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1 Introduction

It has been conjectured that infinite simple groups of finite Morley rank are linear algebraic
groups over algebraically closed fields. In this paper we continue to follow a recent approach,
which, if successful, would give an affirmative partial answer to this algebraicity conjecture in
the case of the simple groups of finite Morley rank of even type, which would be independent
from inductive hypotheses but still use ideas and methods coming from the inductive approach.
This is the analysis of L∗-groups, initiated in [4] (see Section 2 below for definitions).

The notion of L∗-group is a weakening of the notion of K∗-group (a group of finite Morley
rank all of whose infinite definable simple proper sections are algebraic groups over algebraically
closed fields), and an affirmative answer to the algebraicity conjecture for the simple L∗-groups
of even type would in fact be an affirmative answer to the entire conjecture for the simple groups
of finite Morley of even type although this is not the case if one uses the stronger notion of K∗-
group. The major difficulty that appears when one weakens one’s hypotheses from K∗ to L∗

is that definable connected sections of degenerate type may no longer be solvable. We refer the
reader to [4] and [5] for a detailed account of these issues.

The notion of weakly embedded subgroup, which is expected to yield a characterization of
PSL2 over an algebraically closed field of characteristic 2, has turned out to be a key notion
for the classification of simple K∗-groups of even type. The same is expected in the L∗-context
since the analysis of simple L∗-groups of even type is modeled on that of simple K∗-groups of
even type. As a result, in [4], an initial analysis of weak embedding was made in the L∗-context,
and in [5], a first L∗-characterization of PSL2 in characteristic 2, using the stronger notion of
strongly embedded subgroup, was obtained under additional hypotheses.

In this paper we will extend the results of [5] to simple L∗-groups of even type with weakly
embedded subgroups. The additional hypothesis (the hypothesis (*) in the statement of Theorem
1 below) will be kept. Nevertheless, the results obtained until Section 6 are independent from
the hypothesis (*) and are expected to provide the first steps of the analysis in the absence of
this hypothesis. The main theorem in this paper is the following:

Theorem 1 Let G be a simple L∗-group of even type with a weakly embedded subgroup M . As-
sume
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(∗) CG(A1, A2) is finite whenever A1 and A2 are two distinct conjugates of Ω◦
1(M).

Then G ∼= PSL2(F ) , where F is an algebraically closed field of characteristic 2.

The proof of Theorem 1 can be seen as a reduction to the main theorem of [5]. Indeed,
what is finally proven is that under the given assumptions, weak embedding is equivalent to
strong embedding. The main ingredient to achieve this is the analysis of the Sylow 2-structure
in a simple L∗-group of even type with a weakly but not strongly embedded subgroup. In this
vein, we will prove Theorems 2 and 3 below. Theorem 1 will be proven only after Theorem 3
completely clarifies the structure of the Sylow◦ 2-subgroups of the simple group under analysis.

This paper can be seen as an L∗-analogue of [3]. Indeed, the analysis of the Sylow◦ 2-
subgroups is based on a finite Morley rank analogue of a theorem of Landrock and Solomon
([12]), proven in [3] (Fact 3.2 below). The ensuing preliminary analysis follows closely the K∗-
case provided one is careful about sections of degenerate type (see for example Fact 3.8).

Similarities become more limited in Section 4 although the reduction has the same final
target as in [3]. The proof of Theorem 3 requires a much longer analysis than in the K∗-context
because it is much harder to linearize nonsolvable groups. This is the most substantial result
in the paper, and its proof involves arguments of considerable power in the context of simple
L∗-groups, notably genericity arguments using good tori. On the other hand, the analysis in
Subsection 4.1 and the proof of Theorem 2 are substantially simpler than the corresponding
section in [3]. Moreover, they are more correct! Some time ago we discovered a gap in the
proof of Lemma 7.11 of [3]. The complicated Thompson rank analysis for which this lemma was
needed disappeared in the course of eliminating this gap. As a result the proof of Theorem 2 no
longer requires an elaborate fusion analysis.

The rest of the paper is more in the spirit of [5] and Section 3 of [11]. At various points
however the arguments have their own peculiarities, notably in Sections 5 and 6.

2 Background

Before we go over the necessary background material, it is worth recalling some fundamental
facts and definitions.

Fact 2.1 ([7]) Let G be a group of finite Morley rank. Then the Sylow 2-subgroups of G are
conjugate. If S is a Sylow 2-subgroup of G then S◦ = B ∗ T where B is a definable connected
group of bounded exponent, T is divisible abelian, ∗ denotes the central product and B ∩ T is
finite.

The connected component of S, denoted by S◦, is d(S)◦ ∩ S. In this definition, d(S) is the
definable closure of S, the smallest definable subgroup of G containing S. By the descending
chain condition on definable subgroups in groups of finite Morley rank, such a smallest subgroup
exists; it is the intersection of all definable subgroups of G containing S.

Definition 2.2

1. A unipotent subgroup is a connected definable solvable subgroup of bounded exponent.

2. A p-torus is a divisible abelian p-group. It is the direct sum of copies of the quasicyclic
group Zp∞ . The Prüfer p-rank of a p-torus is the number of these factors.

In a group of finite Morley rank a torus is a definable divisible abelian subgroup. Since it is
divisible it is connected. The Prüfer p-rank of a torus is the Prüfer p-rank of its maximal
p-torus. By exercise 9 on page 93 of [6], this is finite. A nontrivial p-torus is not definable,
but its definable closure is a torus.

3. A group of finite Morley rank is of even type if the connected component of a Sylow 2-
subgroup is unipotent and nontrivial.
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4. A group of finite Morley rank is of odd type if the connected component of a Sylow 2-
subgroup is a nontrivial 2-torus.

5. A group of finite Morley rank is of mixed type if the connected component of a Sylow 2-
subgroup is the central product of a nontrivial unipotent subgroup and a nontrivial 2-torus.

6. A group of finite Morley rank is of degenerate type if the connected component of a Sylow
2-subgroup is trivial (that is, the Sylow 2-subgroups are finite).

7. A Sylow◦ 2-subgroup of a group G of finite Morley rank is the connected component of a
Sylow 2-subgroup of G.

Definition 2.3

1. An L-group is a group of finite Morley rank in which every infinite definable simple section
is either an algebraic group over an algebraically closed field, or of odd or degenerate type;
in other words, we exclude definable simple sections of mixed type, and we require definable
simple sections of even type to be algebraic.

2. An L∗-group is a group of finite Morley rank in which every proper infinite definable simple
section is either an algebraic group over an algebraically closed field, or of odd or degenerate
type.

2.1 From nilpotent to solvable

Fact 2.4 ([15]) Let H be a nilpotent group of finite Morley rank. Then H = D ∗ B, where
D and B are definable characteristic subgroups, with D divisible and B of bounded exponent.
Moreover, D ∩B is finite and B is the direct sum of its maximal unipotent p-subgroups.

In a group G of finite Morley rank, F (G) is the Fitting subgroup of G. This is the subgroup
of G generated by its normal nilpotent subgroups; it is definable and nilpotent ([14]). The
analogous notion for solvable subgroups is the solvable radical of G, denoted by σ(G). It is the
subgroup generated by the normal solvable subgroups of G. In [14], it is shown that σ(G) is
definable and solvable for G of finite Morley rank.

Fact 2.5 ([13]) Let G be a connected solvable group of finite Morley rank. Then G/F ◦(G) is
divisible and abelian.

2.2 Elements of finite order

Fact 2.6 ([6, Exercise 11, p. 93]) Let G be a group of finite Morley rank and H a normal
definable subgroup. If x ∈ G is such that x ∈ G/H is a p-element, then the coset xH contains a
p-element.

Fact 2.7 Aut(Zp∞) has no elements of order p.

Fact 2.8 ([7]) Let T be a p-torus in a group G of finite Morley rank. Then |NG(T ) : CG(T )| <
∞. Moreover there exists a natural number c such that |NG(T ) : CG(T )| < c for any p-torus
≤ G.

Fact 2.9 ([6, Theorem 9.29];[9]) The Hall π-subgroups of a connected solvable group of finite
Morley rank are connected.

Fact 2.10 ([3, Proposition 2.43]) Let G = H⋊Q be a group of finite Morley rank where H, Q
and the action of Q on H are definable. Let H1✁H be a solvable Q-invariant definable π-subgroup
of bounded exponent in G. Assume that Q is a solvable π⊥-subgroup. Then CH(Q)H1/H1 =
CH/H1

(Q).
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Fact 2.11 ([6, Proposition 10.2]) Let G be a group of finite Morley rank, and i, j be two
involutions in I(G). Then, either i and j are conjugate by an element of d(ij), or they commute
with an involution in d(ij).

Fact 2.12 ([6, Exercise 13, p. 78]) Let G be a group of finite Morley rank. Let α be a defin-
able involutive automorphism with finitely many fixed points. Then there is a definable normal
subgroup B of G of finite index in G and inverted by α.

Fact 2.13 ([6, Exercise 14, p. 73]) Let G be a group of finite Morley rank without involu-
tions. If α is a definable involutive automorphism of G then G = CG(α)G

−, where G− = {g ∈
G : gα = g−1. Moreover, for c ∈ CG(α) and g ∈ G−, the map (c, g) 7−→ cg is a definable
bijection. In particular, G is connected if and only if CG(α) is connected and G− is of Morley
degree 1.

Fact 2.14 (Borovik) Let G = UX be a group of finite Morley rank with U ✁G. Assume that
U , X and the action of X on U are definable. Let p be a prime number. Assume also that U is
a unipotent p-subgroup of G, X is connected, solvable, and does not contain elements of order
p. If the action of X on U is faithful then X is divisible and abelian.

Fact 2.15 If G is a nontrivial connected 2⊥-group of finite Morley rank then CG(x) is infinite
for every x ∈ G.

2.3 Weak/strong embedding

Definition 2.16

1. Let G be a group of finite Morley rank. A proper definable subgroup M of G is said to be
strongly embedded if I(M) 6= ∅ and for any g ∈ G \M , I(M ∩Mg) = ∅.

2. Let G be a group of finite Morley rank. A proper definable subgroup M of G is said to be
weakly embedded if M has infinite Sylow 2-subgroups and for g ∈ G \ M , M ∩ Mg has
finite Sylow 2-subgroups.

Fact 2.17 ([10, Theorem 9.2.1]) Let G be a group of finite Morley rank with a proper defin-
able subgroup M . Then the following are equivalent:

1. M is a strongly embedded subgroup.
2. I(M) 6= ∅, CG(i) ≤ M for every i ∈ I(M), and NG(S) ≤ M for every Sylow 2-subgroup

of M .
3. I(M) 6= ∅ and NG(S) ≤ M for every nontrivial 2-subgroup S of M .

Fact 2.18 ([2]) Let G be a group of finite Morley rank, M a proper definable subgroup of G.
M is weakly embedded if and only if the following hold:

1. M has infinite Sylow 2-subgroups.
2. For any nontrivial unipotent 2-subgroup U and nontrivial 2-torus T in M , NG(U) ≤ M

and NG(T ) ≤ M .

2.4 L-groups

Fact 2.19 ([3, Proposition 3.4],[4]) Let X⋊Y be a group of finite Morley rank where X and
Y are definable and connected, X is an L-group of even type, and Y is a 2⊥-group. Then Y
normalizes a Sylow◦ 2-subgroup of X.

Fact 2.20 ([6, Theorem 8.4]) Let G = G ⋊ H be a group of finite Morley rank where G,
H, and the action of H on G are definable, G is an infinite simple algebraic group over an
algebraically closed field, and CH(G) = 1. Then, viewing H as a subgroup of Aut(G), we have
H ≤ Inn(G)Γ where Inn(G) is the group of inner automorphisms of G and Γ is the group of
graph automorphisms.
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Remark 2.21 We will frequently use the special case of Fact 2.20 with G = PSL2. Here, as
there are no nontrivial graph automorphisms, all definable actions induce inner automorphisms.

Fact 2.22 ([4]) Let H be a connected L-group of even type with a weakly embedded subgroup
M . Then

H ∼= L×D

where L = B(H) ∼= SL2(F ), with F algebraically closed of characteristic 2, and D = CH(L) is
a subgroup of degenerate type. M◦ ∩ L is a Borel subgroup of L and D ≤ M .

2.5 Fields and good tori

As usual, Zil’ber’s fundamental result will be an important ingredient in many arguments.

Fact 2.23 (Zil’ber) Let G = A⋊T be a group of finite Morley rank where A, T and the action
of T on A are definable. Assume that T and A are abelian, CT (A) = 1 and A is T -minimal.
Then A ∼= F+, where F is an algebraically closed field and T is isomorphic to a subgroup of F×.
The action of T on A is by scalar multiplication.

The following theorem proven independently by Newelski and Wagner is indispensable in
extending centralization in a torus from torsion elements to the ambient group.

Fact 2.24 ([16, 18]) Let F be a field of finite Morley rank and T a definable subgroup of the
multiplicative group F× containing the multiplicative group of an infinite subfield of F . Then
T = F×.

The notion of good torus was introduced in [5]. In the context of L∗-groups it has already
proven to be a fundamental tool. This will continue to be the case in this paper as well.

Definition 2.25 A definable divisible abelian group T of finite Morley rank is a good torus if
every definable subgroup of T is the definable closure of its torsion.

Fact 2.26 ([5])

1. If T is a good torus and T0 ≤ T is definable and connected, then T0 is a good torus.

2. A finite product of good tori is a good torus.

Fact 2.27 ([5]) Let A⋊B be a solvable group of finite Morley rank where A, B, and the action
of B on A are definable. Assume that A and B are connected and B acts on A faithfully. If A
is an elementary abelian p-group for some prime p, and B has no nontrivial p-elements, then B
is a good torus.

2.6 Linearization

As in [4] and [5], the following three results will play an important role in linearizing actions of
various groups on elementary abelian 2-groups.

Fact 2.28 ([6, Theorem 9.1]) Let A⋊G be a connected group of finite Morley rank where G
is definable, A is abelian and G-minimal, and CG(A) = 1. Assume further that G has a definable
infinite abelian normal subgroup H. Then CA(G) = 1, H is central in G, F = Z[H ]/ann

Z[H](A)

is an interpretable algebraically closed field, A is a finite dimensional F -vector space, and the
action of G on A is by vector space automorphisms; so G ≤ GLn(F ) via this action, where n is
the dimension. Furthermore, H ≤ Z(G) ≤ Z(GLn(F )).
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Fact 2.29 ([6, Theorem 9.7]) Let A⋊G be a group of finite Morley rank such that CG(A) = 1.
Let H✁G1✁G be definable subgroups with G1 connected and H infinite abelian. Assume also that
A is G1-minimal. Then K = Z[Z(G◦)]/ann

Z[Z(G◦)](A) is an interpretable algebraically closed

field, A is a finite dimensional vector space over K, G acts on A as vector space automorphisms
and H acts scalarly. In particular, G ≤ GLn(K) for some n, H ≤ Z(G) and CA(G) = 1.

Fact 2.30 ([17]) If F is a field of finite Morley rank of characteristic p 6= 0, then every simple
definable section of GLn(F ) is definably isomorphic to an algebraic group over F .

2.7 Genericity

In the context of L∗-groups, where definable connected sections of degenerate type are not
necessarily solvable, genericity of various conjugacy classes replaces various conjugacy theorems
known only for solvable groups of finite Morley rank. The following list contains the facts that
will be needed in this paper.

Let us also recall an important notion which will be frequently used in the sequel. A Borel
subgroup of a group of finite Morley rank is a definable connected solvable subgroup which is
maximal with respect to these properties. Since infinite groups of finite Morley rank contain
infinite definable abelian subgroups, a Borel subgroup is of finite index in its normalizer.

Fact 2.31 ([5]) Let G be a connected group of finite Morley rank with a conjugacy class of
definable divisible abelian subgroups that are of finite index in their normalizers. Assume that
any two distinct elements of this family have finite intersection. If B is a subgroup in this family
and x ∈ NG(B) \B, then CB(x) is finite.

Fact 2.32 ([5]) Let G be a connected group of finite Morley rank. Assume that B is a good
torus which is of finite index in NG(B). Then the set B = ∪g∈GB

g is generic in G.

Fact 2.33 ([5]) Let G be a connected group of finite Morley rank. Assume that B is a good
torus which is of finite index in NG(B). Assume also that B1 is a definable connected subgroup
of G such that B1 = ∪g∈GB

g
1 is a generic subset of G. Then B is conjugate to a subgroup of B1.

Fact 2.34 ([5]) Let A ⋊ G be a group of finite Morley rank where G, A and the action of G
on A are definable. Assume that A is connected and elementary abelian of exponent 2, that G
is connected of degenerate type, and that G acts faithfully on A. If B is a Borel subgroup of G
then B ∩ (∪g∈G\NG(B)B

g) is not generic in B, and the Borel subgroups of G are conjugate in G.

3 Preliminary analysis

The proof of Theorem 1 consists mainly of the analysis of the case left open in [5], that is, a simple
L∗-group of even type with a weakly embedded subgroup which is not strongly embedded. In
the sequel, unless otherwise stated, G will denote a simple L∗-group of even type with a weakly
embedded subgroup M that is not strongly embedded. Moreover, until the end of Section 5 the
hypothesis (*) will not be assumed. This more general part of the argument corresponds roughly
to sections 3-8 of [3], where simple groups of finite Morley rank of even type with weakly but
not strongly embedded subgroups were analyzed under stronger inductive assumptions. From
Section 6 on, the assumption (*) will be applied.

By Facts 2.17 and 2.18, M has an offending involution α, that is, an involution α such that
Cα 6≤ M . As was already explained in [4], the starting point of the analysis is the following
lemma:

Lemma 3.1 ([3], Lemma 3.1, Proposition 3.2; [4], Lemma 6.1) Let G be a simple L∗-
group of even type with a weakly embedded subgroup M that is not strongly embedded. Then
there exists an involution α ∈ M with the following properties:

1. C◦
α 6≤ M .
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2. C◦
α ∩M is a weakly embedded subgroup of C◦

α.
3. C◦

α = Lα×D where Lα = B(Cα), D = CC◦

α
(Lα), and Lα

∼= PSL2(K) with K algebraically
closed of characteristic 2, and D is a definable connected subgroup of degenerate type.

4. C◦
M (α) = (Lα ∩M)×D and Lα ∩M = A⋊ T is a Borel subgroup of Lα.

5. α 6∈ σ◦(C◦
α).

Next, corresponding to Proposition 3.5 and Corollary 3.6 in [3], one shows using Fact 2.19
that M has an (〈α〉 × T )-invariant Sylow◦ 2-subgroup S that contains A, and that C◦

S(α) = A.
In this situation the following classification result of Landrock-Solomon type applies:

Fact 3.2 ([3], Theorem 4.1; [12]) Let H = S⋊T be a group of finite Morley rank, where S is
a unipotent 2-group of bounded exponent, and T is also definable. Assume that S has a definable
subgroup A such that A ⋊ T ∼= K+ ⋊K× for some algebraically closed field K of characteristic
2, with the multiplicative group acting naturally on the additive group. Assume also that α is a
definable involutory automorphism of H such that C◦

H(α) = A⋊ T . Under these assumptions S
is isomorphic to one of the following groups:

(i) If S is abelian then either S is homocyclic with I(S) = A×, or S = E ⊕ Eα, where E is a
T -invariant elementary abelian group isomorphic to K+. In the latter case, A = {xxα :
x ∈ E}, and both E and Eα are T -modules.

(ii) If S is nonabelian then S is an algebraic group over K whose underlying set is K ×K ×K
and the group multiplication is as follows:

For a1, b1, c1, a2, b2, c2 ∈ K,

(a1, b1, c1)(a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2 + ǫ
√
a1a2 +

√

b1b2 +
√

b1a2),

where ǫ is either 0 or 1.

In this case α acts by (a, b, c)α = (a, a+b, a+b+c+
√
ab) and [α, S] = {(0, b, c) : b, c ∈ K}.

In particular, if S is nonabelian then S has exponent 4.

We state for future reference several facts that were obtained while proving Fact 3.2. The
notation will be the same as in Lemma 3.1 and Fact 3.2.

Fact 3.3 ([3, Proposition 4.5]) Let S and T be as in the statement of Fact 3.2. Then for
every t ∈ T×, CS(t) = 1.

Fact 3.4 ([3, Corollary 4.6]) Let S and T be as in the statement of Fact 3.2. If X is a
definable normal T -invariant subgroup of S, then for every t ∈ T×, CS/X(t) = 1.

Fact 3.5 ([3, Corollary 4.7]) Let S, T and α be as in the statement of Fact 3.2. Any definable
normal T -invariant subgroup of S is connected. In particular, CS(α) is connected and thus
CS(α) = A.

S1 will denote the largest, proper, normal, definable, (〈α〉×T )-invariant subgroup of S. Note
that S1 is also connected by Fact 3.5.

Fact 3.6 ([3, Proposition 4.13]) S1 = [α, S] = {[α, x] : x ∈ S} is an abelian group inverted
by α.

The following fact can be extracted from the analysis of the nonabelian case in Fact 3.2.

Fact 3.7 For S nonabelian, rk (S) = 3rk (A).

As was explained in Section 6 of [4], one can adapt arguments from [3] and prove the following
using Fact 3.2.
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Fact 3.8 ([4, Theorem 1]) Let G be a simple L∗-group of even type with a weakly embedded
subgroup M . Then M/O◦

2(M) is of degenerate type.

We will refer to this structural property of M , as well as of M◦, as weak solvability. The
weak solvability of M◦ has the following structural consequences:

Fact 3.9 ([3, Proposition 5.6]) Let G be a simple L∗-group of even type with a weakly em-
bedded subgroup. If i ∈ I(σ◦(M)) then Ci ≤ M .

Fact 3.10 ([3, Proposition 5.7]) Let G be a simple L∗-group of even type with a weakly em-
bedded subgroup. Then for g ∈ G \M , we have Mg ∩ I(σ◦(M)) = ∅.
Fact 3.11 ([3, Corollary 5.8]) Let G be a simple L∗-group of even type with a weakly em-
bedded subgroup. Then I(G) = I1 ⊔ I2, where I1 is the set of involutions in G conjugate to an
involution in σ◦(M), and I2 is the set of involutions conjugate to an involution in M \ σ◦(M).

Fact 3.12 ([3, Corollary 5.9]) Let G be a simple L∗-group of even type with a weakly embed-
ded subgroup. Then M controls fusion in I(σ◦(M)).

4 Sylow 2-structure

In this section, G will continue to denote a simple L∗-group of even type with a weakly but
not strongly embedded subgroup M . We will continue to use the notation introduced in the
previous section.

We will show (Theorem 3 below) that S = O◦
2(M) is a homocyclic group with I(S) = A×.

We will proceed in two steps. First, we will prove that the Sylow◦ 2-subgroup of M , namely S,
is abelian (Theorem 2). This first step will leave us with the two possibilities in case (i) of Fact
3.2. In the second step we will reduce the structure of S to that of a homocyclic group such that
I(S) = A×. These two steps correspond to the two subsections below.

4.1 Reduction to the abelian case

In this subsection all the arguments will be made under the following assumption:

(†) The Sylow◦ 2-subgroups of G are not abelian.

Fact 3.2 (ii) gives a detailed description of the two isomorphism types for the Sylow◦ 2-subgroups
under the assumption (†). Using this we will analyze the fusion of involutions in G. This analysis
constitutes the largest part of this subsection. We will keep the same notation as above, and
recall that I1 is the set of involutions of G conjugate to an involution in σ◦(M), and I2 is the
set of involutions conjugate to an involution in M \ σ◦(M).

Lemma 4.1 If s ∈ S is such that αs is an involution, then α is conjugate to αs by an element
of S.

Proof. By Fact 3.6, we have S1 = {[α, x] : x ∈ S}. Therefore it suffices to show that s ∈ S1. As
αs is an involution, we have sα = s−1. By Fact 3.2 (ii), we have (a, b, c)α(a, b, c) = (0, a, ǫa+

√
ab).

Thus (a, b, c) is inverted by α if and only if a = 0, and we conclude that the only elements of S
inverted by α are those of S1. �

In the rest of this subsection R will denote a Sylow 2-subgroup of M which contains α. Note
that R◦ = S.

Lemma 4.2 Let β ∈ I(M) be such that C◦
β 6≤ M , and Lβ = B(Cβ). If Lα ≤ Lβ, then Lα = Lβ

Proof. Lemma 3.1 applies to β as well. Hence C◦
β = Lβ × CC◦

β
(Lβ), where Lβ

∼= PSL2(Kβ)

with Kβ algebraically closed of characteristic 2. Moreover, Lβ ∩M = Aβ × Tβ and Aβ ≤ S. By
Fact 3.7, rk (S) = 3rk (Aβ) as well as rk (S) = 3rk (A). This implies that rk (Lα) = 3rk (A) =
3rk (Aβ) = rk (Lβ). Hence if Lα ≤ Lβ , then Lα = Lβ. �
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Lemma 4.3 A✁M .

Proof. The group law in Fact 3.2 (ii) shows that A = Z(S). As S is the only Sylow◦ 2-subgroup
of M (Fact 3.8), the conclusion follows. �

Lemma 4.4 ([3, Lemma 7.3]) Let C/S = CR/S(α). Then C = SCC(Lα).

Proof. It suffices to show that C ≤ SCC(Lα). Let x ∈ C. Then [α, x] ∈ S. We define s = [α, x].
Thus, αx = αs ∈ I(S). By Lemma 4.1, there exists s1 ∈ S such that αx = αs1 . It follows that
xs−1

1 ∈ Cα and normalizes Lα. By Remark 2.21, there exists i ∈ I(Lα) such that xs−1
1 i ∈ C(Lα).

Since by Lemma 4.3 xs−1
1 normalizes A, we have i ∈ A. As S ≤ C, xs−1

1 i ∈ CC(Lα). It follows
that x ∈ SCC(Lα). �

Corollary 4.5 ([3, Lemma 7.3]) R = S ⋊ CR(Lα).

Proof. We let R1/S = Ω1(Z(R/S)). R1 > S because R > S. Let x ∈ R1 \ S. By Lemma
4.4, there exist s ∈ S and β ∈ CR(Lα) such that x = sβ. Since x2 ∈ S, β2 ∈ CS(Lα). β is an
involution because CS(Lα) = 1 by Fact 3.9. By Lemma 4.2, we have Lα = Lβ. We then apply
Lemma 4.4 to C/S = CR/S(β). By the choice of x, C = R. Hence, R = SCC(Lβ) = SCC(Lα) =
SCR(Lα). As CS(Lα) = 1, we in fact have R = S ⋊ CR(Lα). �

Lemma 4.6 ([3, Lemma 7.4]) I(CR(Lα)) = {α}.

Proof. Let β ∈ I(CR(Lα)). We may assume that either α or β is in Z(CR(Lα)). Then, as α
and β commute and [β, T ] ≤ [β, Lα] = 1, the definable connected subgroup [β, S] is (〈α〉 × T )-
invariant. Therefore, [β, S] ≤ S1. A symmetric argument using Fact 3.6 shows that [β, S] = S1.
The same fact also implies that β inverts S1. If α 6= β then αβ is an involution that centralizes
S1. But αβ centralizes α and the preceding argument for β can be applied to αβ and yields that
αβ inverts S1. This contradicts the structure of S1 as described in Fact 3.2 (ii). Hence α = β.
�

Corollary 4.7 ([3, Lemma 7.4]) The involutions in R \ σ◦(M) are conjugated by S. In par-
ticular, I(M \ σ◦(M)) is a single conjugacy class.

Proof. Let β ∈ I(R\σ◦(M)). Then by Corollary 4.5, β = sβ1 for some s ∈ S and β1 ∈ CR(Lα).
It follows using Fact 3.9 as in the proof of Corollary 4.5 that β1 is an involution. Then by Lemma
4.6, β1 = α. Now the first part of the statement follows from Lemma 4.1. The second part follows
from the first and the conjugacy of Sylow 2-subgroups. �

The rudimentary fusion information provided by the following lemma suffices for the rest of
the argument although it is possible to obtain more.

Lemma 4.8 ([3, Lemma 7.6]) The involutions in A are not conjugate to those in S \A.

Proof. By Corollary 3.12, M controls fusion in I(σ◦(M)). But A✁M by Lemma 4.3. �

Now we can prove the main result of this subsection:

Theorem 2 ([3, Theorem 7.8]) Let G be a simple L∗-group of even type with a weakly em-
bedded subgroup that is not strongly embedded. Then the Sylow◦ 2-subgroups of G are abelian.

Proof. Let x ∈ I(S \ S1), and let y ∈ I(G \M) be conjugate to I(A). By Lemma 4.8, x and y
are not conjugate. Therefore by Fact 2.11, there exists an involution i that commutes with both
x and y. By Fact 3.9, Cx ≤ M and Cy ≤ Mg where Mg is the conjugate of M containing y.
Fact 3.10 implies that i 6∈ σ◦(M). In particular, i 6∈ S, and by Corollary 4.7, i is conjugate to α
in M . By Fact 3.5, CS(α) = A. As i and α are conjugate in M and A ✁ M , CS(i) = A. But
x ∈ S \A and commutes with i. This contradiction finishes the proof of the theorem. �
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4.2 Reduction to the Abelian case with I(S) = A×

In this subsection we will continue to use the same notation as in the last one. The following
theorem will complete the Sylow 2-analysis:

Theorem 3 ([3, Theorem 8.1]) Let G be a simple L∗-group of even type with a weakly em-
bedded subgroup M that is not strongly embedded. Then the only Sylow◦ 2-subgroup S of M is
homocyclic with I(S) = A×.

All arguments in this subsection will be carried out under the following assumption which
corresponds to the subcase of Fact 3.2 (i) with I(S \A) 6= ∅:

(††) S = E ⊕ Eα, where both E and Eα are definable T -invariant elementary abelian sub-
groups of S, and A = {xxα : x ∈ E}. Moreover, T acts naturally on A, E, Eα.

Lemma 4.9 The elements of S× are M◦-conjugate.

Proof. Suppose first towards a contradiction that S× has at least two distinct conjugacy classes.
Let u ∈ I(A), and v be an involution not conjugate to u, which does not commute with u and is
conjugate to I(S \A). One can find such an involution v thanks to the contradictory assumption
that S× has at least two conjugacy classes of involutions and Fact 3.9. Evidently, v 6∈ M . By
Fact 2.11, there exists a third involution w that commutes with u and v. By Fact 3.9, w ∈ M .
As v 6∈ M , Cw 6≤ M . We may assume that α = w.

Since v is not conjugate to u, Lemma 3.1 (3) implies that v ∈ Cα \ Lα. The involution v
acts on Lα as an inner automorphism by Remark 2.21. Hence, there exists i ∈ I(Lα) such that
vi centralizes Lα. Since v and i commute, vi is an involution. Since vi ∈ C(Lα), vi ∈ M by
Fact 3.9. As v is conjugate to an involution in S, Fact 3.10 implies that v ∈ σ◦(Mg), where
Mg is distinct from M . As i commutes with v, i ∈ Mg by Fact 3.9. Moreover, i ∈ σ◦(Mg) by
Fact 3.10, because, being an element of Lα, it is conjugate to the involutions in A ≤ σ◦(M).
Therefore, vi ∈ I(σ◦(Mg)). But Cvi 6≤ Mg, a contradiction to Fact 3.9.

The conclusion of the last paragraph and Fact 3.12 show that the elements of S× are M -
conjugate. We will now strengthen this to conjugacy under the action of M◦. For i ∈ I(S), we
have rk (iM

◦

) = rk (M◦)− rk (CM◦(i)) = rk (M)− rk (CM (i)) = rk (iM ). But the last paragraph
shows that rk (iM ) = rk (S). As S is connected and M◦ is a group, it follows that S× = iM

◦

.
This finishes the argument. �

Let w be an involution in Lα that inverts T . We will keep this notation until the end of this
section.

Lemma 4.10 If A1 is a unipotent 2-subgroup of S such that A1 > A, then CG(A1, A
w) = 1.

Proof. Let x ∈ CG(A1, A
w). Suppose x 6= 1. Then by Fact 2.22, B(Cx) is a copy of PSL2 in

characteristic 2. As A1 > A, B(Cx) > Lα because Lα = 〈A,Aw〉. A comparison of a maximal
torus of Lα with that of B(Cx) containing it and Fact 2.24 yield a contradiction. �

Proposition 4.11 C◦(Lα) = 1.

Proof. Let X = C◦(Lα). Note that by Facts 3.8 and 3.9, X is of degenerate type. Suppose
towards a contradiction that X 6= 1.

We will now argue that K = T ∪{0} carries a field structure that turns S into a 2-dimensional
vector space over this field. By Fact 3.3, T embeds into End(S). So we will see T a subgroup of
the multiplicative group of End(S), and we will consider the subring R of End(S) generated by
T . As E is T -invariant, E is R-invariant. So there is a natural restriction map ρ : R −→ End(E).
Furthermore, ρ[R] = ρ[T ∪ {0}] ∼= K acting on E identified with K+. It suffices therefore to
check that ρ is an injection.
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Now, α commutes with T and hence with R, so if r ∈ R annihilates E then r annihilates
EEα = S, and r = 0. Thus ρ is injective and R = T ∪ {0} is a field which we call K. It follows
from (††) and the action of T on E that S is a 2-dimensional K-vector space.

Since X commutes with T , the action of X on S is K-linear. Lemma 4.10 implies that
CX(S) = 1 because CX(S) ≤ C(S,Aw) = 1. As a result, Fact 2.30 implies that X is solvable.
Since X is solvable of degenerate type, Fact 2.9 implies that I(X) = ∅. Since CX(S) = 1, Fact
2.14 shows that X is divisible and abelian. It follows that XT is abelian and does not have
involutions.

Next we define X1 = CXT (S/A). As S/A and A are isomorphic T -modules by (††), the
assumption that X 6= 1 and the fact that XT is abelian imply that X1 6= 1. We have S/A =
CS/A(X1) = CS(X1)A/A by Fact 2.10. Thus, S = CS(X1)A. But CS(α) = A by Fact 3.5 and
CS(X1) is (〈α〉 × T )-invariant. It follows that CS(X1) ≥ A, and we have X1 ≤ CXT (S).

We will now show that X1 = 1, the final contradiction which will prove the proposition. Since
X1 centralizes X , X1 normalizes B(C(X)) = Lα. But X1 has no involutions and centralizes
A. This, together with Remark 2.21, implies that X1 centralizes Lα. Lemma 4.10 implies that
X1 = 1. �

Proposition 4.12 w inverts C◦(T ).

Proof. It suffices to show that C◦(w, T ) = 1 (Fact 2.12). Let X = C◦(w, T ). Note that X is
normalized by α, and the structure of PSL2 forces X∩Lα = 1. Since C◦(Lα) = 1 by Proposition
4.11, CX(α) is finite (Remark 2.21 and Lemma 3.1) and by Fact 2.12 α inverts X . In particular,
X is abelian. We suppose towards a contradiction that X 6= 1.

By Fact 3.9, X ≤ Mw, where Mw is the conjugate of M containing w. Let Sw denote the
Sylow◦ 2-subgroup of Mw. We have α ∈ Mw and Lα ∩Mw = Aw ⋊ Tw by Lemma 3.1 (4). By
the structure of PSL2, T 6≤ Mw, indeed T ∩Mw = 1. As a result, C(X) 6≤ Mw.

We will prove that if X0 is a nontrivial definable connected subgroup of X then CSw
(X0)

is finite. If this is not the case then since C(X0) ≥ C(X), and thus C(X0) 6≤ Mw, Lemma
2.22 implies that B(C(X0)) ∼= PSL2 in characteristic 2. As α inverts X , α normalizes X0. As
a result CSw

(X0) is normalized by α and has infinite intersection with CSw
(α). By Fact 3.5,

CSw
(α) = Aw. Since X0 centralizes also T , it centralizes 〈T,CAw

(X0)〉. This last subgroup
is nothing but Lα. But C◦(Lα) = 1 by Proposition 4.11, and we reach a contradiction which
proves that CSw

(X0) is finite.
Next we consider the quotient M◦

w = M◦
w/CM◦

w
(Sw). By the preceding paragraph, CX(Sw)

is finite. Hence X is isogenous to X . Both X and Tw are contained in Borel subgroups of
M◦

w. By Fact 2.34, an M◦
w-conjugate X1 of X is in the same Borel of M◦

w as Tw. There exists
w1 ∈ CSw

(X1)
× and it follows from Fact 3.3 that Tw∩X1 = 1. Since Tw and X1 are in the same

Borel, [X1, Tw] = 1 (Fact 2.14). Therefore, for any t ∈ Tw, [X1, w
t] = 1. Since CSw

(X) is finite,
so is CSw

(X), and the same applies to CSw
(X1). Therefore we reach a contradiction. �

Proposition 4.13 C◦
M (T ) = T . Thus, N◦

M (T ) = T .

Proof. Let Y = C◦
M (T ). By Proposition 4.12, w inverts Y . Hence every subgroup of Y is

w-invariant. As a result CY (S) = CY (S, S
w), and by Lemma 4.10, CY (S) = 1.

By Fact 3.3, Y ∩ S = 1. It follows that Y is of degenerate type (Fact 3.8). Since Y is
connected and abelian, we conclude using Fact 2.9 that I(Y ) = ∅. The group S⋊Y is connected
and solvable. Since CY (S) = 1, Fact 2.14 implies that Y is divisible abelian. The faithful action
of Y on S and Fact 2.27 imply that Y is a good torus.

Now, suppose towards a contradiction that Y > T . Since Y is a good torus and Y > T , Y
contains torsion elements that are not in T . Moreover, T is a full torus in characteristic 2. It
follows that the Prüfer p-rank of Y is at least 2 for some prime p. Since CY (S) = 1, Fact 2.23
implies that the action of Y on S cannot be irreducible. Let Ã be a Y -minimal subgroup of
S. Then CY (Ã) is infinite by Fact 2.23 and our conclusion about the Prüfer p-rank of Y . Let
Ỹ = C◦

Y (Ã). As every subgroup of Y is w-invariant, Ỹ is w-invariant. Thus 〈Ã, Ãw〉 ≤ C◦(Ỹ ).
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By Facts 2.22 and 3.10, L̃ = B(C(Ỹ )) ∼= PSL2 in characteristic 2. By Remark 2.21, w acts on
L̃ as an element of L̃, and L̃ has a Sylow 2-subgroup A2 that is centralized by w. By Fact 3.9,
A2 ≤ Mw, where Mw is the conjugate of M containing w. Let Sw denote the unique Sylow◦

2-subgroup of Mw. Clearly Aw and A2 are subgroups of Sw. Since Ỹ centralizes A2, Ỹ ≤ Mw

by Fact 2.18. Since w ∈ Aw and Aw ≤ Sw ✁Mw, [w, Ỹ ] ≤ Ỹ ∩ Sw = 1. But w inverts Ỹ and
I(Y ) = ∅, a contradiction. We conclude that Y = T .

The second conclusion follows from Facts 2.8 and 2.24. �

Corollary 4.14 The set ∪g∈M◦T g is generic in M◦.

Proof. The conclusion follows from Proposition 4.13, Fact 2.32 and the fact that T is a good
torus. �

Let M◦ = M◦/CM◦(S). The -notation will be used to denote the quotients by CM◦(S).

Proposition 4.15 T is a Borel subgroup of M◦.

Proof. By Corollary 4.14, the set τ = ∪g∈M◦T g is generic in M◦. Hence, so is its image τ in
M◦. Let B be a Borel subgroup of M◦. B is a good torus by Fact 2.27, and since it is a Borel
subgroup of M◦, it is of finite index in NM◦(B). By Fact 2.33, B is conjugate to a subgroup of

T . Since B is a Borel subgroup of M◦, we conclude that T and B are conjugate in M◦. �

Proposition 4.16 For i ∈ I(S), CM
◦(i) is finite.

Proof. If CM◦(i) is infinite for some i ∈ I(S), then Proposition 4.15 shows that a Borel subgroup

of CM◦(i) can be conjugated to a subgroup of T . This contradicts Fact 3.3. Hence, CM◦(i) is
finite. �

Corollary 4.17 rk (M◦) = 2rk (T ).

Proof. The assumption on the structure of S implies that rk (S) = 2rk (T ). Since S = I(S) ∪
{1}, Proposition 4.16 and the transitive action of M◦ (hence that of M◦) on I(S) (Lemma 4.9)
yield the conclusion. �

Proposition 4.18 For x 6∈ NM◦(T ), T ∩ T
x
is finite.

Proof. We suppose towards a contradiction that T0 = (T ∩ T
x
)◦ 6= 1 for some x 6∈ NM◦(T ).

We consider X = C◦
M◦

(T0). This is a nonsolvable group by Proposition 4.15. Let B ≤ S be an

X-minimal subgroup of S. As T0 6= 1 and X/CX(B) is of degenerate type, Facts 2.28 and 2.30

imply that X/CX(B) is a solvable group. But by Proposition 4.16, CX(B) is finite. Hence X is
solvable, a contradiction. �

Proposition 4.19 I(M◦) = ∅.

Proof. Suppose towards a contradiction that w ∈ I(M◦). If CM (w) is finite, then by Fact 2.12,

w inverts M◦. It follows using Fact 2.9 that M◦ has infinite Sylow 2-subgroups. This contradicts
that M◦ is of degenerate type. Thus CM (w) is infinite.

The conclusion of the last paragraph shows that CM (w) has infinite Borel subgroups. These

Borel subgroups are contained in Borel subgroups of M . It follows from Proposition 4.18 that w
normalizes a Borel subgroup of M◦ of which it centralizes an infinite subgroup. This contradicts
Fact 2.31. �
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Corollary 4.20 NM◦(T ) = T

Proof. As T is a full torus of dimension 1 in characteristic 2, Facts 2.7, 2.31 and 4.15 imply
that NM◦(T )/T is a 2-group. But by Proposition 4.19, I(M◦) = ∅. The conclusion follows from
Fact 2.6. �

Proposition 4.21 M◦ acts doubly transitively on the cosets of T in M0.

Proof. Let g ∈ M◦ \T . By Proposition 4.18 and Corollary 4.20, T ∩T
g
is finite. It follows that

the mapping
T × T −→ TgT
(t1, t2) 7−→ (t1gt2)

has finite fibers. Therefore rk (TgT ) = 2rk (T ). But by Corollary 4.17, rk (M◦) = 2rk (T ). We
conclude that M◦ = T ⊔ TgT for any g ∈ M◦ \ T . �
Proof of Theorem 3. By Proposition 4.19, I(M◦) = ∅. On the other hand, in the doubly
transitive action of M◦ on the cosets of T proven in Proposition 4.21 the element of M◦ that
swaps two distinct points yields an involution in M◦. This contradiction shows that (††) cannot
hold. �

5 Structure of M

In this section we will prove several corollaries of Theorem 3 that will provide useful tools for
the proof of Theorem 1. These corollaries will help clarify the structure of M . We start by
reviewing the notation that we will keep from the last section. G will denote a simple L∗-group
of even type with M a weakly but not strongly embedded subgroup. S will be the Sylow◦

2-subgroup of M . Let α be a fixed offending involution in M and Lα = B(Cα). Lα ∩M , which
is a Borel subgroup of Lα, is of the form A ⋊ T . By Theorem 3, we know that S is homocyclic
and Ω◦

1(M) = I(S) ∪ {1} = A. We will continue to denote by w the Weyl group element in Lα

that inverts T .
In understanding the structure of M , the Borel subgroup Lα∩M of Lα and w are important

ingredients. Indeed the particular interaction among w, T and A and the field structure involved
in A⋊ T have very strong consequences on G, as we will see. It will turn out that a large class
of involutions share similar properties. Thus we introduce some notation and terminology that
will help us not to limit our discussion to w and A ⋊ T . In the following definition, i can be
taken to be a fixed involution in I(A).

Definition 5.1

1. T (u) = {x ∈ M◦ : xu = x−1}.

2. X1 = {u ∈ iG \M : rk (T (u)) < rk (A)}.

3. X2 = {u ∈ iG \M : rk (T (u)) ≥ rk (A)}.

4. XL2 = {u ∈ iG \M : u inverts a subgroup T [u] of M◦ such that A⋊ T [u] ∼= K+ ⋊K×}

We will occasionally refer to involutions in Xi (resp. in XL2) as Xi-involutions (resp. XL2-
involutions). More important is that XL2 ⊆ X2, and that XL2, hence X2, is not empty, as
w ∈ XL2. Evidently, we may take T [w] = T , and we will prefer T as notation to T [w] whenever
we concentrate on the particular involution w.

Our first target is to show that CM (i) = CM (A) for any i ∈ I(A). This will be done by first
showing the presence of a semidirect product structure on M◦ in terms of CM◦(A) and any T [u],
for any u ∈ XL2.
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Lemma 5.2 For i ∈ I(A) and u ∈ XL2, we have M = CM (i)T [u], as well as M◦ = CM◦(i)T [u],
and CM (i) ∩ T [u] = 1.

Proof. The assumption on the structure of A⋊T [u] implies that T [u] acts on I(A) regularly. In
particular this action is transitive. The first part of the statement follows from this transitivity
and the fact that T [u] ≤ M◦. That CM (i) ∩ T [u] = 1 is a consequence of the regularity of the
action. �

Proposition 5.3 ([3, Lemma 9.3]) For i ∈ I(A) and u ∈ XL2 , we have C◦
M (i) = C◦

M (A) =
CM◦(i) = CM◦(A). In particular, M◦ = CM◦(A)⋊ T [u].

Proof. We let M◦ = M◦/CM◦(A). By Lemma 5.2, C◦
M (i) = CM◦(i). Now, suppose towards

a contradiction that C◦
M (i) > C◦

M (A). Hence C◦
M (i) is an infinite definable connected subgroup

of M◦. Note also that T [u] ∼= T [u] because CT [u](A) = 1 by the structure of A ⋊ T [u]. T [u] is

contained in a Borel subgroup of M◦. We will show that T [u] is indeed a Borel subgroup of M◦.
By Fact 2.14, the Borel subgroups of M◦ are divisible abelian. Thus it suffices to show that
C◦

M◦
(T [u]) = T [u]. Since T [u] acts transitively on A×, Facts 2.28 and 2.30 imply that C◦

M◦
(T [u])

is solvable. Hence, C◦
M◦

(T [u]) is abelian by Fact 2.14. But by Lemma 5.2, M◦ = CM◦(i)T [u],

and the transitive action of T [u] on A× forces C◦
M◦

(T [u]) ∩ CM◦(i) ≤ CM◦(A) = 1. As a result

C◦
M◦

(T [u]) = T [u].

Since T [u] is a Borel subgroup ofM◦ and CM◦(i) is infinite, Fact 2.34 implies that a conjugate
of T [u] in M◦ intersects CM◦(i) nontrivially. This contradicts the action of T [u] on A. It follows
that C◦

M (i) = C◦
M (A).

Since by Lemma 5.2, M◦ = CM◦(i)T [u] and CM◦(i) = C◦
M (i) as remarked above, we also

have M◦ = C◦
M (A) ⋊ T [u]. The equality C◦

M (A) = CM◦(A) then follows from the fact that
C◦

M (A) ≤ CM◦(A) and by the structure of A⋊ T [u]. �

Corollary 5.4 ([3, Lemma 9.3]) CM (i) = CM (A) for i ∈ I(A).

Proof. Let M = M/CM (A). Note that by the structure of A⋊ T , T ∼= T . By Proposition 5.3,

M◦ = CM◦(A) ⋊ T , and thus M
◦
= T . We apply Fact 2.29 with M for G, A for A, T for G1

and H . Since T acts transitively on A×, the vector space is 1-dimensional and T = M . The
conclusion follows. �

Before proving the last conclusion of this section we recall some group theoretic notions:

Definition 5.5 Let G be a group.

1. For x ∈ G, C∗
G(x) = {g ∈ G : xg = x or x−1}.

2. An element of G is said to be strongly real if it is the product of two involutions.

Proposition 5.6 ([3, Lemma 9.17]) Let i and j be involutions in G that are conjugate to
involutions in A. For a ∈ G, if ai = a and aj = a−1, then a2 = 1.

Proof. We may assume that i ∈ A. By Fact 3.9, we have a ∈ M . Since [a, i] = 1, by Corollary
5.4, [a,A] = 1. Suppose towards a contradiction that a2 6= 1. Then j ∈ C∗

G(a) \ CG(a), and
i and j are not conjugate in C∗

G(a). By Fact 2.11, there exists an involution k ∈ C∗
G(a) that

commutes with both i and j. Fact 3.9 implies that k ∈ M .
We will consider two cases. The first case is the one in which k ∈ I(σ◦(M)). By Theorem 3,

k ∈ A. Since [j, k] = 1, Fact 3.9 implies that j ∈ M . Since j is conjugate to an involution in A,
Fact 3.10 implies that j ∈ A. Since [a,A] = 1, we conclude a2 = 1, a contradiction.

We now consider the case in which k ∈ I(M \ σ◦(M)). By Corollary 5.4, we have [k,A] = 1.
Since j is conjugate to involutions in A, there exists h ∈ G such that j ∈ Ah. By Fact 3.9,
k ∈ Mh, and by Corollary 5.4, [k,Ah] = 1. Now, j 6∈ A because [a,A] = 1, aj = a−1 and
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it is assumed that a2 6= 1. By Fact 3.10, j 6∈ M . Hence k is an offending involution with
C◦

k = B(Ck) × CC◦

k
(B(Ck)) and B(Ck) ∼= PSL2 in characteristic 2 by Fact 2.22. We have

B(Ck) = 〈A,Ah〉. We also have B(Ck) = 〈A,Aj〉 since Aj 6= A. Since a centralizes both A and
Aj , a centralizes B(Ck). Therefore a centralizes Ah. In particular aj = a, a contradiction. �

6 Large intersections

In this section we start the proof of Theorem 1. We assume the hypothesis (*) of Theorem 1. We
will keep the same notation as in the previous sections. The notation introduced in Definition
5.1 will be frequently used.

The main theme in this section is the structure of (M ∩Mu)◦ for an arbitrary u ∈ X2. Such
an intersection will be denoted Ru and we will show that u inverts Ru. A consequence of this is
that X2 = XL2, as we will see in Corollary 6.13. Along the way, we will obtain a crucial piece
of information, namely that offending involutions in M are in M \M◦.

We start with the following consequence of Proposition 5.3 although it will be used only later
(Proposition 6.10). It shows the strong effects of the structural description given by Proposition
5.3.

Lemma 6.1 Let u ∈ X2. Then Ru is abelian.

Proof. We consider the definable connected subgroup [Ru, Ru]. Since by Proposition 5.3
M◦/CM◦(A) is abelian, we have [Ru, Ru] ≤ [M◦,M◦] ≤ C◦(A). Since u normalizes Ru, u
normalizes [Ru, Ru]. It follows that [Ru, Ru] ≤ C◦(A)u as well. Since Au 6= A, the hypothesis
(*) implies that [Ru, Ru] is finite and thus trivial. �

The next set of lemmas were corollaries in a section in [5]. In that section the main result
was an analogue of the inversion statement that we are about to start proving. However some of
the conclusions that became available only after that analogue (notably Corollary 6.10 of that
article provided that this numbering survives until its publication)) are already known in this
new context (Proposition 5.3 and Corollary 5.4) although this knowledge is for the time being
restricted to the XL2-involutions.

Lemma 6.2 ([11, Lemme 3.2]) Let u ∈ XL2. For any t ∈ T [u]×, u inverts C◦(t).

Proof. By Fact 2.12, it suffices to prove that X = C◦(t, u) = 1. Suppose X 6= 1. Then X is
infinite, and by Fact 3.9, X ≤ Mu where Mu is the conjugate of M containing u. By Proposition
5.3 and Fact 3.9, C◦(u) = C◦(Au) where Au is the conjugate of A which contains u. As u ∈ XL2,
by the definition of XL2, u 6∈ M . Thus A 6= Au and M 6= Mu (Fact 3.10). The assumption (*)
implies that C(X) ≤ Mu as otherwise one could find distinct conjugates of Au in C(X) using
elements in C(X) \ Mu. Hence t ∈ Mu. Since u inverts t, we have [t, u] ∈ Au ∩ T [u]. But
I(T [u]) = ∅ since T [u] is isomorphic to the multiplicative group of a field in characteristic 2.
Therefore, [t, u] = 1 and this forces t2 = 1, a contradiction. �

Lemma 6.3 Let u ∈ XL2. For any nontrivial subgroup X ≤ T [u], C◦
M (X) = T [u]. In particu-

lar, C(A, T [u]) is finite.

Proof. By Proposition 5.3, C◦
M (X) = CM◦(AX) ⋊ T [u]. As C◦

M (X) is connected, it follows
that CM◦(AX) is connected. Thus if T [u] < C◦

M (X), then C◦
M (AX) is nontrivial. By Lemma

6.2, u inverts C◦
M (AX), and thus by Proposition 5.6, C◦

M (AX) is an infinite connected ele-
mentary abelian 2-group which is centralized by u. But then Fact 2.18 implies that u ∈ M , a
contradiction. �

Corollary 6.4 Let u ∈ XL2. Then Two distinct M◦-conjugates of T [u] have trivial intersec-
tion.

Proof. If x ∈ M◦ is such that T [u]∩T [u]x 6= 1 then by Lemma 6.3, T [u] = C◦
M (T [u]∩T [u]x) =

T [u]x. �
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Lemma 6.5 Let u ∈ XL2. Then NM◦(T [u]) = T [u]. In particular, CM◦(A, T [u]) = 1.

Proof. We first prove that N◦
M (T [u]) = T [u]. N◦

M (T [u]) centralizes the torsion subgroup of
T [u] by Fact 2.8. But, by the definition of the XL2-involutions, T [u] is definably isomorphic to
the full multiplicative group of an algebraically closed field in characteristic 2. Then Fact 2.24
implies that N◦

M (T [u]) centralizes T [u]. But by Lemma 6.3, C◦
M (T [u]) = T [u].

By Proposition 5.3, NM◦(T [u]) = (CM◦(A)∩NM◦(T [u]))T [u]. LetX = (CM◦(A)∩NM◦(T [u])).
Then the semidirect product structure of M◦ implies that X centralizes T [u]. The last para-
graph shows that T [u] is of finite index in its normalizer in M◦. Moreover, by Corollary 6.4,
two distinct M◦-conjugates of T [u] have trivial intersection. Since T [u] is divisible abelian, Fact
2.31 can be applied to M◦ and T [u]. Since CT [u](X) is infinite (namely T [u]), we conclude that
X = 1. �

Corollary 6.6 Let u ∈ XL2. If X is any nontrivial subgroup of T [u], then CM◦(X) = T [u].

Proof. Corollary 6.4 implies that CM◦(X) normalizes T [u]. The conclusion follows from Lemma
6.5. �

The following is the aforementioned crucial information about the place in M of its offending
involutions.

Corollary 6.7 Offending involutions in M are in M \M◦.

Proof. Suppose α is an offending involution in M . Let Lα and w be as at the beginning of
Section 5. As we noted there, w ∈ XL2 and T = T [w]. Since α centralizes A⋊T , the conclusion
follows from Lemma 6.5. �

We recall that for any u ∈ X2, Ru = (M∩Mu)◦. The following is another easy but important
conclusion of the preceding discussion.

Corollary 6.8 Let u ∈ X2. Then I(M◦ ∩M◦u) = ∅. In particular, I(Ru) = ∅.

Proof. Suppose towards a contradiction that β ∈ I(M◦ ∩ M◦u). Then β ∈ C(A,Au) by
Corollary 5.4. In particular β is an offending involution. But M◦ ∩M◦u ≤ M◦ and Corollary
6.7 forces β ∈ M \M◦, a contradiction. Since Ru ≤ M◦ ∩M◦u, the second statement follows as
well. �

Corollary 6.9 Let u ∈ X2. Then rk (R−
u ) ≥ rk (A), where R−

u = {x ∈ Ru : xu = x−1}. In
particular R−

u is infinite, and thus contains nontrivial elements.

Proof. Let R̃u = M◦ ∩M◦u. By Corollary 6.8, I(R̃u) = ∅. By Fact 2.13, R̃u = CR̃u
(u)R̃u

−

and rk (R̃u) = rk (CR̃u
(u)) + rk (R̃u

−
). Since Ru = R̃u

◦
, it follows that rk (Ru) = rk (CRu

(u)) +

rk (R̃u
−
). Thus rk (R−

u ) = rk (R̃u
−
) by Fact 2.13 applied to Ru and the preceding rank equality.

�

Proposition 6.10 If u ∈ X2, then u inverts Ru = (M ∩Mu)◦.

Proof. Let u and Ru be as in the statement. By Corollary 6.8, I(Ru) = ∅. Thus, by Fact 2.13,
Ru = CRu

(u)R−
u where R−

u = {x ∈ Ru : xu = x−1}. Note that, since Ru is abelian by Lemma
6.1, R−

u is in fact a group. We let Xu = CRu
(u). By Fact 2.13, Xu is a definable connected

subgroup.
Since u is conjugate to involutions in A and Xu centralizes u, Corollary 5.4 implies that

Xu ≤ C◦(Au), where Au is the conjugate of A containing u. As a result, if Xu 6= 1 then it
is an infinite group and by the hypothesis (*), C(Xu) ≤ Mu where Mu is the conjugate of M
containing u. It follows from this and Lemma 6.1 that Ru ≤ Mu. In particular, R−

u ⊆ Mu. But
then [R−

u , u] ≤ R−
u ∩ Au. This is contradictory because u inverts R−

u , I(Ru) = ∅ by Corollary
6.8 and R−

u contains nontrivial elements by Corollary 6.9. �
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Corollary 6.11 Let u ∈ X2. Then Ru acts semiregularly on A.

Proof. By Proposition 6.10, u inverts Ru. By Corollary 6.8, I(Ru) = ∅. Since u is conjugate
to the involutions in I(A), we conclude using Proposition 5.6. �

Corollary 6.12 Let u ∈ X2. Then rk (T (u)) = rk (A) = rk (Ru).

Proof. Since u is an X2-involution, we have rk (T (u)) ≥ rk (A). Proposition 6.10 implies that
Ru ⊆ T (u). Since T (u) ⊆ M ∩Mu, we conclude that rk (T (u)) = rk (Ru). It follows from this
equality and the fact that rk (T (u)) ≥ rk (A) that rk (Ru) ≥ rk (A). If this inequality were strict
CRu

(i) would be nontrivial for any i ∈ I(A) but this contradicts Corollary 6.11. �

Corollary 6.13 Let u ∈ X2. Then A⋊Ru
∼= K+ ⋊K× where K is an algebraically closed field

of characteristic 2. Equivalently, X2 = XL2. Moreover, Ru = T [u].

Proof. This follows from Corollaries 6.11, 6.12 and Fact 2.23. �

7 Rank of G

In this section we will compute the rank of the simple group G we are analyzing. We will keep
the same notation as in the previous sections. In particular, i ∈ I(A) is fixed.

TheX2-involutions will play an important role in this section. In Corollary 6.13 we concluded
that these involutions belong to the class XL2 of Definition 5.1. Corollary 6.13 will be used
without mention in the sequel and thanks to this corollary we will be able to use various results
which were proven in the previous section only for the XL2-involutions.

We start with a warning. The fact that u is an X2-type involution does not imply that
T (u) = (M ∩Mu)◦, as it is not clear whether T (u) is a group. Indeed, if T (u) is a group then it
is abelian, and we have Ru ≤ T (u) ≤ CM◦(Ru) = Ru by Proposition 6.10 and Corollary 6.6. In
any case, we have (M ∩Mu)◦ ⊆ T (u) ⊆ M ∩Mu, and in particular the group Ru = (M ∩Mu)◦

is in a weak sense the “connected component” of T (u). Since the conjugacy of the (M∩Mu)◦ for
various u ∈ X2 is an important theme in this section, we will occasionally use T ◦(u) to denote
(M ∩Mu)◦. It is worth noting that for u ∈ X2, T

◦(u) is the same group as the one denoted by
T [u] prior to Corollary 6.13.

Proposition 7.1 rk (iG) = rk (X2).

Proof. The proof consists of showing that rk (X1) < rk (iG). An equivalence relation ∼ is
defined on X1 as follows: for u1, u2 ∈ X1, u1 ∼ u2 if and only if u1M

◦ = u2M
◦. The second

condition is equivalent to u2u1 ∈ T (u1). Now rk (X1) ≤ rk (X1/∼)+m where m is the maximal
fiber rank for the quotient map X1 −→ X1/∼. By the definition of ∼ and X1, m < rk (A).
Moreover, the mapping from X1/∼ into G/M◦ which assigns to each equivalence class u/∼ the
coset uM◦ is an injection, by the definition of ∼. Hence, rk (X1) < rk (G) − rk (M) + rk (A) =
rk (G) − rk (CG(i))− rk (T ) + rk (A), using Proposition 5.3. But rk (G)− rk (CG(i)) − rk (T ) +
rk (A) = rk (iG) since rk (T ) = rk (A). �

Lemma 7.2 If w1 and w2 are two X2-involutions such that T ◦(w1) 6= T ◦(w2), then T ◦(w1) ∩
T ◦(w2) = 1.

Proof. If T ◦(w1)∩T ◦(w2) 6= 1 then Lemma 6.3 implies that T ◦(w1) = C◦
M (T ◦(w1)∩T ◦(w2)) =

T ◦(w2). �
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Proposition 7.3 If w1 ∈ X2, then T ◦(w) and T ◦(w1) are C◦(A)-conjugate.

Proof. By Lemma 7.2 and Lemma 6.5, ∪x∈M◦T ◦(w)x is generic in M◦. If w1 is another X2-
involution, then the connectedness of M◦ implies that for some x ∈ M◦, T ◦(w)x ∩ T ◦(w1) 6=
1. Then Lemma 7.2 implies that T ◦(w)x = T ◦(w1). The C◦(A)-conjugacy follows from the
structure of M◦ as described by Proposition 5.3. �

It is worth noting that Proposition 7.3 eliminates any difference between T and T ◦(u) where
u is an arbitrary X2-involution.

Proposition 7.4 rk (G) = rk (C(T )) + 2rk (C(A)).

Proof. The standard line of argument (introduced in [8] and also used in [1, 11]) to reach such
a conclusion consists of defining a suitable mapping from X2 into wC(T )C◦(A). We have the
necessary tools, notably Lemma 6.5, to reproduce the same analysis.

By Proposition 7.3, for any X2-involution w1, there exists f ∈ C◦(A) such that T f = T ◦(w1).

It follows that wf−1

1 inverts T and thus wf−1

1 w centralizes T . Note also that by Lemma 6.5 f is
unique.

Hence we can define the following definable map:

Φ : X2 −→ wC(T )C◦(A)

w1 7−→ wwf−1

1
wf

We show that Φ has finite fibers. If wwf−1

1
wf = ww′f′−1

1
wf ′

, then since this element inverts
both T f and T f ′

, we have T f = T f ′

. Then Lemma 6.5 implies that f = f ′. It follows that
wfw1 = wfw′

1 and (w1w
′
1)

f−1 ∈ C(T,w). But C(T,w) is a finite group by Lemma 6.2. This
proves the finiteness of the fibers.

The conclusion of the last paragraph implies that rk (X2) ≤ rk (wC(T )C◦(A)). Since rk (X2) =
rk (iG) by Proposition 7.1, we have rk (X2) = rk (wC(T )C◦(A))

Next we show that rk (wC(T )C◦(A)) = rk (C(T )C◦(A)). We define the following definable
map:

Ψ : C(T )C◦(A) −→ wC(T )C◦(A)

cf 7−→ wcf

Its fibers are finite because if wcf = wc′f ′

then both wcf and wc′f ′

invert T f = T f ′

. Then
it follows from Lemma 6.5 that f = f ′, thus c′c−1 ∈ C(T,w), and this last group is finite by
Lemma 6.2. Since Ψ is clearly surjective we have rk (C(T )C◦(A)) = rk (wC(T )C◦(A)). The rank
computations using Φ now yield rk (X2) = rk (C(T )C◦(A)).

Since C(T ) ∩ C◦(A) = 1 by Lemma 6.5, it follows from Proposition 7.1 that rk (C(T )) +
rk (C◦(A)) = rk (X2) = rk (iG) = rk (G) − rk (CG(i)). Using Proposition 5.3, we have rk (G) =
rk (C(T )) + 2rk (C(A)). �

8 Centralizers of tori

We keep the same notation as before.

Lemma 8.1 rk (X2M
◦) = rk (G).

Proof. The following equivalence relation is defined on X2: w1 ∼ w2 if and only if w1M
◦ =

w2M
◦ (if and only if w2w1 ∈ T (w1)). As rk (T (w1)) = rk (T ) by Corollary 6.12, we conclude

that rk (X2) = rk (X2/∼) + rk (A). Since rk (X2) = rk (iG) by Proposition 7.1, it follows using
Proposition 5.3 that

rk (G) = rk (CG(A)) + rk (X2/∼) + rk (A)

= rk (M)− rk (T ) + rk (X2/∼) + rk (A)

= rk (M) + rk (X2/∼)

= rk (X2M
◦)
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Lemma 8.2 If c ∈ C◦(T ) \M then iG ∩ fcM◦ = ∅ for any f ∈ C◦(A).

Proof. Suppose towards a contradiction that fcb ∈ iG ∩ fcM◦ with b ∈ M◦ and f , c as in
the statement of the lemma. Using Proposition 5.3 we may assume that b ∈ C◦(A). After
conjugating fcb by f we conclude that cu ∈ iG ∩ cM◦ with u = bf ∈ C◦(A).

If t ∈ T then (cu)t = cut and [u, t] = (cu)−1(cu)t ∈ T (cu) ∩ C◦(A). Let x = [u, t]. By
Proposition 5.6, x2 = 1. If x 6= 1 then x is an offending involution as cu ∈ C(x) \M . However
x ∈ M◦ and by Corollary 6.7 offending involutions in M are in M \M◦. Therefore x = 1 and
u centralizes t. Since t is an arbitrary element in T , we conclude that u ∈ CM◦(A, T ). This
last group is trivial by Lemma 6.5. It follows that c ∈ iG ∩ C(T ). T has no involutions and is
inverted by w and thus Proposition 5.6 yields a contradiction. �

Lemma 8.3 ([11, Lemme 4.25]) If for f1, f2 ∈ C◦(A), c1, c2 ∈ C◦(T ) \ M , we have
f1c1M

◦ = f2c2M
◦, then f1 = f2 and c1T = c2T .

Proof. Suppose f1c1 = f2c2v for some v ∈ M◦. We may assume v ∈ C◦(A) by Proposition 5.3
and c1 = uc2v where u = f−1

1 f2.
We claim that X = [v, T ] = 1. X is a definable connected subgroup contained in M ∩M c1 as

T v = T c2v = T u−1c1 ≤ M c1 and T v ≤ Mv = M . As T normalizes X , XT is a group. In fact it is
definable and connected. Note also that X ≤ M◦′ ≤ C◦(A) by Proposition 5.3. Thus CX(Ac1)
is finite by the assumption (∗) of Theorem 1 and the fact that Ac1 6= A. Since T is inverted by
w, it acts freely on Ac1 (Proposition 5.6). Let K = C◦

XT (A
c1). By Proposition 5.3 applied to

M c1 and the connectedness of XT , we have XT = KT . Then [T,K] ≤ (XT )′ ≤ X ∩K as T is
abelian and both X and K are normal in XT . Since CX(Ac1) is finite and [T,K] is connected,
we conclude that [T,K] = 1. Then K ≤ C◦(T ). The group C◦(T ) is inverted by w (Lemma
6.2) and does not have infinite 2-subgroups. Proposition 5.6 implies that K is an elementary
abelian 2-subgroup. Since K is connected by definition, we conclude that K = 1. Therefore we
have XT = T , and X ≤ T . Since T acts freely on A, X = 1.

The last paragraph shows that v ∈ CM◦(T ). It follows that u ∈ CM◦(T,A). The conclusion
follows using Lemma 6.5. �

Proposition 8.4 C◦(T ) = T .

Proof. It suffices to prove that C◦(T ) ≤ M . Suppose not and let Y =
⋃{fcM◦ : f ∈

C◦(A), c ∈ C◦(T ) \M}. By Lemma 8.3, the fact that CM◦(T ) = T (Corollary 6.6) and Propo-
sition 7.4, rk (Y ) = rk (C(A)) + rk (C(T ))− rk (T ) + rk (M) = rk (C(T )) + 2rk (C(A)) = rk (G).
Since by Lemma 8.1 X2M

◦ is also generic in G, Y and X2M
◦ share a coset of M◦. This

contradicts Lemma 8.2. �

Corollary 8.5 rk (G) = rk (T ) + 2rk (C(A)).

9 Proof of Theorem 1

In [5], at this point we started to prove that the group G is a Zassenhaus group. In the current
situation this will not be necessary because we will reduce the proof of Theorem 1 to the main
theorem of [5], namely the strongly embedded analogue of Theorem 1.
Proof of Theorem 1. Let G be a simple L∗-group of even type with a weakly embedded
subgroup M . Suppose also that G satisfies the hypothesis (*). If M is strongly embedded then
we are done by [5].

If M is not strongly embedded then Facts 2.17 and 2.18 show the existence of an offending
involution α in M . The structure of the centralizer of α is given by Lemma 3.1. Structural
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analysis starting from this lemma and building upon it yields among other things Corollary 6.7.
In particular, under the hypothesis that M is weakly but not strongly embedded, M is not
connected. We will now prove that this yields a contradiction.

We first show that C◦(A) ∩Mw = 1 where A and w are as in the preceding sections. Let
x ∈ C◦(A)∩Mw. Since by Fact 2.18 CG(A) ≤ M , x ∈ M◦. By Corollary 6.13, (M ∩Mw)◦ = T
where T is as in the preceding sections. In particular, x, which is in M ∩ Mw, normalizes T .
Thus x ∈ NM◦(T ), and it follows from Lemma 6.5 that x ∈ CT (A). This last subgroup is trivial.

Now we analyze the following mapping, analogues of which were used for various double
transitivity arguments in [5]:

θ : C◦(A)×M −→ G
(f,m) 7−→ fwm

The last paragraph shows that this mapping is injective. As a result rk (θ(C◦(A) × M)) =
rk (C(A)) + rk (M) = 2rk (C(A)) + rk (T ). By Corollary 8.5, this is exactly rk (G). Hence
deg(θ(C◦(A)×M)) = 1 since G is connected. Since θ is injective, deg(C◦(A)×M) = 1. Hence
deg(M) = 1. But α ∈ M \M◦ by Corollary 6.7, a contradiction. �
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