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1. Introduction

The Algebraicity Conjecture states that a simple group of finite Morley rank should be iso-
morphic with an algebraic group. A program initiated by Borovik aims at controlling the 2-local
structure in a hypothetical minimal counterexample to the Algebraicity Conjecture. There is now
a large body of work on this program. A fundamental division arises at the outset, according to
the structure of a Sylow 2-subgroup. In algebraic groups this structure depends primarily on the
characteristic of the base field. In groups of finite Morley rank in general, in addition to the even
and odd type groups, which correspond naturally to the cases of characteristic two or not two,
respectively, we have two more cases, called mixed and degenerate type. In the degenerate case
the Sylow 2-subgroup is finite.

The cases of even and mixed type groups are well in hand, and work in course of publication
will show that the simple groups of finite Morley rank of these two types are algebraic. Work on
degenerate type has hardly begun, though recently some interesting approaches have emerged.
We deal here with odd type groups exclusively. In this context, the “generic” case is generally
considered to be that of groups of Prüfer 2-rank three or more. The following result enables us
to complete the analysis of the generic case.

Theorem 1. Let G be a minimal connected simple group of finite Morley rank and of odd type.
Suppose that G contains a proper definable strongly embedded subgroup M . Then G has Prüfer
2-rank one.

Combining this with known results, we will derive the following.

Theorem 2. Let G be a simple K∗-group of finite Morley rank of odd type, which is not algebraic.

(1) Then G has Prüfer 2-rank at most two.
(2) If G is tame and minimal connected simple, and all the involutions in a standard Borel

subgroup of G are central, then G has Prüfer 2-rank one.

The proof of Theorem 1 will be self-contained, while for Theorem 2 we will need to invoke an
extensive body of material, some in course of publication (or, alternatively, available in [Bur04]).
We will now enlarge on the terminology used above.

The Prüfer 2-rank of a group of finite Morley rank is the Prüfer rank of a maximal 2-divisible
abelian subgroup, and is always finite.

A group of finite Morley rank is tame if it involves no bad field, and is a K∗-group if every
proper definable infinite simple section is algebraic. The Borovik program was initially directed
primarily at tame K∗-groups. It is known that a tame nonalgebraic simple K∗-group of finite
Morley rank and odd type has Prüfer 2-rank at most two, which gives a qualitative version of the
Borovik program in the tame case; most of the analysis does not depend on tameness, up to the
point of a reduction to the minimal connected simple case, treated in [CJ04] by methods specific
to the tame case. Each clause of Theorem 2 improves on this result; the first clause eliminates
the tameness hypothesis, while the second clause eliminates one of the configurations in Prüfer
rank two which was left open in [CJ04].

The first clause of Theorem 2 completes the analysis of the “generic” K∗-group of finite
Morley rank of odd type. An outline of the various special cases which require further analysis,
and some ideas as to how they may be approached, is given in Chapter 11 of [Bur04].

In the next section we will give the derivation of Theorem 2 from Theorem 1, and we will also
make some preliminary remarks concerning the proof of Theorem 1. Subsequent sections are de-
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voted to the proof of Theorem 1, which is divided into two cases. These two cases will be treated
by quite distinct methods. The first is handled relatively rapidly in Section 4, while the other
occupies us for another three sections. Our method of analysis is heavily influenced by [CJ04],
which obtained similar results under the hypothesis of tameness, and also gave an analysis of the
problematic configurations in Prüfer 2-ranks one and two (with two such configurations in each
rank). As noted, our theorem also eliminates one of these four problematic configurations.

A case division exploited throughout [CJ04], and which we continue to make use of, is the fol-
lowing. Let a standard Borel subgroup be a Borel subgroup which contains a Sylow◦ 2-subgroup
of G. Then our case division is as follows: either (I) all the involutions of a standard Borel sub-
group are central, or (II) not. In the former case, the method used in [CJ04] in high Prüfer 2-rank
is inappropriate outside the tame case, and is replaced here by another method which, as noted,
yields a sharper result in Prüfer 2-rank two. In the latter case, one becomes involved in a close
analysis of intersections of Borel subgroups. The basic lemma concerning such intersections in
the tame case is the following.

Fact 1.1. (See [CJ04, §3.4].) Let G be a tame minimal connected simple group of odd type
and finite Morley rank. Assume that B1 and B2 are distinct Borel subgroups of G with
O(B1),O(B2) �= 1. Then F(B1) ∩ F(B2) = 1.

An important consequence of this lemma is that B1 ∩ B2 is abelian under the stated hypothe-
ses (as B1/F (B1) and B2/F (B2) are abelian). It would be equally useful to have (B1 ∩ B2)

◦
abelian. We see no direct way of proving anything as strong as this in general, but we continue
to work in this general direction, at the price of a much more elaborate analysis. This was ini-
tiated in [Bur04], whose Theorem 9.2 gives a very elaborate analog of Fact 1.1, describing the
configuration that arises from the situation in which (B1 ∩ B2)

◦ is nonabelian.
In the tame case, in high Prüfer 2-rank, the case in which a standard Borel subgroup B contains

an involution not in its center was disposed of in short order via the powerful Fact 1.1, whereas
the analysis of the other case was quite long. Here it appears the situation is entirely reversed,
with the case of central involutions being dispatched relatively expeditiously via the construction
of two disjoint generic subsets. However, in [CJ04] a portion of the preliminary analysis of the
case of central involutions actually went toward showing that the hypotheses of our main theorem
are satisfied in that case.

2. Preliminaries

2.1. Theorem 2

We will now discuss the prior results which link Theorems 1 and 2. The two facts which
require explanation are as follows.

Fact 2.1. Let G be a simple nonalgebraic K∗-group of finite Morley rank and odd type, and
Prüfer 2-rank at least three. Then G is minimal connected simple, and has a proper definable
strongly embedded subgroup.

Fact 2.2. Let G be a tame and minimal connected simple group of finite Morley rank and odd
type, and Prüfer 2-rank at least two, and suppose that there is a standard Borel subgroup B of G

such that every involution of B lies in Z(B). Then G has a proper definable strongly embedded
subgroup.
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We deal first with Fact 2.1.
A general reference for this fact, and for a great deal of prior material, is the thesis [Bur04],

notably Theorem 10.15 in that reference, combined with Theorems 8.14 and 8.18. The latter two
theorems may be found in [BBN], while Theorem 10.15 will appear in [Bur0x]. These results
depend in turn on a very substantial body of material due to Borovik and others. For the reader’s
convenience we give some additional details.

Theorem 10.15. Let G be a simple K∗-group of finite Morley rank and odd type with Prüfer
2-rank at least three. Then either G has a proper 2-generated core, or G is an algebraic group
over an algebraically closed field of characteristic not two.

The 2-generated core is defined as follows. Let S be a Sylow 2-subgroup of G. Let Γ e
2,S(G)

be the definable closure of the subgroup of G generated by all subgroups of the form

NG(V ) (for V � S, V an elementary abelian 2-group of rank two).

Then Γ e
2,S(G) is the 2-generated core of G with respect to S, and as S varies the groups Γ e

2,S are
conjugate. So the 2-generated core of G is well defined up to conjugacy.

Having a proper 2-generated core is weaker than having a strongly embedded subgroup, but
is the first step in this direction. The next step is given by the following, found in [BBN]; see also
[Bur04, Chapter 8],

Strong Embedding Theorem 1. Let G be a simple K∗-group of finite Morley rank and odd type,
and suppose that G has normal 2-rank at least three and Prüfer 2-rank at least two. Let S be
a Sylow 2-subgroup of G, and M = Γ e

2,S(G) the associated 2-generated core. If M is a proper
subgroup of G, then G is a minimal connected simple group and M is strongly embedded in G.
Furthermore M◦ is a Borel subgroup of G and S is connected.

Note that Fact 2.1 now follows.
We turn next to Fact 2.2, where we deal with the tame case. This fact concerns one of the

four configurations which were considered explicitly in [CJ04], in the context of tame minimal
connected simple groups of finite Morley rank and odd type, and which were not eliminated there.
It shows that the strong embedding hypothesis with which we will be working is valid in that
case. The groups under consideration in [CJ04] are tame groups of finite Morley rank, minimal
among connected simple groups. The configuration in which all involutions in a standard Borel
subgroup B are central, and with the additional hypothesis of Prüfer rank at least two, is taken
up in the first part of Section 7 of [CJ04].

There it is shown, first, that a standard Borel subgroup B is nilpotent, and then, after some
further analysis, that the normalizer of B is strongly embedded. It is also clear in this case that
each Sylow◦ 2-subgroup is contained in a unique standard Borel subgroup, and in particular the
standard Borel subgroups are conjugate, so they all have the same properties.

Note that the case division considered in [CJ04, §§6,7] is equivalent to the following: a stan-
dard Borel subgroup is, or is not, strongly embedded. In all cases that survive analysis the cen-
tralizer of an involution contains a standard Borel subgroup. Here we will begin with a strongly
embedded subgroup, and then see quickly that the normalizer of a standard Borel subgroup is
strongly embedded; for us, the interesting case division lies farther on, within this configuration,
and the harder of the two cases is one that vanished after a few lines of analysis in the tame
context.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

J. Burdges et al. / Journal of Algebra 314 (2007) 581–612 585

2.2. The context of Theorem 1

We now turn to Theorem 1. Suppose that G is a minimal connected simple group of finite
Morley rank and odd type, and that M is a proper definable strongly embedded subgroup of G.
We also assume that

(†) G has Prüfer 2-rank at least two.

We set B = M◦, and to justify this notation we prove the following.

Lemma 2.3. B is a standard Borel subgroup of G, and M = N(B).

Proof. Since M is a strongly embedded subgroup of G, it contains a Sylow 2-subgroup of G,
and hence B contains a Sylow◦ 2-subgroup S of G. By the minimality of G, B is solvable.

Now suppose B � H with H a Borel subgroup of G. We claim that B = H . Let V � Ω1(S)

have order four. As V � H , in particular V acts on H , and as H is connected solvable of odd
type, a fundamental generation property given in [Bor95, 5.14] implies that

H = 〈
C◦

H (v): v ∈ V #〉.

On the other hand, by strong embedding of M , we have C◦
H (v) � B for all involutions v ∈ V #,

and thus H = B . So B is a standard Borel subgroup of G.
As B = M◦, we have M � N(B). Conversely, as B � M contains involutions and M is

strongly embedded, we conclude N(B) � M . Thus M = N(B). �
Part of the foregoing argument can be strengthened as follows to a “black hole” principle (the

term goes back to Harada). We record this for future reference.

Lemma 2.4. Let H be a connected definable proper subgroup of G and V an elementary abelian
2-subgroup of B of rank 2. If V normalizes H then H � B .

Now we intend to make a case division based on whether or not all the involutions of B are
central in B . As M is strongly embedded in G, all involutions of M are conjugate in M . Hence
all involutions of M lie in B , and if one involution is central in B then all involutions of B lie
in its center. So our case division is actually the following: either all involutions of B are central
in B , or none are.

Before entering into the analysis of individual cases, we give a genericity result that holds in
both cases. This was given already in [Bur04] and somewhat more explicitly in [BBN], under
stronger hypotheses which are not actually used at this point in the argument. For the reader’s
convenience we indicate the gist of the argument, which depends on the following generic cov-
ering lemma, a result for which we will have further use in Section 6.

Fact 2.5. (See [CJ04, 3.3].) Let G be a connected group of finite Morley rank, and B a definable
subgroup of finite index in its normalizer. Suppose that there is a nongeneric subset X of B such
that B ∩ Bg ⊆ X for g ∈ G \ N(B). Then

⋃
g∈G Bg is generic in G.

Lemma 2.6. The union
⋃

g∈G Bg is a generic subset of G.
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Proof. By strong embedding, M ∩ Mg contains no involutions for g /∈ M , and in particular
B ∩Bg is a 2⊥-group for g /∈ M . By a very general lemma given as [Bur04, 8.17] or [BBN, 5.10],
the union

⋃
g∈G\N(B)(B ∩ Bg) is contained in a proper definable subgroup of B , in fact a 2⊥-

group, and hence is not generic in B . Then by the generic covering lemma the claim follows. �
In the remainder of the article, we will prove Theorem 1, dividing the analysis into two very

different cases, which rely on very different methods. We first summarize some very general
background material, used throughout, and sufficient for the treatment of the first of our two
cases. The second case will involve a further body of material which is both more extensive, and
of more recent vintage.

3. Background material

The material of the present section is for the most part well known. The most subtle item
comes from the theory of Carter subgroups and is due to Frécon: Fact 3.10, and its consequence
Lemma 3.11, below.

3.1. Unipotence

Definition 3.1. Let p be a prime, G a group of finite Morley rank, and P a subgroup of G.

(1) P is said to be p-unipotent if P is a solvable connected definable p-subgroup of G of finite
exponent.

(2) Up(G) is the largest normal p-unipotent subgroup of G.

The group Up(G) is well defined, by an elementary argument.

Fact 3.2. (See [Nes90].) Let H be a solvable group of finite Morley rank and P a p-unipotent
subgroup of H . Then P � Up(H).

This is phrased somewhat differently in [Nes90]. The essential point is that H ◦/F ◦(H ◦) is
divisible abelian. From this it follows that P � F ◦(H), and then the structure of nilpotent groups
applies, as in [BN94, §6.4].

The next lemma is a weak form of Fact 1.1, and has a similar proof, given also in [Bur05a]. The
virtue of this lemma is that it holds without any assumption of tameness. While this will suffice
for the purposes of the next section, we will need much more subtle variations subsequently.

Lemma 3.3. Let G be a minimal connected simple group of finite Morley rank, p a prime, and P

a nontrivial p-unipotent subgroup of G. Then P is contained in a unique Borel subgroup of G.

Proof. Suppose on the contrary that B1 and B2 are two Borel subgroups containing P , and
chosen so that Q = Up(B1 ∩ B2) is maximal. Then Q � Up(B1).

Suppose Q < Up(B1). Then N◦
Up(B1)

(Q) > Q by the normalizer condition [BN94, §6.4]. Put
N◦(Q) in a Borel subgroup B3; by the maximality of Q, we find B3 = B1. Then B3 �= B2, so we
must have Q = Up(B2). Then B2 � N◦(Q) � B1, a contradiction.

There remains the possibility that Q = Up(B1) = Up(B2). But then B1,B2 = N◦(Q), again
a contradiction. �
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3.2. Sylow subgroups

Lemma 3.4. Let P be a Sylow p-subgroup of a connected solvable group of finite Morley rank.
Then P decomposes as U ∗ T , a central product, with U p-unipotent and T a p-torus (that is,
a divisible abelian p-group).

Proof. This is essentially [BN94, §6.4], where a similar structure theorem is given more gener-
ally for p-subgroups of solvable groups of finite Morley rank. When H is in addition connected,
then by [BN94, 9.39], its Sylow (or indeed its Hall) subgroups are connected, and this gives the
connectivity of the factor U . �
Lemma 3.5. Let G be a group of finite Morley rank, P a Sylow 2-subgroup, H a normal sub-
group. Then:

(1) P ∩ H is a Sylow 2-subgroup of H .
(2) If H is definable and G = G/H , then P is a Sylow 2-subgroup of G.

The first follows directly from the conjugacy of Sylow 2-subgroups. The second point is given
in [PW00].

3.3. Genericity

Fact 3.6. (See [CJ04, 3.4].) Let G be a connected group of finite Morley rank. Suppose that B is
a definable subgroup of finite index in its normalizer such that

⋃
g∈G Bg is generic in G. Suppose

that x ∈ NG(B) \ B . Let X be the set

{
x′ ∈ xB: x′ ∈ (〈x〉B)g

for some g ∈ G \ N(B)
}
.

Then X is generic in xB .

Fact 3.7. (See [CJ04, 3.6].) Let H be a group of finite Morley rank such that H ◦ is abelian, and
let xH ◦ be a coset whose elements are generically of fixed order n. Then every element of xH ◦
is of order n.

Lemma 3.8. Let H be a group of finite Morley rank with H ◦ solvable, and H/H ◦ of prime
order p. Suppose the elements of every coset of H ◦ other than H ◦ are generically of order
p. If some element of H \ H ◦ has an infinite centralizer in H ◦, then H ◦ contains a nontrivial
p-unipotent subgroup.

Proof. This was proved under the assumption that H ◦ is nilpotent in [CJ04, 3.7]. However,
under the stated hypotheses (or slightly weaker ones; one such coset suffices) the solvability of
H ◦ implies its nilpotence, by [JW00, Corollary 16]. �
3.4. Carter subgroups

A Carter subgroup of a solvable group of finite Morley rank is a definable self-normalizing
nilpotent subgroup. If H is a connected solvable group of finite Morley rank, then by [Wag94,
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5.5.10, 5.5.12] and [Fré00, 1.1], it has a Carter subgroup, and any two such are conjugate; and
by [Fré00, 3.2], its Carter subgroups are connected.

Fact 3.9. (See [Fré00, 3.2].) Let H be a connected solvable group of finite Morley rank, and Q

a nilpotent subgroup of H with [NH (Q) : Q] finite. Then Q is a Carter subgroup of H .

This includes the more elementary result that the centralizer of any element of finite order in
a connected solvable group is infinite (compare [J01]).

Fact 3.10. (See [Fré00, 7.15].) Let H be a connected solvable group of finite Morley rank, and
R a Hall π -subgroup of H for some set π of primes. Then NH (R) contains a Carter subgroup
of H .

This has the following important consequence.

Lemma 3.11. Let H be a connected solvable group of finite Morley rank with Up(H) = 1, and
let Q be a Carter subgroup of H . Then Q contains a Sylow p-subgroup of H .

Proof. Let S be a Sylow p-subgroup of H . By Fact 3.10, NH (S) contains a Carter subgroup Q0
of H . Q0 is connected. It follows easily from Lemma 3.4 that S is a p-torus, that is, abelian and
p-divisible. So Q0 � N◦(S) = C◦(S). Thus S � N(Q0) = Q0. Now as Q0 and Q are conjugate,
our claim follows. �
4. Central involutions

4.1. The setup

We take up the proof of Theorem 1. We dispose of one case in the present section, and the
other will occupy us to the end of the paper.

So G is a minimal connected simple group of finite Morley rank and odd type, with M defin-
able and strongly embedded, and we assume that

(†) G has Prüfer 2-rank at least two.

As explained in Section 2, we then have M = N(B) strongly embedded, with B a standard Borel
subgroup.

In the present section we take up the first of our two cases, namely:

(Case I) All involutions in B are central in B.

In particular C◦(i) = B for each involution i in B .
We will derive a contradiction in this case by constructing two disjoint generic subsets of G.

That is, in Case I the Prüfer rank of G is at most 1.
The two generic subsets in question will be BI1 and BC(σ)B where I1 = I (G) \ I (M) and

σ ∈ M \ B . We must deal with the following issues: that the ranks of the two sets in question are
the same as the ranks of the corresponding Cartesian products B × I1 and B × C(σ) × B; that
these ranks coincide with the rank of G; and that the sets in question are disjoint. We must also
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produce a suitable element σ , but that is immediate since the involutions of B form an elementary
abelian subgroup which by hypothesis has 2-rank at least two, and they are conjugate under the
action of M , by strong embedding, and are central in B .

That the set BI or BI1 turns out to be generic in G is perfectly natural, but in the case of the
set BC(σ)B it is surprising.

We record this notation.

Notation 4.1.

(1) I = I (G) and I1 = I \ M = I \ B .
(2) σ ∈ M \ B ( fixed).

4.2. The first generic subset

Recall that an element a of G# is said to be strongly real if it is a product of two involutions,
in which case a is inverted by these two involutions.

The following fundamental fact will be used in both of our cases.

Fact 4.2. (See [BN94, 10.19].) In a group of finite Morley rank with a definable strongly embed-
ded subgroup M , if a is a strongly real element commuting with an involution in M , then every
involution which inverts a lies in M .

In Case I, this applies to every strongly real element of B , so we arrive at the following under
our present assumptions.

Lemma 4.3. The strongly real elements of B are its involutions.

Proof. By Fact 4.2, if b ∈ B is strongly real and j is an involution inverting b, then we have
j ∈ B . By our case hypothesis j commutes with b, so b is an involution.

Conversely, any involution in B lies in Z(B) and is the product of two involutions by the
hypothesis (†). �
Lemma 4.4. The set BI1 is generic in G, and the multiplication map

B × I1 → G

is injective.

Proof. Notice first that I (B) is finite since M/B operates transitively on this set. Hence rk(I ) =
rk(I1).

Let i ∈ I (B). Recall that C◦(i) = B , and rk(I ) = rk(G/C(i)) as all involutions of G are
conjugate. So we have rk(G) = rk(C(i)) + rk(G/C(i)) = rk(B) + rk(I ) = rk(B) + rk(I1). It
suffices therefore to check that the multiplication map B × I1 → G is injective.

Supposing the contrary, we have a nontrivial intersection bI1 ∩ I1 with b ∈ B#, which yields
an equation b = jk with j, k ∈ I1. Thus b ∈ B is strongly real. By Lemma 4.3, b is an involution,
and j centralizes b, hence lies in M , a contradiction. �
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From this genericity result, others of the same type can be deduced, for sets of the following
form.

Notation 4.5. For g ∈ G, we set Ig = (BgI) ∩ I1.

Lemma 4.6. For any g ∈ G, the set BgI is generic in G, and the set Ig is generic in I .

Proof. The set BI is generic in G. Conjugating by g, the set BgI is generic in G. Translating
on the left by g, the set BgI is generic in G. Hence also (BgI) ∩ (BI1) is generic in G.

Now BIg = (BgI) ∩ (BI1) is generic in G. Hence rk(G) = rk(BIg) = rk(B) + rk(Ig) as the
multiplication map restricted to B × Ig is injective (Lemma 4.4), and thus rk(B) + rk(Ig) =
rk(B) + rk(I ) and rk(Ig) = rk(I ). �
4.3. Disjointness and centralizers

The rest of the argument requires some more structural information.

Lemma 4.7. The intersection of two distinct conjugates of B is finite.

Proof. Let S be a Sylow 2-subgroup of B , and V = Ω1(S). Then V � Z(B). Hence V central-
izes B ∩ Bg .

Suppose the group (B ∩ Bg)◦ is nontrivial. Then it has a nontrivial Carter subgroup Q. As V

centralizes Q, it normalizes N◦(Q). By Lemma 2.4, N◦(Q) � B . Hence N◦
Bg (Q) � (B ∩ Bg)◦

and thus N◦
Bg (Q) = Q. By Fact 3.9, Q is a Carter subgroup of Bg . Then by Lemma 3.11,

Q contains a Sylow 2-subgroup of Bg . In particular B ∩ Bg contains an involution i and hence
B = C◦(i) = Bg . �
Lemma 4.8. The intersection of any two distinct conjugates of B is trivial.

Proof. Supposing the contrary, let B ∩ Bg be finite and nontrivial, and let x ∈ B ∩ Bg have
prime order p. Let P be a Sylow p-subgroup of B containing x. By Lemma 3.4, P is a central
product of the form U ∗ T with U connected, nilpotent of bounded exponent and T divisible
abelian. Here d(U) is also a connected nilpotent p-group centralizing T , so P = d(U) ∗ T and
U = d(U) is definable.

If U �= 1, let U0 = C◦
U(x). Then U0 �= 1 [BN94, 6.20]. Now U0 is contained in a unique Borel

subgroup by Lemma 3.3, and hence C◦(x) � B . But as B and Bg are conjugate, a Sylow p-
subgroup of Bg has the same form, and hence this argument shows C◦(x) � Bg as well. But
then U0 � Bg and B = Bg .

This contradiction shows that U = 1 and hence P is a p-torus. Then Lemma 3.11 shows
that there is a Carter subgroup Q of B containing P . Furthermore, the same lemma shows that
Q contains a Sylow 2-subgroup S of B . As Q is nilpotent, it follows that x (in P ) commutes
with S. Similarly, x commutes with a Sylow 2-subgroup of Bg .

Let V be a four-group contained in S. Then V normalizes C◦(x) and hence by Lemma 2.4
we have C◦(x) � B , and in particular B contains a Sylow 2-subgroup of Bg , forcing B = Bg ,
a contradiction. �
Lemma 4.9. Let x ∈ N(B) \ B . Then the centralizer CB(x) is finite.
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Proof. Suppose CB(x) is infinite. Replacing x by a power, we may suppose that the order p of
x modulo B is a prime.

Consider the subset X of xB defined as

{
x′ ∈ xB: x′ ∈ (〈x〉B)g for some g ∈ G \ N(B)

}
.

This is generic in xB by Fact 3.6. For x′ ∈ X we have x′p ∈ B ∩Bg = 1 for some g ∈ G \N(B).
The same applies to any coset in 〈x〉B other than B .

By Lemma 3.8 and Fact 3.2, Up(B) > 1. Then for x′ ∈ X, with x′ ∈ N(Bg), g ∈ G \ N(B),
consider the action of x′ on Up(B) and Up(Bg). It follows [BN94, 6.20] that the groups
Up(CB(x′)) and Up(CBg (x′)) are nontrivial. Letting B1 be a Borel subgroup containing C◦(x′),
it follows by Lemma 3.3 that B = B1 = Bg , a contradiction. �

This yields strong information concerning the coset Bσ (which is in fact an arbitrary coset of
B in M , other than B).

Lemma 4.10.

(1) Bσ = σB .
(2) The elements of Bσ are all strongly real, and lie outside

⋃
g∈G Bg .

Proof. (1) Since σ ∈ N(B) we have σB ⊆ Bσ . Furthermore, as CB(σ) is finite, we have
rk(σB) = rk(B) = rk(Bσ). As Bσ has Morley degree one, it consists of a single B-conjugacy
class.

(2) As the set Iσ is generic in I by Lemma 4.6, it is nonempty, and we have an equation xi = j

with x ∈ Bσ and i, j ∈ I . Hence x is strongly real, and since Bσ is a single B-conjugacy class,
all of its elements are strongly real.

Now the strongly real elements of B are involutions. Hence no element of Bσ can be conju-
gate to an element of B . �
Lemma 4.11. Let g ∈ G be strongly real, inverted by the involution i, with g not an involution.
Then i acts on C◦(g) by inversion.

Proof. We may suppose i ∈ B . It suffices to show that C◦(i, g) = 1 [BN94, p. 79, Ex. 13, 15].
We have C◦(i, g) � C◦(i) = B , and similarly C◦(i, g) � Bg . So if C◦(i, g) �= 1 then g ∈ N(B),
and we contradict Lemma 4.9 or Lemma 4.3. �
4.4. The second generic set

We now take up the proof that BC(σ)B is generic in G and disjoint from BI1. Let us begin
with the latter point.

Lemma 4.12. M/B has odd order.

Proof. If not, we may choose σ of order 2 modulo B . By Lemma 3.5 we may choose σ to be a
2-element. Let i be an involution in the cyclic group 〈σ 〉. Then i ∈ B .
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By Lemma 4.10 the element σ is strongly real. Let j be an involution inverting σ . As j ∈
C(i), we have j ∈ M , so j ∈ B . But jσ is another involution in M , so jσ ∈ B . Hence σ ∈ B ,
a contradiction. �
Lemma 4.13. C(σ) ∩ I1 = ∅.

Proof. In view of Lemma 4.10, there is an involution i inverting σ . Suppose toward a con-
tradiction that there is also some j ∈ C(σ) ∩ I1, and let Mg be the conjugate of M contain-
ing j . As σ is strongly real, Fact 4.2 implies that i ∈ Mg , hence i ∈ Bg . But σ normalizes
Bg = C◦(j), so σ ∈ Mg . Now σ 2 = [i, σ ] ∈ Bg , so σ ∈ Bg by Lemma 4.12, and this contradicts
Lemma 4.10(2). �
Lemma 4.14. BC(σ)B and BI1 are disjoint.

Proof. Supposing the contrary, we have b1cb2 ∈ I1 for some b1, b2 ∈ B and c ∈ C(σ), and
conjugating by b1 gives

(1) cb ∈ I1

with b ∈ B . Conjugating by σ gives

(2) cbσ ∈ I1.

It follows that b−1bσ = (cb)−1(cbσ ) is inverted by an element j of I1.
If b ∈ C(σ), then cb ∈ C(σ) ∩ I1, contradicting Lemma 4.13. So b−1bσ is nontrivial, and is

a strongly real element of B . So j ∈ M by Fact 4.2, hence j ∈ B , which is a contradiction since
j ∈ I1. �

Now we compute the rank of BC(σ)B , getting the expected value.

Lemma 4.15. The set BC(σ)B has rank 2 rk(B) + rk(C(σ )).

Proof. Let Cσ be C(σ) \ N(B). As CB(σ) is finite by Lemma 4.9, the set Cσ differs from
C(σ) by a finite set. On the other hand, the centralizer CG(σ) is infinite, as otherwise the conju-
gacy class σG would be generic in G and hence meet

⋃
g∈G Bg , contradicting Lemma 4.10. So

rk(Cσ ) = rk(C(σ )).
It now suffices to check that the multiplication map

μ :B × Cσ × B → G

has finite fibers.
If g = bcb′ with b, b′ ∈ B , c ∈ Cσ , and μ−1(g) is infinite, then the same applies to c =

b−1gb′−1. So we consider μ−1(c) with c ∈ Cσ fixed. That is, we examine the solutions to the
equation

(∗) b1c
′b2 = c
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with b1, b2 ∈ B and c′ ∈ Cσ . Applying σ , we get

bσ
1 c′bσ

2 = c.

Combining these two equations yields

c′ = b′
1c

′b′
2

with b′
1 = b−1

1 bσ
1 , b′

2 = bσ
2 b−1

2 . So (b′
1)

c′ = b′
2
−1 ∈ B ∩ Bc′

, and as c′ /∈ N(B) we have b′
1 =

b′
2 = 1, and b1, b2 ∈ CB(σ), which allows finitely many possibilities, by Lemma 4.9. �

It remains now to recompute the rank of G. We have already noticed that rk(G) = rk(B) +
rk(I ), but we now need rk(G) = 2 rk(B) + rk(C(σ )), or in other words

rk(I ) = rk(B) + rk
(
C(σ)

)
.

We know rk(Iσ ) = rk(I ), so it will suffice to show that the rank of Iσ is rk(B) + rk(C(σ )).

Lemma 4.16. rk(G) = 2 rk(B) + rk(CG(σ)).

Proof. We have rk(G) = rk(B) + rk(I ) = rk(B) + rk(Iσ ), and we claim rk(Iσ ) = rk(B) +
rk(C(σ )).

For any element i ∈ Iσ we have i = yj for some y ∈ Bσ and j ∈ I , and hence i inverts some
y ∈ Bσ . This element y is unique: if i inverts y and by with b ∈ B#, then y−1b−1 = (by)i =
biy−1 and thus b−1 ∈ Biy−1

, iy−1 ∈ N(B), and i ∈ N(B), contradicting the choice of i ∈ I1. So
we have a definable function

β : Iσ → Bσ

defined by β(i)i = (β(i))−1.
As Bσ is a single conjugacy class under the action of B , the rank of the fibers β−1(y) is a

constant f , and hence rk(Iσ ) = rk(Bσ) + f = rk(B) + rk(β−1(σ )).
It suffices therefore to show rk(β−1(σ )) = rk(C(σ )). Fix i in β−1(σ ). Then i = σ i′ with

i′ ∈ I inverting σ .
We claim first

(∗) iC◦(σ ) ⊆ β−1(σ ).

Observe first that C(σ) contains no involutions, by Fact 4.2, bearing in mind Lemma 4.12.
For g ∈ C◦(σ ) and j = ig, we have j ∈ I by Lemma 4.11. Furthermore j = σ · i′g, and

i′g ∈ I by Lemma 4.11. So j ∈ BσI ∩ I . By construction j inverts σ . It remains to check
that j /∈ M . If j ∈ M then j ∈ B , and since j inverts σ , and σ is of odd order modulo B , this
gives a contradiction. So j ∈ I1 and β(j) = σ . This gives (∗), and in particular rk(β−1(σ )) �
rk(C◦(σ )) = rk(C(σ )).

Conversely, for j ∈ β−1(σ ), since j inverts σ we have ij ∈ C(σ), that is i · β−1(σ ) ⊆ C(σ),
and thus rk(β−1(σ )) � rk(C(σ )). Our claim follows. �
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With this our analysis is complete. BC(σ)B and BI1 are disjoint generic subsets of G by
Lemmas 4.4, 4.15 and 4.16, and 4.14, which is a contradiction. Thus Case I cannot occur in
Prüfer 2-rank two or more.

5. Case II

The remaining case will require a longer analysis, and some more theoretical preparation. We
begin afresh.

Our standing hypotheses and notation are as follows.

Notation 5.1.

(1) G is a minimal connected simple group of finite Morley rank and of odd type.
(2) B is a Borel subgroup of G.
(3) M = N(B) is strongly embedded in G.

We suppose

(†) G has Prüfer 2-rank at least two.

The operative assumption for the remainder of the article will be as follows.

(Case II) For i an involution of B, we have C◦(i) < B.

It will be convenient to state this in a slightly stronger form.

Lemma 5.2. F(B) contains no involutions.

Proof. Let S be a Sylow 2-subgroup of F(B). Then A = Ω1(Z(S)) is characteristic in F(B)

and normal in B . As G is of odd type, the group A is finite as well as B-invariant, and hence
central in B . By our case assumption (II), A = 1 and hence S = 1. �
5.1. Tameness and Fact 1.1

Let us first indicate why Case II disappears quickly if we assume tameness. First, by an easy
argument (Lemma 5.5 below) our case assumption produces an involution w outside M such that
B ∩ Bw is infinite. By strong embedding M ∩ Mw contains no involutions and hence the same
applies to H = (B ∩ Bw)◦. It then follows by an application of tameness that H is contained in
the Fitting subgroup of both B and Bw , and this contradicts Fact 1.1.

We must make a distinction between the two applications of tameness in the foregoing ar-
gument. As mentioned earlier, we will make use of a weak analog of Fact 1.1 which does not
require tameness. However the claim that a connected group without involutions must lie in the
Fitting subgroup is a direct application of tameness with no obvious analog in general. So before
entering into the general case, let us first give an argument which uses only Fact 1.1 and there-
fore serves as a reasonable point of departure for the general case. This will necessarily be more
elaborate than the argument just given, and will only be sketched, since in any case it will need
to be redone afterward at a greater level of generality.
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We begin again with an involution w /∈ M for which B ∩ Bw is infinite, and more particularly

T (w) = {
a ∈ B: aw = a−1}

is infinite. Observe that T (w) ⊆ B ∩ Bw , and under the assumption that Fact 1.1 applies, the
group B ∩ Bw is abelian (as the natural map B ∩ Bw → B/F(B) × Bw/F(Bw) is injective). So
T (w) is a group in this case. Let H = (B ∩ Bw)◦ and consider a maximal definable connected
subgroup Ĥ containing H of the form (B ∩B1)

◦, with B1 �= B a Borel, not necessarily standard.
Again, Fact 1.1 implies that Ĥ is abelian. Note that Ĥ � N◦(H) and N◦(H) is w-invariant. We
will take B1 � N◦(H), and with some effort we may make B1 w-invariant as well.

Observe that Ĥ cannot be a Carter subgroup of B: otherwise, it contains a Sylow 2-subgroup
of B by Lemma 3.11, forcing B1 = B . By the maximality of Ĥ it then follows that Ĥ is a Carter
subgroup of B1. On the other hand, by a Frattini argument w normalizes a Carter subgroup of
B1 and hence some conjugate w1 of w (under the action of B1) normalizes Ĥ . As w1 normal-
izes N◦(Ĥ ), it follows easily that w1 normalizes, and hence lies in, the group B . This is the
fundamental setup that will be reached below, in general,

w1 ∈ I (B) normalizes B1, and is conjugate to w under the action of B1.

We now use the characteristic zero unipotence theory introduced in [Bur04,Bur04a], and in
particular the notation U0(T (w)), which represents a kind of unipotent radical, and the notion of
“reduced rank.” We also use the associated generalized Sylow theory of [Bur04,Bur05a]. (This
machinery will be presented in more detail below.)

The group T (w) is a nontrivial definable abelian group, inverted by w, and it can be shown
to be torsion free, hence connected. Since T (w) is nontrivial, solvable, and torsion free, it has
a nontrivial “0-unipotent radical” Tw := U0(T (w)). Let the maximal reduced rank associated
with Tw be r ; then Tw = U0,r (T (w)). One can extend Tw to a w-invariant Sylow U0,r -subgroup
Pr of B1, and any two such are conjugate in CB1(w) (Lemma 7.9, below). As Pr contains a
nontrivial U0,r -subgroup inverted by w, the same applies to every Sylow U0,r -subgroup of B1
which is normalized by w. Since w and w1 are conjugate under the action of B1, the involution
w1 satisfies an analogous condition: any w1-invariant Sylow U0,r -subgroup of B1 contains a
nontrivial U0,r -subgroup inverted by w1.

On the other hand, if Qr = U0,r (Ĥ ), then N◦
B(Qr) � N◦

B(Ĥ ) > Ĥ and hence by maximality
N◦(Qr) � B , from which it follows that Qr is a Sylow U0,r -subgroup of B1, and of course
w1-invariant. So there must be a nontrivial U0,r -subgroup Ar of Ĥ inverted by w1.

Now one can show easily that for any s, Fs(B1) := U0,s(F (B1)) is either contained in Ĥ , or
meets Ĥ trivially (cf. the proof of Lemma 7.8, claim (∗), below). In either case, Ar commutes
with Fs(B1): if Fs(B1) � Ĥ , this holds because Ĥ is abelian, and if Fs(B1) ∩ Ĥ = 1, then w1
inverts Fs(B1), and consideration of the action of w1 on the group Fs(B1)Ar leads to the desired
conclusion. From all of this it follows that Ar centralizes F(B1), and hence lies in F(B1). But
Ar = [w1,Ar ] � F(B) as well, and by Fact 1.1 we find Ar = 1, a contradiction.

We will argue in the remainder of the paper that some of the applications of Fact 1.1 can
be avoided and others replaced by a more complicated, but general, form of that result. One
major alternative that arises in general is that the group Ĥ in question is nonabelian, but this
produces a rather well-defined configuration which turns out to have a good deal in common
with the abelian case. In fact as we will see the analysis follows much the same lines whether Ĥ

is abelian or nonabelian.
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5.2. The setup

Now dropping the assumption that Fact 1.1 applies and returning to the general case, we begin
by showing that the setup with which we started our analysis above can in fact be reached.

Notation 5.3.

(1) I = I (G).
(2) For w ∈ I , let T [w] be {a ∈ B: aw = a−1}.
(3) Let I ∗ = {w ∈ I \ N(B): rk(T [w]) � rk(I (B))}.

The ungainly notation T [w] is intended to reflect the ungainly nature of the set involved,
which in general need not be a group. Our main concern is that I ∗ should be nonempty, and this
is afforded by Lemma 5.5 below.

We use the following general fact.

Fact 5.4. (See [CJ04, 2.36].) Let G be a connected simple group of finite Morley rank, let M be a
proper definable subgroup of G, and let X be a conjugacy class in G. Then rk(X ∩ M) < rk(X).

Lemma 5.5. I ∗ is generic in I .

Proof. Let i ∈ I (B). Then we have rk(I ) = rk(G) − rk(C(i)) and thus rk(I (B)) = rk(B) −
rk(C(i)) = rk(I ) − rk(G/B).

By Fact 5.4, I \ N(B) is generic in I . It will suffice to prove that the set I ′ defined as

{
w ∈ I \ B: rk

(
T [w]) < rk

(
I (B)

)}

is nongeneric in I .
Now T [w] = w · (wB ∩ I ), so rk(T [w]) = rk(wB ∩ I ). For w ∈ I ′, it follows that

rk(wB ∩ I ) < rk(I (B)). Hence rk(I ′ ∩ X) < rk(I (B)) for X any left coset of B in G. As
I ′ = ⋃

X∈G/B(I ′ ∩ X), we find

rk(I ′) < rk(G/B) + rk
(
I (B)

) = rk(I ),

as claimed. �
Now we can fix our notation for the remainder of the argument.

Notation 5.6.

(1) Fix w ∈ I ∗. Set H = (B ∩ Bw)◦.
(2) Let B1 �= B be a Borel subgroup containing H , chosen so as to maximize (B ∩ B1)

◦.
(3) Let Ĥ = (B ∩ B1)

◦.

There is some latitude in the choice of Ĥ , and with Ĥ fixed there is some latitude in the choice
of B1, which will be examined more closely subsequently. Our initial goal is to show that B1 can
be chosen to be w-invariant. Along the way we will acquire other useful information.
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6. w-Invariance

We begin our analysis of Case II. We have the notations G,B,w,H, Ĥ ,B1 as laid out in the
previous section (and also T [w], which will be needed at a later stage, when the configuration
is clearer). In particular H � Ĥ = (B ∩ B1)

◦ with B1 a Borel subgroup. As always, the Prüfer
2-rank is assumed to be at least two.

Our goal in the present section is to show that B1 can be chosen to be w-invariant.

6.1. Unipotence theory

We use the 0-unipotence theory of [Bur04] (cf. [Bur04a,FrJa]). We use the notation r0(K) for
the maximal reduced rank of a group of finite Morley rank K , which is the largest integer r for
which U0,r (K) �= 1 (or 0 if there is no such r). If K is a group of finite Morley rank then we set
U0(K) = U0,r0(K)(K).

We make use of the following from the general 0-unipotence theory.

Fact 6.1. Let K be a connected solvable group of finite Morley rank.

(1) U0(K) � F(K).
(2) If K is nilpotent and K = U0,r (K), then K ′ = U0,r (K

′).
(3) If 1 → K → H → H → 1 is a short exact sequence of definable groups with U0,r (K) = K

and U0,r (H) = H , then U0,r (H) = H . Conversely, if U0,r (H) = H then U0,r (H) = H .
(4) r0(K) = r0(Z(F (K))).
(5) If K = U0(K) and r = r0(K), then for any proper definable subgroup K0 < K we have

U0,r (NK(K0)) > K0.
(6) If K is nilpotent, then K = B ∗ T with B,T definable, B of bounded exponent, and T

divisible; B is the central product of the finitely many subgroups Up(K), with p prime, for
which Up(K) �= 1; T is the central product of the finitely many groups U0,s(K) for which
U0,s(K) �= 1, together with the group K∞ = d(Ttor), the definable closure of the torsion
subgroup of T .

The first three points are given in [Bur04a, 2.16, 2.17, 2.11], and the fourth follows from the
first two. The last two are given in [Bur05a, Lemma 2.4, Corollary 3.5]. These points are also in
[Bur04] as Theorem 2.21, Lemmas 2.23, 2.12, 2.26, and 2.28, and Theorem 2.31, respectively.

We note that the first five points are close analogs of more elementary properties of Up for p

prime, which we will use without special comment.
The next result has a similar character, but is used less often.

Fact 6.2. (See [Bur04, 4.9], [Bur05a, Lemma 4.4].) Let G = H1 · H2 be a group of finite Morley
rank with Hi a definable nilpotent U0,ri -subgroup of G for i = 1 or 2, where H1 is normal in G,
and r2 � r1. Then G is nilpotent.

In the case that interests us, r1 = r2.
The utility of this abstract theory of unipotence often depends on the following.

Fact 6.3. (See [Bur04a, 2.15], [Bur04, 2.19].) Let H be a connected solvable group of finite
Morley rank such that Up(H) = 1 for all primes, as well as for p = 0. Then H is a good torus;
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that is, a divisible abelian group in which every definable subgroup is the definable closure of its
torsion subgroup.

The following generation principle can be very useful.

Fact 6.4. (See [Bur04, 2.41], [Bur05a, Theorem 2.9].) If a nilpotent U0,r -group is generated by
a family F of definable subgroups, then it is generated by the family Fr = {U0,r (X): X ∈F}.

We have alluded also to a Sylow theory. By definition a Sylow U0,r -subgroup is a maximal
definable nilpotent U0,r -subgroup. The conjugacy theorem applies, at least in a solvable context.

Fact 6.5. (See [Bur04, 4.16, 4.18], [Bur05a, Theorem 5.5].) Let K be a solvable group of finite
Morley rank. Then for each r , its Sylow U0,r -subgroups are conjugate.

Some further connections between the Sylow theory and the Carter theory will be recalled
when needed.

6.2. A uniqueness lemma

As we have noticed previously, when Fact 1.1 applies, the intersections of distinct Borel
subgroups are abelian. The following is an indication of the tension that arises when the lat-
ter condition fails. We give it in a general setting.

Lemma 6.6. (See [Bur05b, Theorem 4.3].) Let G be a minimal connected simple group of finite
Morley rank, let B1, B2 be distinct Borel subgroups of G, and H = (B1 ∩ B2)

◦. Suppose that H

is nonabelian. Then the following conditions are equivalent.

(1) B1 and B2 are the only Borel subgroups of G containing H .
(2) If B3 and B4 are distinct Borel subgroups containing H , then (B3 ∩ B4)

◦ = H .
(3) If B3 �= B1 is a Borel subgroup containing H , then (B1 ∩ B3)

◦ = H .
(4) C◦(H ′) is contained in B1 or B2.
(5) r0(B1) �= r0(B2).

Note that clauses (2), (3) express the maximality of H in two different senses: in (2) we vary
B1 and B2, while in (3) we hold B1 fixed and only vary B2. The first clause is an even more
extreme form of maximality, while the last two clauses provide remarkably simple criteria for
identifying such pairs B1,B2. They both follow fairly readily from clause (2), but the converse
is more subtle.

We note the following consequence.

Lemma 6.7. Let G be a minimal connected simple group of finite Morley rank, and H a proper
connected definable nonabelian subgroup of G. Then HC◦(H ′) is contained in a unique Borel
subgroup of G, and in particular N◦(H ′) is contained in a unique Borel subgroup of G.

Proof. If B1,B2 are distinct Borel subgroups of G containing HC◦(H ′), let H1 = (B1 ∩ B◦
2 ).

Then H1C
◦(H ′

1) is also contained in B1 and B2. So by the previous result, r0(B1) �= r0(B2); we
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may suppose r0(B1) > r0(B2). Then as H ′
1 � F(B1) [BN94, Corollary 9.9], we have U0(B1) �

C(H ′
1) by Fact 6.1(6), and hence U0(B1) � B2, contradicting r0(B1) > r0(B2). �

Now let us return to the case at hand, in which the pair (B,B1) plays the role of (B1,B2)

above, so that our Ĥ corresponds to the H of our lemma. Then the third clause expresses ex-
actly the maximality condition that we have imposed on our pair (B,B1), and hence when Ĥ

is nonabelian all of these conditions apply. This fact will play a leading role throughout the rest
of the analysis, coming into play whenever Ĥ is assumed nonabelian. The main point here is
that we find ourselves in the situation described by the third clause, while the second clause is
the one most conveniently adopted as a point of departure for the detailed analysis undertaken
in [Bur05b]; since we need this only when Ĥ is nonabelian, we can cite [Bur05b] freely in such
cases. For the record, we state this in the slightly stronger form afforded by Lemma 6.6, part (1).

Corollary 6.8. If Ĥ is nonabelian, then B and B1 are the only Borel subgroups containing Ĥ .

Furthermore, applying Lemmas 6.6 and 6.7, we now find the desired w-invariant Borel sub-
group in one important case.

Lemma 6.9. If H is nonabelian, then B1 can be chosen to be w-invariant.

Proof. Take B̃1 to be a Borel subgroup containing N◦(H ′). By Lemma 6.7, B̃1 is the only
such Borel subgroup, and is therefore w-invariant, and in particular B̃1 is not B . Let H̃ =
(B ∩ B̃1)

◦. Then C◦(H̃ ′) � C◦(H ′) � B̃1. So by Lemma 6.6, the groups B and B̃1 are the only
Borel subgroups containing H̃ , and in particular H̃ is maximal. All of our conditions are met
with B1 = B̃1. �
6.3. Extension lemma

We recall that the notation and operative hypotheses were established at the end of the previous
section in Notation 5.6. We will insist somewhat on this point for the remainder of the present
section, because some of the work takes place at a sufficient level of generality to allow for its
reuse in the next section, and goes beyond the immediate needs of the moment. We will of course
have to track carefully what additional hypotheses are imposed in particular results.

Lemma 6.10. With our current hypotheses and notations concerning G, B , and w, suppose
K � G is a maximal proper definable connected w-invariant subgroup of G. Then K is non-
abelian.

Proof. Suppose on the contrary that K is abelian, and let Bw be the conjugate of B containing w.
By maximality of K , it follows that N◦(K0) = K for any nontrivial w-invariant definable

subgroup K0 of K .
In particular, if K0 = (K ∩ Bw)◦ �= 1, then N◦(K0) = K . Then N◦

Bw
(K0) = K0, so K0 is

a Carter subgroup of Bw , in view of Fact 3.9. Then K0 contains a Sylow 2-subgroup Sw of
Bw by Lemma 3.11. It follows from Lemma 2.4 that K � Bw , and hence by maximality that
K = Bw . Thus Bw is abelian, so B is abelian, contradicting our current case hypothesis, namely
C◦(i) < B .
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So suppose that K ∩ Bw is finite, and in particular CK(w) is finite. Then w inverts K [BN94,
p. 78, Ex. 13]. In particular, every subgroup of K is w-invariant. It follows that distinct conjugates
of K are disjoint: if K ∩ Kg �= 1, then N◦(K ∩ Kg) is equal to both K and Kg , and K = Kg .

As K has finite index in its normalizer, and has pairwise disjoint conjugates, the union⋃
g∈G Kg is generic in G by Fact 2.5, and hence meets

⋃
g∈G Bg nontrivially by Lemma 2.6.

Let B0 be a standard Borel subgroup that meets K nontrivially.
Now K ∩B0 is w-invariant and nontrivial, and hence N◦(K ∩B0) � K . It follows by Fact 3.9

that K ∩ B0 is a Carter subgroup of B0, and hence contains a Sylow 2-subgroup of B0. It then
follows from Lemma 2.4 that K � B0. Then again, B0 = K should be abelian, contradicting our
case assumption. �
Corollary 6.11. Under the assumptions of the present section, if K is a nontrivial proper
connected definable w-invariant subgroup of G, then K is contained in a w-invariant Borel
subgroup of G.

Proof. We may take K to be maximal under the stated conditions, and hence nonabelian by the
preceding lemma. Then by Lemma 6.7, N◦(K ′) is contained in a unique Borel subgroup of G,
which is again w-invariant. �

Using this result, we deal easily with the case in which Ĥ is abelian.

Lemma 6.12. Suppose that Ĥ is abelian. Then B1 can be chosen to be w-invariant.

Proof. We have Ĥ � N◦(H) and the latter is w-invariant, So N◦(H) can be extended to a w-
invariant Borel subgroup B1. So B1 � Ĥ , and as B1 is w-invariant, we have B1 �= B . �
6.4. Maximal pairs

We have seen that B1 can be chosen w-invariant if Ĥ is abelian, or if H is nonabelian, and we
now consider the remaining possibility: H is abelian, while Ĥ is nonabelian. As we have seen in
Lemma 6.6, if Ĥ is fixed then the Borel subgroup B1 is uniquely determined by the conditions
Ĥ � B1 �= B . However, there is still some latitude in the choice of Ĥ .

According to Fact 1.1, this situation cannot arise in the tame case. More generally, while not
visibly contradictory, this configuration is tightly constrained in general, as described in [Bur04,
9.2] and [Bur05b].

Definition 6.13. Let G be a group of finite Morley rank, and B,B1 two Borel subgroups of G. We
call the pair (B,B1) a maximal pair if (B ∩B1)

◦ is maximal, among all connected components of
intersections of distinct Borel subgroups of G; in other words, clause (2) of Lemma 6.6 applies.

When the intersection in question is nonabelian, we need not be very particular about the
notion of maximality invoked, but the definition adopted here coincides with the one given in
[Bur05b], which is well suited also to analysis in some abelian cases.

In the first place we have the following. We will only apply this when our group Ĥ is non-
abelian, but we take note of the slightly greater generality achieved in [Bur05b].
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Fact 6.14. (See [Bur04, 9.2, (2, 4d)], [Bur05b, Theorem 4.5, (1, 5)].) Let G be a minimal con-
nected simple group of finite Morley rank, and (B,B1) a maximal pair of Borel subgroups of G.
Let H = (B ∩B1)

◦ and let Q be a Carter subgroup of H . Suppose that H is nonabelian, or more
generally that F(B1) ∩ F(B2) is nontrivial. Then

(1) r0(B) �= r0(B1);
(2) if r0(B) < r0(B1), then

(a) r0(H) = r0(B) and
(b) Q is a Carter subgroup of B1.

Let us apply this now to the case at hand, in which our pair (B,B1) plays the role of the given
pair (B,B1), and we suppose that Ĥ , which plays the role of H , is nonabelian, so that we do
indeed have a maximal pair in view of Lemma 6.6. Let us make the relevant conclusions explicit
in this case. Note that one hypothesis of the foregoing fact becomes a conclusion in our context.

Lemma 6.15. Under our present hypotheses and with our present notation, if Q is a Carter
subgroup of Ĥ , then Q is not a Carter subgroup of B . If in addition Ĥ is nonabelian, then

(1) r0(B) < r0(B1).
(2) Q is a Carter subgroup of B1.

Proof. If Q is a Carter subgroup of B , then by Lemma 3.11, the group Q contains a Sylow 2-
subgroup S of B . Thus S � B1, and by Lemma 2.4 we find B1 = B , a contradiction. This proves
the first point.

Now take Ĥ to be nonabelian. Then by Fact 6.14, the group Q is a Carter subgroup of
whichever group, B or B1, has the larger reduced rank. As this cannot be B , it must be B1,
and our claims follow. �

The Carter subgroups of Ĥ play a central role in what follows, largely because of Lemma 6.19
below, which treats both the case in which Ĥ is abelian and in which it is not. For the nonabelian
case, we will need some additional information from [Bur05b], particularly bearing on the com-
mutator subgroup Ĥ ′ (Fact 6.18 below).

Definition 6.16. Let H be a solvable group of finite Morley rank. Then H is rank-homogeneous
if it satisfies the following conditions.

(1) H is torsion free.
(2) For r < r0(H), U0,r (H) = 1.

Note that these two clauses force H = U0(H), and hence H is nilpotent by Fact 6.1(1), which
clarifies the meaning of the definition, particularly if the structure theory of Fact 6.1(6) is kept in
mind.

Notation 6.17. Let H be a group of finite Morley rank, and r � 0. Then Fr(H) denotes
U0,r (F (H)). (One prefers r > 0: F0(H) = 1.)

Fact 6.18. (See [Bur04, 9.2, (5a, 1, 5b, 3, 5d, 5c)], [Bur05b].) Let G be a minimal connected
simple group of finite Morley rank, and (B,B1) a maximal pair of Borel subgroups of G. Let
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H = (B ∩ B1)
◦ and let Q be a Carter subgroup of G. Suppose that H is nonabelian, and let the

notation be chosen so that r0(B) < r0(B1). Then we have the following.

(1) H ′ is rank-homogeneous.
(2) If r ′ = r0(H

′), then U0,r ′(H) = Fr ′(H).
(3) F(H) is abelian.
(4) Q is abelian.
(5) Qr ′ � Z(H) is nontrivial.
(6) For any nontrivial definable subgroup X of H which is contained in H ′, we have

N◦(X) � B1.
(7) Fr ′(H) < Fr ′(B).

The first four points are covered in [Bur05b] with the encyclopedic Theorem 4.5. More pre-
cisely: since H ′ � F(B1) ∩ F(B2), (1) is contained in 4.5(6); (2) is contained in 4.5(3); both (3)

and (4) are contained in 4.5(2);
The fifth and sixth points are given as Lemma 3.23 and Corollary 3.29 of [Bur05b] respec-

tively. The last point combines part of 4.5(3) with Lemma 3.13 of [Bur05b].
This fact also generalizes to the case in which the group F(B1) ∩ F(B), which may well be

larger than H ′, is nontrivial, and one can replace H ′ by that larger group for these purposes. We
do not need this refinement.

We proceed now with our analysis. While we would be free at this point to assume Ĥ is
nonabelian, we need some of these results in the following section in a broader context, so any
assumptions needed on H or Ĥ will be stated explicitly as required; and otherwise we will take
note of their absence.

Lemma 6.19. Under our present hypotheses and notations, but without additional assumptions
on H or Ĥ , let Q be a Carter subgroup of Ĥ , and for any r let Qr = U0,r (Q). Then the following
hold.

(1) N(Q) � N(B).
(2) If Ĥ is nilpotent and Qr > 1, then N(Qr) � N(B).

Proof. First we claim

(∗) N◦
B(Q) � Ĥ .

If N◦
B(Q) � Ĥ then N◦

B(Q) � N
Ĥ

(Q) = Q and thus Q is a Carter subgroup of B by Fact 3.9,
contradicting Lemma 6.15. So (∗) holds.

Now we divide into two cases, according as Ĥ is or is not nilpotent.
Suppose first

(1) Ĥ is nilpotent.

Then Q = Ĥ and by (∗) we have N◦
B(Q) > Q. By maximality of Ĥ , the group B is the only

Borel subgroup containing N◦
B(Q). Hence B contains N◦(Q), and is the only Borel subgroup

containing N◦(Q). From the last point it follows that N(Q) normalizes B . Now if Qr > 1, then
as N◦(Q) � N(Qr) < G, it also follows that B is the unique Borel subgroup containing N◦(Qr).
Hence N(Qr) � N(B).
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Now suppose on the contrary

(2) Ĥ is nonnilpotent

and in particular nonabelian. We set r̂ ′ = r0(Ĥ
′).

Let Qr̂ ′ = U0,r̂ ′(Q). By Fact 6.18(5) we have Qr̂ ′ � Z(Ĥ ), so Ĥ � N(Qr̂ ′), and since
N◦(Q) � N◦(Qr̂ ′) we find Ĥ < N◦

B(Qr̂ ′). Since Qr̂ ′ is nontrivial by Fact 6.18(5), it follows
by maximality of Ĥ that the group N◦(Qr̂ ′) is contained in B and in no other Borel subgroup.
In particular as N(Q) normalizes Qr̂ ′ , it follows that N(Q) normalizes B . �

Recall now that H = (B ∩ Bw)◦. We insert a lemma which simplifies matters somewhat as
far as H is concerned.

Lemma 6.20. Under our present hypotheses and notations, but without requiring Ĥ to be non-
abelian, the intersection B ∩ Bw is torsion free.

Proof. Suppose on the contrary x ∈ B ∩ Bw has prime order p. Let P � B be a Sylow◦ p-
subgroup of B containing x. As B is solvable, the group P is locally finite and we can use the
structure theory of [BN94, 6.20]; since in addition [BN94, 9.39] P is connected, it follows that
either Up(P ) > 1, or P is a P -torus.

If Up(B) �= 1, then Up(C◦
Up(B)

(x)) is a nontrivial p-unipotent group and hence is contained in
a unique Borel subgroup of G (Lemma 3.3), which must be B . So C◦(x) � B . But if Up(B) �= 1
then Up(Bw) �= 1, so similarly C◦(x) � Bw , and now the uniqueness statement yields B = Bw ,
a contradiction.

So Up(B) = 1 and P is a p-torus. Then by Lemma 3.11, P is contained in a Carter sub-
group R of B , and by the same lemma R also contains a Sylow 2-subgroup S of B . So as R

is nilpotent, P and S commute, and it follows that C(x) contains S. Similarly C(x) contains a
Sylow 2-subgroup S1 of Bw . Then Ω1(S) normalizes C◦(x) and hence by Lemma 2.4, we have
C◦(x) � B and S1 � B , forcing B = Bw , a contradiction. �

In consequence we have H = B ∩ Bw , H is torsion free, and T [w] ⊆ H . When H is abelian,
it follows that T [w] is a subgroup of H inverted by w. Note also that T [w] contains some infinite
definable abelian subgroups inverted by w, which is a small start in the right direction. Eventually
we will arrive at the case in which T [w] is itself an abelian group.

6.5. Invariance of B1

Throughout this subsection we deal with the case in which Ĥ is nonabelian and H is abelian,
though our preparatory work is more general. Recall that we still have some latitude in the choice
of Ĥ .

Notation 6.21.

(1) r̂ ′ = r0(Ĥ
′).

(2) Set H− = d(T [w]), the smallest definable subgroup containing T [w].
(3) Set r− = r0(H

−).
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In the present subsection, with H abelian, H− is just another name for T [w]. Later on, how-
ever, we will use the same notation in a more general setting, where it must be taken more
seriously.

The next lemma is fundamental, and is the only one in which the precise choice of the invo-
lution w is fully exploited. It will be applied repeatedly.

Lemma 6.22. Under our present hypotheses and notation, but without requiring Ĥ to be non-
abelian, there is no involution i ∈ B inverting H−.

Proof. Supposing on the contrary that the involution i ∈ B inverts H−, it follows in particular
that H− is abelian.

As H contains no involutions, it also follows that H− = [i,H−] � F ◦(B). Now by the
choice of w, rk(H−) � rk(B/C(i)) � rk(F ◦(B)/CF ◦(B)(i)). Furthermore, F(B) is a 2⊥-group
(Lemma 5.2).

So as i acts on F ◦(B), the latter decomposes definably as a product (of sets) as F ◦(B) =
CF ◦(B)(i) · F ◦(B)− where F ◦(B)− = {a ∈ F ◦(B): ai = a−1} [BN94, Ex. 14, p. 73]. As F ◦(B)

is connected, each factor has Morley degree one. Considering the ranks, it follows that H− is a
generic subset of F ◦(B)−, and is therefore the unique definable subgroup of this rank contained
in F ◦(B)−. It follows that C(i) normalizes the group H−, and in particular some Sylow 2-
subgroup S of B normalizes H−, so N◦(H−) � B . By conjugation also Sw normalizes H−.
Hence Sw � B , and this gives a contradiction. �

Next we will give a companion lemma that goes in the opposite direction: there are involutions
in B inverting large pieces of H− (when H− is abelian). This is Lemma 6.25 below. We prepare
the way with a very general lemma, which depends on the following fact from the theory of
generalized Sylow subgroups.

Fact 6.23. (See [Bur04, 4.19, 4.20, 4.22], [Bur05a, Theorem 6.7, Corollaries 6.8, 6.9].) Let H

be a connected solvable group of finite Morley rank, and r > 0. Then the Sylow U0,r -subgroups
U of H are of the following form

U = Qr · H ′
r

where Q is a Carter subgroup of H , Qr = U0,r (Q), and H ′
r = U0,r (H

′). In particular, U is
normalized by a Carter subgroup, and if U0,r (H

′) = 1 then U is contained in a Carter subgroup.

Lemma 6.24. Let H be a group of finite Morley rank with H ◦ solvable and U2(H) = 1, and
let Q be either a Carter subgroup, or a Sylow U0,r -subgroup, of H ◦. Then NH (Q) contains a
Sylow 2-subgroup of H . In particular, every involution of H is conjugate under H ◦ to one which
normalizes Q.

Proof. We suppose first that Q is a Carter subgroup of H ◦. By Lemma 3.11, NH (Q) contains
a Sylow 2-subgroup of H ◦. By the Frattini argument, NH (Q) covers H/H ◦. If S is a Sylow
2-subgroup of NH (Q), then by Lemma 3.5, the group S covers a Sylow 2-subgroup of H/H ◦.
It follows easily that S is a Sylow 2-subgroup of H .

Now suppose that Q is a Sylow U0,r -subgroup of H ◦. Then Q = Q1Q2 where Q1 =
U0,r ([H ◦]′) and Q2 = U0,r (C) for some Carter subgroup C of H ◦ (Fact 6.23). Hence N(C) �
N(Q) and the second claim follows.

The final claim is then immediate. �
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We need the next lemma, at the moment, under the hypothesis that H is abelian, but it will be
applied more generally in the following section.

Lemma 6.25. With our usual hypotheses and notations, but with no additional assumptions on
Ĥ or H , suppose that H− is abelian. Let P = U0,r (H

−) for some r . Then there is an involution
wP in B which inverts P .

Proof. We may suppose that P is nontrivial.
Applying Corollary 6.11, let B̃0 be a w-invariant Borel subgroup containing N◦(P ). Let B̃1

be a Borel subgroup distinct from B with (B ∩ B̃0)
◦ � B̃1, chosen so as to maximize (B ∩ B̃1)

◦.
Let H̃ = (B ∩ B̃1)

◦.
Suppose H̃ is abelian. Let U = U0,r (H̃ ). Then N(U) � N(B) by Lemma 6.19(2). Hence

U0,r (NB̃0
(U)) � U0,r (H̃ ) = U , and by Fact 6.1(5) we find that U is a Sylow U0,r -subgroup

of B̃0. Accordingly U is also a Sylow U0,r -subgroup of C◦(P ). By Lemma 6.24, it follows that
U is normalized by an involution wP conjugate to w under the action of C◦(P ). Hence wP

inverts P as well. Since N(U) � N(B), the involution wP normalizes B , and hence lies in B .
Suppose now that H̃ is nonabelian.
By Lemma 6.6 we can apply Fact 6.18 freely, which requires also bearing in mind

Lemma 6.15.
Let r̃ ′ = r0(H̃

′). Suppose first that r �= r̃ ′. Then by Fact 6.23, P is contained in a Carter
subgroup Q of H̃ . Now B contains N◦(Q) by Lemma 6.19. It follows that N◦

B̃0
(Q) � (B ∩

B̃0)
◦ � (B ∩ B̃1)

◦, so N◦
B̃0

(Q) � N
H̃

(Q) = Q. Hence Q is a Carter subgroup of B̃0 by Fact 3.9,

and hence also of C◦(P ), as Q is abelian (Fact 6.18). So there is an involution wP conjugate to
w under the action of C◦(P ) such that wP normalizes Q. Since w inverts P , also wP inverts P .
By Lemma 6.19, wP normalizes B . Thus in this case we have our claim.

Now suppose that r = r̃ ′. Then U0,r (H̃ ) is abelian by Fact 6.18, and hence is contained in
C◦(P ) � B̃0. On the other hand, H̃ < N◦

B(Fr(H̃ )) by Fact 6.18(7), and thus N◦(Fr(H̃ )) is
contained in B , and in no other Borel subgroup. So N◦

B̃0
(Fr(H̃ )) � (B ∩ B̃0)

◦ � H̃ , and thus

Fr(H̃ ) = U0,r (H̃ ) (Fact 6.18) is a Sylow U0,r -subgroup of B̃0, and hence also of C◦(P ). Now
by Lemma 6.24 it follows that w is conjugate under the action of C◦(P ) to an involution wP

normalizing Fr(H̃ ).
As B is the only Borel subgroup containing N◦(Fr(H̃ )), the involution wP normalizes B ,

and hence wP lies in B . So again we have our claim. �
Now we can wrap up the first phase of our analysis. We will make use of another two points

from the theory of maximal pairs, from [Bur05b].

Fact 6.26. (See [Bur04, 9.2, (5d, 5b, 5c)], [Bur05b, Lemmas 3.12, 3.13].) Let G be a minimal
connected simple group of finite Morley rank, and (B,B1) a maximal pair of Borel subgroups
of G. Let H = (B ∩ B1)

◦. Suppose that H is nonabelian, and that r0(B) < r0(B1). Then the
following hold.

(1) Fr(B) � Z(H) for r �= r0(H
′).

(2) Fr0(H
′)(B) is nonabelian.

In particular, the group Fr(B) is abelian if and only if r �= r0(H
′).
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Item (2) was not noted explicitly in [Bur04, 9.2], but follows readily, and is given in [Bur05b,
Theorem 4.5, (4)].

Lemma 6.27. Under our standing hypotheses, the Borel subgroup B1 can be chosen to be
w-invariant.

Proof. In view of Lemma 6.9, we may suppose that

H is abelian

We will show that in this case there is a choice of B1 for which (B ∩ B1)
◦ is abelian, and thus by

Lemma 6.12 we may also choose such a B1 which is w-invariant. Recall that H is torsion free.
Suppose toward a contradiction that for all suitable choices of B1,

(B ∩ B1)
◦ is nonabelian

We first consider any B̃1 arbitrarily which meets our basic conditions, and set H̃ = (B ∩ B̃1)
◦.

As this group is assumed nonabelian, Fact 6.26 applies in view of Lemma 6.6. In particular,
the value of r0(H̃

′) is determined by the structure of B , as the value of r for which Fr(B) is
nonabelian. We will denote this value by r̂ ′, as usual, but we emphasize that its value depends
only on B .

Now if

U0,r (H
−) = 1 for all r �= r̂ ′

then in particular H− = U0(H
−), and by Lemma 6.25 there is an involution wP ∈ B inverting

H−. This contradicts Lemma 6.22. So, in fact,

U0,r (H
−) �= 1 for some r �= r̂ ′.

In this case, let P = U0,r (H
−) and let B0 be a w-invariant Borel subgroup containing N◦(P )

(Corollary 6.11). Note that B0 �= B . Let H0 = (B ∩ B0)
◦, and choose B1 distinct from B and

containing H0 so that Ĥ = (B ∩ B1)
◦ is maximal. By our hypothesis, Ĥ is nonabelian.

By Lemma 6.25, there is an involution wP ∈ B which inverts P . As P is torsion free it is 2-
divisible, so P = [wP ,P ] � F(B). As r �= r̂ ′, it follows from Fact 6.1(6) that P and Fr̂ ′(B) com-
mute. Hence Fr̂ ′(B) � C◦(P ) � B0 and thus Fr̂ ′(B) � Ĥ , and this contradicts Facts 6.18(2), (7),
since we assumed that Ĥ is nonabelian. �

At this point, we can take up the analysis afresh. As noted, we will reuse some of the auxiliary
information found along the way (which has been stated in sufficient generality to allow this),
and from this point on the logic of the argument is completely linear.

7. Case II, conclusion

We recall the notations: B is a standard Borel subgroup with N(B) strongly embedded in G,
and w is an involution outside N(B). T [w] is the set of elements of B inverted by w, and by
hypothesis has rank at least rk(B/C(i)) for i any involution of B . H = (B ∩ Bw) (which is
torsion free, and in particular connected). The group B1 is a Borel subgroup distinct from B ,
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containing H , and chosen to maximize Ĥ = (B ∩ B1)
◦. The group B1 is also w-invariant. We

fix a Carter subgroup Q of Ĥ . Then Q is also a Carter subgroup of B1, and N(Q) � N(B) by
Lemma 6.19. The Prüfer 2-rank is assumed to be at least two.

We have not determined whether or not Ĥ is abelian, and we will frequently have to argue ac-
cording to cases. When Ĥ is nonabelian, we use the structural information afforded by [Bur05b],
specifically Facts 6.14, 6.18, 6.26. This is justified by Lemma 6.6. When Ĥ is abelian we will
have to argue directly. In either case we will arrive at much the same conclusions.

7.1. The involution w1

There is one more essential ingredient in this configuration, as follows.

Lemma 7.1. There is an involution w1 ∈ B which normalizes B1 and Q, and which is conjugate
to w under the action of B1.

Proof. As Q is a Carter subgroup of B1 and w normalizes B1, by Lemma 6.24 there is w1

conjugate to w under the action of B1 which normalizes Q. Then w1 normalizes B1, and as
N(Q) � N(B) also w1 normalizes B , and hence lies in B . �

We will make use of the following general principle.

Fact 7.2. (See [Bur04, 3.18], [Bur04a, 3.6].) Let H be a nilpotent group of finite Morley rank
and P a group of definable automorphisms of H . Suppose that P is a finite p-group and H is a
U0,r -group with no elements of order p. Then CH (P ) is a U0,r -group.

Lemma 7.3.

(1) r0(B1) > r0(Ĥ ).
(2) The involution w1 inverts U0(B1).

Proof. (1) If Ĥ is nonabelian, the first claim is given by Lemma 6.15.
Suppose now that Ĥ is abelian. Let U = U0(Ĥ ). Recall that H is torsion free and hence

r0(Ĥ ) � r0(H) > 0. By Lemma 6.19, N◦(U) � B . So N◦
B1

(U) � Ĥ . It follows that r0(B1) >

r0(Ĥ ) as Fact 6.1(5) would apply to U0(B1) in the contrary case, implying U = U0(B1) and
B1 � N◦(U) � B .

(2) Let P = U0(B1). We consider the action of w1 on P . By Fact 7.2, the centralizer in P of w1

is a U0,r1 -group with r1 = r0(B1). This centralizer is contained in B , by strong embedding, and
since r1 > r0(Ĥ ), it must be trivial. Now P is a 2⊥-group, as otherwise its Sylow 2-subgroup is
central in B1, and thus C(i) is a Borel subgroup for each involution i. Thus w1 inverts P [BN94,
p. 78, Ex. 13]. �
7.2. H− and Ĥ−

We now consider more closely the action of w on H , and the action of w1 on Ĥ .
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Notation 7.4.

(1) Fix an involution w1 ∈ B normalizing B1 and Q.
(2) Set Ĥ− = 〈{a2: a ∈ Ĥ , aw1 = a−1}〉.

Lemma 7.5. The group Ĥ− is an abelian subgroup of F(B), and contains no involutions.

Proof. For a ∈ Ĥ with aw1 = a−1, we have a2 = [w1, a] ∈ F(B). Thus Ĥ− � F(B).
So Ĥ− � F(B) ∩ Ĥ � F(Ĥ ), which is an abelian group, applying Fact 6.18 if Ĥ is not itself

abelian.
So Ĥ− is an abelian subgroup of F(B), inverted by w1. As F(B) contains no involutions, the

same applies to Ĥ−. �
It follows in particular that any definable subgroup of Ĥ− is 2-divisible, and that

Ĥ− = {
a2: a ∈ Ĥ , aw1 = a−1};

in other words, this set is already a group.
The structure of Ĥ− is clarified by Lemma 7.8 below. As preparation, we insert an additional

lemma about our maximal pair (B,B1).

Lemma 7.6. For any r , and any nontrivial Sylow U0,r -subgroup P of Ĥ , N◦(P ) � B .

Proof. Extend P to a Sylow U0,r -subgroup U of B .
We show first:

(1) N◦
B(P ) � Ĥ .

If P < U then the claim is clear by Fact 6.1(5).
If P = U , then P is normalized by a Carter subgroup of B (Fact 6.23), and a Carter subgroup

of B cannot be contained in Ĥ (Lemma 6.15). This proves (1).
Now if Ĥ is abelian then N◦

B(P ) > Ĥ and the lemma follows by the maximality of Ĥ . So we
suppose

(2) Ĥ is nonabelian.

In this case Facts 6.14, 6.18, and 6.26 apply. We set r̂ ′ = r0(Ĥ
′).

If r �= r̂ ′ then Fr(B) � P (Fact 6.26). We know that U is normalized by a Carter subgroup
of B , and in particular (Lemma 3.11) by a Sylow 2-subgroup S of B . In particular Ω1(S) nor-
malizes U . For i an involution in S, we have [i,U ] � F(B) ∩ U , that is i acts trivially on
U/(F (B) ∩ U) and F(B) ∩ U is a 2⊥-group. By [Bur04a, 3.2], the centralizer CU(i) then
covers the quotient, that is we have U = CU(i)(F (B) ∩ U), and so by Fact 6.4, we have
U = CU(i)Fr(B). Hence [i,P ] � [i,U ] � Fr(B) � P and i normalizes P . Thus Ω1(S) nor-
malizes P , and as the Prüfer 2-rank is at least two it follows that N◦(P ) � B (Lemma 2.4), as
claimed.

If r = r̂ ′ then P = U0,r (Ĥ ) = Fr(Ĥ ) by Fact 6.18(2), so Ĥ < N◦
B(P ) by Facts 6.18(7) and

6.1(5), and our claim follows again by maximality of Ĥ . �
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Now we can control the structure of Ĥ−. We will make use of the following very general
result.

Lemma 7.7. Let G be a group, and H,K � G subgroups with K normalizing H . Let t ∈ G act
on H and K , inverting both groups. If K is 2-divisible, then [K,H ] = 1.

Proof. For h ∈ H and k ∈ K we have

(
h−1)k = (

hk
)−1 = (

hk
)t = (

ht
)kt = (

h−1)k−1

and thus (h−1)k
2 = h−1. �

Lemma 7.8. If U0,r (Ĥ
′) = 1 then U0,r (Ĥ

−) = 1.

Proof. Let P = U0,r (Ĥ
−). Suppose P > 1.

The involution w1 inverts U0(B1) and P ; the latter is 2-divisible. It follows by Lemma 7.7
that P centralizes U0(B1).

Suppose first that Ĥ is noncommutative. Then by Fact 6.26, since P � Fr(B) � Z(Ĥ ), the
group P commutes with F(B) in view of the structure theory of Fact 6.1(6). So C◦(P ) contains
F(B), U0(B1), and Ĥ , and hence either F(B) � B1 or U0(B1) � B . But r0(B1) > r0(B), so the
second possibility is excluded, and the first possibility is excluded by Fact 6.18(2), (7).

So we may now suppose that

Ĥ is commutative.

We claim:

(∗) For any s, either Fs(B1) � Ĥ , or U0,s(Ĥ ) = 1.

Suppose that Fs(B1) � Ĥ , and let U be a Sylow U0,s -subgroup of Ĥ . Then the group Fs(B1)U

is nilpotent by Fact 6.2. So N◦
B1

(U) � Ĥ and by Lemma 7.6 we have U = 1. Our claim (∗)

follows.
Now Ĥ is a Carter subgroup of B1, by Lemma 6.19(1). So B1 = F(B1)Ĥ [Wag94]. Further-

more, as Ĥ is commutative, H− centralizes any factor Fs(B1) which lies in Ĥ .
Consider a factor Fs(B1), where U0,s(Ĥ ) = 1. The centralizer in Fs(B1) of w1 is a U0,s -

group, by Fact 7.2, and is contained in Ĥ , hence is trivial. As F(B1) is a 2⊥-group, it follows
that w1 inverts Fs(B1) [BN94, Ex. 14, p. 73]. As w1 and w are conjugate under the action of B1,
also w inverts Fs(B1). But w also inverts H−, and as H− � H is 2-divisible it follows that H−
commutes with Fs(B1) by Lemma 7.7.

So H− commutes with every factor Fs(B1) for s � 1.
Furthermore, since H− is torsion free, it commutes with every Up(B1) for p a prime, as a

consequence of the main result of [Wag01]; this is given in [AC05, 3.13] for actions on abelian
unipotent p-groups, and the general case has the same proof.

Since the divisible part of the torsion subgroup of F(B1) is central in B1, it follows that H−
centralizes F ◦(B1). Hence H− centralizes F ◦(B1)Ĥ = B1, and H− � Z(B1).

Now w and w1 are conjugate under the action of B1, and therefore w1 inverts H−. This
contradicts Lemma 6.22. �
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7.3. Invariants attached to w

Now Lemma 7.8 produces a peculiar situation. If, for example, Ĥ is abelian, then it follows
that U0,r (Ĥ

−) = 1 for all r . On the other hand, this is certainly not the case for H−, which
is torsion free. Furthermore w and w1 are conjugate under the action of B1. Of course, this
conjugation need not preserve Ĥ , or carry H− to Ĥ−, so we are still short of a contradiction.
However, it is possible to attach certain invariants to involutions acting on solvable groups, which
will be preserved by conjugation, and in this way arrive at a contradiction by comparing the
actions of w and w1.

This is based on the following considerations.

Lemma 7.9. Let H be a solvable group of finite Morley rank with U2(H) = 1, and w an involu-
tion in H . Fix r � 1. Then the following hold.

(1) Any w-invariant nilpotent U0,r -subgroup P of H is contained in a w-invariant Sylow U0,r -
subgroup of H .

(2) If a Sylow 2-subgroup of H contains a unique involution, then any two w-invariant Sylow
U0,r -subgroups of H are conjugate under the action of CH (w).

Proof. (1) We may suppose that P is a maximal w-invariant U0,r -subgroup of H . We claim that
P is a Sylow U0,r -subgroup of H . It suffices to show that P is a Sylow U0,r -subgroup of N◦

H (P ),
or in other words we may suppose that H normalizes P . In this case, replacing H by H/P , we
may suppose that P = 1. In this case, our claim reduces to Lemma 6.24.

(2) Let P and P g (with g ∈ H ) be two w-invariant Sylow U0,r -subgroups of H .
Then w and wg are in NH (P g), and the latter group has a unique involution in each Sylow

2-subgroup. Hence w and wg are conjugate in NH (P g). If wgh = w with h ∈ NH (P g), then
P g = P gh and gh ∈ CH (w). �
Definition 7.10. Let w be an involution acting definably on a solvable group H of finite Morley
rank, and let r � 1. Then we define ιr (w,H) as the maximal rank of a U0,r -subgroup of H

inverted by w.

Note that one would normally require the U0,r -subgroups involved to be nilpotent, but here
they are in any case abelian.

What makes this invariant manageable is the following.

Lemma 7.11. Let w be an involution acting definably on a solvable group H of finite Morley
rank with U2(H) = 1, and let r � 1. Suppose that a Sylow 2-subgroup of H 〈w〉 contains a unique
involution. Let U be a w-invariant Sylow U0,r -subgroup of H . Then ιr (w,H) = ιr (w,U).

Proof. Let P be a U0,r -subgroup of H inverted by w, and of maximal rank. Extend P to a Sylow
U0,r -subgroup Q of H . Then Q and U are conjugate under the action of C(w), and our claim
follows. �

Let us now specialize this to the case at hand.
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Lemma 7.12. With our usual hypotheses and notation, let U1 be a w1-invariant Sylow U0,r -
subgroup of B1. Then ιr (w1,U1) = ιr (w,B1).

Proof. Let B̂1 = B1〈w〉 = B1〈w1〉. We show first that

(∗) a Sylow 2-subgroup of B̂1 contains a unique involution.

If B1 is a 2⊥-group, then the Sylow subgroups of B̂1 are cyclic of order two.
Suppose B1 contains an involution. Then B1 meets a conjugate M1 of M .
If B̂1 is contained in M1, then B1 is conjugate to B . But this case may be ruled out as follows.

By Lemma 7.3, w1 inverts U0(B1). It follows that some involution of B inverts U0(B), and hence
all involutions of B invert U0(B), which is impossible.

So B̂1 meets M1 in a proper subgroup of B̂1, which is therefore strongly embedded in B̂1, and
in particular all involutions of B̂1 are conjugate, and lie in B1. So if B̂1 contains an elementary
abelian 2-group of order 4, then the same applies to B1, and hence by Lemma 2.4, B1 is conjugate
to B , which we have just ruled out. So (∗) holds in all cases.

Now the general theory applies to w and w1 in B̂1, and as they are conjugate we find

ιr (w,B1) = ιr (w, B̂1) = ιr (w1, B̂1) = ιr (w1,U1). �
7.4. Structure of H−

Now we take up the structure of H−, about which we know very little at this point; recall that
this group is the definable closure of the group generated by T [w].

Lemma 7.13. If U0,r (Ĥ
′) = 1 then U0,r (H

−) = 1.

Proof. Let P be a w-invariant Sylow U0,r -subgroup of H−, and suppose that P is nontrivial.
We claim:

(1) w inverts P .

If H− is abelian, then w inverts H− and this is clear.
If H− is nonabelian, then also Ĥ is nonabelian, and as usual we set r̂ ′ = r0(Ĥ

′). By assump-
tion r �= r̂ ′, so U0,r (Ĥ

′) = 1 by Fact 6.18(1). Let H− = H−/(H−)′. Then H− is an abelian
group inverted by w, and U0,r ([H−]′) = 1.

Let P0 = CP (w). Then P0 is a U0,r -group by Fact 7.2. So the image P 0 of P0 in H− is a
U0,r -group which is both centralized and inverted by w. Hence P 0 = 1 and P0 � (H−)′. Since
P0 is a U0,r -group, it follows that P0 = 1. So w inverts P , and (1) holds in either case.

Let P1 be a w1-invariant Sylow U0,r -subgroup of Ĥ . By Lemma 7.6, N◦(P1) is contained
in B and hence P1 is a Sylow U0,r -subgroup of B1. By Lemma 7.12, we have ιr (w1,P1) =
ιr (w,B1) > 0. This contradicts Lemma 7.8. �

Now the analysis of H− produces a contradiction.

Lemma 7.14. This configuration is inconsistent.
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Proof. If Ĥ is abelian, then the preceding lemma shows that U0,s(H
−) = 1 for all s, and as H−

is torsion free and nontrivial this is a contradiction.
So Ĥ is nonabelian, and we may apply Fact 6.18. As usual we set r̂ ′ = r0(Ĥ

′). Then by
Lemma 7.13, U0,r (H

−) = 1 for r �= r̂ ′. As H− � H is torsion free, it follows that H− =
U0,r̂ ′(H−) � U0,r̂ ′(Ĥ ) = Fr̂ ′(Ĥ ), which is abelian.

As H− is abelian, we can apply Lemma 6.25, and there is an involution in B which in-
verts H−, which contradicts Lemma 6.22. �

With this contradiction, the proof of Theorem 1 in the second case is finally complete.
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