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Abstract

We consider the problem of the existence of universal countable
C-free graphs with C a connected finite graph. For C a tree arising
by from a path by adjunction of one additional edge we show that a
universal countable C-free graph exists. We determine precisely the 2-
bouquets C (i.e., unions of two complete graphs with just one point in
common) for which a universal countable C-free graph exists. We lay
out some elements of a program for determining all the connected finite
graphs C for which a countable universal C-free graph exists. One
element of this program is the Tree Conjecture, which is now proved
[2]. Our methods involve a mixture of model theory and combinatorics,
with the ∆-system lemma playing a significant role.
KEYWORDS: graph, universal, tree, bouquet, model theory, exis-
tential completeness, delta system
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1 Introduction

Given a set of “forbidden” subgraphs C, we may consider the collection
of all graphs G containing no subgraph isomorphic to one of those in
the class C. Such graphs are said to be C-free. A general question that
arises in various forms is whether this class is well behaved in some
appropriate sense. While this question may be formalized in many dif-
ferent ways, one expects that the answer will usually be negative, and
what is wanted is a way of identifying the exceptionally well behaved
constraint sets.

The version of the problem that we have taken up is the existence
of a universal graph, by which we mean a countable C-free graph G∗

with the property that every countable C-free graph is isomorphic to
an induced subgraph of G∗. This turns out to have a very concrete
meaning in terms of the original constraint set C, and is closely related
to the halting problem for a certain explicit computation procedure
associated with C.

Let us illustrate this by a trivial example. If C consists of a single
constraint graph C which is an n-star, that is a tree consisting of a
single vertex connected to n leaves, then the C-free graphs are those
of bounded degree, less than n. In this case, any connected graph
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which is regular of degree n− 1 will be a connected component in any
C-free graph containing it, which immediately implies that there is no
universal C-free graph for n > 3.

This analysis has two ingredients, both of which are valid for any fi-
nite set of connected constraint graphs. The edge relation in the graph
provides a notion of “neighbor” with a finiteness constraint coming
from the constraint set; then “connected components” are defined by
iterating the “neighbor” relation. When working with constraints other
than a single star, the “neighbor” relation will not coincide with the
original edge relation, but rather with a more complicated but com-
pletely explicit relation; once one has the correct “neighbor” relation,
one defines the analog of connected components by iterating it, and
then the main question is whether the connected components are fi-
nite or not. Let us illustrate this with a slightly less trivial case: graphs
omitting a cycle of length 4. In this case, it turns out that a single
vertex has no neighbors in our sense; but a finite set A of vertices does,
namely all those vertices which are adjacent to at least two vertices in
A; obviously, these neighbors are tightly controlled by the forbidden
subgraph. Iterating this operation one defines the “closure” of the set
A, which in general may be infinite, and this leads to a proof of the
nonexistence of a universal graph with this constraint. We will define
this closure operator explicitly in §4 in the case of a 2-bouquet. This
is based on the general analysis given in [3]. For model theorists this
would just be the algebraic closure operator in the class of existentially
complete C-free graphs, but in any case it is necessary to work out ex-
plicitly what this means in combinatorial terms in order to make real
use of it.

Experience confirms that constraint sets allowing universal graphs
are rare (cf. [1-16]). The problem is to identify those exceptional
choices for C which allow a universal graph. A very general result of
Füredi and Komjáth [8], which subsumes a number of examples con-
sidered earlier, states that in the case in which C consists of a single
2-connected graph C, then the corresponding universal C-free graph
exists if and only if C is complete—in which case the universal graph is
afforded by a general method of Fräıssé. In fact, the method of Füredi
and Komjáth proves something considerably stronger, when combined
with a general result from [3].

Fact 1.1 If C is a finite set of 2-connected graphs, then there is a
universal C-free graph if and only if the class C is closed under homo-
morphism.

Here a homomorphism collapses certain sets of independent ver-
tices to a single vertex. Closure under homomorphism is defined as
follows: for each constraint C in C, each homomorphic image C∗ of C
is forbidden, in the sense that C∗ has a subgraph isomorphic to one
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of the graphs in C. The case in which C consists of all cycles of odd
length up to a given order is a typical example. For a single graph,
our formulation is equivalent to the statement as given by Füredi and
Komjáth in the 2-connected case.

This result may suggest that there should be a completely explicit
characterization of the sets C of constraints for which the correspond-
ing universal graph exists. This question is completely open, but at
least it is well-posed. Stated rigorously, the question is this: is there
an algorithm taking as input a finite set C of connected graphs, and de-
termining whether or not the corresponding class of C-free graphs has
a universal graph? The combinatorial content of this decision problem
can be analyzed in detail, using the methods of model theory; cf. [3].

We will review enough of the combinatorial framework of [3] to keep
the present paper self-contained, as need arises. It will be convenient
for the purposes of our discussion in the remainder of this introduction
to use the notation aclC (read “algebraic closure” relative to C) freely,
without defining it; this is the closure operator alluded to above, and
defined in the relevant instances in §4 below.

In the present paper, we focus on the case of a single constraint
graph C, taken to be finite and connected, though we give some re-
sults in more general form. In the case of a single constraint graph,
combining the known results together with some plausible conjectures
yields a robust, though incomplete, picture of what we may expect.
Call a graph solid if every induced subgraph which is 2-connected is
complete (in other words, the blocks are complete). The main conjec-
ture is the following.

Conjecture 1 (Solidity Conjecture) If C is a finite connected graph
for which there is a universal countable C-free graph, then C is solid.

There is some theoretical support for this in terms of the closure
operator acl = aclC associated to C; indeed, in those terms we would
strengthen the conjecture as follows. We call a closure operator cl
unary, or degenerate, if we have cl(A) =

⋃
{cl(a) : a ∈ A}.

Conjecture 2 (Unarity Conjecture) If C is a finite set of finite
connected graphs for which there is a universal countable C-free graph,
then aclC is unary.

In the Füredi-Komjáth construction, and its ancestors, one sees
clearly how the failure of unarity is relevant. But in this general form
the Unarity Conjecture is unequivocally ambitious. This conjecture
should also be compared with the Reduction Conjecture given below.

For the case of a single constraint C, it can be shown that C is
solid if and only if aclC is unary. Thus the Unarity Conjecture reduces
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to the Solidity Conjecture in the case of a single constraint. In the 2-
connected case, this conjecture reduces to the known result of Füredi-
Komjáth.

A more ambitious but ill-starred conjecture was given in [3]. This
conjecture, which had reasonable empirical support, but not much of
a theoretical basis, goes as follows.

Conjecture 3 (Monotonicity Conjecture) If C is a finite con-
nected graph for which there is countable universal C-free graph, and
if C ′ is a connected induced subgraph of C, then there is a universal
countable C ′-free graph.

This conjecture is false, and will be refuted in the present paper. In
spite of this, it seems to represent a healthy point of view, barring really
major surprises. It may be that the exceptions to the Monotonicity
Conjecture are sporadic, and that the problem is to classify them. The
idea behind this conjecture is as follows. The existence of a countable
universal C-free graph is known to be controlled by the behavior of
the associated algebraic closure operator aclC , which should not be too
complicated. The latter condition seems to require C to be “small”.
More generally, the complexity of the algebraic closure operation seems
to reflect the complexity of the constraint graph.

We do not know what notion of “smallness” or simplicity is ac-
tually involved here, or whether that intuition is at all accurate, and
that is really the entire issue. The present paper shows that whatever
notion of simplicity may be involved, it is one which is not inherited
by induced subgraphs. At a combinatorial level, the analysis in §4 de-
pends on an application of the ∆-system lemma in a case in which the
“heart” of the ∆-system may turn out to be empty in some exceptional
small cases. While we do not consider the Monotonicity Conjecture to
be completely discredited, its failure certainly complicates matters in
challenging ways.

The Solidity Conjecture is a special case of the Monotonicity Con-
jecture, but it is also a special case of the Unarity Conjecture. The
latter seems more robust, as it involves some theoretical considerations.

Solid graphs are “tree-like” in that they arise from trees by blowing
up vertices appropriately to complete graphs. For the case of tree
constraints there is a longstanding conjecture due to the second author,
whose proof is now complete.

Conjecture 4 (Tree Conjecture) For C a tree of order n the fol-
lowing are equivalent.

1. There is a countable universal C-free graph.

2. There is a countable strongly universal (that is, universal with
respect to embeddings as induced subgraphs) C-free graph
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3. C contains a path of order n− 1 (i.e., length n− 2).

We will find it convenient to refer to such a tree as a near-path.
The first result of the present paper is the following, which confirms
one direction of the Tree Conjecture.

Theorem 1 If C is a finite set of finite connected graphs, one of which
is a near-path, then there is a universal countable C-free graph.

Corollary 1.2 If C is a near-path then there is a universal countable
C-free graph.

The method used here is a mixture of [12] with [5]. Basically one
extends the results of [12] to the context of graphs with a finite parti-
tion of the vertices (not a “coloring” in the graph theoretic sense, but
an arbitrary partition). We do not actually proceed in that precise
fashion, but by a more direct route that gives less explicit information
about the universal graph. Model theorists interested in understand-
ing the properties of the interesting first order theory involved might
want to follow the route of [12] more closely.

The full tree conjecture is proved in [2], using our Corollary 1.2 for
one direction, and providing the complementary non-existence results
for all cases of forbidden trees other than near-paths (or rather, for the
“critical” cases, according to an appropriate inductive scheme).

We remark that a consequence of the Tree Conjecture is that the
Monotonicity Conjecture holds for trees. It seems likely that a re-
stricted form of the Monotonicity Conjecture does hold, for pairs of
connected graphs C ′ ⊆ C such that every block of C ′ is a block of
C. This formulation includes both the case of trees, and the Solidity
Conjecture.

Staying within the class of solid graphs, but passing to the opposite
extreme from general trees, we come to the 2-bouquets, by which we
mean graphs obtained by taking the union of two complete graphs
with a pair of vertices identified, one vertex from each; in other words,
their free join over a common vertex. If solid graphs are considered
tree-like, then the 2-bouquets may be considered to be P1-like, where
P1 is a path of length one, or possibly P2-like; this depends on the
notion of “blowing up vertices” which is used, and we will use a naive
terminology here (and a less naive one in §4).

Komjáth [11] was the first to consider a 2-bouquet in our context:
the bowtie K3 +· K3 is the 2-bouquet formed from two triangles, and
Komjáth saw that there is countable universal bowtie-free graph, a
result which was both highly unexpected and difficult at the time, via
the Fräıssé amalgamation technique. This was one of the motivations
for developing the combinatorial theory of [3], which makes it quite
easy to establish the existence of the corresponding universal graph
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while bypassing the amalgamation method; the price one pays for this
is that one learns relatively little about the actual structure of the
corresponding universal graph, or its theory, as a result, but this seems
a reasonable trade-off as the combinatorial complexity of the classes
involved increases.

At the same time, Komjáth also showed that for n ≥ 3, an n-
bouquet formed from n copies of Km with m ≥ 3 never gives rise to
universal graphs. More general n-bouquets with blocks of variable size
have not been examined. The case of 2-bouquets appears to be quite
exceptional; in any case, it contains a number of examples allowing
universal graphs. We prove the following.

Theorem 2 Let C = Km +· Kn be a 2-bouquet. Then the following
are equivalent.

1. There is a countable universal C-free graph.

2. min(m,n) ≤ 5 and (m,n) 6= (5, 5).

In view of the clause (m,n) 6= (5, 5), we have a blatant refutation
of the Monotonicity Conjecture. One can see explicitly in §3 and more
theoretically in §4 why the case of K5 +· K5 arises as an exception; actu-
ally all of the casesK4 +· K4, K5 +· K5, and evenK6 +· K5 require special
consideration, but only one of them provides an actual exception. As
noted above, this involves exceptional ∆-system configurations.

At this point we have, conjecturally, a fairly robust picture of what
we may expect, in spite of recent surprises. Even this conjectural pic-
ture is incomplete; what is lacking from that point of view is a closer
analysis of path-like constraints. Our results on 2-bouquets mean that
the boundary between the “tight” contraints, allowing countable uni-
versal graphs, and all the rest is more ragged than has been expected.
The fundamental question is the following.

Problem 1 (Universality Decision Problem) Is there an algo-
rithm which will decide, given as input a finite connected constraint
graph C, whether there is a countable universal C-free graph?

This problem makes perfectly good sense for finite sets of con-
straints as well (with respect to any class of combinatorial structures).
We think it should be decidable for single constraints. It is far less clear
whether it should be decidable in general. In the negative direction,
there are some encoding results in [6], showing that various generalized
forms of the problem are all equivalent. On the other hand, the Unarity
Conjecture would tend to suggest decidability of the full problem. The
kind of analysis undertaken in §4 illustrates the combinatorial content
of this decision problem.

At this point, we will enter into a fuller discussion of the relation-
ship between the complexity of aclC and the existence of a C-universal
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object. This is again based on the point of view of [3], and is illustrated
here concretely by the work in §4. The relevant notion is the following.

Definition 1.3 A closure operator cl on a set V is locally finite if
cl(A) is finite for each finite set A, and is uniformly locally finite if
| cl(A)| is bounded by a function of |A| for A finite.

In our context it follows from König’s Lemma that local finiteness
of aclC is equivalent to uniform local finiteness.

Fact 1.4 Let C be a finite set of finite connected graphs for which aclC
is locally finite. Then there is a countable universal C-free graph.

While not trivial, this follows from very general considerations, as
shown in [3].

The converse is false, and the case of near-paths provides a simple
counterexample. Still, the converse appears to be very nearly true, and
in the case of a single constraint graph the following conjecture is not
unreasonable.

Conjecture 5 (Reduction Conjecture) Let C be a finite connected
graph. Then the following are equivalent.

1. There is a countable universal C-free graph.

2. Either aclC is locally finite, or C is a near-path.

Like the ill-fated Monotonicity Conjecture, this conjecture has no
theoretical basis, and in particular it only concerns the case of one
constraint. To see why one might believe it nonetheless, notice that the
proofs of nonexistence of universal graphs in §3 involve “decorating” an
infinite set of the form acl(A) with A finite. Once one has an infinite set
of the form acl(A) with A finite, one needs just one degree of freedom
to complete the proof of nonexistence of the universal graph. For the
most part a failure of local finiteness tends to lead to an easy proof of
the nonexistence of a universal graph, along the lines of §3. However,
the basic problem of local finiteness is difficult to settle in interesting
cases. The key combinatorial decision problem is really the following.

Problem 2 (Local Finiteness Decision Problem) Is there an al-
gorithm which will decide, given as input a finite connected constraint
graph C, whether the associated operator aclC is locally finite?

As a point of methodology, this is the problem we initially studied in
the cases treated in §§3–4, after which the solution of the corresponding
universality problems required just a few more details. While we will
not give all of this preliminary analysis below, enough of it survives
into the actual proofs to show clearly how this allows the problem to be



April 15, 2013 9

approached in a systematic way. We think it is useful to bear in mind
both the close connection between these two decision problems, and
the distinction between them. It is the local finiteness problem which
can be closely analyzed by a uniform, canonical, combinatorial process:
it is simply the halting problem for a specific computation encoded by
the constraint set C, in a way which is reminiscent of various simple
models of computation. At first glance, in fact, one could hope for
a reduction to an ordinary finite state automaton, but this does not
work out.

Is it realistic to aim at a complete solution of the universality prob-
lem for the case of one constraint? Evidently the Tree Conjecture and
the Solidity Conjecture are fundamental, and it is possible that both
can eventually be proved by elaborating on the methods already used
in special cases. These two problems are certainly worth examining
further. The Tree Conjecture can be generalized a little more: we
would expect a constraint C for which there is a countable universal
C-free graph to be near-path-like, and in fact path-like in almost all
cases (compare Komjáth’s result on m-bouquets, in the case m = 3).
To round out the picture, we also need to solve the following problem.

Problem 3 (Path-like Problem) Call a graph C path-like if it is
solid and its underlying tree structure is a path, or in other words if C
is a string of complete graphs. Determine the pathlike constraints C
for which there is a countable universal C-free graph.

This is the problem we have taken up here, but only in the basic case
of P1-like graphs, where we arrive at an unexpected answer, along lines
broadly compatible with our expectations, but considerably different in
detail. Not only is the Monotonicity Conjecture wrong, but the cross-
over point (n = 5) is higher than we would have expected, given the
rarity of universal graphs with forbidden subgraphs to date. On the
general principle that “sporadic phenomena turn up early” it would
be reasonable to carry on in the same vein, and classify the P2-like
constraints which allow a countable universal graph. One expects the
final result not to be much more complicated than the one in Theorem
2 below, though the analysis involved could well be more difficult. At
the same time, this is the direction to explore if one is looking to
uncover phenomena which could lead to an undecidability result. So
it is possible that further exploration of this particular case could be
very illuminating.

Remark. Further analysis (ongoing) by the first author and She-
lah suggest that the analysis of universality problems for star-like con-
straints and path-like constraints hold the key to the analysis of univer-
sality problems for an arbitrary finite connected forbidden constraint.
In addition to the “sporadic” phenomena encountered in our present
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study, one more surprising family of examples of P2-type has been iden-
tified, and we believe we begin to see the shape of the general case, and
a strategy pinning it down rigorously; key ingredients for this strategy
are the analysis of bouquets given here, and the techniques of [2], es-
pecially the inductive approach given there. The analysis of bouquets,
and considerably more, must all be viewed as lying within the base of
this induction.

We will comment on related problems, dealt with in the literature,
that are not covered by our setup. One may consider universality
problems also for uncountable graphs of fixed cardinality, a set theoretic
topic which is completely different from ours in character, but also
highly developed. On the other hand, staying in the countable case,
infinite constraint graphs have been considered, and again the nature
of the problem changes radically; our approach has no bearing at all
on such cases.

Staying in the countable case, and allowing only finite constraint
graphs, there are two more variations on the theme of universality
which have been investigated sporadically. We may consider discon-
nected constraint graphs, and we may allow infinite sets of finite con-
straints. These generalizations have much in common with the more
limited problems we deal with. Allowing disconnected constraints
forces some change in viewpoint, or at least in terminology, and it
is no longer appropriate to speak of universal graphs, but rather uni-
versal sets of graphs, as Komjáth has pointed out. This point is il-
lustrated by our analysis in §2. The general theory of [3] has only
been worked out for sets of connected constraints. In order to han-
dle disconnected constraints, it would be convenient to change cate-
gories, replacing the category of graphs by the category of partitioned
graphs—graphs equipped with a finite partition of their vertices. This
is useful in practice.

On the other hand, if infinite sets of finite connected constraint
graphs are considered, our theory does not apply in its present form.
This extension includes some cases which are of clear interest, notably
the case of bipartite graphs, and it leads to a number of intriguing
examples. The theory given in [3] definitely does not apply here, but
perhaps it can be extended. We may illustrate the difference by exam-
ples involving cycles as constraints. If the constraint set C consists of
finitely many cycles, then there is a universal C-free graph if, and only
if, the set C contains all cycles of odd order up to some specified order.
But if C is the set of all cycles having length at least some specified
order, then there is a universal C-free graph, and there is no result, or
even conjecture, as to what other sets of forbidden cycles may allow
countable universal graphs. What happens in this particular case is
that the algebraic closure operation is not unary, but the universal ob-
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ject exists anyway. On the other hand the algebraic closure operator
appears to be locally finite in these particular cases. So what we have
here is not so much a breakdown in the theory of [3] as a combinato-
rial difference in the analysis of acl, which could be explored further.
The initial axiomatizability result of [3] is simply false at this level of
generality, but it is not clear whether that result is really needed.

2 Near-paths

Definition 2.1 A near-path is a tree consisting of a path with at most
one additional edge adjoined.

Our goal is the following.

Proposition 2.2 Let L be a finite near-path, and let C be a finite
set of finite connected graphs with L ∈ C. Then there is a universal
countable C-free graph.

This result can be obtained in a number of loosely related ways.
We will prove a more general result which has other applications. We
work in the broader category of graphs with a vertex partition, or
coloring by a specified finite set of colors. This coloring is not assumed
to stand in any particular relation to the edges of the graph, and may
be completely arbitrary.

Definition 2.3 A d-graph is a graph G together with a coloring of the
set its vertices by d colors, that is, a function c : V (G)→ {1, . . . , d}.

Before dealing with near-paths, we generalize the corresponding
result for paths, which is found in [12], to the context of d-graphs. In
the article [12], graphs omitting a single path are considered. In the
context of d-graphs, there are many isomorphism types of path of a
fixed length, and the condition we impose is that all of these paths
are forbidden; we also allow some side constraints at the same time.
Furthermore, departing from our usual practice, we do not insist here
that our constraint graphs be connected. We will prove the following.

Proposition 2.4 Let C be a finite set of finite d-graphs. Suppose that
for some n, every isomorphism type of d-colored path of length n is
represented in C. Then there is a finite set of countable connected C-free
d-graphs which is universal for countable connected C-free d-graphs.

The universality condition given here means that we have a finite
set X of connected C-free d-graphs such that any countable connected
C-free d-graph is isomorphic to an induced subgraph of one of the d-
graphs in X .

Before entering into the proof, observe the following corollary.
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Corollary 2.5 Let C be a finite set of connected finite d-graphs. Sup-
pose that for some n, every isomorphism type of d-colored path of length
n is represented in C. Then there is a universal C-free d-graph.

Proof. Let X be the family of connected C-free d-graphs afforded by
Proposition 2.4. As we are assuming the d-graphs in C are connected,
the disjoint union of countably many copies of each graph in X is also
C-free, and will serve as the desired universal graph. �

Proof of Proposition 2.4. We proceed by induction on n, writing
X = Xn. By our induction hypothesis, we have a finite family Xn−1
with the following property: any C-free d-graph which contains no d-
colored path of length n− 1 embeds as an induced subgraph in one of
the d-graphs in Xn−1. We wish to extend the family Xn−1 to a suitable
family Xn. So we need only consider the structure of a connected C-free
d-graph G which contains some path P of length n− 1.

We associate to the pair (G,P ) a d′-graph GP , with d′ = d · 2n−1,
as follows. The vertex set of GP is V (G) \ V (P ). The graph structure
on GP is induced by G. The coloring c′ in V (GP ) is defined by c′(v) =
(c(v), cP (v)), where we set

cP (v) = {a ∈ V (P ) : a ∼ v}

writing ∼ for the edge relation in G.
The important point is the following, as in [12]: Every connected

component of GP contains no path of length n− 1. This follows since
G is connected, P has length n− 1, and G has no path of length n.

Let k = max(|C| : C ∈ C). For X a connected component of GP ,
let Gk(X) be the set of d′-graphs with vertex set contained in {1, . . . , k}
which do not embed in X. As Gk(X) contains all paths of length n−1,
by induction there is a finite set XX of connected countable Gk(X)-
free d′-graphs which is universal for this class. Extend GP to ĜP by
replacing each connected component X of GP by a d′-graph in XX into
which it embeds as an induced subgraph. Then Gk(ĜP ) = Gk(GP ), and
the connected components of ĜP lie among finitely many isomorphism
types, since the set Gk(X) varies over a finite set of possibilities. Hence
as G and GP vary, there are, all together, finitely many distinct d′-
graphs occurring as connected components in the various d′-graphs
ĜP .

We make a further modification of the d′-graph ĜP . For any con-
nected component X of the d′-graph ĜP which occurs at least k times
as a connected component of that d′-graph, we extend ĜP so that
there are infinitely many connected components of ĜP isomorphic to
X. After this modification, each connected component of ĜP occurs
with a multiplicity which is either less than k, or equal to ℵ0, and there
are, all told, only finitely many isomorphism types occurring among
the d′-graphs ĜP themselves.
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Now each d′-graph ĜP can be decoded into a d-graph Ĝ on V (P )t
V (ĜP ). Furthermore Gk(Ĝ) = Gk(G), so Ĝ is C-free. Taking Xn to
consist of Xn−1 together with the d-graphs Ĝ just constructed, our
claim follows. �

Proof of Proposition 2.2. Let n = |L| − 2; L contains a path P
of length n, on n + 1 vertices. We will aim at finding a countable set
of connected countable C-free graphs such that each connected count-
able C-free graph is isomorphic with an induced subgraph of one such.
Then one forms a single universal graph by taking the disjoint union
of countably many copies of each of these connected graphs.

By Proposition 2.4, there is a countable universal graph for the
class of C-free graphs containing no path of length 2n. We proceed to
analyze the structure of connected C-free graphs which do contain a
path of length 2n. Fix one such graph G, and let P be a maximal path
of length at least 2n in G, which may even be infinite in one or two
directions.

If P is 2-sided infinite, then as G is L-free and connected we have
G = P . Putting this case aside, and writing P = (a0, a1, . . .), consider
the induced graph on V (P ).

If P is infinite, then for i ≥ 2n the only neighbors of ai are the two
vertices ai±1. Thus there are only countably many isomorphism types
occurring as induced graphs on the vertices of such a path P . We may
accordingly fix one such isomorphism type for further analysis.

Now let GP be the associated 22n-graph on the vertices V (GP ) =
V (G) \ V (P ), where the coloring is given by c(v) = {i < 2n : ai ∼ v}.
Observe now that GP contains no path of length 2n. Indeed, assuming
the contrary, one finds a path Q of length at least n+ 1 disjoint from
P except at one endpoint, where the endpoint in question is ai for
some i ≤ 2n. By maximality of P , we have i > 0, and hence the edge
(ai−1, ai) exists as an additional edge which is attached to Q. But
this configuration now contains the forbidden near-path, and provides
a contradiction.

Since GP contains no path of length 2n, arguing as above we may
find a finite number of 22n-graphs ĜP with the following two properties:

(a) each graph GP embeds into one of the given ones;

(b) after decoding ĜP as a graph Ĝ containing G, Ĝ again omits C.
So in this way we obtain the desired countable family of connected

countable C-free graphs. �

3 2-Bouquets without universal graphs

There are two notions of universality studied in the literature. While
the constraint graphs function as forbidden subgraphs (rather than
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forbidden induced graphs), it is reasonable to require universality in the
strong form we gave: every appropriate graph embeds as an induced
subgraph. If we only require an embedding as a subgraph, we speak
of weak universality. While from our own point of view this is not
very natural, it is often considered in the graph theoretic literature,
so we prefer to prove existence results using the “strong” definition
and nonexistence results using the “weak” definition, since these are
the strongest forms in their respective cases. The present section deals
with nonexistence theorems, so we formulate them accordingly. This
whole section is based on the theory of [3] and some computations along
the lines of those found in the next section. We omit that preliminary
analysis, which is not needed for the proofs in this section, and the
interested reader can look into the following section to see the sort of
calculation that is involved in such cases. It is quite helpful for finding
constructions like those that follow here.

Proposition 3.1 Let C = Km +· Kn with m,n ≥ 6. Then there is no
weakly universal countable C-free graph; that is, there is no countable
C-free graph which contains an isomorphic copy of every countable C-
free graph as a subgraph.

Proof.
We may suppose m ≥ n.
We begin with a construction of a family of C-free graphs. We

take two disjoint vertex sets B0, B1 of cardinality m − 4 and n − 4
respectively, four additional vertices ai for i = 0, 1, 2, 3, and an infinite
set of vertices U = {ui : i ∈ Z}. Our vertex set V is {ai : i =
0, 1, 2, 3} ∪B0 ∪B1 ∪U . This is best thought of as the set U extended
by a finite number of vertices which will be used to impose some very
rigid structure on U . We now define an edge relation on V .

For i = 0, 1, 2, 3, let Ai be the set {ai}∪Bimod 2. Using ∼ to denote
the edge relation, we impose the following edges on V .

i. ui ∼ uj iff |j − i| ≤ 2.

ii. A0, A1, A2, A3 are cliques.

iii. B0 and B1 are linked to every vertex of U .

iv. We take ai ∼ uj iff i 6≡ j mod 4.

Let H be the graph with vertex set V defined in this way. Then H
has the following properties.

1. For any clique C, |C ∩ U | ≤ 3.

2. For any clique C there is an i such that C ⊆ Ai ∪ U .

3. If C is a clique and |C| ≥ 6 then for some i we have |C ∩Bi| ≥ 2.

4. If C is a clique of order m then for some i we have Bi ⊆ C.
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We may now check that H is C-free. If C0, C1 are cliques in H of
order m and n respectively, with |C0 ∩ C1| = 1, then there is some i
for which Bi ⊆ C0, and thus |Bi∩C1| ≤ 1. On the other hand we have
|Bj ∩ C1| ≥ 2 for some j, and hence j 6= i, that is {i, j} = {0, 1}. It
follows that Bj ⊆ C1; if m = n this is clear, and if m > n then we have
i = 0 and j = 1, and as |Bj | = n − 4 it follows that Bj ⊆ C1. Hence
there are i∗, j∗ ∈ {0, 1, 2, 3}, distinct modulo 2, such that C0 ⊆ Ai∗ ∪U
and C1 ⊆ Aj∗ ∪ U . In particular C0 ∩ C1 ⊆ U .

But C0 = Ai∗ ∪ {ui′+1, ui′+2, ui′+3} with i′ ≡ i∗ mod 4, and sim-
ilarly C1 = Aj∗ ∪ {uj′+1, uj′+2, uj′+3} and i′ 6≡ j′ mod 2. Hence the
sets {ui′+1, ui′+2, ui′+3} and {uj′+1, uj′+2, uj′+3} cannot intersect in
just one element. So H is C-free.

Now suppose that f : H → G is an embedding of H into a C-free
graph G, that is an isomorphism of H with a subgraph of G. Let A =
{a0, a1, a2, a3} ∪ B0 ∪B1. We claim that the function f is completely
determined by its restriction to the finite set X = A ∪ {u−1, u0, u1}.
Proceeding inductively, and taking account of symmetry, it suffices
to check that the values of f(u2) and f(u3) are determined by the
restriction of f to X. This is the key “rigidity” property that the
construction was intended to achieve.

For i ≥ 0, let Ci be the clique Aimod4 ∪ {ui+1, ui+2, ui+3}. Set
Qi = C2i and Q′i = C2i+1. Then the Qi are cliques of order m, and
the Q′i are cliques of order n.

For any i, the pair (ui, ui+4) does not lie on an edge of G, as
otherwise the set C̃i = Aimod4 ∪ {ui, ui+2, ui+3} is a clique and Ci−3 ∪
C̃i ∼= C.

Consider a clique Q in G of order m whose intersection with f [X]
is f [A0 ∪ {u1}]. One such clique is f [Q0], and we claim that it is
unique. Note thatQ∩f [Q′−1] contains f(u1) and no other vertex except
possibly f(u2). Since G is C-free, Q contains f(u2). So Q ∩ f [Q′0]
contains f(u2) and no other vertex except possibly f(u3). So Q =
f [Q0]. Thus the unordered pair {f(u2), f(u3)} is determined by the
restriction of f to X.

Now consider the neighbors of a2 in {f(u2), f(u3)}. Certainly f(u3)
is one such; and we claim that f(u2) is not. Given this, it will be clear
that the ordered pair (f(u2), f(u3)) is uniquely determined by f � X.

So suppose (f(a2), f(u2)) is an edge in G, or, what amounts to the
same, consider the effect of making (a2, u2) into an edge in H. Then
B0∪{a2, u0, u1, u2} becomes a clique of order m, meeting Q′0 in a single
vertex, and the resulting graph is not C-free.

So for any embedding f of H into a C-free graph G, the restriction
of f to the finite set X determines f on all of U .

Now we modify the construction of H slightly. We associate to any
bit string ε = (ε0, ε1, . . .) of 0’s and 1’s the graph Hε, which differs
from H only by the addition of edges (u8i, u8i+4) when εi = 1, and
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by the addition of an auxiliary graph obstructing such an edge when
εi = 0: we may take as the obstructing graph C ′ the graph derived
from Km +· Kn by omitting a single edge between two vertices of the

clique Kn (but not the vertex shared with Km). So when εi = 0, we
amalgamate C ′ freely with H, identifying the two vertices of C ′ on the
deleted edge with the two vertices u8i, u8i+4 of H.

In this way we obtain 2ℵ0 different graphs Hε, each of which con-
tains a sequence (u2i) which is rigid over the finite set X, and such that
for two bit strings ε 6= ε′, the induced graphs on the vertices (u2i) are
incompatible (that is, any graph containing both must have a subgraph
isomorphic with C).

It follows that there is no weakly universal countable C-free graph
G. Otherwise, the graph G would contain all the Hε as induced sub-
graphs, and then two of these graphs would involve the same embed-
ding of the finite set X into G, and hence by rigidity would have the
same embedding of the sequence (ui) into G, resulting in a copy of C
wherever εi 6= ε′i. �

The analysis that leads to the particular construction used in our
next result is elaborate. See the end of the next section for a similar
analysis worked out. The configuration is of an unusual type, in fact
unique as far as known examples are concerned.

Proposition 3.2 Let C = K5 +· K5. Then there is no universal C-free
graph.

Proof.
We follow the line of the previous argument. First we introduce a

particular C-free graph H with a very rigid structure.
As our vertex set V (H) we take vertices ai, a

′
i for i ∈ Z. For the

edge relation ∼ on H we take the following.

1. ai ∼ aj iff |j − i| = 2;

2. a′i ∼ a′j iff |j − i| = 1 or 2;

3. ai ∼ a′j iff |j − i| ≤ 2.
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Let Ci be the clique {ai−1, ai+1, a
′
i−1, a

′
i, a
′
i+1}. We wish to view

this clique as “marking” the sequence a′i−1, a
′
i, a
′
i+1 in a certain sense,

and for this purpose it is necessary to analyze the cliques of H, and
more generally the cliques in any C-free graph G containing H as a
subgraph and meeting H.

So let G be a C-free graph containing H. We claim that the only
cliques of order 5 in G which meet H are the cliques Ci.

Let Q be such a clique. We argue first that Q contains some vertex
a′i. Otherwise, if i is maximal so that ai ∈ Q, we would find that the
induced graph on Q ∪ Ci+1 is a copy of K5 +· K5.

So suppose that a′i ∈ Q. We claim then that Q is the clique Cj
with j ∈ {i− 1, i, i+ 1}.

As G omits K5 +· K5, Q meets the cliques Ci−1, Ci, and Ci+1 in at
least two vertices each. Consider the pair of disjoint sets Ci−3 ∪ Ci−2
and Ci+2 ∪ Ci+3. If Q meets both of them, then as these sets are
disjoint and do not contain a′i, we find that Q intersects each one in
exactly two vertices. Then consideration of the intersections of Q with
Ci−5, Ci−4 shows that a′i−1, ai−1 ∈ Q; similarly, a′i+1, ai+1 ∈ Q. So
Q = Ci in this case.

So we may suppose that Q is disjoint from Ci−3 ∪ Ci−2. Then
Q ∩ Ci−1 = {ai, a′i}, and looking at Q ∩ Ci we see that Q also meets
{ai+1, a

′
i+1}. On the other hand, the pair (ai, ai+1) does not lie on

an edge, as otherwise Q′ = {ai, ai+1, a
′
i−1, a

′
i, a
′
i+1} would be a clique

of order 5 meeting Ci−2 in a unique vertex, giving a contradiction.
So ai+1 /∈ Q and Q contains {ai, a′i, a′i+1}. It follows quickly that
Q = Ci+1: easily Q must be disjoint from Ci+4, and then looking at
the intersection with Ci+2, followed by Ci+3, the result follows.

Now with G a C-free graph containing H as a subgraph, consider
the set V0 of vertices lying in three distinct cliques of order 5, and let
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G∗ be the graph induced on V0 by edges whose endpoints lie in two
distinct cliques. Then the vertices {a′i} form a connected component of
G∗ and the edges induced on these vertices by G∗ are those induced by
H. It follows that any embedding of H into G is uniquely determined
by the images of a′0, a

′
1 in G. With this rigidity result, we can conclude

much as in the previous argument. The details are as follows.
For any bit string ε = (εi : i ∈ Z), let Hε be the extension of H with

the same vertex set, and with additional edges (a4i ∼ a4(i+1)) when
εi = 1, while for εi = 0 a “contradictory configuration” is attached:
take a copy of K5 with one edge deleted, and where the endpoints
of the deleted edge are to be identified with (a4i, a4(i+1)). Then the

graphs Hε are C-free, and there are 2ℵ0 of them.
Given a weakly universal C-free graph G, we would have embed-

dings of all the graphs Hε into G as subgraphs, and then at least two
of these embeddings would have to agree on the vertices a0, a

′
0, and

hence on all of V (H). But then wherever ε(i) 6= ε′(i), we would have
a new clique meeting H, contradicting our analysis above. �

4 2-Bouquets with Universal Graphs

In this final section we will show that some fairly large 2-bouquets,
taken as forbidden subgraphs, allow a countable universal graph. We
only know one way to do this, namely by showing that the closure
operator analyzed in [3] is locally finite. In model theoretic terms,
this implies that the class of existentially complete C-free graphs has a
unique countable model, which provides the strong form of universality
at once.

Fortunately, it is not necessary to work out the closure operator
in any detail. Some general considerations, primarily relating to the
∆-system lemma, will give us a very rough bound on the complexity
of this operator. In this section we will however need to work with an
explicit definition of this operator.

Our 2-bouquets Km +· Kn are solid graphs in the following sense.

Definition 4.1 A graph C is called solid if all of its blocks (2-connected
components) are complete.

We will next review the definition of the operator cl∗ given in [3].
This is the operator whose local finiteness is in question.

First, let G be a C-free graph, C0 a subgraph of G which is iso-
morphic to a subgraph of the graph C, and let B ⊆ V (C0) be a subset
of its set of vertices. Let (C∞0 )B be the free amalgam of an infinite
sequence of copies of C0 over B; in other words, form the disjoint union
of copies Ci0 of C0 for i ∈ N, then identify the various copies of B.
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We say that G is free over C0 if the graph (C∞0 )B embeds in G over
B. We say that B is a base for C0 in G over the vertex v ∈ B if C0

is free over B in G, and B is minimal subject to these requirements:
that is, C0 is not free in G over any set B′ properly contained in B for
which v ∈ B′.

With this notation, we define the following “closure operators”.
Let G be a C-free graph, and C0 a subgraph of C with a distinguished
basepoint v0. For v a vertex of G, let clC0

(v) be the union of all bases
B over v for subgraphs of G isomorphic to C0, with v corresponding
to the basepoint of C0. For A a set of vertices in G, let clC0(A) =⋃
v∈A clC0

(v). Similarly, if F is a family of subgraphs of C, then clF is
the union of of clC0

as C0 ranges over F .
These are not true closure operators, as they are not idempotent:

we do not have cl(cl(A)) = cl(A). But these partial closure operators
generate the closure operators that interest us. For any of these partial
closure operators cl, let cl∗ denote the corresponding closure operator.
In detail, setting cl0 = cl and cln+1 = cl ◦ cln, we let cl∗ =

⋃
n cln.

Fact 4.2 ([3])
1. For G a C-free graph, F a family of subgraphs of C, and v ∈ G,

the set clF (v) is finite.
2. For F the family of all subgraphs of C, if cl∗F (v) is finite for all

vertices v in all C-free graphs G, then there is a universal C-free graph
(and even a canonical one).

The second clause above is not sufficiently precise for our purposes,
as we will need to make computations involving clF , and the family
F defined here is broader, and the associated closure operator clF
more complex, than either needs to be. So we will now sketch the
definition of a narrower class F0 associated with a 2-bouquet C. The
main point of this definition is that it yields a more tightly controlled
partial closure operator clF0 with the property that after iteration it
yields the full closure operator: cl∗F0

= cl∗F . The definition of F0 is
based on the representation of a graph as a tree of blocks (2-connected
components with linking edges). We will now review this.

Let C be a graph. We define an equivalence relation on the edges of
C as follows. For e, e′ ∈ E(C), write C(e, e′) to mean that e, e′ belong
to a cycle. Let C∗ be the equivalence relation generated by C. A block
is the graph associated to a single equivalence class for the relation
C∗ by taking the edges in this class together with their vertices. The
blocks of C partition the edges and are either 2-connected or trivial (a
single edge). Two blocks intersect in at most one vertex. Let V0 be
the set of blocks in C, and V1 the set of vertices lying in more than
one block. We put a bipartite graph structure on V0 ∪ V1 by linking
v0 ∈ V0 with v1 ∈ V1 if v1 ∈ v0. This gives a forest; if C is connected,
it gives a tree T . For what follows, we take C to be connected and
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choose a root in V1 for T ; we treat T as a partial order with the root
at the bottom.

For t ∈ T we let T t be {s ∈ T : s > t}, and let Ct be the corre-
sponding part of C. We set

F0 = {(H, t) : t ∈ V1, t ∈ H, H \ {t} is a connected component of Ct}

Here the pair (H, t) represents a graph H with a basepoint t.

Fact 4.3 [3] Let C be a finite set of finite solid graphs. Let F be the
set of all finite subgraphs of graphs in C, and let F0 be the set of pairs
(Ct, t) introduced above, with C varying over C. Then for G ∈ EC and
A ⊆ V (G), we have cl∗F0

(A) = cl∗F (A).

We now specialize to the case at hand, C = {C} with C = Km +· Kn

and m ≥ n. The relevant closure operator is cl(H,a) with H ∼= Km and
a ∈ H. We will work inside an existentially complete C-free graph
G: the one significant graph theoretic consequence of this assumption
is that for any subgraph H ∼= Km in G, and any subset A ⊆ H, if
H is not free over A in G then there is a clique Q of order 5 with
|Q ∩ A| = 1 (in other words, there is a reason why H is not free over
A). Any C-free graph embeds as a subgraph in a C-free graph with
this additional property, and if one does not wish to invoke existential
completeness, it suffices to check this fact directly.

After these lengthy preliminaries, we can proceed. Our objective is
to show that in certain cases the closure operator clF0 defined above
is locally finite. If this fails, then the infinite iteration which defines
cl∗ really is infinite, in other words cln 6= cln+1 for all n. Using the
compactness theorem of logic or König’s theorem, it follows that in
some C-free graph there is an infinite sequence of vertices an such that
an+1 ∈ cl(an) \ cl(a0, . . . , an−1) for all n. One thing to keep in mind is
that according to our definitions, this forces the pair {an, an+1} to be
inside some m-clique, and in view of the hypothesis that the ambient
graph G be C-free, it should be clear that this already introduces a
certain amount of tension into the situation. The constructions of the
previous section give a good indication of what such sequences actually
look like in practice. What we need to show below is that for n ≤ 4,
or for n = 5 and m > 5, no such sequence can exist. This is done by
a fairly close analysis, after some preliminary considerations involving
∆-systems.

Proposition 4.4 Let C = Km +· Kn with m ≥ n, and n ≤ 4. Then

cl∗F0
is locally finite, and hence there is a universal countable C-free

graph.

Proof. We write cl∗ for cl∗F0
, and cl for clF0

, and we begin by running
through the analysis sketched above.
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Suppose the proposition fails. Then as the partial operator cl is
locally finite, for each i there must be some C-free graph G and some
vertex a ∈ V (G) for which cli+1(a) 6= cli(a). What we actually want
to work with is an infinite sequence ai of vertices in a single C-free
graph G, such that ai+1 ∈ cl(ai), ai+1 /∈ cl(aj) for j < i. By the
Compactness Theorem of logic (or a brute force application of König’s
Lemma) it suffices to find arbitrarily long sequences (ai) of this type.
One finds them by reverse induction. Begin with a vertex a for which
cln(a) 6= cln−1(a), with n large, and choose ai inductively, starting with
an and working downward, as follows. First, fix an ∈ cln(a) \ cln−1(a).
Then, given ai, one has ai ∈ cl(b) for some b ∈ cli−1(a), and one takes
ai−1 = b; it is easy to verify that the desired conditions are met.

Now we use the explicit definition of cl given above. We will write
cl(v,H) for the portion of cl(Km,a)(v) associated with a particular m-
clique H containing v: in other words, the union of the bases for H
over v in G. We have ai ∈ cl(ai−1, Hi) for some m-clique Hi, and thus
there is a subset Bi ⊆ Hi with ai−1 ∈ Bi, Hi free over Bi, such that
Bi is minimal subject to these conditions, and with ai ∈ Bi. We study
the whole configuration that results.

In view of the freeness ofHi over Bi, we may suppose thatHi∩Hj ⊆
Bi ∩Bj for all i, j. In particular for i < j − 1, the aj are not in Bi, by
the choice of the sequence, and hence aj /∈ Hi.

Now we apply a ∆-system argument to the sequence (Hi). This
sequence is an infinite sequence of sets all of fixed size. Hence there
is an infinite subsequence (Hi : i ∈ I) which forms a “∆-system with
heart B,” that is we have Hi ∩ Hj = B for all i, j ∈ I distinct, with
B a fixed set. This is the starting point for our analysis. The main
case division is between the cases B 6= ∅ and B = ∅. The case in
which B is empty is one that only arises when m is small, and in fact
is illustrated by the construction in the previous section corresponding
to m = n = 5. Given that example, it is not surprising that that
possibility calls for some close analysis here.

Note that the ∆-system property shows that the cliques Hi are free
over B for i ∈ I.

The case n = 2 is straightforward, and is also included in a case
treated at the end of [3] by more direct methods, so we will assume
here that n ≥ 3.

The case n = 3

For n = 3, the situation is so simple that we do not even need a
∆-system. We can simply consider Hi ∩ Hj with i = j − 2. Then
aj−1, aj /∈ Hi, so |Hj \ Hi| ≥ 2, and if Hi ∩ Hj 6= ∅ then we have
an embedding of Km +· K3 into G with Hi representing Km and with
aj−1, aj representing the additional vertices of K3. This is a contra-
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diction, so Hj−2 ∩Hj = ∅.
On the other hand, aj−1 ∈ Hj−1 ∩Hj , so this intersection is defi-

nitely nonempty, and hence by the same argument |Hj−1∩Hj | = m−1,
and similarly |Hj−2 ∩Hj−1| = m − 1, so |Hj−2 ∩Hj | ≥ m − 2. Since
m ≥ n = 3 we see that Hj−2∩Hj 6= ∅ after all, and we have the desired
contradiction. This, in miniature, is how the ∆-system argument will
permit us to argue in less straightforward cases.

The case n = 4

With n = 4, suppose first that the “heart” B of the ∆-system is
nonempty. Taking i, j ∈ I with i < j−1 we see that |B| = |Hi∩Hj | ≤
m−2. If |B| ≤ m−3 thenHi +· K4 embeds intoHi∪Hj , a contradiction.

So |B| = m− 2 in this case, and B = Hi \ {ai−1, ai}.
We have B ⊆ Hi for i ∈ I, and we will show that B ⊆ Hi for all

i. Supposing the contrary, we have some choice of i for which B ⊆ Hi

and B 6⊆ Hi−1. On the other hand, Hi−1 ∩Hi 6= ∅, and as G is C-free
this implies |Hi−1 ∩Hi| ≥ m − 2. Hence |Hi−1 ∩ B| ≥ m − 3 and as
m ≥ 4 it follows that Hi−1 meets B. Taking j ∈ I with j > i, we have
Hi−1 ∩Hj 6= ∅ and aj−1, aj /∈ Hi. Hence Hi−1 ∩Hj ⊆ B, and as G is
C-free we must have |Hi−1 ∩Hj | ≥ m− 2. Hence B ⊆ Hi−1 after all.

Using our ∆-system, we have more or less pinned down the whole
configuration. At this point since B ⊆ Bi for each i, and ai−1, ai ∈ Bi,
we have Bi = Hi.

Take i ∈ I. By the minimality of the base Bi, Hi is not free
over Hi \ {ai}. Hence by our assumption on G we have the following
“obstruction”.

There is some Q ∼= K4 in G such that |Q ∩ (Hi \ {ai})| = 1

As G is C-free we find |Hi ∩Q| = 2, and ai ∈ Q. So |Q ∩B| ≤ 1, and
as Hi is free over B, if we had |Q∩B| = 1 we would get an embedding
of Q+· Hi into G for some i, a contradiction. This is a key ∆-system
argument.

Our conclusion is that Q ∩ B = ∅ and hence Q ∩Hi = {ai−1, ai}.
Since Hi+1 = B ∪ {ai, ai+1} it follows that Q ∩ Hi+1 ⊆ {ai, ai+1}
and hence Q ∩Hi+1 = {ai, ai+1}. Continuing inductively, aj ∈ Q for
infinitely many j, a contradiction. Thus

B is empty

Now choose i and j so that Hi∩Hj = ∅, i < j, and j− i is minimal.
Evidently j ≥ i+ 2. Let A = Hj−1 \ {aj−2, aj−1}.

If j > i + 2 then Hi ∩ Hj−1 = Hi ∩ A, and as G is C-free we
have |Hi ∩ Hj−1| ≥ m − 2, hence A ⊆ Hi. As Hi ∩ Hj = ∅ we have
Hj−1 ∩Hj ⊆ {aj−1, aj}; but aj /∈ Hj−1, so |Hj−1 ∩Hj | = 1. As G is
C-free this is a contradiction. Thus j = i+ 2.
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Suppose that m > 4. Then as |Hi ∩ Hi+1| ≥ m − 2 and |Hi+1 ∩
Hi+2| ≥ m − 2, we have |Hi ∩ Hi+2| ≥ m − 4, so Hi ∩ Hi+2 6= ∅, a
contradiction. So we have m = 4 and j = i + 2. Furthermore the
preceding argument gives |Hi ∩Hi+1| = |Hi+1 ∩Hi+2| = 2.

Now Hi+1 is not free over Hi∩Hi+1, and thus there is a clique Q ∼=
K4 in G so that |Q∩ (Hi∩Hi+1)| = 1. Accordingly Q meets Hi \Hi+1

and Hi+1 \Hi; let u, v belong to Q∩ (Hi \Hi+1) and Q∩ (Hi+1 \Hi),
respectively. Set Q′ = {u, v} ∪ (Hi ∩ Hi+1). Then Q′ ∼= K4 and
Q′ ∩Hi+2 = {v}, so Q′ ∪Hi+2

∼= C, a contradiction.
This completes the proof. �

We note that the penultimate line of the foregoing proof is par-
ticularly important in terms of eliminating the more plausible sort of
construction, similar to the constructions which are actually seen in
§3.

Now we can carry out the same line of argument at the next level,
with n = 5. Our analysis then leads more clearly in the direction of
the examples that actually do exist, given in the previous section. The
analysis becomes more elaborate. Since all the ideas needed are visible
in the proof of the previous argument, we will assume that this style
of argument is familiar at this point.

Proposition 4.5 Let C = Km +· K5 with m ≥ 6. Then cl∗F0
is locally

finite, and hence there is a universal countable C-free graph.

Proof. Write cl∗ for cl∗F0
. Supposing this is not locally finite, work

in an existentially complete C-free graph G, and extract sequences ai,
Hi, Bi witnessing the failure of local finiteness, as in the previous case.
Again, apply the ∆-system lemma to get a ∆-system (Hi : i ∈ I) with
heart B. As G is C-free, one has one of the following: |B| = m − 3,
|B| = m− 2, or B is empty.

While the first two cases are similar, each one has to be considered
on its own. In some sense the third case, though not requiring much
analysis, is really the main one. In particular the distinction between
m = 5 and m > 5 becomes visible in that case.

(Case I) The case |B| = m− 3

If |B| = m− 3 one shows easily that B ⊆ Hi for all i, and not just for
i ∈ I.

A critical point is that

(1)
⋃
i(Hi \B) contains no clique Q0 of order 4.

Otherwise, one takes i with Hi ∩ Q0 = ∅, and one extends Q0 by a
point of B to get a contradiction.
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This is generally applied in the following form: for any clique Q
of order 5 in G, the intersection Q ∩

⋃
i(Hi \ B) has order at most 3.

Since |Q∩Hi| ≥ 2 whenever the intersection is nontrivial, this restricts
possibilities substantially.

We will show that ai /∈ Hj for i 6= j − 1, j. This is immediate if
j < i. If i ≤ j − 2 but ai ∈ Hj , one first maximizes i with respect to
these conditions. Then consider B′ ⊆ Bj minimal so that ai ∈ B′ and
Hj is free over B′. By definition the elements of B′ belong to cl(ai)
and therefore by the choice of the sequence (an) we have aj /∈ B′, and
hence also aj−1 /∈ B′. As ai /∈ B, we find B′ \ {ai} ⊆ B ⊆ Hi. So
B′ ⊆ Hi. But then Hi is free over B′, since Hj is. But also B ⊆ Bi
and hence B′ ⊆ Bi, so by minimality of Bi we have ai+1 ∈ B′, and
hence i+ 1 ≤ j − 2 as well, which violates the choice of i.

Let Hi = B ∪ {ai−1, ai, ui}. It follows that ui 6= aj for all i, j. The
possibility that ui = uj for some i 6= j (notably, j = i+2) is one of the
main issues, and brings to mind the first construction in the previous
section.

At this point the analysis divides into two short-lived subcases.

(Case I.1)
For some i, there is Q ∼= K5 such that Q ∩Hi = {ai−1, ai}.

Fix such a Q and i throughout this part of the analysis.

(2) ui−1 = ui+1

Take Q ∼= K5 with Q∩Hi = {ai−1, ai}. Then Q∩B = ∅. Applying
(1) to Q, It follows quickly that Q ∩

⋃
iHi = {ui−1, ai−1, ai}, and in

particular Q ∩Hi+1 = {ui−1, ai}, from which claim (2) follows.
Let u = ui−1 = ui+1. One may check that u ∈ Hj only for j = i±1

(using Q). Now to the main step:

(3) There is Q′ ∼= K5 with Q′ ∩Hi+1 = {ai, ai+1}

As Hi+2 is not free over {ai+1}∪B and G is existentially complete,
we have some Q′ ∼= K5 with Q′ ∩ |{ai+1} ∪ B| = 1, hence ai+1 ∈ Q′
and Q′ ∩B = ∅. Recall also that |Q′ ∩

⋃
i(Hi \B)| ≤ 3.

As u 6= ui+3 we cannot have Q′ ∩ Hi+2 = {ai+1, ai+2}, by the
analysis which produced claim (2). So we have ui+2 ∈ Q′.

If Q′ ∩ Hi+2 = {ai+1, ui+2, ai+2} then we find |Q ∩ Hi+1| = 1, a
contradiction. So Q′∩Hi+2 = {ai+1, ui+2}. As ui−1 = ui+1 one checks
easily that Q′ satisfies claim (3).

To complete the analysis of Case I.1, observe that we can repeat
the proof of (3) to get some Q′′ ∼= K5 with Q′′ ∩Hi+2 = {ai+1, ai+2},
and then as in (2) we have u = ui+3, a contradiction.
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(Case I.2) There is no i and Q ∼= K5 such that Q ∩Hi = {ai−1, ai}.

(4) There is no i and Q ∼= K5 such that Q ∩Hi = Hi \B

Suppose the contrary. One finds easily that ui−1 = ui = ui+1. As
Hi−1 is not free over {ai−2} ∪ B, one can find Q′ ∼= K5 with |Q′ ∩
({ai−2} ∪ B)| = 1. Hence ai−2 ∈ Q′ and Q′ ∩ B = ∅. Using the case
assumption, one finds ui−1 ∈ Q′. Hence Q′ ∩ {ai, ai+1} 6= ∅ and we
have found three elements in Q′ ∩

⋃
iHi. So Q′ ∩Hi−2 ⊆ {ai−2, ui−1},

forcing ui−1 = ui−2. But then |Q′ ∩Hi−2| = 1, a contradiction. This
proves (4).

Now choose some i so that ui−1 6= ui. AsHi is not free over {ai−1}∪
B, we have some Q ∼= K5 with |Q∩({ai−1}∪B)| = 1, and at this point
this forces Q ∩ Hi = {ai−1, ui} and Q ∩ Hi−1 = {ai−1, ui−1}. Thus
Q ∩

⋃
j Hj = {ui−1, ai−1, ui} and looking at Q ∩Hi+1 it follows that

ui 6= ui+1. So we can choose Q′ ∼= K5 with Q′∩
⋃
j Hj = {ui, ai, ui+1}.

Let H = {ui, ai, ui+1} ∪ B; then H ∼= Km and H ∩ Q = {ui}, so
H ∪Q ∼= Km +· K5, a contradiction.

(Case II) The case |B| = m− 2

For any j such that Hj ∩ B 6= ∅, we have |Hj ∩ B| ≥ m − 3, as
otherwise we can find someHi containingB such that |Hi∩Hj | ≤ m−4,
and so embed C in G. It then follows that Hj±1 ∩ B 6= ∅, and hence
by induction we have |Hj ∩B| ≥ m− 3 for all j.

Fix i ∈ I. Then Hi = B ∪ {ai−1, ai}.
As Hi is not free over {ai−1} ∪ B there is Q ∼= K5 such that |Q ∩

({ai−1} ∪B)| = 1, and hence Q ∩Hi = {ai−1, ai}. Fix vertices u, v in
Q ∩ (Hi−1 \ {ai−1}) and Q ∩ (Hi+1 \ {ai}), respectively.

Now |Hi±1∩B| ≥ m−3 and hence Hi−1∩B∩Hi+1 6= ∅. Take w ∈
Hi−1∩B∩Hi+1. SetQ′ = {w}∪[Q∩(Hi−1∪Hi+1)]. ThenQ′ is a clique,
and |Q′∩B| = 1, so |Q′| ≤ 4 and |Q∩(Hi−1∪Hi+1)| ≤ 3. It follows that
v = u or v = ai−1. But v 6= ai−1 since otherwise ai−1 ∈ Hi+1 and Hi+1

is free over some B′ ⊆ Hi+1 with B′ ⊆ Hi+1 \ {ai, ai−1} ⊆ Hi, which
contradicts the minimality of Bi. So v = u. By a similar argument
v 6= ai−2.

At this point we have enough information to make a close analysis
of the structure of H∗ = Hi−1 ∪Hi ∪Hi+1. As we have seen already,
exploiting the vertex w, there is no clique of order 4 in H∗ \B. On the
other hand, u ∈ Hi−1 ∩Hi+1 and hence ai−2 6∼ ai, ai−1 6∼ ai+1 (using
“∼” for the edge relation).
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We can take Q′ ∼= K5 with |Q′ ∩ (Hi+1 \ {ai+1})| = 1, and then
ai+1 ∈ Q′, Q′ ∩B = ∅, and |Q′ ∩ {ai, u}| = 1.

As ai+1 ∈ Q′, it follows that ai−1 /∈ Q′, and hence Q′ ∩Hi = ∅.
Now u /∈ Hi−2, as otherwise |Q ∩ (Hi−2 ∪ Hi−1)| ≥ 4 and hence

(Hi−2 ∩Hi) ∩B = ∅, which is false.
It then follows that |Q′ ∩ (Hi−2 ∪Hi+1)| ≥ 4. Hence Hi−2 ∩Hi+1 ∩

B = ∅, but |B| ≥ 4 and |B \Hj | ≤ 1 for all j, so this is impossible.

(Case III) The case in which B is empty

We choose a pair i, j with i < j such that Hi ∩ Hj = ∅ and j − i is
minimal. Then |Hi ∩Hi+1|, |Hi+1 ∩Hj | ≥ m − 3, and it follows that
n = 6.

If j > i + 2, consider Ak = Hi ∩ Hi+k and A′k = Hj ∩ Hi+k for
k = 1, 2. Then (Ak, A

′
k) is a partition of Hi+k of type (3, 3). As

A′1 ∪ A′2 ⊆ Hj \ {aj}, there is a vertex u ∈ A′1 ∩ A′2. If A1 6= A2 we
can find a clique Q of order 5 contained in A1 ∪ A2 ∪ {u} such that
Hj ∩Q′ = {u}, a contradiction.

So A1 = A2, and therefore A′1 6= A′2, and we can run the same
argument with Hi in place of Hj . Hence

j = i+ 2

Next we claim
Hk ∩Hk+2 = ∅ for all k

Proceeding inductively, it is enough to consider Hi−1 ∩Hi+1. Sup-
pose this intersection is nonempty, and take k minimal so that Hk ∩
Hi+1 6= ∅; if no such k exists, we can form a ∆-system with nonempty
heart, reducing to a case already treated. Then easily Hk is partitioned
by Hi, Hi+2 and hence Hk−1 meets Hi∪Hi+2, while ai−1, ai+2 /∈ Hk−1,
forcing |Hk−1 ∩ Hi| ≤ 2, |Hk−1 ∩ Hi+2| ≤ 2. These intersections are
too small to be nontrivial, so Hk−1 ∩Hi = Hk−1 ∩Hi+2 = ∅, a contra-
diction.

It now follows easily that all Hi, Hj are disjoint for |j − i| ≥ 2.
Finally, since Hi is not free over Hi∩Hi−1, there is Q ∼= K5 meeting

Hi∩Hi−1 in one vertex. Taking u ∈ Q∩(Hi\Hi−1) and v ∈ Q∩(Hi−1\
Hi), we let Q′ = {u, v} ∪ (Hi ∩ Hi−1) and we find Hi−2 ∪ Q′ ∼= C, a
contradiction. This ends the analysis. �

The same analysis, in the case C = K5 +· K5, shows that we must

have a ∆-system with B = ∅, embedded in a configuration similar to
the one given in the previous section. The most significant difference
between the cases m = 5 and m > 5 occurs precisely at the end of the
analysis, in the last paragraph of the proof above.
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[8] Z. Füredi and P. Komjáth. On the existence of countable universal
graphs. J. Graph Theory, 25 (1997), 53–58.
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