
Universal graphs with forbidden subgraphs

Gregory Cherlin ∗

Department of Mathematics,

Rutgers University, U.S.A.

November 5, 2005

Abstract

The graph theoretic problem of identifying the finite sets C of con-

straint graphs for which there is a countable universal C-free graph is

closely related to the problem of determining for which sets C the model

companion T
∗

C of the theory of C-free graphs is ℵ0-categorical, and this

leads back to combinatorics. Little is known about these theories from

any other perspective, such as stability theory.

1 Introduction

As is well known, Rado’s universal graph [R64] is not just universal, but ho-
mogenous (in the Fräıssé sense), and there are analogous Kn-free universal ho-
mogeneous graphs, where Kn is the complete graph on n vertices and n is fixed
[He71]. Universal homogeneous graphs can be classified in terms of their finite
induced subgraphs, according to Fräıssé’s theory [F86/00], and it turns out that
one can classify all the countable universal homogeneous graphs [LW80], and
there are few: countably many in all, and mainly of Henson’s type, or their
complements. The situation becomes more complex when one moves to more
general types of combinatorial structures [He72].

It turns out that even without homogeneity, universality—or more properly,
the existence of a universal object of a specific kind—is often a very restrictive
condition. Pach showed [P81] there is no universal countable planar graph,
and Komjáth and Pach showed [KP84] that there is no countable universal
graph within the class of Km,n-free graphs, with Km,n the complete bipartite
graph with classes of size m, n respectively, with the exception of the stars with
min(m, n) = 1 and max(m, n) ≤ 3. Not long after, in conjunction with Mekler
[KMP88], they showed that there is a countable Pn-free graph for Pn a path of
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2 Universal Graphs

length n. In [KP84] the universality problem under consideration was treated
also from a set theoretic point of view, and in [KP91] some other cases were
treated, notably graphs containing on circuit Cn for n ≥ n0, with n0 fixed. But
our focus here is on the following portion of the larger question:

Problem 1 For a given finite set C of finite connected graphs, is there a uni-
versal countable C-free graph?

Now a good deal more should be said about this problem, beginning with
precisely what is meant by it, why I focus on this particular variant, and whether
there is any particular reason to limit oneself to graphs, but I will come back to
this. The point that is worth noticing, once this has all been clarified, is that
this is a simple yes/no question about a finite set of data: the set C.

Empirically, it seems that the answer has a strong tendency to be “no”. So
we may suspect that, or in any case wonder whether, the exceptional constraint
sets C are “simpler” than the others in some definite way. From my perspective,
the fundamental question is this:

Problem 2 Is Problem 1 algorithmically decidable?

The two obvious ways to solve this would be: (a) solve the problem explicitly;
(b) encode a known undecidable problem into this one. Progress has been made
in both directions. There has never been a really clear indication as to which
way the general problem will go; as we develop tools for analyzing this type
of problem we are gradually able to solve broad problems of this type, but we
are regularly surprised by the answers that emerge. What is clear is that all
of the problems we have solved to date turn out to have simple but somewhat
unpredictable answers.

A variety of techniques from combinatorics and model theory have been
brought to bear on these problems. The natural tool from model theory is not
so much Fräıssé’s theory of amalgamation classes (or quantifier elimination), as
the Robinson theory of existential completeness. In fact the theories of graphs
with “forbidden subgraphs” form a very well-behaved subclass of the universal
theories, and the existence of a universal graph turns out to be closely bound up
with both the ℵ0-categoricity of the associated theory, and the local finiteness of
the associated algebraic closure operation [CSS99]. In [CSS99] Shelah, Shi, and
I laid out the model theoretic approach to these problems quite systematically.
In my view the time had come mainly because we wanted to prove some results
on existence of universal graphs, and the conventional machinery seemed to be
reaching its limits. Indeed, it is in these positive results that mathematicians of
all stripes tend to bring in a model theoretic technique, usually Fráıssé’s. But
that amounts in practice to proving ℵ0-categoricity via quantifier elimination,
which in principle is something one can always do, but which is frequently
undesirable: the difference is between knowing that there are finitely many
types, and knowing what the types actually are.

Our model theoretic analysis will lead us in §4 to an interesting class of
theories, within which we would like to identify the ℵ0-categorical ones. It



G. Cherlin 3

could be interesting to pursue this model theory also from a more “modern”
point of view.

To conclude this introduction, let me say what Problem 1 actually means.
In the rest of this article I will describe the results to date, and try to indicate
why I am coming to believe that at least for the case of a single constraint,
C = {C}, the problem is likely to be decidable. And I will try to clarify what
the model theoretic ideas are that bear on this issue, and why the first order
theories involved are so nice.

We return to Problem 1: given a finite set C of finite connected graphs, is
there a universal countable C-free graph? The term “C-free” requires elucidation.
Given a “forbidden” (or “constraint”) graph C, a C-free graph is one in which
no subgraph is isomorphic to C. Now when a model theorist says “subgraph”
he may mean “induced subgraph”; but I really do mean “subgraph”. Thus for
example if P2 is the path of length 2 (three vertices), then a P2-free graph is one
of maximal vertex degree at most 1; and for any n the condition of Pn-freeness
is of comparable power, as seen in [KMP88]. Of course, we call a graph C-free
if it is C-free for all C ∈ C.

Another term that urgently needs clarification is universal: we are speaking
of countable graphs into which every C-free graph embeds, but there are two
notions of embedding available: the model theoretic strong embedding relation,
which for graph theorists is an isomorphism with an induced subgraph, and the
more usual graph theoretic embedding which for model theorists is an injective
homomorphism. Now for our forbidden graphs we took the weak notion of
embedding, but we may speak either of strongly universal graphs or weakly
universal graphs, and there is clearly something more satisfying about strongly
universal graphs, when they exist. Remarkably, in every case of Problem 1 for
which a weakly universal graph is known to exist, a strongly universal one also
exists, and we see no reason to expect this equivalence ever to fail. So as a rule
one proves existence of a strongly universal graph when on the positive side,
and nonexistence of a weakly universal graph when on the negative side.

What we are trying to understand is how to interpret the existence of a
(countable) universal C-free graph as saying something definite about C. For
the case of a single constraint, C = {C}, we have a rather good idea of what
this should be (the Solidity Conjecture, below, captures most of this idea);
and we can reformulate this also in the general case, but in the process it
becomes considerably less concrete. In any case all such conjectures are currently
unproved, though we are inching toward them.

A few more general comments are in order. My bibliography is narrowly
focused, and may have omitted some things that should be there even with my
narrow focus. There is a much larger subject here, touching on homogeneity,
Ramsey theory, combinatorial set theory, and even, as we now learn (partly
from Paris) topological dynamics.

Convention 1 All graphs are at worst countably infinite; any graph being used
as a constraint is finite and (with few exceptions) connected.
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2 Some results

This section is very empirical: we look at theorems concerning universal graphs
with one forbidden subgraph. Taken in conjunction with some theory to be
presented later on, these theorems suggest some sweeping conjectures, at least
in this case, and perhaps more generally.

2.1 Single constraints

A connected graph is 2-connected if it remains connected after removal of a
point. An edge is 2-connected, but a more typical example of a 2-connected
graph woud be a cycle.

Theorem 1 ([FK97a]) Let C be a 2-connected graph. Then there is a univer-
sal C-free graph if and only if C is complete.

This includes for example the complete bipartite case C = Km,n of [KP84]
except for the easy case min(m, n) = 1, as well as the case of a cycle Cn con-
sidered in [CK94]. We can see that the subject has moved quickly from the
anecdotal to something broad and structural.

The result of [FK97a] is still more general. The maximal 2-connected sub-
graphs of a graph are called its blocks. Every connected graph can be represented
canonically as a tree of blocks. One takes as the vertices the blocks together with
the cut vertices (whose removal disconnects the graph). One joins vertices rep-
resenting cut vertices to vertices representing the blocks that contain them.
(A less redundant representation might suppress cut vertices lying in only two
blocks.)

Theorem 2 ([FK97a]) Let C be a graph one of whose blocks B has the fol-
lowing properties.

1. B is 2-connected and incomplete;

2. B does not embed isomorphically into any other block of C

Then there is no universal C-free graph.

In fact, I believe the following.

Conjecture 1 (Solidity Conjecture) Let C be a graph which has an incom-
plete block. Then there is no universal C-free graph.

There are some theoretical reasons in back of this conjecture, which we will
give in §4 after introducing a model theoretic point of view.

At the opposite extreme from 2-connected graphs we find trees. The follow-
ing was conjectured by Tallgren.

Conjecture 2 (Tree Conjecture) Let C be a tree. Then there is a universal
C-free graph if and only if C is either a path, or can be reduced to a path by
removing a suitable vertex.
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A tree will be called a nearpath if it is not a path, but reduces to one after
deletion of a suitable a vertex. I believe that Shelah and I have now proved this
conjecture [CSh05]. Unfortunately the analysis involves 11 distinct cases. Still,
we are pleased that the number 11 turns out to be finite. Furthermore there is a
very simple idea here that can be reused, though it seems that the proliferation
of cases is likely to remain a feature of the landscape.

The positive part of this conjecture was known for a long time. Paths were
treated in [KMP88], and nearpaths were treated by Tallgren in long unpub-
lished work, which was finally combined with more recent work in [CT05]. On
the negative side (nonexistence), some broad classes of trees were handled in
[CST97] and [FK97b]. In the latter the following was proved.

Theorem 3 ([FK97b]) Let C be a tree containing a unique vertex v∗ of max-
imal degree d, with d ≥ 4, and suppose that that v∗ is adjacent to a leaf of C.
Then there is no universal C-free graph.

This result turns out to have much of the general case in it. In fact one can
show that it implies the following directly [CSh05], which would be the first of
our 11 cases.

Theorem 4 Let C be a tree containing a unique vertex v∗ of maximal degree
d, with d ≥ 4. Then there is no universal C-free graph.

I will explain the reduction of Theorem 4 to Theorem 3 in the next section.
The restriction d ≥ 4 is very natural since all the exceptional cases fall under

d = 3, and the proof suggests that the main difference between the two cases
comes from the structure of (d − 1)-regular graphs.

It is tempting to extend the tree conjecture to say that any constraint graph
C which allows a universal graph will have an associated tree of blocks which is
either a path or a near-path, but this seems to be seriously wrong. In fact the
following seems quite possible.

Conjecture 3 Let C be a graph derived from a complete graph Kn by attaching
exactly one finite path to each vertex of Kn. Then there is a universal C-free
graph.

This is not so much a conjecture as a family of problems.
What does seem to be the case is that the underlying tree of blocks should

be a star, that is have a unique vertex of degree greater than 2.

Conjecture 4 (Generalized Tree Conjecture) Let C be a constraint for
which there is a universal C-free graph. Then the associated tree of blocks C̃ is
a star.

Combining this with the Solidity Conjecture we have a very restricted set of
candidates for (single) constraints allowing universal graphs.

At this point we can probably see the need for an additional case study to
clear the air, and there is a canonical candidate: graphs whose underlying tree
structure is a path of length two, corresponding to two blocks joined by one cut
vertex. This is carried out in [CT05].
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Theorem 5 Let C = Km ∧Kn be a 2-bouquet (the sum of two complete graphs
with one vertex from each identified). Then there is a universal C-free graph
exactly when the following two conditions are met.

1. min(m, n) ≤ 5;

2. (m, n) 6= 5

So we are saying in particular that there is a universal K5 ∧ Kn-free graph
except when n = 5. Symmetry works against existence!

With no theoretical basis at all, but simply on the grounds that we expect
only “simple” constraints to allow a universal graph, we made the following false
conjecture in [CSS99].

Conjecture 5 (Monotonicity Conjecture (Deceased)) If there is a uni-
versal C-free graph, and if C0 is an induced subgraph of C, then there is a
universal C0-free graph.

Our case study refutes this, but it may not be far from the truth. A weaker
version is given in the next section, one which has the combined virtues of being
both true and useful, though it definitely is not the last word on the subject.

With the last case study in hand, one might hope for the following. (The
terminology is borrowed from Shelah.)

Conjecture 6 (Noble conjecture) Let C be a graph for which there is a uni-
versal C-free graph. Then at most one block of C has order 6 or more.

The term “noble” here would refer to a block of maximal size. Shelah has
extended the methods described in the next section to reduce the proof of this
conjecture to some relatively limited cases. (This is really an inductive proce-
dure, so if the conjecture turns out to be true his methods should lead to a
proof; if there are exceptions the machinery will have to be cranked up afresh.)

My discussion here has been structural rather than historical, though I think
one can more or less see the history as well. Up through [FK97a] there was no
clear sign that any interesting examples of universal graphs (of this specific
type) remained to be found. But the paper [K99] reversed that trend. One of
the “remarks” in that paper is the following.

Theorem 6 There is a universal K3 ∧ K3-free graph.

This was the first indication that complete graphs and trees were not really
two separate categories of constraint graphs, but that rather the mixed structure
of a tree of blocks would need to be looked at. It was also a clear indication
that a case study of 2-bouquets might be illuminating. I expected the favorable
constraints to be more or less of the form Kn ∧ K3 (with some sporadic noise),
rather than the higher threshold that emerged, but on the whole the result of
that study conformed to expectations, with some nuances.
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Still the subject has a way of rebounding in unexpected ways, and while I
have put forward some sweeping conjectures (and we have some strategies that
may prove them eventually), the known facts do not yet constrain us a great
deal. But at least we can say that in the case of trees the sporadic phenomena
die out quickly.

One can easily envision a scenario in which the decidability of Problem 1
is established, but where we cannot actually solve, or even write a specific
program to solve, individual cases. For example if one has all of the preceding
conjectures—the Solidity, Generalized Tree, and Noble Conjectures—then one
approaches the point at which one can show that only finitely many pieces of
information are missing, at which point the problem is decidable, even if one
has no idea what the decision procedure is.

2.2 More general universality problems

We will continue our discussion in the next section with some ideas that are not
tied to particular examples. But here we round out the discussion by considering
other universality problems which are of a more general character, some of which
we exclude from our subject area, and others which we do not at all exclude
but rather hope to bring into very much the same framework.

First, let us review some of our assumptions about the class C of forbidden
subgraphs: its members are finite connected graphs, and there are finitely many
of them.

Without connectedness, the notion of universality is not very relevant. For
example, if we take as our constraint C the disjoint union K1 ⊕ K2 of a vertex
and an edge, the C-free graphs are those containing no edges, and those con-
sisting of a single edge. There is no universal graph because these two types
are incompatible; there is in fact a universal pair of graphs. On the other hand,
if we have a connected constraint C, then the disjoint sum of any family of
C-free graphs is again C-free, and if there is a countable family of (jointly) uni-
versal C-free graphs, then there is one such. What this suggests is that if we
want to allow disconnected constraints then there are two relevant thresholds
to investigate: the case in which there is a finite set of jointly universal C-free
graphs, and the case in which there is a countable set of jointly universal C-free
graphs [KP91]. And this leads to some interesting problems where the natural
approach takes one out of the category of graphs and into more general classes
[CS97]. But nobody has really followed that line up systematically, and it has
a different character.

What about the restriction to finitely many finite constraints? Of course, if
we want to consider the decidability of the general problem, this is the natural
framework to adopt. But there are other, and I think more substantial, reasons
to impose these constraints. First of all, if one allows infinite constraints then
one enters a very different realm, much more set theoretic in nature. But if we
consider infinite families of finite constraints then we are very close to normal
graph theoretic practice; we can discuss bipartite graphs or forests, for example.
Furthermore one can bring model theory to bear: we are looking at the models
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of a universal theory T , and looking for a countable universal model. When
the set of constraints is finite, there is an associated theory T ∗, the so-called
model companion, whose models are the “existentially complete” models of T .
This condition fails in general: for example if we deal with the case of forests,
the existentially complete ones will be connected, and this is not something
that can be expressed by any first order theory. On a more empirical level, we
observe that one can identify explicitly all the finite sets C of cycles (or, for that
matter, 2-connected graphs) for which there is a universal C-free graph, and
they are all of an obvious type; for infinite sets of cycles we do not know such
a characterization, but we do know that new examples arise. It would be very
nice to understand where these new examples come from—but we leave all that
aside.

So much for what we exclude. On the other hand, we have said that we allow
arbitrary finite sets of appropriate constraint graphs C, and for that matter we
have no strong reason to limit ourselves to graphs. As we have intimated, there
are particular occasions where some extension of the category is even useful
for the treatment of graphs [CS97]. In [CS01] it is shown that all problems of
our allowed type, for arbitrary relational structures, are equivalent to problems
which lie just outside the category of graphs: namely, graphs equipped with a
partition of the vertices into two sets. We do not know whether these problems
can in fact be encoded as universality problems for ordinary graphs, but it is
clear that the more general problem can be investigated by very similar methods.

Returning to the case of ordinary graphs, what does the theory look like
for sets of constraints? New phenomena arise which cast light on the case of a
single constraint. Consider for example the following result, which provides a
good illustration of the state of the theory.

Theorem 7 Let C be a finite collection of finite cycles. Then there is a universal
C-free graph if and only if C consists of all cycles of odd order up to some bound.

Actually a generalization reveals more clearly what is at stake.

Theorem 8 Let C be a finite collection of finite 2-connected graphs. Then there
is a universal C-free graph if and only if C is closed under homomorphism.

One has to understand closure under homomorphism in a not overly literal
sense. A homomorphism between graphs is a function taking vertices to vertices
which carries adjacent vertices to adjacent vertices. We take our graphs to be
loop-free, and therefore adjacent vertices cannot map to the same vertex. Now
when we say that C is closed under homomorphism, we mean the following: if Ĉ
is the closure of C under homomorphism, then C-free graphs are Ĉ-free. Taking
Theorem 8 in this sense, it generalizes Theorem 7.

Theorem 8 falls into two parts. One part asserts that if C is closed under
homomorphism then there is a C-free graph. This is a completely general fact.

Theorem 9 Let C be a finite set of finite connected graphs closed under homo-
morphism. Then there is a universal C-free graph.
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This holds for model theoretic reasons indicated in §4. In brief: the model
companion T ∗

C
of the theory TC associated with C is ℵ0-categorical, and hence

provides a canonical countable universal C-free graph.
In the other direction, we need to show that if C is not closed under ho-

moomorphism then there is no universal C-free graph. This is more delicate,
and requires a specific argument. Notice however that when C consists of a sin-
gle 2-connected graph C, then closure under homomorphism is equivalent to the
completeness of C, and we find ourselves dealing with Theorem 1. The general
result can be obtained by repeating the proof in [FK97a].

There is a good deal more in this vein, and one can anticipate that what
holds in the case of one constraint may also hold in a more subtle form for finite
sets of constraints. But to give the proper generalization of, say the Solidity
Conjecture requires more of the theory. For the record, it would read as follows.

Conjecture 7 (Generalized Solidity Conjecture) Let C be a finite set of
finite connected graphs, and suppose that there is universal C-free graph. Then
the associated algebraic closure operator is unary in the sense that

acl(A) =
⋃

a∈A

acl(a)

We are referring here to the model theoretic notion of algebraic closure,
taken relative to the model companion T ∗

C
; we will have more to say about this

notion, which can be decoded into purely graph theoretic terms, in §4.

3 Pruning

There is a simple and useful idea which has nothing to do with model theory,
and everything to do with the meaning of universality: pruning.

We prune a tree by removing all its leaves. We can generalize this a little by
removing the leaves (vertices of degree 1) from any graph; and we will generalize
the idea a great deal more, to good effect.

We introduce the following notation. For C a connected graph, C− is the
graph with its leaves removed. For C a set of connected graphs, C− is the set
{C− : C ∈ C}.

Theorem 10 ([CSh05]) Let C be a finite set of finite connected graphs, and
suppose there is a universal C-free graph. Then there is a universal C−-free
graph.

Notice that this is an instance of the lamented Monotonicity Conjecture.
Note also that we have been vague about which version of universality we refer
to here: it may be either weak or strong.
Proof. For any C-free graph G, let G◦ be the induced subgraph of G on the
vertices of infinite order in G. If G is C-free then G◦ is C−-free.

Now suppose Γ is a universal C-free graph. It suffices to show that Γ◦ is a
universal C−-free graph.
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Let G be C−-free, and extend G to a graph Ĝ by adjoining infinitely many
new vertices as neighbors to each vertex of G. Then Ĝ is C-free, so Ĝ embeds
into Γ, either weakly or strongly as the case may be. Evidently this embedding
carries G into Γ◦ and gives us the required embedding. �

Now we can see how to deduce Theorem 4, concerning trees with a unique
vertex of maximal degree d ≥ 4, from the case treated in [FK97b], where the
vertex in question was taken to be adjacent to a leaf. If C is any tree with a
unique vertex of maximal degree d ≥ 4 and there is a universal C-free graph,
we may prune it repeatedly until we reach the point that C− no longer has a
vertex of degree d. Then there is still a universal C-free graph, but now the
hypotheses of [FK97b] are satisfied, so we have a contradiction.

Similarly, if we call a tree critical when it is neither a path nor nearpath, but
reduces to a path or nearpath on pruning, then the proof of the Tree Conjecture
reduces to the critical case.

For another application of the same idea consider the Conjecture 3 relating
to complete graphs with certain paths attached; view it not as a conjecture but
as a series of problems to be solved. There is a natural partial ordering on this
set of constraint graphs, with C1 ≤ C2 if C2 can be pruned (repeatedly) to
give C1. If some graphs C of this type do not allow universal C-free graphs,
then what we need to know are the minimal graphs falling on the negative side,
minimal in the sense of this partial order. In particular, if this set is finite then
the problem is decidable. Now it would be very nice if this partial order were
already well-quasi-ordered, so that any set of incomparable graphs would be
finite—this would give a soft proof of the decidability of this particular problem.
But the pruning procedure is rather coarse and does not allow this conclusion.
This class of graphs actually is well-quasi-ordered under strong embedding (this
follows from Higman’s Lemma); and perhaps one can still refine this analysis to
give a “soft” treatment of the problem.

Let us now give pruning at a more suitable level of generality. Most graphs
do not have leaves, but they do have the structure of a tree of blocks, and the
blocks which have only one vertex in common with another block are the leaves
in this tree. So let us call these block-leaves. A block-leaf is not just a graph;
it is a graph with one vertex marked, a pointed graph. We could prune our
graphs by taking off all the block-leaves (leaving the distinguished vertex alone,
of course). But this is overkill. One may pick a particular isomorphism type of
block-leaf, and then remove just the block-leaves which embed into it (with the
distinguished vertex preserved). The most useful procedure is to take a minimal
block-leaf and prune with respect to it.

Theorem 10 continues to hold with this more general notion of pruning, with
the same proof. And Shelah has found even more general notions of pruning
which can be brought into play in the context of the Noble Conjecture. But
this brings our story up to, and a little beyond, the present.
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4 Some model theory

If C is a collection of finite graphs, we make the following definitions.

1. GC is the collection of C-free graphs

2. G∗
C

is the collection of existentially complete C-free graphs

3. TC is the theory of GC

4. T ∗
C

is the theory of G∗
C

A C-free graph G is existentially complete if for any finite induced subgraph
A of G and any finite graph B containing A as an induced subgraph, if the free
join (amalgam) G ⊕A B of G and B over A is C-free, then there is a strong
embedding of B into G over A.

Proposition 4.1 ([CSS99]) If C is a finite collection of finite connected graphs
then the theory T ∗

C
is complete, any model of T ∗

C
is existentially complete, and

there is a countable strongly universal C-free graph if and only if for every n the
space Sn of n-types for the theory T ∗

C
is countable (the theory is “small”).

One can adapt this to the case of weak universality using positively exis-
tentially complete structures and positive existential types, but on the model
theoretic side the theory is less familiar.

As an empirical observation, when the theory T ∗
C

is small it tends to be ℵ0-
categorical—equivalently, the associated type spaces are finite—and this means
that we then have a canonical countable universal C-free graph, namely any
model of T ∗

C
. For example, when C = {C} with C a tree, we have the following:

1. T ∗
C is ℵ0-categorical if and only if C is a path;

2. T ∗
C is small if and only if C is a path or nearpath.

So it seems that our graph theoretic problem turns out to be a mild per-
turbation of a problem which may have a cleaner solution: determining when
T ∗
C

is ℵ0-categorical. And it is this problem which lends itself to a considerable
theoretical analysis, coming back to an explicit combinatorial problem. For this
we need the notion of algebraic closure.

Definition 4.2 Let G be an existentially complete C-free graph, A a finite set
of vertices, and b a vertex. Then b is algebraic over A if and only if there is
a finite graph B containing the induced graph on A ∪ {b} such that the set of
images f(b) for f a strong embedding of B into G over A is finite.

We can define the algebraic closure of an arbitrary set as the algebraic closure
of its finite subsets.

Theorem 11 ([CSS99]) Let C be a finite collection of finite connected graphs.
Then T ∗

C is ℵ0-categorical if and only if the algebraic closure operation is locally
finite in the sense that the algebraic closure of any finite set is finite.
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Now this is a remarkable fact which ought not be true. It is immediate
that ℵ0-categoricity implies local finiteness of the algebraic closure operation—
a little too immediate. The converse tends to fail. For example, if one takes
any structure at all and replaces its elements by equivalence classes of infinite
size, the algebraic closure operation in the modified structure will be degener-
ate: acl(A) = A. But in most other respects the theory is unchanged, and in
particular if it was not ℵ0-categorical to begin with, it will not become so.

This theorem depends very precisely on the fact that the constraints in C are
being treated as subgraphs rather than induced subgraphs (otherwise we could
easily force equivalence relations into the picture). For the proof of the theorem
one finds that the number of 1-types over a finite algebraically closed set is finite
(though possibly exponentially large relative to the size of the set). Note that
even when acl(A) = A for all A, there may still be a fairly complicated type
structure.

Now after further analysis of the algebraic closure operator in terms of the
constraints in C, one can describe the operation as generated by iterated ap-
plications of a finite number of multivalued functions, so that the operation is
locally finite if and only if there is a bound on the number of times these func-
tions can be applied to generate new elements. One can also prove the following
general facts.

Proposition 4.3

1. If C is closed under homomorphism then the algebraic closure operation
associated with C is degenerate (acl(A) = A) and in particular T ∗

C
is ℵ0-

categorical.

2. If C consists of solid graphs then the associated algebraic closure operation
is unary in the sense that

acl(A) =
⋃

a∈A

acl(a)

Here we begin to reap something substantial from the theory. Note in partic-
ular that we get some theoretical basis for the Solidity Conjecture, particularly
when we look in [FK97a] to see how the failure of unarity comes into play to
make the operation iterable. And we can see how to generalize that conjecture
from the case of one constraint to a finite set of constraints (Conjecture 7).

Finally, returning to the case of 2-bouquets, we have the following.

Theorem 12 Let C = Km ∧ Kn be a 2-bouquet. Then the following are equiv-
alent.

1. There is a strongly universal countable C-free graph.

2. There is a weakly universal countable C-free graph.

3. The theory T ∗
C is ℵ0-categorical.
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4. The algebraic closure operation associated with C is locally finite.

5. min(m, n) ≤ 5 and (m, n) 6= (5, 5).

The proof is combinatorial and is based on the equivalence of the last two
points. One works out the algebraic closure operation explicitly, and one con-
siders the structure of an infinite sequence of points each algebraic over the
preceding (we know the operation is unary). Each step along the way has a
finite set of “witnesses” to algebraicity, of bounded order, and applying the
∆-system lemma we can uniformize this over a subsequence. What we find is
that for min(m, n) ≤ 5 the uniformized witnesses are pairwise disjoint, that for
min(m, n) ≤ 4 this is impossible, while for min(m, n) = 5 this leads quickly to
(a) m = n = 5 and (b) a fairly good description of what the sequence should
look like. At this point, one realizes that there is indeed such a sequence.

For m, n ≥ 6 one gets the general picture more quickly and one finds a construc-
tion refuting local finiteness (this time the uniformized witnessing sets are not
disjoint, and in fact the whole sequence of witnesses resembles the uniformized
sequence).

All that remains after this lengthy computation and construction is to show
that in the negative cases, the constructions can be adapted to blow up the type
structure of T ∗

C and eliminate a weakly universal C-free graph. This turns out
to be easy in this context, though in other work this stage turns out to be less
straightforward.

So by focusing on local finiteness we arrive at what is sometimes a combi-
natorial manageable problem, which we can solve completely and then adjust
to solve the original graph theoretic problem. In other cases we first need a
preliminary pruning to reach problems which are sufficiently tight in structure
to be analyzed explicitly.

One of the complications standing in the way of an explicit resolution of
Problem 1 is the wealth of examples that arise from a slight generalization of
Proposition 4.3 (1), as follows.
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Proposition 4.4 Let C, C′ be two sets of constraints such that T ∗
C

is ℵ0-categorical
and C′ is closed under homomorphism. Then T ∗

C∪C′ is ℵ0-categorical.

More explicitly: C and C ∪ C′ have the same associated algebraic closure
operation. I don’t think we have real grounds to expect the full problem to
be decidable, but it possible that what we are looking for is a combination
of constraint sets closed under homomorphism with some exceptional “small”
cases.

From a graph theoretic point of view, the main thing we would like to know
about the model theory of the theory T ∗

C
is whether this theory is ℵ0-categorical.

But now that this class of theories has been seen to lend itself to systematic
analysis, it would be interesting to develop their model theory from a more
modern perspective, to try to identify the stable or simple theories in the class,
and to see what their fine structure is. We do not see any clear “dichotomies”
on the graph theoretic side.
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