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A NOTE ON ORTHOGONALITY AND STABLE EMBEDDEDNESS

GREGORY CHERLIN, MARKO DJORDJEVIC, AND EHUD HRUSHOVSKI†

Abstract. Orthogonality between two stably embedded definable sets is preserved under the addition

of constants.

§1. Introduction. Let T be a first order theory, with two distinguished sorts
P, Q, taking variables x, y. P, Q are said to be orthogonal if any formula
φ(x, y) = φ(x1, . . . , xn , y1, . . . , ym) is equivalent to a Boolean combination of for-
mulas øi(x), èj(y), possibly involving parameters. (Their canonical parameters
will always be at worst algebraic.)
Orthogonality would perhaps be better referred to as model-theoretic “almost
disjointness” of P and Q; (strict) disjointness would then be the same notion,
without allowing algebraic parameters. ConsideringP,Q andP∪Q as structures in
their own right, with the structure induced fromT , disjointness is just the categorical
notion of direct sum, in the category of structures (or theories) and interpretations.
The term “orthogonality” arises from a considerably more sophisticated and more
restricted situation encountered initially in stability theory ([8]); out of habit, we
will stick with this terminology in our general setting.
A collection P of sorts is called stably embedded if every relation on sorts
P1, . . . , Pm ∈ P defined with parameters in a model M of T can also be defined
with parameters from elements of the sorts in P. Any collection of sorts extends
canonically to a stably embedded one; it suffices to add those (possibly imaginary)
sorts that code subsets of existingP1×· · ·×Pn , and to closeP under this operation.
(We will speak of single sorts below; but the results apply equally to families.)
We show that if P, Q are orthogonal and stably embedded, then they re-
main orthogonal in any expansion by constants of T . Equivalently, P ∪ Q is
also stably embedded. As a corollary, if Q is orthogonal to P1 and to P2, all
three being stably embedded, then Q is orthogonal to P1 ∪ P2. A similar re-
sult holds for the union of more than two Pi . This corrects Lemma 2.4.8 of [2],
where stable embeddedness was not assumed; Example 3.7 below shows the as-
sumption is necessary. For further remarks associated with [2], please see also:
http://www.rci.rutgers.edu/∼cherlin/Notes.
The proof of this rather basic model-theoretic statement makes a surprising but
essential use of locally finite group theory. In fact the proof we give requires
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the classification of the finite simple groups. The relevant group-theoretic fact,
Lemma 3.1, is used for certain ∞-definable groups in T eq ; thus in many contexts
it can be proved using specific features of T , avoiding use of the classification. (A
similar proof under additional geometric assumptions, sufficient for the use in [2],
was sketched in [3].)
For properties of stable embeddedness, we refer to [2] or the appendix to [1].
We will work with imaginary elements; in particular acl(B) denotes the algebraic
closure of B inM eq ; see [8], [7], or [6].
We thank the referee for his or her careful reading.

§2. Basic lemmas on orthogonality and stable embeddedness. Orthogonality over
a set of parameters B is denoted “(P ⊥B Q)”.

Lemma 2.1. The following are equivalent:

1. (P ⊥B Q); i.e., anyB-definable subset ofP
l×Qm is a finiteBoolean combination

of rectangles R ×R′.
2. For any l, m ∈ N, and a ∈ P l , b ∈ Qm, tp(a/acl(B))=⇒ tp(a/acl(B), b).
3. For any l ∈ N and a ∈ P l , any Ba-definable relation onQ is acl(B)-definable.

Proof. Assume (1). Then any B-definable S ⊂ P l × Qm is a finite union of
rectangles R′ × R′′; the maximal definable rectangles contained in S are finite in
number, hence acl(B)-definable.1 ThusR′, R′′ can be taken to be acl(B)-definable.
Let B ′ = acl(B) ∩ dcl(P), B ′′ = acl(B) ∩ dcl(Q). Since R′ is a relation on P, it
can be distinguished from any finite number of other relations by points of P, so
the canonical code for R′ is B ′-definable. Similarly R′′ is B ′′-definable. It follows
(symbolically) that tp(P/B ′) implies tp(P/BQ). Since B ′ ⊂ dcl(BP), tp(PB ′/B ′)
implies tp(PB ′/BQ), so tp(P/B ′) implies tp(P/B ′Q). Since B ′′ ⊂ dcl(Q), it
follows that tp(P/B ′B ′′) implies tp(P/B ′B ′′Q). Let B ′′′ = acl(B) ∩ dcl(P ∪ Q).
Any B-definable equivalence relation on Pk ×Ql with finite classes is a finite union
ofB ′B ′′-definable rectangles (as is any relation), and so each class isB ′B ′′-definable.
Thus B ′′′ = dcl(B ′B ′′), so

tp(P/B ′′′) implies tp(P/B ′′′Q).

But tp(acl(B)/B ′′′) implies tp(acl(B)/P ∪ Q) = tp(acl(B)/B ′′′ ∪ P ∪ Q); so
tp(P/B ′′′Q) implies tp(P/acl(B) ∪ Q). In particular tp(P/acl(B)) implies
tp(P/acl(B), Q) so tp(a/acl(B)) implies tp(a/acl(B), b).
Now (2) implies the dual (3′) of (3), which implies (1) by a standard compactness
argument. This closes the circle, showing (1),(3′),(2) are equivalent. Since (1) is
self-dual, (3) and (2′) are too. a

Lemma 2.2. Let f : P ′ → P be B-definable with finite fibers. If (P ⊥B Q) then
(P′ ⊥B Q).

Proof. We may assume B = acl(B). Let a ∈ P l , c ∈ Fa , Fa a finite Ba-
definable set, b ∈ Qn. We have to show that tp(ac/B)=⇒ tp(ac/Bb); since

1 The referee has pointed out a quick proof of this statement. Define EP(x, x
′) ⇐⇒

[(∀y)(S(x, y) ⇐⇒ S(x′, y)]. As S is a finite union of rectangles, it is clear that EP has finitely many
classes C1, . . . , Cr . Similarly define Eq , with classes C

′
1 , . . . , C

′
s ; then the Ci , C

′
j are acl(B)-definable,

and S is a union of rectangles Ci × C
′
j .
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tp(a/B)=⇒ tp(a/Bb), it suffices to show that tp(c/Ba)=⇒ tp(c/Bab). Other-
wise, there is a Bac-definable set Rc ⊆ Qn, not Ba-definable. Consider the equiv-
alence relation Ea : (∀y ∈ Fa)(x ∈ Ry ⇐⇒ x′ ∈ Ry). Since Fa is finite, Ea has
finitely many classes. By orthogonality,Ea is acl(B) = B-definable. So each class is
B-definable. But Rc is a union of classes, so it is B- definable. A contradiction. a

Corollary 2.3. If (P ⊥B Q), and a ∈ P, b ∈ Q, then we have
tp(b/acl(B))=⇒ tp(b/acl(Ba)).

Proof. It suffices to show that tp(b/acl(B))=⇒ tp(b/Ba ′) for any finite tuple
a′ ∈ acl(Ba). For such an a′ we have a′ ∈ P′ for some P′ admitting a B-definable
map to some Pm with finite fibers. So (P′ ⊥B Q) by Lemma 2.2 . a

Lemma 2.4. Let f : P ′ → P be B-definable. For a = (a1, . . . , al ) ∈ P l , let
Fa = ∪f−1(ai ). If (P ⊥B Q), and (Fa ⊥Ba Q) for each l and each a ∈ P l , then
(P′ ⊥B Q).

Proof. Let a ∈ P l , c ∈ F ka , and let Rc be a Bac-definable relation on Q. Since
(Fa ⊥Ba Q), Rc′ can take only finitely many values as c ′ runs over Fa . Thus the
equivalence relationEa defined in the proof of Lemma 2.2 has finitely many classes.
The rest of the proof is identical. a

Lemma 2.5. Let P,Q be orthogonal 0-definable sets in an |L|+ -saturated structure
M , each stably embedded. Then P ∪Q is stably embedded iff for any (finite) B ⊆M ,
(P ⊥B Q).

Proof. If P ∪ Q is stably embedded, then any b-definable relation on P ∪ Q is
b′-definable for some b′ from P ∪ Q; so it is clearly a finite union of rectangles.
Conversely, if P ∪Q is not stably embedded, then some relation Rb on P ∪Q is not
P ∪ Q-definable. Then Rb cannot be a finite Boolean combination of rectangles:
otherwise by stable embeddedness of P and of Q, each side of each rectangle is P
or Q-definable,hence Rb itself. Thus P, Q are not orthogonal over b, hence not
over B . a

§3. Stable embeddedness of a union of definable sets. The proof of the following
lemma, and through it all results in this section except Theorem 3.3, requires the
classification of the finite simple groups.

Lemma 3.1. There is no infinite group G with the following property: for each n,
the action of G on Gn by conjugation has finitely many orbits.

Proof. If such a group G exists, say with |G n/adG | = c(n), where adG denotes
the action, then every n-generated subgroup must have size < c(n + 1). (If a, b ∈
〈c1, . . . , cn〉 and (a, c1, . . . , cn), (b, c1, . . . , cn) are G-conjugate, then a = b.) In
particular, G is locally finite, with finitely many conjugacy classes.
However, no such group can be infinite. Suppose otherwise. G has only finitely
many normal subgroups. Let G 0 be the minimal normal subgroup of G of finite
index; G0 still has finitely many conjugacy classes. Let N be a maximal proper
normal subgroup ofG0; thenG0/N has the same properties, and is a simple group.
We may thus takeG to be simple. The elements ofG have only finitely many orders.
By [5], simple locally finite groups omitting even one order are linear. So G is a
linear group; G ≤ GLn(K) for some n and some algebraically closed field K . At
this point, [9] applies, with a complete classification of the locally finite simple linear
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groups. A contradiction can also be reached more directly, using the boundedness
of the exponent, as follows.
Let H be the Zariski closure of G . If m is the least common multiple of the
orders of elements of G , then xm = 1 for all x ∈ G , and hence for all x ∈ H . In
characteristic 0, it follows that the connected component H 0 of H is trivial, so H
is finite, a contradiction. In positive characteristic p, a Zariski generic element of
H 0 can have order m = pl ; but in this case H 0 is unipotent, hence H is solvable-
by-finite, contradicting the simplicity of G . a

Theorem 3.2. Let P, Q be orthogonal 0-definable sets in a structure M , each
stably embedded. Then for any B ⊆M , (P ⊥B Q).

Proof. Let c be a canonical parameter for a relation φc on P ∪ Q, not P ∪ Q-
definable. If c and c′ have the same type over P ∪ Q, then c = c ′. We can work
over a base set B ⊆ P ∪Q such that the typeR = tp(c/B) implies tp(c/B ∪P) and
also tp(c/B ∪Q). Equivalently, dcl(Bc) ∩ Peq ⊆ dcl(B) and similarly for Q.
For a ∈ P, the relation φc(a, y) onQ isQ-definable, with some canonical param-
eter fc(a) ∈ Q

eq ; this uses the stable embeddedness of Q. By stable embeddedness
of P, the equivalence relation: fc(x) = fc(x′) is B-definable. Thus we can view
fc as a definable bijection U → V , with U ⊆ Peq , V ⊆ Qeq .
Let S = U ∪ V ∪ R. Then the restriction map is an isomorphism Aut(S/P) '
Aut(V/P). Similarly restriction gives an isomorphism Aut(S/Q) ' Aut(U/Q).
fc shows thatU isV -internal, and vice versa. By [4], Appendix B,Aut(U/Q) and
Aut(V/P) are∞-definable groups. Note thatAut(U/Q) ⊆ dcl(P) andAut(V/P) ⊆
dcl(Q). It follows that
GP := Aut(S/P) ' Aut(V/P) ⊆ dcl(Q)
GQ := Aut(S/Q) ' Aut(U/Q) ⊆ dcl(P).
ButGP , GQ both act regularly onR. Their actions commute: If g ∈ GP , h ∈ GQ ,
then [g, h] ∈ Aut(S/P ∪Q) = (1).
Thus a choice of c ∈ R gives a definable isomorphism αc : GP → GQ , mapping
g to h if g(c) = h−1(c). αc is c-definable. But any two such isomorphisms differ
by conjugation. Thus the map induced by αc on GP-conjugacy classes in GP does
not depend on c. So there is a B-definable bijection between (GP)n/adGP and
(GQ)n/adGQ . By orthogonality, these sets are all finite. By Lemma 3.1, GP is finite.
So R is finite. But then fc is acl(B)-definable; a contradiction. a

Theorem 3.3. Assume T is a theory such that for any every∞-interpretable (with
parameters) permutation group (G,X ), the intersection of a definable family of point
stabilizers is a finite intersection.
Let P, Q be stably embedded definable sets. Then P ∪Q is stably embedded.

The condition holds if every such pair (G,X ) is linear, or just embeddable into
some stable permutation group.

Proof. Follow the proof of Theorem 3.2 to the point of obtaining GP . For
v ∈ V , let Zv = {g ∈ GP : gv = v}. Then (1) = ∩vZv , so by (2) there exists
a finite F ⊆ V with ∩v∈FZv = (1). Thus fc (from the proof of Theorem 3.2) is
determined by the finitely many values: let g = f−1

c . Suppose c 6= c
′ ∈ R. We have

tp(c/P) = tp(c′/P), so there exists 1 6= ó ∈ GP with c′ = ó(c). By choice of F ,
ó(a) 6= a for some a ∈ F . and g(a) = ó(g)(ó(a)) 6= ó(g)(a) = f−1

c′ (a). So the
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values of f−1
c on F determine c, hence c ∈ dcl(B, F, f

−1
c (F )) ⊆ dcl(P ∪Q). This

contradicts the choice of c. a

Corollary 3.4. Let P, Q, Q′ be stably embedded. If (P ⊥B Q) and (P ⊥B Q
′)

and Q′′ = Q ∪Q′, then (P ⊥B Q
′′).

Proof. We may assume B = acl(B). Let a ∈ P l , b ∈ Qm, b′ ∈ (Q′)m
′

. Since
(Q ⊥B P), andbyCorollary 2.2, tp(a/B)=⇒ tp(a/acl(Bb)). Since (P ⊥Bb Q

′) (by
Theorem 3.2), tp(a/acl(Bb))=⇒ tp(a/Bbb′). Thus tp(a/B)=⇒ tp(a/Bbb′). a

Here is Lemma 2.4.8 of [2], with stable embeddedness added to the hypotheses.

Corollary 3.5. Let f : P ′ → P be B-definable, Fa = f
−1(a). Assume Q is

stably embedded, and Fa is stably embedded over a for each a. If (P ⊥B Q), and
(Fa ⊥Ba Q) for each a ∈ P, then (P ′ ⊥B Q).

Proof. The conclusion is given by Lemma 2.4; the hypothesis of Lemma 2.4 is
provided by Corollary 3.4. a

Example 3.6. The condition on (G,X ) in Theorem 3.3 cannot be removed.

Proof. LetA be anAbelian group, with a uniformly definable family of definable
subgroups (Au : u ∈ U ); say the family is closed under finite intersections, and has
no smallest element. Let Bu = A/Au , and let B be the disjoint union ∪u∈U ({u} ×
Bu). There is a natural action ofA onB , such that every stabilizer contains someAu .
Let B1, B2 be two copies of B made into disjoint sorts; do not put an isomorphism
between them into the language, but do include the action of A on B i . Let A′

be another copy of A, again as a sort disjoint from the others. Add the relation
∪u∈URu , where Ru = {(a′, b1, b2) ∈ A′ × B1 × B2 : (a′/Au) + b1 = b2}. Let
P = (A ∪ B1), Q = (A ∪ B2), R = A

′. a

Example 3.7. The stable embeddedness assumption in Corollary 3.4 or Corol-
lary 3.5 cannot be removed.

Proof. Let P,Q,Q′ be unary predicates, and R a ternary relation symbol. Let
K be the class of all finite structures A in this language such that P,Q,Q ′ partition
the universe into three disjoint classes, and if R(a, b, c) holds then no two of a, b, c
belong to the same class.
K is closed under substructures, has the joint embedding property and amalga-
mation property so the Fraissé limitM exists and eliminates quantifiers.
By elimination of quantifiersP is orthogonal toQ and toQ ′. But by construction
P is not orthogonal to Q ∪Q′. a
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