
of V . Then as above (in the proof of Proposition 2.2 of Chapter VIII), M

normalizes V̂ and V̂ is definable. □

3. The C(G,T ) Theorem

3.1. Pushing up 2-local subgroups. The following “pushing-up” the-
orem will be useful for the proof of the C(G,T )-theorem.

Theorem 3.1. Let G be a simple L∗-group of finite Morley rank and of
even type, Q a definable 2-subgroup of G, and H = N◦(Q). Suppose that
Q = O2(H) and that U2(H/Q) ≃ SL2(K) for some algebraically closed field
K of characteristic two. Then H contains a Sylow◦ 2-subgroup of G.
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Proof. By Lemma 4.19 of Chapter IV, Q is connected. We may sup-
pose that Q is nontrivial.

Set M = U2(N
◦(Q)). Let S be a Sylow◦ 2-subgroup of M , and extend

S to a Sylow◦ 2-subgroup T of G. It suffices to prove that

NT
◦(S) = S

We have Q = O2(M) and M/Q ≃ SL2(K). We consider two cases,
according as the conclusion of Proposition 2.2 of Chapter VIII applies to M
or not.

Suppose first that the conclusion of Proposition 2.2 of Chapter VIII
applies to M , so we have some nontrivial definable connected subgroup X
of S which is normalized both by M and by NG

◦(S). Let Ĥ = NG
◦(X).

Then Ĥ is an L-group and M ≤ Ĥ, with M = NĤ
◦(O2(M)). So by Lemma

6.7 of Chapter II,M contains a Sylow◦ 2-subgroup of Ĥ. Thus S is a Sylow◦

2-subgroup of NG
◦(S) and hence also of G.

Now suppose that no such subgroup X exists. ThenM is not of minimal
parabolic type, so in view of our hypotheses we have M = F ∗(M) = L×Q
with L ≃ SL2(K). We can refine the structure ofM further. The group Q is
abelian, as otherwise we could set X = Q′, and is even elementary abelian,
as otherwise we could take X = Ω1(Q).

Now we claim

Q is a Sylow◦ 2-subgroup of CG(L)

Extend Q to a Sylow◦ 2-subgroup U of C(L). Now NU
◦(Q) ≤ M = LQ

and NU
◦(Q)∩L = 1, so NU

◦(Q) = Q and thus Q is a Sylow◦ 2-subgroup of
C(L).

Now we claim that

L is a standard component of G

In the first place, as Q is nontrivial, C(L) contains involutions. We fix
an involution i ∈ C(L), and we claim that L is a component of C◦(i).

Suppose first that i ∈ Q. ThenM ≤ C◦(i), and S is a Sylow◦ 2-subgroup
of C◦(i) by Lemma 6.7 of Chapter II. So L is normalized by a Sylow◦ 2-
subgroup of C◦(i), and hence by C◦(i) in view of Proposition 6.8 of Chapter
II.

Now let i be any involution in C(L). As Q is a Sylow◦ 2-subgroup of
C(L), we may suppose that i normalizes Q. Let V = CQ

◦(i). Then L is
a component of C◦(V ). Apply Proposition 5.23 of Chapter II to the K-
group H0 = U2(C

◦(i)) and the 2-subgroup V of H0. Then E◦(CH0(V )) ◁
E◦(C◦(i)). Thus L is a component of C◦(i).

Thus L is a standard component of G. Now by Theorem 1.1 of Chapter
VII, S is a Sylow 2-subgroup of G, and our claim again follows. □
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3.2. C(G,T ). Our intent is to derive a weakly embedded subgroup from
the failure of the C(G,T )-theorem, using the graph U∗(G) introduced at the
end of §10 of Chapter VI. So the essential point is the following.

Lemma 3.2. Let G be a simple L∗-group of finite Morley rank and of
even type, and S, T two Sylow◦ 2-subgroups, with S ∩ T infinite. Then
C(G,S) = C(G,T ).

Proof. We suppose the contrary, and we fix a pair S, T with C(G,S) ̸=
C(G,T ), and with the rank of S ∩ T maximal. Let Q = (S ∩ T )◦, and
H = N◦(Q). Our first claim is that we may choose the pair S, T so that
each of S ∩H and T ∩H contains a Sylow◦ 2-subgroup of H.

Notice that H contains NS
◦(Q) and NT

◦(Q), so S ∩ H and T ∩ H
properly contain Q. Let S0 = (S ∩H)◦, and let S1 be a Sylow◦ 2-subgroup
of G containing S0. Then S1 ∩ S ≥ S ∩ H, so rk(S ∩ S1) > rk(S ∩ T ). It
follows by our choice of S and T that C(G,S) = C(G,S1). Furthermore,
since S1 ∩ T ≥ S ∩ T , we may replace S by S1. Similarly, we may replace T
by a Sylow◦ 2-subgroup of G which contains a Sylow◦ 2-subgroup of H, so
we may assume that our initial choice of S, T was made appropriately.

Now as O2(H) is contained in any Sylow 2-subgroup of H, our choice
of S and T ensures that O2

◦(H) ≤ (S ∩ T )◦ = Q; so O2
◦(H) = Q. By

Lemma 6.4 of Chapter II, O2
◦(M) = O2(M) and so we have shown that

H = N◦(Q) with Q = O2(H). This is the first hypothesis of Theorem 3.1 of
Chapter VIII, and we now turn to the second, which concerns the structure
of U2(H/Q).

So let H̄ = H/Q. Consider the graph U∗(H̄) with vertices the Sylow◦

2-subgroups. Setting S0 = (S ∩ H)◦ and T0 = (T ∩ H)◦, the groups S̄0
and T̄0 represent two vertices of U∗(H̄), and we observe that they lie in
distinct components. Indeed, if there were a chain P̄i of Sylow

◦ 2-subgroups
of H̄ linking S̄0 and T̄0 in U∗(H̄), these could be lifted back to connected

2-subgroups Pi of H, which extend to Sylow◦ 2-subgroups P̂i of G, and
then we find for each successive pair that P̂i ∩ P̂i+1 ≥ Pi ∩ Pi+1 > Q,
and hence C(G,Pi) is independent of i, by the choice of Q, forcing finally
C(G,S) = C(G,T ), a contradiction.

So U∗(H̄) is disconnected, and hence by Lemma 1.4 of Chapter V we
conclude that U2(H) ≃ SL2(K) for some algebraically closed field K of
characteristic two. With this, the hypotheses of Theorem 3.1 of Chapter
VIII are verified, and we conclude that H contains a Sylow◦ 2-subgroup of
G. On the other hand, S ∩H and T ∩H are Sylow◦ 2-subgroups of H, so
we now have S, T ≤ H.

As in the proof of Theorem 3.1 of Chapter VIII, we must now consider
whether or not the conclusion of Baumann’s Theorem 2.2 of Chapter VIII
applies to the group U2(H). If it does, then S has a nontrivial definable
connected subgroup X which is normalized by NG

◦(S) as well as by U2(H),
and the latter includes T . In this case, by definition of C(G,S), we find
T ≤ C(G,S). But then the Sylow◦ 2-subgroups S and T are conjugate by
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an element g of C(G,S), and this yields a contradiction to the choice of S
and T :

C(G,T ) = C(G,Sg) = C(G,S)g = C(G,S)

So we may suppose that the conclusion of Theorem 2.2 of Chapter VIII
is not applicable to U2(H), and thus U2(H) = L×Q with L ≃ SL2(K), K
algebraically closed of characteristic two, and, furthermore, Q elementary
abelian, as noted in the proof of Theorem 3.1 of Chapter VIII at the corre-
sponding point. So we see that the Sylow◦ 2-subgroups of H are elementary
abelian.

But H contains Sylow◦ 2-subgroups of G, so G has elementary abelian
Sylow◦ 2-subgroups. So Theorem 1.1 of Chapter VIII applies, and G ≃
SL2(K) for some algebraically closed field of characteristic two. But in this
case, the groups S and T must coincide, a contradiction. □

We come now to the C(G,T )-theorem.

Theorem 3.3 (C(G,T)). Let G be a simple L∗-group of finite Morley
rank and of even type, and S a Sylow◦ 2-subgroup. If C(G,S) < G then
G ≃ SL2(K) for some algebraically closed field K of characteristic two.

Proof. Consider the graph U∗(G) whose vertices are the Sylow◦ 2-
subgroups of G, with two of them joined by an edge if their intersection
is infinite. This graph is disconnected, as otherwise the previous lemma
implies that the group C(G,S) is independent of the choice of S, and hence
normal in G, contradicting the simplicity of G.

Now Corollary 10.16 of Chapter VI says that G ≃ SL2(K) for some
algebraically closed field K of characteristic two, as claimed. □

4. 2-Local subgroups

In this section we begin the study of 2-local◦ subgroups, most especially
those which are “large”.

Definition 4.1. Let G be a group of finite Morley rank. A 2-local◦

subgroup of G is a group of the form NG
◦(U) with U 2-unipotent and non-

trivial.

Our goal in the present section is to show that Ô(H) is trivial for H
2-local.

Lemma 4.2. Let H be a group of finite Morley rank and U ≤ H a
definable 2-subgroup. Then Ô(NH(U)) = Ô(CH(U)).

Proof. It suffices to show that Ô(N(U)) ≤ C(U). We have

[Ô(N(U)), U ] ≤ Ô(N(U)) ∩ U = 1,

since this is an intersection of a 2⊥-group and a 2-group. □

We begin with the L-group version of our result.
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Proposition 4.3. Let H be an L-group of even type and P ≤ H a
unipotent 2-group. Then Ô(CH(P )) ≤ Ô(H).

Proof. We will proceed by induction on rk(H). Set X = Ô(CH(P )).

Suppose first that Ô(H) > 1. Let K = CH
◦(P mod Ô(H)). Then K

normalizes Ô(H)P , and this is a central product by Proposition 10.13 of

Chapter I. So K normalizes O2(Ô(H)P ) = P , and [K,P ] ≤ P ∩ Ô(H)
hence K centralizes P and K = CH

◦(P ).

Applying induction to the quotient H̄ = H/ Ô(H), we have X̄ ≤ Ô(K̄) =

1, that is X ≤ Ô(H) as claimed. So we may assume the contrary.

(1) Ô(H) = 1

Next we will show the following.

(2) [X,O2(H)] = 1

We consider the action of X × P on Q = O2(H). We have [X,CQ(P )] ≤
X ∩Q = 1, so by Lemma 12.4 of Chapter I we have [X,Q] = 1, as claimed.

Now if CH(O2(H)) < H then by induction we findX ≤ Ô(CH(O2(H))) ≤
Ô(H), as claimed. So we may suppose

(3) O2(H) ≤ Z(H)

Now H0 = U2(H) is a K-group with O(H0) = 1 and O2(H0) central. It
follows from Proposition 5.10 of Chapter II, together with Proposition 9.6
of Chapter I and the theory of central extensions that U2(H) = E(U2(H)) ∗
O2(H).

Let L be a quasisimple component of E(U2(H)). Then P acts on L like

a unipotent subgroup P̂ of L, and CL(P ) = CL(P̂ ). Similarly X acts on

L like a subgroup X̂ of L, and X̂ ≤ O(NL(P̂ )). By Proposition 1.25 of

Chapter II, O(NL(P̂ )) = 1. This means that X centralizes L, and hence

(4) X centralizes E(U2(H))

Thus X centralizes U2(H). So X ≤ CH(U2(H)) ≤ CH(P ) and hence

X ≤ Ô(CH(U2(H)) ≤ Ô(H). □

Now we treat the simple L∗-case.

Proposition 4.4. Let G be a simple L∗-group of finite Morley rank and
of even type, and let P ≤ G be a nontrivial 2-unipotent subgroup. Then
Ô(N(P )) = 1.

Proof. Supposing the contrary, let X be a maximal subgroup of G of
the form Ô(NG(Q)), with Q 2-unipotent. Let M = NG(X). We claim that
M is weakly embedded in G.

By Proposition 10.13 of Chapter I we have [X,Q] = 1. So Q ≤ M
and thus M contains a nontrivial Sylow◦ 2-subgroup. Let U ≤ M be any
nontrivial unipotent 2-group; our claim is that N(U) ≤M .
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Note that U centralizes X, again by Proposition 10.13 of Chapter I.
Conjugating by an element of M , we may suppose that QU is a unipotent
2-group. Then X ≤ C(QU) ≤ C(Q) and therefore X ≤ Ô(C(QU)). On the

other hand by Proposition 4.3 of Chapter VIII, Ô(C(QU)) ≤ Ô(C(U)). So

X ≤ Ô(C(U)) and by maximality of X we have X = Ô(C(U)) = Ô(N(U))
and thus N(U) ≤M .

So M is weakly embedded in G, and G must be of the form SL2(K)
for some algebraically closed field K of characteristic two. In this case the
desired conclusion follows by inspection. □

5. Parabolic subgroups

Definition 5.1. Let G be a simple group of finite Morley rank and of
even type. A parabolic subgroup of G is a definable connected subgroup
containing the normalizer of a Sylow◦ 2-subgroup of G.

Note that by Corollary 8.4 of Chapter I, the normalizer of a Sylow◦ 2-
subgroup contains a Borel subgroup of G, so that parabolic subgroups will
contain Borel subgroups according to our definition.

We aim here at the following property of parabolic subgroups.

Theorem 5.2. Let G be a simple L∗-group of finite Morley rank and of
even type, and P a proper parabolic subgroup of G. Then F ∗(P ) = O2(P ).

5.1. Components.

Proposition 5.3. Let G be a simple L∗-group of finite Morley rank and
of even type, and P a proper parabolic subgroup of G. Then E(U2(P )) = 1.

Proof. Let P0 = U2(P ). Suppose toward a contradiction that A is
a quasisimple component of P0. Let S be a Sylow◦ 2-subgroup such that
N◦(S) ≤ P . Our goal will be to prove that C(G,S) ≤ N(A).

As P0 is a K-group, A is algebraic, of even type. Let SA = S ∩ A, a
Sylow 2-subgroup of A. Let BA = NA(SA), a Borel subgroup of A, and
factor BA as usual as SA⋊TA, with TA a maximal torus in A. By Fact 2.25
of Chapter II it follows easily that S = SA × CS(A). Let S2 = CS(A).

We now turn to C(G,S). Let X ≤ S be a nontrivial definable connected
subgroup normalized by NG(S), and let K = U2(NG(X)). Our claim is that
K ≤ N(A).

We consider the structure of K. Set Q = O2
◦(K) and K̄ = K/Q. By

Proposition 5.10 of Chapter II, bearing in mind K = U2(K), we have K̄ =
E(K̄), a central product of quasisimple algebraic groups in characteristic
two.

Now we analyze the structure of K more closely, in its relationship to A
and, in particular, to TA. Let QA = Q ∩ A, Q2 = CQ(A) We claim that Q
decomposes much as S does:

(1) Q = QA ×Q2
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For this, it is enough that Q ≤ S is TA-invariant, as we shall see.
By Corollary 9.10 of Chapter I, Q = [Q,TA]CQ(TA). Now [Q,TA] ≤ QA

and QA = [QA, TA] as TA is a maximal torus of A (Fact 1.11 of Chapter
II). Thus [Q,TA] = QA. On the other hand CQ(TA) acts on A as a 2-group
commuting with a maximal torus, so CQ(TA) = CQ(A) (Fact 1.8 of Chapter
II). So Q = QAQ2 = QA ×Q2. This proves (1).

Now we work in the quotient group K̄. In view of the decomposition of
S and of Q we have

(2) S̄ = Q̄A × S̄2

and S̄ is a Sylow 2-subgroup of K̄. Accordingly, by Fact 2.11 of Chapter II
we have a corresponding decomposition of K̄:

(4)
K̄ = K̄1 ∗ K̄2

SA and S2 are Sylow
◦ 2-subgroups of K̄1 and K̄2, respectively

K̄1 = E(CK̄(S̄2)); K̄2 = E(CK̄(S̄A))

We let K1,K2 be the full preimages of K̄1, K̄2 in K; in particular K1,K2 ◁
K.

After these preliminaries, we may show that K ≤ N(A). We make a
case division, according as K̄2 is, or is not, trivial, and we begin with the
latter case.

(Case I) K̄2 ̸= 1

Let K∗
2 = CK2(TA). We show first

(I.1) K2 = QA ×K∗
2

As TA centralizes S̄2, which is a Sylow 2-subgroup of K̄2, and TA is a 2⊥-
group, it follows that TA centralizes K̄2. Then by Corollary 9.10 of Chapter
I we have K2 = QK∗

2 ; since Q2 ≤ K∗
2 this yields

K2 = QAK
∗
2

On the other hand QA ∩K∗
2 = 1 so we have a semidirect product QA ⋊K∗

2 ,
and we claim that K∗

2 acts trivially on QA.
Now S ∩ K2 is a Sylow 2-subgroup of K2, and contains Q, so S ∩ K∗

2

is a Sylow 2-subgroup of K∗
2 . But S ∩ K∗

2 = CS(TA) = CS(A), in view of
the structure of S, so S ∩K∗

2 acts trivially on A. As a Sylow 2-subgroup of
K∗

2 acts trivially on A, and K∗
2/Q2 ≃ K̄2 is a central product of quasisimple

groups, it follows that K∗
2 centralizes A, and hence QA. Thus (I.1) holds.

We claim

(I.2) S2 is a Sylow◦ 2-subgroup of NG(TA)

Recall that NG
◦(TA) = CG

◦(TA) as TA is a good torus.
Now S2 ̸= 1 and S ≤ N◦(S2). Working in the L-group N◦(S2), we have

A a normal quasisimple subgroup normalized by the Sylow◦ 2-subgroup S,
and thus A ◁ N◦(S2), that is N

◦(S2) ≤ N◦(A).
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Thus NC(TA)
◦(S2) ≤ N(A) ∩ C(TA) = TAC(A). Now S2 is a Sylow◦

2-subgroup of C(A), and hence of TAC(A), so S2 is a Sylow◦ 2-subgroup of
its own normalizer in C(TA), and hence is a Sylow◦ 2-subgroup of C(TA),
and hence of N(TA), as claimed.

Now let H = NC(TA)(Q2). Then S2 is a Sylow◦ 2-subgroup of H, and

K∗
2 ≤ H. Let H̄ = H/Q2. Using the bar notation now in this sense, we

have K̄∗
2 a quasisimple subgroup of H̄ and containing a Sylow◦ 2-subgroup

of H̄, so by Proposition 6.8 of Chapter II, K̄2∗ ≤ E(H̄◦). But since S̄2 is a
Sylow◦ 2-subgroup of H̄, we conclude that K̄∗

2 = E(H̄◦).
Now NA(TA) centralizes Q2 and normalizes H, hence acts on the quo-

tient H̄, and in particular normalizes K̄∗
2 . So NA(TA) normalizes K∗

2 , and

hence also the iterated commutator subgroup (K∗
2 )

(∞); and the latter group

is K
(∞)
2 by (I.1).

Now by assumption S ≤ K, so S normalizes K2 and K
(∞)
2 . In particular

we now have K
(∞)
2 normalized by both SA and NA(TA); as these two groups

generate A, it follows that

(I.3) A normalizes K
(∞)
2 .

So now we work in N◦(K
(∞)
2 ). Here we have the quasisimple subgroup

A normalized by the Sylow◦ 2-subgroup S, and hence by Proposition 6.8

of Chapter II we have A ◁ N◦(K
(∞)
2 ). But the latter group contains K, so

K ≤ N◦(A), as claimed. This completes the analysis of Case (I).

(Case II) K̄2 = 1

So we have K̄ = K̄1. As S̄2 acts trivially on K̄1 = K̄, it follows that
S2 ≤ Q, and S̄A is a Sylow 2-subgroup of K̄.

Now K̄ is a central product of quasisimple algebraic groups. Let B1 =
NK(S), so that B̄1 is a Borel subgroup of K̄. Using Proposition 9.6 of
Chapter I, split NK(S) as S ⋊ T1 with T̄1 a maximal torus of B̄1 (so here
we do not take T1 to be the full preimage of T̄1).

The group K̄ is generated by the Levi factors (SL2) of minimal parabolic
subgroups containing B̄1. So it will suffice to prove the following: if P1 ≤ K
is the full preimage of a minimal parabolic subgroup P̄1 of K̄ containing B̄1,

then P
(∞)
1 ≤ N(A). So fix such a subgroup P1 of K. Before dealing directly

with P1, we need to compare root systems in A and K.
Now T1 acts on A like a subgroup of NA(SA), and as T1 is a 2⊥-group it

acts like a subgroup of TA; in particular T1 and TA commute. Let T = TAT1.
Thus the image of T in Aut(SA) can be identified with TA.

On the other hand, T also acts on K and induces an action on K̄ and
S̄A. Here this action will agree with the one induced by T1 ≃ T̄1 on S̄A. So
the image of T in Aut(S̄A) can be identified with T1. (In particular, we have
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a homomorphism from TA to T1, but it is not useful to think of this as an
identification, as two different points of view are involved.)

Now we have root systems associated to SA and NA(SA) on the one
hand, and to S̄A and NK̄(S̄A) on the other, and we wish to compare them.
The root subgroups of SA are the minimal TA-invariant subgroups, or equiv-
alently the minimal nontrivial T -invariant subgroups. These may be indexed
as Sα with α varying over the set Φ of positive roots for a suitable root sys-
tem attached to A. On the other hand, the root subgroups of S̄, relative
to T̄1, are the minimal nontrivial T1-invariant subgroups of S̄, or equiva-
lently the minimal nontrivial T -invariant subgroups of S̄A = SA/QA, or
the minimal TA-invariant subgroups of SA properly containing QA. As TA-
invariant subgroups of SA are directly spanned by the root groups they
contain, QA corresponds to a certain subset Φ0 of Φ, and the minimal TA-
invariant subgroups of SA properly containing QA correspond to sets of the
form Φ0 ∪{α}, with α ∈ Φ \Φ0. Thus if Φ1 is the set of positive roots in K̄,
corresponding to S̄, then we have a natural bijection ι : Φ \Φ0 ↔ Φ1, where
(S̄)ι(α) = S{α}∪Φ0

= SαQ.
Now this bijection does not necessarily preserve any interesting structure

on the roots, such as the length, Dynkin diagram, or linear relations. But we
claim that under this map, the simple roots in Φ1 correspond to the simple
roots of Φ lying outside Φ0. Indeed, by Fact 2.3 of Chapter II, the simple
roots β in Φ1 are those for which S̄β is not contained in [S̄, S̄] = [S, S]Q, and
these correspond to the roots α for which Sα is contained neither in [S, S]
nor in Q, in other words the simple roots outside Φ0.

Now we return to the group P1. Let R ≤ P1 be the preimage of O2(P̄1).
As R ≤ S = SAQ we have R = RAQ with RA = R ∩ A. Corresponding
to P̄1, there is a simple root ι(δ), with δ ∈ Φ \ Φ0 simple, such that R̄ is
spanned by the root groups S̄α with α ∈ Φ1, α ̸= ι(δ). Hence RA is spanned
by the root groups Sα in SA with α ̸= δ, and PA = NA(RA) is a minimal
parabolic subgroup of A with O2(PA) = RA. We consider the relationship

of P
(∞)
1 and PA, working in N(R).

Now (PAQ/R)
(∞) ≃ (PA/RA)

(∞) is a simple subgroup of N◦(R)/R,
and contains the Sylow◦ 2-subgroup S/R of N◦(R)/R, so by Proposition

5.20 of Chapter II we have (PAQ/R)
(∞) ◁ N◦(R)/R. On the other hand

(P1/R)
(∞) is a simple subgroup of N◦(R)/R, meeting the normal subgroup

(PAQ/R)
(∞) nontrivially (in S/R), and thus P

(∞)
1 ≤ PAR. But PAR ≤

N(A), so P
(∞)
1 ≤ N(A), as claimed. □

5.2. 2-locality.

Proposition 5.4. Let G be a simple L∗-group of finite Morley rank and
of even type, and P a proper parabolic subgroup of G. Then P is a 2-local◦

2-subgroup of G.
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Proof. By Fact 4.19 of Chapter IV, Q = O2(P ) is connected. If Q = 1
then by Proposition 5.10 of Chapter II we have U2(P ) = E(U2(P )). But
E(U2(P )) = 1 by Proposition 5.3 of Chapter VIII. So U2(P ) = 1, a contra-
diction.

So Q is nontrivial and P is contained in the 2-local◦ subgroup H =
N◦(Q). We claim P = H.

Let P0 = U2(P ) and H0 = U2(H). Now P0 contains the normalizer
of a Sylow◦ 2-subgroup S of G, so O2(H) ≤ S ≤ P and it follows that
O2(H) = Q. Now in H̄ = H/Q we have P̄0 = E(P̄0) and H̄0 = E(H̄0). As
S ≤ P0 it follows from Proposition 5.20 of Chapter II that P̄0 ◁ H̄0 and as
P̄0 contains a Sylow◦ 2-subgroup of H̄0, we deduce P̄0 = E(H̄0) = H0. Thus
H0 ≤ P . Now H = H0N

◦(S) by the Frattini argument, and N◦(S) ≤ P , so
P = H. □

5.3. O2⊥.

Proposition 5.5. Let G be a simple L∗-group of finite Morley rank and
of even type, and P a proper parabolic subgroup of G. Then F ∗(U2(P )) =
O2(P ).

Proof. Let P0 = U2(P ). By Proposition 5.3 of Chapter VIII, E(P ) =
1. Hence F ∗(P ) = F (P ). Now O(P ) = 1 by Proposition 4.4 of Chapter
VIII, in view of Proposition 5.4 of Chapter VIII. Hence F ◦(P ) = O2(P0).
Thus F (P0) = O2(P0)O2⊥(P0), with the factor A = O2⊥(P0) finite, hence
central in P .

Let S be a Sylow◦ 2-subgroup of G with N◦(S) ≤ P . We claim that
C(G,S) ≤ C(A). Let X ≤ S be N◦(S)-invariant, definable, and connected,
and set H = N◦(X). We claim H ≤ C(A). Let H0 = U2(H). Then by a
Frattini argument H = H0NH

◦(S) and NH
◦(S) ≤ P ≤ C(A), so it suffices

to check that H0 ≤ C(A).
We show first that A ≤ H. Certainly A ≤ NP0(S), and we claim this is

connected. In P̄ = P/O2(P ), we have P̄0 = E(P̄0) (with algebraic compo-
nents) by Proposition 5.10 of Chapter II. Thus NP̄0

(S̄) is a Borel subgroup

of P̄0 and NP0(S) is connected. Thus A ≤ H.
Let H̄0 = H0/O2(H). Then H̄0 = E(H̄0) and NH̄0

(S) is a Borel sub-

group of H̄0. As NH0(S) ≤ P , A centralizes a Borel subgroup of H̄0 and
hence acts trivially on H̄0, that is

[H0, A] ≤ O2(H)

On the other hand [O2(H), A] = 1. By Proposition 10.7 of Chapter I, we
have [H0, A] = 1, as claimed.

Thus C(G,S) ≤ C(A). So if A > 1, then C(G,S) < G and by Theorem
3.3 of Chapter VIII we have G ≃ SL2(K) with K algebraically closed of
characteristic two. Then the only proper parabolic subgroups are the Borel
subgroups, and the theorem holds by inspection. □
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5.4. N◦(S).

Definition 5.6. Let H be a group of finite Morley rank. Then HK

denotes the smallest connected normal subgroup K of H for which H/K is
a K-group.

Lemma 5.7. Let G be a simple L∗-group and S a Sylow◦ 2-subgroup.
Then NG

◦(S) is solvable.

Proof. Let K = [NG
◦(S)]K. It suffices to show that K = 1.

Let P be a proper definable connected subgroup of G containing N◦(S),
and L = U2(P ). Then P acts on L̄ = L/O2(L), via inner automorphisms.
Thus if K0 is the kernel of this action, we have PK ≤ K0, or in other words
[PK, L] ≤ O2(L). In particular PK ≤ N◦(S). Hence PK = K, and K is
P -invariant.

Since C(G,S) is generated by groups P of this type, also C(G,S) nor-
malizes K. So if C(G,S) = G then K = 1 as required, while if C(G,S) < G
then by Theorem 3.3 of Chapter VIII we have G ≃ SL2(K) with K alge-
braically closed of characteristic two, in which case our claim is clear. □

Lemma 5.8. Let G be a simple L∗-group and S a Sylow◦ 2-subgroup of
G. Let P be a proper definable connected subgroup of G containing N◦(S).
Then

(1) P is a K-group
(2) E(P ) = 1
(3) F ∗(P ) = O2(P )

Proof. By the Frattini argument P = U2(P )N
◦(S), so P is a K-group.

Hence E(P ) ≤ E(U2(P )) = 1.
We turn to the third point. We have F ∗(P ) = F (P ) = O2(P )O2⊥(P ).

Since O(P ) = 1, it suffices to show that P has no finite central 2⊥-subgroup
A. Let L = U2(P ), and L̄ = L/O2(L). Let P0 = CP (L̄). Then A ≤ P0.
Furthermore P/O2(L) = L̄ × P̄0, so P0 is connected. But P0 ≤ N(S), so
A ≤ N◦(S). Now if P1 is any proper definable subgroup of G containing
N◦(S), then A ≤ P1 and A commutes with S. As A is a 2⊥-group it
follows easily that A commutes with U2(P1). As groups of the form U2(P1)
generate C(G,S), we have C(G,S) centralizing A. So if A is nontrivial then
C(G,S) < G, and G ≃ SL2(K) for some algebraically closed field K of
characteristic two, in which case our claim holds by inspection. □

6. The classification: plan of attack

We may now present a detailed plan of attack for the proof of our main
theorem. As the mixed type case has been dealt with, it remains to prove
the following.

Theorem 6.1. A simple group of finite Morley rank of even type is
isomorphic to a Chevalley group over a field of characteristic two.
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Of course, it suffices to prove this in the L∗ context.

Proposition 6.2. A simple L∗-group of finite Morley rank of even type
is isomorphic to a Chevalley group over a field of characteristic two.

6.1. The case division.

Definition 6.3. Let G be a group of finite Morley rank of even type,
and S a Sylow◦ 2-subgroup.

(1) We define M(S) as the set of proper definable connected subgroups
P of G containing NG

◦(S) such that U2(P )/O2(P ) ≃ SL2(K) for
some algebraically closed field K of characteristic two.

(2) G is said to be
(a) thin if M(S) = ∅
(b) quasithin if G = ⟨U2(P1), U2(P2)⟩ for some P1, P2 ∈ M(S).
(c) generic if it is neither thin nor quasithin.

Our plan of attack becomes three plans of attack. In the thin case,
we aim to show that G ≃ SL2(K) for some algebraically closed field K of
characteristic two, using the C(G,T )-theorem. In the quasithin case, we aim
at identifying G as a group of Lie type in Lie rank two, using the amalgam
method. In the generic case, we identify G as a group of Lie type in Lie
rank at least three, using the version of Niles’ theorem adapted to the finite
Morley rank context. The thin and generic cases can be dealt with here; the
amalgam method requires a long analysis, given in the following chapter.

The groups U2(P ) for P ∈ M(S) have a clear structure. Hence the
following considerations may be suggestive.

Lemma 6.4. Let G be a group of finite Morley rank of even type, and
S a Sylow◦ 2-subgroup. Let P1, . . . , Pr ∈ M(S), and Li = U2(Pi) for i =
1, . . . , r. Set H = ⟨P1, . . . , Pr⟩ and G0 = ⟨L1, . . . , Lr⟩. Then

(1) Pi = Li ·N◦(S)
(2) G0 = U2(H).

In particular, if G is simple and H = G, then G0 = G.

Proof. The first point follows from the Frattini argument as S ≤ Li ◁
Pi. Furthermore, this has the following consequence.

(1) Pi ≤ N(G0)

Indeed, Li ≤ G0, while N
◦(S) ≤ Pi ≤ N(Li) for each i, and hence N◦(S) ≤

N(G0). So (1) holds, and in particular

(2) H ≤ N(G0)

On the other hand G0 contains S, a Sylow◦ 2-subgroup of H. As G0

is normal in H, G0 contains all Sylow◦ 2-subgroups of H, and hence G0 =
U2(H). □
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6.2. The thin case.

Lemma 6.5. Let G be a simple L∗-group of finite Morley rank and of
even type, and S a Sylow◦ 2-subgroup of G. If M(S) = ∅, then G ≃ SL2(K)
for some algebraically closed field of characteristic two.

Proof. It suffices to show that C(G,S) < G; we show in fact that
C(G,S) = S.

Suppose thatX is aNG
◦(S)-invariant subgroup of S andH0 = U2(N(X)).

We claim that H0 = S. Let H̄0 = H0/O2(H0). Then H̄0 = E(H̄0) is a
central product of quasisimple algebraic groups in characteristic two, over
algebraically closed fields. If H̄0 = 1, then H0 = O2(H0), and as S ≤ H0 it
follows that H0 = S.

Suppose toward a contradiction that H̄0 is nontrivial. Let L̄ be a qua-
sisimple component of H̄0, let P0 be the preimage in H0 of a minimal para-
bolic subgroup P̄0 in L̄ (possibly equal to L) and set Q = O2(P0). It suffices
to show that N◦(Q) ∈ M(S).

Now N◦(S) acts on L via inner automorphisms. These will normalize
P0 as P0 is parabolic. So N◦(S) ≤ N◦(Q).

Let P = N◦(Q). Then O2(P ) ≤ S ≤ P0, so O2(P ) ≤ Q and thus
O2(P ) = Q. Working in P̄ = P/Q, it follows from Proposition 5.20 of
Chapter II that U2(P̄ ) = U2(P0), and thus U2(P ) = U2(P0). So P ∈ M(S),
a contradiction. □

6.3. The generic case.

Lemma 6.6. Let G be a simple L∗-group of finite Morley rank and of even
type, and not thin. Then G is generated by the groups U2(P ) for P ∈ M(S).

Proof. Let G0 = ⟨U2(P ) : P ∈ M(S)⟩. We claim that G0 contains
C(G,S).

Let X ≤ S be N◦(S)-invariant, and set H0 = U2(N(X)). Let Q =
O2(H0), and H̄0 = H0/Q. Then H̄0 = E(H̄0) is a central product of qua-
sisimple algebraic groups, and is generated by the Levi factors of its minimal
parabolic subgroups. So it suffices to show that if P̄0 is U2(M̄) for some
minimal parabolic subgroup of H̄0, and P0 is the full preimage in H0, then
P0 ≤ G0.

As in the proof of Lemma 6.5 of Chapter VIII, we let P = N◦(O2(P0))
and we find that P is parabolic, O2(P ) = O2(P0), and finally U2(P ) = P0.
Hence P ∈ M(S) and P0 ≤ G0. □

Lemma 6.7. Let G be a simple L∗-group of finite Morley rank and of
even type, and of generic type. Then G is isomorphic to a Chevalley group
over an algebraically closed field of characteristic two, in Lie rank at least
three.

Proof. We check the hypotheses of Theorem 8.1 of Chapter III (a form
of Niles’ Theorem).
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We have G = ⟨U2(P ) : P ∈ M(S)⟩ by Lemma 6.6 of Chapter VIII,
and finitely many subgroups Li = U2(Pi) will suffice for this. Let them be
indexed by i = 1, . . . , r. Then we have the following.

(1) G = ⟨Pi : i = 1, . . . , r⟩
(2) NPi

◦(S) = NG
◦(S) is solvable.

(3) Li = U2(Pi) and Li/O2(Li) ≃ SL2(Ki) with Ki an algebraically
closed field of characteristic two.

(4) Let Gij = ⟨Li, Lj⟩. Then Gij/O2(Gij is either a Chevalley group of
Lie rank two over an algebraically closed field of characteristic two
(hence of type SL3, PSL3, Sp4, or G2) or a product of two Chevalley
groups of Lie rank one, that is SL2(K1)× SL2(K2), where K1 and
K2 are algebraically closed fields of characteristic two.

Only the last point requires verification. As G is of generic type, we
have Gij < G, and as Gij = U2(Gij), the group Gij is a K-group. In the

quotient Gij = Gij/O2(Gij), we have Gij = E(Gij) and Gij is generated by

groups contained in two minimal parabolic subgroups. Hence either Gij has
Lie rank two, or it is a central product of two groups of Lie rank one.

Thus we have the hypotheses of Theorem 8.1 of Chapter III, and under
these conditions Corollary 8.2 of Chapter III gives the result, mediated by
Fact 7.11 of Chapter III. □

So the thin and generic cases are handled using the C(G,T )-theorem,
and a combination of Niles’ theorem and the theory of buildings, respec-
tively, and only the quasithin case remains.

6.4. The generic case, again. At the end of our analysis we invoked
the classification of BN pairs of finite Morley rank of spherical type and Tits
rank at least three. One does not need the full force of this classification;
since there are very few Moufang polygons of finite Morley rank, an inductive
approach gives the classification of Moufang buildings of spherical type for
Tits rank at least two (cf. [126]). But for this approach one does need
to know that the Moufang property holds automatically above Tits rank
three, a substantial result. In fact, at this point in the analysis one can also
conclude with just a little more argument, using the generic identification
theorem of §10 of Chapter III, Theorem 10.2 of Chapter III.

Recall that when we applied Niles’ theorem, the group B was a standard
Borel subgroup (normalizer of a Sylow◦ 2-subgroup, which factors as S ⋊ T
with T a torus), and it is on this torus that the associated Weyl group W
acts. As in §13 of Chapter I, the reflections of W act as reflections on the
subgroup Tp = T [p] defined by tp = 1, and faithfully, at least for p odd and
not the characteristic. So the Prüfer p-rank of this torus is at least three for
every odd p other than the characteristic.

The next lemma is hypothesis (G) of Theorem 10.2 of Chapter III.

Lemma 6.8. Let T be a maximal torus of B. Then

G = ⟨U2(C
◦(x)) : x ∈ Tp⟩
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Proof. Let G0 = ⟨C◦(x) : x ∈ Tp⟩.
Recall that C(G,S) is generated by the subgroups U2(N(X)) with X ≤

S definable, connected, and B-invariant. In particular Tp acts on each
U2(N(X)). By Lemma 5.26 of Chapter II, these groups U2(N(X)) are con-
tained in G0. So C(G,T ) ≤ G0.

So if G0 < G then G = SL2(K) by Theorem 3.3 of Chapter VIII, which
is not the case. □

So to complete the identification using Theorem 10.2 of Chapter III, we
must deal with hypotheses (R.1) and (R.2), on the structure of U2(C

◦(x)) for
x ∈ T×

p . By Proposition 9.4 of Chapter III, the group U2(C
◦(x)) is reductive,

By Proposition 5.10 of Chapter II it follows that U2(C
◦(x)) = F ∗(C◦(x)).

Finally, hypothesis (R.1) says that the groups U2(C
◦(x)) contain no

unipotent p-subgroups (p is odd). Since H = U2(C
◦(x)) is a K-group and

H/O2(H) is a central product of Chevalley groups in characteristic two, this
is immediate.

7. Notes

This is a key transitional chapter. Our series of characterizations of SL2 termi-

nates in §2 with the most flexible version of all, after which it turns out we are in a

position to move quickly in the direction of an identification theorem, by a strategy

which is outlined, finally, in §5.

§1 of Chapter VIII. Abelian Sylow◦ 2-subgroups

This material was worked out in the K∗-context in [5], making essential use of

the theory of groups generated by pseudoreflections, which has no obvious analog

in the finite case. In addition the classification of groups with weakly embedded

subgroups is very powerful here, much more powerful than the strong embedding

classification would be. We dealt in [5] with groups with strongly closed abelian

subgroups, the analog of Goldschmidt’s theorem (cf. [95]). This turned out to be

more than is actually needed for our classification theorem.

The methods of this chapter would suffice to generalize all of [5] to the L∗-
context. It may be of some independent interest that the treatment of strongly

closed abelian subgroups can be treated by a mixture of finite group theoretic

methods and more geometrical arguments, along the same lines as the case of

abelian Sylow 2-subgroups. But once we have the full classification of simple groups

of even type this result follows anyway as a special case.

The classification of groups with strongly closed abelian subgroups was given

in the finite case in [95]. The essential point in passing to L∗-groups is to develop

the theory of groups generated by pseudoreflection groups in a context which allows

for the presence of nonsolvable connected degenerate type groups.

The treatment of groups of finite Morley rank whose Sylow 2-subgroups contain
finite strongly closed abelian subgroups would be different, and more direct. This

is given in [4] for the K∗-case, modulo applications of tameness that were removed

by Jaligot’s work. The L∗-case goes beyond this, and has not been published.
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Again, we will arrive at the full classification in even type without relying on this

particular result.

§2 of Chapter VIII Baumann’s Pushing Up Theorem

The versions of Baumann’s Pushing Up theorem given in §2 of Chapter VIII

are taken from [6].

§3 of Chapter VIII. The C(G,T ) Theorem

The C(G,T ) theorem was presented in [6], with a slightly different definition

of C(G,T ), more suitable for the K∗-case. With the definition given here the

result is slightly sharper, but the proof is the same. One can also give a quick a

priori proof via a Frattini argument that with either definition the two versions of

the theorem are equivalent, but in any case the natural line of argument gives the

stronger version.

§4 of Chapter VIII. 2-Local subgroups

The elimination of Ô(NG(P )) generalizes the elimination of the coreO(NG(P ))
as given in [4]. It can be carried out as soon as one has the weak embedding clas-

sification (and could perhaps be used more heavily at an earlier point).

§5 of Chapter VIII. Parabolic subgroups

This material corresponds to [8] in the K∗-context. That paper evolved over

several versions and at first included a general result on the existence of standard

components. However that turned out not to be needed when working with the

amalgam method and was suppressed, as we were in a very utilitarian frame of mind

at the time. Of course the suppressed material follows from our main classification

theorem, but this is a little beside the point.

The solvability of N◦(S) in the L∗-context comes from [36]. Though quick,

the argument is delicate. We actually gave Theorem 8.1 of Chapter III in a version

which would allow us to bypass this particular result, but we will not expand on

this.

§6 of Chapter VIII. The classification: plan of attack

While this material has not appeared previously in print, it is the basis for the

approach we took in the K∗ context. The suggestion to take an approach which

heads as rapidly as possible toward the amalgam method was made by Stellmacher

and Stroth.

The generic identification theorem of §10 of Chapter III (or [36]) was devised as

a more direct approach to identification than the corpus of material associated with

Tits’ theory of buildings. But as we have previously noted, even if we may avoid

the Tits classification in higher ranks, we will continue to rely on the classification

of Moufang polygons, which is invoked in the next chapter.



CHAPTER IX

Quasithin groups

Als Hegel auf dem Totbette lag, sagte
er: “nur Einer hat mich verstanden”,
aber gleich darauf fügte er verdrießlich
hinzu: “und der hat mich auch nicht
verstanden”.

— Heine, 1834

Introduction

In the present chapter we prove the following.

Theorem QT. Let G be a simple L∗-group of finite Morley rank and
of even type, and suppose that G is quasithin. Then G is isomorphic to a
Chevalley group of Lie rank two, that is to PSL3(K), Sp4(K), or G2(K)
with K some algebraically closed field of characteristic two.

The hypothesis that G is quasithin means that if S is a Sylow◦ 2-
subgroup of G, then there are two subgroups P1, P2 of minimal parabolic
type in G containing N◦(S), such that G is generated by the subgroups
L1, L2, where Li = U2(Pi).

The basic tool used throughout most of the chapter, is the amalgam
method, in which a graph of groups Γ is associated with the configuration
(G,P1, P2).

This graph of groups Γ has a universal cover Γ̂, a tree of groups, which
corresponds to the free amalgam P1∗BP2 with B = P1∩P2. In the amalgam
method, one works in this graph, which provides a geometrical notation for
working with Ĝ = P1 ∗B P2. This last group need not be of finite Morley
rank, but we work mainly with definable subgroups of one of the conjugates
of P1 and P2, which can be considered as subgroups of G.

In §1 of Chapter IX we introduce this method, and the associated nota-
tion, including a critical parameter s. After a lengthy analysis we find that
s is 4, 5, or 7, values which turn out eventually to correspond to the groups
of type PSL3, Sp4, and G2, respectively.

In §2 of Chapter IX we have some preparatory material. We then deal
separately with the two possibilities s even and s odd in separate sections
(beginning with the observation that s ≥ 4 in any case). We aim at a
determination of the relevant values of s and a sufficiently clear picture
of what s means in terms of the action of Pi on O2(Pi) for i = 1, 2. In

435
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§3 of Chapter IX we introduce some fundamental concepts, in particular a
parameter bi (i = 0, 1) whose analysis plays a crucial role. This analysis is
carried out in §§4 of Chapter IX–8 of Chapter IX.

With this information in hand, in §9 of Chapter IX we construct a gen-
eralized n-gon Γ∗ as a natural quotient of Γ̂, where n = s− 1: the values of
n are therefore 3, 4, and 6, and thus we have the generalized triangle (pro-
jective plane) associated with PSL3, the generalized quadrangle associated
with Sp4, and the generalized hexagon associated with G2; or rather, that
is what we must show. For this, we verify the Moufang property and then
apply the classification theorem of [126].

We can then show that the group G∗ induced on this generalized polygon
by Ĝ is interpretable in the original groupG, and thus has finite Morley rank.
This allows us to determine G∗. On the other hand, G∗ is only a quotient
of a free amalgam associated with G, and it is not immediately clear how
G may be determined. However, the pattern of groups (P1, P2, B) is visible
both in G and in G∗, as it corresponds to the labeling of a single edge in
each of the graphs Γ, Γ̂, and Γ∗. Thus the determination of G∗ yields a
determination of P1, P2, B inside G. Now to conclude we use a theorem
of Tits, Fact 2.28 of Chapter II. After a little more computation to verify
the hypotheses of this Fact, in §10 of Chapter IX, we arrive finally at the
identification of G.

1. The amalgam method

We will use the amalgam method at considerable length to prove the
following result.

Proposition 1.1. Let G be a an L∗-group of finite Morley rank and of
even type, and S a Sylow◦ 2-subgroup of G. Suppose that G is generated by
two definable subgroups L1, L2 satisfying the following conditions for i = 1, 2.

A Li = U2(Li).
B L̄i = Li/O2(Li) ≃ SL2(Ki) for some algebraically closed field Ki of

characteristic two.
C F ∗(Li) = O2(Li).
D N◦(S) normalizes Li.

Then there is a simple Chevalley group of Lie rank two G∗, and there are
definable subgroups Gi of G containing Li for i = 1, 2, such that the triple
(G1, G2, G1∩G2) is isomorphic to a triple (G∗

1, G
∗
2, B

∗) in G∗, where G∗
1 and

G∗
2 are minimal parabolic subgroups of G∗ containing the Borel subgroup B∗.

We express the conclusion of the result as follows: G and G∗ are parabolic
isomorphic. We will say at once what the groups G1 and G2 are, and
rephrase the result accordingly. However, the hypotheses of Proposition 1.1
of Chapter IX are those which are actually given to us if we assume G0 is
quasithin. As we have discussed above, the conclusion of this proposition
does not immediately provide the identification of G0, but brings us very
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close to the criterion given in Fact 2.28 of Chapter II, and it will be easy to
close that gap when we come to it.

Notation 1.2. Under the hypotheses of Proposition 1.1 of Chapter IX,
let Bi = NGi(S) for i = 1, 2, let B = ⟨B1, B2⟩, and set Gi = LiB for i = 1, 2.

Lemma 1.3. Under the hypotheses of Proposition 1.1 of Chapter IX we
have the following.

(1) G = ⟨G1, G2⟩
(2) S ◁ B and B/S is abelian.
(3) U2(Gi) = Li

(4) G1 ∩G2 = B
(5) F ∗(Gi) = O2(Gi)

Proof. We have G = ⟨G1, G2⟩ and S ◁ B in view of our hypotheses
and our definitions, but these points are nonetheless worth recording.

Now B2 acts on L̄1 by inner automorphisms normalizing S̄, hence B2

commutes with B̄1 modulo S̄, or in other words [B1, B2] ≤ S, and the
second point is established. In particular B/S is a divisible abelian 2⊥-
group normalizing L1 and L2, and our third point follows.

Now G1 ∩ G2 = L1B ∩ L2B = (L1 ∩ L2)B and as L1 ∩ L2 is a proper
subgroup of L1 containing S, the intersection must be contained in B1 and
hence in B, so the fourth point follows.

Finally, taking for definiteness i = 1, we claim F ∗(G1) = O2(G1). Let
P1 = N◦(L1). Evidently E(G1) ≤ E(L1) ≤ E(P1) = 1 as P1 is parabolic,
using Proposition 5.3 of Chapter VIII.

So we are left with F (G1) = O2(L1)O2′(G1). Now O2′(G1) commutes
with L1 = U2(G1), and in particular with S. On the other hand O2′(G1) acts
on L̄2, centralizing S̄, and hence acts trivially. So [O2′(L1), L2] ≤ O2(L2),
and [O2′(L1), O2(L2)] = 1, so for any Sylow◦ 2-subgroup Q of L2 we have
O2′ , Q] = 1, and thus [O2′(L1), L2] = 1. So O2′ centralizes ⟨L1, L2⟩ = G, a
contradiction. □

The main result may be reformulated as follows.

Proposition 1.4. Let G0 be a group of finite Morley rank and of even
type, and S a Sylow◦ 2-subgroup of G0. Suppose that G0 is generated by two
definable connected L-subgroups G1, G2 satisfying the following conditions
for i = 1, 2, where we write Li for U2(Gi), and B for G1 ∩G2.

B′. L̄i = Li/O2(Li) ≃ SL2(Ki) for some algebraically closed field Ki of
characteristic two.

C′. F ∗(Gi) = O2(Li).
D. NGi(S) = Gi ∩B for i = 1, 2.
E. O2(G0) = 1.
F. B = (L1 ∩B)(L2 ∩B)

Then there is a simple Chevalley group of Lie rank two G∗, and there are
groups Gi containing Li for i = 1, 2, such that the triple (G1, G2, G1 ∩ G2)
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is isomorphic to a triple (G∗
1, G

∗
2, B

∗) in G∗, where G∗
1 and G∗

2 are minimal
parabolic subgroups containing the Borel subgroup B∗.

Lemma 1.5. Under the hypotheses above, no nontrivial subgroup of G1∩
G2 is normal in G0.

Proof. Let K ≤ G1 ∩ G2 be normal in G0. Then O2(K) = 1 by
hypothesis (E). Hence K ≤ O(G1) = 1, by hypothesis (C′). □

An equivalent statement is that the action of G0 on the graph Γ defined
below is faithful.

1.1. The graph Γ. In the context of Proposition 1.4 of Chapter IX,
we have G0 = ⟨G1, G2⟩ and we wish to identify the triple (G1, G2, B) where
B = G1 ∩G2. For the most part we work in the group

G = G1 ∗B G2,

the free product of G1 and G2 over B. This has the defect that it is not
itself a group of finite Morley rank, a fact which we will simply have to live
with.

We let Γ be the associated coset graph, whose vertices are the cosets of
G1 and G2 in G, with an edge whenever two cosets meet. In particular G1

and G2 are vertices of Γ, connected by an edge. The graph Γ is a tree, and
is the universal cover of the coset graph Γ0 for G0. The virtues of the graph
Γ will provide ample compensation for the problems caused by the loss of
finite Morley rank in passing from G0 to G.

Vertices of Γ are denoted by small Greek letters (reserving the letter γ,
however, for paths). There is a natural action of G on Γ, and the stabilizer
of the vertex δ is denoted Gδ. These stabilizers are conjugates of G1 and
G2. More generally, if V is a set of vertices, GV will denote the pointwise
stabilizer of V . In particular we write Gδδ′ for G{δ,δ′}.

We let α and β denote G1 and G2, respectively, when considered as
vertices of Γ.

Write B = S ⋊K with K a torus. More precisely, apply property (F )
and Schur-Zassenhaus to split B as S ⋊K, and then observe that K is the
product of two commuting tori, from L1 and L2.

Let T = TK be the fixed point set of K in V (Γ); we often think of T
also as the graph induced on this set of vertices by Γ.

For δ a vertex of Γ, we write Lδ for U2(Gδ), and Ḡδ for Gδ/O2(Lδ). Let
Kδ = K ∩ Lδ for δ ∈ V (Γ). Then K = KαKβ by our initial assumptions.

Recall that L̄δ ≃ SL2(F ) for some field F of characteristic two.
We write ∆(u) for the neighbors of u in Γ.

Lemma 1.6. For δ a vertex of Γ, Lδ acts transitively on the neighbors
of δ, and the action factors through the action of L̄δ on the projective line.
In particular the action of G on Γ is edge-transitive.
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Proof. Consider the action of G1 on the neighbors of α. The neighbors
of G1 are, by definition, the cosets G2g with g ∈ G1. Thus the action of
G1 is transitive on ∆(α), and as the action of G on Γ has two orbits on
the vertices, and every edge meets both orbits, it follows that the action is
transitive on the edges.

The stabilizer of β in G1 is Gαβ = B, and G1 = L1B. So L1 also acts
transitively on ∆(α), and the stabilizer of β is a Borel subgroup. As this is
also the stabilizer of a point in the natural action of L1 on the projective
line (factoring through L̄1), our claims follow. □

Lemma 1.7. Let λ, µ be adjacent vertices of Γ, and Q ≤ Gλµ a subgroup
whose normalizers in Gλ and in Gµ act transitively on the neighbors of the
respective vertices. Then Q = 1.

Proof. Let Hδ = NGδ
(Q) for any vertex δ of Γ for which Q ≤ Gδ.

Let Γ0 be the graph induced on the union of the orbits of H = ⟨Hλ, Hµ⟩
on λ and µ. Then H acts transitively on the neighbors of any vertex of Γ0

and it follows that Γ0 = Γ. As H normalizes Q, it follows that Q fixes all
the points of Γ. But the kernel of the action of G on Γ is trivial, by Lemma
1.5 of Chapter IX, so Q is trivial. □

Lemma 1.8. T is a 2-way infinite path in Γ.

Proof. In the first place, T is connected, since the path connecting any
two vertices of T must be fixed pointwise by K. Also T contains α and β.
So it suffices to show that the degree of any vertex of T , relative to ΓK , is
two.

Let δ be a vertex of T . Then δ has at least one neighbor δ′ in T . Then
Gδδ′ is a conjugate of B, and contains K. Hence K must be a complement
to O2(Gδδ′) (a conjugate of S), and covers a maximal torus of L̄δ. So K has
two fixed points in the action of L̄δ on the projective line, hence two fixed
points among the neighbors of δ, as claimed. □

Lemma 1.9. Let δ ∈ T . Then CGδ
(K) ≤ GT .

Proof. Gδ = LδK, so CGδ
(K) ≤ KQδ with

Qδ = O2(Gδ)

As the latter group fixes both neighbors of δ in T , we can continue induc-
tively along all vertices of T . □

Lemma 1.10. There are elements wα, wβ in Lα, Lβ respectively, rep-
resenting nontrivial Weyl group elements in L̄α, L̄β acting on K̄ (in the
corresponding quotient), such that wα and wβ normalize K.

Proof. In Lα, for example, we have N(KO2(Lα)) = O2(Lα)N(K) by
the Frattini argument, so there is an appropriate wα normalizing K. □

Observe that in the foregoing lemma the element wα acts on T , fixing α
and switching its two neighbors in T , and that wβ acts similarly with center
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β. So the composite wαwβ acts like a shift on T . We will identify the vertex
set of T with Z, and the vertices α, β with 0, 1 (rather than 1, 2, as earlier
notation might suggest). The shift map is then i 7→ i+ 2.

1.2. Definability. As we will be making use of Morley rank, and the
structures we work with (Γ and the various stabilizers associated with it, or
equivalently Gα ∗B Gβ) do not fit neatly into a ranked universe, we make
some comments on general issues of definability. The main point is that the
point stabilizers Gδ that we work with are all definable in a group of finite
Morley rank, and as we work locally with finitely many at a time, for the
most part, we can use the notion of Morley rank very freely.

Definition 1.11. Let H be a group acting on a graph A.
1. For δ ∈ V (A) and k ≥ 0, let ∆k(δ) be the set of vertices at distance

at most k from δ, let Fk(δ) =
⋃

δ′∈∆k(δ)
Hδ′ and let Hk(δ) = Fk(δ)

k, the set

of products of at most k elements, each of which lies in Fk(δ).
2. H is locally of finite Morley rank on A if for each δ ∈ V (A) and each

k ≥ 0, the structure (Hk(δ),∆k(δ)) has finite Morley rank. Here Hk(δ) is
viewed as a partial group with a partial action on the graph induced on ∆k(δ).
In other words, viewing (H,A) as a relational structure, (Hk(δ),∆k(δ)) is
the corresponding substructure.

3. H is locally of uniformly finite Morley rank on A if for each δ ∈ V (A)
and each l ≥ k ≥ 0, the structure induced on (Hk(δ),∆k(δ)) by all definable
relations on (Hl(δ),∆l(δ)) is of finite Morley rank, depending on k and δ
but not on l.

Lemma 1.12. Let H be a group of finite Morley rank operating on a coset
graph A with respect to two definable subgroups H1, H2 with intersection H0,
let Â be the universal cover, and Ĥ = H1∗H0H2 acting naturally on Â. Then

Ĥ is locally of uniformly finite Morley rank on Â.

Proof. The claim is that the structures (Ĥk(δ),∆k(δ)) are interpretable

in (H,A), and that the restriction from (Ĥl(δ),∆l(δ)) to (Ĥk(δ),∆k(δ)) of a
definable relation is definable over (H,A). It suffices to prove the first point
as the second point amounts to the trivial point that under the appropri-
ate interpretations the embedding of one such structure into another is also
interpretable.

Let X = P1∪P2. Everything comes down to the definability in H of the
k-place relation Rk(x1, . . . , xk) defined by: “x1 · · · · · xk = 1 in Ĥ”. This is
proved by induction on k beginning with k = 1. For k = 1 it suffices to note
that the natural maps from H0 and H1 to Ĥ are embeddings. For k > 1 we
use the following property of free products with amalgamation: if x1, . . . , xk
are alternately in H1\H0 and H2\H0, then the product is nontrivial. In the
remaining cases, since k > 1 the product can be shortened and induction
applies. □
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2. Preparation

2.1. The natural module. We give some variations on the results in
§5 of Chapter III.

Lemma 2.1. Let V be a Z[L]-module where L ≃ SL2(K) with K a field.
Suppose the following:

(1) CV (L) = 0 and [V,L] = V
(2) [V, S, S] = 0, where S is a maximal unipotent subgroup of L.

Then V is a direct sum of natural modules for L.

Proof. Let W ≤ V the sum of the irreducible submodules of V which
can be viewed as natural modules for G with an appropriate K-vector space
structure. By Fact 5.28 of Chapter II, CV (S) is contained in W . Hence
[V, S] ≤ W . This applies to any Sylow◦ 2-subgroup of L, and as W is
L-invariant it follows that [V,L] ≤W . Thus W = V . □

Lemma 2.2. Let V be an elementary abelian 2-group, G ≃ SL2(K) with
K an algebraically closed field of characteristic two, G acting on V , and let
S be a Sylow 2-subgroup of G. Suppose the following conditions hold.

(1) CV (G) = 0.
(2) V = ⟨CV (S)

G⟩.
(3) [V, S, S] = 0.

Then V = [V,G] is a sum of natural modules.

Proof. It suffices to show that V = [V,G].
Let W = [V,G]. Then W + CV (S) is a G-submodule of V containing

CV (S), so by the second hypothesis V =WCV (S).
Now 2 rk(CW (S)) = rk(W ), so if V > W then we have 2 rk(CV (S)) >

rk(V ). Therefore if S1 is another Sylow 2-subgroup of G, the intersection
CV (S) ∩ CV (S1) is infinite; but this is CV (G) = 0, a contradiction. □

Lemma 2.3. Let V be an elementary abelian 2-group, G ≃ SL2(K) with
K an algebraically closed field of characteristic two, G acting on V , and let
S be a Sylow 2-subgroup of G. Suppose the following conditions hold.

(1) CV (G) = 0.
(2) V = ⟨CV (S)

G⟩.
(3) rk(V ) = 2 rk(CV (S))

Then V = [V,G] is a sum of natural modules.

Proof. Let S1 ̸= S be another conjugate of S. For x ∈ S, we have
CV (x) ∩ CV (S1) = 1 and hence rk(CV (s)) ≤ rk(V/CV (S)) = rk(CV (S)).
Hence CV

◦(x) = CV
◦(S). On the other hand [x, V ] ≤ CV

◦(x), and it follows
that the action of S on V is quadratic, so the previous lemma applies. □

Lemma 2.4. Let H be a group of finite Morley rank with H̄ = H/O2(H) ≃
SL2(K) for some algebraically closed field K of characteristic two. Suppose
that σ ∈ H has order three, and acts without fixed points on O2(H). Then
O2(H) is elementary abelian, and is a direct sum of natural modules.
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Proof. The analogous statement for finite groups is proved in [108,
8.2], taking K finite and of order greater than two.

Working with finite subgroups of our group H, it follows that O2(H) is
elementary abelian and that the action of a Sylow◦ 2-subgroup on O2(H) is
quadratic. Our assumption implies that CO2(H)(H̄) = 1.

Again, Higman’s Lemma implies that O2(H) = [O2(H), S]. So Lemma
2.1 of Chapter IX applies. □

Lemma 2.5. Let H be a group such that H/O2(H) ≃ SL2(K) for some
field K of characteristic two, where |K| > 2, with Z(H) elementary abelian,
and V = O2(H)/Z(H) elementary abelian. Suppose that V affords a natural
module for H/O2(H). Then O2(H) is elementary abelian.

Proof. If O2(H) is not elementary abelian then the ordinary Frattini
subgroup ϕ(O2(H)) is nontrivial, and contained in Z(H). We can pass to a
quotient group by factoring out a subgroup of Z(H), and arrange to have
|Z(H)| = 2 and ϕ(H) still nontrivial. So we consider this case.

Then there is an involution z ∈ O2(G) \ Z(G), and all elements of the
coset zZ(G) are involutions. But G acts transitively on (O2(G)/Z(G))

×,
and it follows that O2(G) has exponent two. □

2.2. Involutions acting on L. We give a couple of minor technical
lemmas useful later.

Lemma 2.6. Let G be a group of finite Morley rank of the form AK⟨z⟩
with A and K definable in G, A a normal abelian 2-subgroup, and K the
multiplicative group of an algebraically closed field of characteristic two, in-
terpretable in G. Suppose that AK is normal in G, and z is an involution
which inverts the image of K in AK/A. Then A has a complement in G.

Proof. LetK0 ≤ K be a finite subgroup. Note that AK0 is z-invariant.
By Fact 9.5 of Chapter I, taking H = A⟨z⟩, the group AK0⟨z⟩ splits over
A. Without loss of generality the complement contains K0, so there is an
involution i in zA which inverts K0. By compactness, we may suppose there
is an involution i ∈ Az which inverts all of the torsion in K. Thus the sub-
group of K consisting of elements inverted by i contains the multiplicative
group of an infinite field, and hence is all of K by Fact 4.16 of Chapter I.
In particular i normalizes K and K⟨i⟩ is the desired complement. □

Lemma 2.7. Let H = QK⟨z⟩ be a group of finite Morley rank with
Q = O2(H), K the multiplicative group of a field interpreted in H, and z
an involution which inverts QK/Q. Then z inverts a conjugate of K.

Proof. We work inductively, relative to rk(Q). If Q0 < Q is infinite
and K⟨z⟩-invariant, we apply induction to H/Q0 and reduce to the case
Q = Q0.

If Q is finite then [z,K] ≤ (QK)◦ = K, and our claim holds. So we may
suppose that Q is minimal infinite K⟨z⟩-invariant, and in particular abelian.
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If K commutes with Q then QK = Q×K and z normalizes K already.
If CQ(K) is nontrivial and finite we may factor it out. So we may suppose
that Q is irreducible as a K⟨z⟩-module.

If Q is irreducible as a K-module, then the additive subgroup of End(A)
generated by the image of K is a definable field Φ, and z induces an action
on Φ, a field automorphism of order at most two. The fixed field is definable
and infinite, hence equal to Φ by Lemma 4.3 of Chapter I. But z inverts K,
a contradiction.

So Q = V ⊕V z with Q an irreducible K-module. Hence CQ(z) = {[q, z] :
q ∈ Q}. It follows that all involutions in the coset Qz are conjugate. On
the other hand, by Lemma 2.6 of Chapter IX at least one such involution
normalizes K, so every such involution normalizes a conjugate of K. □

2.3. Regular paths. A path is a sequence of distinct adjacent vertices
in Γ; it is ordered, so that its reversal is another path.

Definition 2.8.

(1) A path γ = (δ0, . . . , δn) in Γ is regular if Gγ acts transitively on
the two sets ∆(δ0) \ {δ1} and ∆(δn) \ {δn−1}; in other words, on
the neighbors of each endpoint, omitting the neighbors in γ.

(2) A path is right or left regular if the regularity condition holds at the
right or left endpoint, respectively.

(3) A path γ is singular if it is not regular; similarly, right or left
singular if the regularity condition fails on the right or left side.

Lemma 2.9. Every vertex is an endpoint of a singular finite path.

Proof. If we fix the vertex δ, then the stabilizersGγ for paths beginning
at δ are all contained in Gδ. Therefore by the descending chain condition
on definable subgroups of Gδ, there is a path γ with initial point δ for which
Gγ is minimal. Then Gγ fixes all neighbors of the other endpoint, hence γ
is singular. □

Notation 2.10. Let s be the length of the shortest singular path.

Lemma 2.11. Let γ, γ′ be two paths of length m, where m ≤ s, suppose
that their initial vertices are in the same orbit under G. Then γ and γ′ lie
in the same orbit under the action of G.

Proof. Proceeding by induction, we may suppose γ and γ′ agree on an
initial segment γ0 of lengthm−1. Then γ0 is regular, so we may conjugating
the remaining endpoint of γ to γ′ while fixing γ0. □

In particular, G has two orbits on the paths of length s, depending only
on the type of the first vertex. There is a distinction to be observed between
the cases in which s is odd and s is even. In the former case reversal of the
path changes its orbit, so all paths of length s are singular.
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Notation 2.12. Let O be an orbit of G in V (Γ), and m ≥ 1 an integer.
A path γ is of type (O,m) if the length is m and the initial vertex is in O,
and of type (m,O) if the length is m and the terminal vertex is in O.

Lemma 2.13. Let O0 and O1 be the two orbits of G on V (Γ).

(1) If paths of type (O0, s) are left regular, then paths of type (O1, s)
are right regular.

(2) If s is even then any path of length at least s is singular on both
sides.

(3) If s is odd then any path of odd length at least s is singular.

Proof.
1. We consider a path γ of type (O1, s) and two paths γ′, γ′′ extending

γ by an additional vertex. We claim that γ′ and γ′′ are conjugate. We
consider the paths γ̂′, γ̂′′ obtained from γ′ and γ′′ by deleting the first vertex
in each case. Then γ̂′ and γ̂′′ are paths of the same type and length s, so
(γ̂′)g = γ̂′′ for some g ∈ G.

So (γ′)g and γ′′ are extensions to the left of a path of type (O0, s), and
hence are conjugate under the action of G.

2. Let s be even. We may suppose that paths of type (O0, s) are singular.
Since the reversal of such a path γ is of the same type, γ must be singular
on both sides. Then by (1) also paths of type (O1, s) are singular on both
sides.

3. Let s be odd, and let γ be a path of length s which is singular.
Reversing the path if necessary, we may suppose that it is left singular. Let
its type be (O0, s). Let γ′ be any path of odd length m greater than s.
Reversing the path if necessary, let its type be (O0,m). Then this path
is also left singular, since an initial segment is conjugate to γ. Hence the
original path was singular. □

2.4. Qα ∩Qβ. It is important to eliminate the following special config-
uration.

Lemma 2.14. Let λ, µ be adjacent vertices in Γ. Then Qλ ∩ Qµ is not
normal in Gλ.

Proof. We may take the edge in question to be (α, β). So we will
assume Gα ∩Qβ ◁ Gα.

We cannot have Qβ ≤ Qα, as our hypothesis would become Qβ ◁ Gα,
while also Qβ ◁ Gβ.

Let L be the normal closure of Qβ in Lα. As Qβ is not contained in Qα,
but is K-invariant, we see that Qβ covers a Sylow 2-subgroup of L̄α, and
hence L covers L̄α. That is, Lα = QαL.

We claim that Qβ is a Sylow 2-subgroup of L. Now O2(L) ≤ Qα,
so [O2(L), Qβ] ≤ Qα ∩ Qβ. Conjugating this relation within Lα, we find
[O2(L), L] ≤ Qα ∩Qβ. Working in the quotient L̄ = L/(Qα ∩Qβ), we have

[O2(L̄), L̄] = 1
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and by the theory of central extensions, L̄(∞) ≃ SL2 and thus L̄ = E(L̄) ×
O2(L̄), since L = U2(L). Now L̄ is generated by conjugates of Q̄β under Lα,
so in view of its structure we find O2(L̄) ≤ Q̄β and Q̄β is a Sylow subgroup
of L̄, so Qβ is a Sylow 2-subgroup of L.

Now F ∗(L) = O2(L). By Proposition 2.2 of Chapter VIII we have a
nontrivial definable connected subgroup P of Qβ normalized by both L and
NGβ

◦(Qβ) = Gβ. There is a question here as to what the “ambient group”
for the application of Proposition 2.2 of Chapter VIII should be. Recall that
the configuration (Gα, Gβ, B) is assumed to occur in a group of finite Morley
rank G0. We can apply the Baumann theorem directly in that group, and
the conclusion has the same meaning whether we work in G0 or in Gα∗BGβ.

At this point, P is normalized by the groups L and Gβ, stabilizing adja-
cent vertices α, β and acting transitively on the neighbors of those vertices,
respectively. By Lemma 1.7 of Chapter IX, P is trivial, a contradiction. □

Lemma 2.15. Let γ = (δ0, . . . , δs) be a right singular path of length s.
Then O2(Gγ) ≤ Qδs.

Proof. As the length is s, γ is conjugate to a path in T , in other words
one which is K-invariant. We will assume γ is a path in T . Observe that by
definition s ≥ 2 and thus Gγ = O2(Gγ)K.

Now K has two orbits on ∆(δs) \ {δs−1}, one of length 1; we call that
vertex δs+1. Let Q = O2(Gγ). If Q moves δs+1 then γ is right regular, a
contradiction.

So Q ≤ Gδs+1 , and since Q ≤ Gδs−1 as well, and these two groups

intersect Gδs in subgroups which map to opposite Borel subgroups in Ḡδs ,
the 2-group Q must belong to O2(Gδs), as claimed. □

Lemma 2.16. The invariant s is at least 4.

Proof. Fix a singular path γ = (δ0, . . . , δs) of length s, reversing it if
needed to get right singularity. Let Q = Qδ1 ∩ . . . Qδs−1 . Then Q ≤ Gγ , so
by Lemma 2.15 of Chapter IX we have

(∗) Q ≤ Qδs

Now if s = 2 the relation (∗) becomes Qδ1 ≤ Qδ2 and in particular
Qδ1 ∩Qδ2 ◁ Gδ1 , contradicting Lemma 2.14 of Chapter IX.

If s = 3 then the relation (∗) becomes Qδ1 ∩ Qδ2 ≤ Qδ3 , which can be
written

Qδ2 ∩Qδ1 = Qδ2 ∩Qδ3

Furthermore, in this case all paths of length three with δ2 as middle vertex
are conjugate, so the intersection Qδ2 ∩ Qδ is independent of the choice of
δ ∈ ∆(δ2), and hence is normal in Gδ2 , that is Qδ1 ∩ Qδ2 ◁ Gδ2 , again
contradicting Lemma 2.14 of Chapter IX. □

3. Zδ

3.1. The group Zδ.
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Definition 3.1. For δ a vertex of Γ we define

Zδ = ⟨Z◦(S) : S a Sylow 2-subgroup of Gδ⟩

Lemma 3.2. Zδ is a commutative subgroup of Qδ.

Proof. Observe that Zδ centralizes Qδ, hence Zδ ≤ Qδ. Hence Zδ is
commutative. □

In particular, Zδ is contained in Gδ′ for all neighbors δ
′ of δ. We note also

that as Zα is K-invariant, either Zα ≤ Qβ or Zα covers a Sylow 2-subgroup
of L̄β, and of course the same applies to any pair of adjacent vertices of Γ.
In the first case, if Zα ≤ Qβ, then Zα is contained in all G′

β for β′ adjacent

to β, and in particular for that choice of β′ lying on T = TK ; this style of
argument can be iterated, and eventually leads to Zα covering some L̄δ with
δ ∈ T . We will return to this more systematically later.

At present we return to the notation in which α, β are called 0, 1, in
terms of the labeling of T = TK .

The next lemma gives some information about Zδ in general.

Lemma 3.3. One of the following holds.

(i) Z0 = Z◦(L0)
(ii) Z1 = Z◦(L1)
(iii) For i = 0, 1 we have

(a) Zi = Z◦(Qi)
(b) Z◦(Qi)/Z

◦(Li) is a natural module for L̄i.
(c) If Z0 ≤ Q1 then Z◦(L0) ̸= 1.

Proof. This argument will be a long one.
We assume:

(1) Z0 > Z◦(L0); Z1 > Z◦(L1)

We will prove (iii).
Let A(S) be the set of connected definable abelian subgroups of S of

maximal rank, and define A(Qi) similarly. Let J(S) = ⟨A : A ∈ A(S)⟩.
If J(S) ≤ Q0 then J(S) = J(Q0) ◁ L0. Thus if J(S) ≤ Q0, Q1 then J(S)

is normal in both L0 and L1, a contradiction. We will therefore suppose:

(2) J(S) ̸≤ Q0

Now we prove:

(3)
Z◦(Q0)/[Z

◦(Q0)∩Z◦(L0)] is elementary abelian, and affords
a natural module for L̄0 = L0/Q0

Let A ∈ A(S)\A(Q0), using (2). Taking g ∈ L0 so that ⟨A,Ag⟩Q0 = L0,
using Corollary 5.29 of Chapter II, we have (A ∩ Ag ∩ Z◦(Q0))

◦ = Z◦(L0).
Thus
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rk([Ag ∩ Z◦(Q0)]/Z
◦(L0)) = rk(Ag ∩ Z◦(Q0)/[A

g ∩A ∩ Z◦(Q0)])
≤ rk(Z◦(Q0)/A ∩ Z◦(Q0))
= rk((A ∩Q0)Z

◦(Q0)/A ∩Q0)
≤ rk(A/A ∩Q0)

For the final inequality note that (A ∩Q0)Z
◦(Q0) is abelian, and hence

rk((A ∩ Q0)Z
◦(Q0)) ≤ rk(A). In summary, writing f0 for the rank of the

base field of L̄0:

rk([Ag ∩ Z◦(Q0)]/Z
◦(L0)) ≤ rk(Z◦(Q0)/A ∩ Z◦(Q0)) ≤ rk(A/A ∩Q0) ≤ f0

Hence

rk(Z◦(Q0)/Z
◦(L0)) ≤ rk(Z◦(Q0)/A ∩ Z◦(Q0)) + rk(A/A ∩Q0) ≤ 2f0

Now L̄0 acts faithfully on Z◦(Q0)/Z
◦(L0), and hence Z◦(Q0)/Z

◦(L0) is a
natural module for L̄0 by Lemma 5.31 of Chapter II. This proves (3).

With (3) in hand we will deduce more from the foregoing calculation:

(4)

(a) Z0 = Z◦(Q0); (b) rk(Z(S)/Z(L0) = f0;

and for A ∈ A(S) \ A(Q0):
(c) AQ0 = S; (d) (A ∩Q0)

◦Z0 ∈ A(Q0) ⊆ A(S).

As we assume Z0 > Z(L0), and as Z◦(Q0)/Z
◦(L0) is irreducible, this

implies (4a): Z0 = Z◦(Q0).
ForA ∈ A(S), the proof of (3), together with the fact that rk(Z(Q0)/Z(L0))

= 2f0, yields the following:

rk(Z0/A ∩ Z0) = rk(A/A ∩Q0) = f0

from which it follows that AQ0 = S, and that rk((A ∩ Q0)Z0) = rk(A ∩
Q0) + f0 = rk(A). Hence (A ∩ Q0)

◦Z0 ∈ A(S) and as the latter group
is contained in Q0 it follows that A(Q0) ⊆ A(S). Thus we have (4c, d).
Finally, (A∩Z0)

◦ = Z◦(S), and thus rk(Z(S)/Z(L0)) = f0. This proves (4).
Next, by a lengthy analysis we will show:

(5) Z◦(J(S)) = Z◦(S)

Set R = Z◦(J(S)). Fix T ̸= S another Sylow 2-subgroup of L0, and
take A ∈ A(T ) \ A(Q0).

As (A∩Q0)
◦Z0 ∈ A(Q0), we have Z

◦(J(Q0)) ≤ (A∩Q0)
◦Z0, and hence

we have the following, using 4(b) in the middle.

rk(Z◦(J(Q0))/A ∩ Z◦(J(Q0))) ≤ rk((A ∩Q0)
◦Z0/(A ∩Q0)

◦)
= rk(Z0/A ∩ Z0) = f0

= rk(Z(S)/Z(L0)) = rk(Z(S)/A ∩ Z(S))
≤ rk(R/A ∩R) ≤ rk(Z◦(J(Q0))/A ∩ Z(J(Q0)))

Hence all inequalities here are equalities, and

rk(R/A ∩R) = rk(Z(S)/A ∩ Z(S)) = f0
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In particular R = (R ∩A)◦Z◦(S).
Set X = (R ∩ A)◦. Then ⟨J(S), A⟩ ≤ C(X), so L0 = Q0C(X). Let

B = CS
◦(R), and L̂0 = ⟨BL0⟩. Then O2(L0) ≤ L̂0. Now Q0 normalizes B,

so

L̂0 = ⟨BQ0C(X)⟩ = ⟨BC(X)⟩ ≤ C(X)

Hence X ≤ CR(O
2(L0)). Since Z(S)∩CR(O

2(L0)) = Z(L0), and Z
◦(L0) ≤

X, we get X = CR
◦(O2(L0)). Hence Q0 normalizes X, and X ◁ L0. Thus

we have:

Z◦(J(S)) = XZ◦(S) with X ◁ L0

Thus B = CS
◦(R) = CS

◦(X). Now (S ∩ L̂0)
◦ ≤ CS

◦(X) = B so

B = (S ∩ L̂0)
◦ is a Sylow◦ 2-subgroup of L̂0.

Now [S,X] is normalized by S and A, hence by L0. However [S,X] =
[S,Z◦(J(S))]. If we also have J(S) ̸≤ Q1 then similarly [S,Z◦(J(S))] ◁ L1,
hence [S,Z◦(J(S))] = 1, so Z◦(J(S)) = Z◦(S) as claimed.

Suppose finally that J(S) ≤ Q1. Then J(S) = J(Q1). If L1 centralizes
Z◦(J(S)) then Z◦(S) = Z◦(L1), a contradiction. So CL1(Z

◦(J(S))) ≤ Q1 ≤
S, and we have

CL1
◦(Z◦(J(S))) = CS

◦(Z◦(J(S))) = B,

and B ◁ L1. Now B is a Sylow 2-subgroup of L̂0. As F
∗(L̂0) ≤ F ∗(L0), the

Baumann theorem, Fact 2.2 of Chapter VIII, applies and yields a normal
subgroup of L̂0 which is normalized by L1 as well, providing a contradiction.
Thus (5) is proved.

Now we can prove, outright:

(2′) J(S) ̸≤ Q1

Otherwise, Z◦(S) = Z◦(J(S)) = Z◦(J(Q1)) ◁ L1, and Z1 = Z◦(S) =
Z◦(L1), contradicting our hypothesis.

Now from (2′) the analogs (3′, 4′) of (3, 4) follow. In particular (iii.a, iii.b)
have now been verified. Accordingly for the remainder of the argument we
may assume

Z1 ≤ Q0

(6) Z1 is elementary abelian

We know that Z1 is abelian, and Z1/Z
◦(L1) is a natural module. Let

U = ϕ(Z◦(S)). Then U ≤ Z(L1). Now Z1 is the union of the conjugates
of Z◦(S) in L1, so U = ϕ(Z1). Similarly U = ϕ(Z0). Hence U is normal in
both G0 and G1, and therefore U = 1.

(7) For z ∈ Zi \Z(S), i = 0 or 1, we have CS(z) = CS(Zi) = Qi.

As Li acts transitively on Zi/Z
◦(Li), we have z ∈ Z(Sg) for some g. If

CS(z) ̸≤ Qi, and x ∈ CS(z) \Qi, then ⟨x, Sg⟩ = Li, in consequence of Fact
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4.6 of Chapter II, so z ∈ Z(S), a contradiction. Thus CS(z) = Qi and our
claim follows.

(8)
For x ∈ S \Qi we have:

Z◦(S) = [x, Zi]Z
◦(Li); and

the intersection [x, Zi] ∩ Z◦(Li) is finite.

We have rk([x, Zi]) = rk(Zi/CZi(x)) = rk(Zi/Z
◦(Li)) = fi. Hence fi =

rk([x, Zi]) ≥ rk([x, Zi/Z
◦(Li)]) = fi. It follows that [x, Zi]∩Z◦(Li) is finite,

and (8) follows.
Now define

Vi = [Li, Zi]

Then Vi/Vi ∩ Z(Li) is a natural module covering Zi/Z
◦(Li).

(9) [S,Zi] = (Vi ∩ Z(S))◦

Take x ∈ Li \ N(S) a 2-element. Let R = [S,Zi] and set U = RRx, a
group normalized by x.

Then

fi = rk(R/R ∩ Z(Li)) ≤ rk(R/R ∩Rx) ≤ rk(R/CR(x))
≤ rk(U/CU (x)) = rk([U, x]) ≤ rk([Zi, x])
= fi

by (8), so [Zi, x] = [U, x] ≤ U . As Li = ⟨x, S⟩, we have Vi = [Li, Zi] ≤ U .
Thus Vi∩Z(S) = U∩Z(S) = R(Rx∩Z(S)) ≤ RZ(Li)

x and (Vi∩Z(S))◦ = R.

(10) (Z0 ∩ Z1) ≤ Z(S)

If z ∈ Z0 ∩ Z1 \ Z(S), then Q0 = CS(z) = Q1 is normal in both L0 and L1,
a contradiction.

(11) Z0Z1 ̸◁ L0

If Z0Z1 ◁ L0 then Q0∩Q1 = CL0(Z0Z1) ◁ L0, contradicting Lemma 2.14
of Chapter IX.

(12) (Z0 ∩ V1)◦ ≤ Z(L0)

Take A ∈ A(S) \ A(Q0), and g ∈ L0 \N(S), and set B = (A ∩Q0)
◦Z0.

Then B ∈ A(Q0), and [A,B] ≤ Z0.

If [A,Zg
1 ] ≤ Z0, then [Ag−1

, Z0Z1] ≤ Z0 and hence L0 = ⟨Ag−1
, S⟩ ≤

N(Z0Z1), a contradiction. So [A,Zg
1 ] ̸≤ Z0, and hence [A, V g

1 ] ̸≤ Z0, and so
V g
1 ̸≤ B. Thus [B, V g

1 ] ̸= 1.

Now Bg−1 ≤ Q0 ≤ S so Bg−1 ∈ A(S). But [Bg−1, V1] ̸= 1 so Bg−1
is not

contained in Q1, and hence Bg−1
Q1 = S, BQg

1 = Sg, and

[B, V g
1 ] = [Sg, V g

1 ] = (V g
1 ∩ Z(Sg))◦
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Suppose for some choice of g as above we have

(I) CV1(V
g
1 ) ≤ Z(S)

Then V1Q
g
1 = Sg as rk(V1/V1 ∩Qg

1) ≥ rk(V1/V1 ∩ Z(S)) = f1, so

(V g
1 ∩ Z(Sg))◦ = [Sg, V g

1 ] = [V1, V
g
1 ],

and similarly
[V1, V

g
1 ] = (V1 ∩ Z(S))◦

Thus (V1 ∩ Z(S))◦ = (V g
1 ∩ Z(Sg))◦ ≤ Z(S) ∩ Z(Sg) = Z(L0). But (Z0 ∩

V1)
◦ ≤ (Z0 ∩ Z1)

◦ = Z◦(S), so this yields (Z0 ∩ V1)◦ ≤ Z(L0), as claimed.
Now suppose, alternatively, that for all g as above we have

(II) CV1(V
g
1 ) ̸≤ Z(S);

taking x ∈ CV1(V
g) \ Z(S), this yields

V g
1 ≤ C(x) = Q1, and [V g

1 , V1] = 1

Let C = CB(V
g
1 )V

g
1 . We have seen that rk(V g

1 /B ∩ V g
1 ) = f1. Thus

rk(C) = rk(B ∩Qg
1) + f1 ≥ rk(B)

and C ∈ A(S).
Now C ≤ CA

◦(V g
1 )Z1, which is abelian, so C = CA

◦(V g
1 )Z1, and A

normalizes C. Thus for x ∈ A \Q0 we have

[B, V g
1 ] = [B,C] = [B,Cx] = [B, V gx

1 ]

and [B, V g
1 ] ≤ Z(Sg) ∩ Z(Sgx) = Z(L0).

Now (V g
1 ∩ Z(Sg))◦ = [B, V g

1 ] ≤ Z(L0), so (V1 ∩ Z(S))◦ ≤ Z(L0), and
as above (Z0 ∩ V1)◦ ≤ Z(L0).

This proves (12).
Now if Z◦(L0) = 1 we have (Z0 ∩ V1)◦ = 1, and in particular (Z(S) ∩

V1)
◦ = 1, while rk(V1/Z(S) ∩ V1) = f1, a contradiction.
This completes the proof of part (iii.c). □

3.2. The parameters bi and r.

Definition 3.4. Let i ∈ T (which we identify with Z). Then bi is

max(|j − i| : j ∈ T,Zi ≤ Gj)

As T falls into two orbits under the stabilizer of the set T in G, in view
of the shift automorphism mentioned at the end of §1.1, there are at most
two values for bi, namely b0 and b1.

As Z0 ≤ Q0 ≤ G1, we have b0 ≥ 1 and similarly b1 ≥ 1. As Z0 ≤ G1, we
have Z0 ≤ G2 if and only if Z0 ≤ Q1. Thus b0 > 1 if and only if Z0 ≤ Q1.

These parameters are important for our case division. There is another
parameter whose relation to s is a critical question. We first make some
remarks on stabilizers of paths in T .

Lemma 3.5. Let γ be a path of length at least two in T . Then

(1) Gγ = O2(Gγ)K.
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(2) Gγ > GT if and only if O2(Gγ) > O2(GT ).

Proof. If γ has length at least two then we may suppose that it contains
the edge (0, 1) and thus Gγ ≤ B and Gγ = O2(Gγ)K.

The second point then follows at once. □

Lemma 3.6. There is a maximal positive integer r with the property that
there is some regular path γ of length r contained in T with Gγ > GT

Proof. It suffices to consider paths beginning with either 0 or 1, and
once the initial vertex is fixed, the associated stabilizersGγ form a decreasing
sequence, which must therefore be constant from some point onward. □

Definition 3.7. The parameter r is defined in accordance with the pre-
ceding lemma as the maximal integer so that there is some regular path γ of
length r contained in T with Gγ > GT

We note that there may be longer regular paths in Γ (though this does
not actually occur in reality). In the long run, we aim at the following.

r = s− 1

Initially, since all paths of length s− 1 are regular, we have r ≥ s− 1.
It follows from Lemma 2.13 of Chapter IX that for s even, we have

r = s− 1, as desired. However s is expected to be 4, 5, or 7, thus frequently
odd. When s is odd it follows that r is even since we either have r = s− 1
or the last clause of Lemma 2.13 of Chapter IX applies.

Our main case division will be according to the parity of s. If s is even
the analysis will end quickly, while for s odd it passes through a number
of phases. In addition to the three cases corresponding to simple algebraic
groups of Lie rank two, a variety of other potential configurations are ex-
amined and eliminated in the course of the analysis, sometimes quickly and
sometimes after considerable elaboration. The three cases that survive are
described by the following results.

Let fδ be the rank of the field Fδ underlying L̄δ.

Proposition 4.3 of Chapter IX. Suppose s is even. Then s = 4 and
r = 3, and the stabilizers of paths of length s are 2⊥-groups.

Lemma 4.4 of Chapter IX. Suppose s = 4. Then we have the follow-
ing.

(1) f0 = f1.
(2) For any vertex δ, Qδ is elementary abelian, and is a natural module

for L̄δ.

Lemma 8.2 of Chapter IX. Suppose that [Z1, Zb1 ] ̸= 1, and b1 is odd.
Then b0 = b1 = 1, s = 5, r = 4, and in addition we have the following.

(A) f0 = f1 =: f .
(B) Q0 and Q1 are elementary abelian, of rank 3f .
(C) Z(L1) and Z(L2) both have rank f .
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(D) Qi/Z(Li) is a natural module for L̄i.

In particular, r = s− 1 in this case.

Lemma 8.3 of Chapter IX. Suppose that [Z1, Zb1 ] ̸= 1, and b1 is even.
Then b0 = 3, b1 = 2, s = 7, r = 6, and in addition we have the following.

(A) Z0 = Z(L0) has rank f1, and Q0 has rank 2f0 + 3f1.
(B) Z1 is a natural module for L1, and Q1/Z(L1/Z1) is a direct sum of

natural modules for L1.
(C) ϕ(Q0) = Z0, and Q0/Z0 is an irreducible Ḡ0-module.
(D) f1 ≤ f0

In particular, r = s− 1 and Z0 ≤ Z1.

With regard to the last two results, note that the hypothesis [Z1, Zb1 ] ̸= 1
is proved eventually (Lemma 8.8 of Chapter IX).

4. Even s

In the present section, we show mainly that s = 4 and r = 3 when s is
even. We first determine explicitly a small number of possible values for s.

4.1. A theorem of Weiss.

Proposition 4.1. Let Γ be a tree, and G a group acting on Γ. Sup-
pose that G is locally of finite Morley rank in its action on Γ. Suppose the
following hold for some parameter s > 0.

A For each vertex α of Γ, the stabilizer Gα is connected, and acts
transitively on the neighbors of α.

B For any path γ = (δ0, . . . , δm) of length m < s, with m ≥ 1, if S is
a Sylow 2-subgroup of Gδ0,δ1 then Sγ acts transitively on ∆(δm) \
{δm−1} (the righthand neighbors of γ).

C With the notation of part (B), we have Z(S) ≤ O2(Gδ0).
D The connected component of the pointwise stabilizer of any path of

length s is a 2⊥-group.

Then we have
s ∈ {1, 2, 3, 4, 5, 7, 9, 13}

Proof. We will use natural numbers as names for vertices in Γ. Fix
0, 1 adjacent vertices of Γ and let H = G01. Let S be a Sylow 2-subgroup
of H. Let e be the edge (0, 1). For a vertex δ, the distance d(δ, e) is
min(d(δ, 0), d(δ, 1)).

We may suppose that s > 1 and hence S is nontrivial. Let b ∈ Z(S).
Let m = ⌊s/2⌋ − 1. We claim:

(1) b fixes every vertex δ lying at distance at most m from e.

Supposing the contrary, we can find a path γ = (0, 1, . . . , n) with n ≤ m+1,
so that b moves n and fixes the other vertices of γ. Extend γ to a path
γ̃ = (0, 1, . . . , s − 1) of length s − 1 and let a ∈ Sγ̃ , a ̸= 1. As a commutes

with b, a also fixes γ̃b pointwise; but γ∪γb contains a path of length 2(s−n)
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passing through the vertex n − 1. As this path is fixed pointwise by Sγ̃ , it
follows by condition (D) that 2(s − n) < s and hence 2(m + 1) > s, a
contradiction. This proves (1).

We make a case division. Suppose first:

(2a) For every vertex δ with d(δ, e) = m+ 1, b(δ) ̸= δ

Consider any path γ of the form (−m. . . , 0, . . . , s) passing through 0, 1.
Consider the edge e′ = (m + 1,m + 2) contained in γ. Clearly G operates
edge-transitively on Γ and hence there is an element b′ conjugate to b, b′ ∈
O2(Gm+1), which fixes all vertices at distance at most m from e′, and none
at distance exactly m+1. Thus b′ fixes (1, . . . ,m+1, . . . , 2m+2) and moves
0. We examine the action of the commutator [b′, b] on these vertices. Note
that [b′, b] ∈ O2(Gm+1).

As b′ fixes 1, d((−m + 1)b
′−1

, 1) ≤ m and thus b fixes (−m + 1)b
′−1

.
Therefore [b′, b] fixes the vertex −m+1. Similarly as b fixes m+1, [b′, b] fixes

2m+1. However (2m+2)[b
′,b] = (2m+2)b

−1b′b and d((2m+2)b
−1
, e′) = m+1

since b moves m+ 2 and fixes m+ 1. Hence b′ moves (2m+ 2)b
−1

and [b′, b]
moves 2m+ 2. This shows in particular that [b′, b] ̸= 1.

As the 2-element [b′, b] fixes the path (−m+1, . . . , 2m+1) of length 3m,
we have 3m < s. For s even this yields s ≤ 4 and for s odd this yields s ≤ 7;
thus the Lemma holds in these cases.

Accordingly we may suppose, without loss of generality:

(2b) For some vertex δ with d(δ, e) = d(δ, 0) = m+ 1, b(δ) = δ

We may suppose that γ = (−m − 1, . . . , 0) is a path of length m + 1
fixed pointwise by b, and not containing 1. Take a ∈ S moving −1. Then b
fixes γ ∪ γa, a path of length 2(m + 1). Hence 2(m + 1) < s and it follows
that s is odd.

We claim now:

(3) If d(0, δ) ≤ m+ 1 then δb = δ; if d(0, δ) = m+ 2 then δb ̸= δ

The second point is proved as above, by observing that in the contrary case
b fixes a path of length at least s pointwise.

For the first point, suppose d(0, δ) ≤ m+1. If d(e, δ) ≤ m then b fixes δ,
so we need only consider vertices for which: d(0, δ) = m+1, d(1, δ) = m+2.
As m+ 2 < s it follows easily from our hypotheses that S acts transitively
on the set of all such vertices, and as b is central in S and fixes one such
vertex, it fixes them all. Thus (3) holds.

Suppose now that s ≡ 3 mod 4. Consider any path passing through
(0, 1) of the form (−(s− 5)/2, . . . , 0, . . . , s) The vertices 0 and (s+1)/2 are
conjugate. Let b′ be an element of O2(G(s+1)/2) which fixes all vertices at
distance at most m + 1 from (s+ 1)/2 and moves all vertices at distance
m+2. Again we consider the commutator [b′, b] and in this case it fixes the
path (−(s− 5)/2, . . . , s− 2) and moves vertex s− 1. This gives the estimate
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(3s − 9)/2 < s, so s ≤ 7 as s is odd. This is again in accordance with the
Lemma.

Thus we may suppose

(4) s ≡ 1 mod 4

In this case we work with a path of the form (−(s − 9)/2, . . . , 0, . . . , s −
2) passing through (0, 1). As (s + 3)/2 is even there is an element b′ ∈
O2(G(s+3)/2) fixing all vertices of distance at most (s− 1)/2 from (s+3)/2,
and none at distance (s+ 1)/2. The commutator [b′, b] will move s− 2 and
fix the remaining points on this path, yielding the estimate (3s− 15)/2 < s,
s < 15. As s ≡ 1 mod 4 this is the desired conclusion. □

4.2. Application. We now revert to the notation used in conjunction
with the amalgam method, so that s is the length of the shortest singular
path in our graph Γ. Of course, Proposition 4.1 of Chapter IX is intended
to apply here.

Lemma 4.2. With the notation of previous sections, if the pointwise
stabilizers of paths of length s are 2⊥-groups, then

s ∈ {4, 5, 7, 9, 13}

Proof. We only have to verify the hypotheses of Proposition 4.1 of
Chapter IX, bearing in mind Lemma 2.16 of Chapter IX.

Clauses (A) and (C) are part of our initial setup, and for the moment
we are assuming clause (D).

For clause (B), we note that paths of length at most s are conjugate to
paths in T , and for those paths the group Sγ is K-invariant. If the path
is of length less than s, hence regular, then S̄γ in Ḡδm cannot be trivial
as Gγ = SγK, hence Sγ covers a Sylow 2-subgroup of Gδm , namely the one
contained in Gδm−1∩Gδm , which acts transitively on the remaining neighbors
of δm. □

4.3. The even case.

Proposition 4.3. Suppose s is even. Then s = 4 and r = 3, and the
stabilizers of paths of length s are 2⊥-groups.

Proof. By Lemma 2.13 of Chapter IX, r = s− 1.
We wish to apply Lemma 4.2 of Chapter IX, and for this it is sufficient

to check that the pointwise stabilizers of paths of length s are 2⊥-groups.
So we may confine ourselves to this point.

Let γ be a path of length s, which we may suppose without loss of
generality to consist of (0, 1, . . . , s) inside T . Let Q = O2(Gγ). Then Gγ =
Q⋊K. We claim that Q = 1.

By Lemma 2.13 of Chapter IX, any path of length at least s is singular
on both sides. Hence by Lemma 2.15 of Chapter IX and induction, Q fixes
every vertex of Γ. As the action is faithful, Q = 1.
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So now Lemma 4.2 of Chapter IX together with the assumption that s
is even yields s = 4. □

Lemma 4.4. Suppose s = 4, and let fδ be the rank of the field Fδ under-
lying L̄δ. Then we have the following.

(1) f0 = f1.
(2) For any vertex δ, Qδ is elementary abelian, and is a natural module

for L̄δ.

Proof. Let S = O2(L0 ∩ L1), a Sylow 2-subgroup of both groups. As
G acts transitively on the paths of fixed length m ≤ 4 beginning with the
path (0, 1), and also on those beginning with (1, 0), we have two ways to
compute the rank of S, working along a path of length 4 starting from 0 or
from 1. We have O2(Gγ) = 1 once γ has length 4, while O2(Gγ) covers a
Sylow 2-subgroup of Lδ for δ an endpoint of γ, when γ has length less than
4. This yields the following information.

rk(S) = rk(O2(G(0,1))) = f0 + f1 + f0
= rk(O2(G(1,0))) = f1 + f0 + f1

or f0 = f1, as claimed. So writing f = f0 = f1, we have

rk(S) = 3f

In particular, rk(Q0) = 2f .
There is a normal series for Q0 such that L̄0 acts naturally on each

induced quotient, with each factor an elementary abelian 2-group, and this
can be refined to a composition series for the action of L̄0. If all of these L̄0-
modules are trivial, then any maximal torus of L̄0 acts trivially on Q0, and
hence gives rise to a maximal torus of L0 commuting with Q0, contradicting
CL0(Q0) ≤ Q0.

So let V be a nontrivial composition factor for the action of L̄0 on a
section of Q0. Then rk(V ) ≥ 2f by Lemma 5.30 of Chapter II. Thus
V = Q0 since Q0 is connected, and rk(V ) = 2f , so Q0 is a natural module
by Lemma 5.31 of Chapter II.

The same applies equally to Q1. □

5. Odd s, S∗
γ,K

In this and the following three sections we take s to be odd. Our initial
goal, which occupies us in the first two of these sections, is to show that
O2

◦(GT ) is trivial. The present section is preparatory. We establish some
technical properties of O2

◦(GT ), and more particularly, of its normalizer. In
the notation established below, this can all be expressed by the condition

O2
◦(GT ) ∈ S∗

γ,K

with γ an appropriate path of length two in T .
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5.1. Sγ,K .

Definition 5.1. Let G be a group of automorphisms of a graph Γ, K ≤
G, γ a path in Γ of length two, and δ1 the midpoint of γ. Then Sγ,K is the
set of nontrivial subgroups X of G such that the group M = NG(X) satisfies
the following conditions.

(1) X ≤ Gγ.
(2) K ≤M
(3) For either endpoint δ of γ, Mδ acts transitively on all of ∆(δ).
(4) Mδ1 leaves γ setwise invariant, but some element of Mδ1 reverses

γ.

The point will be that O2
◦(GT ) belongs to this class, and this will lead

us to consider other groups in the class which are in some sense maximal.

Definition 5.2. Let G be a group of automorphisms of a tree Γ, K a
subgroup of G, γ a path of length two in Γ, X ∈ Sγ,K , and M = NG(X).
Then we define Γ′ as the graph whose vertices are those in the orbit of an
endpoint of γ under the action ofM , with edges between those vertices whose
distance in Γ is two.

Lemma 5.3. With Γ, K, γ, X, and M as above, and δ a vertex of Γ′,
the actions of Mδ on ∆Γ(δ) and on ∆Γ′

(δ) are equivalent; in fact, every edge
of Γ with endpoint δ is the initial edge of a unique path of length two leading
to a neighbor of δ in Γ′.

Proof. We label the vertices of γ (0, 1, 2). We may suppose that δ = 0.
As M0 is assumed to act transitively on the neighbors of 0, we may suppose
that the edge in question is (0, 1). Our claim is then the following: if δ′ ∈ 0M ,
and δ′ is a neighbor of 1, then δ′ is on γ.

As 0 is conjugate to δ′ under M there is a corresponding conjugate γ′

of γ beginning with δ′. Conjugating further by Mδ′ , we may suppose that
γ′ = γg is of the form (δ′, 1, δ∗); so here g ∈ M1. Now by assumption M1

leaves invariant the set {0, 2}, so δ′ is in this set, as claimed. □

5.2. O2
◦(G). We now return to the framework of the amalgam method,

with s odd, and in particular s ≥ 5. Let γ̃ = (0, . . . , r). This is a regular
path of maximal length in Γ, subject to Gγ > GT . By Lemma 2.13 of
Chapter IX, r is even. We remark that with this choice of notation, we are
now assuming, in particular, that the vertex called “0” is of suitable type,
so that the symmetry between the two orbits on vertices which has existed
up to this point may now be broken.

We assume for the remainder of the section that

O2
◦(GT ) ̸= 1,

aiming at a contradiction.

Notation 5.4.
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(1) We set Q = O2
◦(GT ).

(2) We continue to label T as Z, and we set γ = (0, 1, 2) ⊆ T .

Lemma 5.5. The group Q belongs to the class Sγ,K .

Proof. Let H = NG(Q). We show first that H0
◦ acts transitively on

∆(0).
As γ̃ is regular it follows that O2(Gγ̃) is not contained in Q0, and

O2
◦(Gγ̃) > Q.
We claim that

(∗) O2(Gγ̃) ∩Q0 = Q

Suppose the contrary and let Q∗ = O2(Gγ̃)∩Q0. Let TQ∗ be the fixed point
set of Q∗ in T . This is a path γ̂ containing γ̃, and of finite length. Now
KQ∗ ≤ Gγ̂ acts transitively on the neighbors of the endpoints of γ̂ lying off
γ̂, and so γ̂ is regular. By maximality of γ̃, we have γ̂ = γ̃, but as Q∗ ≤ Q0

this is a contradiction.
By (∗), Q is normal in Gγ̃ , and so Hγ̃ = Gγ̃ .
Since r is even, there is a shift map τ induced by an element g of G,

carrying r to 0. Then g leaves Q and H invariant. Now the group

⟨Hγ̃
◦, (Hγ̃

◦)g⟩
acts transitively on ∆(0). So H0

◦ acts transitively on ∆(0). Hence H0
◦

covers Ḡ0.
Now we will find a reflection on γ lying in H. We can take an element

x of H0 switching the vertices 1 and −1. If τ is an element acting as a shift
of order 2 on T , then τ ∈ H and τ−1 · x swaps 0 and 2, as required.

Finally, we claim that H1 leaves the set {0, 2} invariant. Now H1 con-
tains the reflection just constructed, as well as K, so if it does not leave
this set invariant then it acts transitively on the neighbors of 1 in Γ. In this
case, Q is normalized by the groups H0, H1, each acting transitively on the
corresponding set of neighbors, and hence Q = 1 by Lemma 1.7 of Chapter
IX. This contradiction proves our claim.

Thus Q ∈ Sγ,K . □

5.3. S∗
γ,K . Now we introduce the narrower class S∗

γ,K .

Notation 5.6. Let S∗
γ,K be the set of groups X ∈ Sγ,K for which the

Sylow◦ 2-subgroup of the stabilizer in N(X) of the vertex 0 is maximal. (By
our conventions, 0 is the left endpoint of γ.)

We will show below that Q is also in S∗
γ,K .

Lemma 5.7. Let X be a group in Sγ,K , and set M = NG(X), S =
M ∩Q1. Then

(1) S is a Sylow 2-subgroup of M0, and of M2.
(2) If X ∈ S∗

γ,K , then no nontrivial definable subgroup of S is normal

in both M0 and NG(S).
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Proof. Let R be a Sylow 2-subgroup of M0. Then R fixes some neigh-
bor of 0 in Γ, which after conjugation in M0 we may suppose to be the
vertex 1, that is R ≤M1. In this case R leaves the set {0, 2} invariant, and
fixes the vertex 0, so in G1 R is a 2-subgroup fixing two points, and hence
lies in Q1. Thus R ≤ M ∩Q1. This proves the first point, for M0, and the
same holds for M2 by symmetry.

Now we suppose that X ∈ S∗
γ,K , and we suppose toward a contradiction

that Y ≤ S is definable, nontrivial, and normal in both M0 and in NG(S).
We claim

Y ∈ Sγ,K

AsM1 ≤ N(S), Y is normal inM1, and hence after applying a reflection
in M1 switching 0 and 2, we find Y ◁ M2 as well. Thus writing H for N(Y ),
we have Mi ≤ Hi for i = 0, 1, 2.

Thus to see that Y ∈ Sγ,K , it suffices to check that H1 leaves the set
{0, 2} invariant. If this fails, then H1 acts transitively on ∆(1), and then by
Lemma 1.7 of Chapter IX we have a contradiction.

Now we may reach a contradiction. We have M0 ≤ H0, and as by
hypothesis X ∈ S∗

γ,K , it follows that S is a Sylow 2-subgroup of H0. Let U

be the Sylow 2-subgroup shared by G0 and G1 (in other words, O2(G01)).
We have S ≤ NU

◦(Y ) ≤ H0, so NU
◦(Y ) ≤ M0, and thus NU

◦(Y ) ≤ M1.
So NU

◦(Y ) is a connected group acting on the set {0, 2}, and hence this set
is fixed pointwise. As this is also a 2-group, we have NU

◦(Y ) ≤ Q1. Thus
NU

◦(Y ) ≤M∩Q1 = S. However NU
◦(S) ≤ N◦(Y ), so we find U = S ≤ Q1,

contradicting the structure of G1. □

We summarize the state of knowledge relative to S∗
γ,K as follows.

Proposition 5.8. Let X ∈ S∗
γ,K and M = NG(X). Let Γ′ be the

associated graph on 0M , with edges between vertices whose distance in Γ
is two. Let Γ̃ be the connected component of Γ′ containing 0. For δ ∈ Γ̃, let
L̃δ = U2(Mδ), and Q̃δ = O2(Mδ). Let δ, δ′ be adjacent in Γ̃.

Then the following hold.

(1) Mδ and Mδ′ are conjugate in M .

(2) L̃δ/Q̃δ ≃ SL2(F ) for some field F , independent of δ.
(3) O2

◦(Mδ ∩Mδ′) is a Sylow 2-subgroup of Mδ and Mδ′.
(4) There is no nontrivial subgroup normal in both Lδ and Lδ′.

Proof. The first point is part of the setup.
For the second, we know that Lδ acts transitively on the neighbors of δ

in Γ, so the first assertion follows; as the groups in question are conjugate,
the field F is independent of δ.

For the remaining points, we may take δ, δ′ to be the points 0, 2.
For the third point, we know M ∩Q1 is a Sylow 2-subgroup common to

both M0 and M2. Furthermore M0 ∩M2 ≤ G01, whose Sylow 2-subgroup is
normal.
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For the last point, if a subgroup is normalized by L0 and L2, then is
also normalized by a subgroup of L1 acting transitively on the neighbors
∆(1) in Γ, namely the subgroup generated by the Sylow 2-subgroups of L1

contained respectively in L0 and L2. This forces the subgroup to be trivial
by Lemma 1.7 of Chapter IX. □

5.4. AboutM . The following preparatory lemmas deal with situations
that arise when we pass from our original amalgam to M = N◦(X) with
X ∈ S∗

γ,K .

Lemma 5.9. LetM be a group of finite Morley rank, and letM1,M2 ≤M
be definable connected subgroups. Let Li = U2(Mi) and Qi = O2(Mi) for
i = 1, 2. Suppose

A Li/Qi ≃ SL2(Fi) with Fi algebraically closed of characteristic two,
for i = 1, 2.

B S = O2(M1 ∩M2) is a Sylow 2-subgroup of M1 and of M2, and
NM1(S) = NM2(S) =M1 ∩M2.

C There is no nontrivial definable subgroup normal in both L1 and
L2.

D CL1(Q1) ̸≤ Q1.

Then S is elementary abelian, Li splits as Qi ⋊ L∗
i with L∗

i ≃ SL2(Fi), and
rk(S) is either f1 or f1 + f2.

Proof. If Q1 or Q2 is trivial, then S is elementary abelian. In this
case Qi is central in Mi for i = 1, 2 and by the theory of central extensions,
these extensions split. If Q1 is trivial then the rank of S is f1. If Q1 is
nontrivial, but Q2 is trivial, then Q1 is a proper subgroup of S which is
invariant under M1 ∩ M2, and hence under NM2(S). However looking in
M2, this is impossible.

Now suppose Q1 and Q2 are both nontrivial. Then by (C), these two
groups are distinct, and as they are invariant under the action of M1 ∩M2,
we find S = Q1Q2.

Now CL1(Q1) covers L1/Q1 and is a central extension of SL2(F1) by
Z(Q1), hence splits. Hence L1 = Q1 ×L∗

1 with L∗
1 ≃ SL2(F1). Let ϕ(Q2) be

the ordinary Frattini subgroup, as in §5.5 of Chapter I. Then ϕ(S) = ϕ(Q1)
since the Sylow subgroups of L∗

1 are elementary abelian. Thus ϕ(Q2) ≤ Q1

is normalized by both L2 and L∗
1. Furthermore as Q1 ≤ L2, Q1 normalizes

ϕ(Q2) and thus ϕ(Q2) is normalized by L∗
1Q1 = L1. By our hypothesis (D),

we have ϕ(Q2) = 1 and Q2 is elementary abelian.
Let K1 be a complement to S in NL1(S). As L1/L

∗
1 is a 2-group, we

have K1 ≤ L∗
1. Hence [K1, Q1] = 1. So we find [K1, S] = [K1, Q2] ≤ Q2.

Hence

(∗) [K1, L2] ≤ Q2

Let V2 = Z(Q2). We claim

CV2(K1) = 1
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For this, we argue that CV2(K1) is normal in L1 and L2.
For g ∈ L2, we have K

g
1 ≤ K1Q2 by (∗) It follows that CV2(K1) is normal

in L2.
Now CV2(K1) ≤ CS(K1) = Q1, and the latter is centralized by L∗

1.
Thus CV2(K1) is normalized by L∗

1, and also by Q1 ≤ L2, so by L1. Thus
CV2(K1) = 1.

In particular, V2 ∩ Q1 = 1. Thus (Z(S) ∩ Q1) ∩ Q2 = 1 and Z(S) is
not contained in Q2. So CL2(Q2) covers L2/Q2, and so as above we find
L2 = Q2 × L∗

2 with L∗
2 ≃ SL2(F2).

In particular Q1 ∩ Q2 is normal in L1 and in L2, forcing Q1 ∩ Q2 = 1.
It follows easily that rk(S) = f1 + f2 and everything is proved. □

Lemma 5.10. Let G be a group of finite Morley rank, and M1,M2 ≤ G
two definable connected subgroups. Assume that M1 and M2 are conjugate
in G. Set Li = U2(Mi), Qi = O2(Mi). Assume the following.

A Li/Qi ≃ SL2(F ) with F algebraically closed of characteristic two.
Set f = rk(F ).

B S = O2(M1 ∩M2) is a Sylow 2-subgroup of M1 and of M2, and
NM1(S) = NM2(S) =M1 ∩M2.

C There is no nontrivial definable subgroup of G normal in both L1

and L2.
D N(S) leaves the pair {M1,M2} invariant.

Then one of the following holds for i = 1, 2.

(1) Li = Qi × L∗
i with L∗

i ≃ SL2(F ), and S is elementary abelian of
rank f or 2f ; or

(2) Qi is elementary abelian of rank 2f or 3f , and the quotient Qi/Z(Qi)
is a natural module for L̄i = Li/Qi.

Proof. Take w ∈ G so thatMg
1 =M2. Adjusting by an element ofM2,

we may suppose that w ∈ N(S). Then w interchanges M1 and M2.
If CLi(Qi) > Z(Qi) for some i, then the previous lemma produces the

first case. So we will assume

CLi(Qi) = Z(Qi)

Now we claim the following.
No nontrivial definable subgroup X of S
is normalized by both L1 and NG(S)

Indeed, such a subgroup X would be invariant under the element w, and
hence normalized by both L1 and L2, a contradiction.

Now Theorem 5.3 of Chapter III applies, and yields, in particular, the
following.

(a) [Li, Qi] ≤ Z(Qi)
(b) Z◦(Qi)/Z(Li) is a natural module for Li/Qi

Let Vi = Z(Qi). We claim V1 ̸≤ Q2 and V2 ̸≤ Q1. Suppose for example
V1 ≤ Q2. Then by (a) we have [L2, V1V2] ≤ V2, and after conjugating by w
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we find [L1, V1V2] ≤ V1, and hence V1V2 is normalized by both L1 and L2, a
contradiction. So our claim follows. In view of the action of NLi(S) on the
groups involved, we find S = V1Q2 = V2Q1. Hence Q1 = V1(Q1 ∩ Q2) and
Q2 = V2(Q1 ∩Q2), and V1 ∩Q2 = V2 ∩Q1 = Z(S)

Let x ∈ L1 be a semisimple element that does not normalize S. Then
L1 = ⟨V2, V x

2 ⟩Q1. Set

Q0 = Q2 ∩Q1 ∩Qx
2

ThenQ0∩V1 commutes with the generators of L1 and henceQ0∩V1 = Z(L1).
As rk(Q1/Q0) ≤ 2f , this must be a natural module for L̄1 = L1/Q1, and in
particular irreducible. So

rk(Q1/Q0) = 2f ; Q1 = Q0V1

Now we claim that Q0 ∩Qw
0 = 1. The groups V2, V

x
2 centralize Q0, and

Q1 = Qx
1 normalizes Q0, so S normalizes Q0. Applying w, S normalizes

Q0 ∩Qw
0 . Now V2 and V x

2 centralize Q0 ∩Qw
0 , so L1 = ⟨V2, V x

2 ⟩S normalizes
Q0 ∩Qw

0 , and applying w, also L2 normalizes Q0 ∩Qw
0 . So this intersection

is trivial.
Now Q0, Q

w
0 ≤ Q1∩Q2, and rk(Q1∩Q2/Q0) = f (a 1-dimensional space

in a natural module). If Q0 is nontrivial, then Qw
0 covers this quotient and

hence Q1 ∩ Q2 = Q0Q
w
0 , with rk(Q1 ∩ Q2) = 2f and rk(Q0) = f . If Q0 is

trivial, then rk(Q1 ∩Q2) = f .
Then correspondingly the rank of Q1 is 2f or 3f . The conditions of case

(b) have been recovered.
□

5.5. Γ̃. In this subsection, we deal with groups X ∈ S∗
γ,K and the asso-

ciated graph Γ̃ in the sense of Proposition 5.8 of Chapter IX.

Lemma 5.11. Suppose that X ∈ S∗
γ,K , and set M = NG(X). Let Γ̃ be

the associated graph as in Proposition 5.8 of Chapter IX, and let ∆ = V (Γ̃),
which is the connected component of 0 in the graph Γ′ on 0M . Let M∗ be
the setwise stabilizer of ∆ in M , and let M∆ be the pointwise stabilizer of
∆ in M .

Then the following hold.

(1) M∆ ≤ KQ0.

(2) For δ ∈ ∆, M∗
δ /M∆ acts on the neighbors of δ in Γ̃ as Gδ acts on

the neighbors of δ in Γ.

Proof.
1. M∆ fixes 0, 2,−2 and hence also 0, 1,−1 in Γ, and G0,1,−1 = KQ0 by

Lemma 3.5 of Chapter IX.
2. For δ ∈ ∆, we have M∗

δ = Mδ. So this is contained in Lemma 5.3 of
Chapter IX. □

Lemma 5.12. Retain the hypotheses and notations of the previous lemma,
and consider M∆ = M∗/M∆ acting on Γ̃. Then the maximal regular paths
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in ∆, with respect to the action of M∆, have length at most 4. Furthermore,
if k is the maximal length of such paths (so 1 ≤ k ≤ 4), then the following
hold.

(1) The rank of a Sylow subgroup of M0 is kf0 + rk(M∆).
(2) If k ≤ 2 then the Sylow 2-subgroups of M0 are elementary abelian.
(3) If k > 2 then O2(M0)/Z(U2(M0)) is a natural module under the

action of U2(M0)/O2(M0).
(4) O2(M0) is elementary abelian.
(5) If L = O2(U2(M0)), then [L,O2(M∆)] = 1.

Proof. Let S = Q1 ∩ M and let S∆ be its image in M∆, a Sylow
2-subgroup of M∆

0 and M∆
2 , by Lemma 5.7 of Chapter IX.

The hypotheses of Lemma 5.10 of Chapter IX are satisfied, and this
leads to two cases.

a S∆ is elementary abelian of rank f0 or 2f0.
b O2(M

∆
i ) is elementary abelian of rank 2f0 or 3f0, and the quotient

O2(M
∆
i )/Z(U2(M

∆
i )) is a natural module for U2(M

∆
i )/O2(M

∆
i ).

In particular the rank of S is of the form k′f0 where 1 ≤ k′ ≤ 4.
We claim that it follows from the structure of O2(M

∆
i ) that k = k′. For

this it is necessary to work out the stabilizers of paths γ of length r ≤ k′,
showing that each acts transitively on the neighbors of the endpoints of γ.
This forces the rank to decrease by f0 at each stage; it also implies that all
paths up to length r are regular, and hence can be conjugated into the set
T = ΓK , simplifying the picture.

Initially r = 1, we may take γ = (0, 2), and thenMγ = S. For r = 2 (and
k′ ≥ 2) we may take γ = (−2, 0, 2) andMγ = O2(M0). If O2(M0) = O2(M1)
then O2(Mδ) = O2(Mδ′) for all adjacent pairs, and hence O2(M0) = M∆,
contradicting k′ ≥ 2. So the claim follows for r = 2.

For r = 3 or 4 only case (b) is relevant. In this case, consider the path
(−2, 0, 2, 4) with stabilizer O2(M0) ∩ O2(M2). This covers a 1-dimensional
subspace of O2(M

∆
0 )/Z(U2(M

∆
0 )), namely the centralizer in this module of

the Sylow 2-subgroup S in M0 ∩M2. On the other side, O2(M0)∩O2(M−2)
covers a different 1-dimensional subspace, soMγ does not stabilize the neigh-
bors of −2 off γ, and in view of the action of K, paths of length 3 are reg-
ular. In particular the stabilizer of a path of length 4 will be the preimage
of Z(U2(M

∆
0 )). Again, if this covers Z(U2(M

∆
2 )), then it lies in M∆, and

k′ = 3. So for k′ = 4 we again have regularity.
It follows that k′ = k.
For the rest, it suffices to prove the last two claims, as the remaining

structural assertions can then be deduced from the structure of S∆.
We haveM0 = LKS. If [L,O2(M0)] = 1, that is L ≃ SL2(F0), then ϕ(S)

is both characteristic in S and normal in M0, hence trivial by Lemma 5.7
of Chapter IX.Thus all our claims follow in this case. We therefore assume
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the following.

(1) [L,O2(M0)] ̸= 1

Set V = [L,O2(M0)].
Returning to Γ, we have defined

Z1 = ⟨Z(S): S a Sylow 2-subgroup of G1⟩

Note that [L,Z1] ̸= 1, as otherwise Z1 is normalized by both L and G1,
contradicting Lemma 2.14 of Chapter IX.

Now in view of Lemma 5.7 of Chapter IX, and the assumption V ̸= 1,
Theorem 5.3 of Chapter III applies toM0. The structural information given
there implies that [L,Z1] = V ≤ Z(O2(M0)). Furthermore, if [L,O2(M∆)] ̸=
1, we will also have V = [L,O2(M∆)].

Now S ≤ Q1. If S = Q1 then G1 ≤ N(S) and then Proposition 2.2 of
Chapter VIII gives a nontrivial subgroup of Q1 which is normal both in G1

and in M0, contradicting Lemma 2.14 of Chapter IX. So we will assume

S < Q1

Take t ∈ NM1(K) interchanging 0 and 2. We may suppose t2 ∈ S. Let
S1 be the preimage in Q1 of the center of CQ1/S(t). Let B1 = ⟨S1,K⟩. We
claim that B1 normalizes O2(M0). Both S1 and K are contained in G0, and
O2(M0) = Q0 ∩ S, while S1 and K normalize S.

We will now prove

[L,O2(M∆)] = 1

Assuming the contrary, we have [L,O2(M∆)] = V . In particular V ≤
O2(M∆).

Consider R = ⟨(V V t)B1⟩. Then R ≤ O2(M∆). We claim that

R ∈ Sγ,K

Now R ≤ Gγ , K ≤ N(R), and L normalizes R since [L,R] ≤ V ≤ R, so

N(R)0 acts transitively on the neighbors of 0 in Γ̃ other than 2. Finally,
t ∈ N(R) since t normalizes V V t and B1. So R ∈ Sγ,K .

On the other hand, S1 ≤ N(R)0, and S1/S is infinite. This violates the
assumption that X ∈ S∗

γ,K . This contradiction shows that [L,O2(M∆)] = 1.

Finally, we claim thatO2(M0) is elementary abelian. LetH = ϕ(O2(M0)),
the ordinary Frattini subgroup. Assume toward a contradiction that H ̸= 1.
We know H ≤M∆, so [L,H] = 1.

The group S1 introduced above normalizes O2(M0) and hence normalizes
H. Thus the group HHt is normalized by t, S1, M0, and K, and therefore
belongs to Sγ,K . Again, as S1/S is infinite, this produces a contradiction.

□

5.6. Conclusion. We return to the consideration of Q = O2
◦(GT ).

Proposition 5.13. Q ∈ S∗
γ,K .
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Proof. We take X ∈ S∗
γ,K so that the Sylow 2-subgroup of N(Q) is

contained in N(X). Let H = N(X). By Lemma 5.12 of Chapter IX,
O2(H0) is elementary abelian. Now Q ≤ O2(H0), in view of its action. So
O2(H0) ≤ N(Q) and hence H0 ≤ N(Q). Thus Q ∈ S∗

γ,K . □

6. Odd s, O2
◦(GT )

As in the previous section we suppose s is odd. Our goal now, building
on the work of the preceding section, is to show that O2

◦(GT ) is trivial.

6.1. The parameter s̃. From the previous section, we retain mainly
the notation Q = O2

◦(GT ) and the fact (Proposition 5.13 of Chapter IX)
expressed briefly by

(∗) Q ∈ S∗
γ,K

with γ = (0, 1, 2). Now that we have fixed the group of interest, namely Q,
we set correspondingly

M = N(Q)

and we retain this notation for the remainder of the present section.
We may reformulate, and sharpen, the analysis carried out in the previ-

ous section as follows.

Lemma 6.1. For some s̃, which is either 4 or 5, we have the following.

(1) A Sylow 2-subgroup of M0 has rank (s̃− 1)f0 + rk(Q).
(2) Maximal regular subpaths of T have length 2s̃− 2.
(3) s ≤ 2s̃− 3.
(4) O2(M0)/Z(U2(M0)) is a natural module for U2(M0)/O2(M0).
(5) O2(M0) is elementary abelian.

Proof. The last point was established in Lemma 5.12 of Chapter IX,
in view of (∗).

The first point was also established in Lemma 5.12 of Chapter IX, taking
s̃ = k+ 1 in the notation of that lemma, but with a wider range of possible
values at that point: 2 ≤ s̃ ≤ 5.

We take up the second point. Notice that 2s̃ − 2 is 2k in the notation
of Lemma 5.12 of Chapter IX, and that paths of length up to 2k beginning
with 0 (or one of its conjugates) were shown there to be regular.

Now consider a maximal regular path γ̃ in T , of length r. Then by
Lemma 2.13 of Chapter IX, r is even. If r = s − 1 then all paths of this
length are regular, and we may suppose γ̃ begins with 0. If r > s then
by Lemma 2.13 of Chapter IX, the endpoints of γ̃ are necessarily conjugate
to 0. So in either case we may suppose that γ̃ begins with 0, and hence
corresponds to a path γ̂ of length r/2 in the associated graph Γ̃. As γ̃
is maximal regular, Q0 ∩ Gγ̃ = Q, and hence Q is normal in Gγ̃ . Hence

this path is again regular relative to the group M∆ acting on Γ̃. By the
analysis of Lemma 5.12 of Chapter IX this forces r/2 ≤ k. So the point (2)
is established.
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Now s ≤ r + 1 = 2s̃ − 1, and s is odd. So for the third point, we must
eliminate the possibility r = s− 1.

If r = s−1, then the path γ̃1 = (1, . . . , 2s̃−1) is a maximal regular path
in T . Again, Q is normal in Gγ̃1 , so Gγ̃1 ≤M1. But Gγ̃1 does not normalize
the set {0, 2}, a contradiction. Thus we have our inequality:

s ≤ 2s̃− 3

Now s ≥ 5, so s̃ ≥ 4, and we have the possibilities s̃ = 4 or 5. So in the
notation of Lemma 5.12 of Chapter IX, we have k > 2 and thus the fourth
point follows as well. □

Lemma 6.2. For i ∈ T we we have Q ∩ Zi = 1.

Proof. We may suppose i = 0 or i = 1.
Now Q ≤ Z(U2(M0)), by the preceding lemma, and Z0 ≤ Z(Q0), so

Q ∩ Z0 ≤ Z(U2(G0)) ≤ Z1. That is, Q ∩ Z0 ≤ Q ∩ Z1, so it suffices to treat
the latter. Suppose toward a contradiction that

R = Q ∩ Z1 ̸= 1

As R ≤ Z(U2(M0)), and R is invariant under an element t ∈ G1 in-
terchanging G0 and G2 and normalizing K, it follows that N(R) belongs
to Sγ,K . But Q1 ≤ N(R)0, so Q1 is a Sylow 2-subgroup of N(R)0. Then
Proposition 2.2 of Chapter VIII provides a nontrivial subgroup of Q1 which
is normal both in NG(R)0 and in NG

◦(Q1), and in particular in G1. This
then contradicts Lemma 2.14 of Chapter IX. □

6.2. The parameter b0. Recall that bi is max(|j−i| : j ∈ T,Zi ≤ Gj).
In the present subsection we show b0 ≥ 3.

Lemma 6.3. Suppose that i ∈ T , and Qi−1∩Qi+1 is normal in Gi. Then
the following hold.

(1) Qi/(Qi−1 ∩Qi+1) is elementary abelian, of rank 2fi−1.
(2) Qi = [Qi, Qi−1][Qi, Qi+1](Qi−1 ∩Qi+1).

Proof. To lighten the notation, let us writeQ+
i , Q

−
i for the intersections

Qi ∩Qi±1. Write f for fi−1 = fi+1, and let Q∗ = Q−
i ∩Q+

i .
Considering Qi within Gi±1, we see that the Frattini subgroup ϕ(Qi) is

contained in Q∗, and thus Qi/Q∗ is elementary abelian.
We claim

Q±
i > Q∗

If for example Q−
i = Q∗, consider the path γ0 = (i− 2, i− 1, i, i+ 1). Then

we have Gγ0 = K(Q−
i ) = KQ∗, so this is not right regular, contradicting

s ≥ 4. So Q−
i > Q∗, and similarly for Q+

i .

In view of the action of K on Q−
i /Q∗, we find that Q−

i covers a Sylow

2-subgroup of Gi+1/Qi+1. Thus Q
−
i /Q∗ has rank f , and Qi ≤ Q−

i Q
+
i . Thus

Qi/Q∗ = Q−
i /Q∗ ×Q+

i /Q∗
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In particular the rank of Qi/Q∗ is 2f , as claimed. This disposes of the first
point.

Now we claim
R = [Qi+1, Q

−
i ] ̸≤ Q∗

The group Q−
i = Qi∩Qi−1 is normalized by Qi and Qi−1. If it is normalized

by Qi+1 as well, then we have L0 = ⟨Qi−1, Qi+1⟩Qi in the normalizer of Q−
i .

There is an element in L0 switching Gi−1 and Gi+1, so we find Q−
i Q

+
i = Q∗,

a contradiction. Our claim follows.
Now R ≤ Q+

i and R ̸≤ Qi−1. In view of the action of K on [Qi+1, Q
−
i ],

we have Qi ≤ Qi−1R, in particular Q+
i ≤ Q−

i R and

Q+
i = Q∗R = Q∗[Qi+1, Q

−
i ]

Similarly Q−
i = Q∗[Qi−1, Q

+
i ]. Since Qi = Q−

i Q
+
i , our second claim follows.

□

Lemma 6.4. If b0 = 2, then Z1 = Z(L1), b1 = 3, and Z0 is a natural
module for L̄0 = U2(G0)/O2(G0).

Proof. We claim

(1) Z0Z1 is normal in G0

If Z0 is contained in Z(U2(M0)), then Z0 centralizesM0∩Q1 =M2∩Q1,
a Sylow subgroup of M2, and in view of Lemma 6.1 of Chapter IX, applied
inM2, we find that Z0 lies in O2(M2). But O2(M2) ≤ Q2, so this contradicts
our hypothesis b0 = 2. So Z0 is not contained in Z(U2(M0)).

In view of the structure of O2(M0), given by Lemma 5.9 of Chapter IX,
we find that Z0/(Z0 ∩Z(U2(M0))) is a natural module for U2(M0)/O2(M0),
and

[U2(M0), O2(M0)] ≤ Z0

Now Z1 centralizes Z0 and from the structure of Z0 (as a module) it
follows that Z1 ≤ O2(M0). Thus [U2(M0), Z1] ≤ Z0 and U2(M0) normalizes
Z0Z1. As Q0 and K also normalize Z0Z1, our claim (1) follows.

We will show the following.

(2) Z1 = Z(L1) and b1 = 3

Suppose Z1 > Z(L1). Then CL1(Z1) = Q1. Hence CQ0(Z0Z1) =
Q0 ∩Q1, and Q0∩Q1 is normal in G0. Conjugating in G0, we find Q0∩Q1 =
Q0 ∩Q−1 and hence the path (−1, 0, 1, 2) is left singular, which contradicts
the fact that s ≥ 4. So Z1 = Z(L1). Thus Z1 ≤ Z0 ≤ Z−2, and b1 ≥ 3.

On the other hand if b1 > 3, then as Z0 is generated by Zδ for δ adjacent
to 0, and s ≥ 4, we would have Zδ ≤ Q3 for all such δ, and thus Z0 ≤ Q3, a
contradiction. So b1 = 3 and claim (2) is proved.

Now Z(L0) ≤ Z1 centralizes L0 and L1, and is trivial by Lemma 2.14 of
Chapter IX. Thus Z0 ∩Z(U2(M0)) ≤ Z(L0) = 1, and so the structure of Z0

simplifies:

(3) Z0 is a natural module for L̄0
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This proves all our claims. □

Lemma 6.5. b0 > 2.

Proof. We have Z0 ≤ O2(M0), and O2(M0) ≤ Q1 by Lemma 5.9 of
Chapter IX. So Z0 ≤ Q1 and this means b0 ≥ 2. So we may suppose,
toward a contradiction:

(1) b0 = 2

Then we have the structure afforded by the previous lemma. We let S be
the Sylow 2-subgroup common to G0 and G1.

We have Z1 ≤ Z0 and [S,Z1] = 1. Furthermore these groups are K-

invariant, so we find [S,Z0] = Z1. Similarly [Q1, Z0] = Z1. Let V = ⟨ZG1
0 ⟩.

Then [Q1, V ] = Z1.
We claim

(2) (Q−1 ∩Q1) ◁ G0

As b0 = 2, the group V covers a Sylow 2-subgroup of L0. Let τ ∈ G
operate as a shift degree −2 on T , and let Q∗ = Q−1 ∩Q1. As [V,Q1] ≤ Z1,
we have [V τ , Q−1] ≤ Z−1, and thus

[⟨V, V τ ⟩, Q∗] ≤ Z0 ≤ Q∗

Now ⟨V, V τ ⟩ covers L̄0, and Q∗ is normal in Q0, so (2) follows.
Now we can apply Lemma 6.3 of Chapter IX. Thus Q0/Q∗ is elementary

abelian, of rank 2f1, and

Q0 = [Q0, Q−1][Q0, Q1]Q∗

or Q0/Q∗ = [Q0, Q−1]/Q∗ × [Q0, Q1]/Q∗.
Now V contains Z2, and Z2 ≤ G0 but Z2 ̸≤ Q0, so Z2, and hence V ,

covers the Sylow subgroup of G01 modulo Q0. Similarly V τ covers the Sylow
subgroup of G0,−1 modulo Q0. Hence we can also write Q0 as

[Q0, V
τ ][Q0, V ]Q∗

or (Q0 ∩ V τ )(Q0 ∩ V )Q∗.
Now V ≤ Z(Q1) is elementary abelian, so the action of V on Q0 is

quadratic.
Now let Q∗

0 be the centralizer in Q0/Q∗ of L̄0. Looking at Q∗
0 as a

subgroup of G1, consider the action of K. As this is trivial, we find that
Q∗

0 ≤ Q1. Similarly Q∗
0 ≤ Q−1, and Q

∗
0 = Q∗.

Similarly, considering the action of K on R = Q0 ∩Q−1 in G1, we find
that R ≤ [K,R]Q1 and thus R = [K,R]Q∗. So the conditions of Lemma 2.1
of Chapter IX are satisfied, and

Q0/Q∗ is a direct sum of natural modules

Recall the condition B = (L0 ∩ B)(L1 ∩ B) imposed at the outset. Let
Ki denote K ∩ Li.

Now take t ∈ NU2(M1)(K) interchanging the vertices 0, 2, with t2 ∈ Q1.
Then K1 centralizes Z1. On the other hand Z1 ≤ Z0, a natural module
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for L̄0, so K0 acts on Z1 without fixed points. Hence K0 ∩ K1 = 1, and
K = K0 ×K1.

Let K̃ = K0K
t
0 ∩K1. We claim

(3) K̃ ̸= 1, and K̃ centralizes Q

If K̃ = 1, then Kt
0 = K0, and [K0, t] ≤ K0 ∩ L1 = 1. Thus K0 acts

trivially on an involution of L̄1, and hence trivially on L̄1, that is [K0, L1] ≤
Q1. So [K0, Q0] ≤ Q0 ∩ Q1. Conjugating in G0, we find [K0, Q0] ≤ Q∗,

contradicting the structure of Q0. So K̃ ̸= 1.
Now Q is a 2-subgroup of G0 fixing two neighbors of 0, so Q fixes ∆(0).

As O2(M0)/Z(U2(M0)) is a natural module by Lemma 5.10 of Chapter IX,
we find that Q ≤ Z(U2(M0)). Thus K0 centralizes Q, hence so does R.

Now we may reach a contradiction to the assumption b0 = 2.
Let W = V ∩ Q0. Then [Q,W ] ≤ [Q1, V ] = Z1. Thus [Q,W, K̃] ≤

[Z1, L1] = 1. Also [Q, K̃,W ] = 1 by (2) and thus, by the three subgroups
lemma, we have

[K̃,W,Q] = 1

So [K̃,W ] ≤ CQ0(Q) ≤ O2(M0) ≤ Q−1. Now WQ−1 is a Sylow 2-subgroup

of L−1, and K̃ ≤ K1, so [K̃, L−1] ≤ Q−1. On the other hand, as b1 = 3,

Z1Q−2 is a Sylow 2-subgroup of L−2, and as [K̃, Z1] = 1 we have [K̃, L−2] ≤
Q−2. Hence C(K̃) covers both L̄−1 and L̄−2, contradicting Lemma 2.14 of
Chapter IX. □

6.3. Q = 1. We complete the proof that Q = O2
◦(GT ) = 1 in this

subsection. We first make a detailed analysis of the situation.

Lemma 6.6. Suppose Q > 1. Then

(1) Z0 = Z(L0)
(2) rk(Z0) = f0
(3) s̃ = 5
(4) b0 = 4
(5) b1 = 3

Proof. We have proved previously that b0 ≥ 3 and s̃ = 4 or 5.
We show Z0 = Z(L0). If Z0 ≤ Z(U2(M0)), then as Z0 is central in

Q0, our claim follows. So suppose that Z0 is not contained in Z(U2(M0)).
Then Lemma 6.1 of Chapter IX implies that Z0 = O2(M0). Now b0 ≥ 3,
so Z0 ≤ Q2 ∩M = O2(M2), and thus Z0 = Z2. So Z0 is normal in both
G0 and G2, hence also in G1, contradicting Lemma 2.14 of Chapter IX. So
Z0 = Z(L0).

Now Q ∩ Z0 = 1 by Lemma 6.2 of Chapter IX. So by Lemma 6.1 of
Chapter IX we find

rk(Z0) ≤ [(s̃− 1)f0 + rk(Q)]− [3f0 + rk(Q)] = (s̃− 4)f0

Hence
s̃ = 5, rk(Z0) ≤ f0



6. ODD s, O2
◦(GT ) 469

As Z0 covers a nontrivial K-invariant subspace of the natural module

O2(M2)/Z(U2(O2(M2)))

we find
rk(Z0) = f0

Furthermore, as s̃ = 5, maximal regular subpaths of T have length 8,
and s = 5 or 7.

We show b0 = 4. We have O2(M0) ≤ Q1 by Lemma 5.7 of Chapter IX.
Similarly O2(M2) ≤ Q3. As b0 ≥ 3, we have

Z0 ≤ O2(M2) ≤ Q3

So b0 ≥ 4.
Now Z0 covers a 1-dimensional subspace of O2(M2)/Z2, and centralizes

the Sylow 2-subgroup Q1∩M of M02. If Z0 lies in Q4, then Z0 ≤ Q4∩M =
O2(M4) and Z0 centralizes Q4, which covers the Sylow 2-subgroup of M2,4.
It follows that Z0 centralizes U2(M2), and hence lies in Z(L2), which is not
the case. Thus b0 = 4, as claimed.

Now Z1 is generated by Zδ for δ adjacent to 1, and s ≥ 5, so all such Zδ

are contained in G4 as b0 = 4, and since Z0 is not contained in G5, we have
b1 = 3. All claims have been verified. □

Lemma 6.7. Suppose Q > 1. Then we have the following.

(1) f0 = f1
(2) Q = CQ0(K)
(3) Z1 is a natural module for L̄1.

Proof. The setting is provided by Lemma 6.6 of Chapter IX.
Let S be the Sylow 2-subgroup common to G0 and G1. Then S ∩M =

Q1∩M by Lemma 5.7 of Chapter IX. So Z1 ≤ Z(S∩M0). Thus rk(Z1/Z1∩
Z(U2(M0))) = f0. On the other hand a Sylow 2-subgroup of M0 has rank
4f0+rk(Q), so O2(M0) has rank 3f0+rk(Q), and Z(U2(M0)) has rank f0+
rk(Q). Furthermore Z1∩Q = 1, so Z1∩Z(U2(M0)) = Z0, and rk(Z1) = 2f0.
So we have Z1 = Z0×Z2. By the same rank calculation, Z(U2(M0)) = Z0Q.

In view of Lemma 6.6 of Chapter IX (2,4), Z0 is elementary abelian.
Now by Lemma 2.2 of Chapter IX, it follows easily that Z1 is a direct sum
of natural modules for L̄1. In particular we have

f1 ≤ f0

There is an element t ∈ NM1(K) switching the vertices 0, 2. Now K0

centralizes Z(U2(M0)), and Kt
0 centralizes Z(U2(M2)). The intersection

Z(U2(M0))∩Z(U2(M2)) stabilizes a subpath of T of length 10: (−4, . . . , 6).
Thus this intersection isQ. ThusK0 acts fixed point freely on Z(U2(M0))/Q,
and K0 ∩Kt

0 = 1.
On the other hand K1 acts fixed point freely on Z0, so K0 ∩ K1 = 1

and K = K0K1. Thus we have rk(K) = f0 + f1 ≥ 2f0, and it follows that
f1 ≥ f0, so finally

f0 = f1
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Let us call the common value f . Now K = K0 ×Kt
0. Hence K centralizes

Q, and Q = CQ0(K). □

Proposition 6.8. O2
◦(GT ) = 1

Proof. The setting is provided by Lemmas 6.6 of Chapter IX and 6.7
of Chapter IX.

We consider V = [K4, O2(M0)]. We have V = [K4, Z1Z−1] ≤ Z1Z−1.
As b0 = 4, the group Z4O2(M0) is a Sylow 2-subgroup of M0, and as K4

centralizes Z4 we find that [K4,M0] = V .
For x ∈ M0, we have V x = [Kx

4 , O2(M0)] = V since [K4, x] ≤ O2(M0)
and O2(M0) is abelian. Thus V is normal in M0.

Suppose V ≤ Z0. Then V ≤ Q2. Hence [K4,M02] ≤ Q2, and as this
contains a Sylow 2-subgroup of M2 we conclude [K4,M2] ≤ Q2. Hence

C(K4) covers M̄0 and M̄2, and acts transitively on neighbors of 0 or 2 in Γ̃.

It then follows that K4 fixes all the vertices of Γ̃. The same applies to K0

and to Kt
0, hence to K. But K has only two fixed points adjacent to a given

vertex. So V ̸≤ Z0.
Hence V covers Z−1Z1/Z0, and in particular Z1V is normal in M0.

Now consider W = ⟨ZL0
1 ⟩. As L0 = Q0M0, we have W = ⟨ZM0

1 ⟩, and
we have Z

N)0
1 ≤ Z1V ≤ Z1Z−1. Thus W = Z1Z−1. Let τ be a shift on T of

degree two. Then W τ = Z1Z3.
As b0 = 4, we have L0 = ⟨Z−4, Z4⟩Q0, and as b1 = 3 we have Q1 ≤

Z−1Q2. Let Q∗ = Q−1∩Q1. Then we have Q∗ ≤ Z−1(Q−1∩Q2), and hence

[Q∗, Z4] ≤ [Z−1(Q−1 ∩Q2), Z4] ≤ [Z−1, Z3][Q2,W
τ ]

= [Z−1, Z3][Q2, Z1Z3] ≤ [Z−1, Z3]Z2

So [Q∗, Z4] ≤ V ≤ Q∗. We conclude

(1) Q∗ is normal in L0

By Lemma 6.3 of Chapter IX, the quotient Q0/Q∗ is elementary abelian
of rank 2f . On the other hand Q0 ∩ Q1 is not normal in G0, by Lemma
2.14 of Chapter IX, and hence is not normal in L0. So this quotient is a
nontrivial module, and is natural by Lemma 5.31 of Chapter II.

Let D = CQ0(K0). We claim

(2) Q∗ = DV

We have [⟨Z−4, Z4⟩, Q∗] ≤ V as shown above. Hence [K0, Q∗] ≤ V . Thus
Q∗ ≤ CQ0(K0)V = DV . As K0 operates fixed point freely on Q0/Q∗, we
find DV = Q∗.

We analyze D. We will show that D =≤ L4 and D ∩Q4 = Q.
We claim first

D ≤ Q2

If this fails, then [K0, L2] ≤ Q2, and L2 = CL2(K0)Q2. Then as [K0, Z1] =

[K0, Z2] ≤ Z2, we find [K0,W
τ ] = [K0, ⟨Z

CL2
(K0)

1 ⟩] ≤ [K0, Z1]
L2 ≤ Z2.
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Hence [K0, Z4] ≤ Z2 ≤ Q0, and similarly [K0, Z−4] ≤ Q0, so [K0, L0] ≤ Q0,
which is false. So D ≤ Q2. In particular, D ≤ L3.

We claim
D ≤ Q3

Supposing the contrary, we have [K0, L3] ≤ Q3, and L3 = CL3(K0)Q3. As
b0 = 4, the group Z0Q4 is a Sylow 2-subgroup of L4. Thus [K0, L4] ≤ Q4 as
well, and C(K0) is transitive on the neighbors of 3 and 4 in Γ, contradicting
Lemma 2.14 of Chapter IX. So D ≤ Q3.

Thus D ≤ L4, and D ≤ Z0Q4. But Z0 ≤ D, so we have

D = Z0(D ∩Q4)

We claim that D ∩Q4 = Q.
We have Q ≤ D ∩ Q4. Now ND∩Q4(Q) ≤ O2(M0), and D ∩ O2(M0) ≤

QZ0. Thus Q ≤ ND∩Q4(Q) ≤ QZ0, and Z0 ∩ Q4 = 1, so ND∩Q4(Q) = Q,
and thus D ∩Q4 = Q.

Putting everything together, we have D = Z0Q, and hence Q∗ = DV =
QV . We have proved

(3) Q∗ = QV

We consider the L̄0-groupQ0/V , with the submoduleQV/V . By Lemma
6.1 of Chapter IX, QV/V is a trivial module, while Q0/QV = Q0/Q∗ is a
natural module. By Lemma 2.5 of Chapter IX, Q0/V is elementary abelian.
In particular we have

(4) [Q,Q0] ≤W

Now we claim

(5) [Q,Q1] ≤ Z1

We have Q1 = Z4(Q0 ∩Q1) and (Q0 ∩Q1) ≤ Z−1(Q0 ∩Q2). As Z4 = Z(L4)
and Z−1−Z(L0)Z(L2), we have [Q,Q1] = [Q,Q0∩Q1] ≤ [Q,Q0∩Q2]. Thus
[Q,Q1] ≤ [Q,Q0] ∩ [Q,Q2] ≤W ∩W τ .

Now W ∩W τ = Z−1Z1 ∩Z1Z3 = Z1 (examine this in L0). So [Q,Q1] ≤
Z1.

We now consider the M2-module [Q,Q2]. We claim

(6) [Q,Q2]Z2 =W τ

We have [Q,Q2] ≤W τ . If claim (6) fails, then by Lemma 6.1 of Chapter
IX we have [Q,Q2] ≤ Z2. Then [Q,Q2,K2] = 1 and [Q,K2, Q2] = 1 since in
fact [Q,K] = 1. So by the three subgroups lemma we have [Q2,K2, Q] = 1
and hence also [Q0,K0, Q] = 1. But Q0 = [Q0,K0]Q∗ = [Q0,K0]QV , and
we deduce [Q,Q0] = [QV,Q] = 1 by Lemma 6.1 of Chapter IX. But Q
centralizes U2(M0), hence Q is central in a Sylow 2-subgroup of L0, and
hence Q ≤ Z0, contradicting Lemma 6.2 of Chapter IX. This proves (6).

Now we may reach a contradiction. Consider the action of K on L1.
Let K1 be the centralizer of L̄1 = L1/Q1 in K. Then rk(K1) = f . Now
[L1,K

1, Q] ≤ [Q1, Q] ≤ Z1, and [K1, Q, L1] = 1, so by the three subgroups
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lemma we have [Q,L1,K
1] ≤ Z1. In particular [Q,Q2,K

1] ≤ Z1. By (6) we
find

[W τ ,K1] ≤ Z1

In particular [Z4,K
1] ≤ Q0. Hence [L0,K

1] ≤ Q0, and C(K1) acts tran-
sitively on the neighbors of 0 and of 1 in Γ, contradicting Lemma 2.14 of
Chapter IX. □

7. Odd s: initial analysis

In this section and the next, s is odd, and we know in consequence that
O2

◦(GT ) = 1. Our aim is to show that s is 5 or 7, and that r = s− 1. We
will also analyze the composition factors of Qi with respect to the action of
Li for i = 0, 1. In the present section we make some further preparations,
reserving the detailed analysis for the following section.

Notation 7.1. Fix a path γ contained in T of maximal length with
O2

◦(Gγ) ̸= 1. Set Qγ = O2
◦(Gγ).

Note that this notation varies from that adopted in the previous section.
The path γ can also be described as a maximal regular path in T , so its
length is r.

We will assume that the orbits of G on the vertices of Γ are labeled so
that γ begins with 0. Note that if r = s− 1 then we can interchange and 0
and 1 without loss of generality, as all paths of length r will be regular in
this case.

7.1. Estimates for b0 and b1.

Lemma 7.2.

(1) r is even
(2) Either r = s − 1, or every maximal regular path contained in T is

of type (O0, r).
(3) Qγ ∩Q0 = 1.
(4) rk(Qγ) = f0, and K acts transitively on Q×

γ .

Proof. The first two points are covered by Lemma 2.13 of Chapter IX.
It follows from Lemma 2.13 of Chapter IX (3) that r is even, since if r < s
then r = s− 1. Given that r is even, our point (2) follows from Lemma 2.13
of Chapter IX (1).

For the last two points examine Qγ in G0. K operates on Qγ . By the
choice of γ, we have Qγ ∩ Q0 finite, hence centralized by K. As Qγ is not
contained in Q0, it covers a Sylow 2-subgroup of L̄0 and K0 acts regularly
on [Qγ/(Qγ ∩Q0)]

×. Looking at the orbits of K0 on Q×
γ , as Qγ is connected

it follows that there is just one orbit and Qγ ∩ Q0 = 1. From this both of
the last points follow. □

Lemma 7.3.

(1) r/2− 1 ≤ b1 ≤ r/2
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(2) r/2− 2 ≤ b0 ≤ r/2

Proof. The set of fixed points of Z1 in T is (1 − b1, . . . , 1 + b1), and
the length of this path is 2b1. As Z1 > 1, the definition of r gives r ≥ 2b1.
Similarly, r ≥ 2b0.

Next we show that r/2− 1 ≤ b1. Let j = 1+ b1. We claim r ≤ 2j. Now
j + b1 is an odd number, so the set of fixed points of Zj+b1 in T is the path
(j, . . . , j + 2b1), centered at j + b1. Suppose r ≥ 2j. We have Qγ ≤ Q1 and
Qγ ≤ Q2j−1, so Qγ centralizes Z1 and Z2j−1 = Zj+b1 . Hence the group

H = ⟨Z1, Zj+b1 ,K⟩

normalizes Qγ . Note that H is a subgroup of Gj acting transitively on the
neighbors of j.

Take z ∈ Z1 \ Qj . By Lemma 2.7, the involution z normalizes some
conjugate Ku of K with u ∈ N(Qγ). Then T u is the corresponding Ku-
track, and z reflects T u about j. Now Qu

γ = Qγ fixes (j, . . . , r)u and hence
also fixes the reflection of this path under z, so Qγ fixes a path of length
2(r − j) centered at j, contained in T u. By the maximality of r, we have
2(r − j) ≤ r, or r ≤ 2j, as desired.

Finally, we claim that r/2 − 2 ≤ b0. As Qγ ≤ Q2, we can apply the
foregoing argument beginning at Z2 in place of Z1, which yields the slightly
weaker inequality indicated. □

We elaborate on the earlier Lemma 6.3 of Chapter IX, repeating its
conclusions for ease of reference.

Lemma 7.4. Suppose that Q−1∩Q1 is normal in G0. Set Q∗ = Q−1∩Q1.
Then the following hold.

(1) Q0/Q∗ is elementary abelian, of rank 2f1
(2) Q0 = [Q0, Q−1][Q0, Q1]Q∗
(3) C(Q0/Q∗)(L0) = 1

(4) If Z0 is a natural module for L̄0, and [Q∗, L0] ≤ Z0, then Q∗ is
elementary abelian.

Proof. The first two points were given in Lemma 6.3 of Chapter IX.
We will make use of the analysis given in the proof of that lemma as well.

We take up the third point. The groups Q0∩Qδ, with δ varying over the
neighbors of 0, are pairwise disjoint modulo Q∗. Fix a Sylow 2-subgroup S of
L̄0, fixing the vertex 1. The conjugates of (Q−1∩Q0)/Q∗ then cover a generic
subset of Q0/Q∗, so the fixed point set of S is a K1-invariant subgroup of
smaller rank. It follows that S fixes only the points of (Q0 ∩ Q1)/Q∗, and
similarly a conjugate of S fixes only the points of (Q0 ∩Q−1)/Q∗, and our
claim follows.

Finally, suppose that Z0 is a natural module, and [L0, Q∗] ≤ Z0. Then
[L0, Q∗] = Z0, and by Proposition 9.9 of Chapter I, we haveQ∗ = CQ∗(K0)Z0.
Furthermore, we have Z0 ≤ Z(Q∗), so Q∗ = CQ∗(K0)× Z0.
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Thus ϕ(Q∗) = ϕ(CQ∗(K0)). So [L0, ϕ(Q∗)] ≤ ϕ(Q∗) ∩ Z0 = 1, and
ϕ(Q∗) = 1. So Q∗ is elementary abelian. □

7.2. A commutator condition. The next result again involves a long
analysis.

Lemma 7.5. If [Z1, Z1+b1 ] ̸≤ Z1 ∩ Z1+b1, then we have the following:

(1) r = s− 1
(2) 1 < [Z0, Zb0 ] ≤ Z0 ∩ Zb0

In particular, in this case one may interchange 0 and 1, and after this change
of notation we have [Z1, Z1+b1 ] ≤ Z1 ∩ Zb1.

Proof. The final remark will follow at once from (1, 2). The relation
r = s−1 allows us to replace the path γ = (0, . . . , r) by the path (1, . . . , r+1),
and hence to switch the two orbits O0 and O1. So we turn to the verification
of our main claims.

Let j = 1 + b1. We have Z1 ≤ Gj , hence [Z1, Zj ] ≤ Zj . If bj ≥ b1,
then similarly [Z1, Zj ] ≤ Z1, contradicting our assumption. Thus we have
bj < b1, so j is even, and we have

(1) b0 < b1; b1 is odd

Now since b0 < b1, our initial argument shows

[Z0, Zb0 ] ≤ Z0 ∩ Zb0

We invoke the estimates of Lemma 7.3 of Chapter IX.

(2) r/2− 2 ≤ b0 < b1 ≤ r/2

We will need to distinguish two cases: b0 is odd, or even.

(Case I) b0 is odd

In this case we reach a contradiction.
Now as b1 is also odd, our estimates reduce to the following.

b0 = r/2− 2; b1 = r/2

Now Z1 stabilizes a path of length r centered at 1, so Z1 ≤ Qγ , and as
Qγ has rank f0, we find that K acts transitively on Z1, and hence

Z1 = Z(L1) has rank f0, and [Z0, Zb0 ] = 1

Indeed for each Sylow 2-subgroup S of L1 we find that Z(S) has rank f0
and thus Z(S) = Z1 = Z(L1). As b0 is odd, we have Zb0 − Z(Lb0) and thus
[Z0, Zb0 ] = 1.

Now if r ≤ s then r = s−1 and we may interchange the orbits represented
by 0 and by 1. But Lemma 7.3 of Chapter IX again applies, and in terms of
our original notation it now says: r/2− 1 ≤ b0, which is false. Accordingly
we are in the following case.

r > s
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The group Z0 is generated by the groups Zδ = Z(Lδ) for δ adjacent to
0. For any such vertex δ, any arc beginning with δ and of length at most
r is right regular, by Lemma 2.13 of Chapter IX, and can be conjugated
into the path (−1, . . . ,m) for some m. In particular the path from δ ̸= 1 to
b1−1 ∈ T is conjugate to (−1, . . . , b1−1) and thus Zδ ≤ Lb1−1 for neighbors
of 0, and Z0 ≤ Lb1−1, thus b0 ≥ b1 − 1, a contradiction.

This disposes of the case of odd b0.

(Case II) b0 is even

In this case we have the estimates

r/2− 2 ≤ b0 = b1 − 1 < r/2

In particular Z0 ̸= Z(L0), and CL0(Z0) = Q0. Now Zb0 ̸≤ Q0, so

[Z0, Zb0 ] ̸= 1

If r ≤ s, then r = s − 1, and the roles of 0 and 1 can be interchanged,
and as [Z0, Zb0 ] this suffices. So we assume

r > s

We claim

(II.1) Z0/Z(L0) is a natural module for L̄0

As [Z0, Zb0 ] ≤ Zb0 , the group Z0 affords a quadratic module with respect
to the group Zb0 , which covers a Sylow 2-subgroup of L̄0.

Let V = Z0/Z(L0). Let W = CV (O
2(L0)). As [O2(L0),W ] ≤ Z(L0)

and O2(L0) is generated by 2⊥-groups, we find that [O2(L0),W ] = 1 and as
[V,Q0] = 1 therefore [L0,W ] = 1 and W = (0) (in V ).

By Lemma 2.1 of Chapter IX, it follows that [O2(L0), V ] is a direct
sum of natural modules, and as we have seen, is also nontrivial.. We are
interested in rk(CZ0(Zb0)), from the point of view of the module Z0. We can
however look at this also from the point of view of the action of Z0 on Zb0 ,
and from this point of view the rank is seen to be f0. It follows easily that
[O2(L0), V ] is a single natural module for L̄0.

Now by Lemma 2.2 of Chapter IX it follows that V is itself a natural
module for L0. We claim

(II.2) Z(L0) = 1, and thus Z0 is a natural module for L̄0

Suppose on the contrary that Z(L0) is nontrivial; then so is Z(Lj) (j =
1 + b1). Now Z(Lj) ≤ Zj−1 ∩ Zj+1, so Z(Lj) stabilizes the path (0, 2j) in
T . Furthermore 2j ≥ r, and hence Z(Lj) ≤ Qγ , and r = 2j. As K0 acts on
Qγ we find Z(Lj) = Qγ , and rk(Z(Lj)) = f0, hence also rk(Z(L0)) = f0.

Let S be a Sylow 2-subgroup of G01. Then rk(Z(S) ∩ Z0 = 2f0. But
Z(S) ∩ Z(L2) ≤ Z(L1) ∩ Z(L2) = 1, in view of Lemma 2.14 of Chapter IX.
But Z(L2) ≤ Z1. Hence rk(Q0) ≥ 3f0.
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Consider Z1 as a subgroup of G1±b1 .. We find rk(Z1 ∩Qj ∩Q2−j) ≥ f0.
In particular this intersection is nontrivial. However, it stabilizes the path
(1 − j, . . . , j + 1) of length 2j = r, and furthermore the endpoints of this
path have odd parity, which contradicts Lemma 2.13 of Chapter IX. Thus
Z(L0) = 1, as claimed.

As b0 is even, we have Z0 ≤ Q1 and by Lemma 3.3 of Chapter IX, we
have

(II.3) Z1 = Z◦(L1)

Looking at Z1 inside the module Z0, we get

(II.4) rk(Z1) = f0

As Z0 is not contained in Qb0 , the commutator [Z0, Zb0 ] is nontrivial,
and looking inside the natural module Zb0 , it must be Zb0−1. Similarly
[Z0, Zb0 ] = Z1. In particular Z1 = Zb0−1.

Now [Z0, Zb0 ] ≤ Z0∩Zb0 stabilizes the arc (−b0, 2b0) of length 3b0. Thus
3b0 ≤ r. By the estimate above, we find r/2−2 ≤ r/3, r ≤ 12, and b0 ≤ 4. If
b0 = 4 we have Z1 = Z3 and similarly Z1 = Zi for i odd, which is impossible.
So b0 = 2, r ≥ 6, and by our estimates above

(II.5) b0 = 2, b1 = 3, r = 6 or 8

These two cases must be eliminated

We consider the groups A = Q−1 ∩Q1, and V = ⟨ZG1
0 ⟩. As b0 = 2, we

have Z0 ≤ A, and V ≤ Q1. We aim to show that A is normal in L0.
By the structure of the module Z0, we have [Z0, Q1] = Z1, and hence

after conjugating by G1, [V,Q1] = Z1 ≤ A. Letting τ be the shift by

+2 along the track T , we have [V τ−1
, Q−1] ≤ Z−1 ≤ A. Thus ⟨V, V τ−1⟩

normalizes A. On the other hand, Z0 covers a Sylow 2-subgroup of L2

modulo Q2 and under the action of G1 it follows that V covers a subgroup

of L0 modulo Q0, specifically the one in G0,1; similarly V τ−1
covers a Sylow

2-subgroup of G0,−1. Thus L0 = ⟨V, V τ−1⟩Q0, and hence L0 normalizes A.
Lemma 7.4 of Chapter IX applies. In particularQ0 = [Q0, Q−1][Q0, Q1]A

and thus Q0 ∩Q1 = [Q0, Q1]A. But Q1 ≤ V Q0 and thus

[Q0, Q1] ≤ [Q0, V Q0] ≤ V Q′
0 ≤ V A

Hence

(II.6) Q0 ∩Q1 ≤ V A

Also Q0/A is elementary abelian, of rank 2f1. We will show that V
acts quadratically on Q0/A. We have [Q0, V ] ≤ Q0 ∩ V ≤ Q0 ∩ Q1 and
[Q0 ∩Q1, V ] ≤ [V A, V ] ≤ V ′A. Furthermore V ′ ≤ [V,Q1] = Z1 ≤ A. So

(II.7) [Q0, V, V ] ≤ A

and V acts quadratically on Q0/A.
We claim furthermore that CQ0/A(L0) = 1. Writing Q+, Q− for Q0 ∩

Q0±1, we have Q0/A = Q+/A × Q−/A. In particular, if L0 centralizes an
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element q ∈ Q0 modulo A, then writing q/A = q+/Aq−/A with q± ∈ Q±,
and applying an element g from the Sylow 2-subgroup S of G0,1, we find
(q+)g(q−)g ∈ A,and since q− ∈ Q(i−1)g while q+ ∈ Q1, it follows that

(q±)g ∈ A. However the groups Qδ ∩ Q0/A are disjoint, for δ adjacent to
0, and S acts transitively on ∆(0) \ {1}. So this means q− ∈ A. Similarly
q+ ∈ A and q ∈ A, as claimed.

So Lemma 2.2 of Chapter IX applies, and we conclude:

(II.8) Q0/A is a direct sum of natural L̄0-modules

We claim

(II.9) A = Z0 × CQ0(X) for 1 < X ≤ K0

This has two cases of interest: X = K0 and X = ⟨d⟩ cyclic. Of course it
also will imply that the centralizer is independent of the choice of X.

We have CQ0/A(X) = 1 and in particular CQ0(X) ≤ A. Furthermore
CZ0(X) = 1 and thus Z0 × CQ0(X) ≤ A.

On the other hand, we have [V,A] ≤ [V,Q1] = Z1 ≤ Z0. Hence
[V G0 , A] ≤ Z0 and thus [O2(L0), A] ≤ Z0. In particular [K0, A] ≤ Z0.
So by Proposition 9.9 of Chapter I, the centralizer CA(K0) covers A/Z0,
and (II.9) follows.

Now if r = 6 then by tracing the action of the Sylow 2-subgroup S of G0,1

along the path (0, . . . , 6), computing the successive stabilizers of its initial
segments, and using their invariance under K, we find rk(S) = 3f0 + 2f1.
We will now see that this is too small.

In the first place we find that A = Q1 ∩Q−1 has rank 2f0 since Q1 has
rank 2f0 + 2f1 and we lose f0 + f1 by intersecting first with Q0 and then
with Q−1. It follows that A = Z0 and in view of (II.9), we have CQ0(d) = 1
for any nontrivial element of K0; what interests us here is an element of
order three. It follows from Lemma 2.4 of Chapter IX that Q0 is elementary
abelian and is a direct sum of natural modules.

But in view of the definition of Z0 and the structure of a natural module,
it then follows that Q0 = Z0, which contradicts both our formula for the
rank of S, and the condition b0 > 1. So the case r = 6 is excluded and by
default we have:

r = 8

Now take w ∈ NO2(L0)(K) switching ±1, and take w+ similarly in
NL1(K), inverting K1. We claim

(II.10) [w,CQ0(K0)] = 1

Let D = CQ0(K0). The element w normalizes D and thus [w,D] ≤ D ∩
[O2(L0), D]. As noted above, [O2(L0), A] ≤ Z0 and hence [w,D] ≤ D∩Z0 =
1. This proves (II.10).

Now w+ normalizes D ∩Dw+ , and w centralizes it. So the +2-shift τ =
ww+ along T normalizes this intersection, which therefore fixes T pointwise.
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Thus

(II.11) (D ∩Dw+)◦ ≤ O2
◦(GT ) = 1

Recall the group Qγ = O2
◦(G0,...,r) = (Q1∩· · ·∩Qr−1)

◦, of rank f0. Now

Qτ−1

γ and Qτ−2

γ are both contained in A, as r ≥ 6. These two groups are
K0-invariant, and have rank f0. In view of the structure of A, such groups
are contained either in Z0 or in CQ0(K0).

Suppose that Qτ−1

γ or Qτ−2

γ is contained in Z0. Then Qγ ≤ Z2 or Z4

is a K0-invariant subgroup of rank f0. It follows that Qγ = Zδ for some δ
adjacent to 2 or 4. Then Zδ = Qγ ≤ G0, G8, which contradicts the fact that
b1 = 3. So we have a contradiction. We conclude

Qτ−1

γ , Qτ−2

γ ≤ CQ0(K0)

SoQτ−1

γ = Q
τ−2ww+
γ = Q

τ−2w+
γ ≤ D∩Dw+ , which is a final contradiction.

Thus the treatment of Case II is complete. □

8. Odd s: detailed analysis

We now take up the detailed analysis of concrete cases under the hy-
potheses that s is odd. We prove more than is strictly necessary, as it is of
some interest to see what can be done by this kind of direct argument before
invoking the very powerful classification of Moufang generalized polygons.

We choose our notation as permitted by Lemma 7.5 of Chapter IX:

[Z1, Zb1 ] ≤ Z1 ∩ Zb1

This may break the symmetry between 0 and 1, even if r = s− 1.
In the remaining analysis, we deal separately with the cases in which

[Z1, Zb1 ] is, or is not, trivial.
We will also rely on our estimates from Lemma 7.3 of Chapter IX: r/2−

1 ≤ b1 ≤ r/2 and r/2− 2 ≤ b0 ≤ r/2.

8.1. 1st case: [Z1, Z1+b1 ] nontrivial.

Lemma 8.1. Suppose that [Z1, Zb1 ] ̸= 1. Let j be an index of opposite
parity to b1. Then

(∗) 2b1 + b1+b1 ≤ r

Proof. We may take j = 1+b1. Setting R = [Z1, Zj ] ≤ Z1∩Zb1 , we see
that R stabilizes the path (1−b1, . . . , j+bj) or length j−1+b1+bj = 2b1+bj ,
whence the inequality. □

Lemma 8.2. Suppose that [Z1, Zb1 ] ̸= 1, and b1 is odd. Then b0 = b1 = 1,
s = 5, r = 4, and in addition we have the following.

(A) f0 = f1 =: f .
(B) Q0 and Q1 are elementary abelian, of rank 3f .
(C) Z(L1) and Z(L2) both have rank f .
(D) Qi/Z(Li) is a natural module for L̄i.
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In particular, r = s− 1 in this case.

Proof. The inequality (∗) takes the form

(∗1) 2b1 + b0 ≤ r

We let j = 1 + b1 and R = [Z1, Zj ].
In particular 2(r/2 − 1) + (r/2 − 2) ≤ r, and thus r ≤ 8. With r = 6

and b1 odd, we find b1 = 3 and thus (∗1) is violated. So r = 4 or r = 8, and
we begin by disposing of the latter case.

Suppose then that r = 8, and correspondingly b0 = 2, b1 = 3, R =
[Z1, Z4].

Then R fixes the path γ̃ = (−2, . . . , 6) of length 8, and under a shift τ
of +2 along the track T we have Rτ = Qγ , in view of the action of K on
both groups.

Let t be an involution in G2 which reflects the track T about the vertex
2. Then t preserves the arc γ̃ and hence normalizes R.

We claim that R = [Z2, Z4]. We have Z2 contained in G4 but not in Q4,
hence Z2 covers the same Sylow 2-subgroup of G4 as Z1 does. Therefore
[Z2, Z4] = [Z1, Z4] = R.

Therefore R ≤ Z2 ∩Z4 and R commutes with Q2 and Z4, while Z4Q2 is
a Sylow 2-subgroup of G2. Now applying the flip t, R centralizes a second
Sylow 2-subgroup of G2 and hence lies in Z(L2).

Now [⟨Z4, Z0⟩Q2, Z2] ≤ R ≤ Z(L2), so [O2(L2), Z2] = 1. Also [Q2, Z2] =
1, so we find Z2 = Z(L2). But Z4 ≤ L2 and hence R = [Z2, Z4] = 1, a
contradiction. So the case r = 8 is eliminated and we are left with the
following.

(1) r = 4, b1 = 1, b0 ≤ 2

and since s ≥ 5 we have s = 5.
In this case, we have R = [Z1, Z2].
Suppose b0 = 2. Then Z2 fixes the path (0, . . . , 4), and in view of the

action of K on Z2, we find that Z2 = Qγ has rank f0, and Z2 ∩ Q4 = 1.
In particular [Z2, Z4] = 1. Thus Z2 centralizes the Sylow 2-subgroup Z4Q2

of L2, and similarly Z0Q2. So Z2 ≤ Z(L2), so R = 1, a contradiction. We
have shown:

(2) b0 = 1

Now we consider the module structure. We have R = [Z1, Z2] ≤ Z1∩Z2,
and hence each of Z1 and Z2 is a quadratic module with respect to the
other. So in the first place for i = 1, 2 (or 0, 1) we have Zi/Z(Li) is a sum of
natural modules for Li, and by considering both actions, and in particular
the subgroup R in both cases, we see that f0 = f1 and each quotient module
is natural. So we set f := f0 = f1.

Now s = r + 1 = 5 and so we can compute the rank of the Sylow
2-subgroup S by working with the path (0, . . . , 5), and we find rk(S) =
2f0 + 2f1 = 4f . Thus rk(S/Zi) ≤ 2f and rk(Qi/Zi) ≤ f for any i. Hence
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Qi/Zi has a trivial composition series and in particular [O2(Li), Qi] ≤ Zi.
Thus Qi = CQi(Ki)Zi. Now CQi(Ki) ∩ Zi = Z(Li), so rk(CQi(Ki)) =
rk(Qi/Zi) + rk(Z(Li)) = rk(Qi)− rk(Zi/Z(Li)) = f .

Now suppose toward a contradiction that for some i we have Z(Li) = 1,
and let i′ be a vertex adjacent to i. Then the intersection Qi′ ∩ Qi is a
K-invariant group of rank 2f , and Qi′ ∩Zi has rank f , by our hypothesis. It
then follows from the structure of Qi that CQi(Ki) ≤ Qi′ , that is, CQi(Ki) ≤
CQi′ (Ki′)Zi′ .

Now Ki acts fixed point freely on Zi/Z(Li), while Ki′ has fixed points
there, so Ki ∩Ki′ = 1 and K = KiKi′ . Hence CQi(Ki) ∩ CQi′ (Ki′) = 1, as
otherwise this group would fix the track T pointwise.

Since CQi(Ki) ≤ CQi′ (Ki′)Zi′ isK-invariant and disjoint from CQi′ (Ki′),
it follows that CQi(Ki) ≤ Zi′ . Hence rk(Zi′ ∩ Qi) ≥ 3f , that is Zi′ = Qi.
In particular rk(Z(Li′)) = f . Then looking at a Sylow 2-subgroup S of
Gi,i′ , from the point of view of Li′ , we see that rk(Z(S)) = 2f . But by our
hypothesis rk(Zi) = 2f , so now Zi = Z(S). But then applying conjugation
in Li we find Zi ≤ Z(Li), a contradiction. Thus we may conclude

(3) Z(Li) is nontrivial, all i

Now with i, i′ adjacent, we have Z(Li) ∩ Z(Li′) = 1 and Z(Li) ≤ Zi′ .
So the action of Ki′ on Z(Li) is fixed point free and rk(Z(Li)) = f , and
Zi = Qi.

Now by Lemma 2.5 of Chapter IX, Qi is elementary abelian for all i.
With this, all of our claims are proved. □

The next case involves a more elaborate analysis.

Lemma 8.3. Suppose that [Z1, Zb1 ] ̸= 1, and b1 is even. Then b0 = 3,
b1 = 2, s = 7, r = 6, and in addition we have the following.

(A) Z0 = Z(L0) has rank f1, and Q0 has rank 2f0 + 3f1.
(B) Z1 is a natural module for L̄1, and (Q1/Z1)/Z(L1/Z1) is a direct

sum of natural modules for L1.
(C) ϕ(Q0) = Z0, and Q0/Z0 is an irreducible Ḡ0-module.
(D) f1 ≤ f0
(E) Q0 ∩Q2 = CQ1(K1)× Z1

In particular, r = s− 1 and Z0 ≤ Z1.

Proof. Now j = 1 + b1 is odd, so b1 = bj and the inequality (∗) from
Lemma 8.1 of Chapter IX becomes

(∗2) 3b1 ≤ r

As r/2 − 1 ≤ b1, we find r ≤ 6. On the other hand b1 ≥ 2, as b1 is even,
hence by (∗2) also r ≥ 6. Thus

(1) r = 6, b1 = 2

So R = [Z1, Zj ] = [Z1, Z3] stabilizes the path γ̃ = (−1, . . . , 5) of length 6,
which is therefore regular. But (0, . . . , 6) is also regular, by our hypotheses
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and choice of notation, and by Lemma 2.13 of Chapter IX, it follows that
r < s, that is r = s− 1 and s = 7.

Now we can compute the rank of the Sylow 2-subgroup S of G0,1 by
working along the track T , and we find

(2) rk(S) = 3f0 + 3f1

Now we consider R = [Z1, Z3] ≤ Z1 ∩ Z3. We have [R,Z1] = 1, and Z1

covers a Sylow 2-subgroup of G2,3 modulo Q3. Since [R,Q3] = 1, the group
R centralizes the Sylow 2-subgroup O2(G2,3).

Take t ∈ NG3(K) inverting K. Then t acts on the path γ̃ and hence
normalizes R. Thus R is central in two Sylow 2-subgroups of G2 and hence
R ≤ Z(L2). Thus R ∩ Z(L1) = 1.

We will show

(4) Z2 = Z(L2)

For the moment, suppose the contrary. Then Lemma 3.3 of Chapter IX
applies, and we have:

(4⊥) Zi/Z(Li) is natural for i = 2 or 3

Also, since b1 > 1 here, the same lemma shows that Z◦(L0) > 1.
Now since Z(L2) ∩ Z(L3) = 1, looking at Z(L2) inside the module Z3,

or at Z(L3) inside Z2, we find

(5) rk(Z(L2)) = f1; rk(Z(L3)) = f0

Thus rk(Z2) = 2f0 + f1 and rk(Z3) = f0 + 2f1, and therefore rk(Q2/Z2) =
2f1, rk(Q3/Z3) = 2f0.

By considering the ranks, we find that Qi = Zi−1ZiZi+1. With i = 2 we
find [Z1, Q2] = [Z1, Z3] = Z(L2).

Suppose toward a contradiction that [O2(L2), Q2] ≤ Z2. In particular
we have [O2(L2), Z1] ≤ Z2, and as [Q2, Z1] ≤ Z2 by the preceding, we find
[L2, Z1] ≤ Z2. Similarly [L2, Z3] ≤ Z2 and hence [L2, Q2] ≤ Z2. Then
Q2 ∩Q3 is normal in L2, contradicting Lemma 2.14 of Chapter IX.

This shows that there is some nontrivial composition factor in Q2/Z2,
with respect to the action of L̄2. A similar argument applies to Q3/Z3. In
view of the ranks involved in the two cases, it follows that f0 = f1, and that
both quotients Qi/Zi are natural modules for the respective L̄i (Lemma
5.31 of Chapter II). All of this is under the hypothesis (4⊥), and we are
approaching a contradiction.

Now as above we have [Z2, Q1] ≤ Z(L1) and [Z2, Q3] ≤ Z(L3), hence
[Z2, L2] ≤ Z(L1)Z(L3). In particular, Z(L1)Z(L3) ◁ L2.

By rank considerations we have Z2 = Z(L1)Z(L2)Z(L3), and hence
Z2/Z(L1)Z(L3) is central in L2/Z(L1)Z(L3). As Q2/Z2 is a natural module,
it follow from Lemma 2.5 of Chapter IX that Q2/Z(L1)Z(L3) is (elementary)
abelian. Hence Z(L2) = [Z1, Z3] ≤ Z(L1)Z(L3), a contradiction.
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This contradiction refutes (4⊥), and proves (4). Then as Z(L3) ≤ Z2 =
Z(L2) we conclude

(5) Z(L3) = 1

Now we claim

(6) Z3 is a natural module for L3

Now Z1 acts quadratically on Z3, so Z3 is a direct sum of natural mod-
ules. Z2 fixes the path (−1, . . . , 5) pointwise and thus rk(Z2) = f1. Thus
Z3 = Z2Z4 is a natural module, as claimed.

Since Z1 = Z0Z2 acts nontrivially on Z3, it is also clear that

(7) b0 = 3

We still need to work out the structure of Q1/Z1 and Q0.
We claim that Q0 ∩Q2 is normal in L1. Let

V = ⟨ZG0
1 ⟩

As Z1 is a natural module, we find [Z1, Q0] = Z0, and thus V/Z0 ≤ Z(Q0/Z0).
As b0 = 3, the group Z4Q1 is a Sylow 2-subgroup of L1, and ⟨Z−2, Z4⟩Q1 =

L1. Let τ be a shift by +2 along the track T . Then [Z4, Q0 ∩ Q2] ≤
[Z4, Q1∩Q2] ≤ [V τ , Q1∩Q2] ≤ [V,Q0]

τ = Z2. Similarly [Z−2, Q0∩Q2] ≤ Z0.
As Q1 normalizes Q0 ∩Q2, it now follows that L1 normalizes Q0 ∩Q2.

So Lemma 7.4 of Chapter IX applies. Thus Q̄1 = Q1/(Q0 ∩ Q2) is ele-
mentary abelian of rank 2f0. Furthermore, CQ̄1

(L1) = 1. Our calculations

above show that [O2(L1), Q0 ∩Q2] ≤ Z1.
Now we consider the action of Z4 on Q1/(Q0 ∩Q2). We claim that this

is a quadratic module. Indeed, [Q1, Z4] ≤ Q1∩Q2, and [Q1∩Q2, Z4] ≤ Z2 ≤
Q0 ∩Q2. In view of Lemma 2.2 of Chapter IX, we have:

(8) The module Q1/(Q0 ∩Q2) is a direct sum of natural L̄1-modules

In view of Lemma 7.4 of Chapter IX, the rank of this quotient is 2f0, and
in particular

f1 ≤ f0

Now [O2(L1), Q0∩Q2] ≤ Z1, and Z1 is a natural module. It follows that

Q0 ∩Q2 = CQ1(K1)× Z1

which is point (E).
We set

D = CQ1(K1)

We claim

(9) Q0 = DV

Let Ṽ = ⟨ZG2
1 ⟩ (in other words, V “on the opposite side”) and set

W = (V ∩ Q1)(Ṽ ∩ Q1). We have [Q1, Z3] ≤ [Q1, Ṽ ] ≤ Q1 ∩ Ṽ ≤ W .
Similarly [Q1, Z−1] ≤W . It follows that [Q1, O

2(L1)] ≤W .
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If W ≤ Q0 ∩ Q2 then we find Q0 ∩ Q1 ◁ L1, contradicting Lemma 2.14

of Chapter IX. Now the two factors V ∩Q1 and Ṽ ∩Q1 are conjugate under
the action of L1, so it follows that

V ∩Q1 ̸≤ Q0 ∩Q2

In view of the action of K, it follows that Q0∩Q1 = (V ∩Q1)(Q0∩Q2) ≤
V DZ1 = V D. But Q0 = Z−1(Q0 ∩ Q1), so Q0 ≤ Z−1V D = V D, and thus
(9) follows.

Next we show that D is elementary abelian. We have ϕ(D) = ϕ(DZ1) =
ϕ(Q0 ∩Q2) ◁ L1. If ϕ(D) > 1 then ϕ(D) must meet Z(S), with S a Sylow
2-subgroup of L1, and hence D meets Z1, a contradiction. So ϕ(D) = 1 and
D is elementary abelian.

So Q′
0 = [Q0, V ] ≤ Z0. As D is elementary abelian and V is generated by

elementary abelian subgroups, Q0/Q
′
0 is elementary abelian. So ϕ(Q0) ≤ Z0.

But Q0 is nonabelian, since it acts nontrivially on Z1. So ϕ(Q0) > 1 and in
view of the action of K we have rk(ϕ(Q0)) ≥ f1, ϕ(Q0) = Z0.

Now consider the group Q∗ = Q0 ∩ Q2. This has rank f0 + 2f1, and it
fixes the path (−1, . . . , 3). The maximal regular path (−2, . . . , 4) is fixed by
a K-invariant subgroup of Q∗ of rank f0. This cannot meet Z1, so it must
be contained in D, and hence must be D itself.

NowQ0∩Q2 ◁ Q1 soQ0∩Q2/Z1 = DZ1/Z1 meets Z(Q1/Z1), and in view
of the action of K we find DZ1/Z1 ≤ Z(Q1/Z1). As [O

2(L1), Q0 ∩Q2] ≤ Z1

we find DZ1/Z1 = Z(L1/Z1). Thus

(10) (Q1/Z1)/(Z(L1/Z1)) is a direct sum of natural modules for L̄1

We claim

L0 = O2(L0)

Let P = [L0, Q0]. It suffices to show that P = Q0. We have P ◁ L0

and D = [D,K0] ≤ P . Hence Z1 = [D,Q1] ≤ P and V = ZG0
1 ≤ P . So

Q0 = DV ≤ P , and P = Q0. Our claim follows.
We come to the last point.

(11) Q0/Z0 is an irreducible Ḡ0-module

We fix N ≤ Q0 properly containing Z0 with N̄ = N/Z0 minimal normal in
L0/Z0.

If rk(N̄) < 2f0 then [N,L0] = [N,O2(L0)] = 1 and N ≤ Z0, a contra-
diction. Similarly, if rk(Q0/N) < 2f0, then Q0 = [Q0, L0] ≤ N , and we have
our claim.

Supposing this fails, then, we have 3f1 + 2f0 = rk(Q0) = rk(Q0/N) +
rk(N/Z0)+rk(Z0) ≥ 4f0+f1 That is, f0 ≤ f1 and thus f0 = f1. We will set
f := f0 = f1. Note that now rk(N/Z0) = rk(Q/N) = 2f and N is a natural
module.

If N ≥ Z1 then N ≥ V and rk(Q0/N) ≤ f , a contradiction. If N ∩Z1 >
Z0 then N ∩ Z1/Z0 is K1-invariant and hence has rank at least f , forcing
N ≥ Z1, a contradiction. We conclude that N ∩ Z1 = Z0.
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Now rk(N) = 3f and hence rk(N ∩ Q1) ≥ 2f . If rk(N ∩ Q1) > 2f ,
then rk(N ∩ Q0 ∩ Q2) > f . In view of the action of K1, we then have
N ∩D > 1. On the other hand D covers L−2 modulo Q−2, and has rank f ,
so [D ∩N,K] = D and hence D ≤ N .

Now D ≤ L−2, so [D,Z−2] = 1. Here Z−2 covers a Sylow 2-subgroup
of L1. If [D,Q1] = 1 it follows that D ≤ Z1, whereas D ∩ Z1 = 1. Hence
[D,Q1] is a nontrivial subgroup of L1; and it is also normal. It follows
that [D,Q1] = Z1. But then since D ≤ N we have Z1 = [D,Q1] ≤ N , a
contradiction.

So from all this we conclude

(12) rk(N ∩Q1) = 2f

In particular, N is not contained in Q1, and N ∩Q0 ∩Q2 = Z0

Now take t ∈ L1 switching the vertices 0 and 2, and set Ñ = N t, and

A = (N ∩Q1)(Ñ ∩Q1). Then N ∩ Ñ ∩Q1 = N ∩ Ñ ∩Q0∩Q2 = Z0∩Z2 = 1.

Hence A = (N ∩Q1)× (Ñ ∩Q2).

Now L1 = ⟨N, Ñ⟩Q1 and hence A is L1-invariant. Furthermore A/Z1 ≃
Q1/Q0 ∩ Q2 as L̄1-module, a natural module. So an element of order 3 in
K1 will act on A without fixed points, and it follows from Lemma 2.4 of
Chapter IX that A is abelian

On the other hand, rk(A ∩ Q−1) ≥ 2f , and as A acts transitively on
∆(0) \ {1}, and is abelian, A ∩Q−1 is contained in Qδ for all δ adjacent to

0, that is A ∩ Q−1 = A ∩ G(2)
0 , where G

(2)
0 denotes the pointwise stabilizer

of the set of vertices at distance at most two from 0.
So rk(W ∩G(2)

0 ) ≥ 2f and in particular G
(2)
0 > Z0. So Z0 < G

(2)
0 < Q0,

and therefore in view of our previous analysis G
(2)
0 /Z0 is also a minimal

normal subgroup of G0/Z0, that is we could have chosen N = G
(2)
0 from the

beginning. But we already showed that N is not contained in Q0, so this is
a contradiction. □

8.2. 2nd case: [Z1, Z1+b1 ] trivial.

Lemma 8.4. Suppose that [Z1, Z1+b1 ] = 1. Then without loss of gener-
ality we may suppose that b1 is odd.

Proof. Suppose that b1 is in fact even. Then we claim that b0 is odd,
and that after interchanging 0 and 1, we retain all our hypotheses. In
particular we will need r = s− 1 to justify this change of notation, so all in
all we make the following three claims.

(∗) r = s− 1; [Z0, Zb0 ] ≤ Z0 ∩ Zb0 ; b0 is odd

The second condition may seem too weak, as our strategy seems to
require Z0 ∩ Zb0 = 1, but in the case in which [Z0, Zb0 ] ̸= 1 and at the
same time [Z0, Zb0 ] ≤ Z0 ∩ Zb0 , with r = s − 1 holding as well, we are
free to interchange 0 and 1 and find ourselves in the setting of the previous
subsection. This in itself is sufficient—but according to our previous results,
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in this case b1 (which corresponds to b0 in the notation of the previous
subsection) would then be 1 or 3, so that in this case b1 already is odd.

We begin the analysis.
Let j = 1 + b1, which we have assumed is odd. As [Z1, Zj ] = 1 and Z1

is not contained in Qj , it follows that

(1) Zj = Z(Lj)

In particular, Z1 ≤ Z2 and hence

b1 ≥ b0 + 1

Suppose first that

(I) b1 = r/2

Then Zj fixes the path (1, . . . , j + b1) of length 2b1 = r, and has odd
endpoints. So Lemma 7.2 of Chapter IX implies that r = s− 1, giving our
first point.

Now suppose that [Z0, Zb0 ] ̸≤ Z0 ∩ Zb0 . Since r = s − 1, Lemma 7.5 of
Chapter IX may be applied, with the indices 0 and 1 interchanged, and this
yields, among other things,

1 < [Z1, Z1+b1 ]

which contradicts our case hypothesis in this subsection. So [Z0, Zb0 ] ≤
Z0∩Zb0 , and as we have explained, this allows to conclude that Z0∩Zb0 = 1.

Finally, we claim that b0 is odd. If this fails, then we may in any case
interchange 0 and 1, and find ourselves once more in the setting of the
present lemma. Then our claim (1) applies with j′ = 0 + b0 and yields

Z0 = Z(L0)

Then Z0 meets Z1 and this is normal in both L0 and L1, a contradiction.
So b0 is odd, and after interchanging 0 and 1 we have the desired state of
affairs.

So we now consider the alternative:

(II) b1 = r/2− 1

As b1 > b0, we have b0 = r/2− 2. In particular b0 is odd.
Let L = ⟨Z2, Zr−2⟩. Observe that Q = O2(G0,...,r) centralizes L. Also

Zj belongs to Q2 and Qr−2 and hence centralizes L as well.
Now L covers L̄j and is normalized by K, so Kj ≤ L. So Kj centralizes

Qγ and Zj .
Qγ covers a Sylow 2-subgroup of L0, while Zj covers a Sylow 2-subgroup

of L1. Since Kj centralizes both, it acts trivially on the quotients L̄0, L̄1,
that is [Kj , Li] ≤ Qi for i = 0, 1. Thus C(Kj) covers L̄i for i = 0, 1, and Kj

is normalized, and even centralized, by transitive subgroups of L0 and L1¡
contradicting Lemma 2.14 of Chapter IX.

This disposes of the case b1 = r/2− 1, and completes the proof. □
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Lemma 8.5. Suppose that [Z1, Z1+b1 ] = 1 with b1 odd. Then we have the
following.

(A) b0 = r/2 and b1 = r/2− 1
(B) Z0 = Z(L0), rk(Z0) = f0

Proof. We set j = 1 + b1. As [Z1, Zj ] = 1 and Z1 is not contained in
Qj , we have Zj = Z(Lj). Since j is even, it follows that Z0 = Z(L0). Thus
Z0 ≤ Z1 and hence b0 ≥ b1 + 1. In view of our estimates on b0 and b1 we
find

b0 = r/2; b1 = r/2− 1

As j is even Zj fixes (0, . . . , r) and it follows easily that Zj = Qγ (i.e.,
O2(Gγ)) and rk(Zj) = f0, hence also rk(Z0) = f0. This completes the
proof. □

Lemma 8.6. Suppose that [Z1, Z1+b1 ] = 1 with b1 odd. Let j = 1 + b1.
Then Z1 ∩Qj ≤ Qj+1.

Proof. We assume the contrary:

(1) Z1 ∩Qj ̸≤ Qj+1

Set H = Z1 ∩Qj .
Now Z(Lj+1) = 1 since j is even and hence [H,Zj+1] ̸= 1. Fix [h, z] a

nontrivial element with h ∈ H, z ∈ Zj+1.

Suppose b1 ≥ 4. As z fixes the vertex 2, the vertex δ = −1z
−1

has
distance at most 4 from the vertex 1. As s ≥ 5 and b1 ≥ 4, we find that Z1

fixes the vertex δ. So h fixes δ as well as −1, and we have

−1[h,z] = δhz = δz = −1

and thus [h, z] fixes the path (−1, . . . , j+1+b1) of length j+2+b1 = r+1 > r,
a contradiction. So we conclude

(2) b1 ≤ 3

or in other words b1 = 1 or 3.
We first treat the case b1 = 3. Then b0 = 4, r = 8, and H = Z1 ∩ Q4.

Now as above [H,Zj+1] is nontrivial, and [H,Zj+1] fixes the path (0, . . . , 8) of
length r pointwise, so in view of the action ofK we find [H,Zj+1] = Qγ = Z4.

Now [H,Z4] = 1 and thusH acts quadratically on Zj+1, with rk([Zj+1, H]) =
f0. By Lemma 2.1 of Chapter IX, Z5 = Zj+1 is a sum of natural modules,
and thus has rank 2f0. In particular Z5 = Z4Z6, and similarly Z1 = Z0Z2.

Now Z0 covers a Sylow 2-subgroup of L̄4 and has rank f0, so Z0∩Q4 = 1
and H = Z2. But then H ≤ Q5 = Qj+1, a contradiction to our assumption.

This contradiction eliminates the case b1 = 3 and leaves the case

(3) b1 = 1

with which we will be concerned for the remainder of the proof. So we have
b0 = 2 and r = 4. As s ≥ 5 we have s = 5 and in particular r = s − 1. So
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we can compute the rank of a Sylow 2-subgroup S of G0,1 by working with
the path (0, . . . , 5). We find

(4) rk(S) = 2f0 + 2f1

We claim

(5) Q1 is elementary abelian

The group Z2Q0 is a Sylow 2-subgroup of L0, and Z2 ∩ Q0 = 1 since
r = 4. As b1 = 1, we have Q1 ≤ Z1Q2 and Q1 normalizes Z2. So Q1 =
Z2 × (Q0 ∩Q1). Similarly, Q0 ∩Q2 ≤ Z0Q2, so Q0 ∩Q1 = Z0 × (Q0 ∩Q2).
So

Q1 = Z0 × Z2 × (Q0 ∩Q2)

Now ϕ(Q0 ∩Q2) ≤ Q−1 ∩Q3 stabilizes (−2, . . . , 4), which has length 6 > r,
so ϕ(Q0∩Q2) = 1 and Q0∩Q2 is elementary abelian, from which (5) follows.

Now we claim that rk(Q1) ≥ 2f1. Otherwise, in a composition series
for Q1 relative to the action of L̄1, all factors are trivial, and in particular
the tori of L1 centralize Q1, contradicting our hypothesis. So rk(Q1) ≥ 2f1.
But we know the rank of Q1, namely 2f0 + f1, and hence 2f0 + f1 ≥ 2f1,
and

(6) f1 ≤ 2f0

Now Q−1 ∩ Q1 has rank f0 and hence Q−1 ∩ Q1 = Z0 which is normal
in G0. So Lemma 7.4 of Chapter IX applies, and Q0/Z0 is elementary
abelian of rank 2f1, with CQ0/Z0

(L̄0) = 1. As Q1 is abelian, its action on
Q0 is quadratic, and it follows by Lemma 2.2 of Chapter IX that Q0/Z0 is
a direct sum of natural modules for L̄0. As f1 ≤ 2f0 this sum has at most
two factors, and f1 = f0 or 2f0.

If Q0/Z0 is a natural module, then by Lemma 2.5 of Chapter IX it
follows that Q0 is elementary abelian. Then Q0∩Q1 is centralized by Q0Q1,
and this is a Sylow 2-subgroup of G0,1. So Q0 ∩ Q1 ≤ Z0 = Z(L0). This
contradicts Lemma 2.14 of Chapter IX. So we conclude

(7) f1 = 2f0 and Q0/Z0 is the sum of two natural modules

In particular rk(Q1) = 2f1 and it follows that Q1 is a natural module for
L̄1, in view of Lemma 5.31 of Chapter II.

Thus [Q1, Q0, Q0] = 1. As [Q1, Z2] = 1 we find that Z2Q0 central-
izes [Q1, Q0], and as Z2Q0 is a Sylow 2-subgroup of L0, this implies that
[Q0, Q1] ≤ Z0. Then Q1 acts trivially on Q0/Z0, contradicting the structure
of this L̄0-module.

We have reached a contradiction in all cases, and our claim is proved. □

Lemma 8.7. Suppose that [Z1, Z1+b1 ] = 1 with b1 odd. Then we have the
following.

(A) f0 = f1
(B) Z1 ∩Q1+b1 = Z2

(C) Z1 = Z0Z2 is a natural module for L̄1.
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(D) b1 ≥ 3.

Proof. Let j = 1 + b1. The group H = Z1 ∩Qj ≤ Qj+1 fixes the path
γ̃ = (1 − b1, . . . , j + 2) of length j + b1 + 1 = 2b1 + 2 = r. Thus we have
Z2 ≤ H ≤ Qγ with Qγ = O2(γ̃) as usual, and by rank considerations and
the action of K we find Z2 = Qγ . In particular point (B) follows.

Next we show Z1 = Z0Z2. We have Z1 ≤ Z0Qj and therefore Z1 =
Z0(Z1 ∩Qj) = Z0Z2. It follows also that Z1 is elementary abelian.

Now Z(L1) = 1 and rk(Z1) is 2 · rk(CZ1(S)), with S a Sylow 2-subgroup
of L1,2. By Lemma 2.3 of Chapter IX it follows that Z1 is a sum of natural
L̄1-modules. As rk(Z1) = 2f0, it also follows that

f1 ≤ f0

Our next point is

f0 = f1, and Z1 is a natural module

We have K = K0 ×K1 since K0 centralizes Z0 = Z(L0), and the action
of K1 on Z0 is fixed point free. Now ZjQ0 is a Sylow 2-subgroup of L̄0, and
[Kj , Zj ] = 1, so [Kj , L0] ≤ Q0. Hence Kj ∩ K0 = 1. So f0 = rk(Kj) ≤
rk(K1) = f1. So f0 = f1 and Z1 is natural.

Finally we deal with b1. If b1 < 3 then as b1 is odd we have b1 = 1.
Now rk(Z1 ∩ Q0) = f , and hence Z1 ∩ Q0 = Z0. Hence with b1 = 1,

we have [Z1, Q0] = Z0. As Z1Q0 covers a Sylow 2-subgroup of L̄0, we find
[O2(L0), Q0] = 1, contradicting our hypothesis that CL0(Q0) ≤ Q0. So
b1 ≥ 3, and all our claims are proved. □

Proposition 8.8. The case [Z1, Z1+b1 ] = 1 is impossible.

Proof. The remaining analysis is quite substantial.
We set f := f0 = f1. Let V0 = ⟨ZL0

1 ⟩. As b1 ≥ 3, V0 is commutative and
V0 ≤ Q0 ∩Q1. As Z1 is a natural L̄1-module, we find [Z1, Q0] = Z0. Hence
also [V0, Q0] = Z0.

With j = 1 + b1 = b0, let R = [Z−1, Zj ]. As Zj ≤ G0 acts transitively

on ∆(0) \ {1}, we have V0 = ⟨ZZj

−1Z0⟩ = Z−1Z0R. We claim in fact

V0 = Z−1Z1

or in other words R ≤ Z−1Z1; indeed, we claim R ≤ Z1.

With Vj−2 = ⟨ZLj−2

j−1 ⟩, we have Zj ≤ Zj−1 ≤ Vj−2 and Z−1 ≤ Zj−2, hence

R ≤ V0 ∩ Vj−2. Then [R, Vj ] = 1 since Vj−2 is abelian. Hence [V0, Zj , Zj ] ≤
[Z−1, Zj , Zj ] = 1 and V0 is a quadratic module with respect to the action of
Zj . Hence V0/CV0(O

2(L0)) is a direct sum of natural modules.
As [R,Zj ] = 1, it follows that R is contained in Z1CV0(O

2(L0)). As R
is K0-invariant, we find R = (R ∩ Z1) ·CR(O

2(L0)). Let R0 = CR(O
2(L0)).

Take an involution t ∈ O2(L0) acting as a reflection on T . Now R0 ≤
Vj−2 ≤ Lj and t centralizes R0, so R0Z0 stabilizes the path (−j, . . . , j) and
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hence rk(R0Z0) = rk(Z0) and R0 ≤ Z0. Thus R ≤ Z1 and V0 = Z−1Z1. In
particular V0 has rank 3f and V0/Z0 has rank 2f , and it follows that

(8) V0/Z0 is a natural module

Now R ̸= 1, and R ≤ V0 ∩ Vj−2 fixes the path (1− b1, . . . , j − 3 + b1), of
length j − 4 + 2b1 = 3r/2− 6. So 3r/2− 6 ≤ r and hence

(9) r ≤ 12

We deal first with the case

r = 12;

then
b0 = 6 and b1 = 5.

Now R stabilizes the aforementioned maximal regular path (−4, . . . , 8),
as does Z2, and thus R = Z2 has rank f . That is, [Z−1, Z6] = Z2. Now
Z5 = Z4Z6 so we find also [Z−1, Z5] = Z2. So in general for i odd we have
[Zi, Zi+6] = Zi+3. This refers to paths contained in the track T , and we
wish to prove the same statement for paths not necessarily contained in this
track, that is for vertices at distance 6 in the orbit of the vertex 1.

We claim that any path of length 6 and endpoints conjugate to 1 can be
conjugated into T . Let λ be such a path and denote its vertices as follows:
(δ−3, . . . , δ3). As s ≥ 5 we may suppose that (δ−2, . . . , δ3) already coincides
with the path (0, . . . , 5); but this path is regular on the left, so we may move
λ into T . So under the assumption r = 12, we find [Zδ′ , Zδ′′ ] = Zδ whenever
δ′, δ′′ are vertices in the orbit of 1, at distance 6, with midpoint δ.

Now consider z ∈ Z0 \ G7 and z′ ∈ Z10 \ G3. Then z fixes the vertex
6, and the path (10z, . . . , 6, . . . , 10) has length 8. Now 9z and 9 are vertices
at distance 6, so we have [Z9z , Z9] = Z6. Similarly [Z1z′ , Z1] = Z4. Thus

[z, zz
′
] ∈ Z4, and [z′, z′z] ∈ Z6.

Now z and z′ are involutions, so [z, zz
′
] = (zz′)4 = (z′z)−4 = [z′, z′z] ∈

Z4 ∩ Z6 = 1, that is, [z, z′z] = 1.

Now look at the action of [z, zz
′
] on the element −3 ∈ T . Let t = zz

′
.

We have z ∈ Z1. The distance between the vertices 1 and 2z
′
is 5. As b1 = 5

and s ≥ 5 it follows that z fixes the vertex 2z
′
. So t fixes the vertex 2.

Now z fixes the path (−6, . . . , 4, 3z
′
, 2z

′
) of length r (i.e., 12), and hence

cannot fix the immediate neighbor 1z
′
. So t moves the vertex 1, and fixes

the vertex 2.
Therefore the distance between the vertices 0 and (−3)t is 7. Now z fixes

the path (−6, . . . , 0) and hence cannot fix the vertex (−3)t. Now (−3)[z,t] =
[(−3)tz]t ̸= [(−3)t]t = −3. So [z, t] ̸= 1, a contradiction.

We conclude
r < 12

Recalling that b1 ≥ 3 is odd and b1 = r/2− 1, we arrive at

(10) r = 8; b0 = 4; b1 = 3
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This is the key configuration to eliminate.
We will show first

(11) Q∗ = Q−1 ∩Q1 is normal in G0

We work with V−2, V0, V2 where Vi = ⟨ZLi
i+1⟩ for i even. Recall that Vi =

Zi−1Zi+1. So V2 ∩Q0 = Z1 ≤ V0, and we find [V2, Q0 ∩Q1] ≤ V2 ∩Q0 ≤ V0.
In particular [V2, Q∗] ≤ V0 and similarly [V−2, Q∗] ≤ V0. Also V0 ≤ Q∗ and
thus Q∗ is normalized by ⟨V−2, V2⟩; since Q∗ is also normalized by Q0 and
K, it is normalized by G0, as claimed. We have also seen that

(12) [O2(L0), Q∗] ≤ V0

In particular Lemma 7.4 of Chapter IX applies, and the rank of the
quotient Q0/Q∗ is 2f . Hence

(13) Q0/Q∗ is a natural L̄0-module

Now it follows from the last two points and Lemma 9.9 of Chapter I that

(14) Q∗ = CQ0(K0)V0

We will show

(15) CQ0(K0) = Z0

Set D = CQ0(K0). Fix t ∈ NO2(L0)(K0) operating as a reflection about
0 on the track T . Then t normalizes every subgroup of D containing Z0,
since [t,D] ≤ V0 ∩D = Z0.

Now D ∩ L4 fixes the arc (0, . . . , 4) and contains Z0. Hence this group
is invariant under the reflection t and fixes (−4, . . . , 4) of length r = 8.
As Z0 already has rank f it follows that D ∩ L4 = Z0, and in particular
D ∩Q3 ≤ Z0.

Whenever D meets some Li in a subgroup not contained in Qi, then K0

acts trivially on L̄i, and thus C(K0) ∩ Li acts transitively on the neighbors
of i. This cannot happen for two consecutive values of i, by Lemma 2.14
of Chapter IX. However Z0 ≤ D and Z0 covers a Sylow 2-subgroup of L4.
Hence D ∩L3 ≤ Q3, and hence D ∩L3 = Z0. So if D ≤ L3 then D = Z0, as
claimed. Assume therefore that D is not contained in L3.

We claim NL2(Z0) ≤ G0. Otherwise, fixing x ∈ NL2(Z0) \ G0, we have
Z0 = Z0x where the vertex 0x has distance d at most 4 from 0. We may
conjugate the path (0, . . . , 0x) into the path (0, . . . , d), by an element of G0,
and find Z0 = Zd. Then Z0 stabilizes the path (−b0, . . . , d + b0) or length
r + d, a contradiction. So NL2(Z0) ≤ G0.

Let us see that CQ2(K0) = Z0. If CQ2(K0) is not contained in Q1,
then CL1(K0) covers L̄1 and acts transitively on ∆(1). On the other hand
since D is not contained in L3 it covers a Sylow 2-subgroup of L̄2 and
hence CL2(K0) acts transitively on ∆(2), and we have a contradiction. So
CQ2(K0) ≤ CQ1(K0) ≤ CQ0(K0) = D and CQ2(K0) = D ∩Q2 = Z0.
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It follows that CL2(K0) ≤ NL2(Z0) ≤ G0. As CL2(K0) covers L̄2 we find
that L2 ≤ G0Q2. This is incompatible with the action of L2 on the tree Γ.
So we have a contradiction, and it follows that D = Z0, as claimed.

In particular we now have the following.

(16) Q∗ = V0; rk(Q0) = 5f

As Q′
0 ≤ Z0 ≤ Q2, it follows that Q0 normalizes Q0 ∩ Q2. Similarly

Q2 normalizes the same intersection, and then G1 normalizes Q0 ∩ Q2. So
Lemma 7.4 of Chapter IX applies. Hence Q1/(Q0 ∩Q2) has rank 2f and is
a natural module. Recall that (Q0 ∩ Q2)/Z1 is the center of L1/Z1. So by
Lemma 2.5 of Chapter IX we find that Q1/Z1 is abelian. On the other hand
V0/Z0 is a natural L̄0-module and Q1 represents a Sylow 2-subgroup of L̄0,
so rk(Q′

1) ≥ f . Thus Q′
1 = Z1.

Now Q0/V0 is natural, and V0/Z0 is natural. Via Lemma 2.4 of Chapter
IX it follows that

Q0/Z0 is elementary abelian, and is a direct sum of natural modules.

So we may write

Q0/Z0 = V0/Z0 ⊕W1/Z0

with W1/Z0 a natural module. for L̄0.
Then W1 covers a Sylow 2-subgroup of L̄1. Take g ∈ L1 \ G0. Then

L1 = ⟨W1,W
g
1 ⟩Q1. Let X = (W1 ∩Q1)(W

g
1 ∩Q1)/Z1. Notice that W1 ∩Q1

is normal in Q1, and hence the same applies to W g
1 ∩Q1. In particular these

two factors normalize one another and as Z1 = Z0Z
g
0 is contained in their

product, the quotient at least makes sense.
On the other hand [W1,W

g
1 ∩ Q1] ≤ W1 ∩ Q1 and thus W1 normalizes

X; similarly W g
1 normalizes X and hence so does L1.

Now W1 ∩Q1/(W1 ∩Q1 ∩Z1) =W1 ∩Q1/Z0 has rank f , so X has rank
at most 2f , and g acts nontrivially, so X is a natural L̄1-module.

Now L1 centralizes the quotient Q1/(W1 ∩ Q1)(W
g
1 ∩ Q1) since L1 =

⟨W1,W
g
1 ⟩Q1 and in particular K1 centralizes this quotient.

Finally, we consider [V0,K1]. As Z1 is a natural module we have [Z1,K1] =
Z1. Now Z−1 covers a Sylow 2-subgroup of L̄2, and Z−1 ∩ Q2 = Z0, while
[Z−1,K1] is a K-invariant subgroup. So either [Z−1,K1] = Z−1 or CL2(K1)
covers L̄2. In the latter case [K1, Q1] ≤ Q2 and hence [K1, Q1] ≤ Q0 ∩ Q2.
But Q1/(Q0 ∩ Q2) is a natural module, so this is a contradiction. So
[Z−1,K1] = Z−1 and [V0,K1] = V0.

Since K1 centralizes Q1/(W1∩Q1)(W
g
1 ∩Q1), it follows that V0 ≤ (W1∩

Q1)(W
g
1 ∩Q1). Intersecting with Q0, we have V0 ≤ (W1∩Q1)·(W g

1 ∩Q0∩Q1).
Now [Z−1,W1] ≤ Q′

0 ≤ Z0, and W1 covers a Sylow 2-subgroup of L̄1.
As X is a natural module and Z−1 commutes with the action of W1 on
it, we find that Z−1 ≤ W1 ∩ Q1 in view of the structure of X. So V0 =
Z−1Z1 ≤ (W1 ∩ Q1)Z1. But rk(V0) = rk((W1 ∩ Q1)Z1) = 3f , so we find
V0 = (Q1 ∩Q1)Z1 and hence V0 ∩W1 has corank at most f in V0, whereas
V0 ∩W1 = Z0, a contradiction. □
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9. A generalized polygon

After all this preparation, we have a limited number of configurations
which survive, and in all of them r = s − 1. One would like to prove
at this point that the original graph Γ0 associated to the group G was the
incidence graph for a Moufang generalized quadrangle. It is characteristic of
the amalgam method that the actual line of argument is less direct. We argue
that one can construct a Moufang generalized quadrangle as a quotient of
the universal cover Γ, and that this is associated with another group of finite
Morley rank with the same parabolic subgroups. In the following section we
will show that one can identify this second group, read off the structure of its
parabolic subgroups, and then use this information to identify the original
group.

9.1. The surviving cases. There are three cases which survived anal-
ysis so far: these were encountered in Lemmas 4.3 of Chapter IX, 8.2 of
Chapter IX, and 8.3 of Chapter IX, and are collected at the end of §3 of
Chapter IX. These correspond in fact to the three types of Chevalley group
in Lie rank 2, as we will show in this section and the next.

First we adjust our notation. Until now we have largely followed the
notation of [168], but we are going to shift our notation in order to bring it
more closely into line with the notation of [83]. There are three points to
take note of here, only one of which actually requires an adjustment.

First, in the three cases which survived analysis so far, we found that
Zδ is an elementary abelian 2-group for all δ; this is given in Lemmas 4.4 of
Chapter IX, 8.2 of Chapter IX, and 8.3 of Chapter IX. In [83], the definition
of Zδ is different from that used here (it is generated by Ω1(Z(S)) as S varies
over Sylow 2-subgroups of Gδ), but when our Zδ is elementary abelian the
two coincide. So this does not require any alteration of notation.

Secondly, the definition of the bi in [83] varies substantially from the
definition in [168]. Most importantly, in [83] the definition does not privilege
the K-track T . However, since in all of our cases bi ≤ s, all relevant paths
can be conjugated into T , and again the two definitions yield the same result,
and our notation remains satisfactory.

The final point refers again to the parameters bi and the way the sym-
metry between 0 and 1 is (or is not) broken. The convention adopted in [83]
labels the vertices so that

(∗) b0 ≤ b1

(and in the case of equality the symmetry can be broken in other ways). As
it happens, this actually conflicts with the conventions adopted here. From
this point on, we will switch our labeling of vertices if necessary to conform
to the usage in [83]. So condition (∗) will hold. This affects the notation in
the last of our three cases.

With this proviso, our three cases may be listed according to the follow-
ing chart.
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Case r b0 b1 Lemma Example

I 3 1 1 4.3 of Chapter IX PSL3

II 4 1 1 8.2 of Chapter IX Sp4
III 6 2 3 8.3 of Chapter IX G2

In all cases we found r = s − 1, and the connected component of the
stabilizers of a path of length s is a 2⊥-groups.

We also found f0 ≤ f1 in all cases, bearing in mind the reversal of labels
in the third case. In fact we found f0 = f1 in the first two cases. In Case
(III), we must still leave open a formal possibility corresponding to 3D4,
which will disappear later as a result of the classification of the relevant
(B,N)-pairs.

Concerning the modules involved, we found the following.
I. (r = 3), Lemma 4.4 of Chapter IX: For any i, Qi is elementary

abelian, and affords a natural module for L̄i; f0 = f1.
II. (r = 4), Lemma 8.2 of Chapter IX: For any i, Qi is elementary

abelian and Qi/Z(Li) is a natural module for L̄i; f0 = f1 =: f ;
rk(Z(Li)) = f .

III. (r = 6), Lemma 8.3 of Chapter IX: After switching the labels 0, 1
to conform to our current conventions:

f0 ≤ f1;
Z0 is a natural module for L̄0;
(Q0/Z0)/Z(L0/Z0) is a direct sum of natural modules for L̄0;
Z1 = Z(L1);
rk(Z1) = f0;
ϕ(Q1) = Z1;
rk(Q1) = 3f0 + 2f1;
Q1/Z1 is an irreducible Ḡ1-module.

9.2. The Uniqueness Condition. The idea in what follows is that
our graph Γ should be the universal cover of the incidence graph of a gen-
eralized polygon associated with our simple group G, once G is properly
identified, and in particular the conjugates of the track T should be the uni-
versal covers of the apartments of that generalized polygon. Since we have
considerable control over the track T and its associated point stabilizers, we
begin at this point, essentially rewriting the axioms for generalized n-gons in
terms of the universal cover. Of course, we exploit heavily the fact that we
already have a group acting on the geometry. We will introduce two prop-
erties, the uniqueness and exchange properties for apartments, verify that
they apply in the cases under consideration, and carry out the remainder of
the analysis simply using these two conditions.

Definition 9.1.
1. An apartment in Γ is a G-conjugate of the K-track T .



494 IX. QUASITHIN GROUPS

2. T satisfies the uniqueness condition if every path of length r+1 in Γ
is contained in a unique G-conjugate of T .

In the next lemma, we need two facts: r = s − 1, and the connected
component of the stabilizer of a path of length r + 1 is a 2⊥-group. The
further structural information is not yet relevant.

Lemma 9.2. T satisfies the uniqueness condition.

Proof. Since s = r + 1 in all cases, any path of length at most s is
conjugate to one contained in T , by Lemma 2.11 of Chapter IX.

Now suppose that γ is a path of length s contained both in T and in
a conjugate T g. As a matter of notation, we may suppose that 0, 1 ∈ γ.
Adjusting g, we may also suppose that g fixes γ pointwise (this may involve
a shift along T g, and possibly a reflection). That is, g ∈ Gγ = KO2(Gγ), by
Lemma 3.5 of Chapter IX. Now O2(Gγ) is a finite group normalized by K
and hence centralized by K, so g commutes with K and therefore leaves T
invariant. □

9.3. Root groups. The exchange condition will be formulated in terms
of the following groups.

Notation 9.3.
1. We label the vertices of T by integers, as usual.
2. γ−r

i = (i− r, . . . , i); γ+r
i = (i, . . . , i+ r).

3. R±
i = O2

◦(Gγ±r
i
)

4. Ri = ⟨R−
i , R

+
i ⟩

A general remark is in order concerning stabilizers of paths. For paths
γ of length at most s, the rank of the group O2(Gγ) (and a good deal of its
structure as well) can be computed by working along the path from one end;
one loses a “1-dimensional” piece at each stage (in particular the rank drops
by f0 or f1 as the case may be). Applying this to paths of length s, where
O2(Gγ) = 1, one gets the rank of S = O2(G0,1), a technique we have used
repeatedly in our earlier analysis. Applying this to paths of length r = s−1,
one sees that the R±

i cover a 2-Sylow subgroup of Gi±r, as well as a Sylow 2-
subgroup of Gi, exactly, and these groups are in some sense “1-dimensional”.
These groups are expected to be “root groups” once the group G is properly
identified as a Chevalley group, and in particular “opposite root groups” in
Gi. We record the essential points as follows.

Lemma 9.4.

(a) R−
i ∩Gi+1 = 1, R+

i ∩Gi−1 = 1.

(b) R±
i is elementary abelian;

(c) RiQi = Li;
(d) Ki ≤ Ri;
(e) O2(Ri) = Ri ∩Qi.
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Proof. For (a), argue as in the proof of Lemma 7.2 of Chapter IX.
So R−

i is elementary abelian; similarly for R+
i . So (b) holds.

R−
i , R

+
i cover Sylow 2-subgroups of Li/Qi so (c) holds.

K normalizes R−
i and R+

i . Working in RiK, (d) follows.
(e) is clear. □

Lemma 9.5. There is an element ti ∈ Ri normalizing K and acting as
a reflection on T , with t2i ∈ O2(GT ).

Proof. There is a 2-element t ∈ KRi such that, taken modulo O2(Ri),
t is an involution normalizing K and inverting Ki. Adjusting by an element
of O2(Ri), we may suppose in addition that t normalizes K outright, and in
particular inverts Ki.

Then t2 ∈ CGi(K) ≤ GT by Lemma 1.9 of Chapter IX, and GT =
KO2(GT ) by Lemma 3.5 of Chapter IX. Also t2 ∈ Qi so t

2 ∈ O2(GT ).
Since t normalizes K and T is the fixed point set of K in Γ, t leaves T

invariant. Since t fixes i and interchanges i ± 1, t induces the reflection on
T with center i. □

9.4. The Exchange Condition. Now we may introduce our key con-
dition, the exchange condition.

Definition 9.6.
1. T satisfies the exchange condition at i if for all nontrivial x ∈ R+

i

there is y ∈ R−
i so that (i− r)xy = i+ r.

2. T satisfies the exchange condition if it satisfies the exchange condition
at all i in T (or in other words, at 0 and 1).

The next three lemmas give criteria for the exchange condition to hold.
The third of these is an important special case of the second.

Lemma 9.7. Suppose that O2(Ri) = 1. Then T satisfies the exchange
condition at i.

Proof. Let x ∈ R+
i , x ̸= 1. Then as R+

i ∩Gi−1 = 1, x moves i−1. Now

R−
i acts transitively on ∆(i)\{i−1}, so there is y ∈ R−

i with (i−1)xy = i+1.

Thus (R−
i )

xy ≤ Ri ∩ Gi+1. Since O2(Ri) = 1, we have Ri ∩ Gi+1 = R+
i K,

so (R−
i )

xy = R+
i .

Now with ti as in Lemma 9.5, we have (R−
i )

xyti = R−
i and in view

of the structure of Ri we have xyti ∈ R−
i K, so (i − r)xyti = i − r, and

(i− r)xy = (i− r)ti = i+ r. □

Lemma 9.8. Suppose that for any x ∈ R+
i , x ̸= 1, there is y ∈ R−

i so
that

⟨x, y⟩ ≃ SL2(2) and CO2(Ri)(⟨x, y⟩) = 1

Then T satisfies the exchange condition at i.

Proof. Set L = ⟨x, y⟩. Let t = yx. Then xt = y, yt = x. Working in

R̄i = Ri/O2(Ri), we find that as t switches x and y, t̄ must interchange R±
i .
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With ti chosen as in Lemma 9.5 it follows that t̄t̄i normalizes both R̄−
i and

R̄+
i , so t̄t̄i ∈ K̄i and

tti ∈ KiO2(Ri);

choose k ∈ Ki so that ttik ∈ O2(Ri).
Let u = ttik. Then xu = ytik ∈ R+

i since ti reflects R
−
i to R+

i . Thus

[x, u] ∈ R+
i ∩Qi = 1, and similarly [y, u] = 1. So by hypothesis u = 1, that

is
t ∈ tiKO2(GT )

Then (i− r)xy = (i− r)tx = i+ r, and T satisfies the exchange condition at
i. □

Lemma 9.9. If O2(Ri) is a natural module for Ri/O2(Ri), then T satis-
fies the exchange condition at i.

Proof. For x ∈ R+
i we take y ∈ R−

i so that in R̄i = Ri/O2(Ri), we have

⟨x, y⟩ ≃ SL2(2). As ⟨x, y⟩ is a dihedral group and the elements of order 3 act
fixed point freely on O2(Ri), we have ⟨x, y⟩ ∩ O2(Ri) = 1, ⟨x, y⟩ ≃ SL2(2),
and CO2(Ri)(⟨x, y⟩) = 1. Thus Lemma 9.8 applies in this case. □

Lemma 9.10. If r = 3 then T satisfies the exchange condition.

Proof. In this caseQi is a natural module for L̄i (Lemma 4.4 of Chapter
IX) and hence O2(Ri) is either trivial or a natural module for R̄i, for each
i. □

We will show in the following subsections that Lemmas 9.7 of Chapter
IX and 9.8 cover the other two cases, r = 4 and r = 6, as well.

9.5. The case r = 4. We introduce some general notation that will be
of use in both of the remaining cases.

Notation 9.11. G
(j)
i is the pointwise stabilizer in G of {δ : d(i, δ) ≤ j}.

In particular G
(1)
i is the pointwise stabilizer of ∆(i), namely QiK∆(i).

Lemma 9.12.

(a) CK(R−
i ) = K ∩G(1)

i .

(b) [Ri,K ∩G(1)
i ] = 1.

(c) O2(Ri) ≤ G
(2)
i .

Proof. Let Ḡi = Gi/Qi. As R̄−
i is a Sylow 2-subgroup of Ḡi, we

have CK(R−
i ) ≤ CK(R̄−

i ) = CK(Ḡi) ≤ G
(1)
i . Conversely, [R−

i ,K ∩ G(1)
i ] ≤

R−
i ∩G(1)

i = 1, so (a) follows.

From (a) and the analog for R+
i , (b) follows.

For (c), suppose toward a contradiction that O2(Ri) ̸≤ G
(2)
i . As Ri is

transitive on ∆(i), we have O2(Ri) ̸≤ Qi+1, so O2(Ri) covers a Sylow 2-

subgroup of L̄i+1. As K ∩G(1)
i centralizes O2(Ri), it follows that K ∩G(1)

i

centralizes L̄i+1, and CLi+1(K ∩G(1)
i ) covers L̄i+1. So in view of (b), N(K ∩
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G
(1)
i ) acts transitively on both ∆(i) and ∆(i+ 1), contradicting Lemma 1.7

of Chapter IX. □

Now we turn to the case r = 4.

Lemma 9.13. If r = 4 and x ∈ (R−
i )

×, then xLi ∩ xZ(Li) = {x}.

Proof. In other words, we claim that CLi(xmodZ(Li)) = CLi(x). As
R−

i is elementary abelian, it centralizes x. Furthermore CLi(xmodQi) =

R−
i Qi, so it suffices to show that CQi(xmodZ(Li)) centralizes x.
Recall that in the case r = 4, we have Qi = Zi elementary abelian, and

Qi/Z(Li) is a standard module (p. 493, II). Accordingly CQi(xmodZ(Li)
is [x,Qi]Z(Li) and it suffices to check that x commutes with [x,Qi]. As
x2 = 1, the element x inverts [x,Qi], and as Qi is elementary abelian, our
claim follows. □

Lemma 9.14. If r = 4 then O2(Ri) = 1 for all i, and in particular T
satisfies the exchange condition.

Proof. By Lemma 9.12, O2(Ri) ≤ O2(G
(2)
i ), which in the case at hand

is Z(Li). Thus Ri is a central extension, hence splits as: Ri ≃ SL2(Fi) ×
Z(Ri) (we are in characteristic two here, though the argument is easily
adapted to arbitrary characteristic, taking Z◦(Ri) in place of Z(Ri)).

However [Ki, R
±
i ] = R±

i and hence [Ki, Ri] = Ri, forcing Z(Ri) = 1. So
O2(Ri) is trivial. □

9.6. The case r = 6.

Lemma 9.15. Suppose that r = 6 and j = i− 3. Then [Kj , Ri] = 1.

Proof. We show first that

(∗) [Kj , R
−
i ] = 1

Here j is to be thought of as the middle vertex of a path of length 6.
If j is odd, then easily R−

i is Zj = Z◦(Lj), by a rank computation, and
in this case our claim is obvious.

If j is even, say j = 0, we go back into the analysis as carried out in
Lemma 8.3 of Chapter IX; however as we have switched the labels 0 and 1
in the meantime, we will quote this material using our current conventions;
cf. §9.1. Thus we find

Q−1 ∩Q1 = CQ0(K0)× Z0

with Z0 a natural module.
Now R−

3 is K0-invariant and disjoint from Z0, so it follows that R−
3 ≤

CQ0(K0), as claimed.

So (∗) is proved, and similarly then [Kj , R
+
i ] = 1, so finally [Kj , Ri] =

1. □

Lemma 9.16. Suppose that r = 6. Then for each i, one of the following
holds:
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(a) O2(Ri) = 1;
(b) O2(Ri) is a natural module.

In particular, T satisfies the exchange condition.

Proof. We assume O2(Ri) ̸= 1.

From Lemma 9.12 we get [Ri,K ∩G(1)
i ] = 1 and O2(Ri) ≤ G

(2)
i .

Let j = i− 3. As [Kj , Ri] = 1 while R+
j Qj is a Sylow 2-subgroup of Lj ,

R+
j is not contained in O2(Ri).

If i is odd and j even, by inspection and a rank calculation we have R+
j =

Zi; from the structure of Qi (p. 493, III), if Zi ̸≤ O2(Ri) then O2(Ri) = 1.
So we suppose

i is even.

From the structure in this case, G
(2)
i = R+

j Zi, so O2(Ri) ≤ R+
j Zi. By

Lemma 9.15, switching the roles of the indices, [Ki, R
+
j ] = 1. As O2(Ri)

is K-invariant and does not contain R+
j , O2(Ri) is disjoint from R+

j . So

if O2(Ri) is nontrivial then it meets Zi. As O2(Ri) is Ri-invariant, it then
contains Zi, so O2(Ri) = Zi, which is a natural module. □

Lemma 9.17. T satisfies the exchange condition.

Proof. Lemmas 9.10,9.14,9.16. □

9.7. The Moufang property. Now that we have verified the unique-
ness and exchange conditions in Γ, the rest of the analysis leading to a
generalized n-gon (with n = r) is purely algebraic. This was described in
Proposition 6.10 of Chapter III. There is some slight variation in notation
here; we followed the notation of [83] closely in §6 of Chapter III. In partic-
ular our torus K is the “Cartan” subgroup referred to there, where a broad
definition was given which also works well in extreme finite cases. We also
phrased the uniqueness condition more concretely above; the two versions
are equivalent, and in any case the form we have actually verified is the
stronger of the two, formally speaking. So the terminology is consistent at
this point and we are free to apply Proposition 6.10 of Chapter III.

Now the pattern of parabolic subgroups (G0, G1, B) with which we be-

gan is associated with both the tree Γ and its quotient Γ̃, as according to
Proposition 6.10 of Chapter III the induced homomorphism G → G/GΓ̃
induces an isomorphism between the associated triples.

So at this stage G is known to be parabolic isomorphic to some group
with a (B,N)-pair of rank 2 with our B and N , where B = KS is split.
This however is not enough; we will need the Moufang property. In the case
of generalized n-gons, that is buildings of Tits rank 2, this may be defined
as follows.

Definition 9.18. The generalized n-gon Γ is Moufang if for each path
γ̃ = (0, 1, . . . , n − 1) of length n − 1, the set of automorphisms fixing ∆(i)
for all vertices i of γ̃ \ {0} acts transitively on ∆(0) \ {1}.
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Lemma 9.19. The generalized r-gons constructed from the trees Γ con-
sidered above are Moufang.

Proof. It suffices to consider a path (0, 1, . . . , r − 1) of length r − 1
in the tree Γ, and the group Q1 ∩ . . . ∩ Qr−1. Extend this path to a path
γ̃ = (0, 1, . . . , r) of length r. Then O2(Gγ̃) acts transitively on the neighbors
at both ends, and is contained in Q1 ∩ . . . Qr−1. □

With this, we are in range of the final identification of the group G0 with
which we began, in the statement of our Proposition 1.4 of Chapter IX.

10. Identification

We have all the ingredients for a proof of Proposition 1.4 of Chapter IX,
and it is now time to assemble them.

Proof of Proposition 1.4 of Chapter IX. We began with a cen-
terless group G0 generated by certain subgroups G1, G2 with normal sub-
groups L1, L2 and intersection B satisfying various conditions appropriate
for minimal parabolic subgroups in a group of Lie rank 2.

From these data, we constructed a graph Γ0 whose universal cover Γ
was the subject of an extended analysis. In §6 of Chapter III we saw that Γ
has a quotient Γ̃ on which a group G∗ of finite Morley rank acts, with Γ̃ a
Moufang generalized r-gon, for some r (in fact, as expected, r = 3, 4, or 6).
Furthermore the pattern of (so-called) parabolic subgroups (G1, G2, B) with
common “Borel” (where the term “Borel” is used loosely) is known to be
isomorphic to the corresponding data in G∗, involving the vertex stabilizers
in Γ∗. We summarize this by the expression: G0 and G∗ are parabolic
isomorphic.

Now by Proposition 6.3 of Chapter III, the group G∗ is a Chevalley
group, SL3(F ), PSp4(F ), or G2(F ), with F an algebraically closed field (of
characteristic two, in our context), corresponding respectively to the cases
r = 3, r = 4, and r = 6. So G0 has the same parabolic structure as one of
these groups. □

At the end of the last proof, note that we apply the classification of
Moufang n-gons theorem in one of three specific cases, corresponding to n =
3, 4, 6 respectively, and that in the difficult case n = 4 we have a good deal
more information that could be used to cut down the analysis considerably,
notably f0 = f1, which radically restricts the possibilities. In fact the rest
of the analysis amounts to locating the various root groups within a single
Sylow 2-subgroup, and working out the (Chevalley) commutator formula
there.

As shown at the outset, Proposition 1.1 of Chapter IX reduces to Propo-
sition 1.4 of Chapter IX.

Now we return to the main result, Theorem QT.
Proposition 1.1 of Chapter IX applies to the quasithin group G0 and

shows that it is parabolic isomorphic with a Chevalley group G∗.
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We wish to derive an isomorphism of G0 with G
∗. By Fact 2.28 of Chap-

ter II, we need to examine the triple (G1, G2, N) with N = N(K) (viewed
as an amalgam of three groups, with specified intersections), showing that
the embedding of (G1, G2) into G∗ extends coherently to N . Our strategy
is to show that CG0(K) = K, and that this is sufficient. These are not ab-
stract results: they involve the parabolic isomorphism that we already have
in hand, which we apply freely.

Lemma 10.1. If G0 is an L∗-group of finite Morley rank and even type
which is parabolic isomorphic with G∗, then CG0(K) = KZ(G0)

Proof. Each parabolic subgroup Gi of G0 has a Levi decomposition of
the form Qi ⋊ (L̂i × K̂i), with L̂i ≃ SL2(F ), where F is the base field of G∗.

More exactly, L̂i ≃ SL2(Fi) with F1 and F2 definably isomorphic, but this
amounts to the same thing.

Take a ∈ K of order greater than 3. By Corollary 1.16 of Chapter II,
CG∗(a) is either a torus, or the product of a torus with SL2(F ).

In particular, the rank of CS(a) is at most f = rk(F ) for any such
element a. Accordingly the same applies to CQ(a) for any Sylow◦ 2-subgroup
Q of G0, and any a normalizing Q of order greater than 3. Let U be a
Sylow◦ 2-subgroup of CG0(Ki) (i = 1 or 2). It follows that rk(U) ≤ f . As

rk(S∩ L̂i) = f , we conclude that S∩ L̂i is a Sylow◦ 2-subgroup of CG0
◦(Ki).

Let Ui = S ∩ L̂i. Then we have

(∗) Ui ≤ L̂i ≤ CG0
◦(Ki)

and CG0
◦(Ki) is a connected L-group, with Ui as a Sylow 2-subgroup.

By (∗) we have O2(CG0
◦(Ki)) = 1, and by Lemma 6.10 of Chapter II it

follows that CG0
◦(Ki) = E ∗O with E = U2(CG0

◦(Ki)) = E(U2(CG0
◦(Ki)))

and O = Ô(CG0
◦(Ki)) of degenerate type. Here E is a central product of

quasisimple algebraic groups, Ui is a Sylow 2-subgroup of E, and Ui ≤ L̂i ≤
E. It is then easy to see that L̂i = E. As a result, L̂i is normalized by
CG0(Ki) for i = 1, 2 and hence:

Both L1 and L2 are normalized by CG0(K).

The groups L̂i ≃ SL2(F ), i = 1, 2, do not allow definable groups of outer
automorphisms by Corollary 2.26 of Chapter II. Hence CG0(K) must act on

L̂i via inner automorphisms commuting with K ∩ L̂i and hence CG0(K) =

(K ∩ L̂i)× CG0(KL̂i). Let Hi = CG0(KL̂i). Since (K ∩ L1)(K ∩ L2) ≤ K,
it follows that CG0(K) = K(H1 ∩H2).

Now H = H1 ∩H2 centralizes ⟨U1, U2⟩ = S and H centralizes each L̂i,
hence also each Pi, hence G0. So H ≤ Z(G0). □

In our final argument we return to the notation of Theorem QT, so the
group G0 of finite Morley rank with which we have been working throughout
this chapter now once more becomes a simple group, and is denoted G.
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Proof of Theorem QT. The group G is assumed to be simple and
quasithin of finite Morley rank, and by the analysis so far is parabolic iso-
morphic to a rank 2 Chevalley group G∗, with C(K) = K since G is cen-
terless. By Fact 2.28 of Chapter II, it suffices to check now that N(K) is
the same in both groups (identifying K with its image under the parabolic
isomorphism).

We have Gi = O2(Gi)⋊(Li×Ki) with Li ≃ SL2(F ) andK = (K∩Li)Ki.
Let wi ∈ Li be an involution inverting K ∩ Li and let W = ⟨w1, w2⟩, a =
w1w2. Evidently the structure of G1 and G2 determine the map W →
Aut(K), so as G and G∗ are parabolic isomorphic, W acts on K like the
dihedral group Dr of order 2r. In particular ar ∈ CG(K) = K, and a is
inverted by both w1 and w2. It follows that a

r = 1. Thus KW ≃ NG∗(K).
Now G∗ is the universal amalgam of (G∗

1, G
∗
2, NG∗(K)) relative to their

intersections. Hence the subgroup of G generated by (G1, G2,KW ) is iso-
morphic to G∗. But this subgroup is G, since it is already generated by G1

and G2. □

11. Notes

The amalgam method is laid out in detail in [97]. In the form we need it,

the paradigms are [168] and [83], particularly the former, which we follow closely

through much of the argument, though for the construction of the generalized n-
gon, and some earlier points, we follow [83].

For the final recognition phase, the theorem of Tits used is taken from [31],
where an elegant proof is given.

This chapter follows the finite case closely. The amalgam method is largely a

method of abstract group theory, though issues of finiteness or finite Morley rank

intervene eventually in the recognition phase, and affect the analysis along the way

in various minor ways.

The paradigm of [83] is very attractive, and we took it up first, but we encoun-

tered some technical difficulties in carrying that approach through, in the case of

one particular configuration. We would still like to see a full treatment along those

lines, as it would probably be a little more transparent than the one we give. We

do come back from [168] to [83] at the end, for the construction of the associated

Moufang polygon.

§2 of Chapter IX

Lemma 2.7 is 3.1 in [168].
Lemma 2.13 of Chapter IX is a fundamental lemma of Goldschmidt.

Lemma 2.14 of Chapter IX corresponds to Lemma 6.5 of [97].

§3 of Chapter IX

Lemma 3.3 of Chapter IX corresponds to Lemma 1.11 of [168] The proof

follows the method of [26].

§§4 of Chapter IX-8 of Chapter IX

Proposition 4.1 of Chapter IX was given in [168] as a variation on a result

given in [185].
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Throughout §§4 of Chapter IX-8 of Chapter IX we are following [168] closely,
with some excursions into [83] in §8 of Chapter IX. The line of argument in [83]
is more transparent, but we encountered some difficulties in the adaptation of one

argument there. The main difference in the two approaches relates to the class of

paths considered in the definition of the parameters r and s. Following [168] we
consider paths in T ; in [83] one considers arbitrary paths. In consequence, we need

the arguments of sections 5 of Chapter IX and 6 of Chapter IX, which reproduce a

line of argument in one section of [168].
In §9 of Chapter IX we follow the method of Delgado/Stellmacher [83], espe-

cially §14. Once one verifies their uniqueness and exchange conditions, the rest of

the argument is formal, though we also need to retain control over issues of defin-

ability, not for the construction itself, but in order to be able to exploit the result

subsequently.



CHAPTER X

Conclusion

We also know there are known un-
knowns; that is to say we know there
are some things we do not know.

— D. Rumsfeld, 2002

Introduction

At this point we have proved the following.

Main Theorem. Let G be a simple group of finite Morley rank. Then
G satisfies one of the following two conditions.

(1) G is an algebraic group over an algebraically closed field of charac-
teristic two.

(2) G has finite 2-rank.

A minimal counterexample to this result would be a simple L∗-group of
finite Morley rank, of even or mixed type, and not algebraic. In Chapter
V we showed that such a group could not be of mixed type. In succeeding
chapters we took up the possibility of even type, and after considerable
preparation we showed in §§6.5 of Chapter VIII–6.7 of Chapter VIII that
such a group is neither thin nor generic in the sense of §6 of Chapter VIII,
and hence is quasithin. The identification theorem in the generic case used
a version of Niles’ theorem, followed by an appeal to the full classification
theorem of buildings of spherical type and Tits rank at least three, or the
alternate method of §6.4 of Chapter VIII. In Chapter IX we took up the
quasithin case, using the amalgam method and following closely the methods
of Delgado and Stellmacher, followed by an application of the classification
of Moufang buildings in Tits rank two and an identification theorem of Tits
(Fact 2.28 of Chapter II).

Much of this long proof consists of various characterizations of SL2,
culminating in the C(G,T )-theorem, Theorem 3.3 of Chapter VIII. Each of
these characterizations reduces to an earlier one, going back ultimately to the
classification of split Zassenhaus groups with a suitably placed involution,
Theorem 2.2 of Chapter III, from which generators and relations for SL2 are
recovered.

As we have remarked, the two classification theorems used from the
theory of buildings are massive pieces of work in their own right. In a sense,
these theorems simply take up the problem from the point to which he have
reduced it, which from some points of view could be considered the half-way
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mark. Unfortunately, in passing to these classification results we lose all
the information we have accumulated along the way, and this information
is reconstructed ab initio in the classification of the relevant buildings. So
there is a certain inefficiency in proceeding this way. On the other hand,
this approach shows that our model theoretic hypotheses become largely
irrelevant at this stage, and the remainder of the analysis is purely algebraic.

We noted at the end of Chapter VIII that the more onerous classification
theorem, in Tits rank at least three, can be sidestepped with just a little
more work. In the case of Tits rank two, the classification of Moufang
polygons is just the logical continuation of the amalgam analysis, and is
very natural. The underlying idea is that we have enough information to
determine the analog of the Chevalley commutator formula in all cases, and
that this (with just a little more information) determines the ambient group
uniquely (if it exists, which is a separate question!). This classification can
be shortened considerably by invoking our model theoretic hypotheses, as
only a fragment of that classification is actually relevant to our context. But
even this fragment remains a very substantial body of work.

The study of 2-local structure in groups of finite Morley rank divides
naturally into four cases: mixed, even, odd, and degenerate type. We have
concentrated here on mixed and even types for two related reasons: (1) the
results are complete, and (2) the state of knowledge appears to be relatively
stable. In degenerate type, Theorem 4.1 of Chapter IV disposes of the
question of 2-local structure. So it is tempting to aim at a complete proof
of the Algebraicity Conjecture for groups containing involutions, something
which did not seem reasonable when this project began. In fact this project
still does not seem reasonable, in view of the difficulties arising in the analysis
of groups of odd type, particularly in the presence of degenerate sections,
but even in some configurations of low 2-rank without degenerate sections.

In spite of these difficulties there are now very substantial results on
groups of odd type. We will discuss some of these matters in §1 of Chapter
X; much of this part of the story was not known when we began work on
this text, and no doubt some details of our account will rapidly become out
of date.

In our account we have also given some rudiments of a general theory of
groups of finite Morley rank, notably Proposition 1.15 of Chapter IV. We
will show in §2 of Chapter X that our explicit structure theory in even and
mixed type can be combined with this more rudimentary general structure
theory to solve a general problem in the theory of permutation groups of
finite Morley rank, an area which is now ripe for further exploration.

In §5 of Chapter X we will discuss a variety of open problems, some
related to unfinished business in odd type and others relating to unexplored
directions suggested by a comparison of our work with other themes in the
theory of finite simple groups.

We had hoped at the outset that the theory presented here, and the
companion theory in odd type, would cast some light, at least by analogy,
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on the structure of the classification theorem for finite simple groups. Our
conclusions at this point are mixed. We have arrived at a proof whose strat-
egy is certainly different from the one we envisioned initially, and one which
we feel is less “canonical” than we anticipated. We will consider this point
in §3 of Chapter X. In particular, our theory has more in common with
the so-called third generation approach, as well as ideas of Timmesfeld, than
we had expected. As a result a number of lines which had been developed
for use in this project turned out to be dispensable—notably the Alperin-
Goldschmidt fusion theorem, most of the theory of standard components,
and the full classification of groups with strongly closed abelian 2-subgroups.
In our initial project this would have been followed by very extensive devel-
opments in the same direction, parallel to the case of finite simple groups,
but this line was abandoned as the availability of the amalgam method be-
came clear.

On reflection, we have the impression that the proof we give for our
classification theorem is parallel to a proof we have never actually seen,
corresponding perhaps to some self-contained theory contained within the
theory of finite simple groups, one that was bypassed on the way to results
of greater generality. One possible form for such a theory will be indicated
in §4.2 of Chapter X; if that theory can in fact be developed at the final level
in a self-contained way then it would be a faithful model of the theory we
give here (or conversely: the theory we give here could be read as a faithful
model of it).

We observe also that the two existing proofs (one still in progress) of
the classification of the finite simple groups are resolutely “semisimple” in
their approach, in the sense that one seeks to identify the groups ultimately
via centralizers of elements of prime order distinct from the characteristic,
while the “third generation” or “amalgam” method is resolutely unipotent
in its approach, as is the classification of the Moufang polygons. But in
studying simple groups of finite Morley rank, we have worked systematically
with involutions, letting the characteristic determine the methods used, from
the start: in even type, as we have seen, we use unipotent methods. In
odd type there is another body of work which uses semisimple methods.
Note however that at the end of Chapter VIII, our detour via the generic
identification theorem of §10 of Chapter III represents a very brief excursion
into semisimple methods as the concluding phase of the analysis, and follows
the usual identification scheme of finite simple group theory exactly. But
here this approach is reduced to the status of a “punch line”.

Consequences. There are a number of other ways of viewing our main
result. While we focus our attention on simple groups, our results have
consequences for the general structure theory of groups of finite Morley
rank, beginning with the following reformulation.

Theorem 1. Every group of finite Morley rank is an L-group.
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This says no more or less than the Main Theorem. But it does make
some its consequences more transparent, since we have included a section
on L-groups in Chapter II. Now everything proved in that chapter becomes
a fact about groups of finite Morley rank. Some of these facts are worth
quoting again at this point.

The first of these is Lemma 6.3 of Chapter II, which takes on the fol-
lowing form.

Proposition 1. Let G be a group of finite Morley rank. Then U2(G) is
a K-group of even type, and G/U2(G) has odd or degenerate type.

The next is Lemma 6.10 of Chapter II.

Proposition 2. Let G be a connected group of finite Morley rank con-
taining no nontrivial 2-torus. Then O2

◦(G) is a definable unipotent subgroup
of G and G/O2

◦(G) has the form E∗D with E a central product of quasisim-
ple algebraic groups over algebraically closed fields of characteristic two, and
D a connected group without involutions.

Proof. Evidently O2
◦(G) is unipotent and we may factor it out, as-

suming therefore that G is reductive. By hypothesis G is either of even or of
degenerate type, and in the degenerate case G contains no involutions (The-
orem 4.1 of Chapter IV). So we suppose G has even type. So by Lemma

6.10 of Chapter II we have G = E(U2(G)) ∗ Ô(G) and this is of the desired
form.

Note finally that O2(G) = 1 at this point; this holds for E(U2(G)) since

the characteristic in each factor is two, and in Ô(G) since there are no
involutions present. □

Of course, this includes Theorem 4.11 of Chapter IV, but for this we
have already given a direct proof. For groups of odd and degenerate type,
the structure theory is not so well developed, but as we saw in Chapter IV
one can sometimes make good use of the conjugacy theorem for maximal
decent tori, Proposition 1.15 of Chapter IV.

We conclude with one more variation on the same theme, at a greater
level of generality.

Proposition 3. Let G be a connected group of finite Morley rank and
set Ḡ = G/O2

◦(G). Then

Ḡ = E(Ḡ) ∗ H̄
a central product with finite intersection, where E(Ḡ) is a central product
of quasisimple algebraic groups over algebraically closed fields in character-
istic two, and H̄ is a connected group of finite Morley rank containing no
nontrivial 2-unipotent subgroup.

Proof. We may suppose O2
◦(G) = 1 and omit the bars from our nota-

tion.
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Then U2(G) is a K-group of even type with trivial O2
◦, hence U2(G) =

E(G) is a central product as described. Then Fact 2.25 of Chapter II yields

G = E(G) ∗H
with H = CG(E(G)). It follows that H ∩ E(G) is finite, and as E(G) =
U2(G) it follows that H contains no nontrivial 2-unipotent subgroup. □

In the notation of Proposition 3, it is less clear what the preimage H of
H̄ looks like, as this may involve a central extension of a group of odd or
degenerate type by a unipotent 2-group.

1. Odd type

We have shown that nonalgebraic simple groups of finite Morley rank
have finite 2-rank. In other words, they are of odd or degenerate type:
odd type if Sylow 2-subgroup is a finite extension of a nontrivial 2-torus,
and degenerate type if a Sylow 2-subgroup is finite, in which case it is
trivial. If the Algebraicity Conjecture holds, then in odd type we have
Chevalley groups over fields of characteristic other than 2 (possibly 0), and
in degenerate type there should be none; this last point remains decidedly
obscure.

A large body of work gives considerable information about nonalgebraic
simple K∗-groups of odd type, and in particular bounds the Prüfer rank,
as we shall see below. One would like to bound the 2-rank absolutely, at
least, and indeed go considerably beyond that. As we have had occasion to
note already, the tools used in even and mixed type are very different from
those used in the treatment of odd and degenerate type groups (while we
have given the treatment of degenerate type groups, we have not given the
more general theory which motivated some of the arguments we used). In
addition, the odd type analysis is restricted to K∗-groups at present, and
is not complete as yet even under that restrictive hypothesis. And since it
would take another volume to present that material in detail in any case,
we confine ourselves to an indication of the present state of affairs.

1.1. Odd type.

Theorem 1.1 ([59, 45, 47, 62, 65]). Let G be a simple K∗-group of
finite Morley rank and odd type. Then either G is algebraic, or G has Prüfer
rank at most 2.

The proof goes via the generic identification theorem 10.2 of Chapter
III, or rather a close analog. As we are working with K∗-groups, and in odd
characteristic, we can work with the subgroups C◦(a) where a varies over
a suitable class of involutions. The main tool is signalizer functor theory,
which tends to work well in Prüfer 2-rank (or normal 2-rank) at least three,
and the main problem is getting suitable signalizer functors. The difficulty is
the following. The natural goal of signalizer functor theory would be to prove
O(C(i)) = 1 for all involutions i, a strong form of reductivity of centralizers.
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However this is completely unreasonable: in the presence of bad fields, a
torus T can easily have O(T ) nontrivial, and since tori occur as components
of centralizers in the algebraic case, the condition O(C(i)) = 1 can fail even
in algebraic groups, if the underlying field carries additional structure. There
are however two ways of getting around this problem. On the one hand, we
only want to prove that C◦(i) = F ∗(C(i)), and nontrivial O(C(i)) is not
necessarily an obstacle to this; working with modified signalizer functors one
can kill off enough of O(C(i)) to prove the desired result. Alternatively, one
can get by with less: for the proof of the generic identification theorem it is
enough to have E(C◦(i)) reasonably large (large enough that the associated
set Σ of “root SL2” subgroups generates G, in particular). For this one can
exploit a fairly trivial observation: the rank of a proper subgroup of the
multiplicative group of a field is less than the rank of the additive group.
This turns out to be quite useful when one has fields of characteristic zero
involved (and fields of positive characteristic can be handled more simply).
The signalizer functor theory of [60] exploits this observation at length, and
one can use this idea to kill off “large” parts of C(i), and to show that
“small” parts are reasonably harmless.

What the signalizer functor theory delivers (under the hypothesis that
the Prüfer rank is sufficiently large) is a proper 2-generated core. This is a
“uniqueness” condition which lies between strong and weak embedding, and
can in fact be strengthened to strong embedding; this is done in [47], and
along the way it is shown that the groups in question are minimal connected
simple.

In odd type groups the Sylow 2-subgroups have fewer involutions than in
even or mixed type groups, and as a result the force of the strong embedding
condition is weaker. Still, in the minimal connected simple context, in odd
type, strong embedding leads to the desired bound on the Prüfer rank by
a style of argument specific to minimal connected simple groups, making
extensive use of the “characteristic zero” unipotence theory introduced in
[60, 59], one of the few methods that also seems to lend itself to further
exploitation in the degenerate case.

This brief sketch is quite schematic, but we hope it can be seen here that
the analysis is relatively direct, and follows general principles; furthermore,
its structure is more straightforward than the analysis in even type, with
its elaborate sequence of preliminary “uniqueness type” characterizations of
SL2.

At the present writing (Summer 2007), this analysis has gone about as
far as general methods allow, and what seems to be needed is the close,
and possibly lengthy, analysis of the various configurations that arise in low
Prüfer rank. An explicit program for carrying this out has been given in [59,
Chapter 11], in the form of a dozen well defined, and independent problems,
some of them notoriously difficult, some of them undoubtedly well within
reach of known methods, and all meriting further investigation. Among
recent progress on these problems, we cite [84, 85], dealing with the minimal
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simple case, treated first under a tameness hypothesis in [69]; the elimination
of this hypothesis involves some very recent technical developments, which
take us increasingly away from the usual techniques of finite simple group
theory, and into more geometrical, or model theoretic, territory.

1.2. Degenerate type. According to Theorem 4.1 of Chapter IV there
are no involutions in this case. While this result is predicted by the Alge-
braicity Conjecture, it was not generally considered to be within reach, and
indeed was found only after this text was largely written. But it will not
end our interest in degenerate type groups.

Apart from this result, the most striking results in degenerate type are
among the earliest in the study of simple groups of finite Morley rank, and
concern so-called bad groups.

Definition 1.2. A bad group is a simple group of finite Morley rank in
which every proper definable connected subgroup is nilpotent.

We observe that an equivalent definition is the following: a bad group
is a minimal connected simple group of finite Morley rank in which Borel
subgroups coincide with Carter subgroups. We mention this because we are
not at all sure we understand properly what the notion of “bad group” really
should be, and we believe that this is a topic meriting further consideration.

Bad groups are not assumed a priori to be of degenerate type, but this
can be proved, and in fact the following striking result goes back to the
beginning of the subject.

Fact 1.3. [51] Let G be a bad group of finite Morley rank. Then the
following hold.

(1) The Borel subgroups are conjugate, their union is G, and their
pairwise intersections are trivial.

(2) A bad group has no nontrivial involutive automorphisms.

These two points go in two different directions, though their proofs are
intertwined. One begins with the first point. One then shows that bad
groups contain no involutions, at which point one can show that the Borel
subgroups are self-normalizing. After that, one can eliminate involutive
outer automorphisms. The elimination of involutions from within a bad
group is the most subtle point, going via the construction of an associated
projective space through the geometry of involutions.

In fact, minimal connected simple degenerate type groups which satisfy
the first point also satisfy the second [118], and apart from this seem to
lend themselves to little more in the way of group theoretic analysis.

We remark that in the study of minimal connected simple groups of odd
type, the study of intersections of Borel subgroups (which may be considered
the Bender method in this context) has proved to be very powerful; the
foregoing result relates to the case when this technique is unavailable.

There are a couple of fundamental issues still not resolved in the theory
of degenerate type groups, which we will return to in §5 of Chapter X,
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notably the Genericity Conjectures and the problem of finding the broadest
useful notion of “bad group” (ideally, as part of a meaningful dichotomy).

2. Permutation groups

In this section we consider permutation groups (G,X) of finite Morley
rank: here the group G is given together with its action on a set X, and
the whole structure is supposed to have finite Morley rank. Usually these
actions are taken to be faithful as well, but we will include this hypothesis
explicitly.

In finite group theory, the classification of the finite simple groups pro-
duced a revolution in permutation group theory, and seems essential for the
solution of many problems of a general character. Here, even though we have
no complete classification, we can proceed in an entirely parallel fashion to
get some results of considerable generality, notably the following.

Theorem 2.1. If (G,X) is a faithful and definably primitive permuta-
tion group of finite Morley rank, then the rank of G is bounded as a function
of the rank of X. That is, there is a function

ρ : N → N
such that rk(G) ≤ rk(X) for all such (G,X).

Here a permutation group (G,X) is called definably primitive if there
is no nontrivial definable G-invariant equivalence relation on X. Examples
show that the hypothesis of definable primitivity is needed [104, 48].

A noteworthy feature of our proof is that it is very “soft,” and the bounds
obtained are very loose, leaving a great deal more to be done in this area.

A full account of this result is in [48]. Here we aim mainly to see how our
structure theory may be brought to bear on the problem. But this theory
only becomes relevant after a number of reductions, which we will indicate
briefly.

2.1. Generic n-transitivity.

Definition 2.2. Let (G,X) be a permutation group and t ≥ 1. Then the
action of G on X is generically t-transitive if there is a generic orbit O for
the induced action of G on the Cartesian power Xt; that is, rk(O) = rk(Xt).

As an example, consider the natural action of GL(n). This is generically
n-transitive since a generic n-tuple consists of linearly independent vectors.
Similarly, the natural action of PGL(n) is (n+ 1)-transitive.

We note that if the action of G is t-transitive then it is generically t-
transitive, as the set of t-tuples with distinct entries is generic in Xt. But
generic t-transitivity is a much looser notion.

Notation 2.3. If (G,X) is a permutation group of finite Morley rank,
let

τ(G,X) = max(t : The action of G is generically t-transitive.)
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In practice we write τ(G) for τ(G,X).
The following result turns out to be the key to the proof of Theorem 2.1

of Chapter X.

Theorem 2.4. Let (G,X) be a faithful transitive permutation group of
finite Morley rank with G simple. Then there is a bound on τ(G) in terms
of rk(X). That is, there is a function τ : N → N so that

τ(G,X) ≤ τ(rk(X))

for such pairs (G,X).

We claim that Theorem 2 is a special case of Theorem 1. Indeed, spe-
cializing Theorem 1 to the case of simple groups G, it is easy to show that
the bound which applies to definably primitive actions also applies to faith-
ful transitive actions, as definable imprimitivity would allow us to make a
simple inductive argument when the group acting is simple. On the other
hand, a generically t-transitive permutation group (G,X) satisfies

(∗) rk(G) ≥ τ(G) rk(X)

So a bound on rk(G) gives a bound on τ(G).
But more to the point, Theorem 1 can be reduced to Theorem 2. This

takes considerable argument. First, one can show that X has Morley degree
1. This point will not be very visible in our sketch but as the reader will
appreciate it does simplify matters whenever we work with generic subsets
of X.

Second, one needs to find an analog of (∗) in the opposite direction.

Fact 2.5. Let (G,X) be a definably primitive faithful permutation group
with rk(X) = r. Then

(∗′) rk(G) ≤ rτ(G) +

(
r

2

)
This is one of the critical results, and the one where definable primitivity

is exploited.
The essential point here is that if one takes a generic point p of Xτ(G)+r,

the point stabilizer of the sequence p will be finite, and this allows a bound
like (∗′) to be obtained. For a more precise version of this statement, let Gk

be the connected component of the pointwise stabilizer of (p1, . . . , pk) for
0 ≤ k ≤ r, and let ok be the “generic rank” of an orbit of Gk on X. That
is, let ok be chosen so that the union of all orbits in X with respect to Gk

which have rank ok forms a generic subset of X; since there are only finitely
many such distinct ranks possible, there must be such a generic value ok.
Now our claim becomes:

(†) If r > ok > 0 then ok > ok+1

Now by unwinding the definitions one can see that k = τ(G) is the least
value for which r > ok—the stabilizer of τ(G) independent points no longer
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acts generically transitively on X—and then (†) pushes down ok to 0 in less
than r further steps.

We will not enlarge much on the proof of (†). The whole thrust of
the proof is to construct a non-trivial invariant equivalence relation on X if
condition (†) fails, one whose classes have rank ok; the conditions r > ok > 0
then guarantee that this is a nontrivial equivalence relation.

At this point, we can bound rk(G) in Theorem 1 in terms of τ(G). That
is, have reduced Theorem 1 to the variant of Theorem 2 in which G is not
necessarily simple.

At this point, the reduction of our problem to the case of simple groups
follows reasonably well-travelled paths of finite group theory, but with some
interesting detours. The main line is provided in finite group theory by the
O’Nan-Scott-Aschbacher theorem, giving incisive information about both
the socle of a primitive permutation group, and intersection of that socle
with a point stabilizer. An exact analog of this theorem in the finite Morley
rank context is given by Macpherson and Pillay in [135].

In applying this theory there are a number of interesting points that
come up, touching on many of the topics we have considered here, including
such points as Wagner’s theorem on fields of finite Morley rank, Proposition
4.20 of Chapter I, which is needed in the so-called “affine” case in which
the socle A of G is abelian, and more specifically when A is an elementary
abelian p-group. But we will not go into this further here.

2.2. Generically t-transitive actions of simple groups. We have
sketched the reduction of Theorem 2.1 of Chapter X to Theorem 2.4 of
Chapter X and we now take up the proof of the latter. It suffices at this
point to bound either rk(G) or τ(G), and we will take whichever is most
convenient at a given point.

As we deal with simple groups the relevance of our classification theory
is not in doubt, though as we lack a complete classification the way forward
is still unclear. The following result casts some light on the situation.

Fact 2.6 ([48]). Let (G,X) be a definably primitive permutation group
of finite Morley rank, T a definable divisible abelian subgroup of G, T0 its
torsion subgroup, and O(T ) the largest definable torsion free subgroup of T .
Then rk(T/O(T )) ≤ rk(X).

Proof. Take a point α ∈ X generic over the torsion subgroup T0 of T .
Suppose that some torsion element t ∈ T0 fixes α. Then t fixes a generic
subset of X pointwise. Now using the definable primitivity—or just the
transitivity of the action together with the fact that X has Morley degree
1—we can show t = 1 (a general lemma—we omit the details).

In other words, the point stabilizer Tα is torsion free and thus is con-
tained in O(T ). Hence

rk(T/O(T )) ≤ rk(T/Tα) = rk(αT ) ≤ rk(X)

□
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That is, the rank of X limits the structure of T ; if the torsion subgroup
T0 of T were definable we would be tempted to say that rk(T0) ≤ rk(X), but
as this is meaningless we will have to stick with the version we have actually
proved. Still, for working out the rest of the proof one would do well to
suppose rk(T ) ≤ rk(X), as the role of O(T ) turns out to be marginal.

In particular, if G is an algebraic group in characteristic two, possibly
with additional structure, we can look at a maximal torus T of G, and in
this case O(T ) = 1, since T is a good torus in this case. So Fact 2.6 of
Chapter X delivers a bound on the Lie rank of G and hence on the rank of
G, and in particular on the rank of G, and we conclude in this case.

This leaves us in the less well charted waters of simple groups of odd or
degenerate type. We may dispose of the degenerate case at once.

Lemma 2.7. Let (G,X) be a generically 2-transitive permutation group.
Then G contains an involution.

Proof. If (α, β) is a generic point of X2 then there is g ∈ G interchang-
ing α and β, and it follows easily that d(g) contains an involution. □

So what concerns us now is the case of simple groups G of odd type.
If T2 denotes a maximal 2-torus in G and T = d(T2) is its definable hull,
what would be ideal at this point would be a bound on rk(G) in terms of
rk(T/O(T )), as the latter is already bounded by Fact 2.6 of Chapter X. But
this we do not have. So we will have to work harder, and assuming that
τ(G) is very large we will have to force rk(T/O(T )) to be large as well, by
a more direct argument.

The general thrust of this argument will be as follows. Just as in the
proof of Lemma 2.7 of Chapter X, if G is a generically t-transitive group for
some large value of t, and α = (α1, . . . , αt) is a generic point of Xt, then G
induces the full action of the symmetric group Symt on α. Then a Frattini
argument will deliver a similar action on a maximal 2-torus T ∗

2 of Gα, and
hence also on T ∗ = d(T ∗

2 ). At this point we need only two small miracles
to reach our target: it would be very nice if T ∗ = T , that is T ∗

2 is still a
maximal 2-torus of the original group. And it would also be very nice if we
knew that our action of Symt on T

∗ were nontrivial!
Given these two implausible conditions, the rest of the argument is

straightforward. The action of Symt on T
∗ can be used to pump up

rk(T ∗/O(T ∗))

above r, if t is large enough. And of course if we also have T ∗ = T then this
contradicts our prior estimate.

It remains then to be seen how to extract sufficiently good approxima-
tions to our two implausible hypotheses. In the language of Lewis Carroll,
we must believe two impossible things before breakfast.
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2.3. Breakfast. We recapitulate. G is a simple group of finite Morley
rank acting on a set X of rank r, and T is the definable hull of a maxi-
mal 2-torus. The point α ∈ Gt is generic, and T ∗ is the definable hull of
T ∗
2 , a maximal 2-torus of Gα. We would like T = T ∗, which is obviously

unreasonable.
The solution is to replace G by a connected definable subgroup H for

which something of the desired sort does occur when H and Hα are com-
pared, but with α now generic over a name for H, and with H generically
t′-transitive, with t′ still large. It suffices for this to consider the groups
Hk = Gα1,...,αk

for k ≤ rt′, with t′ = ⌊t/r⌋. One may consider 2-tori T ∗
2,k

and their definable hulls Tk for k ≤ r and look at the ranks rk(Tk/O(Tk)),
all bounded by r. There will be stretches of length t′ over which these ranks
are constant, say from k = k0 to k = k1. So if we let H be Gk0

◦ and
α′ = (αk0+1, . . . , αk1), we can replace G and α by H and α′, and have a sit-
uation close to the one we began with, but having lost simplicity, and with a
slightly lower value of t. However we are now closing in on the configuration
necessary for a contradiction, since our maximal 2-torus T2 in Hα′ is still
maximal in H, and simplicity will play no further role.

Let us turn to the other half of our problem. The point of the sequence
α′, of length t′, is to witness the generic t′-transitivity of H, which is now
playing the role previously held by G. This will give us something like an
action of Symt′ on our torus T ; or anyway, it will give us an of action H ′

α on
T , which among other things induces Symt on α

′. The main technical point
now is to take a 2-element in H ′

α representing an involution of Symt′ , and
to show that the induced action on T2 is nontrivial. Here we use the fact
that T2 is maximal not only in Hα′ , but in the ambient connected group H.
We can then bring into play the following result, which refines our results
on groups of degenerate type.

Fact 2.8 ([48]). Let G be a connected group of finite Morley rank and
odd type, and let T be a maximal 2-torus of G. Then T contains all the
involutions in C(T ).

While this is stated for odd type only, it is really a result about connected
groups of finite Morley rank with no nontrivial 2-unipotent subgroups, and
it generalizes the nonexistence of involutions in groups of degenerate type.
This again makes use of the “generic covering” arguments we met in Chap-
ter IV, and it suffices to look at the corresponding part of the analysis in
degenerate type to see the flavor of it.

This brings our sketch to an end. The analysis makes use of our clas-
sification theorem. Indeed, the presence of nontrivial unipotent subgroups
is actually an obstruction to the more abstract line of argument with which
we concluded, which focusses on the behavior of 2-tori in the absence of 2-
unipotent subgroups. So our classification theorem disposes of a case which
would otherwise cause serious problems. With that out of the way, we can
exploit general properties of decent tori. Of course, the initial reduction
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of our problem (Theorem 2.1 of Chapter X) to a problem involving simple
groups (Theorem 2.4 of Chapter X) involves many more applications of the
tools we have seen throughout this work, used in their own right, outside
any particular classification result, and this includes such results as Wag-
ner’s Proposition 4.20 of Chapter I, whose usefulness is not restricted to
the context of classification problems. While this result is very distant from
anything encountered in finite group theory, it is part of our toolbox of gen-
eral methods on much the same footing as something like Carter subgroup
theory, at this point.

3. Lessons learned

Leaving aside model theoretic issues, one motivation for the present work
(and companion work in odd type groups) was to extract from the methods
used in the classification of finite simple groups a “skeleton” theory, relevant
to the finite Morley rank case, which would allow a reading of the original
theory as an elaboration dealing with a wider range of issues and technical
complications, not all connected directly with sporadic groups.

3.1. The classification of finite simple groups. The original proof
of the classification of the finite simple groups, extending roughly from the
1960’s to the 1980’s and to some extent beyond [17], is estimated as taking
up 15000 journal pages and about 100 papers. The “second generation”
proof of Gorenstein, Lyons, and Solomon, is to appear in a series of 12
volumes (AMS, in course of publication since 1994). A “third generation”
approach has emerged, in work of Meierfrankenfeld, Stellmacher, Stroth,
and many others, which takes a very different line; this is not yet part of a
complete approach to the problem.

The “canonical” proof at present is the second generation one, which
aims both at systematizing the approach taken and profiting as far as pos-
sible from the inductive nature of the proof (knowing at the outset that the
proof will in fact terminate at some point, and hence nothing is to be gained
by working outside an inductive framework). This proof involves a mixture
of “unipotent” and “semisimple” methods, with semisimple methods domi-
nating the identification phase. Generally speaking we associate unipotent
methods with groups of characteristic two, and semisimple methods with
groups of odd characteristic. One reason for the mixture of methods is the
behavior of some small and exceptional cases.

Example 3.1. The group G = PSL3(F4) has two perfect central ex-
tensions, which we may call K and L, which differ in the behavior of the
centralizer of the inverse-transpose automorphism t:

CK(t) ≃ SL2(F5);CL(t) ≃ Z2 × SL2(F4)

In the first situation t looks unipotent, and in the second it looks semisimple.
This goes back to the “sporadic” isomorphism PSL2(F5) ≃ PSL2(F4) (≃
Alt5).
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The third generation idea is to work in a unipotent manner with elements
of order p, where p is (or “will be”) the characteristic.

In our context, groups of finite Morley rank, there is a clear separa-
tion of semisimple and unipotent methods. Odd type groups are handled
by semisimple methods throughout and aim at the Curtis-Tits Theorem by
a direct route. This requires the signalizer functor method and encoun-
ters difficulties in low 2-ranks, which will have to be approached in other
ways (in some cases, by direct analysis of specific configurations). Even
type is approached in a unipotent manner and can terminate at the clas-
sification of buildings, combining [177] with [126]. We can however jump
from “unipotent” to semisimple methods at the end in order to eliminate
the classification of buildings from the analysis. This makes use of a global
C(G,T )-theorem, signalizer functors, and a p-uniqueness theorem.

However, by the law of conservation of difficulty, if a theorem has a
substantial list in its conclusion, something in the proof should be hard. If
so, how could the classification of buildings be swept away? In the end,
we arrive at the Curtis-Tits theorem, which goes back to a description of
(most) algebraic groups as amalgams of copies of SL2. . We do make use
of the classification of Moufang polygons, and it seems that the general
classification of spherical buildings of higher rank reduces efficiently to this
case, as shown in [179]. The classification of Moufang polygons in turn
reduces to working directly with the commutation relations among related
root groups (including opposite pairs of root groups) and in a sense is the
logical continuation of the amalgam method, though as we have noted, a
great deal of the information given by the amalgam method is thrown away
at this point, and then rederived from the relations retained, and not very
easily.

From this perspective the key arguments are two: the initial character-
ization of SL2 as a Zassenhaus group, providing the basis of an inductive
analysis, and the use of the amalgam method to handle the Lie rank two
case—where, incidentally, we deviate least from the original model.

3.2. The skeleton. Our reading of the situation at this point , viewing
the theory of finite simple groups through the distorting lens of the theory
of groups of finite Morley rank, is as follows:

There is no canonical skeleton for CFSG.

Specifically: every possible combination of pieces in the CFSG jigsaw puzzle
can be mapped faithfully into the setting of groups of finite Morley rank.

The present text does not, and is not intended to, support this conclu-
sion very well—which reflects both our desire to present a coherent (and fi-
nite) story, and our initial expectation that some well-defined skeleton would
emerge naturally.

Let us illustrate this with a concrete example. At the outset we intended
to construct “standard components” and identify our groups at considerable
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length in terms of these standard components, as in the finite case. Early
drafts of [8] consisted of a proof of the existence of standard components
(which had made a brief appearance in the context of components of type
SL2 already in [5]). About this time, our attention was drawn to third gener-
ation methods, and this paper eventually was converted into a very different,
almost unrecognizable, treatment of parabolic subgroups, as needed for the
amalgam method. In retrospect it seems like a mistake to suppress this line
of development. No doubt it is also a legitimate part of the theory, even
though all such results trivialize once one has any proof of the classification
of the simple groups of even type. The point is that there are several proofs
of the classification, making use of several different theories, some of which
belong to classical group theory, and others which were only developed when
they were needed as tools for the classification. Some of these theories are
beginning to crop up in contexts lying entirely outside group theory; for
example, some “sporadic” local subgroup configurations which provably do
not lead to sporadic finite groups are known to occur in topology [56]. We
allowed ourselves in fact only one variation in the proof, alluded to above,
where one may circle around the theory of buildings.

On the other hand, a comparison of Chapter VI with the papers [1], [4],
[121] gives another instance of such variation, particularly toward the end
of the argument; here one can use the theory of solvable groups in a very
classical vein in the K∗-context, but we were forced to replace all of this by a
purely model theoretic result of Wagner in the L∗-context; if we already had
the degenerate case under control, then the distinction would be moot and
the solvable theory would provide the more direct route. The mechanics of
this example are reasonably clear: we need some decent conjugacy theorems,
and it does not seem to matter too much which ones we have. In other words,
the problem is highly overdetermined.

Another case in which the classification theory for finite simple groups
can be “miniaturized” in a self-contained way is seen in work of Paul Flavell
[87]. In this work results of Timmesfeld play a key role, and as well shall
see the natural finitization of our own work leads back to the same results,
or close analogs.

3.3. Things not done. —Or rather, things that have been done, but
have not been done here: The existence of standard components was alluded
to above. As noted in Chapter VII, we have suppressed the theory of simple
groups with strongly closed abelian 2-subgroups in favor of the simpler the-
ory of groups with abelian Sylow◦ 2-subgroups, and a rudimentary analysis
of groups with a standard component of type SL2. The case of finite strongly
closed abelian 2-subgroups actually follows from the elimination of cores in
2-local subgroups, and in particular the proof of the Z∗-theorem requires
no special apparatus, a remarkable circumstance if one thinks of the proof
in the finite case. This material was treated in [4] and is omitted here as
irrelevant to the proof of the classification theorem.
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We have also passed over the Alperin-Goldschmidt theorem [78], though
it seems that the amalgam method incorporates some of the force of the
underlying argument, though not the theorem itself.

We have also been selective in our coverage of the theory of permuta-
tion groups of finite Morley rank. In particular the fundamental O’Nan-
Scott theorem has a useful analog in this context[135], which would merit
incorporation into Chapter I alongside such matters as Schur-Zassenhaus
theorems—but from that point of view, one might prefer to know the sim-
ple groups first. So in discussing the theory of permutation groups of finite
Morley rank, one is discussing, for the most part, open questions, and we
will come to this in §5 of Chapter X.

3.4. Bad fields. Generally speaking, “bad fields” tend to be viewed as
a model theoretic aberration. In some sense, however, all finite fields are
“bad”, and the finite theory has learned to cope with them.

We have also learned gradually to cope with bad fields in our context of
finite Morley rank, first in even type and then in odd type. In even type,
we rely on Wagner’s theorem exclusively and one cannot say that one sees
much connection with the finite approach (perhaps they overlap only in the
Sylow theorems).

In odd type the parallels become much clearer. Signalizer functor theory
is essential in both the finite and finite Morley rank cases, and is enormously
complicated by bad fields. Signalizer functor aims at controlling O(C(i))
with i an involution. The crucial example from our point of view is the
following.

Let G = PSL3(K) with K an algebraically closed field of odd character-
istic, and t an involution. Then

CG(t) = K× × SL2(K)

The question is:
Is O(CG(t)) = 1?

And the answer is: it depends. We are simply asking whether O(K×) = 1.
If not, then (K,O(CG(t))) is a bad field.

In the classification of the finite simple groups, Gorenstein, Walter, et al.
wrote hundreds of pages which overcame bad fields. In the context of finite
Morley rank, [59] introduced a “rebalancing” which goes quickly around bad
fields. This depends on having a robust notion of unipotence, something
which tends to be missing in the finite context, in odd characteristic.

3.5. Complex reflection groups. In the semisimple approach to
groups of finite Morley rank (essential in odd characteristic, and available in
even characteristic), the classification of the finite complex reflection groups
enters in. This is one point where an “external” list enters in as a key ingre-
dient toward the final list of algebraic groups. These are involved essentially
because of the possible presence of a generalized kind of bad field considered
by Poizat, a nonalgebraic definable subgroup of a split torus. Otherwise,
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we could show directly that the Weyl groups we construct are crystallo-
graphic Coxeter groups (the relevant Z-lattice would be encoded in the set
of definable subtori of a maximal torus).

3.6. Black box groups. Black box groups are large finite simple
groups presented probabilistically, and black box algorithms are random-
ized algorithms that work with such groups, and attempt to determine their
structure. Such algorithms form an integral part of standard group theoretic
software today (GAP, MAGMA). It is assumed that one can generate ele-
ments of these (large) groups randomly and independently, and in favorable
cases that one can also multiple and invert these elements, or failing that
at least determine some of their properties (such as cycle structure, if they
are permutations). We will deal here with the case in which one can in fact
multiply and invert the elements, as this runs parallel to the finite Morley
rank theory.

Here it is the underlying measure that provides a parallel to the rank no-
tion, particularly in those very common cases where we deal with “generic”
elements of the group, which are practically speaking the only ones the
black box algorithms see initially (nongeneric elements may certainly arise
via group theoretic operations on generic ones).

The notion of “definable subset” has an analog in black box theory: these
are the subsets for which one can construct elements systematically in such
a way as to generate a sequence of uniformly distributed and independent
elements. In particular a definable subgroup, in this sense, is again a black
box subgroup. Let us call these subgroups “constructible”.

Some notions of black box group theory turn out to be directly applicable
to the finite Morley rank context, as we have seen in §4 of Chapter IV. This
material combines very smoothly with the geometrical lines of argument of
Chapter IV, and seems indeed to form a natural component of that theory.

In the finite Morley rank context, black box methods show under suit-
able internal hypotheses that the connectivity of the ambient group passes
to centralizers of involutions; in the black box context under analogous hy-
potheses it shows that the uniformly distributed measure on the ambient
group passes to centralizers of involutions.

Of course, centralizers of involutions are more useful in odd and de-
generate type (as long as there are involutions!) than in even and mixed
type.

3.7. Back to finite groups. We have already alluded to our feeling
that there is nothing “canonical” in the approach taken here, though we
adopted it because it seemed to be the most efficient one available. What
is noticeable in retrospect is that while we take a very linear approach to
our subject, and all the individual ingredients have parallels in finite group
theory, the line actually taken does not bring to mind any particular line of
analysis in finite group theory.
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We have tried to mine the repertoire of ideas in the classification of the
finite simple groups systematically, both from the first generation of papers
and from later revisionism, especially, as has been seen, the Third Gen-
eration, with the proviso that wherever possible, we work with connected
subgroups. For this reason we have adopted a relatively unobtrusive nota-
tion. Indeed, when we write “Sylow◦” or “N◦”, this could be interpreted as
“Sylow” or “N” in a category of connected groups; we would like to write
X∩ ◦Y for the (X∩Y )◦ as well, but this is pushing the limits of notation. If
one traces through the arguments, one finds that a great deal of the relative
simplicity of our analysis is traceable directly to this point.

Bearing all this in mind, we ask whether there is a fragment of the
classification theory of finite simple groups which actually does correspond
reasonably closely to what we do here. It is entirely possible that there is
such a self-contained theory which is not necessarily part of any proof of the
full classification. We will make one concrete proposal in this direction in
the next section. One will observe some connection with the line followed
by Timmesfeld.

3.8. Major differences. The theory of simple groups of finite Morley
rank is generally a couple of orders of magnitude simpler than the theory of
finite simple groups, at least in the presence of a healthy supply of involu-
tions. The main reasons for this are the following.

• The fields involved are algebraically closed; in particular they have
no quadratic extensions.

• There is a notion of connected component, and in particular of
Sylow◦ 2-subgroup.

Complicating factors, on the other hand, are the following.

• Rank provides a rough measure of size, but the order of a set cannot
be assigned a “parity”.

• There is no “transfer” map.
• There is no useful group algebra and no way to bring linear algebra
to bear.

• Representation theory, even for simple algebraic groups, is extremely
rudimentary in this category.

Among the simplifying factors, we have not listed the absence of sporadic
groups, which in any case is merely conjectural. In particular our work on
mixed and even type allows unknown sporadic groups to be carried along
almost indefinitely—for practical purposes they disappear in Lemma 5.8 of
Chapter VIII. In the case of odd type groups we do not know how to work
around them, and hence we work only with K∗-groups. So this remains an
unresolved issue of fundamental importance.

The fact that the fields involved are algebraically closed has a number
of consequences, though the possible existence of bad fields continues to
raise issues of the type associated with finite fields. Still, this results in
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very striking simplifications in a wide variety of contexts; in particular, it
yields the elements of order three which play such a strong role at the end
of Chapter VI, and quadratic closure is essential to the theory of Suzuki
groups in §3 of Chapter III. Furthermore, quadratic closure simplifies the
representation theory, and while this is not expressed by a rigorous result it
is somewhat in view in the deeper reaches of the amalgam method analysis
in Chapter IX.

The notion of connectivity is spectacularly effective, and has led us to
give virtually every notion of group theory, and many of the theorems, in
a “connected” form. Among the more subtle manifestations of this are
the notion of “continuously characteristic” subgroups which allows us to
obtain sufficiently characteristic subgroups in contexts which would have
to be treated as distinct exceptions in the finite case. By working in the
connected Sylow subgroup rather than the full Sylow subgroup we achieve
many simplifications, and in particular it will be noticed that configurations
reminiscent of wreath products, to which vast numbers of pages are devoted
in the finite case, do not even arise for us as distinct cases. This absence of
wreath products is probably a greater simplification than our avoidance of
cases associated with sporadic groups.

As far as the complicating factors are concerned, it would be very pleas-
ant to be able to distinguish “even” and “odd” orders. We do measure this
in the case of groups by the presence or absence of involutions, but this begs
a number of questions. The clearest evidence of parity, or more generally
residue modulo n, is given by a definable equivalence relation with all but
finitely many classes of order n. There is no reason why a group of finite
Morley rank should not exhibit a variety of parities, and indeed it follows
from results of Hrushovski on strongly minimal sets that an algebraic group
can be enriched, without changing its rank, to one whose order is both even
and odd in this sense. There are other finiteness principles that would be
useful, notably the surjectivity of injective maps. The Algebraicity Conjec-
ture implies that the theory of a simple group of finite Morley rank should
satisfy this principle with respect to sets and functions definable in the lan-
guage of the group, a point which is unlikely to have an independent proof.
Using finiteness in a more precise way, via actual calculation, one can elim-
inate bad groups instantly, or more generally any group covered disjointly
by a conjugacy class of proper subgroups. The use of transfer in finite
group theory can be viewed as another application of elementary notions of
arithmetic, and its absence in our context is particularly deplorable.

The most powerful technique for which we have no analog is character
theory, or in other words the linear algebra of the group ring. It is note-
worthy that we can achieve results that are normally achieved by character
theory in the finite case, using either the presence of toral elements of order
three, or considerations connected with connectivity (notably, weak embed-
ding as opposed to strong embedding). Where we really feel the lack of this
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technique is in the treatment of groups of degenerate type, where after the
elimination of involutions we become comparatively helpless.

Finally, representation theory is an essential ingredient in the amalgam
method, and increasingly so in its more recent manifestations. Fortunately,
the fragment of the theory with which we deal relies only on characterizations
of the natural module for SL2, and these we can squeeze out, though in some
cases with effort.

The recent development of the theory has tended in practice to move
away from the methods of finite group theory, and to head in a more geo-
metric direction, notably along lines now represented by Chapter IV, and
the ongoing work in odd type.

4. New directions

We propose two lines of research which are suggested by our experience
here: a proposed independent fragment of the classification of the finite
simple groups, and the study of fusion systems of finite Morley rank. At
the end we take note of a third line which is more model theoretic, and was
suggested by Hrushovski.

4.1. Fusion systems. In this book one recurrent theme has been a
systematic transfer of ideas from finite group theory to the theory of groups
of finite Morley rank. The general feeling was that the theory of groups
of finite Morley rank would pick out a “generic” or “regular” component
from the classification of finite simple groups, leaving behind “irregular”,
“sporadic” bits of the theory—among them, the sporadic simple groups.

In this connection it is interesting to look at a dramatic new departure,
the theory of fusion systems or p-local groups in which finite groups are re-
placed by structures which are no longer groups but which capture essential
features of the local structure of a finite group. Given the prominence the
local analysis has in our book, it might be interesting to look at such fusion
systems also in the finite Morley rank context.

Let p be a prime number. A fusion system on a finite p-group S is a
category F whose objects are the subgroups of S, and whose morphisms are
injective group homomorphisms, subject to certain axioms. The notion of a
saturated fusion system is designed to axiomatize the p-local structure of a
finite group G which contains S as a Sylow p-subgroup. Every such group
G gives rise to a fusion system FS(G) on S, and we say that G realizes F if
FS(G) = F .

It is known that there are saturated fusion systems F which are not
realized by any finite group G, although showing that this is the case is
very delicate. In the case when p = 2, the only known examples are certain
systems discovered by Ron Solomon in connection with his theorem on the
characterization of Conway’s sporadic simple group Co3 [32, 130, 163].
Without a doubt, nonrealizable fusion systems–and their intimate relations
with algebraic topology—is the most intriguing aspect of the theory.
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There is a school of thought which suggests that fusion systems provide
the proper and right setting for an understanding of the sporadic simple
groups and that, in effect, sporadic simple groups are “sporadic” saturated
fusion systems which happened to be groups, almost incidentally.

Now we will give a formal definition of a (finite) fusion system and a
saturated fusion system. We introduce only the minimal formalism needed
to give the flavor of the subject.

A fusion system over a finite p-group S is a category F , where Ob(F) is
the set of all subgroups of S, and which satisfies the following two properties
for all P,Q ≤ S:

• All morphisms in HomF (P,Q) are injective homomorphism of groups;
• HomF (P,Q) includes all homomorphisms from P to Q induced by
conjugation in S;

• Each α ∈ HomF (P,Q) is the composite of an isomorphism in F
followed by an inclusion.

Given a Sylow p-subgroup S in a finite group G, all subgroups in S
together with all homomorphisms induced by conjugation in G form a fusion
system, denoted FS(G).

We need some further notation. In a fusion system F ,

• IsoF (P,Q) = HomF (P,Q) if |P | = |Q|;
• AutF (P ) = IsoF (P, P ); and
• OutF (P ) = AutF (P )/Inn(P ) where Inn(P ) is the group of inner
automorphisms of P .

If F is a fusion system over a finite p-subgroup S, then two subgroups
P,Q ≤ S are said to be F-conjugate if they are isomorphic as objects of the
category F .

The next group of definitions continues to mimic the behavior and prop-
erties of subgroups of a Sylow p-group in a finite group.

Let F be a fusion system over a finite p-subgroup S.

• A subgroup P ≤ S is F-centric if CS(P
′) = Z(P ′) for all P ′ ≤ S

which are F-conjugate to P .
• A subgroup P ≤ S is F-radical if OutF (P ) is p-reduced; i.e., if
Op(OutF (P )) = 1.

Saturated fusion systems. Let F be a fusion system over a p-group S.

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P
′|

for all P ′ ≤ S which is F-conjugate to P .
• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P

′)|
for all P ′ ≤ S which is F-conjugate to P .

• F is a saturated fusion system if the following two conditions hold:
(I) For all P ≤ S which is fully normalized in F , P is fully cen-

tralized in F and AutS(P ) ∈ Sylp(AutF (P )).
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(II) If P ≤ S and α ∈ HomF (P, S) are such that αP is fully
centralized, and if we set

Nα = {g ∈ NS(P ) | αcgα−1 ∈ AutS(αP )}

(where cg denotes conjugation by g, x 7→ gxg−1), then there
is ᾱ ∈ HomF (Nα, S) such that ᾱ|P = α.

If G is a finite group and S ∈ Sylp(G), then the category FS(G) is a
saturated fusion system [55, Proposition 1.3]. Regarding the realizability
of saturated fusion systems, the best result so far is a theorem by Leary
and Stancu [129] which states that any saturated fusion system over S can
be realized in a (possibly infinite) group G which contains S, and has the
property that every p-subgroup in G is conjugate to a subgroup of S.

Moving to the finite Morley rank domain, the generalization of saturated
fusion systems appears to be immediate and obvious: we take for S a p-
unipotent group of finite Morley rank (or possibly a 0-unipotent subgroup
in the sense of Burdges), and simply demand that, in the definitions above,
all groups are definable and all Hom(P,Q) are uniformly definable families
of definable homomorphisms. In the case p = 2, where we have a good Sylow
theory, the fact that a group G of finite Morley rank and even type together
with a Sylow 2-subgroup S give rise to a saturated fusion system appears to
be not much different from the Alperin Fusion Theorem which we already
have due to Corredor [78], while realizability issues are surprisingly close to
gluing a group of finite Morley rank from amalgam data.

Restricting ourselves to the case p = 2, may we conjecture that every sat-
urated fusion system of finite Morley rank on a connected 2-unipotent group
S comes from a connected group of finite Morley rank and even type? This
would provide an even stronger version of killing of sporadic configurations
and sporadic simple groups than we have in our Even Type Theorem.

What is perhaps more important, a study of fusion systems may shed
some useful light on the structure of our theory, and, in particular, on the
interaction between the direct study of fusion and the amalgam method. If
the shortcut we took via the amalgam method in Chapter IX is no longer
available, there are other well established methods in finite group theory
that could be developed here.

4.2. Atomic 2-groups: definitions. The other question that we wish
to take up is whether there may be a reasonable self-contained theory of
finite simple groups of even type which is more closely parallel to the theory
presented here. In other words, have we been perhaps been imitating a
certain line of development that never actually emerged distinctly in the
classical theory? A loose analogy exists with work of Timmesfeld, but we
are looking for something sharper.

In the finite Morley rank context, even type means that the Sylow 2-
subgroups are infinite, definable, and of bounded exponent. In particular
their connected components are unipotent (definable connected 2-groups).
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Let G be a simple group of finite Morley rank and of even type, and let
A be a minimal unipotent 2-subgroup of G. Then the following hold.

(1) For all g ∈ G, either A ∩Ag is finite, or g normalizes A.
(2) [Frécon] If g normalizes A then either CA(g) = 1, or g centralizes

A.
(3) If Q > 1 is a definable connected 2-group then Z(Q) contains a

minimal unipotent 2-subgroup.

Let us consider, by analogy, the following conditions in the finite context.

Definition 4.1. For G a finite group, and A a G-invariant set of el-
ementary abelian 2-subgroups of G, we say that A is a family of atomic
2-subgroups of G if the following axioms are satisfied.

A1 For any g ∈ G, A∩Ag is A or 1. (One says A is a “TI-subgroup”,
where “TI” abbreviates “trivial intersection”.)

A2 CG(A) = CG(a) for a ∈ A×.
A3 If A,B ∈ A and [A,B] ̸= 1 then [A,B] contains some element of

A.
(1) G = ⟨A⟩

This is a good time to make a comparison with Timmesfeld’s axioms for
abstract root subgroups [175].

Definition 4.2. Σ is a G-invariant set of abelian subgroups of G, gen-
erating G, such that for any pair A,B ∈ Σ one of the following three possi-
bilities holds:

(1) [A,B] = 1;
(2) ⟨A,B⟩ is a rank one group (defined below);
(3) [A,B] = [a,B] = [A, b] ∈ Σ for a ∈ A×, b ∈ B×, and [A,B] ≤

Z(⟨A,B⟩).
A rank one group is a group with a split BN -pair of rank one. This can

be written equivalently as follows.

Definition 4.3. A rank one group X is a group of the form ⟨A,B⟩ with
A and B distinct and nilpotent, such that for all a ∈ A× there is b ∈ B×

satisfying Ab = Ba.

4.3. Atomic 2-groups: A proposal. The proposal is to classify the
finite simple groups G which are generated by a system of atomic 2-groups,
and more specifically to do so along very much the same lines that apply in
the finite Morley rank context. We find it convenient to introduce a very
coarse notion of connectedness.

Definition 4.4. Let G be a finite group generated by a family of atomic
2-subgroups, and H a subgroup. Then H◦ denotes the subgroup of H gen-
erated by all atomic 2-subgroups of H contained in H, together with all
elements of odd order. The group H is said to be connected if H = H◦, and
we transfer the conventions of the finite Morley rank context to this context
(NG

◦(X), Sylow◦ 2-subgroups, and so forth).
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However, some of our target groups have disconnected Sylow 2-subgroups
(SU3(2

2n), Sz(22n+1)

Atomic Group Conjecture. Let G be a finite simple group gener-
ated by a system of atomic 2-subgroups. Then G is a group of Lie type in
characteristic two.

We will now state ten problems in this area. Each of these is the direct
translation of one step in our analysis in finite Morley rank. Remarkably,
each such problem also makes good sense as a problem in finite group theory,
under our present conventions.

We would be happy to have solutions even with a K∗-hypothesis (as
was long the case in the finite Morley rank context). However with this
hypothesis removed (or reduced to some suitable L∗-hypothesis) we would
then have a self-contained chapter of finite group theory exactly parallel to
what we do here.

Of course, as we are dealing with finite group theory, it might turn out
to be necessary to introduce some explicit exceptions at some stage. One
could, and one should, use the existing classification to check the accuracy of
our formulations; this is not a triviality, and it has not been carried through.
The axioms for atomic 2-groups are loose enough that we do not expect an
explicit classification of all such systems, but only of the groups in which
such systems occur.

4.4. Atomic 2-groups: The problems. In the present section, G
is a finite simple group with a generating family of atomic 2-subgroups.
We begin with the uniqueness theorems associated with strong and weak
embedding, strongly closed abelian subgroups, weakly closed abelian sub-
groups, and the global C(G,T ) theorem. In our presentation in this book,
we suppressed the strongly closed abelian case in favor of the simpler case of
abelian Sylow subgroups, and one could also ask whether that route could
be followed here.

We must first define weak embedding.

Definition 4.5. Let S be a Sylow◦ 2-subgroup of G. A proper subgroup
M of G is weakly embedded if

M = ⟨NG
◦(U) : 1 < U = U◦ ≤ S

We remark that G has a weakly embedded embedded proper subgroup
if and only if the graph on A, in which A,B are connected by an edge in
U(G) if they commute, is disconnected.

Problem 1. If G contains a weakly embedded subgroup, show that G is
one of the groups PSL2(2

n), SU3(2
2n), or Sz(22n+1).

In an extreme case, the graph A has no edges! Then we are dealing with
a TI-subgroup weakly closed in its centralizer, a case handled by Timmesfeld
[173]. This generalizes the Z∗-theorem.
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Fact 4.6. Let A be an elementary abelian TI 2-subgroup of a finite group
G and assume that [A,Ag] = 1 implies A = Ag. Set G∗ = ⟨AG⟩. Then either
G∗ is solvable, or G contains a normal 2-subgroup N such that G∗/N is a
covering group of PSLn(2

m), Sz(22m+1), SU3(2
2m), an alternating group

Alt6,Alt7,Alt8,Alt9, or a Mathieu group M22, M23, or M24.

Problem 2. Assuming an affirmative solution to Problem 1, show that
O(NG

◦(U) = 1 for every connected 2-subgroup U .

Here O denotes the maximal normal subgroup of odd order (under our
definitions, it is automatically connected).

A helpful point here is the following: if a connected 2-group U normalizes
a group R of odd order, then U centralizes R.

Problem 3. Suppose the 2-Sylow◦ subgroup S contains a nontrivial
strongly closed and connected abelian subgroup A. Prove that NG

◦(A) is
weakly embedded in G.

This would simplify the analysis relative to the more general result of
Goldschmidt.

Definition 4.7. For S a Sylow◦ 2-subgroup of G we write A ∩ S for
{a ∈ A : A ≤ S}.

Problem 4. Let B = ⟨A∩S⟩. Suppose B is abelian. Show that NG
◦(B)

is weakly embedded in G.

At this point, we expect pseudoreflection subgroups of NG
◦(B)/CG

◦(B)
to come into play.

Next we come to C(G,S).

Definition 4.8.

(1) Let Q ≤ P be connected 2-subgroups of G. Then Q is continuously
characteristic in P if Q is invariant under NG

◦(P ).
(2) Let C(G,S) = ⟨NG

◦(Q) : Q is continuously characteristic in S⟩.

This last definition was replaced by a more subtle one in our text (but
this is not really necessary, as our previous definition can be linked to this
one by a Frattini argument).

Problem 5. If C(G,S) < G, show that G contains a weakly embedded
subgroup.

After the uniqueness theorems, we come to pushing up and an analysis
of parabolic subgroups.

Definition 4.9. Let H be a subgroup of G.

(1) The unipotent radical Ru(H) of H is its maximal connected 2-
subgroup.

(2) U2(H) is the subgroup generated by ⟨A ∩H⟩.

Problem 6. Let Q be a connected 2-subgroup of G satisfying



528 X. CONCLUSION

(1) Q = Ru(NG
◦(Q)).

(2) U2(NG
◦(Q))/Q is isomorphic to SL2(2

n), SU3(2
2n), or Sz(22n+1).

Show that NG
◦(Q) contains a Sylow◦ 2-subgroup of G.

Definition 4.10. A subgroup P of G is parabolic (relative to S) if it is
connected and contains S.

Problem 7. For P parabolic show the following.

(1) Ru(P ) ̸= 1;
(2) CG

◦(Ru(P )) ≤ Ru(P ).

(The first condition is a special case of the second, but worth noting sepa-
rately.)

It is at this point that we would expect to bring in the strongly closed
abelian case and some rudimentary component analysis, along with the
global C(G,T ) theorem. After this, we aim at identification.

Let M be the set of minimal parabolic subgroups properly containing
NG

◦(S).

Problem 8. Prove that if |M| ≤ 1 then G has a proper weakly embedded
subgroup.

Problem 9. Prove that if G is generated by two elements of M then G
is a rank 2 Lie group over a field of characteristic two.

This would be an analog of Delgado-Stellmacher.

Problem 10. If |M| ≥ 3 and G is not generated by any two elements
of M, show that G has a BN -pair of rank at least three, and thus is a group
of Lie type over a field of characteristic two.

This last is an analog of Niles’ theorem.
We must add to this list one broad question.

Problem 11. Can one simplify any of the above by invoking the existing
theory of groups generated by abstract root subgroups?

Finally, we alluded to the theory of pseudoreflection groups above. In
the finite Morley rank theory, this was tied up with the strongly closed
abelian analysis, and proved to be very convenient. This subject has not
been developed in the finite context.

Problem 12. Let X be a finite group acting irreducibly on an elemen-
tary abelian group of order 2n. Assume that X is generated by a conjugacy
class of pseudoreflection groups: that is, groups K of odd order acting irre-
ducibly on W = [K,V ].

(1) Can these groups be classified without assuming the classification
of finite simple groups for their factors?

(2) . . . or indeed, assuming this classification?
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In our discussion, we have said nothing about the Feit-Thompson The-
orem. In the finite case it is perfectly reasonable to take this as given,
without however invoking the entire classification of finite simple groups. In
the finite Morley rank context we do not have this luxury, and hence in our
text we have worked around the absence of the Feit-Thompson theorem (it
follows for definable sections of groups of even type from their classification,
but only by using Wagner’s theorem yet again). Judging by this analogy it
may not be absolutely necessary to invoke Feit-Thompson; that is, it might
be possible to keep the entire treatment strictly self-contained. But at the
moment the methods we have used for this purpose in the model theoretic
context have no known analogs in the finite case, and have every appearance,
at present, of being tied up with properties of infinite fields.

4.5. Generic automorphisms. Our last line is an old suggestion of
Hrushovski, not much explored. The idea is to consider the group of fixed
points of a “generic automorphism” of a simple group of finite Morley rank
(e.g., induced by a generic automorphism of a strongly minimal subset),
which should carry the structure of a measurable group, and to develop
measurable group theory in this particular context. One test of the theory,
but perhaps not a fair one, is whether it can tell us more about groups of
degenerate type.

In any case it would be very welcome to have another model theoretic
tool which can contribute anything to the analysis of any of the concrete,
and very resistant, configurations which have emerged to date in the close
study of simple groups of odd or degenerate type.

5. Other open problems

We take this opportunity to present a number of open problems which
are either relevant to the development of the subject, or similar in spirit.
We begin with some problems which are in some sense classical, or at least
of long standing. We then point out that there is a good deal we do not
know about the theory of simple groups of finite Morley rank and even type,
even though their classification is complete. In odd type, there is already
a detailed program in place for further analysis, given in [59], to which we
must refer for a detailed discussion. In degenerate type on the other hand
there is no such program, and we indicate some possible lines of inquiry.

Other lines of investigation within the context of groups of finite Morley
rank involve their representation theory, cohomological questions, and the
further consideration of relations with finite group theory.

Finally, we take note of analogs and other directions: o-minimal groups,
and the various other stability classes. Much of the qualitative theory of
groups of finite Morley rank does go over to considerably broader classes,
and this is a line which has played a considerable role in model theory. This
applies to some degree also to theories which seem to have a more “concrete”
flavor (such as Hall theory), but much of the theory exists at present only
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in the finite Morley rank context. (That part of the theory which depends
directly on [182] seems firmly wedded to the finite Morley rank context.)

5.1. Classical problems. We must begin with the following.

Problem 13. Are there any bad groups?

Bad groups are minimal connected simple groups all of whose Borel
subgroups are nilpotent. It is known that they contain no involutions, so
analysis of 2-local structure is certainly not going to accomplish anything.
These groups have the property that G is the union of the conjugates of
a Borel subgroup, and this property already implies that the group is not
finite by a direct counting argument:

|G| ≤ |
⋃
g∈G

Bg| ≤ 1 + (|B| − 1) · |G/B| ≤ |G| − (|G|/|B| − 1)

There is one standard method for producing exotic structures of finite
Morley rank, Hrushovski’s amalgamation method, and so far it lacks the
capacity to produce structures of this kind. In technical terms, it produces
only CM-trivial structures, and they cannot be simple groups. But there is
no reason as yet to believe that this limitation on the method is intrinsic to
the method, which is not rigidly constrained to any particular framework.

Among the possibilities that must be considered is that of a group whose
Borel subgroups are elementary abelian p-groups for some p, and in partic-
ular the group has exponent p. Here we rejoin combinatorial group theory
and the Burnside problem, and this is very reasonable. The problem appears
to be intrinsically combinatorial. One could hope that the progress made in
the theory of hyperbolic groups could some day be brought to bear on this
problem. Indeed, there is one result going in this direction: free groups are
stable.

It would of course be useful if one could formulate rigorously what prop-
erties a category of groups would have to possess in order to serve as the
context for a useful Hrushovski amalgamation, leaving to the combinatorial
group theorists the problem of deciding whether such a category exists. But
even this is beyond us at present.

Next in line, of almost as venerable vintage, we have.

Problem 14. Are there any bad fields?

In fact a solution has been announced: these exist in characteristic zero
[25]. In particular it seems the complexities of the degenerate type will not
be eliminated by a model theoretic deus ex machina.

At an earlier point a consensus had emerged that there should be bad
fields of characteristic zero, and none of positive characteristic. At this point
only the negative half has been proved. Elimination of positive characteris-
tic, or at least characteristic two, would simplify our own work somewhat,
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though it may be noticed that in large parts of our analysis would be un-
affected. What we need in this direction is already furnished by Wagner’s
results.

In positive characteristic, the results are due to Wagner [183]. If a
bad field exists in characteristic p, then one exists for which the field is
the algebraic closure of Fp, and then it follows that there are only finitely

many p-Mersenne primes (of the form (pℓ − 1)/(p − 1)); and a good deal
more in the same vein follows. Since Wagner’s results show that in positive
characteristic a bad field is an elementary extension of a locally finite bad
field, this tends to reinforce the connection with finite, or at least locally
finite, group theory.

On the characteristic zero side, the first phase of the Hrushovski amalga-
mation process is given in [152]. This is the “amalgamation” phase. Already
in this phase some algebraic geometry comes into play. This produces ex-
amples of infinite Morley rank. The second phase involves “collapsing”, and
according to [25] it can be carried out using the same information from
algebraic geometry.

The next problem has a different character. It would be largely trivial-
ized by a successful classification, and stands in the meantime as a symbol
of our ignorance.

Problem 15. Suppose that a group of finite Morley rank generically
satisfies an identity of the form

xn = 1

Show that it satisfies this identity.

Since first making this list, we have managed to treat the case of expo-
nent a power of 2, and this is given in Chapter IV. So the symbol of our
ignorance is perhaps less striking. Still, one may take n = 5 to reduce us to
helplessness.

This problem has been solved for solvable by finite stable groups by
Jaber [117], who extends the result to arbitrary identities in nilpotent by
finite stable groups. It follows for groups of finite Morley rank of even or
mixed type by the classification. In degenerate type, it is connected with
the following.

We remark that the first draft of [13] ran straight into this problem
(with an unknown value of n), and handled it not by eliminating it, but
by treating the configuration that arose much as other configurations are
treated. Subsequently the general result of [68] was used to bypass this
analysis, and in particular there is no trace of it in the present text.

Problem 16. Let G be a simple group of finite Morley rank. Show that
G contains a proper subgroup M such that the union of its conjugates is
generic in G. In particular, treat the case in which G is minimal connected
simple, with M a suitably chosen Borel subgroup.
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It follows from 1.14 of Chapter IV that this holds whenever G contains
a good torus (and by a slight generalization given in [68], the same applies
whenever there is a nontrivial p-torus for some p.

This problem is of broader significance for the degenerate case.
In the special case of minimal connected simple groups, Frécon has an-

nounced a conjugacy result for Carter subgroups which may produce the
desired result (or possibly provide a close alternative to it).

A problem with some similarity to Problem 15 is the following.

Problem 17. Let G be a finitely generated subgroup of a group of finite
Morley rank. Show that G is residually finite.

Note that if G is linear, that is, has a finite dimensional representation
over some commutative ring, then it is indeed residually finite. It would be
satisfying to approach this problem via linearity, but this seems a bit too
strong in the nilpotent case in view of an example due to Baudisch [24].

The simple case is unlikely to succumb in the absence of a classification,
but the solvable case also remains completely open.

The following problem sits in a similar line of inquiry, though from a
different context. A group G is called pseudofinite if it is a model of the
theory of finite groups. Evidently the classification of the finite simple groups
has far-reaching consequences for this class. Sabbagh has posed the following
problem.

Problem 18. Let G be a finitely generated pseudofinite group. Then G
is finite.

This is false for finitely generated subgroups of pseudofinite groups (even
in the abelian case), so there is some essential difference from the previous
problem. In fact bringing the two hypotheses to bear in itself poses some-
thing of a problem. Sabbagh has proved this in the solvable case, and Khelif
has introduced a technique which seems likely to prove it in the case of a
group which is a model of the theory of finite simple groups. We sketch
his argument for the case of a group which is a model of the theory of the
alternating groups (so elementarily equivalent to a nonstandard alternating
group).

First, the natural representation of Altn as a permutation group is in-
terpretable in the theory of the group; so our finitely generated group G
acts in a similar way on some definable set Ω. Now take the generators of
G to define a Cayley graph on Ω, and consider the definably connected sets
of minimal size containing two arbitrary points. These are easily seen to be
finite, and there is no largest one, contradicting the theory of finite sets.

However, in this argument we are using subsets of Ω, rather than ele-
ments of Ω, in an essential way. In particular, to compare the sizes of two
sets, one conjugates by G so that one is contained in the other. So one
must argue also that the action of G on the power set of Ω is interpreted in
G. (More precisely: this holds in Altn with Ω finite of order n, and hence
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in G there is a “definable power set” with the same encoding, and similar
properties.) It turns out that this interpretation is classical, due to Hodges.

This is a powerful argument, but seems to afford no hold on groups which
are models of the theory of finite nilpotent groups (note that such groups
need not be solvable). So in the present instance the pseudonilpotent case
seems to be critical.

5.2. Even type. As we have remarked, the classification theorem does
not really complete the theory of groups of even type (though we think the
mixed type theory has been adequately treated at this point).

Problem 19. Develop an approach to groups of even type via standard
components.

The existence of standard components is known, and will perhaps be
documented at some point. Everything after that (including the theorem
of Aschbacher-Seitz [21]) has been left aside. One can read everything off
from the classification but it would be instructive to see this material worked
out in the finite Morley rank context, given that it is the workhorse of the
analysis in the finite case.

Problem 20. Work out the rank two amalgam analysis in the style of
Delgado and Stellmacher.

It turns out, perhaps surprisingly, that there is at least one obstacle
to doing this. On the whole that analysis resembles the analysis given by
Stellmacher, operating more cleanly at a greater level of generality. We
fell back to Stellmacher’s approach after running into some difficulty with
the other. It would be preferable to reconcile this material with the other
approach.

Another topic which could have been useful in the even type analysis is
representation theory, which is in a pitiful state.

Problem 21. Let G be a simple algebraic group over a field of charac-
teristic p (= 2, if one prefers). Let V be an elementary abelian p-group on
which G acts irreducibly and definably (with V also of finite Morley rank).
Then V can be equipped with a vector space structure over a field in such a
way that the action is rational.

This can be phrased in purely algebraic terms: V satisfies at least the
descending chain condition on centralizers, and one can state the same prob-
lem with this weaker hypothesis.

In the amalgam method, in its classical form, one needs a little represen-
tation theory for SL2: some characterizations of the natural module suffice.
These seem not so easy to obtain, though they are available, so any real
progress toward the solution of Problem 21 would be a major change in the
picture. More recent versions of the amalgam method rely heavily on more
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substantial representation theory, and this material also has a direct bearing
on local group theoretic analysis.

5.3. Odd type. We recall that a simple nonalgebraic group of finite
Morley rank of odd type has Prüfer rank at most two. There are some
known difficult configurations in Prüfer rank one and two. At present these
consist of the first three of the four configurations described in [69], present
already in the minimal connected simple tame case, and some configurations
associated with an interesting attempt to characterize SL3 in characteristic
not two [15]. There may very well be others lying in wait.

A full account of what remains to be done in odd type was given in [59,
Chap. 11]. He gives eleven conjectures into which the problem can be neatly
divided, with the following properties: they can be considered independently
of one another, and do not interact; their complete solution would complete
the problem; there is some line of attack visible for each, except possibly
the worst of those identified in [69]. We will give these briefly here; the
discussion in [59] is detailed.

The first has been treated, and was incorporated into our statement of
known results.

Problem 22.1 [Solved]. Show that a minimal connected simple group
of finite Morley rank and odd type has Prüfer rank at most two.

The next three concern Prüfer rank two.

Problem 22.2. Let G be a simple K∗-group of finite Morley rank and
odd type. Suppose the Prüfer rank is two and the 2-rank m(G) is at least
three. If G has a proper 2-generated core, reach a contradiction.

Here it should be recalled that in higher Prüfer rank we get a proper
2-generated core in the nonalgebraic case, and also the hypothesis m(G) ≥ 3
points in this direction. This is not actually known in the present case, but
a 2-generated core tends to be the “default” configuration in pathological
cases, and needs to be treated separately.

Problem 22.3. Let G be a simple K∗-group of finite Morley rank and
odd type. Suppose the Prüfer rank is two and the 2-rank m(G) is at least
three, and G does not have a proper 2-generated core. Show that G is either
PSp4 or G2, over an algebraically closed field of characteristic not two.

This case is based on a close consideration of components of centralizers
of involutions, more specifically centralizers of toral involutions (i.e., involu-
tions in a torus). There are altogether five configurations to be considered,
three to be eliminated and two to be characterized; see [59, p. 196].

Problem 22.4. Let G be a simple K∗-group of finite Morley rank and
odd type. Suppose the Prüfer rank is two and the 2-rank m(G) is also two.
Show that G ≃ PSL3(K) over an algebraically closed field of characteristic
not two.
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This is one of the difficult cases. One would like to show that C◦(i)
is nonsolvable for some involution i (one alternative is that G is minimal
connected simple). One would then like gradually to rejoin the Altseimer
analysis, which as we have noted leads to some potentially troublesome
configurations.

Now we come to Prüfer rank one. Again, the value of the 2-rank m(G)
seems significant. (In particular, for low 2-rank, the notion of 2-generated
core becomes largely meaningless.)

Problem 22.5. Let G be a simple K∗-group of finite Morley rank and
odd type, and Prüfer rank one. Suppose m(G) ≥ 3. If the weak 2-generated
core is proper, then the 2-generated core is proper.

Here the 2-generated core is associated with elementary abelian 2-subgroups
of a fixed Sylow 2-subgroup of 2-rank at least two, and the weak 2-generated
core is associated with elementary abelian 2-subgroups of a fixed Sylow 2-
subgroup which not only have 2-rank at least two, but are contained in
elementary abelian subgroups of S of 2-rank at least three. In low Prüfer
rank this distinction becomes increasingly significant. (The configurations
to be considered at this point become increasingly explicit.)

Problem 22.6. Let G be a simple K∗-group of finite Morley rank and
odd type, and Prüfer rank one. Suppose m(G) ≥ 3. Show that the 2-
generated core is not proper.

Problems 22.5 and 22.6 form a unit; if one is unable to treat them as
independent problems, then in any case a contradiction must be reached
from a proper weak 2-generated core.

Finally, since we are aiming at a contradiction, in this subcase, we have.

Problem 22.7. Let G be a simple K∗-group of finite Morley rank and
odd type, and Prüfer rank one. Suppose m(G) ≥ 3. Show that G has a
proper weak 2-generated core.

Here we still have some of the force of the signalizer functor theory, since
m(G) ≥ 3, though one also has to bring in the sort of component analysis
mentioned in connection with Problem 22.4.

Finally we have the cases associated with Prüfer rank one and 2-rank at
most two, where we approach the thinnest configurations. We expect G to
be minimal connected simple, but this must be proved.

Problem 22.8. Let G be a simple K∗-group of finite Morley rank and
odd type, and Prüfer rank one. Suppose m(G) ≤ 2. Show that G is minimal
connected simple.

Evidently the contrary assumption leads to some fairly definite configu-
rations involving SL2 or PSL2 (two distinct cases).

Problem 22.9. Let G be a minimal connected simple K∗-group of finite
Morley rank and odd type, and Prüfer rank one. Suppose m(G) ≤ 2. Let S
be a Sylow 2-subgroup of G. Then one of the following holds.
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(1) S is connected;
(2) S ≃ Z(2∞)⋊ (Z/2Z), as in PSL2.

This result is proved in [69] in the tame context, and tools have emerged
since for working in the nontame case.

These last two configurations are difficult to come to grips with, as there
is little internal group theoretic structure remaining. They would be treated
in the finite case by radically different methods.

5.4. Degenerate type. This is the Wild West of our subject. There
are two distinct things that one might wish to achieve: an understanding
of the degenerate case for its own sake, or results which limit the impact
of the degenerate case on the analysis of odd type groups, which to date
functions only under aK∗-hypothesis, in large part because of the possibility
of uncontrolled sections of degenerate type.

In the tame case, the minimal connected simple degenerate groups are
bad groups, and have been analyzed fairly thoroughly from that point of
view. However, there is a large range of unexplored possibilities. We note
that the very substantial group theoretic portion of the analysis in the proof
of the Feit-Thompson theorem [29] explores the rich pattern of structure
found in the maximal subgroups and their various intersections (we would
take the maximal connected subgroups, which in the present context are
referred to as Borel subgroups).

Problem 16 is certainly of general interest here. The fundamental prob-
lem was the following, solved while the present text was in preparation
(Theorem 4.1 of Chapter IV).

Problem 23. Show that a connected degenerate type group contains no
involutions.

At one point this seemed too much to ask; now that we have it, we
still need more. One should look for stronger properties which neutralize
the impact of degenerate sections on the odd type theory. Either of the
following could be useful; we would much prefer the first.

One such is the following, which follows from Theorem 4.1 of Chapter
IV [46].

Fact 5.1. If an elementary abelian 2-group A of order four acts definably
on G, then G = ⟨CG(a) : a ∈ A×⟩

It would be better to eliminate involutory automorphisms in connected
groups of degenerate type, or at least to show the following.

Problem 24. Let G be a simple group of finite Morley rank and of
degenerate type. If a 2-torus acts definably on G, then it centralizes G.

Without waiting for this, it would also be of considerable interest to
take up an L∗-theory for groups of odd type in which a positive solution to
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Problem 24 is simply assumed for connected degenerate simple sections of
the group in question.

In another direction, the conjugacy of maximal good tori (or more gen-
erally, definable tori with definably dense torsion) gives some control over
the torsion, but we have no control in the torsion free case. The natural
analog of “standard torus” here would be: nontrivial connected nilpotent
subgroup with minimal possible reduced rank in the sense of [60].

Problem 25. Prove the conjugacy of maximal tori which are standard
in the above very weak sense.

Lastly, we consider lines suggested by the Feit-Thompson analysis. The
difficulty here is that that analysis is not only long and complex, but leads
to a picture which apparently requires character theory to resolve. Perhaps
more troublesome is the use in that analysis of the focal subgroup theorem,
for which we have no analog.

In any case, a “dry run” for that analysis was furnished by the treatment
of the special case in which the centralizer of every nontrivial element is
nilpotent. One should at least explore this in degenerate groups, and we
can ask for a little more.

Problem 26. Analyze intersections of Borel subgroups in degenerate
type groups in which C◦(a) is nilpotent for every nontrivial a.

In the tame case we easily get the following, in general.

Problem 27. Let G be a minimal connected simple group, and let B1, B2

be Borel subgroups. Then B1 ∩B2 is abelian.

This was explored in [59, Lemma 9.2], and a weak form was achieved
which was adequate for the purposes [65]. It would seem that that lemma
cannot be much improved in general, that is in degenerate type groups
without involutions. What is more likely is that a result of this general
character can be achieved if the 2-rank is at least two; such a result could
become an ingredient in a solution to Problem 23.

In the Feit-Thompson context, every element turns out to belong to
a maximal proper subgroup. The analog in our context would be that G
is a union of Borel subgroups; but then G would necessarily contain no
involutions. So all of these issues are intertwined.

Problem 28. Let G be a simple group of finite Morley rank without
involutions. Prove that the Borel subgroups are maximal subgroups, and
that G is their union.

Finally, we should say something about general torsion.

Problem 29. Let G be a minimal connected simple group. Show that
the Borel subgroups of G are torsion free.

Another way of putting this is that every solvable torsion subgroup of
G is finite.
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5.5. Cohomology. There are a few cohomological issues which are es-
sential to our developments and have been treated successfully at this point:
the Schur-Zassenhaus theory, the theory of central extensions of algebraic
groups in the larger category of groups of finite Morley rank, and Lemma 4.2
of Chapter III, which uses a genericity argument in a cohomological context.
Beyond that, the theory is little developed.

Problem 30. Develop definable cohomology theory using definable ac-
tions and definable cocycles.

There are other cohomological theorems related to the Schur-Zassenhaus
theorem (and a theorem of Gaschütz). This has been explored by Derek
Robinson [156] in the context of locally nilpotent groups by methods which
are roughly parallel to the style of proof used to derive the Schur-Zassenhaus
theorem in the finite Morley rank context.

Problem 31. Prove vanishing theorems for cohomology parallel to those
in [156] in a finite Morley rank context.

5.6. Other theories. The dominant “other theory” here is the theory
of finite simple groups, but we have discussed this sufficiently. Here the
question that requires clarification is the relationship of the case of finite
Morley rank to Timmesfeld’s theory (possibly along the lines of §4.2 of
Chapter X.

There are a number of model theoretic theories to consider as well. In
the theory of o-minimality, which relates to the real field in somewhat the
same manner that finite Morley rank relates to algebraically closed fields,
the Algebraicity Conjecture is elegantly (and efficiently) proved in [148], by
a mixture of substantial model theory and algebra. One of the advantages
of this setting is that a notion of tangent space is available. There is con-
siderably more to this theory than the simple case, including features very
different from the finite or algebraic cases. For example, in definably com-
pact groups G in this category, there is a smallest type definable subgroup
of bounded index, denoted G◦◦, and the quotient G/G◦◦ carries a natural
“logic topology” which makes it a compact Lie group. (For example, a non-
standard “circle group” S has the “infinitesimals” as S◦◦ and the quotient
is a true circle.) The main open problem in this area is to show that this
quotient is the “right” Lie group, in the sense that the o-minimal dimension
of the original group should match the real dimension of the quotient group.

There is also a model-theoretic framework for dealing with p-adic fields
and generalizations, but the question as to whether there is a theory of
pseudo-p-adic groups parallel to the o-minimal theory is entirely open. (This
would have to cover at least groups definable in the p-adic fields themselves.)

Closer in spirit to our subject is the stability theory hierarchy above the
finite Morley rank context: in ascending order ℵ0-stable, Superstable, stable,
or simple (with supersimple as well as some classes with finite ranks forking
off along the way). It has been established that with some model theoretic
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sophistication, large chunks of the general theory go over to stable groups
(and beyond); cf. [150, 180] for the core theory. There is considerably more
grist for this mill here.

Problem 32. Analyze simple stable groups of mixed and even type.

Note that we do not have any control of bad fields in this context. In fact
a pair (K,L×) with K ≥ L algebraically closed fields is a bad field of Morley
rank ω. This is not a completely daunting example (the tori involved are
still good), but suggests there may be serious problems. One can of course
fall back to the K∗-case to handle them. In any case, some component
theories (particularly around solvable groups) have been worked out in the
stable case, and even beyond, and tend to take on a sharper form when
worked out fully (for example, the generalized theory of Carter subgroups
in [61] works with the methods Wagner used in [180] to push the classical
Carter theory to a general setting). It is clear in any case that from a model
theoretic point of view, we are working much of the time in an unnecessarily
restrictive context, though it may in the end be necessary to return to this
context to put all the pieces together.

One particular corner of this enterprise seems particularly attractive.

Problem 33. Classify stable Moufang polygons.

As yet, we cannot even classify stable fields (another major problem),
but we mean here that one should either classify stable Moufang polygons
modulo the classification of stable fields, or construct some interesting new
examples (and some interesting simple stable groups). Since there is an
explicit classification of all Moufang polygons, one begins with that, and
the most interesting case involves quadrangles of mixed type [179]. These
are associated with groups which are in some sense algebraic over a pair of
intertwined fields. The question is simply whether the associated algebraic
structures can be stable without being trivial.

—In Spring 2005, Zoé Chatzidakis answered this question to our satis-
faction by finding a number of striking examples of stable quadrangles of
mixed type in which the coordinatizing “indifferent sets” are quite distant
from the associated fields, which are separably closed and of characteristic
two. So it may now be said that this class is about as rich as it could possibly
be.

One can even give model theoretically interesting rank one groups in
Timmesfeld’s sense by this construction, which are indeed the rank one
analogs of SL2 from which this rank two group is built.

5.7. Permutation groups. We discussed a “soft” proof of the follow-
ing two results in §2 of Chapter X.

Theorem 2.1 of Chapter X. Let G be a definably primitive permu-
tation group on a set X of rank r. Then the rank of G is bounded by a
function of r.
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Theorem 2.4 of Chapter X. Let G be a simple group of finite Morley
rank acting generically t-transitively on the set X. Then t is bounded as a
function of rk(X).

Our methods give large bounds on the parameter t = τ(G,X) and cor-
respondingly large bounds for the rank of G. The passage from τ to rk(G) is
not too sloppy; but our control of the parameter τ is extremely loose. One
may pose a variety of problems here aiming at sharp bounds on τ , expecting
PSLn in its natural projective action to play the role of an extreme case.

Even when G is a simple algebraic group, the classification of multiply
transitive actions is far from complete. Bounds on t in the case of rational
actions in characteristic 0 have been given by Popov [155]. But even in the
case of algebraic groups of characteristic 0, once one allows an enrichment
of the language the question of bounds is open again.

Problem 34. Determine, for each simple algebraic group G, the maxi-
mal t such that G has a generically t-transitive action of finite Morley rank.

Problem 35. Determine, for a fixed t (preferably t = 2) all actions of
simple algebraic groups which are generically t-transitive.

This problem has been solved for t = 3 in the case of characteristic 0
and algebraic actions. Two attractive variants which lend themselves to an
inductive analysis are the following.

Problem 36. Let G be a connected group of finite Morley rank act-
ing faithfully, definably, transitively and generically (n + 2)-transitively on
a set Ω of Morley rank n. Then the pair (G,Ω) is equivalent to the projec-
tive linear group PGLn+1(F ) acting on the projective space Pn(F ) for some
algebraically closed field F .

Problem 37. Let G be a connected group of finite Morley rank acting
faithfully, definably, and generically n-transitively on a connected abelian
group V of Morley rank n. Show that V has the structure of an n-dimensional
vector space over an algebraically closed field F of Morley rank 1, and G is
GLn(F ) in its natural action on Fn.

For more problems in a related vein we refer to [48].

6. Notes

§1 of Chapter X Odd type

A full account of the classification of simple K∗-groups of finite Morley rank

of odd type, as it stood in Spring 2004, along with a good deal of the history, can

be found in Jeff Burdges’ doctoral dissertation [59]. At present it is known that

a nonalgebraic simple K∗-group of finite Morley rank must have Prüfer rank at

most 2. More recent developments in low Prüfer rank can be found in the work

of Adrien Deloro [84, 85], based on his thesis (2007). We will not attempt to
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bring the story fully up to date here. For the benefit of the reader who has gotten

acclimatized to the setting of the present book, we should emphasize that this is

indeed a K∗-group theory rather than some kind of L∗-theory, and there is at

present very little machinery which would support similar results in the presence

of degenerate sections, and no clear remedy for that situation.

The work in odd type began with Borovik’s [41], in the tame case, using sig-

nalizer functor theory. Later Berkman and Borovik gave the generic identification

theorem for theK∗ case [35], which streamlines the analysis considerably; this was

further adapted to the L∗ context in [36]. The theory developed in a number of

other directions, staying mainly in the tame case, until Burdges’ thesis [59, 60]
gave a route to the signalizer functor theory in the non-tame case, via a formal

notion of “characteristic zero unipotence” which complements the more straight-

forward notion of p-unipotence for p prime. This was incorporated into [45], which
both improves on and simplifies the treatment in [41], and was followed up in [47]
to give the results modulo the vexing issue of “O(C(i)) = 1”, which was still

bound up with tameness; while the signalizer functor theory had been worked out

satisfactorily, it was still not clear where the signalizer functors would come from

in the tame case. One approach to the construction of useful signalizer functors is

given in [59, Chap. 10], cf. [62], and there is an alternative following more closely

the line used in finite group theory (Borovik, unpublished). The analysis of the

minimal connected case to which this reduces was given first in [69] with a very

strong use of the hypothesis of tameness, and then adapted to the general case in

[65] using, among other things, the new unipotence theory.

For degenerate type, the results on bad groups were given originally in [139]
(in the rank three case) and [77, 53] in general.

In minimal connected simple groups one works with the pattern of intersection

of Borel subgroups (this is equally true of the group theoretic analysis prior to the

application of character theory in the proof of the Feit-Thompson theorem, as in

[29]). This line of analysis has been considerably developed ([59, Chap. 9], [61]),
and was exploited heavily in [65], but only in the very tight configuration produced

by the odd type analysis, in Prüfer rank at least two. The method can also be used

in Prüfer rank one [84].
Fact 1.15 of Chapter IV was extracted from the analysis in the first version of

[13], first for the case of good tori. In the published version, this result is quoted

and applied directly at a fairly early stage of the argument. The extension from

good tori to decent tori, sketched in [68], was suggested by Borovik. This whole

line of thought was sparked by [182], which implies that the multiplicative group

of a field of finite Morley rank and positive characteristic is a good torus. To date

this has had considerably more impact in even type than in odd or degenerate type,

for obvious reasons.

§2 of Chapter X Permutation groups

This follows [48]. Fact 2.8 of Chapter X makes its first appearance there,

but turns out to be better viewed as part of a more general study of “semisimple
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torsion” pursued in [63], with further ramifications for the structure of the “Weyl

group.”

§3 of Chapter X Lessons learned

We would stress the parallels between our own experience and the line of ar-

gument taken in the work of Paul Flavell mentioned [87]. In this work results of

Timmesfeld play a key role, and the self-contained fragment of finite simple group

theory he develops flows in similar channels to our own.

Throughout this section, references are given in the text.

§4 of Chapter X New directions

Fusion systems have not been looked at to date in a model theoretic context.

For a general discussion see [56]. There is a body of material, some of it published,

which could presumably be rephrased within this setting. By passing rapidly to

the amalgam method, our presentation has obscured this line of thought.

The material in §4.2 of Chapter X has benefited from comments by various

finite group theorists, including Lyons and Aschbacher. Of course it also owes

a good deal to the line of research pursued by Timmesfeld. It seems that what

we have been doing here goes in a similar direction to Timmesfeld, and that this

impression can perhaps be made precise. In particular, we would stress the problem

posed (Problem 11) of applying his theory directly to our context.

See also [44] for a discussion of this theme.

As we remarked in §4.5 of Chapter X, the line of though put forward there was

suggested to us by Hrushovski many years ago, and was not much followed up as

yet, but is currently attracting some interest.

§5 of Chapter X Other open problems

The work of Chatzidakis mentioned was carried out at the Newton Institute,

Cambridge, during the month devoted to groups of finite Morley rank within the

larger semester program on model theory and its applications, in Spring 2005.
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[26] B. Baumann, Über endliche Gruppen mit einer zu L2(2
n) isomorphen Faktorruppe.

Proc. Amer. Math. Soc. 74:215-22, 1979.
[27] O. Belegradek On groups of finite Morley rank. In Abstracts of the Eight Interna-

tional Congress of Logic, Methodology and Philosophy of Science LMPS’87, pages
100–102, Moscow, 1987.

[28] H. Bender, Transitive Gruppen gerader Ordnung, in dene jede Involution genau
einen Punkt festlägt. J. Algebra 17:527-554, 1971.

[29] H. Bender and G. Glauberman, Local analysis for the odd order theorem. With the
assistance of Walter Carlip. London Mathematical Society Lecture Note Series, 188.
Cambridge University Press, Cambridge, 1994. xii+174 pp. ISBN 0-521-45716-5.

[30] C. D. Bennett and S. Shpectorov A remark on a theorem of J. Tits,
Proc. Amer. Math. Soc. 129:2571–2579, 2001.

[31] C. D. Bennett, R. Gramlich, C. Hoffman and S. Shpectorov, Curtis-Phan-Tits the-
ory. 13–29 in Groups, combinatorics & geometry (Durham, 2001) World Sci. Pub-
lishing, River Edge, NJ, 2003.

[32] D. J. Benson, Conway’s group Co3 and the Dickson invariants. Manuscripta Math.
85:177–193, 1994.

[33] A. Berkman. The classical involution theorem for groups of finite Morley rank. J.
Algebra 243(2):361–384, 2001.

[34] A. Berkman and A. Borovik, An identification theorem for groups of finite Morley
rank and even type J. Algebra 266:375–381, 2003.

[35] A. Berkman and A. Borovik, A generic identification theorem for groups of finite
Morley rank. J. London Math. Soc. 69:14–26, 2004.

[36] A. Berkman, A. Borovik, J. Burdges, and G. Cherlin, A generic identification theo-
rem for L∗-groups of finite Morley rank. Preprint, May 2005.

[37] G. Birkhoff, Lattice Theory. American Mathematical Society, Providence, Rhode
Island, third edition, 1967.
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Notation Meaning Page

↔ bijection 24

∗ central product 32

⊔,
⋃̇

disjoint union 180

≺ elementary substructure 50

⌊ ⌋ greatest integer 452
¯ homomorphic image 12

◁ normal 14

↾ restriction 18

⋊ semidirect product 18

( )◦ connected component 32

ℵ0, ℵ1 cardinalities xv, 52

acl model theoretic 37

algebraic closure

ad commutator action 198

alg Falg = F ∩ acl(∅) 48

A(P ) large abelian subgroups 446

An Dynkin diagram 101

Altn alternating group 515

Ann annihilator 44

Aut automorphism group 48

Bn, Cn Dynkin diagrams 101

co-rk(X) co-rank 417

CG centralizer 23

∆ (1) simple roots 129

(2) chamber system 226

∆(v) neighbors of v 438

d(x), d(X) definable hull 30

degree(A) Morley degree 26

det determinant 101

diag diagonal matrix 103

dim linear dimension 74

Dn Dynkin diagram 101

Notation Meaning Page

( )eq imaginary hull 106

E(G) see F ∗ (G) 14

E6, E7, E8 Dynkin diagrams 105

End endomorphism ring 18

Fq finite field 50

F (G) Fitting subgroup 60

F ∗(G) generalized Fitting 72

subgroup F · E
F4 Dynkin diagram 105

Fix fixed field 54

Frob Frobenius 50

γ path in Γ 438

Γ universal cover of Γ0 438

Γ′ graph associated to Γ0 456

Γ0 coset graph 438

Γ̃ quotient of Γ 458

G2 Dynkin diagram 105

G(F ) rational points of G 124

Gδ point stabilizer 438

GL general linear group 95

I(G) involutions of G 13

I1 involutions conjugate 352

to A
I∗1 involutions inverting 363

a torus in TM
IT involutions inverting T 363

I±M a partition of I(G) \M 318

Inn(G) inner automorphism 62

group

J(P ) Thompson subgroup 446

K2(F ) K-theory of F 142

Lδ U2(Gδ) 436
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Notation Meaning Page

mp p-rank vi

M weakly or strongly 307

embedded subgroup

M minimal parabolic type 430

NG normalizer 18

Ωi(S) ⟨h : o(h)|pi⟩ 13

O solvable connected core 39

Ô(G) full connected core 39

Op(G) maximal normal 68

p-subgroup
o(h) order 17

ϕ(G) ordinary Frattini 62

Φ(G) connected-Frattini 61

π∗ gen. π-divisible 83

π⊥ π-torsion free 13

PGL GL /Z(GL) 182

(P )PSL SL or PSL 149

PSL SL /Z(SL) 135

PSp Sp /Z(Sp) 137

Qδ O2(Gδ) 439

Qp p-adic field 95

rk Morley rank 23

rL Weyl group generator 241

Ru unipotent radical 527

σ solvable radical 82

Σ (1) root system 138

(2) root SL2-subgroups 239

Notation Meaning Page

SL special linear group 104

Soc socle 82

Sp symplectic group 124

Stab setwise stabilizer 294

SU special unitary group 526

Sym symmetric group 102

Sz Suzuki group 526

θ(g) signalizer functor 234

T2(G) ⟨d(2-tori)⟩ 293

T , TM toral components 293

T (w) {a ∈M : aw = a−1} 318

( )tor torsion subgroup 17

U2(G) ⟨2-unipotent subgrps⟩ 57

U(G) graph of 2-unipotent 291

subgroups

U∗(G) graph of Sylow◦ 379

2-subgroups
U a class of locally 22

finite groups

Uγ root subgroup 215

X3 related to toral 375

elements of order 3

X ′
3 X3 \A 376

Z(HmodK) center mod K 12

Zi subgroup of Qi 446

Zp p-adic integers 96



Index of Terminology

action

connected on finite 33

definable 5, 34, 60, 98, 178, 214, 247,

250

even on degenerate type 5, 92

faithful 47, 74, 98, 157, 201, 204

free 182, 184, 190, 192, 349

of p-group 18

regular 182

relatively prime 91

solvable 98

of torus 130, 148

See also:

module, transitivity,
Thompson A×B Lemma

amalgam v, 135, 156, 201, 211, 235,
401, 432, 496, 512

amalgamation

free 431

Hrushovski 526

antiautomorphism 54

apartment 135, 213, 224, 489

See also: n-gon, building
associativity 53

automorphism

algebraic 134

centralizer 90, 313, 321

of Chevalley group 134, 143, 160, 289,

et passim
coprime order 91, 232, 276, 391, 424

even on degenerate type 147, 160,

269, 310, 418

field 45, 134, 218, 340, 389

439

graph 134, 220, 235, 384

involutory 135, 264, 310, 322, 336,

357, 505, 532

of p-group 310, 314

p-torus 94, 338
shift 435, 453, 489

axioms

rank 23, 36

balance 231, 233, 418

L-balance 124, 154

Bender method 505

block

SL2 348

toral 348

type I 351, 353, 365

type II 353, 365

type III 353, 365

BN -pair 223, 226, 228, 428, 524

Borel-Tits

algebraic 123

K-group 154

L-group 161, 199

building 211, 223, 427, 494, 511

irreducible 224, 225

Moufang 211, 224, 428

spherical 224, 225, 428

thick 225

thin 224

See also: n-gon

centralizer

mod subgroup 12

closure

algebraic 37, 143

strong 151, 152, 391

Zariski 30, 56, 118, 132, 142, 148, 237

coboundary 192

cocycle 192

cohomology 192

component

connected (graph) 237, 287, 290, 295

connected (group) viii, 35, 66, 96, 253, 521
quasisimple 153, 156, 237, 313, 384, 393,

407, 419, 420, 426

SL2 358, 361

standard vi, 381, 387, 408, 416, 513
toral 349, 352

condition

definable dcc 27, 28, 32, 42, 52

exchange 221, 489, 490, 493
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condition (cont.)

min-c 19, 22

uniform chain 27, 44

uniqueness 221, 489

Conjecture

Algebraicity iv, viii, 142, 267, 503
Anti-Algebraicity, ix
Atomic Group 521

coordinates 185, 196, 332, 371

co-rank 413

core

2-generated 504

C(G,T ) 403, 415, 416
elimination 418

O(G) 39

Ô 39, 418

covariant 263

covering

generic 243, 249, 258, 351

cover, universal 214, 434, 487

Curtis-Tits 117, 136, 233, 512

definability

of functions 394

of sets 24

uniform 24, 36, 44, 52, 62, 144,

249, 251, 252, 256, 259

definable 262

degree, Morley 26, 33, 49, 260, 265

diagram

Dynkin x, 100, 126, 176, 223, 234,
238, 423

division ring 33, 46, 52, 54, 212

alternative 53, 212

elation 213

embedding

strong 92, 94, 178, 270, 284, 297,

314, 325, 367

weak 145, 155, 161, 269, 284, 295,

296, 303, 311, 331, 339, 346,

405, 416, 419, 522

extension

central 20, 125, 133, 145, 160, 306,

310, 387

field

bad x, 47, 136, 513, 526
definable 47

of finite Morley rank 34, 44, 143, 144,

188, 272, 537

flag, 135, 224

form

pseudoquadratic 218, 225

anisotropic 218

functor, signalizer 167, 231, 428, 503, 511

fusion

control of 71, 285, 297, 298

of involutions 92, 294, 296

generation

by root SL2 236

minimal parabolic 132

third v
generically disjoint 248

genericity 26, 48

generosity 249

graph

2-Sylow◦ 373

2-unipotent 284, 287, 289, 294, 295,
297, 373

coset 200, 434, 436

group

abelian 16, 29, 151, 161, 182, 404

adjoint 125, 117

affine 180

atomic 2- 521
bad 278, 505, 517, 525

black box 243, 264, 278, 515

Chevalley viii, 124, 136, 141, 150, 159,
219, 227, 228, 235,

425, 494, 503

connected 32

Coxeter, x, 5, 100, 125, 211, 223, 226,
228, 238

crystallographic 100, 126, 239, 514

definably primitive 506

divisible 13

finite Morley rank 24, 221

free Suzuki 2- 182, 192, 310, 349, 399
generic type 427
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group (cont.)

homocyclic 182, 191, 314, 331, 339,

349, 386, 399

hyperbolic 526

K or K∗ 141, 148

little projective 215

locally finite 19, 22, 62, 66, 75,

142, 279

locally of finite Morley rank 220,

436, 448

uniformly 436

locally solvable 22, 40

L or L∗ 159

nilpotent 17, 30, 36, 57, 98

permutation 177, 500, 505

pseudofinite 528

pseudoreflection 167, 240, 271,

398, 406, 408, 523

quasisimple 14, 42, 72

quasithin 211, 241, 425, 427, 432, 495,

499

radicable 13, 17, 19, 31, 58, 67, 74,

85

reductive 119, 120, 121, 123, 150, 162,

233, 249, 428

rigid abelian 253, 259, 350, 351, 353,

356

semisimple 43, 73, 82, 121, 132, 310

simply connected 22, 121, 133, 234

solvable 18, 30, 40, 47, 73, 82, 98

supersimple 534

superstable 534

Suzuki 2- 182, 192
thin 425, 499

unipotent 57, 61, 74, 82, 128, 291, 296

Weyl 6, 127, 176, 224, 230, 235, 428,

435, 514

Zassenhaus 177, 304, 327, 499, 512

hexagon 213, 215

hull, definable 30, 36, 90, 251, 262

hypersurface, quadric 214

identity, Moufang 53

interpretability 56, 122, 138, 214, 436

involutory set 54, 216, 225

irreducible set 26, 33

isotropic 174, 214

L-balance
See under: balance

lifting

centralizers 87

Hall 75

Sylow 71

torsion 31

linearization 46, 74, 175, 272, 316, 337,

393

module

completely reducible 98, 101, 175

definably irreducible 97, 189

G-minimal 46, 83, 86, 88, 98, 190,

276, 316, 338

irreducible 101

natural 156, 203, 204, 208, 209, 413,

442, 444, 447, 450, 456, 488

Tate 94

n-gon, Moufang 224

octagon 215

polygon 211, 224

Moufang 211, 213, 428, 473, 494

finite Morley rank 213

pseudoform 216

pushing up 415

quadrangle 54, 213, 487

indifferent 217

reduced 217

wide 217

radical

solvable 81

unipotent 92, 119, 129, 154, 297, 523

rank

2-rank iv
Lie 135, 425

Morley 24
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rank (cont.)

Prüfer 89, 94, 235, 428

Tits 225, 228, 233, 428

real, strongly 23, 308, 317, 328

rebalancing 514

recognition 177, 314, 338, 373

reflection, complex 100, 127, 236

representation

reflection 127

revisionism 515

rigidity 52, 62, 127, 249, 251, 253, 259,

323, 350

root system 126

saturation 258

Schur-Zassenhaus 18, 75, 434

self-normalizing

almost 52, 248, 252, 257, 261, 264,

275, 323, 327, 337, 349, 357, 364

series, normal 75, 91, 451

Shephard-Todd number 100

socle 82, 277

solvability, weak 303

splitting 192

stabilizer

chain 91

edge 201

graph component 287

vertex 201, 220, 494

stable 534

strong embedding, criterion for 92

subgroup

abnormal 77

Borel 118, 129, 148

standard 428

Carter 78, 254

commutator 15

continuously characteristic 95, 350,

385

definable 27

definably characteristic 32, 88, 91,

99, 146

Fitting 59

Frattini, connected 61

Frattini, ordinary 61

subgroup (cont.)

Hall 74

invariant 2-Sylow◦ 312

parabolic 123, 132, 147, 176, 199, 226,

412, 427

root 120, 122, 124, 138, 139, 153, 213,

224, 234, 237, 423, 489, 495, 512

subnormal 14, 42, 72

Sylow 66

Sylow◦ 66, 67

Thompson A×B Lemma 99, 154, 419

Thompson Rank Formula 378, 394

Three Subgroups Lemma 14, 100, 145, 154, 464

torsion, of a torus 29

torus 50

algebraic 119

conjugacy 252

decent 251

generic type 359

good 50, 95, 98, 149, 249, 268, 315, 325,

336, 349, 357, 364, 388, 399, 421

maximal good 252, 259, 351, 355

p-torus 62
root 176

track 468, 474, 488

transfer 516

transitivity

double 177, 179, 330, 338, 365

edge 201, 220

t-, generic 506 vertex 201, 220

trichotomy, Zδ 442

type

degenerate 39, 67, 92, 161, 247, 250,

262, 272, 297

even 67, 148

generic 425

minimal parabolic 199, 412

mixed 67, 155, 291, 295, 296

odd 67, 503

ultraproduct 101

Zilber Field Theorem 47

Zilber Generation 38, 46, 50, 106, 142, 231, 289
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Altseimer, Christine 530
Artin, Emil, 1898–1962 9, 45, 54
Aschbacher, Michael, b. 1944 xi, 529,

526
Baldwin, John, b. 1944 7, 27, 106
Baudisch, Andreas 528
Baumann, Bernd 167, 414, 417, 429,

440, 444
Bender, Helmut 4, 299
Bennett, Curtis D. 135
Berkman, Ayše 536
Borel, Armand, 1923–2003 154, 161,

162, 199
Bruck, Richard Hubert, 1914–1991 53,

54
Bruhat, François, b. 1929 131, 231, 329
Burdges, Jeffrey ix, x, 242, 536
Burnside, William, 1852–1927 23, 526
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Carter, Roger, b. 1934 4, 78, 254
Cayley, Arthur, 1821–1895 213, 214, 528
Chevalley, Claude, 1909–1984 3, 20, 124
Corredor, Luis-Jaime vii
Coxeter, Harold Scott Macdonald,

1907–2003 5, 124
Curtis, Charles W. 117, 136, 233, 235
Davis, Mark Kelly 240
DeBonis, Mark J. 177, 240, 326, 329
Delgado, Alberto L., 220, 497, 499, 524
Desargues, Girard, 1591–1661 172, 211,
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Dirichlet, Johann Peter Gustave

Lejeune, 1805–1859, 102, 321
Dynkin, Evgenii, b. 1924 x, 100, 124,

125, 176, 223, 234, 423
Eisenstein, Gotthold, 1823–1852 95
Feit, Walter, 1930–2004 x, 4, 5, 108,

142, 229, 303, 524, 537

Fitting, Hans, 1906–1938 59
Frattini, Giovanni, 1852–1925 61
Frécon, Olivier vii, 104, 106, 108
Frobenius, Ferdinand Georg, 1849–1917

50, 107, 143, 215
Fubini, Guido, 1879–1943 34, 48, 251
Galois, Evariste, 1811–1832 48, 289
Gaschütz, Wolfgang 534
Goldschmidt, David 228, 242, 429, 497,

513, 523
Gorenstein, Daniel, 1923–1992 511, 514
Hall, Philip, 1904–1982 4, 74, 109
Hartley, Brian, 1939–1994 19, 105
Higman, Graham, b. 1917 240
Hodges, Wilfrid, b. 1941 528
Hrushovski, Ehud, b. 1959 x, 48, 56,

112, 517, 526
Jaber, Khaled 64, 270, 527
Jacobi, Carl Gustav Jacob, 1804–1851

13
Jaligot, Eric x, 254, 286, 299, 305, 429
Jordan, Camille, 1838–1922 124, 215
Khelif, Anatole 528
Kleinfeld, Erwin 53
Kulikovii, L. Ya., b. 1915 16
Kummer, Eduard, 1810–1893 45
Landrock, Peter, b. 1948 37, 167, 191,
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Laurel, Arthur Stanley, 1990–1965 187
Levi-Civita, Tullio, 1873–1941 176
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Matsumoto, Hideya 137
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Morley, Michael, b. 1930 24
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Nesin, Hüseyin Ali, b. 1950 177, 240
Newelski, Ludomir 3, 48, 163
Niles, Richard, b. 1951 167, 227, 242,
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Pappos of Alexandria, fl. ca. 320 214
Phan, Kok-wee 235
Pillay, Anand 37, 259
Poizat, Bruno vii, 5, 23, 37, 105, 112,

244, 267, 270, 279, 514
Reineke, Joachim 106
Robinson, Derek, b. 1935 534
Sabbagh, Gabriel 528
Saxl, Jan 7, 27, 106
Schreier, Otto, 1821–1929 45
Schur, Issai, 1875–1941 18, 46, 73
Seitz, Gary 529
Shephard, Geoffrey C. 100
Shpectorovii, Sergey V. 135
Solomon, Ronald, b. 1948 167, 191, 304,
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Steinberg, Robert 138
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Suzuki, Michio, 1926–1998 18, 167, 182,
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Tits, Jacques, b. 1930 117, 123, 154,
161, 162, 199, 223, 241

Todd, John Arthur, 1908–1994 100
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