
Simple L∗-groups of even type with strongly embedded

subgroups

Tuna Altınel

Institut Girard Desargues, Université Claude Bernard Lyon-1
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1 Introduction

This paper is about the classification of infinite simple groups of finite Morley rank. It has been
conjectured that these are linear algebraic groups over algebraically closed fields (algebraicity
conjecture). Various approaches to the algebraicity conjecture have been developed over the years
from both model theoretic and group theoretic sides. On the group theory side, the presence
of a well-developed Sylow 2-theory and various finiteness conditions permitted the use of finite
group theoretic ideas, and it has been possible to adapt techniques from the classification of
the finite simple groups. The context where these techniques have been the most efficient has
been the context of simple K∗-groups. The notion of K∗-group, a group of finite Morley rank
all of whose infinite definable simple and proper sections are algebraic groups over algebraically
closed fields, was introduced to set firm grounds for an analogue of the revisionist approach to
the classification of the finite simple groups, and has made it possible to carry out a systematic
analysis of various classes of simple groups of finite Morley rank. In this vein, a project to
verify the algebraicity conjecture for simple K∗-groups of even type has been completed, and
the nonexistence of simple K∗-groups of mixed type has been proven in [21] (see Section 2 for
definitions).

A weakness of the notion of K∗-group is the strength of its definition. In order to arrive at a
classification statement free of an inductive hypothesis one needs to verify that the algebraicity
conjecture holds for all the simple K∗-groups of finite Morley rank. A broader inductive notion,
that of an L∗-group, seems to be relevant in this context. This is a group of finite Morley
rank in which every proper infinite definable simple section is either an algebraic group over an
algebraically closed field, or of odd or degenerate type. The notion of L∗-group is a general one,
which is most relevant in the context of the class of groups of finite Morley rank of even type, or
more generally the class of groups that have infinite 2-subgroups of bounded exponent. Indeed,
the verification of the algebraicity conjecture for the simple L∗-groups of even type would prove
the algebraicity conjecture for the simple groups of finite Morley rank of even type completely.
Moreover, it has been proven that such a classification would also eliminate the possibility of
simple groups of mixed type in general. These issues have been addressed in [4], to which we
refer the reader for more detail.

A natural approach to the study of simple L∗-groups is to try to generalize what has already
been accomplished in analogous contexts for K∗-groups. In this line, an analysis of simple L∗-
groups of even type with strongly/weakly embedded sugbroups was initiated in [4]. A proper
definable subgroup M of a group G of finite Morley rank is said to be strongly embedded if
M contains involutions and for any g ∈ G \ M , the intersection M ∩ Mg has no involutions
(see Section 5 for further definitions and properties). In this paper, we continue along the line
initiated in [4] and prove the following result:

Theorem 1 Let G be a simple L∗-group of even type with a strongly embedded subgroup M .
Assume

(∗) CG(A1, A2) is finite whenever A1 and A2 are two distinct conjugates of Ω1(M).

Then G ∼= PSL2(F ) , where F is an algebraically closed field of characteristic 2

In an arbitrary group G, Ω1(G) denotes the subgroup generated by the involutions of G.
A priori, in the statement of the hypothesis (*) of Theorem 1, the potential differences among
Ω1(M

◦), Ω◦
1(M) and Ω1(M) should be taken into account. However Fact 5.7 below, which

is an immediate consequence of basic fusion properties of groups of finite Morley rank with
strongly embedded subgroups, shows that these three subgroups are the same in our context,
which involves infinite Sylow 2-subgroups. Moreover, Fact 5.12 implies that this subgroup is a
definable, connected, elementary abelian 2-subgroup of M .

The classification of simple K∗-groups of even type with weakly embedded subgroups – as
PSL2 in even characteristic – was the first step in the classification of simple K∗-groups of even
type. In the context of groups of even type, weak embedding offers a generalization of strong
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embedding which is more frequently encountered in practice. Thus it will be desirable to obtain
a weakly embedded analogue of Theorem 1, towards which we have recently made substantial
progress by completing the necessary Sylow 2-subgroup analysis, along the lines of [3]. This
work being still in progress, here we are content with Theorem 1, which already illustrates both
the challenges presented by, and the new methods required for, the study of L∗-groups.

Our hypothesis (*) is a strong one. Theorem 1 corresponds to Section 3 of [22]. The nature of
the complications encountered by Eric Jaligot under the contrary hypothesis in the classification
of simple K∗-groups of even type with weakly embedded subgroups show that the complete
classification of simple L∗-groups of even type with weakly embedded subgroups remains a
substantial challenge.

In the balance of this introduction we will indicate how and why some arguments change
when one replaces the K∗ assumption by the L∗ assumption. In §4 one will find specific technical
results that support such changes.

It immediately follows from algebraic group theory and elementary properties of groups of
finite Morley rank that the definable connected sections of degenerate type in K∗-groups are
solvable. This is no longer the case for L∗-groups. Using a finite group theoretic analogy, our
classification can be compared to classifying the finite simple groups (of sufficiently large 2-rank)
without having the Feit-Thompson theorem available. Evidently this poses major difficulties.
Indeed, very little is known about nonsolvable groups of finite Morley rank of degenerate type,
which are potential counterexamples to the algebraicity conjecture.

Weakening the inductive hypotheses from K∗ to L∗, we must analyze hypothetical simple
groups that are not of degenerate type but may, a priori, contain simple degenerate sections. In
the K∗ context one treats degenerate (hence solvable) sections using the well-developed theory
of solvable groups of finite Morley rank: this includes powerful conjugacy results (Hall theory,
Carter subgroups, etc) and the Schur-Zassenhaus theorem. To cope with degenerate nonsolvable
sections one must change tack completely. The main technical ingredient of our new approach
is a fundamental result by Frank Wagner on fields of finite Morley rank in nonzero characeristic,
and some of its more concrete consequences, including a result of Bruno Poizat on linear groups
in positive characteristic. Whenever a definable connected degenerate section acts nontrivially
and definably on an infinite elementary abelian p-group (in our context, p will be 2 in practice),
these theorems, together with linearization techniques by Ali Nesin and Boris Zil’ber, are used to
carry out various genericity arguments that replace the conjugacy theorems for solvable groups
(Sections 3, 4). Such arguments have been met with in the past, beginning with the treatment
of bad groups, but they take on a very different form in our even type context.

We emphasize that genericity arguments are not only used to prove conjugacy results for
Borel subgroups and the like. The first case of Theorem 2 provides an important example of
another line of genericity argument which can be interpreted as control of the Weyl group in a
degenerate environment. This goes back to the analysis of groups of Morley rank 2 in [13], and
was also very effective in the analysis of bad groups as well as in [14].

2 Preliminaries

In this section we present some definitions and facts which will be needed in the sequel, and which
will be exploited in the present context in the same way that quite similar material has been
exploited in the K∗-context in prior publications. Our terminology and notation is consistent
with those earlier publications on simple K∗-groups and with [11], which is our main reference on
groups of finite Morley rank. This section presents no innovations. However, in the L∗-context
more model theoretic arguments are frequently encountered, and we will begin to develop these
in the next section. The most useful references for the more model theoretic aspects of groups
of finite Morley rank are [28] and [31].

Let us begin by recalling the structure of the Sylow 2-subgroups of a group of finite Morley
rank:

Fact 2.1 ([12]) Let G be a group of finite Morley rank. Then the Sylow 2-subgroups of G are
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conjugate. If S is a Sylow 2-subgroup of G then S◦ = B ∗ T where B is a definable connected
group of bounded exponent, T is divisible abelian, ∗ denotes the central product and B ∩ T is
finite.

Definition 2.2

1. A unipotent subgroup is a connected definable solvable subgroup of bounded exponent.

2. A p-torus is a divisible abelian p-group. It is the direct sum of copies of the quasicyclic
group Zp∞ . The Prüfer p-rank of a p-torus is the number of these factors.

In a group of finite Morley rank a torus is a definable divisible abelian subgroup. Since
it is divisible it is connected. The Prüfer p-rank of a torus is the Prüfer p-rank of its
maximal p-torus. By exercise 9 on page 93 of [11], this is finite. A nontrivial p-torus is
not definable, but its definable closure is a torus.

3. A group of finite Morley rank is of even type if the connected component of a Sylow 2-
subgroup is unipotent and nontrivial.

4. A group of finite Morley rank is of odd type if the connected component of a Sylow 2-
subgroup is a nontrivial 2-torus.

5. A group of finite Morley rank is of mixed type if the connected component of a Sylow 2-
subgroup is the central product of a nontrivial unipotent subgroup and a nontrivial 2-torus.

6. A group of finite Morley rank is of degenerate type if the connected component of a Sylow
2-subgroup is trivial (that is, the Sylow 2-subgroups are finite).

Definition 2.3

1. An L-group is a group of finite Morley rank in which every infinite definable simple section
is either an algebraic group over an algebraically closed field, or of odd or degenerate type;
in other words, we exclude definable simple sections of mixed type, and we require definable
simple sections of even type to be algebraic.

2. An L∗-group is a group of finite Morley rank in which every proper infinite definable simple
section is either an algebraic group over an algebraically closed field, or of odd or degenerate
type.

Fact 2.4 ([26]) Let H be a nilpotent group of finite Morley rank. Then H = D ∗ B, where
D and B are definable characteristic subgroups, with D divisible and B of bounded exponent.
Moreover, D ∩B is finite and B is the direct sum of its maximal unipotent p-subgroups.

Fact 2.5 Aut(Zp∞) has no elements of order p when p 6= 2.

Proof. This endomorphism group of Zp∞ is isomorphic to the ring of p-adic integers Zp, so the
automorphism group is its group of units Up, while the cyclotomic polynomial φp is irreducible
over Zp, by Eisenstein’s criterion applied to φp(1 + x). �

Fact 2.6 ([11, Exercise 10, p. 98]) Let G be a nilpotent connected group of finite Morley
rank and φ a definable automorphism of G with finitely many fixed points. Then Gφ = φG.

Fact 2.7 ([11, Exercise 14, p. 73]) Let G be a group of finite Morley rank without involu-
tions. If α is a definable involutive automorphism of G then G = CG(α)G

−, where G− = {g ∈
G : gα = g−1. Moreover, for c ∈ CG(α) and g ∈ G−, the map (c, g) 7−→ cg is a definable
bijection. In particular, G is connected if and only if CG(α) is connected and G− is of Morley
degree 1.
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Fact 2.8 ([11, Theorem 8.4]) Let G = G ⋊ H be a group of finite Morley rank where G,
H and the action of H on G are definable, G is an infinite simple algebraic group over an
algebraically closed field, and CH(G) = 1. Then, viewing H as a subgroup of Aut(G), we have
H ≤ Inn(G)Γ where Inn(G) is the group of inner automorphisms of G and Γ is the group of
graph automorphisms.

Remark 2.9 We will frequently use the special case of Fact 2.8 with G = PSL2. Here as there
are no nontrivial graph automorphisms, all definable actions induce inner automorphisms.

Definition 2.10 A Borel subgroup of a group of finite Morley rank is a definable connected
solvable subgroup which is maximal with respect to these properties.

Remark 2.11 Since infinite groups of finite Morley rank contain infinite definable abelian sub-
groups, a Borel subgroup is of finite index in its normalizer.

For a group G of finite Morley rank, F (G) is the Fitting subgroup of G. This is the subgroup
of G generated by its normal nilpotent subgroups; it is definable and nilpotent [25].

Fact 2.12 ([24]) Let G be a connected solvable group of finite Morley rank. Then G/F ◦(G) is
divisible and abelian.

Corollary 2.13 A unipotent group U is nilpotent.

Proof. U/F ◦(U) is divisible and of bounded exponent. �

Fact 2.14 (Borovik) Let G = UX be a group of finite Morley rank, where U , X, and the
action of X on U are definable. Let p be a prime number. Assume also that U is a normal
unipotent p-subgroup of G, X is connected, solvable and does not contain elements of order p.
If the action of X on U is faithful then X is divisible and abelian.

Proof. G is connected solvable, and F (G) = U · (F (G)∩X) by Corollary 2.13. Since X ∩F (G)
does not contain nontrivial p-elements, Fact 2.4 shows that F (G) ∩ X acts trivially on U . As
X acts faithfully, we find that F (G) = U , and hence X ∼= G/F (G) is divisible abelian, by Fact
2.12. �

Fact 2.15 ([11, Exercises 10, 11, 12, p. 72]) Let G be a group of finite Morley rank without
involutions. Then every element in G has a unique square root.

Fact 2.16 ([11, Exercise 11, p. 93]) Let G be a group of finite Morley rank and H a normal
definable subgroup. If x ∈ G is such that x ∈ G/H is a p-element, then the coset xH contains a
p-element.

Lemma 2.17 If G is a nontrivial connected 2⊥-group of finite Morley rank then CG(x) is infinite
for every x ∈ G.

Proof. If CG(x) is finite for some x ∈ G then xG and x−G are generic in G and hence x and
x−1 are conjugate. This forces G to have nontrivial 2-elements (Fact 2.16), a contradiction. �

Fact 2.18 ([12]) Let T be a p-torus in a group G of finite Morley rank. Then |NG(T ) :
CG(T )| < ∞. Moreover there exists a natural number c such that |NG(T ) : CG(T )| < c for
any p-torus ≤ G.

Fact 2.19 ([11, Theorem 9.29];[17]) The Hall π-subgroups of a connected solvable group of
finite Morley rank are connected.

Remark 2.20 It follows from Fact 2.19 that a connected solvable group of finite Morley rank
of degenerate type does not have involutions.
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There are various versions of the Schur-Zassenhaus theorem in the context of solvable groups
of finite Morley rank. The following has been of crucial importance in the context of simple
groups of even type.

Fact 2.21 ([8, Theorem 2];[7, Proposition C]) Let G be a solvable group of finite Morley
rank and H a normal Hall π-subgroup of G of bounded exponent. Then any subgroup K of G
with K ∩H = 1 is contained in a complement to H in G, and the complements of H in G are
definable and conjugate to each other.

The following facts are corollaries of Fact 2.21.

Fact 2.22 ([3, Proposition 2.43]) Let G = H⋊Q be a group of finite Morley rank where H, Q
and the action of Q on H are definable. Let H1�H be a solvable Q-invariant definable π-subgroup
of bounded exponent in G. Assume that Q is a solvable π⊥-subgroup. Then CH(Q)H1/H1 =
CH/H1

(Q).

Fact 2.23 [[3, Cor. 2.44]] Let G = H ⋊ Q be a solvable group of finite Morley rank, with H
and Q definable. Assume H is a π-group of bounded exponent, and Q is a π⊥-group. Then
H = [H,Q]CH(Q).

Fact 2.24 ([3, Corollary 2.45]) Let Q and X be definable subgroups of a group of finite Mor-
ley rank with Q a unipotent 2-group, X a 2⊥-group, and X acting on Q, and suppose that X
acts trivially on the factors Qi/Qi−1 of a definable normal series for Q. Then X acts trivially
on Q.

We will also use the following corollaries of Zil’ber’s indecomposability theorem:

Fact 2.25 ([11, Corollaries 5.28 and 5.29]) Let G be a group of finite Morley rank

1. If H is a definable connected subgroup of G and X is any subset in G, then [H,X ] is
definable and connected.

2. The subgroup of G generated by any family of definable connected subgroups is again de-
finable and connected, and it is the setwise product of finitely many of them.

We recall some notions from the theory of permutation groups.

Definition 2.26 A doubly transitive permutation group G acting on a set X with at least 3
elements is called a Zassenhaus group if the stabilizer of any three distinct points is trivial. For
x, y, two distinct points in X, if B = Gx and T = Gx,y, then G is said to be split if B has a
normal subgroup U such that B = U ⋊ T .

The following result is crucial in order to finish the proof of Theorem 1:

Fact 2.27 ([16]) Let G be an infinite split Zassenhaus group of finite Morley rank. Assume that
the subgroup U contains a central involution, where U is as in Definition 2.26. Then either G is
sharply 2-transitive of characteristic different from 2 (that is, the one-point stabilizer contains
an involution), or G ∼= PSL2(K) for some algebraically closed field F of characteristic 2.

We will also use the following standard group theory notation: for any group G and X ⊆ G,
I(X) will denote the set of involutions in X , and if G is a 2-group then Ω1(G) will denote the
subgroup of G generated by its involutions.

The following classical result from number theory turns out to be very useful in the proof of
Theorem 2.

Fact 2.28 (Dirichlet’s theorem on arithmetic progressions) Any arithmetic progression
a+ kd, where a and d are relatively prime positive integers and k ∈ N, contains infinitely many
prime numbers.
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3 Fields and good tori

As was mentioned in the introduction, a recent result by Wagner will play a crucial role in our
proof of Theorem 1. In this section we show how one can extract relatively concrete group
theoretic information from Wagner’s result on fields of finite Morley rank. We start with the
two theorems that constitute the fons et origo of this approach.

Fact 3.1 ([23, Macintyre]) A field interpretable in a structure of finite Morley rank is either
finite or algebraically closed.

Definition 3.2 Let G be a group acting definably on a group H. Then H is G-minimal if H is
infinite and has no proper infinite definable G-invariant normal subgroup.

Fact 3.3 (Zil’ber) Let G = A⋊ T be a group of finite Morley rank where A, T and the action
of T on A are definable. Assume that T and A are abelian, CT (A) = 1 and A is T -minimal.
Then A ∼= F+, where F is an algebraically closed field and T is isomorphic to a subgroup of F×.
The action of T on A is by scalar multiplication.

Definition 3.4 A structure (F,+, 0, 1, ·, T ) of finite Morley rank where F is an algebraically
closed field and T is a predicate for an infinite proper subgroup of the multiplicative group F×

is called a bad field.

Fact 3.5 ([27, 30]) Let F be a field of finite Morley rank and T a definable subgroup of the
multiplicative group F× containing the multiplicative group of an infinite subfield of F . Then
T = F×.

The following striking result by Wagner concerns bad fields in nonzero characteristic. Al-
though the existence of bad fields in any characteristic is a longstanding open problem in model
theory, Fact 3.8 goes a long way toward taming bad fields in characteristic p 6= 0. Thus, for
example, while we cannot prove that the distinguished subgroup of the multiplicative group
necessarily contains all possible torsion (that is, l-torsion for l 6= p), we will be able to prove for
example that it contains some torsion.

Before stating the result we require a model theoretic definition, and an observation.

Definition 3.6 Let F be an arbitrary structure, A a subset. Then the algebraic closure of A in
F , denoted acl(A), is the union of the finite A-definable subsets.

The following remark is a reformulation of Proposition 7 and Corollary 8 in [32]. Note that
the assumption on finite Morley rank is used only to show that the Frobenius automorphism
is not only a field automorphism but also an automorphism of the field with its additional
structure.

Remark 3.7 Let F be a field of finite Morley rank of characteristic p > 0, possibly equipped with
additional structure; but assume that this additional structure consists of certain subgroups of a
Cartesian power (F×)n. Then acl(∅), in the model theoretic sense, is Falg, the field theoretic

algebraic closure of the prime field.

Proof. The critical point is that the Frobenius automorphism Fr(x) = xp acts as an automor-
phism of the field F together with its additional structure. This is due to the fact that if T is a
group contributing to the additional structure then Fr(T ) = T by Morley rank and degree con-
siderations. As a result, any ∅-definable set is invariant under the action of Fr. So any element
of acl(∅) lies in a finite orbit of the Frobenius automorphism, hence is in Falg. The converse

inclusion, Falg ⊆ acl(∅), is clear. �
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Fact 3.8 ([32]) If F is a field of finite Morley rank then

1. acl(∅) (with the structure inherited from F ) is an elementary substructure of F ;

2. If F has positive characteristic, and all additional structure on F consists of multiplica-
tive subgroups of Cartesian products (F×)n for various n, then Falg is an elementary

substructure of F .

The first point is very subtle, and the second is an immediate consequence, as pointed out in
the preceding remark. The following notion will prove most useful in bringing Fact 3.8 to bear
in a group theoretic context, and will provide a crucial tool in various genericity and conjugacy
arguments.

Definition 3.9 A definable divisible abelian group T of finite Morley rank is a good torus if
every definable subgroup of T is the definable closure of its torsion.

We record some formal properties of the notion.

Lemma 3.10

1. If T is a good torus and T0 ≤ T is definable and connected, then T0 is a good torus.

2. A finite product of good tori is a good torus.

Proof. The first point is clear. For the second, we deal with the product T1 × T2 of two good
tori, and a definable subgroup T ≤ T1 × T2. Note that T ≤ T ◦Tor(T ) by Fact 2.16, so we may
suppose that T is connected; we may then suppose further that T projects onto T2.

Let T0 be the definable closure of Tor(T ). Then Tor(T ) projects onto the torsion of T2,
by Fact 2.16, so T0 projects onto T2 and T ≤ T1T0, T = T0(T ∩ T1). As T1 is a good torus,
T ∩ T1 ≤ T0 as well. �

Lemma 3.11 Let F be a field of finite Morley rank and nonzero characteristic. Then F× is a
good torus.

Proof. Let T be a definable subgroup of F×. We will argue that it is the definable closure of
its torsion. Let T1 be the definable closure of Tor(T ). Then the structure (F, T, T1) is a field
of finite Morley rank. Fact 3.8 shows that the induced structure (Falg, T ∩ Falg, T1 ∩ Falg) is

an elementary substructure of (F, T, T1). But T ∩ Falg = T1 ∩ Falg, and hence passing to the

elementary extension, T = T1. �

Lemma 3.12 Let D be a good torus in an ℵ0-saturated structure. Then every uniformly defin-
able collection of subgroups of D is finite.

Proof. Let F = {φ(x, a) : a ∈ Dl(a)} be a family of subgroups of D. We argue that there exists
a natural number n such that:
(1)
For any T1, T2 ∈ F , whenever their elements of order at most n are the same, then T1 = T2.

Suppose that there is no such bound n. Add to the language constants a1 and a2 and define the
following set of sentences:

Φ = Th(D) ∪ {“φ(x, ai) is a subgroup” : i = 1, 2} ∪

∀x(xn = 1 → (φ(x, a1) ↔ φ(x, a2))) (n ≥ 1) ∪

∃x((φ(x, a1) ∧ ¬φ(x, a2)) ∨ (¬φ(x, a1) ∧ φ(x, a2)))

By saturation this set is satisfiable, and as a result D is not good, a contradiction.
Given (1), the fact that two given elements of F are distinct is witnessed within a fixed finite

set of elements, as the Prüfer ranks in a torus of finite Morley rank are finite. This implies that
F is finite. �
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Lemma 3.13 Let A ⋊ B be a solvable group of finite Morley rank where A, B, and the action
of B on A are definable. Assume that A and B are connected and B acts on A faithfully. If A
is an elementary abelian p-group for some prime p, and B has no nontrivial p-elements, then B
is a good torus.

Proof. We first note that by Fact 2.14, B is divisible abelian. We may form a series of subgroups
(0) = A0 < A1 < . . . < An = A for which each Ai/Ai−1 is B-minimal. Let Bi be the subgroup
of Aut(Ai/Ai−1) induced by the action of B. By Fact 3.3 each Bi is a definable subgroup of the
multiplicative group of some field of finite Morley rank, hence is a good torus by Lemmas 3.10
1 and 3.11. We have a canonical definable map B →

∏
i Bi, whose image is therefore a good

torus (Lemma 3.10). Furthermore the kernel of this map is trivial by Fact 2.24, so B is a good
torus. �

The following result by Poizat is also crucial for many arguments below. Its proof uses Fact
3.8 before invoking the classification of simple locally finite groups of finite Morley rank, which
in turn uses the classification of the finite simple groups [5, 6, 9, 10, 19].

Fact 3.14 ([29]) If F is a field of finite Morley rank of characteristic p 6= 0, then every simple
definable section of GLn(F ) is definably isomorphic to an algebraic group over F .

Poizat’s theorem, together with the following linearization result, will eliminate various con-
figurations involving a nontrivial definable action of a connected nonsolvable group of degenerate
type on an elementary abelian 2-group.

Fact 3.15 ([11, Theorem 9.5]) Let A⋊G be a connected group of finite Morley rank where G
is definable, A is abelian and G-minimal, and CG(A) = 1. Assume further that G has a definable
infinite abelian normal subgroup H. Then CA(G) = 1, H is central in G, F = Z[H ]/annZ[H](A)

is an interpretable algebraically closed field, A is a finite dimensional F -vector space, and the
action of G on A is by vector space automorphisms; so G ≤ GLn(F ) via this action, where n is
the dimension. Furthermore, H ≤ Z(G) ≤ Z(GLn(F )).

Poizat states his result only for simple subgroups of GLn(K). For the reduction of the general
result to that case, see [4] and Remarque 3 in [29].

4 Genericity

As was mentioned in the introduction, two types of genericity arguments are encountered in the
sequel. In this section we provide some tools for both of them. The first half, up to Lemma
4.6, is used to understand the structure of the normalizers of Borel subgroups. The second half
makes use of the notion of good torus to obtain a conjugacy statement for the Borel subgroups
of groups of degenerate type. This will be our main conjugacy theorem in the rest.

Fact 4.1 ([14]) Let G be a connected group of finite Morley rank and B a definable subgroup of
G of finite index in its normalizer. Assume that there is a definable subset X of B, not generic
in B, such that B ∩Bg ⊆ X whenever g ∈ G \NG(B). Then ∪g∈GB

g is generic in G.

Fact 4.2 ([14]) Let G be a group of finite Morley rank and B a definable divisible abelian
subgroup of G such that B ∩Bg is finite for every g ∈ G \NG(B). Then there exists B0, a finite
subgroup of B, such that B ∩Bg ≤ B0 for every g ∈ G \NG(B).

Fact 4.3 ([14]) Let H be a group of finite Morley rank such that H◦ is abelian. If x is an
element in H \H◦ such that the elements of the coset xH◦ are generically of order n for some
fixed integer n > 1, then every element of xH◦ is of order n.

9



Fact 4.4 ([14]) Let G be a connected group of finite Morley rank and B be a proper definable
connected subgroup of finite index in its normalizer in G such that ∪g∈GB

g is generic in G.
Assume that x ∈ NG(B) \B is of order n > 1 modulo B. Then the definable subset

{x1 ∈ xB : x1 ∈ (〈x〉B)g for some g ∈ G \NG(B)}

of xB is generic in xB.

Lemma 4.5 Let G be a connected group of finite Morley rank with a conjugacy class of definable
divisible abelian subgroups that are of finite index in their normalizers. Assume that any two
distinct elements of this family have finite intersection. If B is a subgroup in this family and
x ∈ NG(B) \B, then CB(x) is finite.

Proof. The proof is a blend of ideas and results from [14]. Fact 4.2 implies that B has a finite
subgroup B0 such that for any Bg distinct from B, B ∩Bg ≤ B0. Fact 4.1 then implies that the
set ∪g∈GB

g is generic in G.
Now suppose towards a contradiction that there exists x ∈ NG(B) \ B with CB(x) infinite.

By Fact 4.4 and the last paragraph, we conclude that

B = {x1 ∈ xB : x1 ∈ (〈x〉B)g for some g ∈ G \NG(B)}

is generic in xB. Let m be the order of x in NG(B)/B.
If x1 ∈ B, then there exists g ∈ G \ NG(B) such that xm

1 ∈ B ∩ Bg ≤ B0. Thus xB has a
generic subset such that if x1 is in this subset then xm

1 ∈ B0. It follows that there exists n such
that xn

1 = 1 generically on xB. By Fact 4.3 all elements in xB are of order n. In particular for
any c ∈ C◦

B(x), c
n = xncn = (xc)n = 1. This contradicts the structure of B. �

Lemma 4.6 Let G be a connected group of finite Morley rank. Assume that B is a good torus
which is of finite index in NG(B). Then the set B = ∪g∈GB

g is generic in G.

Proof. By Lemma 3.12, there exist g1, . . . , gm ∈ G such that for any g ∈ G, B ∩Bg = B ∩Bgi

for some 1 ≤ i ≤ m. As a result, B ∩ (∪g∈G\NG(B)B
g) is a definable subset of B not generic in

B. Fact 4.1 implies that ∪g∈GB
g is generic in G. �

Lemma 4.7 Let G be a connected group of finite Morley rank. Assume that B is a good torus
which is of finite index in NG(B). Assume also that B1 is a definable connected subgroup of G
such that B1 = ∪g∈GB

g
1 is a generic subset of G. Then B is conjugate to a subgroup of B1.

Proof. Let B = ∪g∈GB
g. Let X = B \ B1 and Y = B ∩ B1. To prove the statement it suffices

to show that Y is generic in B. Indeed, if Y is generic in B, then, since by Lemma 3.12 there
exist g1, . . . , gm ∈ G such that B ∩B1 = B ∩ (∪m

i=1B
gi
1 ), B ∩Bgi

1 is generic in B for some gi. As
B is connected, we conclude that B = B ∩Bgi

1 .
Now suppose towards a contradiction that Y is not generic in B. We define the map

Ψ : (G/B)× Y −→ ∪g∈GY
g

(Bg, y) 7−→ yg

As B is abelian and Y ⊆ B, the map Ψ is well-defined. Since it is definable and surjective, it
follows that

rk (∪g∈GY
g) ≤ rk (G) − rk (B) + rk (Y ).

The nongenericity of Y in B implies that rk (Y ) < rk (B) and therefore rk (∪g∈GY
g) < rk (G).

Since B is generic in G by Lemma 4.6, and B = (∪g∈GX
g) ∪ (∪g∈GY

g), it follows that ∪g∈GX
g

is generic in G. Since G is connected, it follows that (∪g∈GX
g) ∩ B1 6= ∅. But by the definition

of X , (∪g∈GX
g) ∩ B1 = ∅, a contradiction. �
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Corollary 4.8 Let A⋊G be a group of finite Morley rank where G, A and the action of G on
A are definable. Assume that A is connected and elementary abelian of exponent 2, that G is
connected of degenerate type, and that G acts faithfully on A. If B is a Borel subgroup of G then
B ∩ (∪g∈G\NG(B)B

g) is not generic in B, and the Borel subgroups of G are conjugate in G.

Proof. By Lemma 3.13, and Fact 2.19, any Borel subgroup of G is a good torus. Now the
conclusion follows from Lemma 3.12, Lemma 4.6 and Lemma 4.7. �

Corollary 4.9 The same conclusion as that of Corollary 4.8 holds if the kernel of the action of
G on A is solvable, in particular when this kernel is finite.

Proof. Let K denote the kernel of the action of G on A. A⋊ (G/K) satisfies the hypotheses of
the above theorem. Moreover if B1 and B2 are Borel subgroups of G then B1K/K and B2K/K
are Borel subgroups of G/K. By Corollary 4.8 there exists g ∈ G such that Bg

1K = B2K. But
B1 = (B1K)◦ and B2 = (B2K)◦. Hence Bg

1 = B2. �

5 Groups with strongly/weakly embedded subgroups: pre-

liminaries

In this section we review some basic facts about groups of finite Morley rank with strongly and
weakly embedded subgroups. The emphasis will be on strongly embedded subgroups. We recall
the definitions of these two important notions:

Definition 5.1

1. Let G be a group of finite Morley rank. A proper definable subgroup M of G is said to be
strongly embedded if I(M) 6= ∅ and for any g ∈ G \M I(M ∩Mg) = ∅.

2. Let G be a group of finite Morley rank. A proper definable subgroup M of G is said to be
weakly embedded if M has infinite Sylow 2-subgroups and for g ∈ G \ M M ∩ Mg has
finite Sylow 2-subgroups.

The notion of weak embedding is a weakening of strong embedding if the ambient group G
has infinite Sylow 2-subgroups, that is if G is not of degenerate type.

The following theorem by Eric Jaligot is the strongest result proven to this day about groups
of finite Morley rank with weakly embedded subgroups, and plays a major role in the classifi-
cation simple K∗-groups of even type. Evidently its generalization to the context of L∗-groups
would be an important breakthrough in the analysis of simple L∗-groups of even type.

Fact 5.2 ([22]) A simple K∗-group of even type with a weakly embedded subgroup is isomorphic
to PSL2(F ) where F is an algebraically closed field of characteristic 2.

Now we go over some properties of strongly embedded subgroups. We start with some
elementary general properties.

Fact 5.3 ([18, Theorem 9.2.1]) Let G be a group of finite Morley rank with a proper definable
subgroup M . Then the following are equivalent:

1. M is a strongly embedded subgroup.
2. I(M) 6= ∅, CG(i) ≤ M for every i ∈ I(M), and NG(S) ≤ M for every Sylow 2-subgroup

of M .
3. I(M) 6= ∅ and NG(S) ≤ M for every nontrivial 2-subgroup S of M .

Before we go any further we recall, only for the sake of comparison, an analogous character-
ization in the case of weak embedding. This result will not be used in the sequel but it gives
useful insight into the changes in the arguments when results in the context of groups of even
type with strongly embedded subgroups are generalized to the context of groups with weakly
but not necessarily strongly embedded subgroups.
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Fact 5.4 ([2]) Let G be a group of finite Morley rank, M a proper definable subgroup of G. M
is weakly embedded if and only if the following hold:

1. M has infinite Sylow 2-subgroups.
2. For any nontrivial unipotent 2-subgroup U and nontrivial 2-torus T in M , NG(U) ≤ M

and NG(T ) ≤ M .

Arguments involving strongly real elements will frequently be encountered in the sequel.

Definition 5.5 Let G be a group.

1. For x ∈ G, C∗
G(x) = {g ∈ G : xg = x or x−1}.

2. An element of G is said to be strongly real if it is the product two involutions.

Now we take up the review of elementary general properties of groups of finite Morley rank
with strongly embedded subgroups.

Fact 5.6 ([18, Theorem 9.2.1];[11, Theorem 10.19]) Let G be a group of finite Morley
rank and M be a strongly embedded subgroup of G. Then the following hold:

1. Syl2(M) ⊆ Syl2(G).

2. I(G) is a single conjugacy class.

3. The involutions in M are conjugate in M .

4. If i ∈ I(M) and x is a nontrivial strongly real element in CG(i), then C∗
G(x) ≤ M .

As was mentioned in the introduction, the following simple consequence of Fact 5.6 3 shows
that Ω1(M

◦) = Ω◦
1(M) = Ω1(M) when M is strongly embedded with infinite Sylow 2-subgroups,

which is the general context of this paper.

Fact 5.7 ([4]) Let G be a group of finite Morley rank with a strongly embedded subgroup M , and
X a normal subgroup of M with an infinite Sylow 2-subgroup. Then I(M) ⊆ X◦. In particular,
if G is of even type then I(M) = I(M◦).

Fact 5.8 ([18, Theorem 9.2.1 (iii)];[1, Lemma 3.8]) Let G be a group of finite Morley with
a strongly embedded subgroup M . Then there is an involution w ∈ G\M such that rk (I(wM)) ≥
rk (I(M)).

Let w be an involution with rk (I(wM)) ≥ rk (I(M)). Then we define

Y = {uw : u ∈ I(wM)}, K = d(Y )

Y0 = {y ∈ K◦ : yw = y−1}, K1 = d(Y0)

Note that K1 ≤ K◦. The following conclusions can be proven:

Fact 5.9 ([1]) Let G be a group of finite Morley rank with a strongly embedded subgroup. Then
the group K = d(Y ) as defined above contains no involutions.

Fact 5.10 ([1]) Let G be a group of finite Morley rank with a strongly embedded subgroup M .
Then for i ∈ I(M), M◦ = CG

◦(i)K◦.

These results are variations, for finite Morley rank, on results from finite group theory ([18],
chapter 9). Under stronger hypotheses we may refine them as follows:

Fact 5.11 ([4]) Let G be a group of finite Morley rank with a strongly embedded subgroup M
containing infinitely many involutions. Then K◦ = CK

◦(w)Y0 and rk (Y0) = rk (Y ).

12



Fact 5.12 ([4]) Let G be a group of finite Morley rank with a strongly embedded subgroup M
containing infinitely many involutions. Then rk (Y0) = rk (I(M)). If in addition G is a simple
L∗-group of even type then the group A = Ω1(M) = 〈I(M)〉 is a definable connected elementary
abelian 2-subgroup such that A ≤ Z(B(M)) and A = I(M) ∪ {1}. Moreover, any subgroup of
M◦ containing Y0, in particular K1, acts transitively on I(M).

The following two facts are very useful corollaries of Fact 5.12:

Fact 5.13 ([4]; [1, Corollary 4.6]) Let G be a simple L∗-group of even type with a strongly
embedded subgroup M . If a, i, j ∈ G× and i and j are involutions, with i commuting with a and
j inverting a, then a is also an involution.

Fact 5.14 Let G be a simple L∗-group of even type with a strongly embedded subgroup M . If
x, i ∈ M such that i ∈ I(M) and xi = x−1, then x2 = 1.

Proof. If x and i are as in the statement then (xi)2 = 1 and by Fact 5.12, both i and xi are in
Ω◦

1(Z(O2(M))). Thus x = (xi)i ∈ Ω◦
1(Z(O2(M))). �

One can also prove suitable versions of the last two facts in the context of simple L∗-groups of
even type with weakly embedded subgroups, but this is not necessary for our present purposes.

The next L-group fact will be a useful tool in the sequel:

Fact 5.15 ([4]) Let H be a connected L-group of even type with a weakly embedded subgroup
M . Then

H ∼= L×D

where L = B(H) ∼= SL2(F ), with F algebraically closed of characteristic 2, and D = CH(L) is
a subgroup of degenerate type. M◦ ∩ L is a Borel subgroup of L and D ≤ M .

Our point of departure is the following result on simple L∗-groups of even type with a weakly
embedded subgroup:

Fact 5.16 ([4]) Let G be a simple L∗-group of even type with a weakly embedded subgroup M .
Then M◦/O2

◦(M◦) is of degenerate type.

In the context of simple L∗-groups of even type, Fact 5.16 serves as a substitute for the result
that the connected component of a weakly embedded subgroup of a simple K∗-group of even
type is solvable. In this paper this result will be applied only to strongly embedded subgroups.

6 M ∩Mw

In this section we begin the proof of Theorem 1 below. Most of the proof of Theorem 1 follows
the general line of argument in [1] and the third section of [22], whose computational aspects
were strongly inspired by [15]. On the other hand, the proof of Theorem 2 represents a major
deviation from those lines of argument. Its proof involves the ideas introduced in §§3, 4.

G will denote a simple L∗-group satisfying the hypotheses of Theorem 1 with a strongly
embedded subgroupM and A = Ω1(O2(M)). Note that by Fact 5.12, A is the largest elementary
abelian 2-subgroup in M , it contains all the involutions in M and it is connected. Thus A =
Ω1(M) = Ω◦

1(M) = Ω1(M
◦).

Definition 6.1 Let G be a group of finite Morley rank with a strongly embedded subgroup M .

1. For w ∈ I(G) \M , set T (w) = {x ∈ M◦ : xw = x−1}.

2. X1 = {w ∈ I(G) \M : rk (T (w)) < rk (A)}.

3. X2 = {w ∈ I(G) \M : rk (T (w) ≥ rk (A)}.
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Note that Facts 5.8 and 5.12 show that X2 6= ∅ in a simple L∗-group of even type with a
strongly embedded subgroup. We will occasionally refer to the elements of X2 as X2-involutions.
For the rest of the article we fix an involution w ∈ X2. As the first major step in the proof of
Theorem 1, the action of w on the intersection M ∩Mw will be analyzed. The main result will
be that w inverts T = (M ∩Mw)◦ under the assumption (∗) of Theorem 1; this will be given as
Theorem 2 below. We recall that since M is strongly embedded, we have I(T ) = ∅.

Notation 6.2 As indicated, we keep the following notation throughout this section.

w ∈ X2;T = (M ∩Mw)◦

Lemma 6.3 The Borel subgroups of T are good tori.

Proof. Let B be a Borel subgroup of T . Then B acts on A and on Aw, giving us two maps
B → B1, B2 onto the corresponding subgroups of Aut(A) and Aut(Aw). By the assumption (∗),
the kernel of the induced map into B1 ×B2 is finite, hence central. As B1 and B2 are good tori
(Lemma 3.13), so is the image of B (Lemma 3.10), and hence so is B. �

As preparation for the proof of Theorem 2, we will establish a number of results concerning
the case in which C◦

T (A) = 1. The case in which this centralizer is infinite will be handled
separately, and with less difficulty, in the proof of Theorem 2.

Proposition 6.4 If C◦
T (A) = 1 then we may assume, after modifying the choice of w appro-

priately, without however altering the choice of coset wM or the intersection M ∩Mw, that w
normalizes some Borel subgroup B of T .

Proof. Since CT (A) is assumed to be finite, Corollary 4.9 implies that the Borel subgroups of
T are conjugate. By the Frattini argument N(T ) = TNN(T )(B), where B is a Borel subgroup of

T . Hence w = w′t for some t ∈ T and w′ ∈ N(B) ∩N(T ). It follows that 1 = (w′t)2 = w′2tw
′

t

and w′2 ∈ T . Since I(T ) = ∅, there exists t′ ∈ T ∩ d(w′) such that w′t′ is an involution. Note
that t′ ∈ N(B) since d(w′) ⊆ N(B). So w′t′ is an involution in wT ⊆ wM , and, in particular,
w′t′ is also an X2-type involution. Since Mw = Mw′t′ , we can replace w with w′t′. �

Lemma 6.5 Let G = A⋊T be a group of finite Morley rank, with A, T and the action of T on
A definable. Assume A is an elementary abelian p-group and T is a connected solvable p⊥-group.
Then A = [A, T ]⊕ CA(T ).

Proof. We proceed by induction on the rank and degree of A. We may assume the action is
faithful. By Lemma 3.13, T is a good torus. Being nontrivial, T contains a nontrivial element
t of finite order n. Since T has no elements of order p, we have (n, p) = 1. By Fact 2.23,
A = [A, t]CA(t). The intersection [A, t] ∩ CA(t) is trivial, since for γ = [a, t] ∈ CA(t) we find
1 = [a, tn] = γn, with (n, p) = 1. So A = [A, t]⊕ CA(t).

Let A0 = CA(t). Since the action is faithful, we have A0 < A. Since A0 is normalized by T ,
inductively, A0 = [A0, T ]⊕ CA0

(T ) and our claim follows. �

Proposition 6.6 If C◦
T (A) = 1 then the intersection of two distinct Borel subgroups of T is

finite.

Proof. Let B1 and B2 be two distinct Borel subgroups of T . These are good tori by Lemma
6.3. Suppose B0 = (B1 ∩ B2)

◦ 6= 1. As C◦
T (A) = 1, applying w we find C◦

T (A
w) = 1 as well.

Thus C◦
B0

(A) = C◦
B0

(Aw) = 1.
Let X = C◦

T (B0). Note that X is not solvable since it contains two distinct Borel subgroups,
namely B1 and B2. Let A1 be an X-minimal subgroup of [A,B0]. Since [A,B0] 6= 1, B0 acts
nontrivially on A1 by Lemma 6.5. Let K1 denote the kernel in X of this action. By Facts 3.15
and 3.14, X/K1 is solvable. In the rest of the proof we will show that K◦

1 is solvable, so that X
is solvable, yielding a contradiction. We may assume that K1 is infinite.
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We show:

(1) CAw (K) is finite for any infinite definable nonsolvable connected subgroup of K1.

Suppose K ≤ K1 is infinite, definable, and nonsolvable, but that CAw(K) is infinite. Since
K ≤ K1, [K,A1] = 1 and CA(K) is infinite. This, together with the hypothesis that CAw (B)
is infinite, implies L = B(C(K)) ∼= PSL2 in characteristic 2 (Fact 5.15). Let S1 and S2 be the
two Sylow 2-subgroups of L such that S1 ≤ A and S2 ≤ Aw. By Fact 5.3 3, NL(S1)∩NL(S2) ≤
M∩Mw, and thus M∩Mw contains a maximal torus T1 of L. By Fact 5.13 no nontrivial element
of this torus commutes with an involution in A. Let (0) = V0 < . . . < Vm = A be a definable
KT1-invariant series for A with KT1-minimal quotients. The torus T1 acts on each factor freely
by Fact 2.22. It follows from Facts 3.15 and 3.14 that KT1/CKT1

(Vi+1/Vi) is solvable for each
0 ≤ i < m, and thus by Fact 2.24 we have that KT1/CKT1

(A) is solvable. But CKT1
(A) is finite,

and therefore central in KT1, which forces KT1 to be solvable. So K is solvable, a contradiction.
Therefore (1) holds. In particular, CAw(K1

◦) is finite.
Now we consider a definable K◦

1B0-minimal subgroup V of [Aw, B0]. Since [Aw, B0] 6= 1, B0

acts nontrivially on V by Lemma 6.5. Let K2 be the kernel of the action of K◦
1B0 on V . Then

K1
◦B0/K2 is solvable by Facts 3.15 and 3.14. In particular K1/(K1 ∩K2)

◦ is solvable. Hence
(K1 ∩K2)

◦ is nonsolvable. This contradicts (1). This final contradiction finishes the proof. �

Proposition 6.7 If C◦
T (A) = 1 and B is a Borel subgroup of T , then [w,B] 6= 1.

Proof. Suppose towards a contradiction that [w,B] = 1 for some Borel subgroup B of T . By
Fact 5.13, B contains no strongly real elements.

Let y be a strongly real element in T inverted by w. Let K = C◦
T (y). Since I(T ) = ∅, Lemma

2.17 implies that K 6= 1. Then w normalizes K. Moreover, by the assumption C◦
T (A) = 1 and

Corollary 4.9 applied to K, we conclude that the Borel subgroups of K (there may be only one,
namely K) are conjugate. An application of the Frattini argument as in Proposition 6.4 shows
that K has a Borel subgroup B1 which is normalized by an involution w′ inverting y. B1 is
contained in a Borel subgroup C of T . By Proposition 6.6, w′ and y normalize C. Since C is
a T -conjugate of B by Corollary 4.9, C does not have nontrivial strongly real elements. Thus
the involutions w′ and w′y centralize C. It follows that y centralizes C. Since y is strongly real,
y 6∈ C. But such a setup cannot exist by Lemma 4.5. �

Theorem 2 Let G be a simple L∗-group of even type with a strongly embedded subgroup M ,
and A = Ω1(O2(M)). Assume that G satisfies the hypothesis (∗) of Theorem 1. Then w inverts
T = (M ∩Mw)◦.

Proof. The proof is by contradiction. We suppose that w does not invert T . By Fact 2.7,
T = CT (w)T

−, where T− = {t ∈ T : tw = t−1}, and CT (w) is infinite and connected. The
argument divides into two cases according to whether CT (A) is finite or not.

Case 1: CT (A) is finite

Then Corollary 4.9 applies to all definable, connected subgroups of T .
Since CT (w) is infinite, it has a nontrivial Borel subgroup, which can be extended to a Borel

subgroup B of T . By Proposition 6.6, w normalizes B. By Proposition 6.7, this action is not
trivial. So B− = {x ∈ B : xw = x−1} is infinite.

By Fact 5.12, T acts on I(A) transitively. Since CT (w) is infinite and rk (T−) = rk (A) (Facts
5.12 and 5.11), we have rk (T ) > rk (A). As a result, for every u ∈ I(A), CT (u) is infinite. Let
B0 be a Borel subgroup of CT (u) where u ∈ I(A). By Corollary 4.9, B0 is T -conjugate to a
subgroup of B. Replacing u by a T -conjugate accordingly, we may assume that B0 ≤ B. Fact
5.13 and the fact that B− 6= {1} imply that B > B0. As B centralizes B0 and B0 centralizes u,
it follows that CA(B0) is infinite. Let A0 = C◦

A(B0). Note that A0 < A since CT (A) is finite.
We may assume that u ∈ A0.
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We will prove that for at least one prime p:

(1) B0 has nontrivial p-torsion, and the Prüfer p-rank of B is at least 2.

By the case assumption and Lemma 3.13, B0 is a good torus. The p-torsion in B0 will be
denoted by Torp(B0). We suppose towards a contradiction that the Prüfer p-rank of B is 1 for
any prime p such that Torp(B0) 6= 1. By Fact 2.24 and the case assumption, B0 acts nontrivially
on some definable connected section of A. Since w normalizes B and B0 ≤ B, both B0 and Bw

0

are subgroups of B. Thus our Prüfer rank assumption on B implies that Torp(B0) = Torp(B
w
0 ).

Therefore, B0∩Bw
0 is an infinite group with a nontrivial p-torus. Moreover,B0∩Bw

0 is centralized
by 〈A0, A

w
0 〉. By Fact 5.15, C◦(B0∩Bw

0 ) = L×CC◦(B0∩Bw
0
)(L) where L = B(C(B0∩Bw

0 ))
∼= PSL2

in characteristic 2. Let H = NL(A) ∩ NL(A
w). Then H ≤ T and there is a Borel subgroup of

T which contains both H and (B0 ∩ Bw
0 )

◦. Since B0 ≤ B, this Borel is B by Proposition 6.6.
Hence HB0 ≤ B. The structure of L implies that H is a full torus, i.e. H contains a copy of
Zp∞ for every prime p 6= 2. Since B0 centralizes u, Fact 5.13 implies that H ∩B0 = 1. It follows
that B has Prüfer p-rank 2, a contradiction. So (1) holds.

We fix a definable B-invariant subgroup A1 of M containing A0, with A1/A0 B-minimal. It
follows from (1) and Fact 3.3 that CB(A1/A0) is infinite. Let K0 = C◦

B(A1/A0). Then by Fact
2.22, A1/A0 = CA1

(K0)A0/A0. Let A2 = C◦
A1

(K0) and B1 = C◦
B(A2). Since K0 ≤ B, B1 6= 1.

Since A2 covers A1/A0, A2 6⊆ A0. By the transitive action of T on I(A) (Fact 5.12), there exists

g ∈ T such that ug−1

∈ A2 \ A0. Since u ∈ A0, g 6∈ CT (u). Note that u ∈ C◦
A(B

g
1 ). By the

conjugacy of the Borel subgroups of C◦
T (u) in C◦

T (u) (Corollary 4.9), there exists g′ ∈ CT (u)

such that Bgg′

1 ≤ B0. Since B0 ≤ B, Proposition 6.6 implies that gg′ ≤ NT (B). We have

u(gg′)−1

= ug′−1g−1

= ug−1

∈ A2 \ A0 while u ∈ A0. But A0 is B-invariant, thus gg′ 6∈ B. As
gg′ ∈ N(B) \B, we have:

(2) There exists an element σ ∈ NT (B) \B such that σp ∈ B for some prime p.

By Fact 2.16, we may assume σ is a p-element.
We claim that B has a nontrivial Sylow p-subgroup. Suppose towards a contradiction that

B has no p-torsion. In any case, since T has no involutions and is connected, CT (σ) is infinite
by Lemma 2.17. Thus CT (σ) has a nontrivial Borel subgroup C0, which is contained in a Borel
subgroup C of T . By Proposition 6.6, σ normalizes C. Moreover since C is conjugate to B by
Corollary 4.9 and B is assumed not to contain p-torsion, σ 6∈ C. This contradicts Lemma 4.5.

By Lemma 6.3 we know that B is divisible abelian. Hence the Sylow p-subgroup of B is the
direct sum of finitely many copies of Zp∞ . If the Prüfer p-rank of B is 1, then we contradict
Lemma 4.5 using Fact 2.5. As a result, the Prüfer p-rank of B is at least 2.

We let R = CB(w). As has already been mentioned, R is infinite and connected. We define
V = CAw

(R), where Aw is the conjugate of A containing w. We claim that 〈V B〉 6≤ Aw. Suppose
that 〈V B〉 ≤ Aw. Since B normalizes 〈V B〉, B ≤ N(Aw) = Mw, where Mw is the conjugate of
M containing Aw. Then B− ≤ Mw, which contradicts Fact 5.14.

As V contains w, V 6= 1. However, V can in principle be finite. We eliminate this possibility
first. In this case, since Aw is conjugate to A, M◦ contains a conjugate R1 of R such that CA(R1)
is finite and nontrivial. Let M◦ = M◦/CM◦(A). Corollary 4.8 implies that the Borel subgroups
of M◦ are conjugate. Since R1 and B− are contained in Borel subgroups of M◦, we may assume
they are in the same Borel subgroup. It follows that B− normalizes CA(R1). Since B− is
connected, we conclude that B− centralizes CA(R1), that is B

− centralizes CA(R1). CA(R1) is
nontrivial, but on the other hand B− contains strongly real elements, and these elements cannot
centralize involutions in A (Fact 5.13), a contradiction.

The last two paragraphs show that C(R) is a definable subgroup of G with a strongly em-
bedded subgroup, namely C(R) ∩Mw, and that B(C(R)) 6= 1. It follows using Fact 5.15 that
B(C(R)) ∼= PSL2 in characteristic 2. Note that since R is infinite, the Sylow 2-subgroups of
B(CG(R)) are strictly contained in the conjugates of A which contain them by the hypothesis
(∗). We claim that w ∈ B(C(R)). w normalizes R and by Remark 2.9 it acts on B(C(R)) as
an element of B(C(R)), say a. Since B(C(R)) ∩ Aw 6= 1, a ∈ Aw. Hence, wa is an element of
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Aw whose centralizer contains B(C(R)). Facts 5.3 2 and 5.16 imply that this is possible only if
w = a.

We let L = B(C(R)). SinceB centralizesR, B normalizes L, and by Remark 2.9, B ≤ LC(L).
It follows thatR ≤ C(L). In fact, R normalizes L and centralizesw, and there exists no nontrivial
noninvolutory inner automorphism of L with this property. Now we show that B− ≤ L. Let x be
a nontrivial element of B−. By Remark 2.9 there exists an element t ∈ L such that xt−1 ≤ C(L).
Since xw = x−1, we have x−1t−w = (xt−1)w = xt−1. Therefore, x2 = t−wt = [w, t] ∈ B− ∩L. If
x 6∈ L then Fact 2.16 implies that B− has nontrivial 2-elements, which is not true. Hence x ∈ L.

We claim

(3) For any prime l, the Prüfer l-rank of B is at most 2.

We have shown in the above paragraph that B− is a subgroup of L. It is contained in a maximal
torus of L. Since L ∼= PSL2, the Prüfer l-rank ofB

− is at most 1. Thus it suffices to show that the
Prüfer l-rank of R is at most 1, because RB− = B. Let A1 be a conjugate of A such that L∩A1 is
a Sylow 2-subgroup of L normalized by B. Such a conjugate exists because B ≤ LC(L) (Remark
2.9). We define A11 = L ∩ A1. By the hypothesis (∗), A11 < A1. Since B normalizes A11, it
acts on A1/A11. Let A12/A11 be an R-minimal subgroup of A/A11. Now suppose towards a
contradiction that the Prüfer l-rank of R is at least 2 for some odd prime l. Then Fact 3.3 implies
that R0 = CR(A12/A11) is infinite. By Fact 2.22, A12/A11 = CA12/A11

(R0) = CA12
(R0)A11/A12.

It follows that B(C(R0)) > B(C(R)). But since R centralizes R0, R normalizes B(C(R0)). Since
R centralizes involutions in B(C(R0)), Remark 2.9 and the fact that R has no involutions imply
that R centralizes B(C(R0)), and we have B(C(R)) ≥ B(C(R0)) > B(C(R)), a contradiction.
Thus (3) holds.

In particular with l = p where p = |σ|, we find: the Prüfer p-rank of R is 1, and the Prüfer
p-rank of B− is 1. We will prove that two distinct conjugates of R under the action of 〈σ〉 have

trivial intersection, where σ denotes the coset of σ modulo B. It suffices to show R ∩ Rσi

= 1
for 1 < i < p. Note that for such an i, CB(σ

i) is finite by Lemma 4.5. Suppose towards a

contradiction that x ∈ (R∩Rσi

)×. We then have G > B(C(x)) ≥ 〈B(C(R)), B(C(R))σ
i

〉. Since
[R, x] = 1, R normalizes B(C(x)). Moreover, B(C(x)) ≥ B(C(R)) which implies using Fact 5.15
that B(C(x)) ∼= PSL2 in characteristic 2. Remark 2.9 implies that R centralizes B(C(x)). As a

result B(C(x)) = B(C(R)). A similar argument shows that B(C(x)) = B(C(R))σ
i

. Therefore
σi normalizes L. Since CB(σ

i) is finite and the Prüfer p-rank of B− is 1, Fact 2.5 implies

that B− ∩ (B−)σ
i

does not contain a p-torus. Therefore, since (B−)σ
i

≤ B, B is abelian and

the Prüfer p-rank of B− is 1, we conclude that B−(B−)σ
i

is a group of Prüfer p-rank 2. But

B−(B−)σ
i

≤ LLσi

= L and PSL2 does not contain a p-torus of Prüfer rank 2.
We claim that the elements of order p in B are partitioned by the conjugates of R under the

action of σ, together with those of B−. Indeed, since the Prüfer p-rank of B is 2, B contains
p2−1 elements of order p. By the above paragraph p(p−1) of these are covered by the conjugates
of R. Since B− contains strongly real elements that cannot centralize involutions (Fact 5.13),
it intersects trivially the conjugates of R. Moreover, B− is of Prüfer p-rank 1. Hence the
p− 1 elements of order p that are not covered by the conjugates of R under the action of σ are
contained in B−. In particular, the only elements in B of order p that are centralized by σ are
those in B−.

Now we will show that B− is a maximal torus of L. We first show that L ∩ A and L ∩ Aw

are Sylow 2-subgroups of L. We showed above that the Prüfer p-rank of B is 2. Let A0 be a
B-minimal subgroup of A. Then, using Fact 3.3 we conclude that the Prüfer p-rank of CB(A0)
is at least 1. The last paragraph shows that the elements of order p in CB(A0) are contained in
a conjugate of R under the action of σ. We may assume they are contained in R. Let x be such
an element. As usual one obtains B(C(x)) = L. In particular, A0 ≤ L. Since xw = x, Aw

0 ≤ L
as well. Hence L ∩ A and L ∩ Aw are Sylow 2-subgroups of L. The maximal torus of L, which
normalizes L∩A and L∩Aw is thus contained in T . But this maximal torus contains B−. Since
B is a Borel subgroup of T , B− is exactly this torus.

Next we prove that |NT (B)/B| = 3. By Lemma 4.5, CT (B) = B. As a result NT (B)/B
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embeds in the automorphism group of B. Let W = NT (B)/B and n = |W |. Let l be an odd
prime. Then the last paragraph shows that the Prüfer l-rank of B is at least 1. Since we already
showed that the Prüfer l-rank of R cannot be higher than 1, we conclude that there are either
l − 1 or l2 − 1 elements of order l in B. W acts on this set. By Lemma 4.5, CB(ρ) is finite for
every ρ ∈ W . Hence for every prime number l except finitely many, W acts regularly on the
set of elements of B of order l. It follows that n divides l2 − 1 for all primes l except finitely
many. We will make a number theoretic argument to conclude that n = 3. Let pα be a prime
power divisor of n. Then pα divides l2 − 1 for almost all primes l. Equivalently, l2 − 1 ≡ 0
(mod pα). It is well-known (see for example [20] Theorem 4.19) that the units in Z/pαZ form
a cyclic subgroup when p is odd. Since this group is also of even order, it has a unique cyclic
subgroup of order 2. Hence l2 − 1 ≡ 0 (mod pα) is equivalent to l ≡ ±1 (mod pα). So for
almost all primes l, we have l ≡ ±1 (mod pα). On the other hand, by Fact 2.28, there are
infinitely many primes l with l ≡ 2 (mod pα). Thus 2 ≡ ±1 (mod pα). Hence pα|3, and thus
n = 3.

In particular σ3 ∈ B. We will show that σ3 = 1.
Suppose toward a contradiction that |σ| = 3i with i > 1. We let B3 denote the Sylow

3-subgroup of B. We first prove that 〈CB3
(σ), σ〉 = 〈σ〉. As CB(σ) is a finite group, Fact 2.6

implies that all elements in the coset of σ modulo B are conjugate to σ. Thus all of these elements
are of order strictly bigger than 3. The same argument yields the same conclusion for the coset
of σ−1. Since σ3 ∈ B, we conclude that there are no elements of order 3 in 〈CB3

(σ), σ〉 \B. On
the other hand, we have proven above that the only elements of order 3 in B that are centralized
by σ are in B−. But B− has been proven to be a group of Prüfer 3-rank 1. As a result, the
elements of order 3 in CB3

(σ) generate a cyclic group. It follows that 〈CB3
(σ), σ〉 is a cyclic

group. Since no element of B can have σ as a power, we find 〈CB3
(σ), σ〉 = 〈σ〉.

Let U denote the copy of Z3 ×Z3 in B. The above discussion on the partition of elements of
order 3 implies that CU (σ) is of order 3 and is generated by τ = σ3i−1

. Since σ acts on U/CU (σ)
and does not centralize U , we conclude that [σ, U ] = CU (σ). Thus there exists u ∈ U such that

[σ, u] = τ . It follows that σu = σ3i−1+1 and in particular u normalizes C(σ) and thus CT (σ).
By Corollary 4.9, the Borel subgroups of C◦

T (σ) are conjugate in C◦
T (σ). The Borel subgroups

of C◦
T (σ) are contained in Borel subgroups of T , and Proposition 6.6 implies that σ normalizes

each one of these Borel subgroups of T . Then Lemma 4.5 implies that σ is contained in each one
of these Borel subgroups. The Frattini argument shows that there exists h ∈ C◦

T (σ) such that
uh normalizes one of these Borels, say C. The action of uh on C is the same as that of σ on B.
Since h centralizes σ, we have σuh = σ3i−1+1. Comparing the actions of uh on C and σ on B,
we conclude that there exists τ1 in B such that [σ, τ1] = τ with τ1 of order 3i and τ3

i−1

1 = τ .
In particular, [σ, τ31 ] = 1. Then comparing the orders of τ1 and σ, and using the conclusion
〈CB3

(σ), σ〉 = 〈σ〉, we conclude that CB3
(σ) = 〈σ3〉 = 〈τ31 〉.

Now we consider the map

γσ : 〈τ1, u〉 −→ 〈τ〉
x 7−→ [σ, x]

This is a surjective homomorphism whose kernel contains 〈τ31 〉. As 〈τ1, u〉/〈τ31 〉
∼= Z3 × Z3, this

kernel properly contains 〈τ31 〉. Equivalently C〈τ1,u〉(σ) > 〈τ31 〉. On the other hand, we have
proven that CB3

(σ) = 〈τ31 〉. These two conclusions are contradictory since 〈τ1, u〉 ≤ B3. We
have proven that |σ| = 3.

Now we can reach the final contradiction. The involution w normalizes NT (B). Since NT (B)
does not contain involutions, Fact 2.7 implies that NT (B) = (C(w) ∩ NT (B))NT (B)−, where
NT (B)− is the set of elements in NT (B) inverted by w. We first show that C(w) ∩NT (B) ≤ B.
Suppose towards a contradiction that x ∈ C(w) ∩ (NT (B) \B). Then x normalizes R and thus
acts on L. Since d(x) does not contain involutions and w ∈ L, this action is trivial by Remark
2.9. In particular, x centralizes B− which is an infinite subgroup of B. This contradicts Lemma
4.5. It follows that NT (B)− covers NT (B)/B. In particular, there exists σ1 in the same coset
modulo B as σ and inverted by w. Since σ1 and σ are in the same coset modulo B, the preceding
discussion on σ can be applied to σ1 as well. Thus, we may replace σ by σ1 and assume that
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σ is inverted by w. Let τ be an element of order 3 in B centralized by σ. Then we know from
the above that τ is inverted by w and 〈σ, τ〉 ∼= Z3 × Z3. But 〈σ, τ〉 cannot operate on a 〈σ, τ〉-
irreducible subgroup of A faithfully. This implies that for some i, j ∈ {1, 2}, σiτ j centralizes an
involution in A. But this element is also inverted by w, a contradiction to Fact 5.13.

Case 2: CT (A) is infinite.

We start by setting K1 = C◦
T (A) and K2 = C◦

T (A
w). Under the current case assumption,

K1 6= 1 and K2 6= 1. Note that the group generated by K1 and K2 is their central product,
K1 ∗K2. In fact, by the assumption (∗) K1 ∩K2 is a finite group. Since K1 � T and K2 � T ,
[K1,K2] ≤ K1 ∩K2. But [K1,K2] is connected. Therefore, [K1,K2] = 1.

We let B be a Borel subgroup of K1. Note that the assumption (∗) forces CK1
(Aw) to be

finite. As a result the Borel subgroups of K1 are conjugate by Corollary 4.9. Moreover by Fact
2.14 these Borel subgroups are divisible abelian. The same structural conclusion is valid for K2

since CK2
(A) is finite by the assumption (∗) as well.

Before entering into the argument, we define R = {bbw : b ∈ B} and T0 = {bb−w : b ∈ B}.
Since [K1,K2] = 1, R is a group; and since B is abelian, T0 is a group as well. Note also that
the mappings b 7−→ bbw and b 7−→ bb−w are isogenies and thus rk (R) = rk (B) = rk (T0).

We first prove that R = CBBw (w) and T0 = (BBw)− = {x ∈ BBw : xw = x−1}. Clearly,
R ≤ CBBw (w) and T0 ≤ (BBw)−. By Fact 2.7, BBw = CBBw(w)×(BBw)− and both subgroups
are connected. On the other hand, since rk (R) = rk (T0) = rk (B) and rk (BBw) = 2rk (B), it
follows that rk (CBBw (w)) = rk (R) and rk ((BBw)−) = rk (T0). The connectedness of CBBw (w)
and (BBw)− yield the desired equality. In particular, BBw = R× T0.

Next we define V = CAw
(R), where Aw is the conjugate (in G) of A containing w. We claim

that 〈V BBw

〉 6≤ Aw. In fact, if 〈V BBw

〉 ≤ Aw, then by Fact 5.3 BBw ≤ N(Aw). In particular,
T0 belongs to the strongly embedded subgroup containing Aw, which contradicts Fact 5.14. Now
it follows from the assumption (∗) that rk (V ) < rk (A). Indeed, since BBw centralizes R, R
centralizes 〈V BBw

〉 and we have just seen that this last group has nontrivial intersection with
at least two distinct conjugates of A.

In the remainder of the proof we will have to consider a further division into two cases,
depending on whether V is finite or not. Either possibility will yield a contradiction in due
course.

We first eliminate the case in which V is finite. In this case, since Aw is conjugate to A, M◦

contains a conjugate R1 of R such that CA(R1) is finite and nontrivial. Let M◦ = M◦/CM◦(A).
Corollary 4.8 implies that the Borel subgroups of M◦ are conjugate. Since R1 and T0 are
contained in Borel subgroups of M◦, we may assume they are in the same Borel subgroup.
It follows that T0 normalizes CA(R1). Since T0 is connected, we conclude that T0 centralizes
CA(R1), that is T0 centralizes CA(R1). CA(R1) is nontrivial but on the other hand T0 contains
strongly real elements which cannot centralize involutions (Fact 5.13), a contradiction.

Now we embark on a longer argument, which will eliminate the remaining case, in which V
is infinite. As 〈V BBw

〉 6≤ Aw, C(R) is a group with a strongly embedded subgroup C(R) ∩Mw,
where Mw is the strongly embedded subgroup of G containing Aw. As V is infinite, Fact 5.15
shows that L = B(CG(R)) ∼= PSL2(K) in characteristic 2.

Let C be a Borel subgroup of T containing BBw. We recall that by Lemma 6.3, C is divisible
abelian. Since C is abelian, [C,R] = 1 and it follows that C normalizes L. Since C acts by inner
automorphisms on L (Fact 2.8) and is a divisible abelian group without involutions, C/CC(L)
embeds in a maximal torus of L and C normalizes two distinct Sylow 2-subgroups of L. By
Fact 5.3 3, C normalizes a Sylow◦ 2-subgroup of G. We call this group A1. We will prove that
CC(A1) is finite.

Before we go any further we note that CC(L) 6= 1 as R ≤ C. Moreover, B(C(CC (L))) =
L. In fact, B(C(CC (L))) ≥ L and thus B(C(CC (L))) ∼= PSL2 in characteristic 2 by Fact
5.15. Now, Fact 3.5 and a comparison of the maximal tori of B(C(CC (L))) and L shows that
B(C(CC(L))) = L.

Let X = C◦
C(A1) and suppose towards a contradiction that X 6= 1. Since X centralizes

CC(L), X normalizes B(C(CC(L))) = L. But X centralizes A1 ∩ L which is a nontrivial
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2-subgroup (indeed a Sylow 2-subgroup) of L. Since by Remark 2.9 X acts on L by inner
automorphisms, we conclude that X centralizes L. The definition of X and the fact that A1 is a
conjugate of A contradict the hypothesis (∗). Hence CC(A1) is finite. In particular, C is a good
torus by Lemma 3.13.

We now show that C◦
G(BBw) ≤ T . The group CG(BBw) normalizes B(CG(B)). On the

other hand, B(CG(B)) contains A and is centralized by B, which is an infinite subgroup of
G. Therefore the hypothesis (∗) implies that B(CG(B)) = A. It follows from Fact 5.3 3 that
CG(BBw) ≤ M . Since w normalizes CG(BBw), C◦

G(BBw) ≤ T .
We claim N◦

G(C) = C◦
G(C) = C. Since C ≥ BBw, C◦

G(C) ≤ C◦
G(BBw) ≤ T . But C is a

Borel subgroup of T and it is abelian, hence C◦
G(C) = C. On the other hand, we have proven

that C is a good torus, so by Fact 2.18 N◦
G(C) = C◦

G(C).
Now we will reach a contradiction, which will eliminate the case in which V is infinite, and

thus complete the proof of Theorem 2. Let M1 be the conjugate of M containing A1. Then
M1 contains both C and a conjugate (in G) C1 of C distinct from C such that CC1

(A1) is
infinite. Being a conjugate of C, C1 is a good torus. It was proven above that N◦

G(C) = C.
Thus N◦

G(C1) = C1 as well. By Lemma 4.6, ∪g∈M◦

1
Cg and ∪g∈M◦

1
Cg

1 are both generic in M◦
1 .

It follows from Lemma 4.7 that C and C1 are conjugate in M1. This is a contradiction, since
CC1

(A1) is infinite while CC(A1) is finite. �

Theorem 2 allows us to obtain more precise information on the structure of M◦ and its
interaction with w. We will continue to use the notation T and w defined as in the proof of
Theorem 2. The first corollary is in fact equivalent to Theorem 2.

Corollary 6.8 rk (T ) = rk (A).

Proof. Let us prove the equivalence of this statement to Theorem 2. We remind that in the
notation of Fact 5.12, Y0 ⊆ K◦ ≤ (M ∩Mw)◦ = T . If w inverts T as stated in Theorem 2, then
we have T = Y0. Then the equality rk (T ) = rk (A) follows from the same fact. On the other
hand, if rk (T ) = rk (A), then by Fact 5.12 rk (T−) = rk (T ), where T− is the set of elements in
T inverted by w. Theorem 2 follows from an application of Fact 2.7 to T and w. �

Corollary 6.9 A⋊ T ∼= F+ ⋊ F× where F is an algebraically closed field of characteristic 2.

Proof. By Theorem 2, T is abelian, and by Corollary 6.8, T acts regularly on A. As everything
is definable in a structure of finite Morley rank, the field is algebraically closed. �

The following corollary will be useful in the final section:

Corollary 6.10 C◦(A)w ∩M is finite.

Proof. Since (M ∩Mw)◦ has no involutions, Fact 5.13 and Theorem 2 imply that (C◦(A)w ∩
M)◦ = 1. �

Corollary 6.11 For any i ∈ I(A), CM◦(i) = CM◦(A). M◦ = CM◦(A)⋊ T .

Proof. By Fact 5.12, T acts transitively on I(A). As a result, M◦ = CM◦(i)T , where i ∈ I(A).
Since I(T ) = ∅ and T is inverted byw, CT (i) = 1 by Fact 5.13. Hence, we have 1 = deg(M◦) =
deg(CM◦(i)) deg(T ). As a result deg(CM◦(i)) = 1 and CM◦(i) = C◦

M◦(i) = C◦
M (i). We therefore

have M◦ = C◦
M (i)T as well.

Suppose towards a contradiction that CM◦(A) < CM◦(i). Let M◦ = M◦/CM◦(A). By
Corollary 4.8 the Borel subgroups of M◦ are conjugate. As a result, in order to achieve a
contradiction, it would suffice to prove that T is a Borel subgroup of M◦. In fact, by assumption,
CM◦(i) is an infinite definable subgroup whose Borel subgroups are contained in those of M◦,
and thus the fact that no element of T (Fact 5.13, Theorem 2) can centralize an involution would
yield a contradiction.

By Fact 2.14 it suffices to prove that T is a maximal definable connected abelian subgroup
of M◦. If T ≤ T 1 where T 1 is a definable abelian subgroup of M◦, then the transitive action of
T on A implies that T 1 = TCT 1

(A). But CT 1

(A) = 1. �
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Corollary 6.12 For any t ∈ T×, w inverts C◦(t).

Proof. By Fact 5.13, I(C◦(t)) = ∅. Hence, by Fact 2.7, it suffices to prove that C◦(t)∩C(w) = 1.
Suppose X = C◦(t) ∩ C(w) 6= 1. Then by Fact 2.7, X is connected and hence infinite. By
Corollary 6.11, X ≤ C◦(w) = C◦(Aw) where Aw is the conjugate of A which contains w. Then
by Fact 5.3 3 X ≤ Mw, where Mw is the strongly embedded subgroup containing Aw. Note
that A 6= Aw and thus M 6= Mw (Fact 5.12). The assumption (∗) implies that C(X) ≤ Mw

as otherwise one could find distinct conjugates of Aw in C(X) using elements of C(X) \ Mw.
Since [t,X ] = 1, we conclude that t ∈ Mw. By Fact 5.14, this is impossible since t is a nontrivial
strongly real element inverted by w and |t| > 2. �

Corollary 6.13 For any nontrivial subgroup X ≤ T , C◦
M (X) = T . In particular, C(A, T ) is

finite.

Proof. By Corollary 6.11, CM
◦(X) = CM

◦ (AX) ⋊ T ; as this is connected, it follows that
CM

◦(AX) is connected. Thus if T < C◦
M (X), then CM

◦(AX) is nontrivial. By Corollary 6.12,
w inverts CM

◦(AX), and thus by Fact 5.13, C◦
M (AX) is a connected elementary abelian 2-group

which is centralized by w. But then Fact 5.3 3 implies that w ∈ M , a contradiction. �

Corollary 6.14 Two distinct M◦-conjugates of T have trivial intersection.

Proof. Let x ∈ M◦ be such that T ∩ T x 6= 1. Then by Corollary 6.13, T = C◦
M (T ∩ T x) = T x.

�

Corollary 6.15 NM◦(T ) = T . In particular, CM◦(A, T ) = 1.

Proof. We first prove that N◦
M (T ) = T . N◦

M (T ) centralizes the torsion subgroup of T by Fact
2.18. But by Corollary 6.9, T is the full multiplicative group of an algebraically closed field of
characteristic 2. Then, by Fact 3.5 N◦

M (T ) centralizes T . But C◦
M (T ) = T by Corollary 6.13.

By Corollary 6.11, NM◦(T ) = (CM◦(A) ∩ NM◦(T ))T . Let X = CM◦(A) ∩ NM◦(T ). Then
X centralizes T by the semidirect product structure of M◦. We will show that this forces
X = 1. The last paragraph shows that T is of finite index in its normalizer in M◦. Moreover,
by Corollary 6.14, two distinct M◦-conjugates of T have trivial intersection. Since T is divisible
abelian, Lemma 4.5 can be applied to M◦ and T . Since CT (X) is infinite (namely T ), we
conclude that X = 1. �

Corollary 6.16 If X is any nontrivial subgroup of T , then CM◦(X) = T .

Proof. Corollary 6.14 implies that CM◦(X) normalizes T . The conclusion follows from Corol-
lary 6.15. �

Corollary 6.17 If w is an X2-involution then M◦∩M◦w = T where, as above, T = (M∩Mw)◦.

Proof. Clearly, T ⊆ M◦ ∩ M◦w. This inclusion, together with Corollary 6.11, implies that
M◦ ∩M◦w = CM◦∩M◦w(A)⋊ T . But CM◦∩M◦w(A) is a finite group by Corollary 6.10 and as a
result T centralizes CM◦∩M◦w(A). Then Corollary 6.15 implies that CM◦∩M◦w(A) = 1. �

Corollary 6.18 For any X2-involution w, T (w) = (M ∩Mw)◦.

Proof. As in Theorem 2 and the preceding corollaries we let T = (M ∩ Mw)◦. By its very
definition T (w) ⊆ M◦ ∩M◦w. Theorem 2 implies that T ⊆ T (w). The conclusion follows from
Corollary 6.17. �
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7 Rank of G

As in the last section G will denote a simple L∗-group of even type with a strongly embedded
subgroup M , which satisfies the hypothesis (∗) of Theorem 1. In this section we will obtain
a formula for rk (G). The genericity arguments in the next section will make this sharper.
We recall that if w is an X2-involution then by Theorem 2, w inverts (M ∩Mw)◦. Moreover,
Corollary 6.18 shows that T (w) = (M ∩ Mw)◦. In particular T (w) is a definable, connected
subgroup of M .

The underlying ideas in this section stem from [15]. They were later taken up with slight
modifications in [1], and in the third section of [22].

Proposition 7.1 rk (I(G)) = rk (X2).

Proof. The proof consists of showing that rk (X1) < rk (I(G)). An equivalence relation ∼
is defined on X1 as follows: for u1, u2 ∈ X1, u1 ∼ u2 if and only if u1M

◦ = u2M
◦. This

condition is equivalent to u2u1 ∈ T (u1). Note that rk (X1) ≤ rk (X1/∼) + m where m is
the maximal fiber rank for the quotient map X1 −→ X1/∼. By the definition of ∼ and X1,
m < rk (A). Moreover, the mapping from X1/∼ into G/M◦ which assigns to each equivalence
class u/∼ the coset uM◦ is an injection by the definition of ∼. Hence, rk (X1) < rk (G) −
rk (M) + rk (A) = rk (G) − rk (CG(i)) − rk (T ) + rk (A) where i ∈ I(A), using Corollary 6.11.
But rk (G)− rk (CG(i))− rk (T ) + rk (A) = rk (I(G)) using Corollary 6.8. �

Lemma 7.2 If w1 and w2 are two X2-involutions such that T (w1) 6= T (w2) then T (w1) ∩
T (w2) = 1.

Proof. If T (w1) ∩ T (w2) 6= 1 then Corollary 6.13 implies that T (w1) = C◦
M (T (w1) ∩ T (w2)) =

T (w2). �

Proposition 7.3 If w1 ∈ X2, then T (w) and T (w1) are C◦(A)-conjugate.

Proof. By Lemma 7.2 and Corollary 6.15, ∪x∈M◦T (w)x is generic in M◦. If w1 is another
X2-involution, then the connectedness of M◦ implies that for some x ∈ M◦, T (w)x∩T (w1) 6= 1.
Then Lemma 7.2 implies that T (w)x = T (w1). The C

◦(A)-conjugacy follows from the structure
of M◦ as described by Corollary 6.11. �

Proposition 7.4 rk (G) = rk (C(T )) + 2rk (C(A)).

Proof. The standard line of argument (introduced in [15] and also used in [1, 22]) to reach
such a conclusion consists of defining a suitable mapping from X2 into wC(T )C◦(A). We have the
necessary tools, notably Corollary 6.15, to reproduce the same analysis.

By Proposition 7.3, for any X2-involution w1, there exists f ∈ C◦(A) such that T f = T (w1).

It follows that wf−1

1 inverts T and thus wf−1

1 w centralizes T . Note also that by Corollary 6.15
f is unique.

Hence we can define the following definable map:

Φ : X2 −→ wC(T )C◦(A)

w1 7−→ wwf−1

1
wf

We show that Φ has finite fibers. If wwf−1

1
wf = ww′f′−1

1
wf ′

, then since this element inverts
both T f and T f ′

, we have T f = T f ′

. Then Corollary 6.15 implies that f = f ′. It follows that
wfw1 = wfw′

1 and (w1w
′
1)

f−1

∈ C(T,w). But C(T,w) is a finite group by Corollary 6.12, which
proves the finiteness of the fibers.

The conclusion of the last paragraph implies that rk (X2) ≤ rk (wC(T )C◦(A)). Since rk (X2) =
rk (I(G)) by Proposition 7.1, we have rk (X2) = rk (wC(T )C◦(A))
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Next we show that rk (wC(T )C◦(A)) = rk (C(T )C◦(A)). We define the following definable
map:

Ψ : C(T )C◦(A) −→ wC(T )C◦(A)

cf 7−→ wcf

The fibers of this map are finite because if wcf = wc′f ′

then both wcf and wc′f ′

invert T f =
T f ′

. Then it follows from Corollary 6.15 that f = f ′, thus c′c−1 ∈ C(T,w), and this last group is
finite by Corollary 6.12. Since Ψ is clearly surjective we have rk (C(T )C◦(A)) = rk (wC(T )C◦(A)).
The rank computations using Φ now yield rk (X2) = rk (C(T )C◦(A)).

Since C(T )∩C◦(A) = 1 by Corollary 6.15, it follows from Proposition 7.1 and Fact 5.6 that
rk (C(T )) + rk (C◦(A)) = rk (X2) = rk (I(G)) = rk (G)− rk (CG(i)), where i can be taken to be
in I(A). Using Corollary 6.11, we have rk (G) = rk (C(T )) + 2rk (C(A)). �

8 Centralizers of tori

We continue to use the same notation as in the previous sections. The main result in this section
is that T is of finite index in its centralizer (Proposition 8.4). As in the last section we follow the
line of approach introduced in [15], incorporating variations from [22] and keeping track of the
L∗-structure of G. The shift from the K∗-context to the L∗-context becomes visible in the proof
of Lemma 8.3, where we use an adaptation of the arguments in Lemme 4.25 of [22], a lemma
about an analogous configuration.

Lemma 8.1 rk (X2M
◦) = rk (G).

Proof. The following equivalence relation is defined on X2: w1 ∼ w2 if and only if w1M
◦ =

w2M
◦ (if and only if w2w1 ∈ T (w1)). As rk (T (w1)) = rk (T ), we conclude that rk (X2) =

rk (X2/∼) + rk (A). Since rk (X2) = rk (I(G)) by Proposition 7.1, it follows using Facts 5.6 2,
5.12 and Corollary 6.11 that

rk (G) = rk (CG(A)) + rk (X2/∼) + rk (A)

= rk (M)− rk (T ) + rk (X2/∼) + rk (A)

= rk (M) + rk (X2/∼)

= rk (X2M
◦)

�

Lemma 8.2 If c ∈ C◦(T ) \M then I(fcM◦) = ∅ for any f ∈ C◦(A).

Proof. Suppose fcb is an involution for b ∈ M◦ and f , c as in the statement of the lemma.
Using Corollary 6.11 we may assume that b ∈ C◦(A). After conjugating fcb by f we conclude
that cu is also an involution where u = bf−1 ∈ C◦(A). If t ∈ T then (cu)t = cut and [u, t] =
(cu)−1(cu)t ∈ T (cu) ∩ C◦(A). By Fact 5.13, the set T (cu) ∩ C◦(A) contains elements of order
at most 2. But cu ∈ I(G) \M and it cannot centralize involutions in M by Fact 5.3 2. Hence,
T (cu) ∩ C◦(A) = 1. As t is an arbitrary element of T , we conclude that u centralizes T . Hence
cu ∈ I(C(T )). But by Fact 5.13, no involution can centralize a nontrivial element of T . �

Lemma 8.3 If for f1, f2 ∈ C◦(A), c1, c2 ∈ C◦(T ) \ M , we have f1c1M
◦ = f2c2M

◦, then
f1 = f2 and c1T = c2T .

Proof. Suppose f1c1 = f2c2v for some v ∈ M◦. We may assume v ∈ C◦(A) by Corollary 6.11
and c1 = uc2v where u = f−1

1 f2.
We claim that X = [v, T ] = 1. X is a definable connected subgroup contained in M ∩M c1 as

T v = T c2v = T u−1c1 ≤ M c1 and T v ≤ Mv = M . As T normalizes X , XT is a group. In fact it is
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definable and connected. Note also that X ≤ M◦′ ≤ C◦(A) by Corollary 6.11. Thus CX(Ac1) is
finite by the assumption (∗) of Theorem 1 and the fact that Ac1 6= A. Since T is inverted by w,
it acts freely on Ac1 (Fact 5.13). Let K = C◦

XT (A
c1). By Corollary 6.11 applied to M c1 and the

connectedness of XT , we have XT = KT . Then [T,K] ≤ (XT )′ ≤ X ∩K as T is abelian and
both X and K are normal in XT . Since CX(Ac1) is finite and [T,K] is connected, we conclude
that [T,K] = 1. But then K ≤ C◦(T ), and this last group is inverted by w (Corollary 6.12)
and has no involutions. Using Fact 5.13 it follows that K = 1. Therefore we have XT = T , and
X ≤ T . Since T acts freely on A, X = 1.

The last paragraph shows that v ∈ CM◦(T ). It follows that u ∈ CM◦(T,A). The conclusion
follows using Corollary 6.15. �

Proposition 8.4 C◦(T ) = T .

Proof. It suffices to prove that C◦(T ) ≤ M . Suppose not and let Y =
⋃
{fcM◦ : f ∈

C◦(A), c ∈ C◦(T )\M}. By Lemma 8.3, the fact that CM◦(T ) = T (Corollary 6.16) and Propo-
sition 7.4, rk (Y ) = rk (C(A)) + rk (C(T ))− rk (T ) + rk (M) = rk (C(T )) + 2rk (C(A)) = rk (G).
Since by Lemma 8.1 X2M

◦ is also generic in G, Y and X2M
◦ share a coset of M◦. This

contradicts Lemma 8.2. �

Corollary 8.5 rk (G) = rk (T ) + 2rk (C(A)).

Corollary 8.6 For g ∈ G \NG(T ), T
g ∩ T = 1.

Proof. Suppose that g ∈ G such that T g ∩ T 6= 1. Let t ∈ (T ∩ T g)×. 〈T, T g〉 is a definable
connected subgroup that centralizes t. Thus it is inverted by w by Corollary 6.12. Hence 〈T, T g〉
is abelian. Then by Proposition 8.4, we have T = T g. �

9 Double transitivity

In this section we will finish the proof of Theorem 1. We continue to use the notation fixed
in the previous sections. G denotes a simple L∗-group of even type with a strongly embedded
subgroup M which satisfies the assumption (∗) of Theorem 1. As before, w is an X2-involution
and T = (M ∩Mw)◦.

Before starting the argument, we remark that here, as in [1] and in the third section of [22],
the final steps are also to show that G is a Zassenhaus group. Here the arguments will be more
complicated because it is more difficult to describe the intersection of two distinct conjugates of
M . This is mainly due to the fact that, unlike the situation in [1] or [22], M◦ is not necessarily
solvable.

Lemma 9.1 For any g ∈ G \M , rk (M ∩Mg) ≥ rk (T ). In particular, M ∩Mg is infinite.

Proof. This lemma summarizes the preceding section. 2rk (C(A)) + 2rk (T )− rk (M ∩Mg) =
2rk (M)− rk (M ∩Mg) = rk (MMg) ≤ rk (G) = 2rk (C(A)) + rk (T ). �

Lemma 9.2 For g ∈ G \M , (M ∩Mg)◦ is abelian.

Proof. Let X = (M ∩Mg)◦ where g ∈ G \M . Let X1 = CX(A) and X2 = CX(Ag). By the
assumption (∗) of Theorem 1, X1 ∩X2 is a finite group. The structure of M◦ (thus that of M◦g

as well) as described by Corollary 6.11 forces [X,X ] ≤ X1 ∩X2. But [X,X ] is connected, thus
trivial. �
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Lemma 9.3 For x ∈ I(G) \M , x does not centralize (M ∩Mx)◦.

Proof. Suppose towards a contradiction that x ∈ I(G)\M centralizes (M∩Mx)◦. In particular
x centralizes (C(A)x ∩M)◦, and as x is an involution it follows that (C(A)x ∩M)◦ = (C(A) ∩
Mx)◦. Thus, the assumption (∗) implies that (C(A)x ∩M)◦ = 1. In particular, C(A)x ∩M is a
finite group.

Consider the map
θ : C◦(A) ×M −→ G

(f,m) 7−→ fxm

For f, f ′ ∈ C◦(A) and m, m′ ∈ M , fxm = f ′xm′ if and only (f ′−1f)x = m′m−1 ∈ C◦(A)x∩M .
Thus, θ has finite fibers as C(A)x ∩ M is a finite group. It follows from Corollary 8.5 that
C◦(A)xM is a generic subset of G. On the other hand, Corollary 6.10 implies that this last
argument can be carried out to conclude that C◦(A)wM is generic as well. Since G is connected,
we conclude that C◦(A)xM = C◦(A)wM . Hence, we also have MxM = MwM and there exist
m, m′ ∈ M such that mx = wm′. We then have Tmx = Twm′

= Tm′

≤ M and therefore
Tmx ≤ (M ∩Mx)◦. But this contradicts Fact 5.13 since x centralizes (M ∩Mx)◦ while Tmx is
inverted by wmx. �

Proposition 9.4 For any g ∈ G \M , C◦(A) ∩Mg is finite.

Proof. It suffices to prove that (C◦(A) ∩ Mg)◦ = 1. Suppose that K = (C◦(A) ∩Mg)◦ 6= 1.
Let i ∈ I(A). Then K ≤ Mg ∩ Mgi. The assumption (∗) implies that A � C(K). Now, let
X = (Mg ∩Mgi)◦. By Lemma 9.2, X ≤ C(K) as well. It follows that [i,X ] ≤ X ∩ A = 1. But
an application of Lemma 9.3 to i and Mg ∩Mgi shows that this is impossible. �

Proposition 9.5 The action of G on G/M is doubly transitive.

Proof. Let g ∈ G \M . Proposition 9.4 implies that the mapping

θ : C◦(A)×M −→ G
(f,m) 7−→ fgm

has finite fibers. As a result the set C◦(A)gM is generic in G (Corollary 8.5). Evidently, so is
MgM . Since g is an arbitrary element in G \M it follows as in the proof of Lemma 9.3 that if
x 6∈ M then x ∈ MgM . Therefore G = M ⊔MgM . �

Corollary 9.6 For any g ∈ G \M , M ∩Mg is conjugate to M ∩Mw.

Proof. This follows from Proposition 9.5 and the fact that for g ∈ G \M , M ∩Mg is a 2-point
stabilizer. �

The arguments of Proposition 9.5 yield sharper information in the special case g = w.

Proposition 9.7 C◦(A) ∩ Mw = 1 and M is connected. In particular, C(A) = C◦(A) and
M = C(A) ⋊ T .

Proof. Suppose x ∈ C◦(A) ∩Mw. Since CG(A) ≤ M by Fact 5.3 2, x ∈ M◦. It follows that
x ∈ NM◦(T ). Thus by Corollary 6.15, x ∈ T . But CT (A) = 1.

Now the mapping
θ : C◦(A)×M −→ G

(f,m) 7−→ fwm

of Proposition 9.5 becomes injective by the last paragraph’s conclusion. As in the proof of
Proposition 9.5, C◦(A)wM is generic in G. In addition to this, the injectivity of θ implies that
deg(C◦(A) ×M) = 1. Hence deg(M) = 1. �
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Corollary 9.8 NM (T ) = T . In particular, for any g ∈ G \M , M ∩Mg is connected.

Proof. The first statement is a consequence of Corollary 6.15 and Proposition 9.7. As for the
second statement, let g ∈ G \M . By Corollary 9.6, we may assume that M ∩Mg = M ∩Mw.
Then since T = (M ∩Mw)◦, the conclusion follows from the first part. �

Proof of Theorem 1. By Proposition 9.5, the action of G on G/M is doubly transitive.
Moreover by Corollary 6.11 and Proposition 9.7, M = C(A) ⋊ T where T = M ∩ Mw is a
2-point stabilizer. Moreover by Lemma 9.1, T 6= 1, i.e. G is not sharply 2-transitive. In order
to conclude using Fact 2.27 it suffices to prove that 3-point stabilizers are trivial. In this vein
consider M, wM and fwM where f ∈ C(A). Suppose an element t stabilizes these three points.

Then t ∈ M ∩ Mw = T and we have fwM = tfwM = f t−1

twM = f t−1

wt−1M = f t−1

wM .
Thus [f, t−1]w ∈ C(A)w ∩M = 1 (Proposition 9.7). As fwM 6= wM by the choice of the three
points, f 6= 1. Since two distinct M -conjugates of T have trivial intersection by Corollary 6.14
and Proposition 9.7, either t = 1 or T f = T . Since f ∈ C(A)× and CT (A) = 1, Corollary 9.8
leaves only one possibility: t = 1. �
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