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1 Introduction

Let Ln be the sublogic of ordinary first order logic which is obtained by re-
stricting to formulas involving at most n distinct variables, which may be used
repeatedly. This logic is well known in the context of computer science and is
well suited to an analysis in terms of “le va-et-vient de Fräıssé”, also known as
Ehrenfeucht-Fräıssé (or pebble) games. Poizat showed in [Po] that any com-
plete Ln theory is categorical in power n+ 1, in the sense that it has at most
one model of cardinality n + 1, up to isomorphism (a result he attributes to
Jurie [Ju], as a refinement of Krasner’s generalized Galois theory); and fur-
thermore this model, if it exists, is homogeneous: any partial Ln-elementary
map extends to an automorphism.

In the same paper Poizat exhibited a complete Ln-theory A(n) (called T2(n)
in [Po]) with the following properties:

• A(n) has at least two nonisomorphic models in each power greater than
n+ 2.
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• A(n) has two nonisomorphic models in power n + 2 if n is congruent to
0 or 1 modulo 4, or if n = 2.

• A(n) is categorical in power n + 2 if n is congruent to 2 or 3 modulo 4,
and n 6= 2.

This leaves open the question of the existence of another Ln theory which is
not categorical in power n+ 2, for n congruent to 2 or 3 modulo 4 and n > 2
[Po, pp. 643 and 657]. We show that the congruence condition on n is essential:

Proposition 1

For n congruent to 2 or 3 modulo 4, with n > 2, any complete Ln theory is
categorical in power n+ 2.

We emphasize that we consider a theory categorical in a given cardinality if it
has at most one model of the specified order, that is we do not concern ourselves
in the least with the existence of models of specific orders, an interesting issue
in its own right.

The reason Proposition 1 holds is very simple: Poizat’s example is the only
one possible. That is, we prove:

Proposition 2

Let T be a complete Ln theory which is not categorical in power n + 2, and
suppose that n > 2. Then T = A(n).

Thus Proposition 1 is a consequence of the analysis given by Poizat in the
case of A(n), which will be reviewed in §2.

We note that the case n = 3 of Proposition 2 was treated in [Po].

A group theoretical twist may be given to the question as follows:

Problem 3

Define h(n) as the least k for which there is some complete Ln-theory which
has two nonisomorphic homogeneous models of cardinality k. Compute (or
estimate) h(n).

The following are immediate, taking into account Poizat’s work:

1. h(2) = 4;
2. For n > 2, we have n+ 2 < h(n) ≤ 2n+ 1.

For n = 2 one has the complete bipartite graph K2,2 and its complement as
an example. To see that h(n) > n+2 for n > 2, by Proposition 2 it suffices to
consider Poizat’s theory A(n); he shows that this theory has no homogeneous
model of order greater than n + 1 [Po, p. 650]. For the upper bound one can
use the theory of a unary predicate picking out a subset of size n or n + 1 in
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a model of cardinality 2n+ 1; but one might reasonably modify the problem,
allowing only theories with only one 1-type over the empty set, in the sense of
Ln, or even restricting to primitive theories, in the sense defined immediately
below.

For the proof of Proposition 2, the idea is a reduction to the primitive case.
Since we deal with structures which are not homogeneous, we cannot use the
usual group theoretic notion of primitivity, but instead use the Ln-analog:

Definition 4

A structure is Ln-primitive if it carries no nontrivial equivalence relation
which is Ln-definable.

Here Ln-definability refers to definability without parameters. We will some-
times shorten “Ln-definability” to “definability”, particularly in the latter part
of the proof where specific definable relations are under consideration.

For Ln-homogeneous structures, primitivity as defined above means that the
automorphism group of the structure is primitive in the usual sense of permu-
tation groups. Our notion of primitivity is considerably weaker than the usual
one in general, but it will be sufficient for the proof of Proposition 2.

2 The theories A(n) and S(n)

We present some material from [Po] as background. This material will not
be needed subsequently, apart from the following terminological conventions,
based on terminology which is standard in the context of binary relations.

Definition 5

Let R(x1, . . . , xn) be a relation on a set S.

1. [S]n is the set of (ordered) n-tuples from S with distinct entries.

2. R is irreflexive if R ⊆ [S]n.

3. If R is irreflexive, we denote by −R its complement in the Boolean algebra
of irreflexive n-place relations on S.

4. The symmetric group Sym(n) acts naturally on the n-place relations on S by
permutation of variables; we write Rσ for the image of R under σ ∈ Sym(n).

5. R is symmetric if R is invariant under the action of Sym(n).
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6. R is antisymmetric if R is irreflexive, and for every transposition σ, we
have Rσ = −R.

In particular an antisymmetric relation R in n variables is invariant under the
action of the alternating group Alt(n).

Two Ln-theories of particular interest are the theories of a “generic” irreflexive
n-place relation, assumed to be either symmetric or antisymmetric:

Definition 6

1. S(n) is the theory of an irreflexive symmetric relation R such that every
ordered (n− 1)-tuple extends to at least one n-tuple which satisfies R, and at
least one which does not.

2. A(n) is the theory of an irreflexive antisymmetric relation R such that every
ordered (n− 1)-tuple extends to at least one n-tuple which satisfies R, and at
least one which does not.

As it happens [Po] S(n) has no model of cardinality n + 2 for any n > 3.
To see this, consider the graph whose edges are the pairs whose complement,
ordered as an n-tuple, satisfies R, and reformulate the extension property in
terms of this graph.

On the other hand, A(n) has models of cardinality n+2, which Poizat analyzes
very neatly as follows [Po, p. 651]. Let a, b, c be three elements, and d the
remaining elements, arranged as an (n− 1)-tuple. One of the relations R, ¬R
holds for two of these n-tuples, and the other relation holds for the third; we
may therefore call one of three elements “exceptional” relative to the other
two, and note that this relation is independent of the ordering of d. But it
is more useful to speak of the exceptional element as lying “between” the
other two, because by further use of the axioms it can be verified that the
three-place relation of betweenness defined in this way comes from a linear
order. With this linear order L fixed, or for that matter with the associated
betweenness relation fixed (allowing a reversal of L), to determine the relation
R completely it suffices to specify one n-tuple for which R holds. Thus there
are at most two such relations, up to isomorphism: if R is one such, then
any other is isomorphic with R or −R. Poizat’s results therefore hinge on the
determination of the values of n for which R and −R are nonisomorphic.

For this it is convenient to focus on the behavior of the “central” n-tuple
consisting of the middle n elements of L; this n-tuple is determined by the
betweenness relation associated with R (and also with −R). If n is congruent
to 2 or 3 modulo 4 then reversal of L carries R to −R since this function acts
as an odd permutation on the central n-tuple and preserves the betweenness
relation. Thus in this case there is a unique isomorphism type. In the remaining
cases R and −R cannot be isomorphic, since such an isomorphism would
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preserve the betweenness relation, hence preserve or reverse L, and in any
case act on the central n-tuple as an even permutation, thus preserving R.

So much for models of A(n) of cardinality n + 2. There is considerably more
to be said about the models in general [Po].

We will see in Lemma 12 below how we eventually arrive at the theory A(n)
in the context of Proposition 2.

3 Primitivity

In this section we prove the following:

Proposition 7

Let T be a complete Ln-theory with n > 2 and M a model of T of cardinality
n + k on which there is an Ln-definable equivalence relation having at least k
classes with more than one element. Then T is categorical in power n+ k.

For k = 1 there is always such a relation (with one class), so in this case the
result is simply that a complete Ln-theory is categorical in power n + 1. For
k = 2 the result becomes an important special case of Proposition 2:

Corollary 8

Let T be a complete Ln-theory with n > 2 and M an Ln-imprimitive model of
T of cardinality n+ 2. Then T is categorical in power n+ 2.

Proof. If M has a nontrivial Ln-definable equivalence relation ∼, and if ∼′

is the relation obtained from ∼ by collecting any classes with only one element
into a single class, then ∼′ is again Ln-definable and is an equivalence relation
with at least 2 classes having more than one element, unless there are only
two classes and one of them is a singleton; in the latter case the element of the
singleton class is definable, and it suffices to consider the induced structure
on the remaining n + 1 elements when the additional element is treated as a
constant. ✷

We now take up the proof of Proposition 7. For the remainder of this section we
suppose that k, n, T , andM are fixed, satisfying the hypotheses of Proposition
7 with respect to a fixed Ln-definable equivalence relation ∼ on M having at
least k classes with more than one element. In particular k ≤ n since there
are at least 2k elements in the nontrivial equivalence classes.

Let M be the underlying set of M. Using the Ln-definition of ∼, fix an Ln

sentence φ0 expressing the property that ∼ is an equivalence relation. Call
an n-tuple a of distinct elements in M standard if a1, . . . , ak lie in distinct
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∼-classes of M , each of which contains more than one element, and M \a is a
system of representatives for these classes. There is an Ln-formula σ(x) which
states that the sequence x is standard, or more exactly which has that meaning
when interpreted in models of cardinality n + k: σ says that the elements xi
are distinct, their first k entries are inequivalent, and the equivalence class of
xi is not exhausted by the elements in the sequence x1, . . . , xn for 1 ≤ i ≤ k.
The last clause requires a little attention: one reuses a variable at this point if
there is more than one equivalence class, and if there is only one equivalence
class the clause may be omitted, as in that case it is vacuous if the model is
of cardinality greater than n.

With the exception of that degenerate case, the formula σ(x) forces the car-
dinality of the model to be at least n+ k, and in models of cardinality exactly
n + k this formula expresses the property of being standard. Furthermore,
given two structures of cardinality n+ k satisfying φ0, and standard n-tuples
a, b in these structures, if the map ai → bi preserves the equivalence relation
then this map has a unique extension to a bijection preserving the equivalence
relation, and our problem is to find a formula φ(x) such that:

(1) φ(a) holds for some n-tuple in M;
(2) If φ(b) holds for an n-tuple in a model M′ of φ0 of cardinality n + k,

then the map ai 7→ bi preserves the equivalence relation, and its canonical
extension to a map from M to M′ is an isomorphism.

The first part of clause (2), namely the requirement that the map given by
ai 7→ bi preserves ∼, presents no problem at all. The remainder of clause (2)
would be easy if we could define all the n-tuples in M explicitly in terms of
the given n-tuple a, without exceeding the allotted number of variables, but
this is not quite possible. However we will see that all n-tuples of distinct
elements can be generated from a single standard n-tuple by combining the
following operations:

a. Given a standard n-tuple a and indices i, j with 1 ≤ i ≤ k and aj ∼ ai, let
aj be the result of replacing aj by the unique element of its equivalence
class not represented in a.

b. Given a standard n-tuple a, replace some of the elements of a by elements
not in a, in such a way that none of the elements removed is equivalent
to any of the elements adjoined.

In case (a) we will say that the second n-tuple is obtained by a switch; in case
(b) we will speak of a shift.

If a is a standard n-tuple, and b is any n-tuple with distinct entries, then
up to permutations of variables, a can be converted into b by a series of
switches followed by a shift (and it will be useful to notice that the n-tuple
remains standard as switches are applied). Indeed, if A,B are respectively
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the complement of a and of b in M, then after appropriate switches we may
suppose that any element of A which is equivalent to an element of B belongs
to A ∩B. After that it suffices to shift B \ A into A \B.

The reader may notice that we define switches very narrowly and treat shifts
more broadly. This is because we need to consider the issue of Ln-definability of
these operations, and shifting is an Ln-definable operation, whereas switching
is not in general, and requires a considerably more subtle analysis (which,
however, is not new – it was used already in the case k = 1).

In any case it will suffice to prove the following two definability lemmas relating
to shifts and switches (we ignore permutations of variables, which raise no
issues):

Lemma 9 Let a be a standard n-tuple in a model of φ0 of cardinality n+ k.
Then there is an Ln-formula φsh(x) holding for a such that for any other model
of φ0 of cardinality n + k with an n-tuple b satisfying φsh(b), the canonical
mapping extending ai 7→ bi preserves ∼ and induces an isomorphism between
the structures induced on any pairs of n-tuples a′, b′ which arise from a, b by
corresponding shifts.

Proof. This is a definability result. Each of the possible shifts y of a standard
n-tuple x is explicitly definable in Ln from the common part of x and y, since
a shift of l elements frees up the corresponding l variables, and these variables
may be reused to stand for the new elements of y. It then suffices to assert that
these l variables represent the missing elements of certain specific equivalence
classes, which have representatives in the common part of x and y: one simply
writes xi ∼ xj and xi 6= xi′ where the xi are recycled variables, and the xj , xi′
represent elements common to x and y. ✷

For switches the matter is more subtle, but as we have said, the issue arises
already for the case k = 1, and can be dealt with in the same way in general:

Lemma 10 For any Ln-formula φ(x), and any indices i, j with 1 ≤ i ≤ k
and 1 ≤ j ≤ n, there is a formula φi,j(x) which expresses the following:

x is standard, xi ∼ xj, and φ(x
j) holds.

Proof. Using a universal quantifier ∀xj one can easily express the condition
“φ(x)&φ(xj)”; similarly, using an existential quantifier ∃xj one may express
the condition “φ(x)∨φ(xj)”. Denote the corresponding Ln-formulas by φj

1(x)
and φj

2(x) respectively. The desired formula φj is then: φj
1(x)∨ [¬φ(x)&φj

2(x)].
✷

It should be emphasized that in the above, although x stands for a sequence
of variables, the expression xj does not have any syntactical meaning, and is
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used in an informal sense; howver the expression φ(xj) does have a meaning,
and φ(xj) is viewed as a property of x, then this property can be expressed
in the logic Ln.

With Lemmas 9 and 10 in hand, one can produce the final sentence which
characterizes M, in the following elaborate form:

“There is a standard sequence x such that:
For each sequence σ of up to k switches, the standard sequences yσ obtained
by performing those switches satisfy certain formulas φσ

sh(yσ), which deter-
mine the induced structure on shifts of yσ.”

Here of course one cannot actually quantify over sequences of switches, so
one writes out an enormous conjunction, and then the appropriate formulas
φσ

sh(yσ) are chosen in accordance with Lemma 9, so that φσ

sh(yσ) is true in M
for the standard sequence yσ, and determines the structure induced on each
n-tuple obtainable from yσ by a shift. Then repeated applications of Lemma
10, one for each switch, allow us to rewrite the formulas φσ

sh(yσ) as formulas

ψσ(x) in the original variables x; this is important since we do not have enough
variables to speak directly about the sequences yσ.

This completes the proof of Proposition 7.

4 τ(M)

We know that if M is a model of a complete Ln-theory which is not categorical
in power n+2 then M is primitive in the (weak) sense that it carries no non-
trivial Ln-definable equivalence relation. This notion is considerably weaker
than the group theoretic notion; for example, a sufficiently random graph will
be primitive in this sense, and rigid.

Notation 11 For M a structure and n fixed, let τ(M) be the greatest t ≤ n
for which all t-tuples of distinct elements of M have the same Ln-type.

Note that in speaking of Ln-types, we do not allow the introduction of any
constants; the elements whose type is under consideration are taken to be
represented by variables taken from the available set of n variables. Ln-types
will frequently be referred to simply as “types” – and no other types will occur.

The letters t and τ are supposed to suggest (mildly) the word “transitivity”
– our definition involves a weak definable analog of t-fold transitivity, in the
same way that our notion of primitivity corresponds to the group theoretic
one. In particular primitivity implies “transitivity”: i.e., τ ≥ 1.
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Now τ(M) = n if and only if the complete Ln-theory of M is the theory of
equality. The critical case for us is that in which τ(M) = n− 1, as this is the
case which corresponds to Poizat’s theory A(n). Namely:

Lemma 12

If n > 2, M is an Ln-structure of order n + 2, and τ(M) = n − 1, then the
complete Ln-theory of M is one of the following, up to interpretability:

1. The theory A(n) of an antisymmetric n-ary relation such that every
(n − 1)-tuple of distinct elements extends to at least one n-tuple which
satisfies the relation, and at least one which does not;

2. The analogous theory S(3) of a symmetric irreflexive relation on triples
such that every pair of distinct elements extends to at least one triple
which satisfies the relation, and at least one which does not;

3. The L3-theory B(3) of the “betweenness” relation on a dense linear order;
4. The L4-theory F (4) of a binary relation R on disjoint unordered pairs

of points, encoded as a 4-place relation, such that every triple of points
extends to a quadruple satisfying this relation, and the triple of relations
(R,Rσ, Rσ2

) is a partition of the set of 4-tuples, where σ ∈ Sym(4) is a
3-cycle.

We remark that the first three theories were all studied in [Po]. We choose the
notation “B” to suggest “betweenness”, and “F” to suggest “factorization”,
the latter for reasons put forward below.

Proof. Consider the Boolean algebra of n-place irreflexive relations which
are Ln-definable on M. The symmetric group on n symbols acts naturally on
this algebra and permutes the atoms in some fashion. As τ(M) < n, there is
more than one atom, and as τ(M) = n − 1 and |M| = n + 2, there are at
most three atoms.

If there are two atoms, then let R denote one of them; the other is −R. The
symmetric group either stabilizes both atoms or switches them; thus R is either
antisymmetric, or symmetric. Thus we are dealing either with the theory A(n)
or the analogous theory S(n) of a symmetric relation R with similar extension
properties. In the case of S(n), as remarked in [Po], and explained above, there
is no model of cardinality n + 2 for n > 3.

It remains to consider the case in which there are exactly three atoms. Then
for each (n−1)-tuple a inM and each atom R, there is a unique extension of a
to an n-tuple satisfying R. If one of these atoms is symmetric, then after fixing
n−3 points we have a set of distinguished triples taken from a set of 5 elements
with the property that any pair of points lies in a unique distinguished triple.
As any two distinguished triples meet in a unique point, we have a projective
plane of order 2 on a set of 5 points, which is absurd. Accordingly none of the
relations is symmetric, and as there are three atoms it follows that Sym(n)
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permutes them transitively. So the stabilizer of an atom under this action is
a subgroup of Sym(n) of index 3, and therefore n ≤ 4.

If n = 3 this is one of the situations considered in Proposition 8 of [Po]
(and the note added in proof), leading to the third example mentioned above.
Finally if n = 4 we have three atoms, each stabilized by a Sylow 2-subgroup
of Sym(4), and permuted transitively by Sym(4). There are three equivalence
relations having two classes of size two on a set of four elements, and the
Sylow 2-subgroups of Sym(4) are their stabilizers. (For our present purposes
such an equivalence relation should be viewed as a partition, specifically as an
unordered pair of disjoint unordered pairs.) It follows that the atoms, which
are sets of ordered 4-tuples with distinct entries, may be be viewed as relations
on unordered pairs of disjoint pairs in M. Picking one such atom R we arrive
at our fourth theory; the axioms given for F (4) clearly hold, and the theory
so axiomatized is clearly complete for L(4). We will describe it more explicitly
in the corollary following. ✷

Corollary 13

Let T be a complete Ln-theory which has a model M of order n+2 for which
τ(M) = n− 1. Then either T is categorical in power n + 2 or T = A(n).

Proof. By the foregoing lemma we have to consider the theories S(3), B(3),
F (4). The first two were dealt with in [Po] in the course of an analysis of all
the relevant L(3)-theories, so we need only examine F (4). Let M be a model
of F (4) of order 6, which we think of as the complete graph on 6 vertices.
The relation R in question is thought of as a set of pairs of disjoint edges.
The extension property forces each edge of M to be paired by R with at least
two other edges on the remaining 4 points; since this holds not only for R
but also for Rσ and Rσ2

, each edge must be paired by R with exactly two
edges, covering the remaining 4 points; in other words for each edge e the set
Fe = {e}∪{f : R(e, f)} is a 1-factor of M, a covering of its vertices by disjoint
edges.

Accordingly the relation R corresponds to a partition of all the edges of M
into 5 disjoint 1-factors. By inspection or [CL, Proposition 8.1, p. 56], there is
a unique such partition, up to isomorphism. It follows easily that the theory
F (4) has a unique model of order 6. ✷

The combinatorics associated with the theory F (4) and its connection with
various unusual combinatorial phenomena is discussed in [CL, Chapter 8], in
particular it is closely connected with the existence of outer automorphisms
of the symmetric group on 6 letters
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5 Preliminary analysis

From now on we fix the following notation and hypotheses:

I. M is an Ln-structure of order n + 2, and n ≥ 3.
II. M is Ln-primitive.
III. τ(M) < n− 1. We will write τ for τ(M).
IV. R is an irreflexive Ln-definable (τ + 1)-ary relation which is nontrivial in

the sense that both R and ¬R are satisfied in M.

Our objective is to show that the theory of M is categorical in power n + 2,
primarily by making a close study of τ . First however we require some general
considerations.

Notation 14 Let c be a τ -tuple in M with distinct entries. Set µc(R) =
|{c′ 6= c1, . . . , cτ : R(c, c′)}|.

Lemma 15

For c ∈ M of length τ with distinct entries, and R(x1, . . . , xτ+1) an Ln-
definable relation on M, µc(R) is independent of the choice of c.

Proof. Note that in the course of the proof we may replace R by −R if we
so choose.

If µc(R) < n− τ then the value of µc(R) is part of the L
n-type of c and hence

is independent of the choice of c. In any case µc(R) + µc(−R) = n + 2 − τ ,
so if µc(R) ≥ n − τ then after replacing R by −R we have µc(R) ≤ 2. As
τ < n− 1, this results in µc(R) < n− τ , as desired, unless:

µc(R) = 2 and τ = n− 2

In this case we have µc(R) = µc(−R) = 2 and as the inequalities µc(R) ≥ 2
and µc(−R) ≥ 2 are both part of the Ln-type of c, also in this case µ is
independent of c. ✷

Notation 16 In view of the foregoing, we write µ(R) in place of µc(R) in the
sequel.

Remark 17

Since |R| = |Rσ| for any permutation σ of the variables, it follows that µ(R) =
µ(Rσ) by a counting argument.

In one more general case it will be possible to show the categoricity of the
theory of M in power n + 2 by writing out explicit axioms, as we did in the
imprimitive case, so we deal with this before turning to a closer study of the

11



parameter τ .

Definition 18

Let A be a subset of M of cardinality at most n− 1. We say that A separates
points in M if the Ln-types realized by elements of M over A are all distinct.

Lemma 19

Suppose that in M the following two conditions are satisfied:

(1) Every subset of M of cardinality n− 1 separates points.
(2) There is a subset X of M of cardinality n − 1 such that every subset of

X of cardinality n− 2 separates points.

Then the theory of M is categorical in power n+ 2.

Proof. As in our previous argument along these lines, we write out the
diagram of M explicitly.

We fix an n-tuple c = (c1, . . . , cn) in M so that for X = {c1, . . . , cn−1} con-
dition (2) is fulfilled. Let a, b be the remaining two elements of M. Note that
a and b realize distinct Ln-types over c1, . . . , cn−1. Hence in any model M′ of
the theory of M of order n + 2, we can pick a realization c′ of the type of
c and label the remaining elements a′, b′ correspondingly, according to their
types over c′1, . . . , c

′
n−1. This produces a canonical map M → M′, which we

now fix. We claim that this map M → M′ is an isomorphism.

In any case this map preserves atomic formulas when restricted to c. Let d

be any n-tuple of distinct elements of M which contains a subsequence d0

consisting of n − 2 elements out of c1, . . . , cn−1, and let d′,d′
0 be the corre-

sponding sequences in M′. Then the Ln-types of the individual elements of
M over d0 are clearly preserved by our canonical map, and as d0 separates
points in M, the theory of M then determines the Ln-type of the sequence d,
and correspondingly d′. This applies in particular to any sequence obtained
from c by replacing exactly one element by a or b. In particular the canonical
map preserves atomic formulas that do not involve both a and b.

Now consider a sequence d obtained from c by replacing two elements, ci and
cj , by a and b respectively. Let A be the set of entries di of d other than b. Then
A separates points in M and hence the elements ci, cj, b realize three distinct
types over A. By what we have done so far, c′i and c

′
j realize the corresponding

types over the image of A. Hence b′ can only realize the third of these types
in M′, and it follows that the natural map preserves atomic formulas when
restricted to d as well. This completes the analysis. ✷

Corollary 20

Suppose that the theory of M is not categorical in power n + 2. Then one of
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the following holds:

(Va) There is a subset A of M of cardinality n− 1 and a complete 1-type over
A realized by two elements of M; or

(Vb) For every subset A of M of cardinality n − 1 there is a subset B ⊆ A
of cardinality n− 2, such that the remaining 4 points of M either realize
the same type over B, or realize exactly two types over B, with each type
realized twice.

Proof. This is not quite a simple repetition of Lemma 19 because of the
slightly more precise description in our case (V b), corresponding to case (2)
previously. The possibility that we are now excluding in this case is that of
a type realized by a unique element a over B, with a /∈ B. In this case we
consider the set A′ = B ∪ {a}, and notice that two elements which realize the
same type over B also realize the same type over A′, so we find ourselves back
in case (V a). ✷

Now what remains to be proved is the following:

Proposition 21

Under hypotheses (I − IV ), case (V a) does not occur, and in case (V b) we
have one of the following:

1. n = 3, τ = 1, and up to definable equivalence M is the pentagon graph.
2. n = 4, τ = 2, and up to definable equivalence M is the projective line

over the field F5, equipped with all relations invariant under the group
PSL(2, 5); or

3. n = 6, τ = 3, and up to definable equivalence M is a 3-dimensional affine
space over a field of 2 elements, with the 4-place relation of “coplanarity”.

It is easy to see that the theories exhibited are categorical in power n+2, and
so this will conclude our analysis.

We divide the proof into two parts. Case (V a) is treated in the next section,
and Case (V b) is the subject of the final section. The proofs in the two cases
are very similar, with the structure of the argument clearest in Case (V a).

6 Case (V a)

Lemma 22

Under hypotheses (I − IV ), case (V a) does not occur.

Proof. Assume toward a contradiction that A is a subset of order n − 1
and that M \ A = {b1, b2, c} where b1 and b2 have the same type over A.
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Let R(x1, . . . , xk) be a nontrivial relation with k = τ + 1, and with µR ≤
(n+ 2− τ)/2.

Suppose first:

(1) R is symmetric in its last two variables

We may also suppose that µR is minimal, subject to (1).

We deal first with the case in which τ = 1 and R is binary. Thus we have
the structure of a graph Γ on M. If (b1, b2) is not an edge of Γ, then b1 and
b2 have the same neighbors in Γ, since this holds in the restriction of Γ to
A ∪ {b1, b2} by assumption, and the degree is constant. Thus in this case we
have a nontrivial equivalence relation defined on M, which is a contradiction.
The same applies if (b1, b2) is an edge of Γ, by passing to the complementary
graph.

Now suppose τ > 1. For a = (a1, . . . , ak−2) distinct, let Γa be the graph on
the remaining elements with edge relation given by R(a, x, y). We will find
a ⊆ A so that (b1, b2) is not an edge of Γa. First choose a′ = (a1, . . . , ak−3)
in A, distinct and arbitrary. Then |{a1, . . . , ak−3} ∪ {x : R(a′, x, b1, b2)}| ≤
(τ − 2) + (n + 2 − τ)/2 < |A| so we may choose ak−2 ∈ A \ {a1, . . . , ak−3} so
that with a = (a′ak−2), b1 and b2 are nonadjacent in Γa.

Arguing as in the case τ = 1, b1 and b2 have the same neighbors in the
graph Γa, so the relation RE(x1, . . . , xk−2, x, y) defined by “x, y have the same
neighbors in Γx and x 6= y” is nontrivial. Furthermore with x1, . . . , xk−2 and
x fixed, and with z a fixed neighbor of x in Γx, we have RE(x, x, y) ⇒
y is adjacent to z and y 6= x, hence µRE < µR, since µR is the degree of z
in the graph Γx. This contradicts the choice of R.

Now suppose that (1) fails in the sense that

There is no nontrivial k-ary relation defined on M which is symmetric in
two of its variables.

If R is a nontrivial k-ary relation, then by considering the relations

R(x1, . . . , xk−2, x, y)&R(x1, . . . , xk−2, y, x)
¬R(x1, . . . , xk−2, x, y)&¬R(x1, . . . , xk−2, y, x)

we conclude that R is antisymmetric in its last two variables, so that for
a = {a1, . . . , ak−2} distinct, the relation R(a, x, y) defines a tournament Γa on
the remaining elements, with constant indegree and outdegree, both equal to
(n+ 2− τ)/2.
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Fix a = (a1, . . . , ak−2) in A distinct and suppose that (b1, b2) is an arc of
the tournament Γa. For u a vertex of Γa let u′ = {v : (u, v) is an arc of Γa}.
Then b′1 ∩ A = b′2 ∩ A and as b1, b2 have equal outdegrees we find that b′1 =
{b2} ∪ (b′2 ∩ A). This leads us to consider the relation R1(x, x, y) defined by:

R(x, x, y)&∀z 6= y [R(x, x, z) ⇒ R(x, y, z)]

Evidently R1 is a nontrivial definable k-ary relation with µR1 = 1: ifR1(x, x, y1)
and R1(x, x, y2) both hold, then y1, y2 ∈ x′ and hence by the definition of R1,
one would have both y2 ∈ y′1 and y1 ∈ y′2.

Now by our remarks above applied to a tournament associated with R1 in
place of R, we find (n+ 2− τ)/2 = 1, and this is a contradiction. ✷

When this analysis is repeated in case (V b), it will lead to the identification
of some exceptional cases.

7 Case (V b)

Our remaining claim is that under hypotheses (I − IV ) and (V b), the theory
of M is one of the following:

1. n = 3, τ = 1, and up to definable equivalence M is the pentagon graph.
2. n = 4, τ = 2, and up to definable equivalence M is the projective line

over the field F5, equipped with all relations invariant under the group
PSL(2, 5); or

3. n = 6, τ = 3, and up to definable equivalence M is a 3-dimensional affine
space over a field of 2 elements, with the 4-place relation of “coplanarity”.

Actually we will operate with a very special case of condition (V b):

(V b′) There is A ⊆ M with |A| = n − 2 and M \ A = {b1, b2, c1, c2} so that
the type of bi over A is independent of i, and the type of ci over A is
independent of i (i = 1 or 2).

In this section hypotheses (I − IV ) and (V b′) will be assumed throughout.
Lemma 23 will provide a nontrivial irreflexive (τ + 1)-place relation R, sym-
metric in its last two variables, with µR ≤ 2. Lemmas 24 and 25 dispose of the
case in which µR = 1. Lemmas 27 and 28 dispose of the case in which µR = 2,
either by reducing to the previous case, or outright.

Lemma 23

There is a nontrivial (τ+1)-ary relation R, symmetric in its last two variables,
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with µR ≤ 2.

Proof. Fix A, b1, b2, c1, c2 as in condition (V b′) and let R be a nontrivial
(τ + 1)-ary relation defined on M with µR ≤ (n + 2 − τ)/2. Set k = τ + 1.
Assume that µR ≥ 3, so that n ≥ τ + 4.

Suppose first:

(1) R is symmetric in its last two variables.

We may also suppose that µR is minimal, subject to (1).

We deal first with the case in which R is binary and τ = 1. Thus we have
the structure of a graph Γ on M. If b1 and b2 have the same neighbors in Γ
then there is a nontrivial equivalence relation defined on M, a contradiction.
If (b1, b2) is not an edge of Γ, then the remaining possibility is that they each
have one neighbor in {c1, c2}, and the remaining µR − 1 neighbors in A are
common to both. Accordingly we consider the relation R′(x, y) defined by:

¬R(x, y)&∃z ∀z′ 6= z [R(x, z′) ⇒ R(y, z′)]

In other words: x and y are nonadjacent, and have at least µR − 1 common
neighbors.

We estimate µR′ by comparing upper and lower bounds on the number of
edges which are adjacent to some neighbor of x (including the ones containing
the vertex x), where x is fixed. This yields the estimate:

µR + µR′(µR − 1) ≤ µ2

R

and thus µR′ ≤ µR. As R
′ is symmetric, the choice of R yields µR′ = µR

and hence every vertex y other than x which is adjacent to a neighbor of x
must satisfy R′(x, y). Thus the relation “y = x or R′(x, y)” is a nontrivial
equivalence relation on M, a contradiction.

If on the other hand (b1, b2) is an edge of Γ, then one concludes that b1 and b2
have at least µR−2 common neighbors. Then we consider the relation R′′(x, y)
defined by:

R(x, y)&∃≥µR−2z [R(x, z)&R(y, z)]

which is definable using at most n variables. Evidently R′′ is nontrivial, sym-
metric, and satisfies µR′′ ≤ µR, and hence µR′′ = µR, so R

′′ = R. Thus any
two adjacent vertices have at least µR − 2 common neighbors. It follows that
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for any three neighbors of a vertex in Γ, at least one of them is adjacent to
the other two.

Now let R2(x, y) be the relation “the distance from x to y in Γ is 2”. We
will show that µR2 ≤ 2. Suppose that a is a vertex of Γ and that v1, v2, v3
are distinct vertices lying at distance 2 from a in Γ. Let ui be chosen so that
(a, ui, vi) is a path for i = 1, 2, 3. Then the ui are distinct, as otherwise one
of them has a and two of the vi as neighbors, forcing a to be adjacent to
some vi. As the ui are distinct we may suppose that u1 is adjacent to u2 and
then by considering the neighbors of u2 conclude that u1 is adjacent to v2.
Consideration of the neighbors of u1 yields a contradiction. Thus µR2 ≤ 2 and
µR2 is clearly nontrivial, so we have a relation of the desired type.

Now assume τ > 1. As in the proof of Lemma 22 we can produce a sequence
a of distinct elements of A, of length k − 2, so that (b1, b2) is not an edge in
the corresponding graph Γa. This depends on the inequality

(τ − 2) + (n + 2− τ)/2 < n− 2,

i.e. n > τ + 2, which holds as noted at the outset.

If b1 and b2 have the same neighbors in Γa we arrive at a contradiction as in
the proof of Lemma 22. The alternative is that b1 and b2 have exactly µR − 1
neighbors in common. Then we consider the relation R′(a, x, y) analogous to
R′(x, y) as defined above, and argue as in that case that µR′ = µR and that
any two vertices with a common neighbor in Γa have exactly µR − 1 common
neighbors.

It follows that Γa is a disjoint union of bipartite graphs, where each com-
ponent is the result of deleting a matching from a complete bipartite graph
KµR+1,µR+1. Accordingly we define a relation R3(x, x, y) by: “the distance from
x to y in Γx is 3”. Then µR3 = 1 and we have a relation of the desired type.

This disposes of case (1). Now suppose:

There is no nontrivial k-ary relation defined on M which is symmetric in
two of its variables.

Arguing as in the proof of Lemma 22, if R is any nontrivial k-ary relation then
it is antisymmetric in its last two variables, and for a = (a1, . . . , ak−2) distinct,
the relation R(a, x, y) defines a tournament Γa on the remaining elements, of
indegree and outdegree constant and equal to (n+ 2− τ)/2.

Fix a in A of length k−2 and suppose that (b1, b2) is an arc in the tournament
Γa. As in the proof of Lemma 22 it follows by inspection that b′1 ⊆ {b2} ∪ b

′
2

and hence the relationR1(x, x, y) which expresses this relationship is nontrivial
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and satisfies µR1 = 1. Thus the relation R1(x, x, y) ∨ R1(x, y, x) has µ = 2.
✷

Lemma 24

If τ ≥ 4 then τ = n− 2.

Proof. Fix A, b1, b2, c1, c2 as in condition (V b′).

We have assumed τ ≤ n − 2. Suppose toward a contradiction that 4 ≤ τ <
n − 2. Fix a nontrivial (τ + 1)-ary relation R which is symmetric in its last
two variables, with µR ≤ 2.

Consider the relation R′(x1, x2, y1, y2) defined as follows:

∀z1, . . . , zτ−1 /∈ {x1, x2, y1, y2} [R(z, x1, y1) ⇒ R(z, x2, y1) ∨ R(z, x2, y2)]

Note that at most n variables are used in this definition.

Now R′(b1, b2, c1, c2) holds, and since τ ≥ 4 the same holds for all quadruples
x1, x2, y1, y2 of distinct elements. We claim:

(∗) R(z, x1, y) ⇒ R(z, x2, y)

for all choices of z, x1, x2, y distinct, from which it follows easily that R is
trivial. If the claim (∗) fails, take z, x1, x2, y distinct for which we have

R(z, x1, y)&¬R(z, x2, y)

and apply the property R′(x1, x2, y, y
′) for y′ /∈ {z1, . . . , zτ−1, x1, x2, y} to con-

clude that R(z, x2, y
′) holds for all such y′, and thus µR ≥ 3, a contradiction.

✷

Lemma 25

If there is a (τ + 1)-ary relation R defined on M with µR = 1, then either
n = 5 and M is Ln-definably equivalent with the projective plane over F2, or
n = 6 and M is Ln-definably equivalent with affine geometry of dimension 3
over F2, given by the coplanarity relation.

Proof. Fix A, b1, b2, c1, c2 as in condition (V b′).

If τ = n− 2 then let a be an enumeration of A; consideration of R(a, x) then
yields a contradiction. Thus τ < n−2 and hence by the previous lemma τ ≤ 3.

If τ = 1 it follows easily that M is imprimitive, so assume τ ≥ 2.

18



If τ < n − 3 then let a′ be a sequence of τ − 2 distinct elements of A and
choose a ∈ A so that none of the relations

R(a′, a, b1, b2), R(a
′, a, b1, c1), R(a

′, a, b1, c2)

holds. Then R(a′, a, b1, a0) holds for some a0 ∈ A hence also R(a′, a, b2, a0)
holds, contradicting µR = 1. Thus τ = n− 3.

Let a be a sequence of τ distinct elements of A. Then R(a, x) determines a
unique element of M which can only be the remaining element of A. As the
same applies to any permutation of R, it follows that R is symmetric when
restricted to A. Hence the symmetrization Rs of R, obtained by intersecting
Rσ for all permutations σ of the variables, is nontrivial. Since µR = 1 it follows
that R itself is symmetric.

Now τ = 2 or 3 and correspondingly n = 5 or 6. If τ = 2 then it is easily seen
that R picks out the lines of a projective plane over F2, and also that there is
no further structure on M.

If τ = 3 and n = 6 then R picks out certain subsets of M of order 4, which we
may call planes. One checks that our conditions force this to be the expected
affine geometry with no further structure. As µR = 1 any three points lie in
a unique plane. So there are 14 planes, each containing 6 pairs of points, and
thus on the average a pair of points lies in 3 planes. In particular some pair
of points lies in at least 3 planes, and as this property can be expressed in Ln

and τ ≥ 2, the same applies to any pair. It follows that each pair of points
lies in exactly 3 planes, and hence any two planes which meet will intersect in
two points. Now fixing a point 0, set x+ y = z if either {0, x, y, z} is a plane,
or one of x, y, z is 0 and the other two are equal. One checks that this is the
desired group structure on M and that the geometry on M agrees with the
associated affine geometry.

Finally one must check that there is no further structure on M. It suffices
to consider a formula S(x1, x2, x3, x4, x5, x6) defining a complete type (with
x1, . . . , x6 distinct) and to show that it is definable in the affine geometry. We
may suppose that S implies that the sets {x1, x2, x3, x4} and {x1, x2, x5, x6}
are planes.

Now if more than one type is realized over A then by hypothesis there are ex-
actly two such types, and one can define a nontrivial ternary relation T (x, y, z)
expressing that x and y realize the same type over the plane complementary
to the plane containing x, y, z; this is done using three auxiliary variables to
determine the complementary plane, and then reusing the variable z to rep-
resent its fourth element. As this is a contradiction, M realizes only one type
over A, and as τ ≥ 3 the same applies to any plane.
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Returning to S, we consider the relation ∃x6 S(x1, . . . , x5, x6). By our last
remark, for distinct x1, . . . , x5, this relation is equivalent to the coplanarity
of x1, x2, x3, x4. Hence the coplanarity conditions which follow from S are
equivalent to S. ✷

Corollary 26

Under the hypotheses of Lemma 25, condition (V b) holds if and only if n = 6
and M is Ln-definably equivalent to 3-dimensional affine geometry over F2.

Proof. In the projective plane over F2 condition (V b) fails for four points
with no three on a line. In the affine case any five points contain an affine
plane. ✷

We have to deal also with the case µR = 2.

Lemma 27

Suppose that R is a nontrivial (τ + 1)-ary relation definable on M, which is
symmetric in its last two variables, with µR = 2, and suppose that there is no
such relation with µ = 1. Then τ = n− 2.

Proof. Suppose τ ≤ n− 3. Fix A, b1, b2, c1, c2 as in condition (V b′). If τ = 1
it is easy to get a contradiction: as M is primitive it must then consist of a
single cycle of prime order, and as τ ≤ n − 3 we have n ≥ 4, n + 2 ≥ 6, and
this easily contradicts the assumptions on the bi and ci.

So we will suppose τ ≥ 2. We take a a sequence of τ−1 distinct elements of A,
choosing the first τ−2 elements arbitrarily, but taking the last element aτ−1 so
that R(a, b1, b2) does not hold; since there are exactly 2 elements x for which
R(a1, . . . , aτ−2, x, b1, b2) holds, and at least 3 available in A \ {a1, . . . , aτ−2},
this can be done.

Let Γa be the associated graph. Then the connected components of Γa are
cycles. If one of these cycles has even order then the “antipodality” relation
RA is a (τ +1)-ary relation defined on M, symmetric in its last two variables,
with µRA = 1, a contradiction. Thus the connected components of Γa have
odd order.

From this, applying (V b′), it follows easily that b1, b2, c1, c2 are contained in
a component of order 5, with the fifth vertex a of this component lying in
A, and adjacent to b1 and b2. The relation R5(x, x) given by: “the connected
component of x in Γx is a 5-cycle” is expressible in Ln and as this relation
is τ -ary and nonempty it holds everywhere, so Γa is a union of 5-cycles. If
τ < n − 2 then at least one such cycle is contained in A and this yields
τ ≤ n − 7. Accordingly we may select the final entry aτ−1 of a in A in such
a way that neither R(a, b1, b2) nor R(a, c1, c2) holds. This then violates our
analysis of the component of Γa containing b1. We conclude therefore that
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τ = n− 2. ✷

Lemma 28

Under the hypotheses of the preceding lemma, either n = 3 and M is definably
equivalent to the pentagon graph, or n = 4 and M is definably equivalent to
the projective line over F5 equipped with all PSL(2, 5)-invariant relations.

Proof. Fix A, b1, b2, c1, c2 as in condition (V b′). By the preceding lemma,
|A| = τ . Let a be a sequence of τ − 1 distinct elements of A and let aτ be
the remaining element of A. As seen in the previous proof, the graph Γa is a
5-cycle.

As we assume there is no Ln-definable (τ +1)-ary relation S symmetric in its
last two arguments with µS = 1, for each permutation σ of the arguments, Rσ

is either R or −R. Since a transposition of the last two arguments preserves R,
it follows that R is symmetric. Thus we may think of R as a set of distinguished
subsets of M of size τ + 1 such that each subset of size τ has exactly two
extensions to one of these distinguished subsets. Passing to complements, let
B be

{M \ {a1, . . . , aτ+1} : R(a)}

Then B is a family of triples such that every subset of M of order 4 contains
exactly two triples. Fix an element a in M and define a graph Γ(B, a) on the
remaining points by the rule: (b1, b2) is an edge if and only if {a, b1, b2} ∈ B.
The conditions on B imply that Γ(B, a) contains no triangle and no indepen-
dent set of three vertices. Hence Γ(B, a) has order at most 5, that is n ≤ 4.

Thus either τ = 1, n = 3 or τ = 2, n = 4. It is easy to reconstruct the relation
R in these two cases, uniquely up to isomorphism, and to verify that there is
no additional structure. ✷
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