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Domaine de la Doua, Bâtiment Braconnier
21 avenue Claude Bernard

69622 Villeurbanne CEDEX, France
e-mail: altinel@desargues.univ-lyon1.fr

Gregory Cherlin∗

Department of Mathematics, Rutgers University
100 Frelinghuysen Rd.

Hill Center, Piscataway, New Jersey 08854, U.S.A

February 20, 2005

∗Supported by NSF Grant DMS 0100794



February 20, 2005 1

Introduction

In this paper we will prove the following theorem:

Theorem 1 Let G be a simple L∗-group of even type with a weakly embedded subgroup.
Then G ∼= PSL2(K) where K is an algebraically closed field of characteristic two.

Here an L∗-group is a group of finite Morley rank such that every proper definable
simple section of even type is an algebraic group (equivalently, a Chevalley group) over
an algebraically closed field.

Theorem 1 follows from the following result in view of the main results of [7] and [8]:

Theorem 2 Let G be a simple L∗-group of even type with a weakly embedded sub-
group M . Then CG(A1, A2) is finite whenever A1 and A2 are two distinct conjugates of
Ω1(O2

◦(M)).

Our broader aim is to prove the following.

Conjecture 1 Let G be a simple group of finite Morley rank of even type. Then G is
algebraic.

The proof we have in mind is modelled on the proof of the special case in which
G is a simple K∗-group of even type. A K∗-group is a group of finite Morley rank
in which every proper definable infinite simple section is algebraic (Chevalley) over an
algebraically closed field. The difference between the two notions, K∗ and L∗, is that
L∗-groups are permitted, a priori, to have simple definable degenerate sections (with
finite or even trivial Sylow 2-subgroup). Thus what we are proposing to do, ultimately,
is a classification of certain simple groups of finite Morley rank in which we explicitly
allow the Feit-Thompson Theorem to fail (rather badly), but arrive nonetheless at the
desired result.

We view the result of the present paper as the main ingredient of the projected
treatment of the L∗ case, in the sense that it is this step which requires the greatest
deviation from the methods used in the K∗ situation. The next step would be the
treatment of groups of finite Morley rank of even type with strongly closed abelian
subgroups along the lines of [4], another case in which very substantial modifications
are needed. Following on that case, the remainder of the proof, though quite long, would
not deviate very strikingly from the analysis in the K∗ case, in our opinion, though there
are some additional points required.

Note (Fall 2004). At the present writing, the proof alluded to is the subject of a
text in preparation in conjunction with Borovik [5]. The most striking deviations from
the K∗ case occur in the present paper and in the treatment of strongly closed abelian
subgroups.

In the present article we will be working with a supposed counterexample to Theorem
2, and we will eventually arrive at a contradiction. Thus our standing assumption will
be as follows.

There exist A1 and A2, two distinct conjugates
of Ω1(O2

◦(M)), such that CG(A1, A2) is infinite.(¬∗)
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The condition (¬∗) refers to the negation of the two conditions (∗) which were the
respective starting points for [7] and [8]. However in these two papers the relevant
condition (∗) is formulated in two different ways:

CG(A1, A2) is finite whenever A1 and A2 are
two distinct conjugates of Ω1(M).

(
∗[7]

)

CG(A1, A2) is finite whenever A1 and A2 are
two distinct conjugates of Ω1(O2

◦(M)).

(
∗[8]

)
On the other hand, as explained in [7, p. 96], in the context of that paper (strong

embedding) these two conditions are equivalent. This equivalence should not be assumed
in the context of [8], however; it follows from the results of the present paper at a very
late stage in the analysis. Accordingly, here we must adopt the formulation used in [8].

The proof of Theorem 2 follows the main strategy of Section 4 of [16], although the
implementation of the ideas deviates substantially from that valuable source of inspira-
tion, providing a cubist portrait of the original. The fact that this is possible can be
traced back to the main result of [21], which will be reinterpreted as a theory of “good
tori” (cf. Fact 1.27 below). We depend also on some useful general principles which were
stressed in the introduction to [6], pp. 156–157, where they occur as Proposition 3.2,
Proposition 3.4, Fact 4.19, and Fact 1.1, due variously to Borovik (personal communi-
cation), Poizat [19], and the first author [1]. (The point referred to as Proposition 3.4
in the introduction to [6] is mislabelled, and occurs in the body of [6] as Corollary 3.6.)

The basic idea of our analysis is to study conjugacy classes of certain tori, maximal
tori in certain subgroups of type SL2. A key technical result is the finiteness theorem
given as Proposition 5.5, which is an application of Fact 1.37. This is a weak form
of a conjugacy theorem, and in earlier treatments of similar material the conjugacy
of Carter subgroups was used to derive analogous results. As we deal with groups of
degenerate type which are not necessarily solvable, we lack both the Hall and the Carter
theory where it was present in earlier analyses. Accordingly much of the first part of the
present paper is devoted to providing a substitute for the missing conjugacy theorems.
In Lemma 1.41 we prove a very general result on generic covering by conjugates, a rather
formal one which is not in itself a conjugacy theorem, but does provide an important
step toward such a theorem. To exploit this generic covering result, we need the theory
of good tori, or more generally rigid abelian groups, as presented in §1. The technical
Theorem 3, also given in §1, shows one important way in which “generic covering” can
be converted into more precise information. It does not seem that results of this kind
have been used in finite group theory or in algebraic group theory, though they are
certainly valid in the latter case—in algebraic groups, conjugacy of maximal tori seems
to cover this point in a more direct fashion.

The first three sections of the paper develop this and other general machinery, whose
relevance is also seen in §3: Proposition 3.1 and, in a sharper form, Corollary 3.4. In
the following three sections the relevant class T of good tori is introduced and the
finiteness theorem, Proposition 5.5, is proved, along with a number of other results on
this class. After that, for the next five sections we make the kind of analysis of the
natural permutation representation of G that has been seen before—most clearly, in
Jaligot’s version [16]. The use of Proposition 5.5 as a starting point for this kind of
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analysis is new. One of the conclusions reached in the course of this analysis is that the
class T consists in fact of a single conjugacy class under the action of M .

Finally, in the concluding section §12 we reach a contradiction using elements of
order 3 in the manner of [16]. One can read [16] as using the theory of the Fitting
subgroup to provide some explicit coset representatives, whereas we work directly with
the appropriate cosets. The final contradiction we reach in our concluding argument is
not the one of [16], but one may take as the underlying principle that if one is at all
able to compute a sufficiently general part of the group operation in more than one way
(which is of course the doubtful point), a contradiction of some sort is almost inevitable
at this point.

1 Background

Fact 1.1 ([10, pp. 89, 92; Lemma 5.1]) Let G be a group of finite Morley rank.

1. For X ⊆ G, CG(X) = CG(d(X)).

2. If B is a definable normal subgroup of G and B ⊆ X ⊆ G, then d(X/B) = d(X)/B.

3. If G is connected then G has Morley degree one.

1.1 Nilpotent/Solvable

Fact 1.2 ([17], [10, §6.2]) Let H be a nilpotent group of finite Morley rank.

1. H = D∗B, where D and B are definable characteristic subgroups, with D divisible
and B of bounded exponent. Moreover, D∩B is finite, and B is the direct sum of
its p-torsion subgroups.

2. If H is divisible then H = T ⊕N where T is the torsion subgroup of H and N is
a torsion free subgroup. Moreover T ≤ Z(H).

Fact 1.3 ([9]) Let H be a solvable group of finite Morley rank, π a set of primes, and
N /H a definable normal subgroup. Then the Hall π-subgroups of H are conjugate, and
any Hall π-subgroup of H covers a Hall π-subgroup of H/N .

Fact 1.4 ([10, Theorem 9.29];[15]) For any set of primes π, the Hall π-subgroups of
a connected solvable group of finite Morley rank are connected.

Fact 1.5 ([16], Lemme 4.4; [3], Proposition 9.4) Let Q o X be a group of finite
Morley rank where Q and X are definable. If Q is an abelian 2-group of bounded exponent
and X is a 2⊥-group which centralizes the involutions of Q, then X centralizes Q.

1.2 Elements of finite order

Fact 1.6 ([10, Exercise 11, p. 93]) Let G be a group of finite Morley rank and H a
normal definable subgroup. If x ∈ G is such that x ∈ G/H is a p-element, then the coset
xH contains a p-element.

Definition 1.7 A p-torus is a divisible abelian p-group. A unipotent group is a con-
nected definable nilpotent group of bounded exponent.
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Fact 1.8 ([11]) Let T be a p-torus in a group G of finite Morley rank. Then the index
[NG(T ) : CG(T )] is finite. Moreover, there exists a uniform bound c such that for any
p-torus contained in G, we have [NG(T ) : CG(T )] ≤ c

Fact 1.9 (Borovik, cf. [7, Fact 2.14]) Let G = U o X be a group of finite Morley
rank. with U and X definable. Let p be a prime number. Assume that U is a unipotent
p-subgroup of G, and X is connected, solvable, and does not contain elements of order
p. If the action of X on U is faithful, then X is divisible and abelian.

1.3 Suzuki 2-groups

Definition 1.10 A Suzuki 2-group is a pair (S, T ) where S is a nilpotent 2-group of
bounded exponent and T is an abelian group which acts on S by automorphisms, and
which is transitive on the involutions of S.

A Suzuki 2-group is said to be free if T acts on S freely: for any g ∈ S and t ∈ T ,
gt = g implies either g = 1 or t = 1.

A Suzuki 2-group is said to be abelian if S is abelian.
A Suzuki 2-group is said to have finite Morley rank if the structure (S, T ) is of finite

Morley rank.

Fact 1.11 ([14]) A free Suzuki 2-group of finite Morley rank is abelian.

Remark 1.12 Davis and Nesin also show in [14] that if (S, T ) is a free Suzuki 2-group,
then S is not only commutative but homocyclic, and (S/Ωi(S), T ) is a free Suzuki 2-
group as well. It follows from this that Ωi+1(S)/Ωi(S) is an elementary abelian 2-group
of rank rk (T ).

1.4 Linearization

Definition 1.13 Let G be a group of finite Morley rank, and K and H definable sub-
groups with H normalizing K. Then K is H-minimal if K is infinite and has no proper
infinite definable H-invariant subgroup. Equivalently, K is a minimal connected non-
trival H-invariant definable subgroup.

Fact 1.14 ([10, Theorem 9.5]) Let A o G be a connected group of finite Morley rank
where G is definable, A is abelian and G-minimal, and CG(A) = 1. Assume further
that G has a definable infinite abelian normal subgroup H. Then CA(G) = 1, H is
central in G, F = Z[H]/annZ[H](A) is an interpretable algebraically closed field, A
is a finite dimensional F -vector space, and the action of G on A is by vector space
automorphisms; so G ≤ GLn(F ) via this action, where n is the dimension. Furthermore,
H ≤ Z(G) ≤ Z(GLn(F )).

Fact 1.15 ([10, Theorem 9.7]) Let A o G be a group of finite Morley rank such that
CG(A) = 1. Let H / G1 / G be definable subgroups with G1 connected and H infinite
abelian. Assume also that A is G1-minimal. Then K = Z[Z(G◦)]/annZ[Z(G◦)](A) is
an interpretable algebraically closed field, A is a finite dimensional vector space over
K, G acts on A as vector space automorphisms and H acts as scalars. In particular,
G ≤ GLn(K) for some n, H ≤ Z(G) and CA(G) = 1.

Fact 1.16 ([19]) If F is a field of finite Morley rank of characteristic p 6= 0, then every
simple definable section of GLn(F ) is definably isomorphic to an algebraic group over
F .
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1.5 Weak and strong embedding

Fact 1.17 ([2]) Let G be a group of finite Morley rank, M a proper definable subgroup
of G. M is weakly embedded if and only if the following hold:

1. M has infinite Sylow 2-subgroups.
2. For any nontrivial unipotent 2-subgroup U and nontrivial 2-torus T in M ,

NG(U) ≤ M and NG(T ) ≤ M .

Corollary 1.18 If G is a group of finite Morley rank and M a weakly embedded defin-
able proper subgroup, then M contains a Sylow 2-subgroup of G.

Fact 1.19 ([6]) Let G be a simple L∗-group of even type with a weakly embedded sub-
group M . Then M◦/O2

◦(M) is of degenerate type.

1.6 Automorphisms

Fact 1.20 ([10, Theorem 8.4]) Let G = GoH be a group of finite Morley rank where
G and H are definable, G is an infinite simple algebraic group over an algebraically
closed field, and CH(G) = 1. Then, viewing H as a subgroup of Aut(G), we have
H ≤ Inn(G)Γ where Inn(G) is the group of inner automorphisms of G and Γ is the
group of graph automorphisms.

Remark 1.21 We will frequently use the special case of Fact 1.20 with G = PSL2.
Here, as there are no nontrivial graph automorphisms, all definable actions induce inner
automorphisms.

Fact 1.22 ([10, Exercise 13, p. 78]) Let α be a definable involutory automorphism
of a connected group of finite Morley rank G, whose centralizer in G is finite. Then α
acts by inversion on G.

1.7 L-groups

Definition 1.23 1. An L-group is a group of finite Morley rank such that every
definable simple section of even type is an algebraic group (equivalently, a Chevalley
group) over an algebraically closed field.

2. For G a group of finite Morley rank, B(G) denotes the subgroup generated by all
2-unipotent subgroups of G.

Fact 1.24 ([6, Lemma 3.12]) Let H be a connected L-group of even type with a weakly
embedded subgroup M . Then

H ∼= L×D

where L = B(H) ∼= SL2(F ), with F algebraically closed of characteristic two, and
D = CH(L) is a subgroup of degenerate type. M◦ ∩ L is a Borel subgroup of L and
D ≤ M .
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1.8 Fields, good tori, rigid abelian groups

Definition 1.25 A definable divisible abelian group T of finite Morley rank is a good
torus if every definable subgroup of T is the definable closure of its torsion.

Lemma 1.26

1. If T is a good torus and T0 ≤ T is definable and connected, then T0 is a good torus.

2. Let G be a group of finite Morley rank which is an extension of a definable good
torus by a good torus. Then G is a good torus.

3. The product of two normal definable good tori in a group of finite Morley rank is
a good torus.

4. A connected group of finite Morley rank which is finite-by-(good torus) is a good
torus.

Proof. The first point is clear.
Let us prove (2). Note that the assumptions imply that G is connected. Let A

be the normal definable good torus in G such that G/A is also a good torus. As G is
connected, A = d(Tor(A)), and A is divisible abelian, Facts 1.1 (1) and 1.8 imply that
A ≤ Z(G). Hence G is nilpotent. Since G is divisible-by-divisible, it follows from Fact
1.2 (1) that G is divisible. The assumptions imply that d(Tor(G)) ≥ A. Since G/A is a
good torus we then have G = d(Tor(G)), in view of Fact 1.3. Now Fact 1.2 (2) together
with Fact 1.1 (1) yields that G is abelian. Finally, if H is a definable subgroup of G,
HA/A = d(Tor(HA/A)) by the assumption that G/A is a good torus. By Fact 1.3,
the torsion subgroup of H covers the torsion subgroup of H/H ∩ A, so Tor(H) covers
Tor(HA/A). By Fact 1.1 (2) we find HA/A = d(Tor(H))A/A. But HA/A is definably
isomorphic to H/H ∩A, and H ∩A = d(Tor(H ∩A)). So we have H = d(Tor(H)).

Item (3) follows from (2). The last point is immediate. �

The next point is a reformulation of the main result of [21].

Fact 1.27 ([7]) Let F be a field of finite Morley rank and of nonzero characteristic.
Then F× is a good torus.

For our purposes, the saturation hypothesis in the next result is harmless, as we are
always free to pass to an elementary extension. However, it is also unnecessary, as good
tori remain good in elementary extensions (see [12, Appendix]), a result which will not
be used here. The reader who would prefer a “saturation-free” argument can invoke the
aforementioned result, and systematically ignore our occasional remarks on this subject.

Fact 1.28 ([7, Lemma 3.12]) Let D be a good torus in an ℵ0-saturated structure.
Then every uniformly definable collection of subgroups of D is finite.

Corollary 1.29 Let G be an ℵ0-saturated group of finite Morley rank and D be a de-
finable good torus in G which is covered by a uniformly definable family F of definable
subgroups of G. Then D is contained in one of the subgroups in F .

Proof. The family {H ∩D : H ∈ F} is also uniformly definable, hence finite. �
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The following notion extends that of good torus.

Definition 1.30 An abelian group of finite Morley rank is said to be rigid if its con-
nected component is a good torus.

Lemma 1.31 Let G be a group of finite Morley rank and A a definable, rigid abelian
subgroup of G. Then

1. A◦ is divisible abelian.

2. Every definable subgroup of A is the definable closure of its torsion.

3. NG
◦(A) = CG

◦(A).

Proof.
The first statement is an immediate consequence of the definitions of a rigid abelian

group and of a good torus.
As for the second statement, let B be a definable subgroup of A. Since B is abelian,

Fact 1.6 implies that B/B◦ is covered by a finite subgroup of B. The conclusion follows
from this and the definition of a good torus.

We proceed for the third statement as follows. We have NG
◦(A) ≤ NG(A◦). By

Fact 1.8 and the definition of a good torus, we then have NG
◦(A◦) = CG

◦(A◦). Since A
is abelian, again A = A◦A0 where A0 is a finite group. Furthermore, as A◦ is divisible,
the set of torsion elements of any fixed exponent is finite, and we may choose A0 to be
characteristic in A. It follows that NG

◦(A) centralizes A0, and thus A. �

The same argument as in the proof of Fact 1.28 shows mutatis mutandis the following
statement.

Lemma 1.32 Let A be a rigid abelian group in an ℵ0-saturated structure. Then every
uniformly definable collection of subgroups of A is finite.

Definition 1.33 Let H ≤ K be groups interpreted in a third group G, which has finite
Morley rank. We say that H is continuously characteristic in K (relative to G) if H is
X-invariant for every connected subgroup X of Aut(K) for which K o X is interpreted
in G (in other words, the group X together with its K-action is interpreted in G).

Typically we are concerned with the case H ≤ K ≤ G; in this case, if H is continu-
ously characteristic in K then it is NG

◦(K)-invariant, which is usually the point.

Lemma 1.34 Let G be a group of finite Morley rank, H / K a pair of connected defin-
able subgroups of G with K/H a good torus. Then H contains a nontrivial connected,
definable, continuously characteristic subgroup of K.

Proof.
If the commutator subgroup K ′ is nontrivial, then as it is definable, connected, and

contained in H, it will do. Assume therefore that K is abelian.
If K is not divisible then for some prime p the annihilator of p in K is infinite (Fact

1.2), and its connected component is contained in H. So we may suppose K is divisible.
Now in view of Lemma 1.26 (3), K contains a unique maximal good subtorus T ,

and T is centralized by any connected group of automorphisms of K interpreted in G.
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Hence every good subtorus of K is continuously characteristic in K. If H contains a
good torus, we are done.

Suppose therefore that H contains no good torus. Let T be a minimal infinite
definable subgroup of H. If T contains torsion, then T is the definable closure of its
torsion, and by minimality T is then a good torus, a contradiction. So T is torsion-free.
Now K contains a maximal torsion-free definable divisible abelian subgroup T0, whose
image in K/H is a torsion-free subgroup of a good torus (Fact 1.6), hence trivial. Thus
T0 ≤ H is the desired continuously characteristic subgroup. �

The following general conjugacy theorem was noticed only recently. It simplifies the
considerations of Section 5 substantially. Possibly some of the other arguments relating
to conjugation or generic covering can also be simplified by fuller use of this result.

Fact 1.35 ([12]) Let G be a group of finite Morley rank. Then any two maximal good
tori in G are conjugate.

The proof goes largely by induction on rank, making use of the following result,
which is useful in its own right.

Fact 1.36 (Generic Covering) Let G be a connected group of finite Morley rank, T
a good torus in G, and H = C◦(T ). Then

⋃
HG is generic in G.

The conjugacy theorem has the following corollary, which makes use also of Lemma
1.28. It is proved in [12] without the hypothesis of saturation, but we may limit ourselves
here to this weaker version, which is sufficient for our purposes.

Fact 1.37 ([12]) Let G be an ℵ0-saturated group of finite Morley rank, and F a uni-
formly definable family of good tori contained in G. Then under the action of G, the
groups in F fall into finitely many conjugacy classes.

We will use this result to prove Proposition 5.5 below. Our original proof of that
special case was more complicated, but motivated the proof in [12] of the more general
statement.

1.9 Genericity

Fact 1.38 ([13, Lemma 3.3]) Let G be a connected group of finite Morley rank and
B a definable subgroup of G of finite index in its normalizer. Assume that there is
a definable subset X of B, not generic in B, such that B ∩ Bg ⊆ X whenever g ∈
G \NG(B). Then ∪g∈GBg is generic in G.

Definition 1.39 Let H be a definable subgroup of a group of finite Morley rank G, not
necessarily connected. Then we say that H is generically disjoint from its conjugates in
G if H \

⋃
g∈G\N(H) Hg is generic in H.

Note that since we allow H to be disconnected, it may meet a conjugate in a generic
subset, while still being generically disjoint from its conjugates.

The following lemma generalizes Fact 1.38 and it has the same proof.
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Lemma 1.40 Let G be a connected group of finite Morley rank and B a definable sub-
group of G of finite index in its normalizer which is generically disjoint from its conju-
gates in G. Then ∪g∈GBg is generic in G.

Proof. Let X = ∪g∈G\N(B)B
g.

We use the following mapping

Ψ : G× (B \X) −→
⋃

g∈G(B \X)g

(g, b) 7−→ bg

to compare rk (G) to rk (
⋃

g∈G Bg).

For b1, b2 ∈ (B \X) and g1, g2 ∈ G, if bg1
1 = bg2

2 then b1 ∈ B∩Bg1g−1
2 , and the choice

of b1 and the definition of X imply that g1g
−1
2 ∈ NG(B). It follows that the fiber of bg1

1

is the set {(g2, b
g1g−1

2
1 ) : g1g

−1
2 ∈ NG(B)}. This set corresponds bijectively and definably

to a coset of NG(B). Hence the rank of the fibers of Ψ is rk (NG(B)). It follows, using
general properties of rank, that we have

rk (G) + rk (B \X) = rk (
⋃
g∈G

(B \X)g) + rk (NG(B))

But B is of finite index in its normalizer and B \ X is generic in B. As a result,
rk (B \X) = rk (B) = rk (NG(B)) and

rk (G) = rk (
⋃
g∈G

(B \X)g) ≤ rk (
⋃
g∈G

Bg)

�

Lemma 1.41 Let G be a connected group of finite Morley rank, and let K1,H1,H2 be
definable subgroups of G, with K1 ≤ H1. Suppose in addition:

1. NG
◦(K1) = K1

◦;

2. K1 is generically disjoint from its conjugates in G;

3.
⋃

g∈G Hg
2 is generic in G.

Then the conjugates of H2 in G generically cover H1, in the sense that H1 ∩
⋃

g∈G Hg
2

is generic in H1.

Proof.
Let X = K1 \

⋃
g∈G\N(K1) Kg

1 . Then X is N(K1)-invariant, and indeed N(K1) is
the full stabilizer of X in G, while distinct conjugates of X are pairwise disjoint. By
hypothesis, rk (X) = rk (K1). It follows that for Y ⊆ X N(K1)-invariant, and for any
definable group H containing K1, we have rk (

⋃
g∈H Y g) = rk (Y ) + rk (H/NH(K1)) =

rk (H) + rk (Y ) − rk (K1) and thus
⋃

g∈H Y g is generic in H if and only if Y is generic
in X.

Taking H = H1 here, we see that it will suffice to show that Y = X ∩
⋃

g∈G Hg
2 is

generic in K1.
Set Z =

⋃
g∈G Hg

2 . If X \Z is generic in K1, then
⋃

g∈G(X \Z)g is generic in G, by
our first remark, with H = G. But

⋃
g∈G(X \ Z)g ⊆ (G \ Z), and Z is generic in G by

hypothesis. As G is connected, this is a contradiction. Thus X \Z is nongeneric in K1,
and X ∩ Z is generic in K1, as desired. �
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Fact 1.42 ([7, Lemma 4.6]) Let G be a connected group of finite Morley rank. As-
sume that B is a good torus which is of finite index in NG(B). Then the set B = ∪g∈GBg

is generic in G.

Fact 1.43 ([7, Cor. 4.8]) Let A o G be a group of finite Morley rank where G and
A are definable. Assume that A is connected and elementary abelian of exponent two,
that G is connected of degenerate type, and that G acts faithfully on A. If B is a Borel
subgroup of G then B ∩ (∪g∈G\NG(B)B

g) is not generic in B, and the Borel subgroups
of G are conjugate in G.

The next lemma encapsulates a form of genericity argument, based on the irre-
ducibility of connected groups, which has played a significant role since the first analysis
of “bad groups”.

Fact 1.44 ([13, Lemma 3.4]) Let G be a connected group of finite Morley rank, and
B a proper definable connected subgroup of finite index in its normalizer in G, such that
∪g∈GBg is generic in G. Assume that x ∈ NG(B) \B is of finite order modulo B, and
let 〈x〉B be the setwise product (

⋃
{yB : y ∈ 〈x〉}). Then the following definable subset

X of xB is generic in xB:

X = {x1 ∈ xB : x1 ∈ (〈x〉B)g for some g ∈ G \NG(B)}

For the remainder of this subsection, we turn from criteria for genericity to conse-
quences of genericity, aiming at Theorem 3 below.

Fact 1.45 ([18]) Let C be a uniformly definable family of subgroups in a group G of
finite Morley rank. Then the indices [H : H◦] (H ∈ C) are uniformly bounded.

Lemma 1.46 Let G be a group of finite Morley rank and F = {Di : i ∈ I} be a
uniformly definable family of subgroups of G whose connected components are divisible
groups. Then F◦ = {Di

◦ : i ∈ I} is a uniformly definable family.

Proof. By Fact 1.45 there exists m ∈ N such that |Di : Di
◦| ≤ m for every i ∈ I. As a

result, for any i ∈ I, if x ∈ Di then xm! ∈ Di
◦. Since by hypothesis, Di

◦ is divisible, we
conclude that Di

◦ = Dm!
i for every i ∈ I. �

Lemma 1.47 Let A be a group of finite Morley rank with A/A◦ cylic and C a finite set
of proper definable subgroups of A. Then rk (A \

⋃
C) = rk (A).

Proof. As A/A◦ is cyclic, there is a coset C of A◦ in A which is disjoint from every
proper subgroup of A containing A◦. The intersection of this coset with finitely many
definable subgroups of A which do not contain A◦ is nongeneric in that coset. That is,
rk (C \

⋃
C) = rk (C) = rk (A). �

Corollary 1.48 Let G be an ℵ0-saturated group of finite Morley rank and D be a defin-
able rigid abelian subgroup with D/D◦ cyclic. If D is covered by a uniformly definable
family F of definable subgroups of G, then D is contained in one of the subgroups in F .

Proof. Consider the family {H ∩D : H ∈ F}, which is finite by Lemma 1.32. �
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Theorem 3 Let G be an ℵ0-saturated group of finite Morley rank, and C a uniformly
definable family of rigid abelian subgroups such that

⋃
C is generic in G. Then there

exists T ∈ C such that T ◦ is a maximal good torus in C(T ); or equivalently, if T ≤ T̃
with T̃ rigid abelian, then [T̃ : T ] < ∞.

Proof. C is a definable subset of Geq. We may treat its defining parameters as constants,
and assume that it is 0-definable.

We first make some adjustments to C. By Fact 1.45, there is a finite bound m = m(C)
on [A : A◦] for A ∈ C. Thus m!A = A◦ for A ∈ C, and A◦ is uniformly definable from A.
It follows easily that the set C′ = {A◦〈a〉 : A ∈ C, a ∈ A} is another uniformly definable
family such that

⋃
C′ =

⋃
C, and for each A ∈ C′ we have A/A◦ cyclic. Since each group

in C′ is a subgroup of finite index in some group in C, if we prove our claim for C′ then
it follows for C. So from now on we will write C for C′.

Suppose towards a contradiction that for every T ∈ C there exists T̃ , a rigid abelian
subgroup of G, such that T ≤ T̃ and [T̃ : T ] = ∞. We may suppose further that
T̃ = T · T̃ ◦.

Then T̃ is defined by a formula ϕT̃ (x, a) with parameters from G. We associate to
any formula ϕ(x, y) the family

Cϕ = {ϕ(G, g) : ϕ(G, g) is an abelian group}

where g varies over G. As the set

{g ∈ Gl(g) : G |= {x : ϕ(x, g)} is an abelian group}

is 0-definable, the family Cϕ is a 0-definable subset of Geq. In particular T̃ ∈ CϕT̃
. So

far, all we have done is to put the group T̃ into a family of abelian groups which is
uniformly definable over ∅. However the family need not consist exclusively of rigid
abelian groups, so we refine this further.

Take mϕ so that [A : A◦] ≤ mϕ for A ∈ Cϕ. Let us introduce the abbreviation
“B �ϕ A” to stand for the condition

[A : mϕ!A] ≤ mϕ & A = B ·mϕ!A & mϕ!B < mϕ!A

This will be applied only when A ∈ Cϕ and B ∈ C, in which case mϕ!B = B◦, and the
condition is equivalent to

mϕ!A = A◦ & A = B ·A◦ & [A : B] = ∞

As actually phrased, however, it is clearly first order.
Let C∗ϕ be

{A ∈ Cϕ : ∃B ∈ CB �ϕ A}
Then for A ∈ C∗ϕ, we have A◦ = mϕ!A, and the quotient A/A◦ is cyclic. In particular
deg(A) is uniformly definable from A for A ∈ C∗ϕ.

Since T̃ is rigid, the set of intersections {T̃ ∩A : A ∈ C∗ϕT̃
∪C} is finite (Lemma 1.32),

of size kT̃ , say. For any finite k and any formula ϕ(x, y), we may consider the family

Cϕ,k = {A ∈ C∗ϕ : |{A ∩B : B ∈ C∗ϕ ∪ C}| ≤ k}

The family Cϕ,k is uniformly definable over ∅ (i.e., 0-definable as a subset of Geq) since
C ∪ C∗ϕ is, and k is fixed.

By our choice of kT̃ , we have T̃ ∈ CϕT̃ ,kT̃
.

The preceding discussion may be summarized as follows:
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(∗) For every T ∈ C there exists a finite number k, a formula ϕ,
and some A ∈ Cϕ,k such that T �ϕ A.

We claim next that condition (∗) holds uniformly: there exist finitely many pairs of
the form (ϕ1, k1), . . . , (ϕn, kn), consisting of formulas ϕi and natural numbers ki as in
(∗), such that for any T ∈ C the pair (ϕ, k) in (∗) can be taken to be one of the (ϕi, ki).

Indeed, consider the following 1-type p(S) in Geq, where ϕ varies over all formulas
defined over ∅ and k varies over all natural numbers.

S ∈ C; ¬∃X ∈ Cϕ,k (S �ϕ X)

Observe that the cardinality of this 1-type is at most the cardinality of the language
|L|.

By condition (∗), the type p(S) is not realized in Geq. However, we may take G to
be |L|-saturated, and conclude that p(S) is inconsistent. Hence there are finitely many
formulas ϕi and natural numbers ki such that

S ∈ C ⇒ ∃i ≤ n ∃X ∈ Cϕi,ki
(S �ϕi X)

This is the desired uniformity.
Let Ci = Cϕi,ki

. Before proceeding, it will be convenient to modify this choice of the
Ci. We would like the rank and degree rk (A),deg(A) for A ∈ Ci to be constant; this
is achieved by partitioning Ci into finitely many subsets on which the rank and degree
are constant—and the defining formula ϕi is altered accordingly, while n, the number of
formulas, increases. Let ri = rk (A) for A ∈ Ci (a constant), and similarly di = deg(A)
for A ∈ Ci. We will write �i for �ϕi .

Now with ϕi, ki (1 ≤ i ≤ n) as described, let Ci = Cϕi,ki
and set

Ci = {T ∈ C : ∃X ∈ Ci (T �i X)}

Then Ci is a uniformly definable family, over ∅.
We now pass to rank computations. We have

⋃
C generic in G, and C is the union

of the Ci, so for some i the union
⋃
Ci is generic in G.

Let C′i = {A ∈ Ci : ∃B ∈ Ci B �i A}. To reach a contradiction it suffices to show
that rk

(⋃
Ci

)
< rk (

⋃
C′i).

For A ∈ C′i, let XA =
⋃
{B ∈ C : B �i A} and let YA =

⋃
{A ∩B : B ∈ Ci, B 6= A}.

Note that if A 6= B with A,B ∈ Ci, then A ∩ B < A, as rk (A) = rk (B) and deg(A) =
deg(B). Thus XA and YA are unions of proper subgroups of A, and by the definition of
the classes Cϕ,k only finitely many subgroups are involved. We consider these two sets
in more detail.

The subgroups making up XA have infinite index in A, so their union has rank less
than ri. Furthermore ZA = A \ YA has rank ri by Lemma 1.47

As ZA∩ZB = ∅ and rk ZA = ri for A 6= B in C′i, we have rk (
⋃
C′i) ≥ ri+rk C′i. On the

other hand rk
(⋃

Ci
)
≤ rk (

⋃
{XA : A ∈ C′i}) < ri + rk C′i. Thus rk

(⋃
Ci

)
< rk (

⋃
C′i),

as claimed. �

2 Preliminaries

G is a simple L∗-group of even type with a weakly embedded subgroup M . The main
results of [7, 8] apply to G. In this section we describe the general structure of G, and
in particular that of M , under the hypothesis (¬∗).
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Proposition 5.10 in [6] and Theorem 3 in [8] show that A = Ω1(O2
◦(M)) is a de-

finable, connected, elementary abelian group that is central in O2
◦(M). Moreover Fact

1.19 implies that M◦/O2
◦(M) is of degenerate type. Thus, M◦/CM◦(A) is of degenerate

type. These remarks will be used in the sequel without mention. Furthermore, we have
the following.

Fact 2.1 ([8, Fact 3.6 (1)]) Let G be a simple L∗-group of even type with a weakly
embedded subgroup M . If i ∈ I(O2

◦(M)) then Ci ≤ M .

We may assume that one of the Ai mentioned in the hypothesis (¬∗) is A. Let H
be a maximal, definable, connected subgroup in C(A) such that C(H) 6≤ M . By Fact
1.17, H is of degenerate type. The hypothesis (¬∗) implies H 6= 1. Then CG(H) < G
and CG

◦(H) is an L-group with a weakly embedded subgroup M ∩ CG
◦(H) and Fact

1.24 applies. Thus we conclude that B(CG(H)) ∼= PSL2 in characteristic two, and
B(CG(H)) ∩ M = A o T where A o T is a Borel subgroup of B(CG(H)), T being a
maximal torus of that Borel subgroup.

We let L = B(CG(H)).

Lemma 2.2 For i ∈ I(A), we have M = CM (i)T , as well as M◦ = CM◦(i)T , and
CM (i) ∩ T = 1.

Proof. Since AoT is a Borel subgroup of B(CG(H)), the structure of Borel subgroups
in PSL2 over fields of characteristic two implies that T acts on I(A) regularly. In
particular this action is transitive. The first part of the statement follows from this
transitivity and the fact that T ≤ M◦. That CM (i) ∩ T = 1 is a consequence of the
regularity of the action. �

Proposition 2.3 For i ∈ I(A), we have CM
◦(i) = CM

◦(A) = CM◦(i) = CM◦(A). In
particular, M◦ = CM◦(A) o T .

Proof. We let M◦ = M◦/CM◦(A). We claim that CM
◦(i) = CM◦(i). Since by Lemma

2.2 CM (i)∩T = 1, we have 1 = deg(M◦) = deg(CM◦(i)) deg(T ) = deg(CM◦(i)). Hence,
CM◦(i) = CM◦◦(i) = CM

◦(i).
Now, suppose towards a contradiction that CM

◦(i) > CM
◦(A). Hence CM

◦(i) is an
infinite definable connected subgroup of M◦. Note also that T ∼= T because CT (A) = 1
by the structure of A o T . T is contained in a Borel subgroup of M◦. We will show
that T is indeed a Borel subgroup of M◦. By Fact 1.9, the Borel subgroups of M◦ are
divisible abelian. Thus it suffices to show that C

M◦
◦(T ) = T . Since T acts transitively

on A×, Facts 1.14 and 1.16 imply that C
M◦

◦(T ) is solvable, as there are no simple
algebraic groups with abelian Borel subgroups. Hence, C

M◦
◦(T ) is abelian by Fact

1.9. But by Lemma 2.2, M◦ = CM◦(i)T , and the transitive action of T on A× forces
C

M◦
◦(T ) ∩ CM◦(i) ≤ CM◦(A) = 1. As a result C

M◦
◦(T ) = T .

Since T is a Borel subgroup of M◦ and CM◦(i) is infinite, Fact 1.43 implies that a
conjugate of T in M◦ intersects CM◦(i) nontrivially. This contradicts the action of T
on A. It follows that CM

◦(i) = CM
◦(A).

Since by Lemma 2.2, M◦ = CM◦(i)T and CM◦(i) = CM
◦(i) as remarked above, we

also have M◦ = CM
◦(A) o T . The equality CM

◦(A) = CM◦(A) then follows from the
fact that CM

◦(A) ≤ CM◦(A) and the structure of AoT : CM◦(A) ≤ CM◦(i) = CM
◦(i) =

CM◦(A). �
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Lemma 2.4 For i ∈ I(A) we have CG(i) = CM (A). In particular M = C(A) o T .

Proof. By Fact 2.1 we have CG(i) ⊆ M .
Now let M = M/CM (A). Note that by the structure of AoT , T ∼= T . By Proposition

2.3, M◦ = CM◦(A) o T , and thus M◦ = T . We apply Fact 1.15 with M for G, A for A,
T for G1 and H. Since T acts transitively on A×, the vector space is 1-dimensional and
T = M . Thus M = C(A) o T and CM (i) = C(A). The conclusion follows. �

Proposition 2.5 Let i and j be involutions in G that are conjugate to involutions in
A. For a ∈ G, if ai = a and aj = a−1, then a2 = 1.

Proof. The proof of this statement follows two distinct paths according to whether M
is strongly embedded or weakly but not strongly embedded. The first is Corollary 5.11
in [6] while the second is Proposition 5.7 in [8]. �

Recall that L = B(CG(H)).

Lemma 2.6 ([16, Lemme 4.2]) Let X be a nonempty subset of H different from {1}.

1. B(CG(X)) = L.

2. CG
◦(L) = H.

3. NG
◦(X) ≤ HL.

4. NG
◦(X) ∩NG

◦(T ) ≤ HT .

Proof. 1. Since CG(X) 6≤ M and CG(X) < G, CG
◦(X) is an L-group with CG

◦(X)∩M
a weakly embedded subgroup. Hence Fact 1.24 applies to yield B(CG(X)) ∼= PSL2 in
characteristic two. Since A ≤ L ≤ B(CG(X)), the sizes of the two PSL2 match and we
have equality.

2. As H ≤ CG
◦(L) ≤ C(A), this follows from the maximality of H.

3. By (1), NG
◦(X) ≤ NG

◦(L) = L · CG
◦(L), the last by Fact 1.20, so we conclude

by (2).
4. It follows from the previous point that NG

◦(X) ∩ NG
◦(T ) ≤ NHL

◦(T ), and
NHL

◦(T ) = HT . �

Corollary 2.7 For any g ∈ G \NG(H), H ∩Hg = 1.

Proof. Suppose g ∈ G is such that X = H ∩Hg 6= 1. Then by Lemma 2.6 (1) applied
to H and Hg, B(CG(H)) = B(CG(X)) = B(CG(Hg)). The conclusion follows from the
second part of the same lemma. �

Lemma 2.8 ([16, Lemme 4.4]) A = O2
◦(M).

Proof. Recall that by definition A = Ω1(O2
◦(M)). The action of T on A proves that

the structure (O2
◦(M), T ) is a free Suzuki 2-group. By Fact 1.11, O2

◦(M) is abelian.
Let S = O2

◦(M) and suppose towards a contradiction that S > A. Then CH(S) = 1.
Indeed, if CH(S) 6= 1 then by Lemma 2.6 (1), B(CG(CH(S))) = B(CG(H)) and this
forces S = A, a contradiction.
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Let now S1/A = Ω1(S/A). By Remark 1.12, S1/A is a definable connected group
of rank rk (T ). We claim that CH(S1/A) is finite. If CH(S1/A) is infinite then it has
infinite Borel subgroups. Let B be one such. By Fact 1.4, I(B) = ∅, and then Fact 1.5
implies that B centralizes S1. But Lemma 2.6 implies as in the last paragraph S1 = A,
a contradiction. In particular, CH(S1/A) ≤ Z(H)

Now we consider the action of TH = TH/CTH(S1/A) on S1/A. Again by Remark
1.12, T ∼= T and T acts transitively on (S1/A)×. Moreover, T commutes with H. Thus,
the action of H on S1/A can be linearized using Fact 1.15. Since H is of degenerate
type, Fact 1.16 shows that H is solvable. But H ∼= H/CH(S1/A) and it follows that H
is solvable. It follows by Fact 1.4 that I(H) = ∅. Fact 1.5 implies that H centralizes S,
a contradiction. �

We combine the foregoing with Fact 1.19 to get the following, bearing in mind that
M contains a Sylow 2-subgroup of G.

Corollary 2.9 A is a Sylow◦ 2-subgroup of G. Hence any connected definable 2-subgroup
of M is contained in A, and any connected definable 2-subgroup of G is elementary
abelian.

3 Genericity of HT

In this section we keep the same hypotheses on G. We also keep the notation introduced
in the previous section. We will prove the following statement:

Proposition 3.1 Let G1 be a definable connected subgroup of G which contains HT .
Then the union of the G1-conjugates of HT forms a generic subset of G1.

Lemma 3.2 NG1
◦(HT ) = HT .

Proof. It suffices to prove that N◦(HT ) = HT . By Lemma 1.34 there is a nontrivial
definable subgroup Q of H which is continuously characteristic in HT . We then have
N◦(HT ) ≤ N◦(Q) ≤ HL by Lemma 2.6 (3). But NHL

◦(HT ) = HNL
◦(T ) = HT . �

Lemma 3.3 If g ∈ G1 \NG1(H), then HT ∩ (HT )g is a rigid abelian group.

Proof.
Let A = (HT )∩(HT )g with g as specified. There are two natural maps πT : HT → T

and πT g : (HT )g → T g which combine to give a map (πT , πT g) : A → T × T g defined as
follows. Since HT is a direct product an element of A is uniquely written as ht and hg

1t
g
1

with h, h1 ∈ H and t, t1 ∈ T . The homomorphism (πT , πT g) assigns to such an element
the pair (t, tg1).

An element a = ht = hg
1t

g
1 is in the kernel of (πT , πT g) if and only if t = t1 = 1. Thus

a = h = hg
1 ∈ H ∩ Hg = 1 by Corollary 2.7. Since the kernel is trivial and the image

is contained in a good torus, Lemma 1.26 (1) and (2) imply that the group A is rigid
abelian. �
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Now we prove the main result of this section.

Proof of Proposition 3.1. We have HT ≤ G1 and we claim that
⋃

g∈G1
(HT )g is

generic in G1.
Let X be the set ⋃

g∈G1\NG1
(HT )

(HT ) ∩ (HT )g

If X is not generic in HT , then our claim follows by Lemma 3.2 and Fact 1.38. Accord-
ingly we will assume throughout that X is generic in HT .

Our aim in this case is to find a subgroup X < HT of the form X = (HT )∩ (HT )g

for which we can show that
⋃

g∈G1
Xg is generic in G1, which will prove our claim.

Writing Xg for (HT ) ∩ (HT )g, let

C = {Xg : g ∈ G1 \NG1(HT )},

C1 = {Xg : g ∈ NG1(H) \NG1(HT )},
and

C2 = C \ C1.

We first analyze C1. For g ∈ NG1(H) we have H ≤ Xg ≤ HT and hence Xg =
H · (T ∩ Xg). As T is a good torus, the second factor T ∩ Xg varies over a finite set
and thus C1 is a finite collection of proper subgroups of HT , and the union

⋃
C1 is not

generic in HT ; so
⋃
C2 must be generic in HT .

Let C3 = {X◦〈a〉 : X ∈ C2, a ∈ X} \ {T}, as in the proof of Theorem 3. Now
Lemma 3.3 applies to the groups in C2, hence also to those in C3. Moreover since
(
⋃
C2) \ T ⊆

⋃
C3,

⋃
C3 is generic in HT . Thus Theorem 3 applies and gives us X ∈ C3

such that X◦ is a maximal good torus in CHT (X).
Let T and T g be so that X◦ = (HT ∩ (HT )g)◦. Since T is central in HT and

X◦ ≤ HT , we have T ≤ CHT
◦(X◦) and thus T ≤ X. As T /∈ C3, we find T < X. Thus

X = T · (X ∩ H) with X ∩ H 6= 1. By Lemma 1.31 (3), we have N◦(X) = C◦(X).
Furthermore by Lemma 2.6 (4), C◦(X) = C◦(T,X ∩ H) ≤ HT . Now T g is central in
(HT )g, and X◦ ≤ (HT )g, so T g ≤ C◦(X) = CHT

◦(X). Hence arguing as in the case of
T , we find N◦(X) ≤ (HT )g. So N◦(X) ≤ [HT ∩ (HT )g]◦ ≤ X.

Thus [N(X) : X] < ∞. The set X0 =
⋃

g∈G1\NG1
(X)(X ∩ Xg) is a finite union of

proper subgroups of X by Lemma 1.32, and the complement X \ X0 is generic in X
by Lemma 1.47. We conclude using Lemma 1.40 that

⋃
g∈G1

Xg is generic in G1, as
desired. �

Corollary 3.4 HT contains a definable subgroup K such that NG
◦(K) ≤ K and K is

generically disjoint from its conjugates in G.

Proof. This is how the proof went. We have NG
◦(HT ) = HT and if HT is not

generically disjoint from its conjugates, we found a rigid abelian subgroup X of HT , a
cyclic extension of a good torus, with NG

◦(X) ≤ X; and we showed that such groups
are generically disjoint from their conjugates. �

Definable groups satisfying K = N◦(K) play an important role throughout, so we
introduce the following natural terminology, which makes sense in any group.

Definition 3.5 A subgroup K of a group G is said to be almost self-normalizing (in G)
if N(K)/K is finite.
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4 L-blocks

We retain the notations and hypotheses of the previous sections regarding the groups
G, M, A.

Definition 4.1 An SL2-block in G is a connected definable subgroup of the form H ×L
where L ∼= SL2(F ) for some algebraically closed field F of characteristic two, and H =
C◦(L) is nontrivial. A toral block is a subgroup of the form HT where H is part of an
SL2-block HL, and T is a maximal torus of L.

It will be generally understood, when we consider an SL2-block of the form, e.g.,
H1L1, that L1 is the component isomorphic to SL2, and that H1 = C◦(L1), and similarly
for toral blocks. However, if HL is an SL2-block and we later consider a group HT ,
with T a torus, it should not be assumed that we are necessarily taking this to be a toral
block; in practice, we will have to consider tori contained in HL which are not necessarily
contained in L. So it will be convenient to introduce the following terminology as well.

Definition 4.2
1. The SL2-component of an SL2-block HL is the subgroup L.
2. The toral component of a toral block HT is the torus T ; here we assume that it

is known what the associated SL2-block HL is, and the meaning is that T is a maximal
torus of L.

Remark 4.3 If T is a toral component of a toral block and T ≤ M , then T is a
complement to CM◦(A) in M◦. This holds because T ∩C(A) = 1 in view of the structure
of SL2, and rk (M◦/CM◦(A)) = rk (A) = rk (T ).

We have observed already that there is an SL2-block HL in G such that (HL)∩M =
H ·AT , where AT is a Borel subgroup of L, and in particular M contains toral blocks.
However we will be interested subseqently in toral blocks HT for which we assume only
that T ≤ M , and then the main question will be the structure of H ∩M .

Observe also that if HL is an SL2-block, then H and L are uniquely determined: L is
the only simple normal subgroup with a nontrivial Sylow◦ 2-subgroup, and L determines
H, which is a subgroup of degenerate type. It is not clear whether a similar statement
can be made for toral blocks (the ambiguous case arises when H is abelian).

Lemma 4.4

1. Any two toral blocks H1T1,H2T2 ≤ M with H1,H2 ≤ C(A) are conjugate in M .

2. Any two toral blocks in G are G-conjugate.

3. Any two SL2-components in G are G-conjugate.

4. The tori which occur as components of toral blocks are conjugate in G.

Proof.
1. Suppose that H1T1 and H2T2 are not conjugate in M . As in the case of Lemma

3.3, we find that every intersection Bg = (H1T1) ∩ (H2T2)g is rigid abelian (here we
can take any g ∈ G): otherwise, one considers the natural map Bg → T1 × T g

2 whose
kernel is contained in H1 ∩ Hg

2 , and if this intersection is nontrivial one finds L1 =
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B(C(H1 ∩Hg
2 )) = Lg

2, hence H1 = Hg
2 and the tori T1 and T g

2 are conjugate in L1, so
H1T1 and H2T2 are conjugate.

Now we know that H1T1 and H2T2 contain almost self-normalizing subgroups which
are generically disjoint from their conjugates, by Corollary 3.4; this holds in G and
hence in particular in M . Working in M , we find that H1T1 is generically covered by
M -conjugates of H2T2, by Lemma 1.41.

Thus letting Bg = (H1T1) ∩ (H2T2)g, the family {Bg : g ∈ M} \ {T1} is a generic
covering of H1T1 by rigid abelian groups, of which at least one such, say B, must be
maximal in the sense that there is no good torus in CH1T1(B) larger than B◦. We may
suppose that g = 1 so that B = H1T1 ∩H2T2.

On the other hand, T1 ≤ Z(H1T1), so this implies that T1 ≤ B and hence by
definition of the family, B > T1. Thus B ∩H1 > 1. But B ∩H1 ≤ CH2T2(A) = H2, so
H1 ∩H2 > 1; this implies L1 = L2 and hence H1 = H2. Now T1 and T2 are conjugate
in NL1(A) ≤ CM (H1), so finally H1T1 is conjugate to H2T2 in M .

2. This follows from (1). It suffices to show that for any toral block HT in G, H can
be conjugated into C(A). Now HT is associated with an SL2-block HL with T ≤ L,
and T normalizes a Sylow 2-subgroup of L which can be conjugated to A, and our claim
follows.

3. We consider two SL2-blocks H1L1 and H2L2 in G. After conjugation, we may
suppose that A ≤ L1, L2. As Hi centralizes A, and a torus Ti of Li normalizes A, we
then have HiTi ≤ M in both cases. We may conjugate the toral block H2T2 to H1T1 in
M , so we suppose H1T1 = H2T2. As Hi = CHiTi(A) for i = 1, 2, we find H1 = H2, and
hence L1 = L2.

4. This follows from (3). �

Lemma 4.5 Let G be a group of finite Morley rank, T a good torus in G, and K
a definable subgroup with T ≤ Z(K). Then NG

◦(K) ≤ CG
◦(T ). In particular, if

K = CG
◦(T ) then NG

◦(K) = K.

Proof. We have T ≤ Z(K) and Z(K) contains a unique maximal good torus T̂ . Then
N◦(K) ≤ N◦(T̂ ) = C◦(T̂ ) ≤ C◦(T ). �

Lemma 4.6 Let T ≤ M be a torus which is a complement to C◦(A) in M◦. Then
CM (A, T ) is infinite.

Proof. We may pass to an ℵ0-saturated elementary extension.
The torus T is a good torus. Let K = CM

◦(T ). Then K = CM
◦(A, T ) · T . Our

claim is that K > T .
We have NM

◦(K) = K by Lemma 4.5. On the other hand T , being a good torus,
is generically disjoint from its conjugates in M (Lemma 1.32). Assuming toward a
contradiction that K = T , it is then an almost self-normalizing group which is generically
disjoint from its conjugates in M .

We know that there is a toral block H1T1 contained in M , with H1 ≤ C(A), and the
union of its conjugates in M is generic there by Proposition 3.1. Thus by Lemma 1.41,
the group T is generically covered by conjugates of H1T1. However a good torus which
is generically covered by a family of uniformly definable groups is contained in one of
them, so after conjugation, without loss of generality we have T ≤ H1T1.
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We then have T1 ≤ K and by our assumption K = T , so we have T1 ≤ T ; but then
T1 = T as each is a complement to C◦(A) in M◦, and hence H1 ≤ K, which is finally a
contradiction. �

Lemma 4.7 Let T ≤ M be a torus which is a complement to C◦(A) in M◦, and suppose
that T is inverted by an involution w conjugate to an involution of A. Then C(T,w) is
infinite.

Proof. Let T̂ = C◦(T ). Then the involution w acts on T̂ . Suppose toward a contradic-
tion that CT̂ (w) is finite. Then w inverts T̂ by Fact 1.22.

We claim that a Sylow 2-subgroup P of T̂ is trivial. The group P is connected (Fact
1.4), and in view of Corollary 2.9 it is elementary abelian, hence contained in CT̂ (w),
and hence is finite and therefore trivial.

By Proposition 2.5 with j = w, the group (T̂ ∩ C(A)) is an elementary abelian
2-group, so T̂ ∩ C(A) = 1 and hence CM

◦(T ) = T , which contradicts Lemma 4.6. �

The next result will ultimately furnish the main connection between the structure
of the set of involutions in G, and properties of SL2-blocks.

Proposition 4.8 Let w be an involution in G \ M , conjugate to an involution in A,
and such that the set X = {g ∈ M : gw = g−1} has rank at least rk (A). Then there is
an SL2-block HL such that L ∩M contains a maximal torus of L inverted by w.

Proof. Let K = d(〈X〉). Then K ≤ M is w-invariant.
Suppose first that K is abelian. Then K = X is inverted by w. We claim that a

Sylow 2-subgroup P of K◦ is trivial. The group P is connected by Fact 1.4, and in view
of Corollary 2.9 is contained in A. But as w inverts P this means P = 1.

Now by Proposition 2.5, K◦ ∩ C(A) is an elementary abelian 2-group, hence trivial
by the above. Hence by rank considerations, in view of Lemma 2.4, K◦ is a complement
to C(A) in M . In particular K◦ is a complement to C◦(A) in M◦ as well, in view of
Lemma 2.2. By Lemma 4.7 we have CG

◦(K◦, w) > 1. Let H1 = CG
◦(K◦, w).

Let Aw be a conjugate of A containing w. By Proposition 2.3 we have Aw ≤
C(H1). Furthermore as w inverts K◦, the group K◦ does not normalize Aw (otherwise,
w would centralize K◦). So B(C(H1)) ∼= SL2(F ) for some algebraically closed field F of
characteristic two, by Fact 1.24, and H1 is part of an SL2-block Ĥ1L containing K◦, with
w ∈ L. Now w inverts K◦, centralizes Ĥ1, and normalizes L, while K◦ ≤ Ĥ1L contains
no involutions, so we have K◦ ≤ L. As rk (K◦) ≥ rk (A), K◦ must be a maximal torus
of L, so L ∩M contains a maximal torus of L.

So now suppose that K is nonabelian. By Lemma 2.4, K ′ ≤ C(A), and similarly
K ′ ≤ C(Aw). So B(C(K ′)) = L is a group of type SL2(F ) with F an algebraically
closed field of characteristic two. Let T be a maximal torus of L normalizing A and
Aw. As the involution w normalizes K ′, it acts also on L, like an element of L. As w
swaps A and Aw, the action of w on T is by inversion. Furthermore T ≤ N(A) ≤ M ,
as desired. �

We introduce some notation for the relevant class of involutions.

Definition 4.9 I1 = {i ∈ I(G) : i is conjugate to an element of A}.
I∗ = {w ∈ I1 : w inverts a subset of M of rank at least rk (A)}
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The class I∗ is defined relative to a specific choice of M , not indicated explicitly in
the notation, and this must be borne in mind. On the other hand I1 is a single conjugacy
class in G, and as G is connected, I1 has Morley degree 1.

Lemma 4.10 I1 ∩M = I(A).

Proof. Let i ∈ M be an involution which lies in a conjugate Ai of A. As A commutes
with i (Lemma 2.4), it follows from Lemma 2.4 that Ai ≤ CM

◦(A). As M/O2
◦(M) is of

degenerate type, it follows that Ai ≤ Ω1(O2
◦(M)) = A, and thus Ai = A, and i ∈ A. �

Corollary 4.11 Let L be a definable subgroup of G of the form SL2. Then I1∩N(L) ⊆
L.

Proof. Let w ∈ I1 ∩ N(L). Then w induces an inner automorphism on L of order at
most 2 and hence w centralizes a conjugate A1 of A with A1 ≤ L. Then by Lemma 4.10
we have w ∈ A1. �

Lemma 4.12 I∗ is generic in I1.

Proof. Let g = rk (G), m = rk (M), and c = rk (C(A)). For i ∈ A we have C(i) = C(A)
by Lemma 2.4, and thus rk (I1) = g − c.

Now by Lemma 2.2 m− c = a. Thus rk (I1) = g − c = (g −m) + a. For w ∈ I1 \ I∗,
we have rk (I1 ∩wM) < a, so rk (I1 \ I∗) < rk (G/M) + a = g− c = rk (I1). So I1 \ I∗ is
nongeneric in I1, and I∗ is generic. �

Corollary 4.13 A generic involution in I1 inverts a maximal torus T of some SL2-block
for which T ≤ M .

This shows that in some sense the situation is reminiscent of SL2; in a sense, we aim
to prove eventually that we are in SL2, though under our hypothesis (¬∗) this produces
a contradiction.

5 Toral block types

We have considered the behavior of involutions with respect to M , and the associated
tori. We must now consider the types of toral blocks that arise when we take into
account the relationship with M (fixed). Accordingly we make the following definition.

Definition 5.1 Let HT be a toral block, associated with the SL2-block HL, with T ≤ L,
and suppose that T ≤ M .

HT is type I if CH(A) 6= 1.

HT is type II if CH(A) = 1 and (H ∩M)◦ > 1.

HT is type III if H ∩M is finite.

Lemma 5.2
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1. If HT is a toral block of type I, then [H,A] = 1. In particular, H ≤ M .

2. If H1T1 and H2T2 are toral blocks of type I, then H1T1 is conjugate to H2T2 by an
element of M which carries T1 to T2.

Proof.
1. By Lemma 2.6(2), B(C(CH(A))) = B(C(H)). As A ≤ B(C(CH(A))), we have

[H,A] = 1. So H ≤ C(A) ≤ M .
2. By part (1) and Lemma 4.4 (1), the toral blocks in question are conjugate in M ,

so we may suppose H1T1 = H2T2. Then Hi = CA(HiTi), so H1 = H2. Hence with
Li = B(C(Hi)) we have L1 = L2 and then T1 = T2. �

Having defined toral block types, we now make a slightly more subtle definition,
correspondingly, for toral types.

Definition 5.3 Let T ≤ M be a torus which occurs as the toral component of some
toral block. Then T is said to be of type I, II, or III, respectively, if it occurs as the toral
component of a toral block of the same type.

From Lemma 5.2 (1) it follows that the types of toral blocks are mutually exclusive,
assuming one knows the pair (H,T ), and not simply their product. However this is by
no means true of the types of tori which occur as toral components of toral blocks. This
is an important and even useful point, as our main goal at the outset is to show that
type I and type II tori behave reasonably well, and that there are no other types, in
the quite limited sense that a type III torus must also be of type I or II (this leads to
stronger statements subsequently).

Definition 5.4 T is the family of tori T contained in M such that T is the toral com-
ponent of some toral block.

Observe that M acts by conjugation on T , preserving types.

Proposition 5.5 The family T divides into finitely many conjugacy classes under the
action of M .

Proof. As this statement is unaffected by passage to an elementary extension, we may
suppose the group G is ℵ0-saturated. The family T is uniformly definable in view of
Lemma 4.4 (4). So Fact 1.37 applies. �

In the long run, we aim to prove that all tori in T are of type I, or rather, in sharper
form, that no tori in T are of types II or III. We begin with a result about Type I tori.

Proposition 5.6 Let HT be a toral block of type I. Then CM
◦(T ) = HT .

Proof. Set Ĥ = CM
◦(A, T ). Then Ĥ ≥ H and we claim Ĥ = H.

Let HL be the SL2-block associated with HT , and w ∈ L an involution inverting T .
Set Γ = {[w, x] : x ∈ C◦(T )}. We show first

(1) rk (C◦(T )) = rk (Γ) + rk (H)
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We have the natural map from C◦(T ) to Γ induced by commutation with w, and for
x, y ∈ C◦(T ) we have

[w, x] = [w, y] ⇐⇒ wxy−1
= w ⇐⇒ xy−1 ∈ C(Aw)

where Aw is the conjugate of A containing w, by Lemma 2.4. On the other hand,
xy−1 ∈ C◦(T ) and 〈T,Aw〉 = L. So [w, x] = [w, y] ⇐⇒ xy−1 ∈ C(L), and as
C◦(L) = H this implies that rk (C◦(T )) = rk (H) + rk (Γ). So (1) holds.

Next we claim

(2) rk (Ĥ · Γ) = rk (Ĥ) + rk (Γ)

For this we consider the natural map Ĥ × Γ → Ĥ · Γ defined by (ĥ, γ) 7→ ĥγ. It
suffices to show that this is a bijection. So we need to show that for ĥγ1 = γ2, with
ĥ ∈ Ĥ and γ1, γ2 ∈ Γ, we have ĥ = 1. Suppose toward a contradiction that ĥ 6= 1.

Now as w inverts every element of Γ, we have ĥwγ−1
1 = (ĥγ1)w = γw

2 = γ−1
2 =

γ−1
1 ĥ−1, and thus ĥwγ−1

1 = ĥ−1.
Now wγ−1

1 is conjugate to w by the following calculation: taking γ1 = [w, x], we
have wγ−1

1 = wx−1wxw = wxw. Thus wγ−1
1 ∈ I1.

Now by Proposition 2.5, the element ĥ must be an involution commuting with wγ−1
1 .

Now ĥwγ−1
1 = ĥγ1w = γ2w = wγ−1

2 is another conjugate of w, as above. As ĥwγ−1
1

and wγ−1
1 are commuting involutions in I1, it follows that they lie in the same conjugate

of A and hence their product ĥ is also in I1, hence in I1 ∩ C(A) = A, by Lemma 4.10.
But ĥ ∈ C(T ), so this is a contradiction.

Accordingly, ĥ = 1, and the map in question is bijective.
Now we combine points (1) and (2). We have Ĥ · Γ ⊆ C(T ) and hence

rk (Ĥ) + rk (Γ) ≤ rk (Γ) + rk (H)

or in other words rk (Ĥ) ≤ rk (H). As H ≤ Ĥ we find H = Ĥ and the result is proved.
�

Corollary 5.7 Let HT be a toral block of type I. Then any maximal good torus of HT
is a maximal good torus of M .

Lemma 5.8 Let HT be a type I toral block contained in M , and HL the corresponding
SL2-block, with T a maximal torus of L. Then for w ∈ L inverting T , (M∩Mw)◦ = HT .

Proof. The group M ∩Mw normalizes 〈A,Aw〉 = L, and the claim follows. �

6 Type III Tori

Rather than analyzing type III toral blocks directly, we show that every torus in T is
of type I or II, which generally allows us to restrict our attention to those types.

We will make use of the following.

Lemma 6.1 Let G be an ℵ0-saturated group of finite Morley rank, T a good torus in
G, and K = CG

◦(T ). Suppose that K is generically covered by a family of intersections
{K ∩ Kg} with g varying over a definable set, with each of these intersections a rigid
abelian group.

Then K contains a good torus which is almost self-normalizing in G.



February 20, 2005 23

Proof. By Theorem 3 there is at least one such intersection B = K ∩Kg such that B
is maximal rigid in the sense that B◦ is the unique maximal good torus in CK(B).

As T is central in K, we then find that T ≤ B. Thus C◦(B◦) ≤ C◦(T ) = K. As
B ≤ Kg, we have T g ≤ C◦(B) and thus T g ≤ CK(B); again by maximality, we have
T g ≤ B. Thus C◦(B◦) ≤ C◦(T g) = Kg. Accordingly C◦(B◦) ≤ K ∩Kg = B, and thus
N◦(B◦) = C◦(B◦) = B◦. �

Proposition 6.2 Let T ≤ M be the toral component of a toral block HT . Then T is of
type I or II.

We do not assert here that the toral block HT will itself be of type I or II.
Proof. We may suppose after passing to an elementary extension that M is ℵ0-saturated.

Let H1T1 be a type I toral block, and T ∗ a maximal good torus of H1T1. Then by
Corollary 5.7, T ∗ is a maximal good torus of M , and hence after conjugation, invoking
Fact 1.35, we may suppose T ≤ T ∗.

Thus we have a toral block HT with toral component T ≤ M , and another toral
block H1T1 of type I, with T ≤ H1T1. Here H1 ≤ C(A) and T , T1 are complements to
C(A) in M , so in particular H1T = H1T1.

We consider R = CH1T1
◦(T ). If T1 ≤ T then T = T1, so T is of type I, as desired.

Suppose therefore that
T1 6≤ T

and in particular R > T .
We claim

(1) R = CG
◦(TT1) is almost self-normalizing in G

Notice that TT1 > T so TT1 meets H1 nontrivially, and C(TT1) ≤ C(H1 ∩ (TT1)) ≤
N(H1), in view of Lemma 2.6 (1,2). Thus C◦(TT1) ≤ [N◦(H1) ∩ C(T1)]◦ = H1T1, by
Lemma 2.6 (4), and C◦(TT1) ≤ CH1T1

◦(T ) = R. This proves that R = CG
◦(TT1), and

as TT1 is a good torus, it then follows that R is almost self-normalizing (Lemma 4.5).
So (1) holds.

For the remainder of the argument, we view R primarily as a subgroup of C(T ). We
claim that

R contains an almost self-normalizing connected subgroup of
C(T ) which is generically disjoint from its conjugates in C(T ).(2)

One possibility is that R itself is generically disjoint from its conjugates in C(T ), in
which case (2) holds. Now assume the contrary: R ∩

⋃
g∈C(T )\N(R) Rg is generic in R.

Now R ∩ Rg ≤ (H1T1) ∩ (H1T1)g, and by Lemma 3.3, this is a rigid abelian group
unless g ∈ N(H1). On the other hand, taking L1 = B(C(H1)), we have NC(T )

◦(H1) ≤
CH1L1

◦(T ) and as T normalizes H1 and L1 we have CH1L1
◦(T ) = CH1

◦(T )CL1
◦(T ) ≤

CH1
◦(T )T1 = R. Thus NC(T )

◦(H1) ≤ R, and there are only finitely many conjugates
of R of the form Rg with g ∈ NC(T )(H1). These may accordingly be discarded, and
our conclusion in this case is that R is generically covered by a definable family of
groups R ∩ Rg which are all rigid abelian. In this case as we work in an ℵ0-saturated
model, Lemma 6.1 applies, as R is the connected component of the centralizer of the
good torus TT1, and the conclusion is that R contains a good torus B which is almost
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self-normalizing in C(T ). But then B is also generically disjoint from its conjugates in
C(T ) (Lemma 1.32), and (2) is proved.

We now fix a connected subgroup K ≤ R, almost self-normalizing and generically
disjoint from its conjugates in C(T ). Then automatically T ≤ K, and as T is not almost
self-normalizing, in fact T < K. Now by Proposition 3.1 and Lemma 1.41, we find that
R is generically covered by conjugates of HT in C(T ).

We claim now that we may suppose that all the intersections R ∩ (HT )g with g ∈
C(T ) are rigid abelian groups. We have an inclusion R ≤ H1T1 so there is a natural
homomorphism R ∩ (HT )g → T1 × T induced by the projections associated with H1T1

and (HT )g = HgT . The kernel of the combined map is contained in Hg ∩ H1: if this
is nontrivial, one finds that Hg = H1. In this case, since HgT is a toral block with
toral component T , we again have T of type I, as desired. Leaving that case aside, we
conclude that the map R∩ (HT )g → T1×T is an embedding, and hence the intersection
is a rigid abelian group.

But in this case we have a covering of R, generically, by rigid abelian groups R ∩
(HT )g, and hence by Theorem 3, and saturation, at least one such, say B = R∩ (HT )g,
must be maximal in R in the sense that B◦ is a maximal good torus of CR(B). However
this implies that T1 ≤ B and thus TT1 ≤ (HT )g∩M . It follows that [(HT )g∩M ]◦ > T ,
and we have a toral component HgT of type I or II containing T , as claimed. �

7 The rank of I1

We have the formula rk (I1) = g − c where g = rk (G) and c = rk (C(A)), in view of
Lemma 2.4. We wish to make a second computation of the rank using the fact that
rk (I∗) = rk (I1) (Lemma 4.12).

Definition 7.1 For T ∈ T let IT be the set of involutions in I1 which act by inversion
on T . For T0 ⊆ T let IT0 be

⋃
T∈T0

IT .

Lemma 7.2 If T1, T2 ∈ T are distinct, then IT1 and IT2 are disjoint.

Proof.
Suppose w ∈ IT1 ∩ IT2 . Then T1, T2 ≤ M ∩Mw are inverted by w, and are comple-

ments to C(A) in M . If K = (M ∩Mw)◦ is abelian, then T1T2 is inverted by w, and this
forces T1 = T2 by Lemma 2.4 and Proposition 2.5, a contradiction. So K is nonabelian.

Then B(C(K ′)) = L is a group of type SL2 containing A and Aw. So K ≤ N◦(L) =
HL with H = C◦(L). Furthermore K ≤ (HL ∩ M ∩ Mw)◦ = HT for some maximal
torus T of L, inverted by w (which belongs to L by Corollary 4.11). So T is central in
K, and TT1 is a torus inverted by w. Furthermore by Proposition 2.5 TT1 ∩C(A) = 1,
and hence T1 ≤ T ; as the ranks are equal, we have T1 = T . Similarly T2 = T and we
have a contradiction. �

Note that by Corollary 4.13 IT is generic in I1. By Proposition 5.5 T is a finite
union of conjugacy classes with respect to the action of M , and hence for at least one
of these classes T0 ⊆ T , the set IT0 is generic in I1; by Lemma 7.2 this holds for exactly
one such class, as the Morley degree of I1 is 1.

Definition 7.3 A conjugacy class T0 ⊆ T , with respect to the action of M , is a generic
class if IT0 is generic in I1.
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So we know now that there is a unique generic conjugacy class in T . We use this
class to estimate the rank of G, and eventually we show that the generic class consists
of type I tori.

Lemma 7.4 For T ∈ T , the rank of IT is independent of T and is at most rk (C(T ))−
rk (H) where HT is a toral block for which T is the toral component (relative to some
SL2-block). Furthermore, rk (C(T )) and rk (H) are constant, independent of the choice
of T and the choice of the associated toral block.

Proof. It follows from Lemma 4.4 (4) that any two T ∈ T are conjugate in G. As IT

is determined by T , its rank is independent of the choice of T .
Now fix an SL2-block HL with T a maximal torus of L. For w ∈ IT we have

IT = {w′ ∈ I1 : w′ = wx with x ∈ C(T )}. In other words, IT = I1 ∩ wC(T ). For the
upper bound on rk (IT ), we aim to show that IT meets each coset of H in wC(T ) in at
most one element, which is sufficient.

Suppose toward a contradiction that w,w′ ∈ IT and w = w′h with h ∈ H×. Then
w inverts h ∈ C(A). As w ∈ I1, it follows from Proposition 2.5 that h is an involution,
so that w and w′ commute. If Aw is the conjugate of A containing w, and Mw the
corresponding conjugate of M , then w′ ∈ C(Aw) ≤ Mw. By Lemma 4.10 we have
w′ ∈ Aw and hence h = ww′ ∈ Aw. Then B(C(h)) = Aw, and this is a contradiction.
This gives the estimate rk (IT ) ≤ rk (C(T ))− rk (H).

As the tori T in T are conjugate in G, and the toral blocks HT are also conjugate, it
follows that rk (T ), rk (C(T )), and rk (HT ) are independent of T ; so rk (H) = rk (HT )−
rk (T ) is also constant (and for that matter, the various H are also conjugate). �

Definition 7.5 Let c1 = rk (C(T )) for T ∈ T and h = rk (H) where HT is a toral
block. As remarked above, this is well defined.

Now we record the corresponding rank formula for conjugacy classes in T . We recall
that m, g, c are rk (M), rk (G), and rk (C(A)) respectively.

Lemma 7.6 For T0 a conjugacy class in T with respect to the action of M , and T ∈ T0

we have

rk (IT0) = c− rk (C(A, T )) + rk (IT ) ≤ c− rk (C(A, T )) + c1 − h

Proof.
We have shown that the rank rk (IT ) is constant, and as IT0 is the disjoint union of

the IT (T ∈ T0) by Lemma 7.2, we find rk (IT0) = rk (T0) + rk (IT ), where T is viewed
as a definable subset of Geq.

Now for T ∈ T0 we have rk (T0) = rk (M/NM (T )) = m−rk (NM
◦(T )) and NM

◦(T ) =
CM

◦(T ) = CM
◦(A, T )× T , so rk (T0) = m− t− rk (C(A, T )) and as m− t = c our first

equality holds. For the second we use our preceding estimate of rk (IT ). �

Corollary 7.7 Let T0 be a generic conjugacy class in T with respect to the action of
M , and let T ∈ T0. Then

1. g ≤ 2c− rk (C(A, T )) + c1 − h
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2. rk (C(A, T )) ≤ h

Proof. For the first point we just use the fact that g = c+rk (I1) = c+rk (IT0), together
with our final estimate above.

For the second point, our formula for rk (IT0) shows that this rank is independent of
the choice of T0, except for the term rk (C(A, T )), which must be minimized. However
in the case of a type I torus we know by Proposition 5.6 that this rank is h, so the
minimum is at most h. This proves the claim. �

8 C◦(A)C(T )C◦(A)

We now seek a lower bound for g = rk (G) by computing the rank of C◦(A)C(T )C◦(A)
in those cases for which C(T ) is not contained in M ; while ultimately it turns out that
this does not occur, at present it is certainly a strong possibility a priori, and in addition
it might also depend on the specific choice of T (for example, its type).

Lemma 8.1 Suppose T ∈ T , h1, h2 ∈ C◦(A), and c1, c2 ∈ C(T ) \M , with

h1c1C
◦(A) = h2c2C

◦(A)

Then h1 ∈ h2[C◦(A) ∩ C(T )] and c1 ∈ [C◦(A) ∩ C(T )]c2[C◦(A) ∩ C(T )]

Proof. We write h1c1 = h2c2v with v ∈ C◦(A). With u = h−1
2 h1, we have u ∈ C◦(A)

as well, and
v = c−1

2 uc1;u, v ∈ C◦(A), c1, c2 ∈ C(T )

We aim to show that v ∈ C(T ), so that u ∈ C(T ), h1 = h2u ∈ h2[C◦(A) ∩ C(T )],
and c1 = u−1c2v ∈ [C◦(A) ∩ C(T )]c2[C◦(A) ∩ C(T )].

Consider the group X = [T, v] (generated by the set of commutators). Suppose
toward a contradiction that X > 1.

We have X ≤ C◦(A) by Proposition 2.3. Furthermore X = [T, c−1
2 uc1] = [T, uc1] =

[T, u]c1 ≤ CM◦(Ac1). Now as c1 /∈ M and X > 1 we find B(C(X)) = 〈A,Ac1〉 ∼= SL2(F )
for some algebraically closed field F of characteristic two.

Let L1 = B(C(X)) and H1 = C◦(L1). Then H1 ≤ [M ∩ M c1 ]◦. Let T1 be the
maximal torus of L1 contained in M ∩M c1 , and w1 ∈ L1 an involution inverting T1.

Now T normalizes X and hence acts on L1, so T ≤ H1L1. Furthermore T ≤ M∩M c1

since c1 ∈ C(T ), and M c1 = Mw1 , so T ≤ ((H1L1) ∩M ∩Mw1)◦ = H1T1.
Now Ac1 = Aw1 so c1w1 ∈ N(A) = M . Write c1 = xw1 with x ∈ M . For t ∈ T

we have t = txw1 , so tx = tw1 . Writing t = ht1 with h ∈ H1 and t1 ∈ T1, we find
hxtx1 = ht−1

1 ; reading this in M = M/C(A) we get t̄1 = t̄−1
1 and this forces t1 = 1.

From this we conclude that T ≤ H1, but this contradicts Proposition 2.5. Hence
X = 1, as claimed. �

Lemma 8.2 Suppose that T ∈ T . For h ∈ C◦(A) and c ∈ C(T ) \ M , the rank of the
set of pairs (h′, c′) for which h′ ∈ C◦(A), c′ ∈ C(T ) \M , and hcC◦(A) = h′c′C◦(A) is
2rk (C◦(A) ∩ C(T )).
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Proof. By the preceding lemma, a necessary condition for hcC◦(A) = h′c′C◦(A) is
h′ = hu1, c′ = u2cu3 with u1, u2, u3 ∈ C◦(A)∩C(T ), and if u1u2 = 1 then this is clearly
sufficient. It remains to prove that necessarily u1u2 = 1.

We may suppose therefore that we have cC◦(A) = ucC◦(A) with c ∈ C(T ) \M and
u ∈ C◦(A) ∩ C(T ), and we aim to show u = 1. Since cC◦(A) = ucC◦(A), we have
uc ∈ C◦(A). Thus u ∈ C(A,Ac−1

).
Suppose u 6= 1, and let L = B(C(u)). As c /∈ M , we have A 6= Ac−1

, and L is of
type SL2.

There is an involution w ∈ L such that Aw = Ac−1
and thus wc ∈ N(A) = M . Now

w inverts T1 = NL(A) ∩NL(Aw) and T ≤ N(A) ∩N(Aw) ≤ N(L), so T ≤ T1C(L).
We have [w, T ] = [wc, T ] ≤ C(A) (Lemma 2.4); as T ≤ T1C(L) with w inverting T1

and centralizing C(L), we find [w, T ] ≤ T1 ∩ C(A) = 1, and hence T ≤ C(L) ≤ C(A).
As T ∈ T , this contradicts Proposition 2.5. �

Lemma 8.3 Suppose that T ∈ T and that C(T ) is not contained in M . Then

rk (C◦(A)[C(T ) \M ]C◦(A)) = c1 + 2c− 2rk (C(A, T ))

and, in particular,
g ≥ c1 + 2c− 2rk (C(A, T ))

Proof. Let X = C(T )\M . Then rk (X) = c1 by assumption. We claim rk (C◦(A)XC◦(A)) =
c1 + 2c− 2rk (C(A, T )).

Define an equivalence relation ∼ on C◦(A)×X by (h1, c1) ∼ (h2, c2) iff h1c1C
◦(A) =

h2c2C
◦(A). Then rk (C◦(A)XC◦(A)) = rk ((C◦(A) × X)/ ∼) + c. So to get our for-

mula, it suffices to check that the equivalence classes for ∼ in C◦(A) × X have rank
2rk (C(A, T )).

By Lemma 8.2, the correct value is 2rk (C◦(A) ∩ C(T )). Since C◦(A) ∩ C(T ) has
finite index in C(A, T ), the ranks are the same. �

Actually, we need to improve the foregoing inequality by making it strict. This
requires some further analysis.

Lemma 8.4 Suppose T ∈ T and C(T ) 6≤ M . Then I1 ∩ C◦(A)[C(T ) \M ]C◦(A) = ∅.

Proof. Suppose h1, h2 ∈ C◦(A), c ∈ C(T ) \M , and h1ch2 ∈ I1. After conjugating by
h1 we find ch ∈ I1, with h = h2h1 ∈ C◦(A).

Let i = ch. Then [i, T ] = [h, T ] ≤ C◦(A).
Now for t ∈ T× we have [i, t] 6= 1 since i ∈ I1 and T ∈ T , using Proposition 2.5. But

[i, t] is inverted by i and i ∈ I1, so again by Proposition 2.5 the element [i, t] must be
an involution. But [i, t] = iit so i and it are commuting involutions in I1. In this case,
by Lemma 2.4 they lie in a single conjugate of A, which must also contain [i, t]. But i
is outside M , and [i, t] is inside M , a contradiction. �

Lemma 8.5 Let w ∈ I∗. Then rk ({x ∈ M ∩ Mw : x = ww′ for some w′ ∈ I1}) =
rk(A).
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Proof. By Proposition 4.8 there is a torus T in M ∩Mw inverted by w with rk (T ) =
rk (A). Let X1 = {x ∈ M ∩Mw : xw = x−1}, and let X = {x ∈ X1 : ∃w′ ∈ I1 x = ww′}.
Then T ⊆ X ⊆ X1.

If M ∩Mw is abelian then X1 is a group and T = X1
◦, in which case our claim is

clear.
Assume M ∩ Mw is nonabelian, and let K be its commutator subgroup. Then

L = B(C(K)) = 〈A,Aw〉 is a group of type SL2 and M ∩ Mw acts on it, so we have
M ∩Mw ≤ RL with R = C(L).

Now w ∈ L by Corollary 4.11. Since X1 ⊆ RL and w ∈ L, it follows that the
elements of X1 are of the form rt with r ∈ R, r2 = 1, and t ∈ T1, where T1 ≤ L is the
maximal torus inverted by w, normalizing A.

Suppose such an element rt belongs to X, that is rt = ww′ with w′ ∈ I1. Now
t = ww′′ with w′′ ∈ I(L), so r = (w′w′′)w and conjugating by w, r = w′w′′. In
particular w′, w′′ are commuting involutions in I1, hence lie in the same conjugate of A,
which therefore contains r. If r 6= 1 then r ∈ I1 ∩C(A) = A×, a contradiction. So r = 1
and rt ∈ T1. �

Lemma 8.6 I1M
◦ is generic in G.

Proof. We claim that the map I1 × M◦ → G given by multiplication is generically
surjective. The rank of I1 ×M◦ is rk (I1) + m = g − c + m = g + a where a is the rank
of A, which is also the rank of a complement T to C(A) in M .

It suffices to check that the fibers have rank at most a. But if i, j ∈ I1, x, y ∈ M◦

and ix = jy, then ji = yx−1 is an element of M◦ inverted by i, and the rank of the set

{j ∈ I1 : ji ∈ M◦}

is at most a if i ∈ I∗, by the preceding lemma, and is strictly less than a otherwise. �

Proposition 8.7 Suppose that T ∈ T and C(T ) is not contained in M . Then g >
c1 + 2c− 2rk (C(A, T )).

Proof. By Lemma 8.3 we have g ≥ c1 + 2c− 2rk (C(A, T )) already.
If we have equality, then by that same lemma the set C◦(A)[C(T ) \ M ]C◦(A) is

generic in G. On the other hand I1M
◦ is also generic in G. We claim that these two

sets are disjoint, and hence the former is not generic, so the inequality is strict.
Now C◦(A)[C(T ) \M ]C◦(A) = C◦(A)[C(T ) \M ]M◦ since M◦ = TC◦(A) and T ≤

C(T ). Since
(C◦(A)[C(T ) \M ]C◦(A)) ∩ I1 = ∅

none of the left cosets of M◦ making up this set meets I1. On the other hand, every left
coset of M◦ in I1M

◦ meets I1, so the two sets are disjoint. �

9 C(T ) and rk (G)

Now we can combine the upper and lower bounds for g derived in the previous sections
to show the following.
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Proposition 9.1
1. For a torus T in the generic conjugacy class T0 under the action of M , we have

C(T ) ≤ M .
2. g = m + c− h.

Proof.
1. Fix T ∈ T0. Suppose that C(T ) is not contained in M . In this case, the estimates

of the last two sections apply, namely Proposition 8.7 and Corollary 7.7, giving

c1 + 2c− 2rk (C(A, T )) < g ≤ 2c− rk (C(A, T )) + c1 − h

Cancelling common terms we find

−rk (C(A, T )) < −h

or h < rk (C(A, T )). This contradicts Corollary 7.7 and proves the first point.
2. In particular we find c1 = rk (CM (T )) = rk (A) + rk (C(A, T )) and hence our

estimate in Corollary 7.7 becomes

g ≤ 2c + rk (A)− h = m + c− h

On the other hand, if we choose w ∈ I1 associated with a type I toral block HT ≤ M ,
then rk (MwM) = 2m− rk (M ∩Mw). By Lemma 5.8, (M ∩Mw)◦ = HT .

So we have now

g ≥ rk (MwM) = 2m− rk (HT ) = 2m− h− rk (T ) = m + c− h

and so we have determined g:
g = m + c− h

�

10 2-Transitivity, Connectivity, Strong Embedding

In this section we study the action of G on the cosets of M in G. We use the notations
g = rk (G), m = rk (M), c = rk (C(A)), h = rk (H), a = rk (A) as before, though in
what follows one should bear in mind rather that a = rk (T ).

Lemma 10.1 Let g ∈ G \M . Then rk (M ∩Mg) ≥ h + a.

Proof. We know g = m+c−h and by considering MgM we find g ≥ 2m−rk (M∩Mg),
so rk (M ∩Mg) ≥ m− c + h = h + a. �

Lemma 10.2 Let g ∈ G \M . Then rk (M ∩Mg) = h + a.

Proof. We need to prove the upper bound rk (M ∩ Mg) ≤ h + a. If the intersection
has rank a then this is clear, so we assume rk (M ∩Mg) > a. Let R = (M ∩Mg)◦. Let
K1 = CR(A) and K2 = CR(Ag). As M = C(A)T with rk (T ) = a, we have K1 infinite,
and similarly K2 is infinite.

Suppose first that

(1) (K1 ∩K2)◦ = 1
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As M = C(A)T and Mg = C(Ag)T g we have a natural map R → T × T g with kernel
K1 ∩K2, so R is a good torus by Lemma 1.26 (4).

We claim that R is almost self-normalizing. We have

N◦(R) = C◦(R) ≤ N(B(C(K1))) ∩N(B(C(K2)))

If B(C(K1)) = A then N◦(R) ≤ N(A) = M . Suppose L1 = B(C(K1)) is of type SL2. If
R centralizes L1, then rk (R) ≤ h and we are done. So suppose R acts nontrivially on L1.
Then R acts like part of a maximal torus T1 ≤ L1, normalizing A, and thus N◦(R) also
acts on L1 like part of T1. So N◦(R) ≤ T1 · C(L1). But of course C(L1) ≤ N(A) = M ,
so again N◦(R) ≤ M . Thus in all cases N◦(R) ≤ M . Similarly, N◦(R) ≤ Mg and thus
N◦(R) = R.

As R is a good torus, it follows that the union of the conjugates of R in M◦ is generic
in M◦.

Taking a type I toral block HT ≤ M◦, it follows from Proposition 3.1 and Lemma
1.41 that R is generically covered by the conjugates of HT in M◦, and hence we may
suppose without loss of generality that R ≤ HT . But then rk (R) ≤ h + a, as claimed.
That proves the result in Case (1).

Now suppose

(2) (K1 ∩K2)◦ > 1

Then L = B(C(K1 ∩ K2)) = 〈A,Ag〉 is of type SL2 and H = C◦(L) ≤ M . Now
Mg = Mw for some w ∈ L, and by Lemma 5.8 we have (M ∩Mg)◦ = HT with T the
torus inverted by w. So rk (R) = h + a in this case as well. �

Proposition 10.3 The action of G on G/M is doubly transitive.

Proof. For g ∈ G \ M we consider the double coset MgM . We find rk (MgM) =
2m− rk (M ∩Mg) = 2m− h− a = m + c− h = rk (G). Thus each such double coset is
generic in G, and there can be only one. �

Corollary 10.4

1. For any two distinct conjugates A1, A2 of A, the group 〈A1, A2〉 is a group of type
SL2 over an algebraically closed field of characteristic two, and is a factor of an
SL2-block.

2. For any conjugate M1 of M distinct from M , the group (M ∩M1)◦ is a toral block
of type I.

Lemma 10.5 Let HT be a toral block with HT ≤ M . Then HT is of type I, and hence
[H,A] = 1.

Proof. We take an SL2-block HL with T a maximal torus of L, inverted by the invo-
lution w ∈ L. By double transitivity, L1 = 〈A,Aw〉 is also a group of type SL2, part of
an SL2-block H1L1. As L1 is normalized by w, by Corollary 4.11, we have w ∈ L1. So
w inverts the maximal torus T1 of L1 which normalizes A and Aw. By Lemma 7.2 we
have T = T1.

As w ∈ L∩L1, it follows that the conjugate Aw of A containing w is also contained
in both L and L1, hence L = 〈Aw, T 〉 = L1, and H = H1. Thus HT is of type I. �
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Corollary 10.6 The generic class of tori in T with respect to the action of M consists
of the type I tori, and these tori are not of types II or III.

Proof. If T belongs to the generic class T0 ⊆ T then we know that C(T ) ≤ M . So any
toral block containing T is contained in M and is therefore of type I exclusively (Lemma
10.5).

Conversely, the type I tori are conjugate under the action of M (Lemma 5.2 (2)), so
they are all in the generic class. �

Lemma 10.7 There are no tori in T of type II or III.

Proof. We know that a type III torus is of type I or II. We also know that there is a
single conjugacy class of type I tori in M , and such tori are not of types II or III. So we
only have to eliminate type II tori.

Let T be a type II torus inverted by the involution w ∈ L where HL is an SL2-block
for which T is a maximal torus of L. By double transitivity we have (M ∩Mw)◦ = H1T1

for some toral block of type I. Let H1L1 be the associated SL2-block.
As H1 centralizes A and Aw, we have L1 = 〈A,Aw〉, so w normalizes L1. By Corollary

4.11, w ∈ L1. But L1 ∩H1T1 = T1 and hence w normalizes T1. Now CT1(w) = 1, so w
inverts T and T1, and this forces T = T1 (Lemma 7.2). So in this case T is of type I,
and hence not of type II (Corollary 10.6). �

Corollary 10.8 The family T consists of a single conjugacy class under the action of
M .

Proof. By Lemma 5.2 (2). �

Our next goal is the connectivity of M . The following is a consequence of Lemma
2.4.

Lemma 10.9 For T ∈ T we have NM (T ) = CM (T ).

Proposition 10.10 M is connected.

Proof. Take a toral block HT ≤ M and an involution w ∈ C(H) inverting T . Suppose
toward a contradiction that x ∈ M \M◦.

Now
rk (C◦(A)wM◦) = c + m− rk (C◦(A) ∩ (M◦)w)

and [C◦(A)∩ (M◦)w]◦ = [C◦(A)∩ (HT )]◦ = H, so rk (C◦(A)wM◦) = c+m−h = g and
C◦(A)wM◦ is generic in G.

More generally, the same holds with w replaced by any g ∈ G\M , since C◦(A)gM◦ =
C◦(A)Mg−1

g and the rank of this set is clearly determined by the pair (M,Mg−1
), as

C◦(A) = C◦(Ω1(O2
◦(M))).

We conclude that both C◦(A)wM◦ and C◦(A)wxM◦ are generic in G, and hence that
C◦(A)wM◦ = C◦(A)wxM◦. So we have an equation cwM◦ = wxM◦ with c ∈ C◦(A).
So cw ∈ xM◦ ⊆ M and c ∈ C◦(A) ∩ Mw ≤ N(A) ∩ N(Aw). Let L = 〈A,Aw〉. So
c ∈ N(L) and c ∈ C◦(A). Then c acts on L like an element of A while normalizing
Aw, forcing c ∈ C(L), and in particular c commutes with w. The equation reduces to
wM◦ = wxM◦ and shows x ∈ M◦. �
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Corollary 10.11 C◦(A) = C(A) = C(i) for i ∈ I(A).

Proof. We know C(A) = C(i) by Lemma 2.4.
We also have M = C(A)T and M = M◦ = C◦(A)T and as C(A) ∩ T = 1 our claim

follows. �

Lemma 10.12 Let T ∈ T , HL a corresponding SL2-block with T a maximal torus in
L, and w ∈ I(L) inverting T . Let Ĥ = C(L). Then

1. M ∩Mw = ĤT .

2. C(A) ∩Mw = C(L).

Proof. For the first point, consider R = CM∩Mw(A). Then M ∩Mw = RT and Ĥ ≤ R,
so the claim is that R centralizes L. Now R◦ = H so R normalizes H and hence also L.
As R centralizes A, R acts on L like a subgroup of A. So R ≤ AĤ and R = Ĥ · (A∩R).
But A ∩R ≤ A ∩Mw = 1, so R = Ĥ. This proves (1).

Now M ∩Mw = TC(L), so C(A) ∩Mw = C(A) ∩ TC(L) = C(L). �

Lemma 10.13 Let T ∈ T . Then for t ∈ T× we have C(t) ≤ M .

Proof. Let HL be the associated SL2-block and fix w ∈ L inverting T . We have
G \ M = C(A)wM = C(A)wC(A)T and we claim that nothing in this set commutes
with t.

Assuming the contrary, we get an element c1wc2 ∈ C(t) with c1, c2 ∈ C(A). So
(c1wc2) = (c1wc2)t = ct

1w
tct

2. Now wt = wt2. So we find xwt2 = wy for appropriate
x, y in C(A), or xw = yt−2 ∈ C(A)w ∩ M ≤ M ∩ Mw = C(L)T by the Lemma 10.12.
So xw ∈ CC(L)T (Aw) = C(L).

As y ∈ C(A) and xw = yt−2 this implies t−2 ∈ C(A) and hence t = 1. This
contradiction proves the claim. �

Proposition 10.14 M is strongly embedded in G.

Proof. Supposing the contrary, we have an offending involution i ∈ M , that is an
involution i whose centralizer is not contained in M . If C◦(i) ≤ M then it follows easily
by a Frattini argument that C(i) ≤ M ; so we have C◦(i) 6≤ M .

Then by Fact 1.24, we have C◦(i) = Ĥi × Li with Li of type SL2, and Ĥi ≤ C◦(Li)
of degenerate type; Ĥi ≤ M and M ∩ Li is a Borel subgroup of Li. Possibly Ĥi = 1.
Set Hi = C◦(Li), which is nontrivial in view of Proposition 4.8.

Now let us replace i by one of its conjugates outside M . Then C◦(i) has the same
structure as above, and we will again write C◦(i) = ĤiLi, and Hi = C◦(Li).

On the other hand, by Proposition 10.3 we also have (M ∩ M i)◦ = HT with T =
(M ∩ M i) ∩ L for some SL2-block HL; specifically, L = 〈A,Ai〉. Here i acts on L,
with nontrivial action, and hence also acts on H. As i acts as an involution on L, it
centralizes some Sylow 2-subgroup A0 of L. Therefore A0 ≤ Li ∩ L.

Now set K = CH
◦(i) ≤ HiLi, and suppose K 6= 1. Then K centralizes L, hence

centralizes A0. As K acts on Li centralizing A0 and is of degenerate type, K centralizes
Li by Fact 1.20. Thus K ≤ H ∩Hi and L = Li, which contradicts the action of i, trivial
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in one case and nontrivial in the other. We conclude, therefore, that CH
◦(i) = 1 and i

inverts H, which must then be abelian.
Now i acts on L like an involution w ∈ L, and in particular i commutes with w.

Let j = iw, another involution. Then j centralizes L and inverts H. Furthermore
j ∈ N(A) = M . We will study the coset jHT . As HT is abelian and j inverts H,
j /∈ HT .

As M is connected, the conjugates of HT in M are generic in M by Proposition 3.1.
As N◦(HT ) = HT , it follows by Fact 1.44 that the set

X = {x ∈ jHT : For some g ∈ M \NM (HT ), x ∈ (〈j〉HT )g}

is generic in the coset jHT , as otherwise the conjugates of jHT provide a second generic
subset of M which is generically disjoint from the union of the conjugates of HT .

For a ∈ jHT , if we write a = jht with h ∈ H, t ∈ T we find a2 = (ht)j(ht) = t2 ∈ T .
Therefore for a ∈ X, if g ∈ M \N(HT ) and a ∈ (〈j〉HT )g, we find a2 ∈ T ∩ (HT )g.

There is a coset jhT of T with h ∈ H for which X ∩ jhT is generic in jhT . In
other words, the set T0 = {t ∈ T : jht ∈ X} is generic in T , and for t ∈ T0 we have
t2 ∈ T ∩(HT )g for some g ∈ M \NM (HT ). So the set of all such intersections T ∩(HT )g

generically covers T , and as T is a good torus we find one such g ∈ M \ NM (HT ) for
which T ≤ (HT )g. As HT is abelian, we have (HT )g ≤ C◦(T ) = HT by Proposition
5.6 and Lemma 10.7. Hence g ∈ N(HT ), a contradiction. �

Corollary 10.15 I(G) = I1 and H contains no involutions

Proof. All involutions in G are conjugate by strong embedding. On the other hand
I1 ∩M = A, so H contains no involutions. �

11 The final chapter

In this section we study elements of order 3 in wM , in order to reach a contradiction,
proving Theorem 2. Here we fix w ∈ I(G) \M and write (M ∩Mw)◦ = HT with HT a
toral block, corresponding to an SL2-block HL with w ∈ L.

11.1 Taking stock

We first rework some of our earlier results to put them in the form we will require here.

Lemma 11.1 For any w ∈ I(G) \M , setting L = 〈A,Aw〉, we have the following.
1. L is of type SL2 and NL(A) ∩ NL(Aw) is a torus inverted by w, contained in

M ∩Mw, and w ∈ L.
2. G = M t C(A)wC(A)T ; the representation is unique in the following sense:
3. If c1wc2t1 = c′1wc′2t

′
1 with c1, c2, c

′
1, c

′
2 ∈ C(A) and t1, t

′
1 ∈ T , then t1 = t′1 and for

some x ∈ C(L) we have c1 = c′1x, c2 = x−1c′2.

Proof. 1. The first claim follows by double transitivity, Proposition 10.3. The rest
then follows, using Corollary 4.11 and Corollary 10.15 for the final point.

2. Again, this is double transitivity, together with Lemma 2.4.
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3. The equation can be written in the form

xw = c′2tc
−1
2

with x = (c′1)
−1c1 and t = t′1t

−1
1 . Hence x ∈ C(A) ∩Mw = C(L) by Lemma 10.12. As

w ∈ L our equation becomes x = c′2tc
−1
2 and hence t ∈ C(A). As t ∈ T we find t = 1

and t1 = t′1, x = c′2c
−1
2 , and everything has been checked. �

Lemma 11.2 For T ∈ T and t ∈ T× we have C(t) = C(T ) ≤ M .

Proof. By Lemma 10.13 we have C(t) ≤ M . Taking w ∈ I(G) which inverts T we have
C(t) ⊆ Mw. Now C(t) = T · C(t, A) and C(t, A) ≤ C(A) ∩ Mw = C(L) by Lemma
10.12. As C(L) ≤ C(T ) we find C(t) ≤ C(T ). �

Lemma 11.3 Let T be the toral component of a toral block, and suppose T ∩M 6= 1.
Then T ≤ M .

Proof. Let T0 = T ∩M . Let w ∈ I(G) invert T . As w inverts T0, we have w /∈ M . Thus
L = 〈A,Aw〉 is a group of type SL2 and T0 acts on L normalizing A and Aw. Hence T0

normalizes the torus T1 = NL(A)∩NL(Aw), and by Lemma 10.9, it also centralizes T1.
So T1 ≤ C(T0) = C(T ) by Lemma 11.2. Thus T ≤ C(T1) ≤ M by Lemma 10.13. �

The next result corresponds to Lemma 4.5 of [16], which in the K∗ context was
formulated as follows: O(F (M)) > 1. This was a cornerstone of the analysis as given in
[16], which our analysis follows in parallel, allowing for the difference in perspective and
notation resulting from the removal of the theory of solvable groups from the discussion,
of which the present instance provides a good example.

Lemma 11.4 C(A) > AH

Proof. Suppose C(A) = A×H. Then as H = O(AH) is characteristic in AH we have
M ≤ N(H). As w ∈ C(H) we find G = M ∪ MwM ⊆ N(H), H / G. Hence H = 1,
contradicting the hypothesis (¬∗). �

Lemma 11.5 Suppose H1T1 and H2T2 are toral blocks, t1 ∈ T×
1 , t2 ∈ T×

2 , and t1, t2
commute. Then T1 = T2 and H1 = H2.

Proof.
As C(t1) = C(T1) and C(t2) = C(T2), the tori T1 and T2 commute.
We may suppose that H1T1 ≤ M . Then T1 is a type I toral block by Lemma

10.7, associated with an SL2-block H1L1. If w ∈ L1 is an involution inverting T1, then
C◦(T1) = H1T1 = (M ∩ Mw)◦ by Proposition 5.6 and Lemma 5.8. So T2 ≤ M ∩ Mw

and thus C(T2) ≤ M ∩Mw. On the other hand T2 belongs to a toral block H2T2 and
just as in the case of T1, we have C◦(T2) = H2T2. So we have H2T2 ≤ H1T1 and as the
ranks are equal, we have H1T1 = H2T2.

As both T1 and T2 are type I, we have H1 = CH1T1(A) = H2. So the associated SL2

components L1 = B(C(H1)) and L2 = B(C(H2)) also coincide. So T1, T2 are commuting
maximal tori in SL2, hence coincide. �
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11.2 Elements of order 3

We now begin the study of elements of order 3 in G, and more particularly, those which
are conjugate to an element of the SL2-component of an SL2-block.

The following is fundamental, and will be used without explicit mention.

Lemma 11.6 Let x = wct with c ∈ C(A) and t ∈ T . Then x3 = 1 if and only if
cw = c−twc−1t.

Proof. Expanding and bearing in mind wt = t−1w, we find

(wct)3 = cwt−1cwct = cw(c−twc−1t)−1

�

Corollary 11.7 If c ∈ C(A), t1, t2 ∈ T , and wct1, wct2 are of order 3, then t1 = t2.

Proof. The representation of cw is unique (Lemma 11.1). �

Definition 11.8
1. An element t ∈ G is toral if t lies in a toral component T of some toral block.
2. X3 = {c ∈ C(A) : ∃t ∈ T [ ord (wct) = 3 and wct is toral]}

Lemma 11.9 X3 is invariant under conjugation by HT .

Proof. Suppose wct is a toral element of order 3. For h1 ∈ H and t1 ∈ T we may
compute

(wct)h1t−1
1 = wt−1

1 ch1t−1
1 t = wt−2

1 ch1t−1
1 t = wch1t1t−2

1 t

and from this we see that ch1t1 ∈ X3. �

Lemma 11.10 X3 ∩AC(L) = A×.

Proof.
Working inside SL2 one can see that X3 meets A×; since A× is a single conjugacy

class under the action of T , by Lemma 11.9 we have A× ⊆ X3.
Now suppose ax ∈ X3 with a ∈ A, x ∈ C(L). Then we have t ∈ T with waxt a toral

element of order 3, and thus

(ax)w = (ax)−tw(ax)−1t = (a−twat)x−2

Comparing this with (ax)w = awx yields x3 ∈ L. As x ∈ C(L) this gives x3 = 1 and
hence from the foregoing equations, aw = a−twat. Hence wat is also a toral element
of order 3. As wat and waxt commute, the associated torus is the same in both cases,
by Lemma 11.5. As wat ∈ L this implies waxt ∈ L, forcing x = 1, as claimed. Then
evidently a 6= 1. �
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Lemma 11.11 rk (X3) = c− h

Proof. Fix T ∈ T and t0 ∈ T of order 3. Note that the toral elements of order three
make up the conjugacy class tG0 , and there is a function wM ∩ tG0 ↔ X3 defined by
wct 7→ c for c ∈ C(A), t ∈ T (when wct ∈ tG0 ). This is a bijection since c determines t
by Corollary 11.7.

Now rk (tG0 ) = g− rk (C(t0)) and C(t0) = C(T ) = CM (T ) so in view of Propositions
9.1 and 5.6, we have rk (tG0 ) = (m + c− h)− (a + h) = 2(c− h).

On the other hand T is a single conjugacy class in M , so M∩tG0 = {t0, t−1
0 }M , taking

into account Lemma 11.3, and rk(tM0 ) = m − a − h = c − h. Hence tG0 lies generically
outside M , and by double transitivity it is evenly distributed over the cosets gM for
g ∈ G \M . Then writing r = rk (gM ∩ tG0 ) with r constant, we find

2(c− h) = rk (tG0 ) = r + rk (G/M) = r + g −m = r + c− h

and hence r = c− h, as claimed. �

Definition 11.12 X ′
3 = X3 \A.

Lemma 11.13 X ′
3 is generic in X3.

Proof. We know that rk (X3) = c− h, and c− h > a by Lemma 11.4. �

Lemma 11.14 rk (X ′
3C(L)) = rk (C(A)) and the natural map X ′

3 × C(L) ↔ X ′
3C(L)

is a bijection.

Proof. Since rk (X ′
3 ×C(L)) = rk (C(A)), the second claim suffices. Suppose therefore

that c ∈ X ′
3, h ∈ C(L), and ch ∈ X ′

3. We must show that h = 1.
Now we have

cw = c−t1wc−1t1

and then

(ch)w = (ch)−t2w(ch)−1t2 = h−1c−t2h−1wc−1t2;(1)
(ch)w = cwh = c−t1wc−1ht1(2)

Comparing these representations, we have t1 = t2 and hence h−1c−t1h−1wc−1 =
c−t1wc−1h, so that (ct1c−t1hh−2)w = c−1hc ∈ C(A) ∩ C(Aw) = C(L).

If h 6= 1 then as hc ∈ C(L) it follows easily that c ∈ N(L): Lc = B(C(h))c =
B(C(hc)) = L. Hence c ∈ C(A)∩N(L) = AC(L). Thus c ∈ X ′

3∩AC(L) = ∅ by Lemma
11.10. �

Corollary 11.15 H = C(L)

Proof. By the first part of Lemma 11.13 and Corollary 10.11, the set X ′
3C(L) has

Morley degree 1, and hence by the second part of Lemma 11.13 the set X ′
3 ×C(L) also

has Morley degree 1. Hence C(L) has Morley degree 1, and so C(L) = C◦(L) = H. �
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Now at long last we can derive a contradiction from our initial assumption (¬∗).

Proof of Theorem 2. We are going to calculate a fairly complicated element of G in
two distinct ways to reach a contradiction.

We fix the usual notation HL, HT with HT ≤ M and w ∈ I(L) inverting T . We
choose a base point a0 ∈ A satisfying aw

0 = a0wa0 (this takes place inside SL2).
We know that X ′

3H is generic in C(A) by Lemma 11.14 and Corollary 11.15. If we
consider the intersections cAH ∩X ′

3H with c ∈ C(A), it follows that for a generic set
of c ∈ C(A), the intersection of cAH with X ′

3H is generic in cAH. Equivalently, fixing
our base point a0 ∈ A, the set of c ∈ C(A) satisfying

(•) {t ∈ T : cat
0 ∈ X ′

3H} is generic in T

is generic in C(A). As X ′
3H is generic in C(A), the set of c ∈ X ′

3H satisfying the same
condition (•) is generic in C(A). As this set is closed under multiplication by H on the
right, and as the multiplication map X ′

3 ×H → X ′
3H is bijective, the set X ′′

3 of c ∈ X ′
3

satisfying the condition (•) is generic in X3. Now X3 is closed under inversion, as can
be seen by inverting both sides of the equation cw = c−twc−1t. So the following set is
generic in X ′

3.
{c ∈ X ′

3 : c, c−1 ∈ X ′′
3 }

Fix such an element c ∈ X ′′
3 . Then the following sets are generic in T .

{t ∈ T : cat
0 ∈ X ′

3H}, {t ∈ T : c−1at−1

0 ∈ X ′
3H}

Hence also their intersection

T0(c) = {t ∈ T : cat
0 ∈ X ′

3H; c−1at−1

0 ∈ X ′
3H}

is generic in T .
Set T0 = T0(c). As c ∈ X ′

3 we have cw = c−t1wc−1t1 for some t1 ∈ T . Choose
t0 ∈ T0 ∩ t−1

1 T0. Set a = at0
0 and t = t−2

0 .
After these preparations, we can begin the calculation of (ca)w in two ways. We

have a
t−1
0

0 = at and hence

aw = a
wt−1

0
0 = atwat

cw = c−t1wc−1t1

ca ∈ X ′
3H

c−1att−1
1 = c−1a

(t0t1)−1

0 ∈ X ′
3H

Therefore we have expansions of the following form, for suitable h2, h3 ∈ H and
t2, t3 ∈ T .

(cah2)w = (cah2)−t2w(cah2)−1t2

= h−1
2 at2c−t2wh−1

2 ac−1t2;

(c−1att−1
1 h3)w = (c−1att−1

1 h3)−t3w(c−1att−1
1 h3)−1t3

= h−1
3 att−1

1 t3ct3wh−1
3 att−1

1 ct3
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We now compute (ca)w again:

(ca)w = cwaw = c−t1wc−1t1a
twat

= c−t1
[
c−1att−1

1

]w
t−1
1 at

= c−t1 [h−1
3 att−1

1 t3ct3wh−1
3 att−1

1 ct3h
−1
3 ]at1t−1

1 t

= [att−1
1 t3c−t1h−1

3 ct3 ]w[att−1
1 +t1t−1

3 h−1
3 ch−1

3 ]t−1
1 tt3

Comparing this with

(ca)w = [at2h−1
2 c−t2 ]w[ah−1

2 c−1h−1
2 ]t2

we find (Lemma 11.1)

t−1
1 tt3 = t2(3)

att−1
1 t3c−t1h−1

3 ct3 = at2h−1
2 c−t2 · h, some h ∈ H(4)

att−1
1 +t1t−1

3 h−1
3 ch−1

3 = h−1 · ah−1
2 c−1h−1

2(5)

Now put (5) in the form

at∗ = h−1h−1
2 c−1h−1

2 h3c
−1h3

= h′c−1h′′c−1

with h′, h′′ ∈ H and t∗ = tt−1
1 + t1t

−1
3 + 1 in T ∪ {0}, where at the end we conjugate by

h−1
3 before collecting terms. We can recast this further as

at∗ = h∗(h′′c−1)2

with h∗ = h′h′′−1.
As the element h′′c−1 centralizes at∗ , it also centralizes h∗. If h∗ 6= 1 then h′′c−1 ∈

NC(A)(H) = AC(L) and hence c ∈ AC(L), a contradiction to Lemma 11.10. We
conclude that h∗ = 1 and hence at∗ = (h′′−1c−1)2, or after inversion:

at∗ = (ch′′)2

Now if t∗ = 0 then (ch′′)2 = 1 and hence by strong embedding ch′′ ∈ A, again
contradicting Lemma 11.10. So t∗ ∈ T , and at∗ ∈ A×.

Let S be a Sylow 2-subgroup of C(A), and Φ(S) its Frattini subgroup, the subgroup
generated by the commutator subgroup S′ together with all squares of elements in S.
As S/A is finite and A is central in S, it follows easily that Φ(S) is finite, and in
particular definable. By a Frattini argument, M = N(C(A)) = C(A)NM (Φ(S) ∩ S◦) =
NM (Φ(S) ∩ A). So M normalizes the finite group Φ(S) ∩ A and hence centralizes it,
which forces Φ(S) ∩A = 1. However as seen above, at∗ ∈ Φ(S)× if ch ∈ S.

This contradiction proves Theorem 2. �

Now Theorem 1 follows from Theorem 2.
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