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1

Introduction

1.1 THE SUBJECT

In the present monograph we develop a structure theory for a class of finite
structures whose description lies on the border between model theory and
group theory. Model theoretically, we study large finite structures for a fixed
finite language, with a bounded number of4-types. In group theoretic terms,
we study all sufficiently large finite permutation groups which have a bounded
number of orbits on 4-tuples and which arek-closed for a fixed value ofk.
The primitive case is analyzed in [KLM; cf. Mp2]. The treatment of the gen-
eral case involves application of model theoretic ideas along lines pioneered
by Lachlan.

We show that such structures fall into finitely many classes naturally param-
etrized by “dimensions” in the sense of Lachlan, which approximate finitely
many infinite limit structures (a version of Lachlan’s theory of shrinking and
stretching), and we prove uniform finite axiomatizability modulo appropriate
axioms of infinity (quasifinite axiomatizability). We also deal with issues of
effectivity. At our level of generality, the proofs involvethe extension of the
methods of stability theory—geometries, orthogonality, modularity, definable
groups—to this somewhat unstable context. Our treatment isrelatively self-
contained, although knowledge of the model theoretic background provides
considerable motivation for the results and their proofs. The reader who is
more interested in the statement of precise results than in the model theoretic
background will find them in the next section.

On the model theoretic side, this work has two sources. Lachlan worked
out the theory originally in the context of stable structures which are homo-
geneous for a finite relational language [La], emphasizing the parametrization
by numerical invariants. Zilber, on the other hand, investigated totally cate-
gorical structures and developed a theory of finite approximations called “en-
velopes,” in his work on the problems of finite axiomatizability. The class of
ℵ0-categorical,ℵ0-stable structures provides a broad model theoretic context
to which both aspects of the theory are relevant. The theory was worked out at
this level in [CHL], including the appropriate theory of envelopes. These were
used in particular to show that the corresponding theories are not finitely ax-
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iomatizable, by Zilber’s method. The basic tool used in [CHL], in accordance
with Shelah’s general approach to stability theory and geometrical refinements
due to Zilber, was a “coordinatization” of an arbitrary structure in the class by
a tree of standard coordinate geometries (affine or projective over finite fields,
or degenerate. Other classical geometries involving quadratic forms were con-
spicuous only by their absence at this point.

The more delicate issue of finite axiomatizability modulo appropriate “ax-
ioms of infinity,” which is closely connected with other finiteness problems as
well as problems of effectivity, took some time to resolve. In [AZ1] Ahlbrandt
and Ziegler isolated the relevant combinatorial property of the coordinatizing
geometries, which we refer to here as “geometrical finiteness,” and used it to
prove quasifinite axiomatizability in the case of a single coordinatizing geo-
metry. The case ofℵ0-stable,ℵ0-categorical structures in general was treated
in [HrTC].

The class ofsmoothly approximablestructures was introduced by Lachlan
as a natural generalization of the class ofℵ0-categoricalℵ0-stable structures, in
essence taking the theory of envelopes as a definition. Smoothly approximable
structures areℵ0-categorical structures which can be well approximated by fi-
nite structures in a sense to be given precisely in§2.1. One of the achievements
of the structure theory forℵ0-categoricalℵ0-stable theories was the proof that
they are smoothly approximable in Lachlan’s sense. While this was useful
model theoretically, Lachlan’s point was that in dealing with the model theory
of large finite structures, one should also look at the reverse direction, from
smooth approximability to the structure theory. We show here, confirming this
not very explicitly formulated conjecture of Lachlan, thatthe bulk of the struc-
ture theory applies to smoothly approximable structures, or even, as stated at
the outset, to sufficiently large finite structures with a fixed finite language,
having a bounded number of4-types.

Lachlan’s project was launched by Kantor, Liebeck, and Macpherson in
[KLM] with the classification of the primitive smoothly approximable struc-
tures in terms of various more or less classical geometries (the least classical
being the “quadratic” geometry in characteristic 2, described in§2.1.2). These
turn up in projective, linear, and affine flavors, and in the affine case there are
some additional nonprimitive structures that play no role in [KLM] but will be
needed here (“affine duality,”§2.3). Bearing in mind that anyℵ0-categorical
structure can be analyzed to some degree in terms of its primitive sections,
the results of [KLM] furnish a rough coordinatization theorem for smoothly
approximable structures. This must be massaged a bit to givethe sort of co-
ordinatization that has been exploited previously in anω-stable context. We
will refer to a structure as “Lie coordinatizable” if it is bi-interpretable with a
structure which has a nice coordinatization of the type introduced below. Lie
coordinatizability will prove to be equivalent to smooth approximability, in one
direction largely because of [KLM], and in the other by the analog of Zilber’s
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theory of envelopes in this context. One tends to work with Lie coordinatiz-
ability as the basic technical notion in the subject. The analysis in [KLM] was
in fact carried out for primitive structures with a bound on the number of orbits
on 5-tuples, and in [Mp2] it was indicated how the proof may bemodified so
as to work with a bound on4-tuples. (Using only [KLM], we would also be
forced to state everything done here with 5 in place of 4.)

In model theory, techniques for going from a good description of primitive
pieces to meaningful statements about imprimitive structures generally fall un-
der the heading of “geometrical stability theory,” whose roots lie in early work
of Zilber onℵ1-categorical theories, much developed subsequently. Though
the present theory lies slightly outside stability theory (it can find a home in
the more recent developments relating to simple theories),geometrical stability
theory provided a very useful template [Bu, PiGS].

Before entering into greater detail regarding the present work, we make
some comments on the Galois correspondence between structures and permu-
tation groups implicit in the above, and on its limitations.

Let X be a finite set. There is then a Galois correspondence betweensub-
groups of the symmetric groupSym(X) onX , and model theoretic structures
with universeX , associating to a permutation group the invariant relations,
and to a structure its automorphism group. This correspondence extends to
ℵ0-categorical structures ([AZ1, Introduction], [CaO]).

When we consider infinite families of finite structures in general, or a pas-
sage to an infinite limit, this correspondence is not well behaved. For instance,
the automorphism group of a large finite random graph of ordern (with con-
stant and nontrivial edge probability) is trivial with probability approaching
1 asn goes to infinity, while the natural model theoretic limit is the random
countable graph, which has many automorphisms.

It was shown in [CHL], building on work of Zilber for totally categorical
structures, that structures which are bothℵ0-categorical andℵ0-stable can be
approximated by finite structures simultaneously in both categories. Lachlan
emphasized the importance of this property, which will be defined precisely in
§2.1, and proposed that the class of structures with this property, thesmoothly
approximable structures, should be amenable to a strong structure theory, ap-
propriately generalizing [CHL]. Moreover, Lachlan suggested that the direc-
tion of the analysis can be reversed, from the finite to the infinite: one could
classify the large finite structures that appear to be “smooth approximations”
to an infinite limit, or in other words, classify the familiesof finite structures
which appear to be Cauchy sequences both as structures and aspermutation
groups. This line of thought was suggested by Lachlan’s workon stable finitely
homogeneous structures [La], much of which predates the work in [CHL], and
provided an additional ideological framework for that paper.

In the context of stable finitely homogeneous structures this analysis in terms
of families parametrized by dimensions was carried out in [KL] (cf. [CL, La]),
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but was not known to go through even in the totally categorical case. Harring-
ton pointed out that this reversal would follow immediatelyfrom compactness
if one were able to work systematically within an elementaryframework [Ha].
This idea is implemented here: we will replace the original class of “smoothly
approximable structures” by an elementary class, a priori larger. Part of our
effort then goes into developing the structure theory for the ostensibly broader
class.

From the point of view of permutation group theory, it is natural to begin
the analysis with the case of finite primitive structures. This was carried out
using group theoretic methods in [KLM], and we rely on that analysis. How-
ever, there are model theoretic issues which are not immediately resolved by
such a classification, even for primitive structures. For instance, if some fi-
nite graphsGn are assumed to be primitive, and to have a uniformly bounded
number of4-types, our theory shows that an ultraproductG∗ of theGn is bi-
interpretable with a Grassmannian structure, which does not appear to follow
from [KLM] by direct considerations. The point here is that if Gn is “the same
as” a Grassmannian structure in the category of permutationgroups, then it
is bi-interpretable with such a structure on the model theoretic side. To deal
with families, one must deal (at least implicitly) with the uniformity of such
interpretations; see§8.3, and the sections on reducts. It is noteworthy that our
proof in this case actually passes through the theory for imprimitive structures:
any nonuniform interpretation of a Grassmannian structureonGn gives rise to
a certain structure onG∗, a reduct of the structure which would be obtained
from a uniform interpretation, and one argues that finite approximations (on
the model theoretic side) toG∗ would have too many automorphisms. In other
words, we can obtain results on uniformity (and hence effectivity) by ensur-
ing that the class for which we have a structure theory is closed under reducts.
This turns out to be a very delicate point, and perhaps the connection with
effectivity explains why it should be delicate.

1.2 RESULTS

A rapid but thorough summary of this theory was sketched in [HrBa], with oc-
casional inaccuracies. For ease of reference we now repeat the main results of
the theory as presented there, making use of a considerable amount of special-
ized terminology which will be reintroduced in the present work. The various
finiteness conditions referred to are all given in Definition2.1.1.

Theorem 1 (Structure Theory)
LetM be a Lie coordinatizable structure. ThenM can be presented in a

finite language. AssumingM is so presented, there are finitely many de-
finable dimension invariants forM which are infinite, up to equivalence of
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such invariants. IfC is a set of representatives for such definable dimension
invariants, then there is a sentenceϕ = ϕM with the following properties:

1. Every model ofϕ in which the definable dimension invariants ofC are
well-defined is determined up to isomorphism by these invariants.

2. Any sufficiently large reasonable sequence of dimension invariants is re-
alized by some model ofϕ.

3. The models ofϕ for which the definable dimension invariants ofC are
well-defined embed homogeneously intoM and these embeddings are
unique up to an automorphism ofM.

There are a considerable number of terms occurring here which will be de-
fined later. Readers familiar with “shrinking” and “stretching” in the sense
of Lachlan should recognize the situation. Definable dimension invariants are
simply the dimensions of coordinatizing geometries which occur in families
of geometries of constant dimension; when the appropriate dimensions are not
constant within each family, the corresponding invariantsare no longer well-
defined. A dimension invariant is reasonable if its parity iscompatible with
the type of the geometry under consideration; in particular, infinite values are
always reasonable.

The statements of the next two theorems are slight deformations of the ver-
sions given in [HrBa]. We include more clauses here, and we use definitions
which vary slightly from those used in [HrBa].

Theorem 2 (Characterizations)
The following conditions on a modelM are equivalent:

1. M is smoothly approximable.
2. M is weakly approximable.
3. M is strongly quasifinite.
4. M is strongly4-quasifinite.
5. M is Lie coordinatizable.
6. The theory ofM has a modelM∗ in a nonstandard universe whose size

is an infinite nonstandard integer, and for which the number of internal
n-typess∗n(M∗) satisfies

s∗n(M∗) ≤ cn
2

for some finitec, and in which internaln-types andn-types coincide.
(Heren varies over standard natural numbers.)

The class characterized above is not closed under reducts. For the closure
under reducts we have:

Theorem 3 (Reducts)
The following conditions on a modelM are equivalent:
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1. M has a smoothly approximable expansion.
2. M has a weakly approximable expansion.
3. M is quasifinite.
4. M is 4-quasifinite.
5. M is weakly Lie coordinatizable
6. The theory ofM has a modelM∗ in a nonstandard universe whose size

is an infinite nonstandard integer, and for which the number of internal
n-typess∗n(M∗) satisfies:

s∗n(M∗) ≤ cn
2

for some finitec. (Heren varies over standard natural numbers.)

On the other hand, once the class is closed under reducts it isclosed under
interpretation, hence:

Theorem 4 (Interpretations)
The closure of the class of Lie coordinatizable structures under interpreta-
tion is the class of weakly Lie coordinatizable structures.

An earlier claim that the class of Lie coordinatizable structures is closed
under interpretations was refuted by an example of David Evans which will be
given below.

Theorem 5 (Decidability)
For any k and any finite language, the theory of finite structures with at

mostk 4-types is decidable, uniformly ink. The same applies in an extended
language with dimension comparison quantifiers and Witt defect quantifiers.
Thus one can decide effectively whether a sentence in such a language has
a finite model with a given number of4-types.

This is a distant relation of a family of theorems in permutation group theory
giving explicit classifications of primitive permutation groups with very few 2-
types. Dimension comparison quantifiers do not allow us to quantify over the
dimensions of spaces, but they allow us to compare the dimensions of any two
geometries. Witt defect quantifiers are more technical (§2.1, Definition 2.1.1).

Theorem 6 (Finite structures)
LetL be a finite language andk a natural number. Then the class of finiteL-
structures having at mostk 4-types can be divided into familiesF1, . . . ,Fn

for some effectively computablen such that

1. Each familyFi is finitely axiomatizable in a language with dimension
comparison and Witt defect quantifiers.

2. Each familyFi is associated with a single countable Lie coordinatizable
structureMi. The familyFi is the class of “envelopes” ofMi, which
are the structures described in Theorem 1, parametrized by freely vary-
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ing definable dimension invariants (above a certain minimalbound, with
appropriate parity constraints).

3. For M, N in Fi, if the dimension invariants satisfyd(M) ≤ d(N )
then there is a homogeneous embedding ofM in N , unique up to an
automorphism ofN .

4. Membership in each of the familiesFi (and in particular, in their union)
can be determined in polynomial time, and the dimension invariants can
be computed in polynomial time. Thus the isomorphism problem in the
class of finite structures with a bounded number of types can be solved in
polynomial time.

5. The cardinality of an envelope of dimensiond is an exponential poly-
nomial ind; specifically, a polynomial in exponentials of the entries of
d (with bases roughly the sizes of the base fields involved). The struc-
tureNi(d) which is the member ofFi of specified dimensionsd can be
constructed in time which is polynomial in its cardinality.

Theorem 7 (Model Theoretic Analysis)
The weakly Lie coordinatizable structuresM are characterized by the fol-
lowing nine model theoretic properties:

LC1. ℵ0-categoricity.
LC2. Pseudofiniteness.
LC3. Finite rank.
LC4. Independent type amalgamation.
LC5. Modularity inMeq.
LC6. The finite basis property in groups.
LC7. General position of large0-definable sets.
LC8. M does not interpret the generic bipartite graph.
LC9. For every vector spaceV interpreted inM, the definable dualV ∗

(the set of all definable linear maps onV ) is interpreted inM.

Some of these notions were first introduced in [HrBa], sometimes using
different terminology. In particular, the rank function isnot a standard rank
function, the finite basis property in groups (or “linearity”) reduces to local
modularity in the stable case, and the general position (or “rank/measure”)
property is an additional group theoretic property that arises in the unstable
case, when groups tend to have many definable subgroups of finite index. The
eighth condition is peculiarly different from the ninth. This is a corrected
version of Theorem 6 of [HrBa].

David Evans made several contributions to the theory given here, notably the
observation that the orientation of quadratic geometries is essential, and bears
on the problem of reducts. The detection of all such points iscritical. Evans
also gave a treatment of weak elimination of imaginaries in linear geometries,
in [EvSI].
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We will say a few words about the development of this material, using tech-
nical notions explained fully in the text. The first author onreading [KLM]
understood that one could extract stably embedded geometries from the anal-
ysis of primitive smoothly approximable structures given there, and that the
group theory gives a decent orthogonality theory (but the orthogonality the-
ory given here will be based more on geometry than on group theory). These
ingredients seemed at first to be enough to reproduce the Ahlbrandt–Ziegler
analysis, after the routine verification that the necessarygeometrical finiteness
principle follows from Higman’s lemma; all of this follows the lead of [AZ1],
along the lines developed in [HrTC]. An attempt to implementthis strategy
failed, in part because at this stage there was no hint of “affine duality.”

The second author then produced affine duality and gave a complete proof
of quasifinite axiomatizability, introducing some furthermodifications of the
basic strategy, notably canonical projectives and a closeranalysis of the affine
case. The theme in all of this is that one should worry even more about the
interactions of affine geometries than one does in the stablecase. This can per-
haps be explained by the following heuristic. Only the projective geometries
are actually coordinatizing geometries; the linear and affine geometries are
introduced to analyze definable group structures, in keeping with the general
philosophy that structures are built from basic1-dimensional pieces, algebraic
closure, and definable groups. Here higher dimensional groups are not needed
largely because of the analog of 1-basedness, referred to below as the finite ba-
sis property. The developments that go beyond what is neededfor quasifinite
axiomatizability are all due to the second author. The extension of a consid-
erable body of geometric stability theory to this context isessential to further
developements. The high points of these developments, as far as applications
are concerned, are the analysis ofreductsand its applications to issues ofef-
fectivity. It may be noted also that the remarkable quadratic geometries have
been known for some time, and play an essential role in [KLM],in particular.
In our view they add considerably to the appeal of the theory.

The treatment of reducts requires a considerably more elaborate transference
of techniques of stability theory to this unstable setting than would be required
for the quasifinite axiomatizability alone. This would not be indispensable for
the treatment of structures already equipped with a Lie coordinatization; but
to apply these results to classes which are closed under interpretation requires
the ability to recognize an appropriate coordinatization,starting from global
properties of the structure; thus one must find the model theoretic content of
the property of coordinatizability by the geometries on hand.

Our subject has also been illuminated by recent developments in connection
with Shelah’s “simple theories,” and is likely to be furtherilluminated by that
theory.

Various versions of this material, less fully worked out, have been in circu-
lation for a considerable period of time (beginning with notes written in Spring
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1990) and have motivated some of the work in simple theories.In particular,
versions of sections 5.1 [KiP], 5.4, and 6.1 [PiGr] have beenobtained in that
very general context; all of this rests on the theoretical foundation provided by
the original paper of Shelah [ShS] and subsequent work by Kim[Ki].

Some comments on the relationship of this theory to Shelah’s“simple the-
ories” are in order. Evidently a central preoccupation of the present work is
the extension of methods of stability theory to an unstable context. Stability
theory is a multilayered edifice. The first layer consists of atheory of rank and
the related combinatorial behavior of definable sets. The next layer includes
the theory of orthogonality, regular types, and modularity, and was initially
believed to be entirely dependent on the foundational layerin its precise form.
One of the key conclusions of the present work is that is possible to recover
the second “geometric model theory” layer over an unstable base. Because we
haveℵ0-categoricity and finiteness of the rank, our basic rank theory becomes
as simple as possible; nonetheless, almost all of the “second-level” phenomena
connected with simplicity appear in our context with their full complexity—
the main exception being the Lascar group. It was perhaps this combination
of circumstances that facilitated a very successful generalization of the “geo-
metric theory” to the simple context, once the first layer wasbrought into an
adequate state by Kim’s thesis [KiTh].

As far as the present work is concerned, the development of a sufficiently
general theory was often due to necessity rather than insight. For example, if
we—or the creator of the finite simple groups—had been able toexclude from
consideration the orthogonal geometries in characteristic 2, we would have
had a considerably simpler theory of generics in groups, with Stab= Stab◦
(cf. §6.1, Definition 6.1.9, and the Example following). Such a simplified the-
ory would have been much less readily generalizable to the simple context; in
addition, under the same hypothesis, this simplified theorywould have largely
obviated the need for the theory of the semi-dual cover.

A number of features of the theory exposed here have been generalized with
gratifying success to the context of simple theories, but some have not. On
the positive side, one has first of all the theorem which we originally called
the independence theorem. This name has become standard in the literature,
although in the present manuscript it was eventually renamed “the type amal-
gamation property.” In any case this is still a misnomer, as this amalgamation
involves a triple over a base rather than a pair. Compare the following “homo-
logical” description. LetI(n) be the space ofn-types, over some fixed base,
of independentn-tuples (whose elements are themselves finite sequences of
elements). We have “projection” mapsπi : I(n) → I(n − 1) obtained by
deletion of one coordinate. The uniqueness of forking in stability theory is the
statement that the induced mapI(2) → I(1)2 is injective. We replace this by
an exactnessproperty, characterizing the image ofI(3) in I(2)3 by minimal
coherence conditions.
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The first proof found for this theorem consisted of inspection in the 1-
dimensional case, followed by an induction on rank. In the course of related
work, an abstract proof was found, assuming finite simplicity rank and defin-
ability of the rank. This proof was later generalized by Kim and Pillay, and
together with their realization of the relevance of the Lascar group, it became
the central pillar of simplicity theory. In§5.1 we retain the original clumsy in-
ductive proof. This may be of use in situations where simplicity is not known
in advance.

The main point in any case is not the proof of this theorem but the realization
that the uniqueness of nonforking extensions, which seemedcharacteristic of
stability theory and essential to its fabric, can be replaced “densely often” with
an appropriateexistentialstatement.

The definition ofmodularitycould largely be taken over from the stable case.
A new idea was required (cf.§5.4) to produce enough geometric imaginaries
for proof of the local–global principle; this idea survivesin the contemporary
treatment of canonical bases in simple theories. The consequences of mod-
ularity for groups are not as decisive in general as in the stable case, even
generically, so we had to consider stronger variants. The recognition theorems
in rank one which use these properties serve to situate the basic geometries
model theoretically to a degree. One would like to see these theorems general-
ized, as Zilber’s characterizations of modular groups wereextended from the
totally categorical to the strongly minimal case.

The strong presence of duality is also a new feature as far as the model theory
is concerned. Initially it arose as a particular instance ofinstability, which we
sought to circumscribe and neutralize as much as possible. At the outset duals
must be recognized in order to render the basic geometries stably embedded;
the dual space of a finite vector space is also a prime example of a nonuniform
interpretation. Eventually duality also emerged as a positive tool, useful for
certain purposes even in contexts where stability is initially assumed: see§6.5,
on the semi-dual cover, and also the treatment of second-order quantifiers in
Chapter 8, dealing with effectivity. It seems possible thatlinear duality, like
modularity, has some significance in general model theoretic frameworks, but
at this time our situation remains isolated, awaiting further illumination.

The proof of Theorem 2 will be largely complete by the end of§3.5 (see the
discussion in§3.5 for more on this). The final section (§8.4) contains some
retrospective remarks on the structure of our development.

Various versions of this paper have benefited from remarks bya variety
of model theorists. We thank particularly Ambar Chowdhury,David Evans,
Bradd Hart, Dugald Macpherson, Anand Pillay, and Frank Wagner for their
remarks. We thank Virginia Dunn, Amélie Cherlin, and JakobKellner for
various forms of editorial and technical assistance. The first author also thanks
Amaal for diverting correspondence during the preparationof the final version.
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Basic Notions

2.1 FINITENESS PROPERTIES

We discuss at length the various finiteness properties to be considered here.
We will make use of nonstandard terminology as a convenient way of deal-

ing with “large” integers; see [FJ, Chapter 13] (in particular, the examples
treated therein, in§13.5) for a full presentation of this method. The method is
based on the idea of replacing the standard model of set theory in which one
normally works by a proper elementary extension, the “enlargement,” in which
there are “new” (hence, infinite) integers. Since the extension is elementary, all
notions of set theory continue to have meaning, and (more or less) their usual
properties. In particular, for any setS occurring in the enlargement, there is
an associated collection of “all” subsets ofS in the sense of the enlargement;
this will not actually contain all subsets ofS in general, and those which are in
fact present in the enlargement are called “internal” (the others could be called
“external,” but we do not use them). The word “internal” is used in other
related ways: we may call an internal set which is finite in thesense of the
enlargement either “internally finite,” or “nonstandardlyfinite.” A subset of an
internally finite set need not be internal, but if it is, it will be internally finite.
Again, we refer to the presentation by Fried and Jarden [FJ] for the essential
foundational material.

2.1.1 Quasifiniteness, weak or smooth approximability

Definition 2.1.1. LetM be a structure.
1. M is ℵ0-categorical, or oligomorphic, if for eachnM has finitely many
n-types.
2. M is pseudofiniteif it is a model of the theory of all finite structures (in
the same language).
3. M is k-quasifiniteif in a nonstandard extension of the set theoretical uni-
verse it is elementarily equivalent to an internally finite model with finitely
many internalk-types.
4. M is quasifiniteif in a nonstandard extension of the set theoretical uni-
verse it is elementarily equivalent (in the original languageL) to an inter-
nally finiteL∗-structure with a finite number of internalk-types, for allk.
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5. A finite substructureN of M is k-homogeneousin M if all 0-definable
relations onM induce0-definable relations onN , and for every pair of
k-tuplesa, b in N , a andb have the same type inN if and only if they have
the same type inM.
6. A structureM is weakly approximableby finite structures if it isℵ0-
categorical, and every finite subsetX of M is contained in a finite sub-
structureN which is|X |-homogeneous inM.
7. A structureM is smoothly approximableby finite structures if it isℵ0-
categorical, and every finite subsetX ofM is contained in a finite substruc-
tureN which is|N |-homogeneous inM.
8. M is stronglyk-quasifiniteif in a nonstandard extension of the set the-
oretical universe it is elementarily equivalent to an internally finite model
with finitely many internalk-types, which coincide with thek-types.
9. M is strongly quasifiniteif in a nonstandard extension of the set theoret-
ical universe it is elementarily equivalent (in the original languageL) to an
internally finiteL∗-structure with a finite number of internalk-types, which
coincide with thek-types, for allk.

Remarks 2.1.2

We use freely the usual characterizations ofℵ0-categoricity. Pseudofiniteness
is also commonly referred to as thefinite model property. Quasifiniteness
strengthens pseudofiniteness (which is perhaps etymologically incorrect), as
one sees by expressing pseudofiniteness in nonstandard terms. It also implies
ℵ0-categoricity, since the condition on internalk-types is equivalent to a sim-
ilar condition on internal formulas withk free variables, and this includes the
standard formulas. Decoding the nonstandard formulation yields:

3′. A structureM is k-quasifinite if and only if there is a finite numberN
such that for an arbitrary sentenceϕ true inM, there is a finite structure
N satisfyingϕ in which there are at mostN formulas ink free variables.

4′. A structureM is quasifinite if and only if there is a functionν : N → N

such that for anyn and an arbitrary sentenceϕ true inM, there is a finite
structureN satisfyingϕ in which there are at mostν(k) formulas ink
free variables fork ≤ n.

For strong quasifiniteness one specifies the formulas ratherthan the number
of formulas.

Note that a weakly approximable structureM is strongly quasifinite, using
the formulas which definek-types in a finitek-homogeneous substructure.

One gets an equivalent notion by bounding types rather than formulas, or
equivalently, by bounding the number of orbits of the automorphism group
of N on k-tuples. This concept would seem to be the most natural one from
a purely permutation group theoretic standpoint. The definition of (strong)
quasifiniteness implies (strong)k-quasifiniteness for allk, but the converse
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is not immediate. As noted in§1, Theorem 2, we will show that (strong)4-
quasifiniteness (or using only [KLM]: (strong)5-quasifiniteness) already im-
plies (strong) quasifiniteness, so in particular this converse does hold. One
might have the impression thatℵ0-categorical pseudofinite structures are strong-
ly quasifinite in general, but this is very far from the case. The generic graph
seems to be the canonical counterexample; it is not quasifinite. The point is
that while one might reasonably expect the property: “every formula ink vari-
ables is equivalent to one in a specified finite set of formulasin k variables” to
be first order, it is not, in general.

As defined here all of these notions are invariant under elementary equiv-
alence. WhenM is countable, weak and smooth approximability can be ex-
pressed somewhat more concretely in the form thatM is a union of a countable
chain of finite substructuresMi such thatMi is i-homogeneous (in the weak
case), or|Mi|-homogeneous (in the smooth case), respectively.

Digression 2.1.3
It is generally assumed that there isnotgoing to be a coherent structure theory
for ℵ0-categorical pseudofinite structures in a finite language, though there
is no solid evidence for this. One complication is that it seems to be quite
hard in practice to determine whether a given finitely homogeneous structure
is pseudofinite. For finitely homogeneous structures, pseudofiniteness holds
in the stable case [La], fails in cases involving nondegenerate partial orders,
and is obscure in most other cases, apart from those amenableto probabilistic
analysis. The test case would be whether the generic triangle-free graph is
pseudofinite.

2.1.2 Geometries

We have described most of the finiteness notions occurring inthe statement
of Theorem 2, with the exception of the technical notion of coordinatizability
by Lie geometries. This notion in its most useful form involves some detailed
properties of specific geometries. The relevant collectionof geometries was
given almost completely in [KLM], with the exception of whatwe callaffine
duality, which was not needed there. In addition a certain coordinatization
theorem was proved there, which requires a further laying onof hands before
it acquires the form most useful for a model theoretic analysis. We will now
present the relevant geometries, which we give first in theirlinear forms, and
then in projective and affine versions. It should be borne in mind that ge-
ometries are understood to be structures in the model theoretic sense, and not
simply lattices or combinatorial geometries.

Definition 2.1.4. A weak linear geometryis a structure of one of the follow-
ing six types, and alinear geometryis an expansion of a weak one by the
introduction of a set of algebraic constants inMeq.
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1. A degenerate space: a pure set, with equality alone.
We tend to ignore this case, as our claims are trivial in this context. One
may perhaps pretend that it is a vector space over a field of order 1, and
that linear dependence over a set is membership; in this caseit equals its
projectivization and has no affine version.

2. A pure vector space:(V,K), with K a finite field andV a K-vector
space, with the usual algebraic structure.
Scalar multiplication is treated as a map fromK × V to V rather than as
a set of unary operators. This allows the Galois group ofK to act on the
structure.

3. A polar space:(V ∪W,K,L;β), whereK is a finite field,L a K-line
(1-dimensionalK-space),V andW areK-spaces, and there is a nonde-
generate bilinear pairingβ : V ×W → L.
We writeV ∪W rather thanV,W because we treatV ∪W as a set on
which there is an equivalence relation with two classes, thereby preserv-
ing the symmetry betweenV andW . In particular, the domain ofβ is
actually(V ×W ) ∪ (W × V ), andβ is symmetric.

4. An inner product space:(V,K,L, β) whereK is a finite field,L a K-
line, β : V × V → L a nondegenerate sesquilinear form with respect
to a fixed automorphismσ with σ2 = 1, and eitherσ is trivial and β is
symplectic, orσ is nontrivial andβ is hermitian with respect toσ.
(The symmetric case is included in the following class.)

5. An orthogonal space:(V,K,L, q) whereK is a finite field,L aK-line,
andq a quadratic form onV with values inL, whose associated bilinear
form is nondegenerate.
This point of view allows a treatment independent of the characteristic.

6. A quadratic geometry:(V,Q,K;βV ,+Q,−Q, βQ, ω), whereK is a fi-
nite field of characteristic 2,V is aK-vector space,βV is a nondegen-
erate symplectic bilinear form onV , Q is a set of quadratic formsq on
V for which the associated bilinear formq(v +w) + q(v) + q(w) is βV ,
chosen so thatV acts regularly onQ by translation, withβQ, +Q, −Q

giving the interaction betweenQ andV , andω specifying the Witt defect
[CoAt], which is fairly obscure in the infinite dimensional case.
There is, evidently, a considerable amount to be elucidatedhere.
In the first place, there are always quadratic formsq for which the as-
sociated bilinear formq(v + w) + q(v) + q(w) is the given symplectic
form βV , and any two of them differ by a quadratic form which is ad-
ditive; this is just the square of aK-linear map. The full linear dual
V ∗ acts regularly byq 7→ q + λ2 (q ∈ Q, λ ∈ V ∗) on this set of
quadratic forms, and via the identification ofV with a subspace ofV ∗,
coming from the given symplectic inner productβV , we get a semireg-
ular action ofV on this space of quadratic forms.Q will be one of
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the V -orbits. We takeβQ : Q × V → K to be the evaluation map
βQ(q, v) = q(v), while+Q : V × Q → Q is the regular action ofV on
Q and−Q : Q × Q → V the corresponding “subtraction” map; both of
these are definable fromβQ, e.g.:v +Q q = q + λ2v whereλv is the lin-
ear formβV (v, ·). The mapω(q) is not definable fromβQ. In the finite
(2n) dimensional case it will give the Witt defect± of q, which is the
difference betweenn and the dimension of a maximal totallyq-isotropic
subspace; this is either0 or 1. In the infinite dimensional case we require
a different description. Forq1, q2 ∈ Q,

√
q1 + q2 is a linear function of

the formλv for a uniquev ∈ V . Identifying v andλv, we may write
q(
√
q1 + q2) ∈ K; furthermore, we findq1(

√
q1 + q2) = q2(

√
q1 + q2),

which translates to(v, v) = 0. We will write [q1, q2] for q1(
√
q1 + q2).

For q1, q2, q3 ∈ Q if v =
√
q1 + q2, w =

√
q1 + q3, andα = (v, w)

we find [q1, q2] + [q1, q3] + [q2, q3] = τ(α) with τ(x) = x2 + x the
Artin–Schreier polynomial. Hence the relation[q1, q2] ∈ τ [K] is an
equivalence relation with two classes.ω has the effect of naming these
classes as unary predicates. We will construeω as a function fromQ to
{0, 1} ⊆ K. In particular, the Witt defect is taken modulo 2, which is
quite convenient since it is then additive with respect to orthogonal sums.

Remarks 2.1.5

1. In the case of polar geometries we may writeW = V ∗ andV = W ∗,
informally, but as we are dealing with infinite dimensional spaces this should
not be taken too literally. One can give this a precise sense if one associates
with each ofV andW the corresponding weak topology on its companion,
making each the continuous dual of the other.
2. We useK-linesL rather thanK itself in order to allow certain permu-

tations of the language as automorphisms. The point is that if f is a bilinear
form or a quadratic form andα is a scalar, thenαf is another form of the
same type with the same automorphism group. It will be convenient to view
two structures with the same underlying set whose forms differ by a scalar as
isomorphic. Ifα is a square they are isomorphic via multiplication by

√
α, but

in our formalism the identity map on the space extends to an isomorphism by
allowingα to act onL. The same effect would be achieved by replacing the
L-valued formf by the set ofK-valued forms{αf : α ∈ K×} and allowing
scalars to act on the set of forms.

3. We can view a geometry as having as its underlying set a vector space in
most cases, or a pair of spaces in duality in the polar case, orthe set(V,Q) in
the quadratic case, with the additional structure encoded in Meq.

Definition 2.1.6

1. An unoriented weaklinear geometry is defined as one of the six types of
geometry listed above, with the proviso that in the sixth case we omit the
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Witt defect functionω.
2. A basic lineargeometry is a linear geometry in which the elements ofK
andL are named, and in the polar case the two spacesV andW are named
(or, equivalently, treated as unary predicates).

Definition 2.1.7

1. A projective geometryis the structure obtained from a linear geometry
by factoring out the equivalence relation defined by acl(x) = acl(y), with
algebraic closure understood in the model theoretic sense.
2. A semiprojective geometryis the structure obtained from a basic linear
geometry by factoring out the relationxZ = yZ , whereZ is the center
of the automorphism group, that is, the set of scalars respecting any addi-
tional structure present. For example, in the symplectic case, the symplectic
scalars are±1.

After we check quantifier elimination in basic linear geometries, it will be
clear that this algebraic closure operation is just linear span (in the sense ap-
propriate to each case) and that our projective geometries are indeed projective
geometries in the nonquadratic case; in the polar case we will have two pro-
jective spaces(PV, PV ∗) with a notion of perpendicularity.

Definition 2.1.8. If V is a definable vector space andA is a definable set,
thenA is anaffineV -space ifV acts definably and regularly onA. If J is
a linear geometry andV is its underlying vector space (or one of the two
underlying vector spaces in the polar case) then anaffine geometry(J,A)
is a structure in whichJ carries its given structure andA carries the action
of V , with no further structure.

We will deal subsequently with the model theoretic properties of linear,
affine, and projective geometries, but first we will deal withthe notion of co-
ordinatization that enters into the statement of Theorem 2 from Chapter 1

2.1.3 Coordinatization

Definition 2.1.9. LetM ⊆ N be structures withM definable inN , and let
a ∈ N eq represent the setM (its so-called canonical parameter).
1. M is canonically embeddedin N if the 0-definable relations ofM are
the relations onM which area-definable in the sense ofN .
2. M is stably embeddedin N if everyN -definable relation onM is M-
definable, uniformly. The uniformity can be expressed either by requiring
that the form of the definition overM be determined by the form of the
definition overN , or by requiring that the same condition apply to all ele-
mentary extensions of the pair(M,N ).
3. M is fully embeddedin N if it is both canonically and stably embedded
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in N .

Definition 2.1.10. A structureM is coordinatized by Lie geometriesif it car-
ries a tree structure of finite height with a unique, 0-definable root, such that
the following coordinatization and orientation properties hold.

1. (Coordinatization) For eacha ∈ M above the root eithera is algebraic
over its immediate predecessor in the tree ordering, or there existsb < a
and ab-definable projective geometryJb fully embedded inM such that
either

(i) a ∈ Jb; or

(ii) there isc in M with b < c < a, and ac-definable affine or quad-
ratic geometry(Jc, Ac) with vector partJc, such thata ∈ Ac and
the projectivization ofJc is Jb. (Note that the projectivization of
a symplectic geometry in characteristic2 may have both quadratic
and affine geometries attached to it in this way.)

2. (Orientation) If a, b ∈ M have the same type and are associated with
coordinatizing quadratic geometriesJa, Jb in M, then there is no defin-
able orientation-reversing isomorphism ofJa andJb as unoriented weak
linear geometries; in other words, if a definable map betweenthem pre-
serves everything other thanω, then it also preservesω.

Example 2.1.11
LetA be the infinite direct sum of copies of(Z/p2Z) with p a fixed prime.
One coordinatizes this by placing0 at the root, as a finite set, then putting
the projectivization of

A[p] = {a ∈ A : pa = 0}

above it, andA[p]\{0} itself above that (covering each projective point by
the corresponding finite set of points above it); finally, oneaddsA\A[p];
above eacha ∈ A[p]\{0} one has the affine spaceAa = {x ∈ A : px = a}.
This gives a tree of height 4, with layers of the form: finite, projective, finite,
affine, respectively.

We also use the briefer expressionLie coordinatizedwith the same mean-
ing. However, we make a rather sharp distinction between theexistence of
a coordinatization, as defined above, and coordinatizability in the following
more general sense.

Definition 2.1.12. The structureM isLie coordinatizableif it is bi-interpretable
with a structure having finitely many 1-types which is coordinatized by Lie
geometries.

At this point the notions involved in Theorem 2 of Chapter 1 have all been
defined. In Theorems 3 and 4 we also use the notion ofweak Lie coordinatiz-
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ability, which involves a notion of Lie coordinatization in which the orientation
condition is suppressed.

2.2 RANK

2.2.1 The rank function

Definition 2.2.1. LetD ⊆ M be definable. Arank function(with finite values,
or the symbol∞ if undefined) is determined by the following conditions:

1. rkD > 0 if and only ifD is infinite.
2. rkD ≥ n + 1 if and only if there are definableD1, D2, π, f with π :
D1 → D, f : D1 → D2 such that

(i) rkπ−1(d) = 0 for d ∈ D;

(ii) rkD2 > 0;

(iii) rk f−1(d) ≥ n for d ∈ D2.

If we are not in theℵ0-categorical case then these definitions should take
place in a saturated model, and variations are possible using type-definable
sets. We work in theℵ0-categorical setting. We writerk(a/B) for the rank of
the type ofa overB, which is the minimum ofrkD for a ∈ D,D B-definable.
In practiceB is finite and the type reduces to thelocusof a overB, which is
the smallestB-definable set containinga.

Our definition of rank can be applied either toM or toMeq, and the latter is
the more useful convention in the long run. When the distinction is significant,
in connection with specific structuresM, we will refer tork computed inM
aspre-rank, and the rank computed inMeq asrank.

Lemma 2.2.2

1. rkD = 0 if and only ifD is finite.
1′. rk(a/B) = 0 if and only ifa ∈ aclB.
2. rk(D1 ∪D2) = max(rkD1, rkD2).
2′. (Extension property) IfD is B-definable, then there is a complete type
overB containingD and having the same rank.
2′′. If B1 ⊆ B2 then rk(a/B2) ≤ rk(a/B1).

Proof. Claims (1, 2) are straightforward and (1′, 2′) are direct consequences.
Claim (2′′) corresponds to the law: “ifD1 ⊆ D2, thenrkD1 ≤ rkD2”; this is
included in (2).

Lemma 2.2.3. Let M beℵ0-categorical. Then the following are equivalent
for a, b ∈ M:

1. rk(a/b) ≥ n+ 1.
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2. There area′, c with a′ ∈ acl(abc)− acl(bc), and rk(a/a′bc) ≥ n.

Proof. LetD be the locus ofa overb.
(1) =⇒ (2). Suppose thatπ : D1 → D has finite fibers,f : D1 → D2 has

fibers of rank at leastn, andD2 is infinite, withD1,D2, π, andf c-definable.
Takea′ ∈ D2 − acl(bc), anda1 ∈ f−1(a′) with rk(a1/a′bc) ≥ n (using the
Extension Property). Seta0 = πa1. Then we havea′ ∈ acl(a0bc) − acl(bc),
and asrk(a1/a′bc) ≥ n we findrk(a0/a′bc) ≥ n. Furthermore, astp(a0/b) =
tp(a/b) we can replacea0 by a, replacinga′, c by other elements.
(2) =⇒ (1). Leta′, c have the stated properties. LetD1 be

{(x, y) : tp(xy/bc) = tp(aa′/bc)}

and letπ : D1 → D, f : D1 → D2 be the projections ofD1 onto the
first and second coordinates, respectively. Thenf−1(a′) contains(a, a′) and
rk(a/a′bc) ≥ n, so easilyf−1(a′) has rank at leastn and hence the same
applies to all fibers off . It follows easily thatD1, D2, f, π have the required
properties for (1).

Lemma 2.2.4. Let M beℵ0-categorical. If rk(a/bc) and rk(b/c) are finite,
then rk(ab/c) is finite and

rk(ab/c) = rk(a/bc) + rk(b/c).

Proof. We use induction onn = rk(a/bc) + rk(b/c), and the criterion of
Lemma 2.2.3.

We show first thatrk(ab/c) ≤ n. Let d, e satisfy:e ∈ acl(abcd) − acl(cd).
We will show thatrk(ab/cde) < n. We have eithere ∈ acl(abcd)−acl(bcd) or
e ∈ acl(bcd) − acl(cd) and correspondingly eitherrk(a/bcde) < rk(a/bc) or
rk(b/cde) < rk(b/c). In either case induction applies to giverk(ab/cde) < n.

Now we show thatrk(ab/c) ≥ n. If rk(b/c) = 0 we observe that

rk(ab/c) ≥ rk(a/c) ≥ rk(a/bc) = n.

Assumerk(b/c) > 0, and takeb′, d with b′ ∈ acl(bcd) − acl(cd), such that
rk(b/b′cd) = rk(b/c)− 1. Using the Extension Property we may suppose also
that rk(a/bb′cd) = rk(a/bc). By induction we findrk(ab/b′cd) = n − 1 and
hencerk(ab/c) ≥ n.

Corollary 2.2.5. If rkD = 1, then acl defines a pregeometry onD, that is, a
closure property of finite character with the exchange property.

Definition 2.2.6. We say thata andb are independentoverC if

rk(ab/C) = rk(a/C) + rk(b/C);

equivalently, rk(a/bC) = rk(a/C).
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Lemma 2.2.7. The independence relation has the following properties:

1. Symmetry: Ifa andb are independent overC, then the same applies tob
anda overC.

2. If a is algebraic overbC, thena is independent fromb overC if and only
if it is algebraic overC.

3. The following are equivalent:

(i) a andbc are independent overE;

(ii) a andb are independent overEc, anda andc are independent over
E.

Proof. Each of these statements is clear on the basis of at least oneof the
criteria given in Definition 2.2.6.

This theory is relevant to our geometries, as they all have rank 1. This will
be verified below.

2.2.2 Geometries

Lemma 2.2.8. If J is a basic linear geometry then it has elimination of quan-
tifiers.

Proof. One checks that any suitably normalized atomic type is realized. In
other words, using the basic universal axioms appropriate in each case, one
shows that any existential formula in one variable can be reduced to a standard
form, which is either visibly inconsistent or always realized. As we are dealing
with basic geometries, the base field has been incorporated into the language,
and we deal with structures whose underlying universe is of one of four types:
degenerate, a vector space, a polar pair of spaces, or a quadratic pair(V,Q);
these carry, variously, linear, bilinear, and quadratic structure. We may ignore
the degenerate case and we defer the case of a quadratic geometry to the end.
By taking the relevant bilinear or quadratic form to be identically zero in cases
where it is not present, and expanding the domain of the type to a subspaceB
(or pair of subspaces in the polar case) which is nondegenerate whenever that
notion is meaningful (this includes the polar case), we may assume the type to
be realized has the following form:

(1) x /∈ B

(2) β(x, b) = λ(b)

(3) q(x) = α

The justification for(1) is that the excluded case is trivial, and the point of
(3) is that any remaining conditions onq can be expressed in terms of the
associated bilinear form in(2). Furthermore, the condition(2) is satisfied by
an element ofB, either because it is vacuous, or becauseB is nondegenerate,
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and after translation by such an element we get a similar system with(1, 3) as
above and(2) replaced by

(2′) x ∈ B⊥.

There is then nothing more to check unlessq is nondegenerate. In this case one
needs to know thatq takes on all possible values in the orthogonal complement
of any finite dimensional space. The following argument applies without look-
ing at the classification of quadratic forms on finite dimensional spaces.

LetK0 ⊆ K be the set of valuesα such thatq takes on the valueα in the
orthogonal complement to any finite dimensional space. Easily K0 contains a
nonzero element, is closed under multiplication by squares, and is closed under
addition asq(x + y) = q(x) + q(y) whenx, y are orthogonal with respect to
the associated bilinear form. It follows thatK0 = K.

Returning to the quadratic case, if the domainB of the type meets the set
Q, then this is covered by the orthogonal case. Otherwise, we first add to
the domain an elementq of Q (we will have occasion later, in the treatment
of imaginary elements, to revert to this point); the quantifier-free type of the
extension is determined by the action ofq onB, and theω-invariant, both of
which may be specified arbitrarily.

Corollary 2.2.9. The definable linear functions on the vector spaceV in a
linear geometry are those afforded either by the inner product (if one is
given, or is derivable from a quadratic form), or by the dual in the polar
case.

Proof. One checks that a definable subspace of finite codimension contains
the kernel of a finite set of linear forms encoded directly in the structure (via
a bilinear form, or polarity). Then any linear form whose kernel contains the
kernels of these forms is expressible as a linear combination of them.

Lemma 2.2.10.The linear, affine, and projective geometries are all of pre-
rank1.

Proof. It suffices to handle the basic linear case, and we can reducethe quad-
ratic geometries to the orthogonal case. By quantifier elimination, algebraic
closure is then linear span in the appropriate sense, which in the polar case
takes place in two disjoint vector spaces. Thus the computation of rank is un-
affected by the fact that the vector space structure may havebeen enriched.

In the next section we discuss weak elimination of imaginaries, and one may
then replace “pre-rank” by “rank” in the preceding.

Corollary 2.2.11. If M is Lie coordinatizable, thenM has finite rank, at most
the height of the coordinatizing tree.
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Corollary 2.2.12. If J is a linear, projective, or affine geometry, anda, b are
finite sequences with acl(a)∩acl(b) = C, thena andb are independent over
C.

Proof. Note that by definition the affine geometries include the linear model as
a component. In the linear nonquadratic case we have noticedthat the algebraic
closure is the linear span; the analogous statement holds inthe projective case.
So in the linear and projective cases this is essentially a statement about linear
algebra.

The affine and quadratic cases are similar: they may be expressed in the
form (Jl, A), whereJl is linear andJl (or in the polar case, part ofJl) acts
regularly on the additional setA. A subspace is either an ordinary subspace of
Jl (which may be polar) or a pair(Bl, Ba), whereBl is linear andBa is an
affine copy ofBl (with the usual modification in the polar case). Ifacl(a) ∩
acl(b) contains an affine (or quadratic) point then we are still essentially in
the linear case; otherwise, we are working with affine dimension, which is1
greater than the corresponding linear dimension. In this case it is important
thatacl(a) andacl(b) have a linear part determined by their affine parts (this
should be rephrased slightly in the polar case, but the factsare the same).

2.2.3 A digression

The remainder of this section is devoted to additional remarks on rank notions
which are far removed from our main topic.

Definition 2.2.13. LetM beℵ0-categorical. Then ranks rkα valued inN ∪ {∞}
are defined as follows:

1. rk0(D) = 0 if D is finite, and is∞ otherwise.
2. rkα(D) > 0 if and only if rkβ(D) = ∞ for β < α.
3. rkα(D) ≥ n + 1 if and only if there areπ : D1 → D, f : D1 → D2

definable, with

(i) rkα(π−1(d)) = 0 for d ∈ D;

(ii) rkα(f−1(d)) ≥ n for d ∈ D2;

(iii) rkα(D2) > 0.

Remarks 2.2.14

1. In the superstable case working in saturated models with type-definable
sets, forD complete andα arbitrary there is a0-definable quotientD′ with
rkαD′ finite and maximal. Writingrk′

α(D) for rkα(D′) we will haveU(D) =
∑

α ω
α rk′α(D).

2. The ranksrkα are additive and sets ofα-rank1 carry a geometry.
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Definition 2.2.15. If 0 < rkα M < ∞, we callα the tier of M. According to
the definition of rkα, there is at most one tier forM.

Lemma 2.2.16.There are pseudofiniteℵ0-categorical structures of arbitrarily
large countable tier, as well as structures of the same type with no tier.

Proof. We deal first with countable tier. We have examples forα = 0. In all
other cases we proceed inductively, writingα = sup(βn + 1). We take count-
able pseudofiniteℵ0-categorical structuresDn of tier βn with rkβn(Dn) ≥
n(n + 1) (replaceDn by a power if necessary) and encode them intoDeq for
a new setD as follows.

We take initially a languageL∗ with sortsD,D1, D2, . . ., whose restriction
toDn is the language ofDn. We also add generic mapsfn : [D]n+1 → Dn;
here the notation[D]i refers to unordered sets. The axioms are the axioms of
Dn, relativized to that set, together with the following:

(∗) For t ∈ [D]n and anyhi : [t]i → Di there is
a ∈ D for whichfi(s ∪ {a}) = hi(s) for s ∈ [t]i.

This theory hasD-quantifier elimination and is complete, consistent, andℵ0-
categorical when interpreted as a theory ofD, with Dn encoded inMeq. For
the finite model property, we begin with finite approximations toDi for i ≤ N ,
and we letD be large finite,fn random; most choices satisfy(∗). AsDn+1

maps ontoDn definably, we findrkβn D ≥ n. ThusrkαD ≥ 1; one can show
rkαD = 1 and the tier is exactlyα.

To get no tier we use sortsDn and functionsfn : Dn
n → Dn2

n+1, satisfying
the analog of(∗). Thenrkα(Dn) ≥ n rkαDn+1 for all n and easilyrkαDn =
∞ for all n andα. We view this structure as encoded inDeq

1 .

2.3 IMAGINARY ELEMENTS

Definition 2.3.1. M hasweak elimination of imaginariesif for all a ∈ Meq,
we havea ∈ dcl(acl(a) ∩M).

Lemma 2.3.2. If D is 0-definable inM andD(a) = acl(a)∩D for a ∈ Meq,
then the following are equivalent:

1. D is stably embedded inM and admits weak elimination of imaginaries.
2. For a ∈ Meq, tp(a/D(a)) implies tp(a/D).

Proof. (1) =⇒ (2). Let ϕ(x, y) be a formula withx a single variable (of
the same sort asa). The relationϕ(a, y) defined onD is D-definable and
hence has a canonical parameterd0 in Deq; note thatd0 ∈ acl(a). By weak
elimination of imaginaries there isB ⊆ D(d0) ⊆ D(a) such thatd0 ∈ dclB
and henceϕ(a, y) is B-definable:ϕ(a, y) ⇐⇒ ϕ∗(b, y), with b in B. This
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last fact is part oftp(a/B) and determines theϕ-type ofa overD. Thus(2)
holds.
(2) =⇒ (1). If a ∈ Deq, thena ∈ dcl(D), and hence by (2) we have

a ∈ dcl(D(a)), as required for weak elimination of imaginaries.
Now suppose thatϕ(x, a) is a formula implyingx ∈ D, wherex is a string

of free variables. LetA = D(a). If tp(b/A) = tp(a/A), thenϕ(x, a) and
ϕ(x, b) are equivalent, by (2). Thusϕ(x, a) isD-definable.

Lemma 2.3.3. LetJ be a linear, projective, or affine geometry. Leta ∈ Jeq,
andA = acl(a) ∩ J . Then acl(a) = acl(A).

Proof. We may takeJ basic. Writea = f(b) with b in J andf 0-definable.
Takeb′ independent fromb overacl(a) in the sense of§2.2.1, withtp(b′/ acl(a)) =
tp(b/ acl(a)).

We claim thatb andb′ are independent overA. We havea = f(b) = f(b′)
and thusA ⊆ acl(b) ∩ acl(b′) ∩ J ⊆ acl(a) ∩ J = A. Thus this reduces to
Corollary 2.2.12.

Our two independence statements may be written out as follows:

rk(b′/Aab) = rk(b′/Aa); rk(b′/Ab) = rk(b′/A).

Since rk(b′/Aab) = rk(b′/Ab) and rk(b′/Aa) = rk(b′a/A) − rk(a/A) =
rk(b′/A) − rk(a/A), on comparing the two equations we findrk(a/A) = 0,
anda ∈ acl(A), as claimed.

Corollary 2.3.4. LetP be a projective geometry stably embedded inM, A a
subset ofM, andPA the geometry obtained by taking acl relative toA as
the closure operation. ThenPA is modular, i.e.,

rk(ab) = rk(a) + rk(b)− rk(a ∩ b)

for finite algebraically closeda, b.

Proof. By stable embedding and the preceding lemma we may replaceA by
acl(A) ∩ P .

Lemma 2.3.5. LetJ be a basic linear geometry. ThenJ has weak elimination
of imaginaries.

Proof. By the preceding lemma it suffices to prove the following: ifA ⊆ J is
algebraically closed,a ∈ Jeq, anda ∈ acl(A), thena ∈ dcl(A).

We write a = f(b) with f A-definable andb = (b1, . . . , bn), and we
minimize n. Assuminga /∈ dcl(A), we haven ≥ 1. Working overA ∪
{b1, . . . , bn−1} we may supposen = 1 andb = bn. LetD ⊆ J be the locus of
b overA; of course,b /∈ A. We examine the dependence off on the element
ofD chosen.
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Let I = {(x, y) ∈ D2 : 〈xA〉 ∩ 〈yA〉 = A}. The corner brackets are
another notation for algebraic closure inJ , intended to suggest linear span. For
(x, y) ∈ I the type ofxy overA is determined by the inner productβ(x, y),
with β nondegenerate or trivial, and possibly derived from a quadratic form;
or else in the quadratic case, ifD ⊆ Q, by [x, y] = x(

√
x+ y). We will write

x · y for the corresponding function in each case. So for some subsetX of the
fieldK we have

For (x, y) ∈ I, f(x) = f(y) if and only if x · y ∈ X .

LetX0 = K when we are dealing with a bilinear form, andX0 = τ [K] with
τ(x) = x2 + x in the quadratic case withD ⊆ Q. Then in any caseX ⊆ X0

and it suffices to show thatX = X0, as thenf is constant on independent
pairs, and hence constant onD.

To see thatX = X0 it suffices to check that forα12, α13, α23 ∈ X0 there are
x1, x2, x3 independent overA for whichxi ·xj = αij for 1 ≤ i < j ≤ 3, as we
then takeα12 = α23 ∈ X andα13 ∈ X0 arbitrary to concludeX = X0. This
is essentially a special case of the statement from which quantifier elimination
was derived, though this was slightly obscured in the quadratic case by the
suppression of some details.

We leave this calculation to the reader, but note that in the quadratic case,
if the three elementsx1, x2, x3 are quadratic forms, we may write them as
q + λ2v, q, q + λ2w, respectively, and find that the “target” valuesαij satisfy:
α12 = q(v); α23 = q(w); and

α13 = (q + λ2v)(v + w) = α12 + α13 + τ((v, w)).

Corollary 2.3.6. LetJ be a basic semiprojective geometry. ThenJ has weak
elimination of imaginaries.

Proof. Let a ∈ Jeq, let V be the vector space model coveringJ , and let
A = acl(a) ∩ V . Thena ∈ dcl(A). Leta be a sequence of elements ofJ over
whicha is definable, and letB = acl(a)∩ J . The orbit ofa in J overB is the
same as its orbit overA, soa ∈ dcl(B).

Remark 2.3.7 Projective geometriesJ need not have weak elimination of
imaginaries, since the semiprojective geometry lies inJeq.

Definition 2.3.8. Let V be a vector space andA an affineV -space, withA
andV definable in a structureM. LetK be the base field.
1. AK-affinemapλ : A→ K is a map satisfying

λ

(

∑

i

αiai

)

=
∑

i

αiλ(ai)
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for scalarsαi with
∑

i αi = 1 (in which case the left side makes sense;
linear operations make sense inA relative to a base point inA, and affine
sums are independent of the basepoint).

2. A∗ is the set ofM-definableK-affine maps onA.

Lemma 2.3.9. In the notation of the previous definition, there is an exact se-
quence

(0) → K → A∗ → V ∗ → (0)

whereV ∗ is the definable dual ofV (consisting of all definable linear func-
tionals).

Proof. K represents the set of constant functions. The map fromA∗ to V ∗ is
defined as follows. Forλ ∈ A∗ andv ∈ V , letλ′(v) = λ(a+v)−λ(a), which
is independent of the base pointa. This is surjective sinceV ∗ lifts to A∗ by
choosing a base point inA.

Remarks 2.3.10
1. In this exact sequence it is possible thatA∗ = K andV ∗ = (0); indeed,

this must occur in the stable case.V ∗ is described by the corollary to quantifier
elimination in§2.2.1; in particular,V ∗ is definable.
2. Note thatA∗ is coded in(V, V ∗, A)eq. The algebraic closure of an ele-

ment ofA∗ in (V, V ∗, A) will be the line inV ∗ generated by the corresponding
linear map. For this reason we do not have weak elimination ofimaginaries
in (V, V ∗, A). Note also thatV ∗ is normally not mentioned explicitly, as it is
identified withV when there is a nondegenerate bilinear map (assuming the
situation is stably embedded).
3. We do have weak elimination of imaginaries in(V, V ∗, A∗), as in the the

proof of Lemma 2.3.12 below, but this is not stably embedded in (V, V ∗, A,A∗),
as a base point inA gives a definable splitting ofA∗—that is, a hyperplane
complementary to the line of constants.

4. V ∗ is definable overA∗, so even in the polar case it is not necessary to
include it in the geometry whenA∗ is present.

Lemma 2.3.11.LetJ be a basic, nonquadratic, linear geometry, and(J,A) a
corresponding affine geometry. Then(J,A,A∗) admits quantifier elimina-
tion in its natural language.

Proof. We take as the language the previous language forJ , predicates for
A andA∗, addition and subtraction mapsV × A → A andA × A → V , an
evaluation mapA×A∗ → K, aK-vector space structure onA∗, distinguished
elements ofA∗ corresponding to the constant functions, the canonical map
A∗ → V ∗ if V ∗ is present in some form, or an evaluation mapA∗×V → K if
V ∗ is left to be encoded byA∗. As in the linear case we verify the realizability
of suitably normalized atomic types. Since we can enlarge the domain of the
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types we can take a base point inA, identifyA with V , and identifyA∗ with
K ⊕ V ∗, putting us into the linear case.

Lemma 2.3.12.LetJ be a basic nonquadratic linear geometry and let(J,A)
be a corresponding basic affine geometry. Then(J,A,A∗) has weak elimi-
nation of imaginaries.

Proof. As we have Lemma 2.3.3 for the affine case, andA∗ is algebraic over
V ∗, we just have to check that the proof of Lemma 2.3.5 also goes through.
As in that proof, our claim is that ifB ⊆ (J,A,A∗) is algebraically closed
andf : (J,A,A∗) → (J,A,A∗)eq isB-definable, thenf is constant on each
1-typeD overB.

We considerI = {(x, y) ∈ D2 : 〈xB〉 ∩ 〈yB〉 = B}, where the span is
the algebraic closure in(J,A,A∗). (This includes the constant line inA∗.)
We claim thatf is constant along pairs inI; this will suffice. WhenD ⊆ J
it is convenient to viewV ∗ as included inJ , which is automatically the case
except in the polar geometries. Then in dealing withD we may dispense with
A andA∗ and we are in the situation we treated previously. There remain the
possibilities thatD ⊆ A orD ⊆ A∗.

Suppose thatD ⊆ A. If B meetsA, then we can replaceD by a type
realized inJ . Suppose therefore thatB ∩ A = ∅. The type ofD includes the
values of affine maps onD and gives no further information about the type of
a pair inI. Since the linear maps inB are covered by affine maps, this means
that the only relevant part ofB is B ∩ V , and furthermore for(x, y) ∈ D2,
x − y is orthogonal toB ∩ V . Thus the type of such a pair, if it is not already
determined, depends on the value ofQ(x − y) for a nondegenerate quadratic
formQ. To repeat the previous argument we need independent elements v, w
lying in B⊥ with Q(v), Q(w), andQ(v + w) taking on arbitrary values. This
we have.

Now supposeD ⊆ A∗. If B meetsA, thenA∗ becomes identified with
K ⊕V ∗ and we return to the linear case. IfB ∩A = ∅, then for(x, y) ∈ I the
type of the pair overB is determined by the type of the image inV ∗, and we
again return to the linear case.

We now consider the relationship between the linear dual andthe dual over
the prime field. It turns out that the distinction is unimportant in the linear case
but of some significance in the affine case.

Definition 2.3.13. Let V be a vector space over the finite fieldF with prime
fieldF◦, andA the corresponding affine space. We writeV ∗◦ andA∗◦ for
the linear and affine dual with respect to theF◦-structure.

Lemma 2.3.14.There is a 0-definable group isomorphismτ betweenV ∗ and
V ∗◦ given byτf = Tr ◦f , and a 0-definable surjectionτA : A∗ → A∗◦

given similarly by the trace Tr: F → F◦, with kernel the set of constant
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maps of trace 0.

Proof. In the linear case, the two spaces have the same dimension overF◦. We
check that the kernel ofτ is trivial. Assumeτf = 0. Then for anyv ∈ V and
α ∈ F , τf(αv) = Tr(αf(v)) = 0. As the trace form is nondegenerate onF ,
this meansf(v) = 0.

In the affine case the difference in dimensions is the dimension of F/F◦

corresponding to the difference in the space of constant maps. AsτA induces
τ its kernel is contained in the space of constant maps.

We record the degree of elimination of imaginary elements afforded byA∗◦ .

Lemma 2.3.15.Let (V,A) be a basic affine geometry, not of quadratic type.
LetC ⊆ (V,A,A∗)eq be definably closed and locally finite, that is, finite in
each sort.

If acl(C) ∩ (V ∪ A) ⊆ C, thenC = dcl(C ∩ (V ∪A ∪ A∗◦)).

Proof. Let VC = V ∩ C, AC = A ∩ C, A∗
C = A∗ ∩ acl(C). By weak

elimination of imaginariesC = dcl(acl(C)∩ (V ∪A∪A∗)) = dcl(VC ∪AC ∪
A∗

C). AsV ∗ is identified with a quotient ofA∗◦ it will suffice to check that

Mult(A∗
C/C) = Mult(A∗

C/C ∩A∗◦ , C ∩ V ∗).

Let v∗1 , . . . , v
∗
d be a basis forC ∩ V ∗ and leta∗i be a lifting ofv∗i toA∗. The

elementa∗i is chosen from an affine line over the base fieldF . We have for
eachi

Mult(a∗i /a
∗
1, . . . , a

∗
i−1, C) ≤ Mult(a∗i /a

∗
1, . . . , a

∗
i−1, V

∗ ∩ C,A∗◦ ∩ C)

and it suffices to show equality.
LetK = Aut(a∗i + F/a∗1, . . . , a

∗
i−1, C), a subgroup of(F,+). LetL be the

space ofK-invariant affine maps overF◦ ona∗i+F . We haveAut(a∗i+F/L) =
K, since a translationx → x + α on a∗i + F leavesL invariant if and only
if the linear maps induced byL annihilateα, and these are just theF◦-linear
maps annihilatingK. Accordingly, forA∗

i = 〈a∗1, . . . , a∗i 〉 we have

Aut(A∗
i /a

∗
1, . . . , a

∗
i−1, C) = Aut(A∗

i /vi, L).

NowL ⊆ dcl(a∗1, . . . , a
∗
i−1, C) ∩ (a∗1 + F )∗◦ , and we need

L ⊆ dcl(a∗1, . . . , a
∗
i−1, C) ∩ A∗◦ .

For f ∈ L inducing the linear map̄f anda∗ ∈ a∗i + F definefa∗ ∈ A∗◦

by fa∗(a) = f̄((a, a∗)) − f(a∗). This does not depend on the choice ofa∗:
fa∗+α(a) = f̄((a, a∗) + α) − [f(a∗) + f̄(α)] = fa∗(a). Thusf defines
f ′ = fa∗ and the converse is obvious.
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Lemma 2.3.16.Let V be part of a stably embedded basic linear geometryJ
with base fieldF . LetA be an affine space overV . AssumeA andV are
0-definable. Then there is a0-definable space, which we will denoteFA,
such thatFA containsV as a subspace of codimension1, andA as a coset
of V . The spaceFA is unique up to canonical definable isomorphism.

Proof. We letFA beF ×A× V modulo the equivalence relation defined by:
(α, a, v) ∼ (α′, a′, v′) if and only ifα = α′, α(a− a′) = v − v′. Equivalence
classes will be denoted in terms of their representatives asαa+ v. The scalar
multiplication will be defined by

β(αa+ v) = (βα)a + βv.

This is clearly well defined.
To define addition onFA, note that for anya◦ ∈ A the elements ofFA are

uniquely representable in the formαa◦ + v. Thus we may set

(αa◦ + v) + (α′a◦ + v′) = (α+ α′)a◦ + (v + v′).

This definition is immediately seen to be independent of the choice ofa◦. Thus
the construction is 0-definable. One checks the vector spaceaxioms. Evidently
V sits as a subspace of codimension1 andA as a coset.

Verification of the uniqueness statement is straightforward.

Lemma 2.3.17.LetV be a nonquadratic basic linear geometry, possibly with
distinguished elements, forming part of a geometryJ with field of scalarsF
which is stably embedded inM. LetA be aC-definable affine space over
V . Then

1. FA ∪ J andFA ∪ (FA)∗ ∪ J are stably embedded.
2. SupposeA is not in acl(J,C) and letC◦ be

[acl(C) ∩ J ] ∪ [acl(C) ∩ A] ∪ [acl(C) ∩A∗◦ ].

Then(J, FA, FA∗◦ , C◦)with its intrinsic geometric structure is fully em-
bedded inM overC ∪ C◦.

Proof.
Ad 1. For a ∈ A we haveFA ⊆ dcl(a, V ). Furthermore,(FA)∗ ⊆

dcl(a, V ∗) sincef ∈ (FA)∗ is determined by its restriction toV and its value
ata. Thus this is immediate.

Ad 2. Let N be (J, FA, FA∗◦ , C◦) with its intrinsic geometric structure,
and letN ′ beN with its full induced structure. AsN is stably embedded, any
0-definable setD in N ′ is definable inN with parameters. We claim thatD is
0-definable inN .

Let d be the canonical parameter forD in N , andd′ = [acl(d)∩ (A∪ J)]∪
[dcl(d) ∩ A∗◦ ]. By Lemma 2.3.15d ∈ dcl(d′) in N . In N ′ by assumption
d′ ∈ dcl(∅), and thusd′ ∈ C◦. ThusD is 0-definable inN .
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Lemma 2.3.18.LetV be a nonquadratic basic linear geometry, possibly with
distinguished elements, forming part of a geometryJ with field of scalarsF
which is stably embedded inM. LetA be aC-definable affine space over
V . LetC′ ⊇ C with acl(C′) ∩ (J ∪ A∗◦) ⊆ C′ and acl(C′, J) ∩ A = ∅.
Then fora ∈ A, tp(a/C′ ∩ A∗◦) implies tp(a/C′).

Proof. We may takeC = ∅. By the preceding lemmaA ∪ A∗ ∪ J is fully
embedded inM over the parametersC◦ = C′ ∩ (J ∪ A∗◦). Thus

tp(a/ dcl(C′) ∩ (A,A∗, J)eq) =⇒ tp(a/C′).

By Lemma 2.3.15

dcl(C′) ∩ (A,A∗, J)eq ⊆ dcl(C◦).

By quantifier elimination,tp(v/C′ ∩ A∗◦) determinestp(v/C′ ∩ A∗◦ , a) for
v ∈ J , sotp(a/C′ ∩ A∗◦) determinestp(a/C′ ∩ A∗◦ , J). The claim follows.

Lemma 2.3.19.A Lie coordinatizable structure isℵ0-categorical.

Proof. It suffices to treat the case of a structureM equipped with a Lie coor-
dinatization. The argument is inductive, using Lemmas 2.3.5 and 2.3.12 with
Lemma 2.3.2, and some control of the algebraic closure. LetNh be the part
of M coordinatized by the tree up to heighth, let N be Nh together with
finitely many coordinatizing geometries at heighth+ 1, and letJ be a further
coordinatizing geometry at any level, with defining parametera. Our claim is:

J realizes finitely many types over any finite subset ofN ∪ {a}.

In the main case,J is itself at heighth+1 and thusa is already inNh. However,
with J fixed, we proceed inductively onh and on the number of components
at levelh+ 1, beginning withN empty.

Given this result, one can then get the uniform bounds required for ℵ0-
categoricity by one more induction over the tree (by height alone).

It will be convenient to assume that the geometries involvedare basic, and
are either finite, linear, or affine; that is, projective geometries should be re-
placed by their linear covers. This cannot be done definably.Since the ex-
panded version ofM interpretsM and has essentially the same coordinatizing
tree, this implies the stated result forM.

Since the case in whichJ is finite is trivial, we need deal only with the
linear and affine cases, to which Lemmas 2.3.5 and 2.3.12 apply, and may be
combined with Lemma 2.3.2. This reduces the problem to the following: for
A ⊆ N finite, show thatacl(Aa) ∩ J is finite.

Suppose on the contrary thatacl(Aa) ∩ J contains arbitrarily large finite-
dimensionalAa-definable subspacesV of J . Fix such anAa-definable sub-
spaceV of J . N is B-definable for some set of parametersB lying in Nh,
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and by inductionacl(Ba)∩J is finite. AsA′ varies over the set of realizations
in N of the type ofA overBa, the correspondingA′-definable subspaceV ′

varies over the realizations of the type ofV overacl(Ba) ∩ J . Let n1 be the
number of types of setsAA′ asA′ varies in this manner, and letn2 be the num-
ber of types of the corresponding setsV V ′. Nown1 is bounded, by induction
hypothesis, sinceB ⊆ Nh andA ⊆ N ; N can be thought of as obtained by
appending one geometryJ ′ to a structureN ′ with N ′

h = Nh and with one
fewer component at heighth + 1. We have arrived at the following:n1 is
bounded, and as the dimension ofV increases,n2 is unbounded; butn1 ≥ n2.
This contradiction yields a bound on the dimension ofV and hence on the size
of acl(Aa) ∩ J .

2.4 ORTHOGONALITY

Definition 2.4.1

1. A normal geometryis a structureJ with the following properties
(uniformly—in every elementary extension):

(i) acl(a) = a for a ∈ J .
(ii) Exchange: ifa ∈ acl(Ba′)− acl(B), thena′ ∈ acl(Ba).
(iii) If a ∈ Jeq, then acl(a) = acl(B) for someB ⊆ J .
(iv) For J0 ⊆ J 0-definable and nonempty, ifa, a′ ∈ J and tp(a/J0) =

tp(a′/J0) thena = a′.

2. A normal geometry isreducedif it satisfies the further condition:

(v) acl(∅) = dcl(∅) in Jeq.

This distinction is illustrated by Example 2.4.5.

Lemma 2.4.2. Projective geometries in our sense are normal geometries. The
basic projective geometries are normal and reduced.

Proof. Note that we include the polar and quadratic cases.
Conditions (i) and (ii) are the usual geometric properties in most cases. In

the polar and quadratic case this includes the fact that the various parts of
the geometry do not interact pointwise, e.g., forq ∈ Q in the quadratic case,
acl(q)∩V = ∅. This can be computed in the basic linear model using quantifier
elimination. We remark also that (i) requiresacl(∅) = ∅, which is not so much
true as a matter of how the structure is viewed; for this purpose one takes a
model in which objects such as the fieldK are encoded inMeq (or in the
language). Condition (iii) was verified in§2.3. For (iv), note that apart from
the polar and quadratic cases, if there are nontrivial 0-definable subsets they
are determined by the set of values of a quadratic form or a hermitian form on
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the line representing a projective point. Ifa anda′ have the same type over
J0, then they lift to points in the linear space having the same type over the
preimage ofJ0. But these sets generate the whole vector space.

In the polar case it may happen (e.g., in the basic case) that the two vector
spaces involved are 0-definable. However, the type of a linear form over a
vector space determines the linear form. Similarly in the quadratic case, the
type of a quadratic form over its domain determines the form,and conversely
the type of a vector overQ determines the vector as an element of the dual
space, and hence determines the vector.

For (v) in the basic case, apply weak elimination of imaginaries for the as-
sociated basic semiprojective geometry to an element ofacl(∅).

The following is a modified form of Lemma1 of [HrBa].

Lemma 2.4.3. LetJ1, J2 be normal geometries, fully embedded and0-definable
in a structureM. Then one of the following occurs:

1. J1, J2 areorthogonal: every 0-definable relation onJ1 ∪J2 is a boolean
combination of sets of the formR1 × R2 with Ri an acl(∅)-definable
relation onJi; or

2. J1, J2 are 0-linked: there is a 0-definable bijection betweenJ1 andJ2.

Proof. If (1) fails then there is a 0-definable relationR ⊆ Jn1

1 × Jn2

2 for
somen1, n2 which is not a finite union ofacl(∅)-definable rectanglesA1×A2

(Ai ⊆ Jni

i acl(∅)-definable). It follows by compactness that we haveb1 ∈ Jn1

1

such thatR(b1) = {b2 ∈ Jn2

2 : R(b1, b2)} is notacl(∅)-definable. Our first
claim is

(∗) If b1 ∈ Jn1

1 ,R ⊆ Jn1

1 × Jn2

2 is 0-definable, andR(b1)
is notacl(∅)-definable, thenacl(b1) meetsJ2.

By stable embedding,R(b1) is J2-definable. Letc2 ∈ Jeq
2 be its canonical

parameter. Then by assumptionc2 is not algebraic over∅, and then by (iii) we
conclude thatacl(c2) meetsJ2, and(∗) follows.

Now takea2 ∈ acl(b1) ∩ J2 and letS(a2) be the locus ofb1 overa2. As a2
is algebraic overS(a2), S(a2) is not definable overacl(∅). Thus by another
application of(∗), acl(a2) meetsJ1. Let a1 ∈ acl(a2) ∩ J1. By the argument
just given, we can also finda′2 ∈ acl(a1) ∩ J2. But thena′2 ∈ acl(a2) ∩ J2 =
{a2} and thusacl(a1) = acl(a2), and furthermore we have shown that in this
relationa1 determinesa2 (and of course, conversely). Thusdcl(a1) = dcl(a2)
and we have a 0-definable bijectionf between two 0-definable setsD1 ⊆ J1
andD2 ⊆ J2. By (iv) and compactness each elementa1 of J1 is determined
by somea1-definable subset ofD1, and hence (usingf ) by somea1-definable
subsetT (a1) ⊆ D2. Therefore this setT (a1) is not definable overacl(∅),
and by(∗) and the subsequent argumenta1 belongs to the domain of some
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0-definable bijection between parts ofJ1 andJ2. By compactnessJ1 andJ2
are 0-linked.

Remark 2.4.4
Under the hypotheses of the preceding lemma, ifJ1 and J2 are reduced,
then the first alternative can be strengthened as follows:

1′. J1, J2 are strictly orthogonal: every 0-definable relation onJ1 ∪ J2 is a
boolean combination of sets of the formR1 × R2 with Ri a 0-definable
relation onJi.

This holds sincedcl(∅)-definable sets are 0-definable.

Example 2.4.5.J1, J2 carry equivalence relationsE1, E2 with two infinite
classes and no other structure. Then these are normal geometries, but not
reduced. InJ1 × J2 we may add a bijection betweenJ1/E1 andJ2/E2.
This would fall under the orthogonal case, but not the strictly orthogonal
case.

Lemma 2.4.6. Let J1 andJ2 be basic linear geometries canonically embed-
ded in the structureM. Suppose that inM there is a 0-definable bijection
f : PJ1 ↔ PJ2 between their projectivizations. Then there is a 0-definable
bijection f̂ : J1 ↔ J2 which is an isomorphism of unoriented weak geome-
tries, and which inducesf .

Proof. Without loss of generality we may take the universe to beJ1 ∪ J2. Re-
call that in the basic linear geometries any bilinear or quadratic forms involved
may be taken to beK-valued, andacl(∅) = dcl(∅).
Ji consists either of a single vector space, a pair of spaces in duality, or

a quadratic geometry(V,Q) and correspondinglyPJi consists either of the
corresponding projective model, two projective spaces, orthe pair(PV,Q).
The givenf preserves algebraic closure, which is the span in the projective
sense (except inQ) and hencef is covered by a map̂f which is linear on each
vector space inJi (relative to an isomorphism of the base fields) and which
agrees withf onQ in the quadratic case. At this point we will identify the
base fields, writingK = K1 = K2. There are finitely many such mapŝf , and
the set of them is implicitly definable, so by Beth’s theorem they are definable
overacl(∅) = dcl(∅), or in other words, are 0-definable.

Fix one sucĥf . The type off̂(a) is determined by the type ofa, for a a finite
string of elements. When a quadratic form is present we may recognize the
totally isotropic spaces as those on which only one nontrivial 1-type is realized;
in the polar case a totally isotropic space consists of a pairof orthogonal spaces,
and one nontrivial 1-type is realized in each factor. It follows thatf̂ preserves
orthogonality. Furthermore, if quadratic or skew quadratic formsQ1, Q2 are
present (given, or derived from a hermitian form), then there is a functionF for
whichQ2(f̂(x)) = F (Q1(x)), whereF : K0 → K0 with K0 = K except in
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the hermitian case, where it is the fixed field of an automorphismσ of order 2.
The functionF is additive (consider orthogonal pairs) and linear with respect
to elements ofK2 or in the hermitian case,K0. In any case, it follows thatF
is linear onK0 and is given by multiplication by an elementα of K0; in other
words,Q2 = αQ1. This sort of shift is allowed by a weak isomorphism, so our
claim follows except in the polar, symplectic, and quadratic cases, to which we
now turn.

In the polar and symplectic cases the 1-type structure is trivial and we have
a functionF : K → K for whichβ2(f̂ v, f̂w) = F (β1(v, w)), whereβi gives
either a duality between two spaces, or a symplectic structure. This map is
visibly linear, so we are in the situation considered previously.

Now we consider the quadratic case. On the symplectic part wehaveβV2
=

αβV1
for someα. Considering pairs(v, q) in V × Q we find thatf̂q(f̂ v) =

F ′(q(v)) for some functionF ′ which similarly must be multiplication by a
constant (for example, by considering the effect of replacing v by a scalar
multiple); as the form associated tôfq is α · βV1

, we findf̂ q = αq. This leads
to the particularly unsatisfactory conclusion that the actions ofV1 andV2 on
Q1 andQ2 are related by

f̂q +2 f̂ v
2 = f̂(q +1 (α

1/2v)2).

We can, however, adjust̂f by takingf̂ ′(v) = α1/2v and then we find that the
inner product, action ofQ, and translation byV all agree in the two models.

Lemma 2.4.7. Let J1 andJ2 be basic quadratic or polar linear geometries
canonically embedded in the pseudofinite structureM. Suppose that inM
there is a 0-definable bijectionf : PJ1 ↔ PJ2 between the projectiviza-
tions ofV1 andV2 (Vi is one of the two factors ofJi, in the polar case, and
the vector part, in the quadratic case). Then there is a 0-definable bijec-
tion f̂ : J1 ↔ J2 which is an isomorphism of weak geometries, and which
inducesf .

Proof. By the preceding lemma,f lifts to the linear part ofJ1, J2 covering
PVi. It remains to be seen that the linear or quadratic forms onV2 which
correspond to elements ofJ1, transported bŷf , are realized by elements ofJ2.
In finite approximations toM, all such maps are realized, and in particular, all
definable ones are realized inM by elements ofJ2. If f̂ is chosen to preserve
the symplectic structure (exactly) in the quadratic case, then all structure will
be preserved by the induced map.

Lemma 2.4.8. Let M be a structure,D and I definable subsets ofM,and
{Ai : i ∈ I} a collection of uniformlyi-definable subsets ofM. Assume
that acl(∅) = dcl(∅) inDeq, and thatD is orthogonal toI and is orthogonal
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to eachAi over i. ThenD is orthogonal toI ∪ ⋃iAi (and hence strictly
orthogonal to the same set).

Proof. It will be convenient to use the term “relation betweenA andB” for a
subset ofAm×Bn with m,n arbitrary. We have to analyze a relation between
D andI ∪⋃iAi, and it suffices to consider the part relatingD to

⋃

iAi. Fix i.
ThenR gives a relation betweenD andAi involving a finite number ofacl(i)-
definable subsets ofDm for somem. These belong to a finitei-definable
boolean algebra of subsets ofDm, which by strict orthogonality is 0-definable
overD, and may be taken to be independent ofi by dividingI into 0-definable
sets. The elements of this boolean algebra belong toacl(∅) in Deq and hence
are 0-definable. The relation withAi can be expressed in terms of them, and
I may be broken up further into finitely many 0-definable pieceson which the
definition is constant.

Definition 2.4.9. The localizationP/A of a projective geometryP over a fi-
nite setA is the geometry obtained from the associated linear geometryL as
follows. LetL0 = acl(A) ∩ L, and projectivizeL⊥

0 / rad(L0). If the vector
spaceL⊥

0 / rad(L0) supports a quadratic geometryQ0 then add that geo-
metry to the localization as well. (The radical rad(L0) is L0 ∩ L⊥

0 ; in the
quadratic caseL⊥

0 has a quadratic part which is taken to consist of quadra-
tic forms which vanish on rad(L0); in the orthogonal case in characteristic
2 we may also have to add a quadratic part—see the following remark.)

Remark 2.4.10.
The previous definition uses the convention that inner products are0 where

undefined. In the linear case one therefore works withL/L0. In the polar case
L0 consists of two spaces and the orthogonal spaces “switch sides.” In the
quadratic caseQ/Q ∩ L⊥

0 is a space of quadratic forms on the correct space
(L ∩ L⊥

0 )/ rad(L0). (It would not be well-defined, however, as a space of
forms onL/ rad(L0).) Finally, one unusual phenomenon occurs in localizing
orthogonal geometries in characteristic2. Let q be a quadratic form associated
to a nondegenerate symplectic form onV , and for simplicity letA = {v}
be a single nonzero vector ofV . If q(v) = 0, then the formq descends to
L̄ = v⊥/〈v〉; otherwise, for each nonsingular2-spaceH containing〈v〉 in L,
the restriction ofq toH⊥ induces a quadratic form on̄L, and asH varies the
collectionQ̄ enlarges̄L to a quadratic geometry(L̄, Q̄).

If P is a basic projective geometry, then this geometry is again abasic pro-
jective geometry, since the base field is named. In most casesit gives a geome-
try of the same type we began with. We could also define thefull localization
by takingP modulo the equivalence relationacl(xA) = acl(yA), with all
induced structure. The nontrivial atoms of the full localization are either com-
ponents of our localization or affine spaces over its linear part.
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Lemma 2.4.11.LetP,Q be basic projective geometries defined and orthogo-
nal over the setA and fully embedded overA in M. Then their localizations
are orthogonal over any setB over which they are defined.

Proof. We may suppose thatA ⊆ B orB ⊆ A, with the proviso in the latter
case that we allowP,Q to be localizations of geometries defined overB.

If A ⊆ B andP/B,Q/B are nonorthogonal, then they have aB-definable
bijection which is unique and hence defined overA ∪ (acl(B) ∩ (P ∪ Q))
(which serves to define the localizations). But overA this gives a relation on
P ∪Q which violates the orthogonality.

If B ⊆ A andP = P̂ /A, Q = Q̂/A with P̂ , Q̂ basicB-definable projec-
tive geometries, then nonorthogonality overB gives aB-definable bijection
betweenP̂ andQ̂ which induces anA-definable bijection between the local-
izations.

2.5 CANONICAL PROJECTIVE GEOMETRIES

Throughout this section we work in a Lie coordinatized structureM.

Definition 2.5.1. LetJ = Jb be ab-definable weak projective Lie geometry in
the structureM. ThenJ is acanonical projectivegeometry if

1. J is fully embedded overb; and
2. If tp(b′) = tp(b) andb′ 6= b, thenJb andJb′ are orthogonal.

A terminological note: there is no connection between the use of the term
“canonical” in connection with canonical embeddings, and canonical projec-
tives. In the case of embeddings the term refers to the so-called “canonical
language,” which has not been introduced explicitly here, while in the latter
case it refers to the canonicity condition (2).

Lemma 2.5.2. LetPb be ab-definable projective geometry fully embedded in
a Lie coordinatizable structureM. Then there is a canonical projective
geometry inMeq nonorthogonal toPb over a finite set.

Proof. We may assumePb is basic, and since it lives inMeq, we may replace
M by a bi-interpretable structure and suppose thatM is coordinatized by Lie
geometries. IfPb is orthogonal to each of the coordinatizing geometries over
their defining parameters, then repeated use of Lemma 2.4.8 shows thatPb is
orthogonal to the ambient modelM, and hence to itself, which is not the case
(the equality relation refutes this).

So we may suppose thatPb is one of the coordinatizing geometries, and
that b is the parameter associated withPb in the coordinatization ofM, so
that it represents a branch(b1, . . . , bn) (or b0, . . . , bn with b0 the 0-definable
root) of the tree structure onM associated with a sequence of geometries (and
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finite algebraically closed sets) inM, with bn = b. Minimize n subject to
nonorthogonality to the original geometry, so that for eachgeometry of the
form Jbi , with i < n, the associated projective geometry is orthogonal toPb.

Consider the conjugatesPb′ of Pb. If Pb, Pb′ are nonorthogonal over a finite
set, then the appropriate localization ofPb′ is orthogonal to the coordinatizing
geometriesQ for b over any set over whichPb′ andQ are defined. It follows
by induction thatPb′ ∩ acl(b′, b1, . . . , bi) = ∅ for all i ≤ n; notice that the
induction step is vacuous whenbi is algebraic over its predecessor. Fori = n
we haveacl(b, b′) ∩ Pb′ = ∅ and similarlyacl(b, b′) ∩ Pb = ∅. Thus the
nonorthogonality gives a unique(b, b′)-definable bijection betweenPb andPb′ ,
preserving the unoriented weak structure, and also, by an explicit hypothesis,
preserving the Witt defect in the quadratic case.

Nonorthogonality of the associated geometries defines an equivalence rela-
tion on the conjugates ofb and for any pairb′, b′′ of equivalent conjugates we
have a canonical(b′, b′′)-definable isomorphismιb′,b′′ between the geometries
as weak geometries. Letb1, b2, b3 be three conjugates ofb for which the corre-
sponding geometries are nonorthogonal. Using the orthogonality as above we
may show thatacl(b1, b2, b3) ∩ Pb3 = ∅ and hence the uniqueacl(b1, b2, b3)-
definable bijection betweenPb1 andPb3 agrees with the composition of the
canonical bijectionsPb1 ↔ Pb2 andPb2 ↔ Pb3 . So these identifications co-
here and we can attach to an equivalence classc of conjugates ofb a single
weak projective geometryQw

c canonically identified with the given weak pro-
jective geometries. The geometry we want is the basic projective geometry
Qc associated withQw

c . We still must check that it is in fact canonical. This
follows since the conjugates ofc distinct fromc are the classes of conjugates
of b inequivalent tob.

Lemma 2.5.3. LetPb be ab-definable projective geometry fully embedded in a
Lie coordinatizable structure, and letJc be a canonical projective geometry
nonorthogonal toPb with canonical parameterc. Thenc ∈ dcl(b) and
Pb ⊆ dcl(b, Jc).

Proof. For the first point, ifc′ is a conjugate ofc overb, thenPc′ is nonorthog-
onal toPb and hence toPc; so c = c′. Thusc ∈ dcl(b). There is a(b, c)-
definable bijection between the localizations ofPb andJc, and the localization
of Pb over{b, c} is Pb sincec ∈ dcl(b) (or for that matter sincec ∈ acl(b)).
Thus this bijection induces a function fromJc ontoPb.

Lemma 2.5.4. LetPb,Pb′ be nonorthogonalb-definable andb′-definable canon-
ical projective geometries, not assumed to be conjugate. Then dcl(b) =
dcl(b′) and there is a unique(b, b′)-definable bijection between them, which
is an isomorphism of weak, unoriented geometries.



38 BASIC NOTIONS

Proof. The first point follows from Lemma 2.5.3 and allows us to construe
(b, b′) as eitherb or b′. The rest is in Lemmas 2.4.3 and 2.4.6.

We will discuss the issue of orientation further.

Lemma 2.5.5. Let Pb be a canonical projective quadratic geometry. There
is a coordinatizing quadratic geometryJc and a definable unoriented weak
isomorphism ofPb with Jc. We may choosec so that if we orientPc ac-
cording to this isomorphism, the orientation is independent of the choice of
c within its type overb.

Proof. LetJc be a coordinatizing geometry not orthogonal toP and minimized
in the sense thatc is as low in the tree structure onM as possible. Then by the
previous lemmab ∈ dcl(c) and by the minimization, as in the proof of Lemma
2.5.2,acl(c) ∩ P = ∅. Thus the nonorthogonality gives a definable weak un-
oriented isomorphism. Conjugates ofc overb, or for that matter conjugates of
c over the empty set for which the corresponding geometry is nonorthogonal to
Pb, have compatible orientations by the orientation condition in the definition
of Lie coordinatization.

For a discussion of orientation the following terminology is convenient.

Definition 2.5.6
1. A standard system of geometriesis a 0-definable functionJ : A→ Meq

whose domainA is a complete type over∅ and whose range is a family of
canonical projective geometries.
2. Two standard systems of geometries areequivalentif they contain a pair
of nonorthogonal geometries. In this case there is a 0-definable identifica-
tion between the systems, since nonorthogonality gives us a1-1 correspon-
dence between the domains, and the nonorthogonal pairs havecanonical
identifications.

Lemma 2.5.7. In a Lie coordinatized structure the quadratic geometries can
be assigned compatible orientations, in the sense that in nonorthogonal ge-
ometries the orientations are identified by the canonical weak unoriented
isomorphism between appropriate localizations. This can be done 0-definably.

Proof. We first orient the standard systems made up of projective quadratic
geometries. Here we just choose one representative of each equivalence class
of such systems, and use the given orientations.

With this as a frame of reference we orient an arbitrary quadratic geometry
Pb. There is a unique canonical projective quadratic geometryJc oriented in
the first step and nonorthogonal toPb, and we havec ∈ dcl(b). There is a
canonical isomorphism betweenPb and the localization ofJc atA = acl(b) ∩
Jc. (By Lemma 2.5.5 it provides a well-defined identification oforientations.)
It will be convenient to look at the linear quadratic geometry (V,Q) associated
with Jc, and atB = acl(b) ∩ (V,Q), which carries the same information asA
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(as far asJc is concerned).
B does not meetQ, as this would result in the localization ofJc atB, and

hence alsoPb, being orthogonal rather than quadratic. LetB0 be a linear
complement toradB inB. We can localize atB in two steps: first with respect
to B0, then with respect toradB. At the first step the setQ is unchanged,
but we modify the Witt defect as follows:ωB0(q¯B⊥

0 ) = ω(q) + ω(q¯B0).
Here, on the right,ω is in one case the orientation function chosen already
on Jc, and in the other the ordinary Witt defect for a form on an finite and
even dimensional space (B0 carries a nondegenerate symplectic form and is
therefore even dimensional). At the second localization, by radB, the linear
part is replaced by a subspace of finite codimension and the radical is factored
out; the spaceQ is also reduced to the set of forms vanishing onradB. As this
does not alter the Witt defect of such forms in the finite dimensional case, we
let ωB = ωB0¯Q ∩B⊥.

One must check the consistency of such conventions, but thisreduces to
their correctness in the finite dimensional case, using common localizations.

The initial orientations on the coordinate geometries willnot necessarily
agree with the ones given here; according to the orientationcondition, on a
given level of the coordinatization tree, within a given nonorthogonality class,
they will be completely correct or completely incorrect. Wemay change the
orientations of the coordinate geometries to agree with ourcanonical assign-
ment, and nothing is lost.

Example 2.5.8

It is appropriate to return to the canonical unoriented example at this point.
Take an unoriented quadratic geometry, and letM consist of two copies of
this geometry, with an identification, and with both possible orientations. To
orient this geometry one must name an element ofacl(∅).

There are two canonical projectives in this example, with each of the two
possible orientations. Our canonical orientation procedure is not available. We
can, however, pick an orientation on one of the canonical projective quadratic
geometries and extend this orientation to the rest of the structure. Since the
orientation is inacl(∅)− dcl(∅), this produces a slightly enriched structure.

If the example is put higher up the coordinatization tree of astructure, it
forces us to break the symmetry between elements which are not algebraic
over∅.
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Smooth Approximability

3.1 ENVELOPES

We defined standard systems of geometries at the end of the last section. These
provide a framework for the construction of Zilber/Lachlanenvelopes.

Definition 3.1.1. LetM be Lie coordinatized.
1. A regular expansionof M is the structure obtained by adjoining toM
finitely many sorts ofMeq with the induced structure.

Note that a regular expansion ofM is Lie coordinatizable but not liter-
ally Lie coordinatized, since the additional sorts are disjoint from the tree
structure.

A regular expansion ofM is adequateif it contains a copy of each canon-
ical projective which is nonorthogonal to a coordinatizinggeometry ofM.

The remainder of this definition should be applied only to adequate regu-
lar expansions of Lie coordinatized structures (as will be seen on inspection
of the definition of envelopes, below).
2. Anapproximationto a geometry of a given type is a finite or countable
dimensional geometry of the same type.

This includes, of course, a nondegeneracy condition on the bilinear or
quadratic forms involved, and in the case of a quadratic geometry, the quad-
ratic part must be present (a symplectic space withQ empty is not an approx-
imate quadratic space), andω in the finite dimensional case must actually
be the Witt defect.
3. A dimension functionis a functionµ defined on equivalence classes of
standard systems of geometries, with values isomorphism types of approxi-
mations to canonical projective geometries of the given type. (This is actu-
ally determined by a dimension, and the type.)

By the usual abuse of notation, we construe these functions as functions
whose domain consists of all standard systems.
4. If µ is a dimension function, then aµ-envelopeis a subsetE satisfying
the following three conditions:

(i) E is algebraically closed inM (notMeq);
(ii) For c ∈ M − E, there is a standard system of geometriesJ with

domainA and an elementb ∈ A ∩ E for which acl(E, c) ∩ Jb properly
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contains acl(E) ∩ Jb;
(iii) For J a standard system of geometries defined onA andb ∈ A ∩ E,
Jb ∩E has the isomorphism type given byµ(J).

5. If µ is a dimension function andE is aµ-envelope we writedimJ(E) for
µ(J) whenE meets the domain ofJ , and otherwise we writedimJ (E) =
−1; in the latter case the valueµ(J) is irrelevant to the structure ofE.

Our goals are existence, finiteness, and homogeneity of envelopes.

Lemma 3.1.2. Let M be an adequate regular expansion of a Lie coordina-
tized structure. Suppose thatE is algebraically closed, and satisfies (iii)
with respect to the standard system of geometriesJ . Suppose thatJ ′ is an
equivalent standard system of geometries and thatJ, J ′ are inM (not just
Meq). ThenE satisfies (iii) with respect toJ ′.

Proof. We note that asE ⊆ M it would not make a great deal of sense to
attempt to say something substantial about its intersection with a geometry
lying partly outsideM.

Condition (iii) for J ′ means that ifb′ ∈ E ∩ A′, whereA′ is the domain of
J ′, thenE ∩ J ′

b′ has the structure specified byµ(J ′) = µ(J). The elementb′

corresponds to an elementb of E ∩ A, with A the domain ofJ , and there is a
0-definable bijection betweenE ∩ Jb andE ∩ J ′

b′ which is an isomorphism of
weak unoriented structures. This may involve twisting by a field automorphism
or switching the sides of a polar geometry, but does not affect the isomorphism
type. If we use canonical orientations, it will preserve them.

Lemma 3.1.3 (Existence).LetM be an adequate regular expansion of a Lie
coordinatized structure.

1. LetE0 ⊆ M be algebraically closed inM and suppose that for each
standard system of geometriesJ with domainA and eachb ∈ E0 ∩ A,
Jb ∩ E0 embeds into a structure of the isomorphism typeµ(J). ThenE0 is
contained in aµ-envelope.

2. In particular,µ-envelopes exist, for anyµ.

Proof. Let J be a representative set of standard systems of geometries. By
the previous lemma it suffices to work withJ . We may takeE containingE0

maximal algebraically closed such that

(∗) ForJ ∈ J with domainA, andb ∈ E ∩ A,
Jb ∩ E embeds into a structure of the type specified byµ(J).

We need to check both (ii) and (iii) forE.
We begin with (ii). Supposec ∈M − E. LetE′ = acl(E ∪ {c}). Then we

have someJ ∈ J with domainA, and someb ∈ E′ ∩ A, for whichJb ∩ E′

does not embed into a structure of the type specified byµ(J). If b ∈ A ∩ E
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thenJb ∩ E does embed in such a structure, and (ii) follows. Now suppose
that b /∈ A ∩ E. In this case we show thatJb ∩ E = ∅ 6= Jb ∩ E′, so that
(ii) holds also in this case. AsE is definably closed it is a subtree ofM with
respect to the coordinatizing tree. Asb is not definable overE, Jb is orthogonal
to the geometries associated with this tree. Thus by induction over this tree,
acl(E) ∩ Jb = ∅.

We turn to (iii), and we need only concern ourselves here withJ ∈ J .
Suppose thatJ has domainA, andb ∈ E ∩ A, and letB be an extension
of Jb ∩ E insideJb of the desired isomorphism typeµ(J). Our claim is that
B ⊆ E. LetE′ = acl(E ∪ B). We will argue thatE′ also has the property
(∗), soE′ = E.

If J ′ ∈ J has domainA′, andb′ ∈ A′, then unlessJ ′ = J andb′ = b,
the geometriesJb, Jb′ are orthogonal andJb′ ∩ E′ = Jb′ ∩ E. On the other
hand, by Lemma 2.3.3 any element ofJeq

b algebraic overE is algebraic over
Jb∩E. This applies in particular to anyE-definable formulaϕ(x, y) such that
for some elementsb ∈ B, ϕ(x,b) isolates an algebraic type overE ∪B in Jb.
ThusJb ∩ E′ = Jb ∩ acl((E ∩ Jb) ∪B) = B.

Lemma 3.1.4 (Finiteness).LetM be an adequate regular expansion of a Lie
coordinatized structure. Suppose that for each standard system of geome-
triesJ the dimension functionµ is finite. Then everyµ-envelopeE is finite.

Proof. E is algebraically closed inM and hence inherits a coordinatizing tree
from M. It suffices, therefore, to check that for anya ∈ E, its successors in
the tree form a finite set. We may suppose the successors are ofthe formE ∩
Pa with Pa ana-definable geometry inM, nonorthogonal to some canonical
projective geometryJb with b ≤ a in the tree. The size ofJb ∩E is controlled
by µ and there is ana-definable bijection between the localization ofJb at
acl(a) ∩ Jb and the projective version ofPa, so this goes over toE as well.
ThusE ∩ Pa is finite.

3.2 HOMOGENEITY

Definition 3.2.1

1. Let(V,A) be an affine space (a linear space with a regular action) defined
over the setB. A is freeoverB if there is no projective geometryJ defined
overB for whichA ⊆ acl(B, J). An elementa, or its type overB, is said
to beaffinely isolatedoverB if a belongs to the affine componentA of an
affine space(V,A) defined and free overB.

Note: As a copy ofV is definable overA in Aeq, it can and will be
suppressed in this context.
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2. LetA andA be two affine spaces free overB. They arealmost orthogonal
if there is no paira ∈ A, a′ ∈ A′ with acl(a,B) = acl(a′, B).

Lemma 3.2.2 (Uniqueness of Parallel Lines)
Let (V,A), (V ′, A′) be almost orthogonal affine spaces defined and free

over the algebraically closed setB, with PV andPV ′ complete1-types
overB. Let J be a projective geometry defined overB, not of quadratic
type, and stably embedded inM. For a ∈ A, a′ ∈ A′, andc ∈ J − B, the
triple (a, a′, c) is algebraically independent overB.

Proof. We have(V,A), (V ′, A′), andJ all defined overB. Our definitions
amount to the hypothesis that the elements(a, a′, c) are pairwise independent
overB, so if two of these geometries are orthogonal there is nothing to prove.
We suppose therefore that they are all nonorthogonal. In particular, the projec-
tivizationPV of V can be identified with part ofJ .

We consider the structureJ ∪ A. Fora ∈ A, A is definable overJ ∪ {a}
and henceJ ∪A is stably embedded inM. AsPV can be identified with part
of J , J ∪ A carries a modular geometry overB.

Now suppose toward a contradiction thatrk(aa′c/B) = 2. Take indepen-
dent conjugatesa1, c1 of a, c overa′. Thenrk(aca1c1/B) = 3. This takes
place inJ ∪ A, so there isd ∈ (J ∪ A) − B algebraic overacB anda1c1B,
hence inacl(a′, B). Thusacl(dB) = acl(a′B) and eitherd ∈ A, andA,A′

are not almost orthogonal, ord ∈ J , andA′ is not free overB.

Lemma 3.2.3. LetM be Lie coordinatized. LetA be an affine space defined
and free over the algebraically closed setB. LetB ⊆ B′ = acl(B′) with
B′ finite, and letJ be a canonical projective geometry associated withA.
Assume

1. J ∩B′ ⊆ B;
2. J ∩B is nondegenerate (if there is some form or polarity present);
3. If J is a quadratic geometry, then its quadratic partQ meetsB.

ThenA either meetsB′, or is free over it.

Proof. We remark that ifA does not meetB′, A need not remain a geometry
overB′, but will split into a finite number of affine pregeometries overB′. We
will call A free overB′ if this applies to each of the associated geometries over
B′.

The claim will be proved by induction with respect to the coordinatization of
the algebraically closed setB′ relative toB, inherited fromM. Accordingly
we may takeB′ = acl(B, a′), wherea′ comes from an affine, quadratic, or
projective geometryA′ defined overB.

Assume thatA∩B′ = ∅ and some affine partA0 of A relative toB′ is con-
tained inacl(B, a′, J ′) with J ′ = Jb′ projective and defined overB′. AsJ ′ ⊆
acl(J, b′) the same applies withJ ′ replaced byJ , that is:A0 ⊆ acl(B, a′, J),
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whileA∩ acl(B, J) = ∅. It follows thatA′ andJ are nonorthogonal, and that
A′ ∩ acl(B, J) = ∅. In view of (iii) we haveA′ affine, and easily free overB.

If A andA′ are not almost orthogonal overB, thenB′ meetsA. Suppose
therefore thatA andA′ are almost orthogonal overB. Then we will apply
the previous lemma. Choosea ∈ A. As a ∈ acl(B, a′, J), and the geometry
of (A, J) is modular, there isc ∈ J ∩ acl(Baa′) with a ∈ acl(Ba′c). Then
c /∈ B, and in view of (iii) we may supposec is not in the quadratic part ofJ ,
if there is a quadratic part.

Let JB be the localization ofJ overB. By hypothesis (iii) this is not a
quadratic geometry. By hypothesis (ii)J is in the algebraic closure ofB ∪JB;
normally overB, J would break up into a number of pregeometries, at least
one ((J ∩ B)⊥) sitting over the localization, while some of the cosets would
be affine pregeometries. However, sinceJ ∩B is nondegenerate, all elements
of J lie in translations by elements ofB of (J ∩B)⊥. Of course, when forms
are absent, the situation is trivial.

Replacingc momentarily by an element ofJB having the same algebraic
closure overB, we may apply the previous lemma toa, a′, c, reaching a con-
tradiction.

Lemma 3.2.4. Let M be an adequate regular explansion of a Lie coordi-
natized structure, letµ be a dimension function, and letE andE′ be µ-
envelopes. IfA ⊆ E, A′ ⊆ E′ are finite, andf : A → A′ is elementary
in M, thenf extends to an elementary map fromE to E′. In particular,
µ-envelopes are unique, and (takingE = E′) homogeneous.

Proof. It suffices to treat the case in whichE andE′ are finite, as the existence
and finiteness properties then suffice for a back-and-forth argument using finite
envelopes. What we must show is that ifA 6= E then there is an extension off
to acl(A∪{b}) for someb ∈ E−A. There are essentially two cases, depending
on whether we are trying to add a point to the domain coming from a canonical
projective geometry, or we are extending to the other pointsof the envelope.
We may supposeA andA′ are algebraically closed.

Case 1. There is a standard system of geometriesJ and ana ∈ A for which
Ja ∩ E is not contained inA.

ExpandJa to a basic projective geometryJ◦
a∗ defined overa∗ = acl(a). Let

L,L′ be finite dimensional linear geometries coveringJ◦
a∗ ∩E andJ◦

fa∗ ∩E′,
respectively. ThenL andL′ are isomorphic, and their isomorphism type is
characterized by its type, dimension, and Witt defect (if applicable).

As f is elementary, it gives a partial isomorphism between someJa∩E and
Jfa ∩ E′, which lifts to an elementary map between the correspondingparts
of L andL′. Let f̂ be an extension off by an isomorphism ofL with L′. The
existence of such a compatible extension is trivial in the absence of forms and
given by Witt’s theorem [Wi] otherwise, with the exception of the polar and



HOMOGENEITY 45

quadratic cases. The polar case is quite straightforward. In the quadratic case
one first extendsf so that its domain meetsQ, and then the problem reduces
to the orthogonal case, in other words to Witt’s theorem.

By weak elimination of imaginaries and stable embedding, sinceA = aclA,
we find thattp(A/L∩A) determinestp(A/L). Similarly, the typetp(A′/L′ ∩
A′) determinestp(A′/L′). Implicit in this determination is knowledge of the
type ofL or L′ over∅. Sincef̂ preserves the two relevant types, it preserves
tp(A/L) and is thus elementary.

Case 2. For any standard system of geometriesJ , and anya ∈ A, Ja∩E ⊆
A.

It follows that the same applies toA′. We extendf to a minimal element
a in the coordinatization tree forE, not already in the domain. So the tree
predecessorb of a is inA, anda is not algebraic overb. Accordinglya belongs
to a geometryJb which is nonorthogonal to a canonical projective geometry.
As we are not in Case 1,Jb is affine, and free overA. If f is extended to
acl(A) ∩Meq we may takeJb basic.

InE′ we have, correspondingly,Jfb affine and free overA′. However, asE′

is an envelope, the maximality condition (clause (ii)) implies thatJfb cannot
be free overE′. Lemma 3.2.3 applies in this situation, to the affine spaceJfb
and the algebraically closed setsA′ andE′, in view of the hypothesis for Case
2. Thus the conclusion is thatJfb meetsE′.

We will next find an elementa′ of Jfb ∩ E′ satisfying the condition

(a, λ) = (a′, fλ) for all λ ∈ J∗
b ∩ A (the affine dual).

Here one should, strictly speaking, again extendf to the algebraic closure of
A in Meq. We consider a stably embedded canonical projective geometry P
associated withJb. ThenP is b-definable and the projectivization of the linear
spaceVb which acts regularly onJb is definably isomorphic to one of the sorts
of the localizationP/b of P atb. By our case assumptionP ∩E is as specified
by µ and is, in particular, nondegenerate. The same applies toP ′ ∩ E′. Thus
the action of the definable linear dual ofVb′ is represented, in its action on
Vb′ ∩E′, by elements ofA′ (or acl(A′) ∩Meq, more precisely). AsE′ meets
the affine spaceJb′ , the same applies to the affine dual. Again by the linear
nondegeneracy and the fact thatE′ meetsJb′ , the specified values for(a′, fλ)
can be realized inE′ ∩ Jb′ . We extendf by f(a) = a′.

Now the type ofA over (PVb, Jb, J∗
b ) is determined by its type over its

algebraic closure in that geometry, and this applies in particular to the type of
A overa. So in order to see thatf remains elementary, it suffices to check that
a anda′ have corresponding types overAeq ∩ (PVb, Jb, J

∗
b ) and itsf -image;

and this is what we have done.

Corollary 3.2.5. Let M be an adequate regular expansion of a Lie coordi-
natized structure. Then a subsetE of M is an envelope if and only if the
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following conditions are satisfied:

1. E is algebraically closed;
2. For anyc ∈M −E, there is a projective geometryJ defined overE, not

quadratic, and an elementc′ ∈ (J ∩ acl(Ec))− E;
3. If c1, c2 ∈ E are conjugate inM andD(c1), D(c2) are correspond-

ing conjugate definable geometries, thenD(c1) ∩ E andD(c2) ∩ E are
isomorphic.

This does not depend on a particular coordinatization ofM.

3.3 FINITE STRUCTURES

In this part we summarize some useful facts applying to finitegeometries and
their automorphism groups, notably the result of [KLM].

Definition 3.3.1. A simpleLie geometryL is either a weak linear geometry
of any type other than polar or quadratic, the projectivization of such a
geometry, or the affine or quadratic part of a geometry; in thelatter case
the “missing,” linear part is to be considered as encoded intoLeq.

These do not have the best properties model theoretically, and a polar geo-
metry cannot be recovered at all from a single simple Lie geometry, but apart
from this, at the level ofCeq there is little difference between simple Lie ge-
ometries and the geometries considered previously.

Definition 3.3.2
1. A coordinatizing structureof type(e,K) and dimensiond is a structureC
with a transitive automorphism group, carrying an equivalence relationE
with e < ∞ classes, such that each class carries the structure of a simple
Lie geometry over the finite fieldK, of dimensiond. (One could include the
type of the geometry as well in the type ofC.)
2. LetC be a coordinatizing structure of type(e,K) and dimensiond, and
let τ be the type over the empty set of a finite algebraically closedsubset
(not sequence)t of C. TheGrassmannianΓ(C, τ) is the set of realizations
of the typeτ in C, with the structure induced byC. It is said to havetype
(e,K, τ) anddimensiond.
3. LetC be a coordinatizing structure.C is properif each equivalence class
of C as a geometry is canonically embedded inC, or equivalently if the
automorphism group induced on each class is dense in its automorphism
group as a geometry (in the finite dimensional case, dense means equal).
If C is finite dimensional, it issemi-properif the automorphism group ofC
induces a subgroup of the automorphism groupG of the geometry which
containsG(∞).
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4. A structure isprimitive if it has no nontrivial 0-definable equivalence
relation.

Fact 3.3.3 [KLM]. For eachk there isnk such that for any finite primitive
structureM of order at leastnk, if M has at mostk 5-types thenM is iso-
morphic to a semiproper Grassmannian of type(e,K, τ) with e, |K|, |τ | ≤
k, where|τ | has the obvious meaning.

As noted in the introduction, D. Macpherson found [Mp2] thatthe method
of proof of [KLM] suffices to prove the same fact with5 reduced to4. The
statement is quite false for3.

The next set of facts is standard in content, though not normally phrased
precisely as follows.

Fact 3.3.4 [CaL]
1. Letk be an integer. There is ad = dk such that for any finite basic simple

projective Lie geometryL of dimension at leastd we have

(i) The socleG of Aut(L), is simple and nonabelian, and Aut(L)/G is
solvable of class at most 2;

(ii) G and AutL have the same orbits onLk;

(iii) The automorphism group ofL as a weak geometrycoincides with
AutG. with one exception: ifL is a pure vector space then the
automorphism group ofL is a subgroup of index 2 in AutG, and
the full group AutG is realized geometrically as the automorphism
group of the weak polar geometry(L,L∗).

2. If J1, J2 are nondegenerate basic projective geometries, not quadratic,
of large enough dimension, and their automorphism groups have iso-
morphic socles, then they are isomorphic as weak geometries.

Here our policy of leaving the degenerate case to fend for itself may be
too lax; but the statement certainly applies also in the context of Sym(n) and
Aut(n).

Remarks 3.3.5

Note that the automorphism groups of the basic geometries are classical groups
with no Galois action. In the first statement we ignore 4-dimensional symplec-
tic groups over fields of characteristic 2 and 8-dimensionalorthogonal groups
of positive Witt defect by takingd > 8. The polar geometry implements a
“graph automorphism,” of the general linear group in any dimension. The
graph automorphism of order 2 for Chevalley groups of typeDn is part of
the geometric automorphism group.G is usually equal to the commutator
subgroup ofAutL, with exceptions in the orthogonal case (and a few small
exceptions that can be ignored here).
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Fact 3.3.6. For any finite basic simple linear geometryV of dimension at least
5, if G = (AutV )(∞) acts on an affine spaceA overV so as to induce its
standard action onV , then eitherG fixes a point ofA or the characteristic
is 2, G is the symplectic group operating on its natural moduleV , and the
action ofG on A is definably equivalent to its action onQ, the space of
quadratic maps onV associated to the given form.

Proof. Taking any pointa ∈ A as a base point, the functionf(g) = ag−a can
be construed as a function fromG to V , and is a 1-cocycle. Change of base
point gives a cohomologous cocycle. If this cocycle is trivial, it means we may
choose the base point so that this cocycle vanishes, anda is a fixed point for
the action ofG.

Typically the first cohomology group for a (possibly twisted) Chevalley
group on its natural module vanishes; see the tables in [JP],for example.
Rather large counterexamples are associated with exceptional Chevalley groups,
but for the classical types (A − D, possibly twisted) restricted to dimension
greater than 4, the only counterexamples involving naturalmodules are 1-
dimensional cohomology groups for symplectic groups in characteristic 2 (listed
twice in [JP], once asCn and once asBn, since the natural module for the odd
dimensional orthogonal groups in even characteristic corresponds to a repre-
sentation of this group as the symplectic group in one lower dimension). This
is the case in which we haveQ, or more exactlyαQ for α ∈ K×. The latter
can be thought of most naturally as the space of quadratic forms inducingαβ,
whereβ is the given symplectic form onV , but can also be viewed as the space
Q with the actionq 7→ q + λ2v replaced by the actionq 7→ q + λ2

α1/2v
.

Thus we can either considerA as isomorphic toQ, by an isomorphism
which is not the identity onV , or as definably equivalent toQ overV , holding
V fixed and rescaling the regular action onA; our formulation of the result
reflects the second alternative.

Remark 3.3.7.
It seems advisable to remember that the “Q,” alternative in the preceding state-
ment is in factαQ for some uniqueα ∈ K.

Fact 3.3.8 [CaK]. LetG be a subgroup of a classical group acting naturally
on a finite basic simple classical projective geometryP , and suppose that
G has the same action onP 3 as AutP . ThenG contains(AutP )(∞) (the
iterated derived group).

This iterated derived group is at worst(AutP )(2) and is a simple normal
subgroup with solvable quotient.

Remark 3.3.9.
In this connection, our general policy of leaving the degenerate case to fend for
itself is definitely too lax. A similar statement does apply also in the context
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of Sym(n) andAut(n), with 6-tuples in place of3-tuples, but one needs the
classification of the finite simple groups to see this.

Fact 3.3.8 is phrased rather differently in [CaK], as the result is considerably
sharper in more than one respect. Here we ignore low dimensional examples
and also invoke a significantly stronger transitivity hypothesis. A somewhat
more complete statement of the result of [CaK] goes as follows.

Fact 3.3.10 [CaK, cf. Theorem IV].LetG ≤ ΓL(n, q), n ≥ 3, and suppose
G is 2-transitive on the corresponding projective space. Then eitherG ≥
SL(n, q) or G ≤ SL(4, 2).

Fact 3.3.11 [CaK, cf. Theorem IV].LetG ≤ H = ΓSp(n, q), ΓOǫ(n, q),
or ΓU(n, q) with n > 13 and suppose thatG has the same orbits on 2-
dimensional spaces asH . ThenG ≥ H(∞).

Theorem IV of [CaK] varies from Fact 3.3.10 in the following respects. The
transitivity hypothesis is weaker, amounting to transitivity on pairs consist-
ing of two isotropic nonorthogonal lines. This allows threelow dimensional
exceptions and two families defined over the fieldF2, whereG normalizes a
classical subgroup with coefficients inF4, so thatG has more than one orbit
on totally isotropic planes.

Lemma 3.3.12.LetH be a normal subgroup of a product

G = G1 × · · · ×Gn

such thatH projects surjectively onto each product of the formGi × Gj .
ThenG/H is nilpotent of class at mostn − 2. In particular, ifG is perfect
thenG = H .

Proof. Let σi for 1 ≤ i ≤ n − 1 be a sequence of elements ofGn and
for eachi let σ∗

i ∈ G be an element ofH which projects ontoσi in thenth
coordinate, and1 in thei-th coordinate. Then any iterated commutatorγ(σ∗

i )
in the elementsσ∗

i will project ontoγ(σi) inGn, and1 in the other coordinates.
It follows easily that any iterated commutator of lengthn − 1 belongs toH ,
and our claim follows.

Remark 3.3.13. The proof of Fact 3.3.6 actually involves a great deal of cal-
culation, somewhat disguised by the fact that the reference[JP] presents the
final outcome in tabular form. A qualitative version of this,sufficient for
our purposes, can be obtained by postponing the issue somewhat and mak-
ing use of our later results. We will indicate this approach.

View (A, V ) as a structure by endowing it with all invariant relations.
Replacing the bound “5” by “sufficiently large,” we may takeV to have a
nonstandard dimension. If we show thatA has either a0-definable point, or
quadratic structure, then the same follows for sufficientlylarge finite dimen-
sions.
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The induced structure onV is that of a standard linear geometry. LetV ′

be the structure induced onV by (V,A, a) with a a point ofA. Note thatV ′

interprets the triple(V,A, a). One cannot expectV ′ to be stably embedded,
in view of the characteristic2 case, but we still expect

(∗) V ′ is Lie coordinatized.

Given (∗), one deduces Fact 3.3.6 from the theorem on reducts and the
recognition lemmas: by Proposition 7.5.4(V,A) is weakly Lie coordina-
tized. By Lemma 6.2.11V is part of a basic linear geometry in this structure,
and Proposition 7.1.7 recognizesA.

The theorem on reducts can also be used in the proof of(∗) itself. Note
that any two unstable linear geometries interpret each other, provided only
that the characteristics of the base fields are equal. Once reducts are under
control, one can expand the geometry to a polar geometry overa field of size
greater than2. This has the effect of reducing all cases of(∗) to the simplest
case of Fact 3.3.6, namely the general linear group, which can be handled
by a direct argument.

3.4 ORTHOGONALITY REVISITED

For simplicity we will work for some time in a nonstandard extension of the set
theoretic universe in which we have infinite integers. This gives a rigorous ba-
sis for the treatment of sequences of finite structures of increasing size in terms
of one infinitely large structure of integral cardinality. In this context it will be
important to distinguish internal and external objects, notably in connection
with the languages used, and the supply of automorphisms available.

Definition 3.4.1. Let M be an internally finite structure with internal lan-
guageL0 in a nonstandard extension of the universe of set theory. Then
M∗ is the structure with the same universe, in a language whose atomic
relation symbols consist of names for all the relations in finitely many vari-
ables defined onM byL0-formulas.

Observe thatM∗ is not an element of the nonstandard universe. IfM is a
nonstandard finite model of a standard theoryT in the languageL, then the
corresponding languageL0 (normally calledL∗ in this case) is the language
corresponding toL in the nonstandard universe; this has more variables than
L (xn for all integersn, standard or nonstandard), and more importantly, con-
sists of arbitrary internally finite well-formed formulas in its language. This
includes formulas with infinitely many (but internally finitely many) free vari-
ables; these are discarded in forming the language forM∗, soM∗ is a reduct
of M from the nonstandard languageL∗, one which is in general richer than
the reduct ofM to the standard languageL. For a concrete example, consider a
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discrete linear order of nonstandard finite length: among the predicates ofM∗

one has, for example, the distance predicatesDn(x, y) in two variables, for
everyn up to the (nonstandard) size of the order. Of course, in this case there
are no nontrivial internal automorphisms ofM; in fact, there are no nontrivial
automorphisms ofM∗.

Lemma 3.4.2. LetM be an internally finite structure, andJ a finite disjoint
union of basic 0-definable projective simple Lie geometrieswith no addi-
tional structure. LetG be AutJ and letG1 be (AutJ)(∞) (the iterated
derived group), where both AutJ and AutJ (∞) are understood internally
(the latter coinciding with the internal socle here), and automorphisms are
taken with respect to the geometric structure. LetH be the group of auto-
morphisms ofJ which are induced by internal automorphisms ofM. Then
J is canonically embedded inM∗ if and only ifH containsG1.

Proof. Suppose first thatJ consists of a single projective geometry.J is
canonically embedded inM∗ if and only if for each finiten, G andH have
the same orbits onn-tuples inJ ; applying Fact 3.3.4, part 1(ii), this means
thatG1 andH have the same orbits onn-tuples inJ . This certainly holds if
H ⊇ G1. Conversely ifH has the same orbits onJ asG, it containsG1 by
Fact 3.3.8.

The argument is similar in the general case, but we must justify further the
claim that ifH acts onn-tuples ofJ as doesG, then it containsG1. Arguing
inductively, it suffices to show that the pointwise stabilizer of J1 in H acts
onm-tuples fromJ2 × · · · × Jn asG1 does. LetB ⊆ J2 × · · · × Jn have
cardinalitym, and letg ∈ G1. By the argument of the first part, the action of
the pointwise stabilizerHBg onJ1 induces the action ofg onJ1. Hence in its
action onJ2 × Jn, HJ1

has the same orbits onm-tuples asG; by induction
thenHJ1

induces the action ofG1 onJ2 × Jn. It follows thatH inducesG1.

Lemma 3.4.3. LetM be an internally finite infinite structure. LetJ1, J2 be a
pair of basic pure projective geometries (with no forms) defined and orthog-
onal over the algebraically closed setA in the sense that(J1, J2; J1∩A, J2∩
A) is canonically embedded inM. LetJ = J1 ∪ J2, AJ = A ∩ J . Then
the permutation groupG induced onJ by the internal automorphism group
of M contains Aut(J ;AJ)

(∞) (which in this case is just the commutator
subgroup of Aut(J ;AJ )). All group theoretic notions are to be understood
internally here.

Proof. For notational definiteness let us assume thatA ∩ Ji is nonempty for
eachi. In the linear model we have vector spacesVi with PVi = Ji and we
will take Ui = acl(A) ∩ Vi, and decomposeVi = Ui ⊕Wi. Then we may
check

Aut(Ji;A ∩ Ji) ≃ Hom(Wi, Ui)⋊ GL(Wi).
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Our claim is that the groupG contains the product of the two groupsHom(Wi, Ui)⋊
SL(Wi), acting onJ . We know that on the localizationsAutM inducesPSL(W1)×
PSL(W2) as these geometries are orthogonal. LetH1 be the kernel of the
natural map fromG to AutJ2/(A ∩ J2). ThenH1 covers at leastPSL(W1)
and is normal inG. It follows that the same applies to the perfect subgroup
H

(∞)
1 . NowH

(∞)
1 projects trivially into the second factor and may therefore

be thought of as a normal subgroup ofAut(J1;A∩J1) coveringPSL(W1); any
such subgroup containsHom(W1, A ∩ J1)⋊ SL(W1), by inspection.

Remark 3.4.4. We are working here with automorphisms ofpointedprojective
geometries, in which constants have been added. It is not always possible
to reduce their analysis to a localization. In a similar vein, Lemma 3.4.2
may be proved for pointed pure projective geometries as well, or for that
matter for any pointed projective geometries, if we are willing to write out
the stabilizers of various sets.

Definition 3.4.5. A collection ofA-definable setsSi is said to bejointly or-
thogonal over A in M if the disjoint union of the structures
(Si, acl(A) ∩ Si) is canonically embedded inM.

Lemma 3.4.6. LetJi be defined overA in M, with weak elimination of imag-
inaries, and letB ⊆ J =

⋃

i Ji. Then theJi are jointly orthogonal inM
overA if and only if they are jointly orthogonal inM overA ∪B.

Proof. If they are jointly orthogonal overA andR is a relation onJ definable
fromA∪⋃i acl(AB)∩Ji, thenR is the specialization of a 0-definable relation
S overJ to parameters from

⋃

i acl(AB) ∩ Ji. AccordinglyS is a boolean
combination of products of(acl(A) ∩ Ji)-definable relations onJi, and after
specialization the same applies toR overAB.

Conversely, assuming orthogonality overA ∪ B, let R beA-definable on
J . This is definable by hypothesis inJ , with respect to parameters from
⋃

i acl(AB) ∩ Ji. Viewing R as an element ofJeq, let e = acl(R) ∩ J .
By weak elimination of imaginaries,R is e-definable ande ⊆ acl(A)∩ J .

Lemma 3.4.7. Let M be an internally finite structure. LetJi (i ∈ I) be
canonically embedded projective Lie geometries inM∗, defined over, and
orthogonal in pairs over, the setA in M∗. Then they are jointly orthogonal
overA in M∗.

Proof. Let Ai = acl(A) ∩ Ji. The assumption is that(Ji ∪ Jj ;Ai ∪ Aj) is
canonically embedded inM∗. ExtendA by finite subsetsBi of Ji containing
Ai so thatBi is a nondegenerate subspace containing a quadratic point, if
possible. In the pure projective caseBi = Ai. We may replaceA by B =
A ∪⋃iBi. ThenAi is replaced byBi, the geometries continue to be pairwise
orthogonal, and it suffices to prove joint orthogonality over AB. For this, by
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the choice ofBi, except in the pure projective case it suffices to go to the
(nondegenerate) localizations, which are definably equivalent overBi to the
previous structures. Now we consider the groupH of permutations induced
by AutM on

⋃

i(Ji;Bi). Write Gi for Aut(Ji;Bi)
(∞). Applying Lemma

3.4.2 of§3.3 toH(∞), using the pairwise orthogonality, we findH ⊇ ∏iGi.
By Lemma 3.4.2 and the remark following Lemma 3.4.3 (used in the more
straightforward of the two directions) our claim follows.

Lemma 3.4.8. LetM be an internally finite structure. LetJ1, J2 be 0-definable
basic simple projective Lie geometries canonically embedded inM∗. Then
in M∗ we have one of the following:

1. J1 andJ2 are orthogonal.
2. There is a 0-definable bijection betweenJ1 andJ2.
3. J1 andJ2 are of pure projective type—that is, with no forms—and there

is a 0-definable duality between them making the pair(J1, J2) a polar
space.

Proof. Let S be the internal permutation group induced onJ = J1 ∪ J2 by
internal automorphisms ofM and letGi be the internal automorphism group
of the geometryJi. SetS1 = S ∩ (G1 ×G2)

(∞), again working internally (as

we will throughout). AsS projects ontoGi, S(∞) ⊆ S1 projects ontoG(∞)
i

for i = 1, 2. AsG(∞)
i is simple,S(∞) is either the full product or the graph of

an isomorphism betweenG(∞)
1 andG(∞)

2 .
In the first caseJ1 and J2 are orthogonal by Lemma 3.4.2. In the sec-

ond case, by Fact 3.3.11, the geometriesJ1 andJ2 are isomorphic as weak
geometries, and if we identify them by an isomorphism, thereby identifying
their automorphism groups,S1 is then the graph of an automorphism. With
the exception of the pure projective case, this automorphism is an inner au-
tomorphism with respect to the full automorphism group of the geometry, by
Fact 3.3.4, 1(iii); in the exceptional case it may be the composition of an inner
automorphism and a graph automorphism. IfS1 is the graph of an inner auto-
morphism corresponding to an isomorphismh : J1 ≃ J2, then asS1 is normal
in S, this isomorphism isS-invariant, hence0-definable. In the exceptional
caseS1 can be viewed as an isomorphism ofJ∗

1 andJ2; in particular,J∗
1 is

interpretable inM, and is0-definably isomorphic withJ2.

Lemma 3.4.9. LetM be an internally finite structure. LetA be a 0-definable
basic affine space, with corresponding linear and projective geometriesV
andJ . Suppose thatJ is canonically embedded inM∗. Then one of the
following holds inM∗:

1. A is canonically embedded inM∗.
2. There is a 0-definable point ofA in M∗.
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3. J is of quadratic type and there is a 0-definable bijection ofA with αQ
for some uniqueα.

Proof. As usual all computations with automorphisms will be takenrelative to
the internal automorphism groups.

We argue first thatV is canonically embedded inM∗. Let V1 beV with
all 0-definable relations fromM. ThenJ is canonically embedded in(J, V1),
and stably embedded sinceV1 ⊆ acl(J). Fora ∈ V , V1 ⊆ dcl(Ja), and hence
(V1, a) = (V, a) as structures. By weak elimination of imaginaries forV , it
follows thatV1 = V as structures.

Now consider

U = {v ∈ V : Translation byv is an automorphism ofA overV }.

For v in U let τv be the corresponding translation map onA. Then forα ∈
AutM∗ we haveταv = τα−1v. ThusU is (AutM∗)-invariant, and hence also
0-definable inM∗, sinceM is internally finite. ButV is canonically embed-
ded inM∗, soU = V orU = (0).

If U = V thenA is canonically embedded inM∗, sinceV is. Suppose
thatU = (0). Every automorphism ofV extends toM∗ and hence toA; as
U = (0), this extension is unique, andAutV acts onA. By Fact 3.3.6, we
have either a fixed point or a bijection withαQ, as in possibilities (2,3) above,
fixed by(AutV )(∞). Furthermore, the fixed point or bijection, as the case may
be, is unique, as otherwise this(AutV )(∞) would fix correspondingly either a
point ofV , or a nonidentity bijection ofαQ with itself. The first alternative is
obviously impossible. In the second case, ifq ∈ αQ is moved by the bijection,
sayq 7→ q+αλ2v, thenv is fixed by the corresponding orthogonal group, which
is again a contradiction. Thus the unique fixed point, or the unique bijection
with αQ, is fixed byAutM∗.

3.5 LIE COORDINATIZATION

In this section we introduce the notion of a locally Lie coordinatized struc-
ture, which is approximately a structure coordinatized in the manner of [KLM]
(in other words, without concern for stable embedding), andwe check that
the internally finite structures associated with 4-quasifinite structures are bi-
interpretable with locally Lie coordinatized structures,which is another way
of phrasing the results of [KLM] (with5 reduced to4). Then to complete the
proof of the equivalence of the first five conditions given in Theorem 2, we
show that4-quasifinite locally Lie coordinatized structures are Lie coordina-
tizable. See the discussion at the end of the present sectionfor a review of the
situation up to this point.
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Definition 3.5.1. A structureM in some nonstandard set theoretic universe
is locally Lie coordinatizedif it has nonstandard finite order, has finitely
many 1-types, carries a tree structure of finite height whoseunique root is
0-definable, and has a collectionJ of pairs (b, J) with b ∈ M, J a b-
definable component of ab-definable basic semiprojective, linear, or affine
geometry,J ⊆ M, satisfying the following conditions:

1. If a is not the root, then there isb < a such that eithera ∈ acl(b) or there
is a pair (b, Jb) ∈ J with a ∈ Jb.

2. If (b, J) ∈ J with J semiprojective or linear thenJ is canonically em-
bedded inM.

3. Affine spaces are preceded in the tree by their linear versions.

Lemma 3.5.2. LetΓ be an infinite dimensional proper Grassmannian of type
(e,K, τ), anda ∈ Γ. Then there are elementsa0, . . . , an ∈ Γeq ∩ acl(a)
and Lie geometriesJi, possibly affine, withJi 0-definable and canonically
embedded relative to the structure(Γ; a0, . . . , ai), such thata0 ∈ acl(∅),
ai+1 ∈ Ji, anda ∈ acl(a0, . . . , an).

Proof. The componentsJ of the underlying coordinatizing structureC can
be recovered from equivalence relations on pairs fromΓ. Let a0 consist of
these components as elements ofΓeq, together with enough elements ofacl(∅)
in Ceq to make them all basic. We defineai inductively, stopping whena ∈
acl(a0, . . . , ai). Given (a0, . . . , ai), with a not algebraic over them, pick a
componentJ meetingacl(a) − acl(a0, . . . , ai) and leta′ be a point of the
intersection. Consider the localization̄J = J/(a0, . . . , ai). This is not in gen-
eral the full quotient ofJ modulo algebraic closure relative to(a0, . . . , ai),
but just a part of that. The remainder consists of various geometries which are
either 0-definably equivalent to the localization, or affineover it. In particular,
we may takea′ to represent either an element of this localization or an ele-
ment of an affine geometry over the localization. More precisely, there is an
elementa′′ lying either in the localization̄J , or in an affine geometry over it,
for which acl(a0, . . . , ai, a′) = acl(a0, . . . , ai, a′′). We setai+1 = a′′ and
correspondinglyJi = J̄ or an affine geometry over̄J .

The localizations are canonically embedded in(Γ; a0, . . . , ai). In the affine
case Lemma 3.4.9 applies. If the affine space is actually a copy of Q, thena′′

is taken inQ (which is part of the semiprojective model).

Lemma 3.5.3. LetM be a structure,k an integer, and letΨ be a finite set of
first order formulas in four free variables. Suppose that forevery first order
sentenceϕ true inM there is a finite modelM′ satisfying

1. M′ |= ϕ.
2. M′ has at mostk 4-types.
3. Every 0-definable 4-ary relation onM′ is defined by one of the formulas
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in Ψ.

ThenM is bi-interpretable with a locally Lie coordinatized structureM′

which forms a finite cover ofM: M′ hasM as a0-definable quotient with
finite fibers (see§4.5 for a formal discussion of covers).

Proof. These conditions imply thatM itself has at mostk 4-types, and that
every 4-ary relation onM is defined by one of the formulas inΨ. In particular,
one can select a maximal chainE0 < . . . < Ed of 0-definable equivalence
relations onM and we may suppose that in all the modelsM′ this chain
remains a maximal chain of 0-definable equivalence relations (making use,
among other things, of condition (1)). We takeEi < Ei+1 to mean thatEi+1

is coarser thanEi.
For i fixed, anda ∈ M, we consider theEi+1-classC of a, and its quotient

C/Ei. It will suffice to prove thatC/Ei is either finite or a proper Grassman-
nian, as we can then coordinatizeM by coordinatizing each infinite section
C/Ei, starting from the coarsest, using Lemma 3.5.2; of course, if C/Ei is fi-
nite, then its elements are algebraic overC. When projective geometries occur
they can be replaced by semiprojective ones inMeq.

If C/Ei is infinite, then by [KLM], specifically by Fact 3.3.3, above,we
may suppose that in the finite structuresM′ approximatingM in the sense
of clauses (1–3) above, the corresponding setC′/E′

i carries the structure of a
semiproper Grassmannian of fixed type. There are4-place relationsRi which
encode the components of the coordinatizing structure underlying the Grass-
mannian, as well as the geometric structure on this coordinatizing structure.
Primarily, theRi should be equivalence relations on pairs, so as to encode the
elements of the coordinatizing structure; one can also encode, e.g., a ternary
addition relation, with some care, by using four variables in the Grassmannian.

There is also a statementγ(R1, . . . , Rn) expressing the fact thatC′/Ei is a
Grassmannian of the given type for this coordinatizing structure. Accordingly
in view of our hypotheses, a formula of the same type will apply to C/Ei,
for some choice of theRi, andC/Ei is the Grassmannian of a coordinatizing
structure.

To conclude we must check properness: that is, inC/Ei, we claim that each
0-definable relationS is geometrically definable (i.e., definable from the struc-
ture with which the Grassmannian inherits from the coordinatizing structure)
overacl(∅). For fixedS this will hold in sufficiently large finite approxima-
tionsM′ and by (1) this property passes toM.

Corollary 3.5.4. If M is strongly4-quasifinite, thenM is bi-interpretable
with a locally Lie coordinatized structure which forms a finite cover ofM.

Lemma 3.5.5. Let M be an internally finite structure and suppose thatM∗

has a finite numberk of 4-types. ThenM∗ is bi-interpretable with a locally
Lie coordinatized structure which forms a finite cover ofM∗.
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Proof. We apply the previous lemma. LetΨ be a set of representatives for
the internally 0-definable formulas in 4 variables inM∗. Letϕ be a first order
statement true inM∗. Let L ⊇ Ψ be a finite language contained in the lan-
guage ofM∗ such thatϕ is a formula ofL. We seek a finite structureM′ for
the languageL such that

1. M′ |= ϕ.
2. M′ has at mostk 4-types.
3. Every(AutM′)-invariant4-ary relation onM′ is defined by one of the

symbols inL.

Note that properties (1–3) taken jointly constitute a standard property of a
finite language, and are satisfied (in the internal sense) in anonstandardly finite
structure, hence also in some finite structure.

Lemma 3.5.6. LetJ be a semiprojective or basic linear Lie geometry,C ⊆ J
finite, and suppose that(J ;C) (C treated as a set of constants) is canoni-
cally embedded in the structure(M;A). LetC′ = aclM(A) ∩ J . ThenC′

is finite and(J ;C′) is canonically embedded in(M;A).

Proof. C′ ⊆ acl(C) in the sense ofJ , soC′ is finite.
LetR be anA-definable relation onJ . ThenR isC-definable and thusR ∈

Jeq. It follows from weak elimination of imaginaries thatR is C′-definable.

Lemma 3.5.7. Let M be internally finite,J a semiprojective or linear geo-
metry,B-definable, andC ⊆ J finite with(J/C) canonically embedded in
(M∗;B). Assume thatC is nondegenerate ifJ involves a form, and other-
wise, ifJ is pure projective, then assume that inM∗ the definable dual of
the linear modelV is trivial. Then the groupG induced onJ by the internal
automorphism group ofM overB contains(Aut(J ;C))(∞).

Proof. In the nondegenerate case, dealing withJ overC is equivalent to deal-
ing with J/C and Lemma 3.5.2 of§3.4 applies. In the pure projective case
(Aut(J ;C))(∞) has the formHom(W,U) ⋊ SL(W ) relative to a decomposi-
tion of the linear modelV =W ⊕U with U coveringC, and all we learn from
looking at the localization is thatG induces at leastSL(W ) on the localization;
thus the subgroup ofHom(W,U)⋊SL(W ) induced byG isH ⋊ SL(W ) with
H anSL(W )-invariant subgroup ofHom(W,U). ThenH will be Hom(W,U0)
for some subspaceU0 of U andP (W ⊕ U0) is the unique minimalG(∞)-
invariant subspace ofJ . Thus this space isG-invariant. But as we are in the
pure projective case there can be no definable subspace of finite codimension,
soU0 = U andH = Hom(W,U)⋊ SL(W ).
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Lemma 3.5.8. Let M be an internally finite locally Lie coordinatized struc-
ture with respect to the coordinate systems inJ and suppose that

1. WheneverJb ∈ J is pure projective, with linear modelV , the definable
dualV ∗ is (0).

2. WheneverJb ∈ J is symplectic of characteristic 2, there are no definable
quadratic forms onJb compatible with the given symplectic form.

Then for any finite subsetA of M closed downwards with respect to the
coordinatizing tree, we have

3. For b ∈ A, if Jb is nonaffine, then for some finite subsetC ⊆ Jb, the
structure(J ;C) is canonically embedded inM∗ overA.

4. For J1, J2 ∈ J nonaffine, with defining parameters inA, if Ci =
aclM∗(A) ∩ Ji, then either(J1;C1) and (J2;C2) are orthogonal over
A, or else there is anA-definable bijection ofJ1/C1 with J2/C2.

Proof. We prove (3, 4) simultaneously by induction on the size ofA.
LetA, b be given. We prove (3). IfA is the branch belowb then (3) holds

by definition of local lie coordinatization. So we may suppose thatA contains
elements not on the branch belowb; let c ∈ A be maximal among such ele-
ments, andB = A − {c}. Induction applies toB. In particular(Jb;C0) is
canonically embedded inM∗ overB, for some finiteC0 ⊆ Jb. We may take
C0 nondegenerate when a form is present. Then the internal automorphism
group ofM∗ overB induces at least(Aut(Jb;C0))

(∞) onJb.
If c is algebraic overB, then its stabilizer in the internal automorphism

group of(M∗;B) has finite index, hence also covers(Aut(Jb;C0))
(∞). Thus

in this case(Jb;C0) is canonically embedded inM∗ overA.
Suppose therefore thatc is not algebraic overB. Thus there is a geometry

J2 associated to a parameterd of B, with c ∈ J2. We will write J1 for Jb. Let
Ci = aclM∗(B) ∩ Ji. Then(Ji;Ci) is canonically embedded inM∗ overB
by Lemma 3.5.6, and (4) applies to this pair ifJ2 is also nonaffine.

Case 1.J2 is nonaffine, and(J2;C2) is orthogonal to(J1;C1).
Then (J1, J2;C1C2) is canonically embedded inM∗ overB and hence

(J1;C1) is canonically embedded inM∗ overA.

Case 2.J2 is affine, with corresponding linear geometryV2, and the projec-
tivizationP2 = P (V2/B) is orthogonal toJ1/B overB.

As the orthogonality statement is preserved by adding parameters fromJ1,
and this does not affect the desired conclusion (3), we may takeC1 to be non-
degenerate, orJ1 to be pure projective. We now work with the internal auto-
morphism groups.

LetG be the automorphism group of(J1;B),H the automorphism group of
J2, andG(X) andH(X) the pointwise stabilizers. ThenG(P2) = G since the
geometries are orthogonal and basic. ThusG/G(J2) ≃ H(P2, B)/H(P2, J1, B).
On the right hand side we have a solvable group and henceG(J2) contains
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G(∞). Thus(J1;B) is canonically embedded in(J1;BJ2) and in particular is
canonically embedded overB ∪ {c} = A.

Case 3.J2 is nonaffine and is nonorthogonal toJ1 overB.
Find J ′ = Jb′ with b′ ≤ b minimal such thatJ ′ andJ1 are nonorthogo-

nal. By the induction hypothesis (4) applied to the branch below b, there s
a b-definable bijection betweenJ ′/b andJ1, which must be an isomorphism
of weak geometries. Accordingly, we may replaceJ1 by J ′, and if b′ < b
conclude by induction. Thus we now assumeJ1 is orthogonal to every earlier
geometry. In much the same way we may assume thatJ2 is orthogonal to every
earlier geometry.

As these geometries are nonorthogonal, they are now assumedorthogonal
to every geometry associated with a parameter belowb or d. It follows that
acl(bd) ∩ Ji = ∅ for i = 1, 2. The induction hypothesis (4) applies to the
union of the branches up tob andd, and gives abd-definable bijection between
J1 andJ2. Thusc ∈ dcl(Bc′) for somec′ ∈ J1, and (3) follows.

Case 4.J2 is affine, with corresponding linear geometryV2; and the pro-
jectivizationP (V2/B) is nonorthogonal toJ1 overB.

We minimize parameters as in the previous case, takingJ1 orthogonal to
its predecessors, and takingP2 to be a (nonaffine) geometry nonorthogonal to
P (V2/B) and minimal belowd. ThenP2 andJ1 can be identified, as in the
previous case, and we apply Lemma 3.5.8 toJ2 andP2/B. There are then
three possibilities.

If J2 has a 0-definable point inM∗, thendcl(A) = dcl(B, c′) for some
c′ ∈ V2 and we may replacec by c′ and return to the previous case.

If in M∗ we have aB-definable bijection ofJ2 with Q, then by hypothesis
(2)Q is also part ofV2, and again we reduce to the previous case.

Suppose finally thatJ2 is canonically embedded inM∗. NowP2/B is ge-
ometrically definable overJ2, so(P2/B, J2) is canonically embedded inM∗.
Furthermore,P2/B is canonically embedded in(P2/B, J2; c) (one affine pa-
rameter). ThusP2/B is embedded in(M∗; c). AsP2 andJ1 areB-definably
identified, we wish to show thatP2 is itself canonically embedded in(M∗; c).
WhenP2 carries a form thenP2 is geometrically definable fromP2/B and
additional parameters fromP2. WhenP2 is pure projective it follows from
Lemma 3.5.7 that it is canonically embedded inM∗.

This exhausts the cases and proves (3). We now consider (4): so we have
J1, J2 nonaffine, with defining parameters inA, andCi = aclM∗(A) ∩ Ji.

We apply Lemma 3.5.8 of§3.4. By hypothesis (1) if the geometries involved
are pure projective, the polar case cannot arise between them. So either we
have anA-definable bijection ofJ1/C1 with J2/C2, or these localizations are
orthogonal overA.

Suppose therefore thatJ1/C1 andJ2/C2 are orthogonal overA. Our claim
is that then(J1;C1) and(J2;C2) are orthogonal overA. If J1 is pure projec-
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tive then Lemma 3.5.7 applies to give the orthogonality of(J1;C1) andJ2/C2.
If J1 involves a form then considerG = Aut(J1;C1) and the pointwise stabi-
lizerG(J1/C1). The quotientG/G(J1/C1) is solvable and as in Case 2 above
it follows that (J1;C1) andJ2/C2 are orthogonal overA. In this case they
remain orthogonal over a nondegenerate extensionC′

1 of C1 and(J1;C′
1) is

definably equivalent toJ1/C′
1.

If J2 is pure projective the same argument gives us that(J1;C1) or (J1;C′
1),

as the case may be, is orthogonal to(J2;C2). Otherwise, we may suppose
that bothJ1 andJ2 involve forms, and that(J1;C′

1) is definably equivalent
to J1/C1, so that repetition of the first argument gives the orthogonality of
(J1;C

′
1) and(J2;C2), using the solvability of the relative automorphism group

for (J2;C2) overJ2/C2. By Lemma 3.5.6 the orthogonality holds overA.

Lemma 3.5.9. Let M be an internally finite locally Lie coordinatized struc-
ture. ThenM∗ is Lie coordinatizable. If in additionM is strongly4-
quasifinite thenM is Lie coordinatizable.

Proof. We will apply the previous lemma. The first point is that without loss
of generality we may suppose that the coordinatizing familyJ satisfies the
following:

(i) wheneverJb ∈ J is pure projective, with linear modelV , the definable
dualJ∗ is (0);

(ii) wheneverJb ∈ J is symplectic of characteristic 2, there are no definable
quadratic forms onJb compatible with the given symplectic form.

In other words, if the definable dualJ∗ is nontrivial, thenJ is part of a polar
geometry encoded inM which may be used in place ofJ , and if a symplectic
space carries a nontrivial form (and is acted on by the full symplectic group)
then it may be replaced by the corresponding quadratic geometry, interpreted
in M.

So we have, in particular, the following conclusion from Lemma 3.5.8 for
any finite subsetA of M:

For b ∈ A, if Jb is nonaffine then for some finite subsetC ⊆ Jb,
the structure(J ;C) is canonically embedded inM∗ overA]

VaryingA, this implies that the nonaffine geometries are stably embedded in
M∗. By Lemma 3.5.8 of§3.4 the same is true for the affine geometries. Thus
after replacing the semiprojective geometries with projective ones,M∗ is Lie
coordinatized.

If in additionM is strongly4-quasifinite, then the Lie coordinatization can
be defined using formulas in the language ofM.
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There has been a certain amount of vacillation between projective and semi-
projective geometries visible. The orthogonality theory is simpler for projec-
tives, and elimination of imaginaries holds for the semiprojectives. Further-
more, they are bi-interpretable, so in a sense both theoriesare available for
either version.

We recall the statements of Theorems 2 and 3 of§1.2.

Theorem 3.5.10 (Theorem 2: Characterizations)
The following conditions on a modelM are equivalent:

1. M is smoothly approximable.
2. M is weakly approximable.
3. M is strongly quasifinite.
4. M is strongly4-quasifinite.
5. M is Lie coordinatizable.
6. The theory ofM has a modelM∗ in a nonstandard universe whose size

is an infinite nonstandard integer, and for which the number of internal
n-typess∗n(M∗) satisfies:

s∗n(M∗) ≤ cn
2

for some finitec, and in which internaln-types andn-types coincide.
(Heren varies over standard natural numbers.)

Theorem 3.5.11 (Theorem 3: Reducts).The following conditions on a model
M are equivalent:

1. M has a smoothly approximable expansion.
2. M has a weakly approximable expansion.
3. M is quasifinite.
4. M is 4-quasifinite.
5. M is weakly Lie coordinatizable.
6. The theory ofM has a modelM∗ in a nonstandard universe whose size

is an infinite nonstandard integer, and for which the number of internal
n-typess∗n(M∗) satisfies

s∗n(M∗) ≤ cn
2

for some finitec. (Heren varies over standard natural numbers.)

We remarked in§2.1 that weak approximability implies strong quasifinite-
ness; thus the implications1 =⇒ 2 =⇒ 3 =⇒ 4 in Theorem 2 all hold.
Furthermore, by existence, finiteness, and homogeneity of envelopes, Lie co-
ordinatizability gives smooth approximation. In the present section we showed
that4-quasifinite structures are Lie coordinatizable. Thus the equivalence of
the first five conditions in Theorem 2 has been verified; the estimate needed for
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the sixth clause will be found in§5.2. One can also verify the equivalence of
the first five conditions in Theorem 3 if one replaces “weakly Lie coordinatiz-
able” by “ reduct of a Lie coordinatizable structure.” However, the proof that
these two conditions are equivalent is subtle and is the subject of Chapter 7.



4

Finiteness Theorems

4.1 GEOMETRICAL FINITENESS

As Ahlbrandt and Ziegler showed, the key combinatorial property of coor-
dinatizing geometries depends on Higman’s lemma, itself a special case of
the Kruskal tree lemma. This was given an additional degree of flexibility in
[HrTC], adequate to our present purposes, once we verify that the geometries
we are using possess the following property. The proof is very much the same
as in the pure linear case.

Definition 4.1.1. A countable structureM is geometrically finitewith respect
to an ordering< of typeω, if for eachn the following holds:

For any sequence ofn-tuplesai (i = 1, 2, . . .) in M there is an
order-preserving elementary embeddingα : M → M taking
ai to aj for somei < j.

Lemma 4.1.2. Suppose thatM isℵ0-categorical and geometrically finite with
respect to the ordering<. Leta be a finite sequence of elements ofM, and
suppose that for eachi = 1, 2, . . . there are givenk finite initial segments
Si1, . . . , Sik of (M;<). Then there is an automorphismα of M, a finite
initial segmentS of M, and a pairi < i′ such that

1. a ⊆ S; Sij ⊆ S for j = 1, . . . , k.
2. α¯S is order preserving.
3. α fixesa.
4. α[Sij ] ⊆ Si′j for j = 1, . . . , k.
5. α(maxSij) = maxSi′j for j = 1, . . . , k.

Proof. Setbij = maxSij for all i, j and apply geometrical finiteness to the
sequences(a,bi) with bi = (bi1, . . . , bik). The result is an order-preserving
elementary mapβ : M → M fixing a and carrying somebi tobi′ with i < i′.
Restrictβ to a large initial segmentS of M, and then extend the restriction to
an automorphism ofM.

In proving the geometrical finiteness of a geometry we first deal with linear
models. We work with the following orderings.
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Definition 4.1.3. Thestandardorderings of basic linear (or degenerate) ge-
ometries are defined as follows.

1. Any ordering of a pure set in order typeω is standard.
2. If X is an ordered basis for a vector spaceV and<K is an ordering on

the base field, with0 as the first element, then theinduced orderingonV
is derived from the reverse lexicographic ordering on wordsin the alpha-
betK as follows. To any vectorv we assign the word consisting of the
sequence of its coordinates, truncated after the last nonzero coordinate.
A standard ordering of the pure vector spaceV is any ordering induced
by such a pair(X,<K), where the order type ofX is ω.

3. If V is a vector space carrying a nondegenerate symplectic or hermitian
form, or a nondegenerate quadratic formQwith an associated symmetric
form, then an ordered basisX for V will be considered standard if it has
the form(e1, f1, e2, f2, . . .) where in all cases(ei, ei) = (fi, fi) = 0,
(ei, fi) = 1, the subspacesHi = (ei, fi) are pairwise orthogonal, and in
the presence of a quadratic formQ we require furthermore thatQ(ei) =
Q(fi) = 0.
In this case an ordering onV is considered standard if it is induced by a
pair (X,<K) whereX is a standard ordered basis.

4. A standard ordering of the linear polar geometry(V,W ) is defined as in
the previous case, using the appropriate version of a standard basis for
V ∪W ; here theei form a basis forV , and thefi form a basis forW .

We remark that given any standard ordering on a vector space derived from
an ordered basisX , the subspaces generated by initial segments ofX will be
initial segments ofV with respect to the induced ordering. We note also that
we include the polar case here because it does not reduce to the pure projective
case, but we exclude the quadratic case for notational convenience since its
underlying set is not a vector space; however, this is a triviality, since after
fixing a point of the quadratic geometry it can be treated as anorthogonal
geometry.

We review the combinatorial lemma on which geometrical finiteness de-
pends.

Definition 4.1.4. LetΣ be a finite set.

1. A word in the alphabetΣ is a finite sequence of elements ofΣ. Σ∗ =
⋃

n≥0 Σ
n is the set of all words in the alphabetΣ.

2. Theembeddability orderingonΣ∗ is the partial ordering defined as fol-
lows:w ≤ w′ if there is an order-preserving embedding ofw intow′.

3. A partially ordered set(X,<) is well quasi-orderedif it has no decreas-
ing sequences and no infinite antichains; by Ramsey’s theorem, an equiv-
alent condition is that any infinite sequence of distinct elements ofX
contains an infinite strictly increasing subsequence.
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Fact 4.1.5 (Higman’s Lemma [Hi]). If Σ is a finite alphabet, then the par-
tially ordered set(Σ, <), under the embeddability ordering, is well quasi-
ordered. Thus for any infinite sequence of wordsw(i) ∈ Σ∗, there is a pair
i, j with i < j such thatw(i) embeds inw(j).

We note that this fact is proved more generally in a relative form, for words
in any alphabet which is well quasi-ordered, with an appropriately modified
embeddability relation. Only the finite case is used here.

Lemma 4.1.6. The countably infinite versions of the linear and degenerate
geometries—a pure set, a pure vector space, a symplectic, hermitian, or
orthogonal space, or a polar pair—are geometrically finite with respect to
their standard orderings.

Proof. It will suffice to treat the cases of nondegenerate symplectic, hermitian,
or orthogonal spaces, where the notation is uniform. The other nondegenerate
cases are simple variations.

We fix a standard ordering< on V with respect to a standard basisX =
(e1, f1, . . .) for V and an ordering ofK with 0 as initial element. LetHi =
〈ei, fi〉; this is a nondegenerate plane of the same type asV .

With n fixed we considern-tuplesa(i) = (vi1, . . . , vin) fromV . For eachi,
expanding relative to the basisX , think ofa(i) as a matrix withn semi-infinite
rows, and entries inK. Let b(i) = (wi1, . . . , wimi) be the corresponding
matrix in reduced row echelon form, and letMi be then×mi matrix overK
connecting the two forms by:a(i) = Mib

(i). Without loss of generality, the
numbersmi = m and the matricesMi = M are independent ofi, and we
may also suppose that the mapsb(i) → b(i′) defined bywij 7→ wi′j are all
isometries with respect to whatever forms are present.

Now we will make the reduction to Higman’s lemma, encoding the se-
quencesb(i) by a word in an appropriate alphabet. We expand each vector
wij as

∑

r hijr wherehijr ∈ Hr. As theHr are all isometric we will identify
them all with a single planeH = 〈e, f〉 and considerhijr to be an element
of H . We say thatr is the leading indexfor wij if r is maximal such that
hijr 6= 0; we say that the leading indexr for wij is of typee if hijr ∈ 〈e〉, and
of typef otherwise. We associate tob(i) a sequencew(i) = (hi1, hi2, . . . , hir)
with r the maximal leading index of thewij in such a way thathis encodes the
following sequence of data for1 ≤ j ≤ m:

the value ofhijs ∈ H ;
whethers is the leading index ofwij (yes/no).

Clearly this information can be expressed by a finite alphabet.
By Higman’s lemma we have a pairi < i′ such thatw(i) embeds inw(i′).

We will now write out exactly what this means. Letl, l′ be the lengths of
w(i) andw(i′), respectively. Sincei < i′, there is an increasing functionι :
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{1, . . . , l} → {1, . . . , l′} such that

(1) hi′ι(s) = his for s ≤ l.

or more explicitly, in terms of the data encoded, fors ≤ l we have

(1.1) hi′jι(s) = hijs for j ≤ m.

(1.2) If s is the leading index forwij , then
ι(s) is the leading index forwi′j .

Setyj =
∑{hi′js : s /∈ im ι}. The leading index ofyj is less than the leading

index ofwi′j , by (1.2).
We now associate withι a linear mapβ, which is defined on the span of

e1, f1, . . . , el, fl, as follows:

(2.1) β(es) = eι(s) unless
s is the leading index of somewij and is of typee for it.

(2.2) β(fs) = fι(s) unless
s is the leading index of somewij and is of typef for it.

(2.3) β(hijs)= hi′jι(s) + yj if
s is the leading index ofwij .

By the initial reduction to row echelon form, a given indexs can occur at most
once as the leading index of a given type (e or f ) for one of thewij . If s is the
leading index forwij and is of typee for it, then (2.3) and linearity determine
β(es), while if, on the other hand,s has typef for wij , then (2.3), linearity,
and the value ofβ(es) determineβ(fs). So (2.1–2.3) determine some linear
functionβ. For anyr letH ′

r =
⊕{Hs : s < ι(r), s /∈ imι}. Thenβ has the

following properties:

(3.1) β(hijr) ∈ hi′jι(r) +H ′
r

(3.2) β(wij) = wi′j

From (3.1) it follows thatβ is order preserving: ifu1, u2 have their last
difference in therth component, thenβ(u1) andβ(u2) will differ last in their
ι(r)th component, and in thesame manner. By (3.2) and the relationsa(i) =
Mib

(i), we findβ(vij) = vi′j .
It remains to check thatβ is an isometry. We make use of a basisX1∪X2 for

〈e1, f1, . . . , el, fl〉 of the following form:X1 consists of allwij for j ≤ m;X2

consists of theer and thefr for whichr is not a leading index of corresponding
type for any of thewij . Then by (3.2)β is an isometry on〈X1〉, andβ is also
an isometry on〈X2〉. So we need only check thatβ preserves inner products
betweenX1 andX2 (even in the orthogonal case, this now suffices). In view
of the orthogonality of the spacesHs, the relation (3.1), and the definition of
β, this follows.
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Corollary 4.1.7. The basic geometries are geometrically finite.

Proof. LetJ be the geometry, andV the corresponding linear model, equipped
with a standard ordering.

If J is projective order it as follows:a < b if the first representativeu for a
in V precedes the first representativev of b in V .

If J is affine, then call one element0, place it first, and order the remainder
of J as inV . Similarly, if J is of quadratic type pick one elementq of the space
Q of quadratic forms onV compatible with the symplectic structure, place it
first, and then identify(V,Q) with the orthogonal space(V ; q); order it as two
copies of a standard orthogonal space.

4.2 SECTIONS

We will establish the notation used in proving that Lie coordinatized structures
have finite languages and quasifinite axiomatizations. A particular coordinati-
zation is fixed throughout. The coordinatizing tree, together with some relevant
data, will be called the skeleton of the model.

It will be convenient to coordinatize using semiprojectives in place of pro-
jectives from this point on.

Definition 4.2.1

1. A skeletal typeconsists of the following data:

a parameterh (the height of a tree);
anassignmentτ associating to eachi with 1 ≤ i ≤ h the type of a basic
semiprojective or affine-with-dual Lie geometry, or a finitestructure;
a partial functionσ from {1, . . . , h} to {1, . . . , h}. Hereσ satisfies the
following conditions:

(i) the domain and range ofσ are disjoint and their union is contained
in the set of indicesi for whichτ(i) is not a finite structure;

(ii) σ(i) < i;

(iii) the domain ofσ contains the set of indicesi for which τ(i) is a
basic affine-with-dual Lie geometry.

A leveli for whichτ(i) is a semiprojective type geometry andi is not in the
domain ofσ is said to be a level ofnew type.
2. Theskeletal languageLsk and skeletal theoryTsk associated with a

given skeletal type (not shown in the notation) are defined asfollows.
Lsk contains symbols≤ and Pi (0 ≤ i ≤ h) which are asserted by

Tsk to constitute a tree ordering of heighth with levels given by the unary
predicatesP0, . . . , Ph; P0 consists of the root alone. There should also be
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predecessor functions for the tree order, so that a substructure will be a
subtree.
Lsk contains several additional symbols. In the first place, it contains

languages suitable to the description of structures of the types specified by
theτ -component of the skeletal type.Tsk asserts, using these symbols, that
the tree successors of a given point at leveli − 1 form a structure of the
type specified byτ(i), that is, either a specific finite structure or an infinite
dimensional basic geometry of specified type. It will be convenient to write
Pi(a) for the successors of a pointa at leveli− 1; soTsk controls the type
of eachPi(a).

Finally, and crucially, theσ-component of the skeletal type furnishes
nonorthogonality information.Lsk contains function symbols in several
variablesfij wheneverj = σ(i) representing a parametrized family of func-
tionsfija, wherea varies over the points at leveli−1, providing a bijection
between the projectivization ofPi(a) and a localization of the projectiviza-
tion of Pj(a

′) relative to some finite subset, wherea′ is the element lying
belowa at heightj − 1.

It is not quite necessary to fix the skeletal data, as long as the various vari-
ables involved, such as the sizes of the finite structures, are kept bounded.
However, we can analyze more general situations of this typeby dealing with
each possible refinement to full skeletal data.

Definition 4.2.2. Let the skeletal data (h, τ , σ) be fixed, hence also the skeletal
languageLsk and the skeletal theoryTsk. LetL be an expansion ofLsk.

1. A skeletonwith given skeletal data is a model forTsk.
2. A skeletal expansionis a structure for the languageL whose reduct to
Lsk is a model ofTsk. It has true dimensionsif not only the type of the
geometry, but its isomorphism type, is determined by the atomic type of
its controlling parameter.

3. A fully propermodel for the languageL is a skeletal expansion which
satisfies

(i) TheLsk-reduct of each layerPi(a) with i in the range ofσ (that is,
the pure geometry) is fully embedded inM.

(ii) If a′ ≤ a in the tree lie at leveli − 1 andj − 1 respectively, with
i, j in the range ofσ, thenPi(a

′) andPj(a) are orthogonal

(iii) The dual affine part of an affine-with-dual geometry is the full de-
finable affine dual.

Lemma 4.2.3. The class of fully properL-structures relative to a given skele-
tal theory is an elementary class.

Proof. The point that requires care is the axiomatization of stable embedded-
ness of a given geometryJ in M, since in order to state in first-order terms the
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definability of the relativization of a formulaϕ to J using parameters ofJ , it
is necessary to give an a priori bound on the number of parameters needed in
J .

So letDb = {x ∈ J : ϕ(x, b)} be anM-definable subset ofJ with pa-
rametersb (containing defining parameters forJ). If this is J-definable, it is
definable using parameters inJ ∩ acl(b), by weak elimination of imaginaries.
This is a finite dimensional subspace ofJ of dimension at mostrk(b), andrk(b)
is at most the heighth times the number of entries in the sequenceb.

We now deal at length with skeletons and expansions of skeletons. View
Lsk andTsk as fixed for the present.

Definition 4.2.4. LetM be a countable skeletal expansion.
AnAhlbrandt–Ziegler enumeration(or more specifically, abreadth-firstAhlbrandt–
Ziegler enumeration) is an enumeration ofM derived from some data of the
following type, according to the recipe following. The datawill be

1. A standard enumeration of the projectivization of each one of the semi-
projective layers at leveli wherei is a level of new type;

2. An enumeration of each of the finite structures found in the coordinate
tree;

3. A setCi(a) of at most|K| elements (K is the base field) in each of the
componentsPi(a) of theith layer, wheneverPi(a) is not finite, chosen so
that

if Pi(a) is semiprojective, thenCi(a) is the set of semiprojective
points above some point of the projectivization ofPi(a) (in the
sense explained below); ifPi(a) is affine thenCi(a) enumerates
an affine line inPi(a).

Relative to these data, we orderM as follows. Enumerate successive lay-
ers of the tree; the order in which theith layer is enumerated is determined
first by the enumeration of the previous layer, and for a fixed elementa of
layer i− 1, either

• the enumeration ofPi(a) is given as part of the data, using one of the
clauses(1, 2), or

• in the event thatj = σ(i) is defined, the enumeration ofPi(a) is deter-
mined by the enumeration ofPj(a

′) wherea′ lies belowa at levelj − 1,
as follows. We have by hypothesis a specific identification ofthe pro-
jectivizationPa of Pi(a) with a localizationPa′ of Pj(a

′). If Pi(a) is
semiprojective then enumerate the points ofCi(a) first; then over these
points there is a definable function from the projectivization ontoPi(a),
so an ordering of the rest ofPi(a) is determined by an ordering on the
corresponding localization ofPj(a

′) wherej = σ(i) anda′ lies below
a at levelj − 1. Such an ordering on the localization ofPj(a

′) can be



70 FINITENESS THEOREMS

induced from the ordering ofPj(a
′) using first representatives, as in the

original discussion of geometrical finiteness. IfPi(a) is affine-with-dual
then the dual part is enumerated first, following the enumeration of the
projective dual (which is part of the corresponding projective geometry),
and then the affine part is enumerated by taking the affine lineCi(a) of
(3) first, after which one follows the enumeration of its projectivization
as in the semiprojective case.

Definition 4.2.5. LetM be a countable skeletal expansion.
A sectionof M is an initial segment ofM with respect to an Ahlbrandt–

Ziegler enumeration. Theheighth of a section is the least level not com-
pletely contained in the section. According to this definition the height of
M itself should be considered to be undefined.

Definition 4.2.6. LetM be a countable skeletal expansion andU a section of
M of heighth.

A supportfor U consists of the following data(B, a, C) :

1. The sequenceB = (B1, . . . , Bh), with Bi consisting of all pointsa at
level i for which a lies below some point ofU at levelh, and the tree
predecessor ofa lies below some point at levelh not inU ;

2. If i ≤ h is maximal such thatBi is nonempty: leta = (a0, a1, . . . , ai−1)
be the (unique) branch leading toBi;

3. If Pi(ai−1) is finite letCi(a) be the complete enumeration ofPi(ai−1);
if Pi(a) is semiprojective or ifBi meets the affine part, letCi(a) be the
finite subset chosen originally in the construction of the order from which
U was derived; ifPi(a) is an affine-with-dual pair andBi is contained
in the affine dual, letCi(a) be an enumeration of the points ofBi which
lie over the last point of the projectivization (the point being that the
ordering of the projectivization does not define a unique ordering of the
affine dual, but knowingCi(a) and the projective ordering, the initial
segment of the affine dual is determined).

Note here that a section does not quite determine its support, since the same
section may be derivable from different orderings; this is just an abuse of lan-
guage, and in any case in practice supports are used to determine sections,
rather than the reverse.

Lemma 4.2.7. Let (B, a, C) be given withB = (B1, . . . , Bh) a sequence
of subsets of the firsth + 1 layers of a countable skeletal expansionM,
a = (a0, a1, . . . , ah′−1) the branch leading toBh′ , whereh′ is maximal
such that this is nonempty, andC = (C1, . . . , Ch′) a sequence of finite
enumerated subsetsCi of Pi(ai−1). Then whether(B, a, C) is a section
support or not is determined by its type inLsk, and if this is so, then the
sectionU supported by it consists of everything of level less thanh together
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with everything of levelh that lies above an element of one of the setsBi.
Furthermore,a andC are of bounded size, and allowB to be recovered

from data of the form(B′
i;Bij)i newtype, whereB′

i is a finite subset ofPi(a)
for i of new type andBij is a sequence of subsets ofB′

i.

Proof. The last paragraph is really the key. In the case in which we are in fact
dealing with a section support, theBij should be the initial segments at level
i gotten by projecting theBj whenh(j) = i (but in the affine-with-dual case
Bj is either a finite subset of the dual part, or the whole dual component plus
a finite subset of the affine part, and in the present context one should throw
away the affine dual part if it is completely contained inBj), andB′

i should be
their union (i.e., the longest one).

To determine whether we actually have a section support, what we must
determine is whether a candidate sequenceBij of finite subsets of a geometry
does, in fact, constitute a sequence of initial segments of that geometry with
respect to some standard ordering.

An initial segment of a standard ordering on one of the projective geometries
contains an initial segment of the standard basis from whichthe ordering was
defined; conversely, if such a finite basis is found in the setB′

i, isomorphic to
an initial segment of a standard basis, and making allBij initial segments in
the induced ordering (relative to some ordering of the base field), then it can
be completed to a standard basis for the whole space, for which the given sets
constitute initial segments.

Definition 4.2.8. A reduced section supportis a sequenceB of sequences
Bi = (Bij) for i of new type andj = i or σ(j) = i, together with aux-
iliary data (of bounded size)a, Ci(a) (a ∈ a) as in the previous lemma,
and the maximal elementsaij of theBij in a standard ordering ofBi. The
Ci(a), a, andaij will be called thebounded partof the section support.

Remarks 4.2.9

When the standard ordering on the projectivizations of thePi(a) is fixed, the
Bij are determined byBi and the bounded part, specifically theaij .

Sections are atomicallyLsk-definable from their reduced section supports.
We may speak also of sections and section supports in envelopes of Lie co-
ordinatized structures, as they can be described in terms oftheir atomicLsk

types.

4.3 FINITE LANGUAGE

Definition 4.3.1. LetM be a fully proper countable skeletal expansion.
Triples (E,X, e) with E an envelope forM, X ⊆ E, ande a finite se-

quence of elements ofE, will be partially ordered by the following relation:
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(E,X, e) ≤ (E′, X ′, e′) if and only if there is an elementary
mapf : E → E′ for whichf [X ] ⊆ X ′ andf(e) = e′.

The partial orderings of interest to us here will be restrictions of this
ordering to the setsUn andSn of triples in whicha has lengthn andX is,
respectively, a sectionU ofE or a reduced section supportS for E.

Lemma 4.3.2. LetM be a proper countable skeletal expansion. Suppose that
(a0, a1, . . . , ah) is a branch of the tree, andαi is an automorphism of the
Pi(ai−1) for i of new type. Then the union of theαi is an elementary map
in M.

Proof. Full embedding and orthogonality. The orthogonality theory applies di-
rectly to the projectivizations, but the semiprojective geometries are definable
over them and have the same automorphism group.

Lemma 4.3.3. LetM be a proper countable skeletal expansion. The partial
orderings defined above onUn andSn are well quasi-orderings.

Proof. The result for reduced section supports implies the resultfor sections,
so we focus onSn. We can drop the envelopeE from the triple, since given
(E,B, a) and(E′, B′, a′) with E a µ-envelope,E′ a µ′-envelope, andµ(J)
embedding inµ′(J) everywhere, and an elementary mapf with f [B] ⊆ B′

andf(a) = a′, there is an elementary mapE → E′ extending it, by (essen-
tially) Lemma 3.2.4. We may thin the original sequence so that the condition
on comparability ofµ andµ′ holds everywhere.

We treat the case of reduced section supports. This is done asin [HrTC,
Lemma 2.10], which, however, makes use of rather abstract notation for part
of the situation.

Increasingn slightly, we may suppose that the bounded part of the reduced
section support is encoded ina. Now take a sequenceSk = (B(k), a(k)) of
reduced section supports with auxiliary data. Adjusting byautomorphisms of
the geometries, using the previous lemma, we may suppose that the orderings
used on the projective geometries of new type are fixed standard orderings, so
that the termsBi (which initially are sequences(Bij)) can be thought of as
initial segments of these geometries. Moving up through thelevels i which
are of new type, and thinning the sequenceSk at each stage, we will construct
the desired elementary maps in stages. What we require at stage i is that the
maps be defined through theith level, be order-preserving on each projective
geometry associated with a level of new type, and fix the data in a(k) occurring
up to theith level. We require of the sequenceSk that the type ofa(k) over
⋃

j Pj(b
(k)
j−1) (with b(k) the branch being followed by theB(k)

i ) be fixed. If this
is the case at a given stage, it can be preserved without difficulty up to the next
new leveli. At such a new leveli, the elementary maps will have to be chosen
carefully to preserve the types ofa(k) over the union including theith level.
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LetAk =
⋃

j<i Pj(b
(k)
j−1). The type ofa(k) overAk∪Pi(b

(k)
i−1) is determined

by its (known) type overAk and its type overck = acl(a(k)) ∩ Pi(b
(k)
i−1). So

we impose on our elementary maps the additional constraint that they preserve
theck. Exactly this condition is allowed by geometrical finiteness, after thin-
ning the sequenceSk (and applying Ramsey’s theorem): fork < l we may
carryB(k)

i intoB(l)
i by an order-preserving elementary map which carriesck

to cl. Thinning down so that the types of thea(k) over theck correspond, this
completes theith stage.

Lemma 4.3.4. LetE be an envelope,U a section ofE, andE′ an envelope
contained inE, with the supportS of U contained inE′. ThenE′ ∩ U is
the section ofE′ supported byS.

Proof. The statement is a bit misleading; the issue is not so much whetherS
supportsE′ ∩ U , but rather whetherS fulfills the definition of section support
relative toE′ in the first place. This is essentially one of the points made in
Lemma 4.2.7. In the present version, the statement is that ifB is an increasing
sequence of initial segments of a projective Lie geometryJ , with respect to
some standard ordering, and lies in a subgeometryJ ′ of J , thenB is also a
sequence of initial segments ofJ ′ with respect to a standard order, the point
being that an initial segment of an appropriate standard basis can be extracted
fromB and completed inJ or J ′.

Lemma 4.3.5. LetM be a Lie coordinatized structure. Then there is an inte-
gerk with the following properties:

1. For any envelopeE, any sectionU ofE, and anya ∈ E, if a ∈ acl(U)
then for some subsetC ofU of size at mostk, a is algebraic overC and
its multiplicity overU and overC coincide.

2. For any envelopeE, any section supportS in E, and anya ∈ E, if
a ∈ acl(S) then for some subsetC of S of size at mostk, a is algebraic
overC and its multiplicity overS and overC coincide.

Proof. The contrary to (1) would yield as a counterexample a sequence
(Ek, Uk, ak) refuting the claim for eachk. After passing to a subsequence and
applying Lemma 4.3.3 we get a single elementa algebraic over an increasing
chain of setsUki but whose type overUki cannot be fixed byki elements. The
multiplicity m of a over

⋃

i Uki is of course the same as its multiplicity over
some finite setC contained in allUki from some point on, and onceki > |C|
we reach a contradiction.

The failure of (2) is refuted similarly.

Definition 4.3.6. Thestandard languagefor a Lie coordinatized structure will
be the languageL containing all 0-definable(k + 1)-ary predicates withk
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(minimal) furnished by the preceding lemma. Note thatk ≥ 2.

Proposition 4.3.7. Every Lie coordinatized structureM admits a finite lan-
guageL. The standard language will do. The standard language also satis-
fies the following homogeneity conditions:

1. Every section of any envelope ofM is L-homogeneous: ifE is an en-
velope ofM, U a section ofE, andf : U → M anL-map, thenf is
elementary.

2. Every section support of any envelope ofM is L-homogeneous in the
same sense.

Proof. LetL be the standard language forM. Part (1) includes the statement
that the languageL is adequate forM. We use semiprojectives rather than
projectives in the coordinatization.

Both (1) and (2) reduce to finite envelopes, using Lemma 4.3.4. We can enu-
merate the envelopeE so that any initial segment ofE is a section. Here we
are viewing the envelope as a subset of a coordinatized structure (in the con-
struction of envelopes, we added some sorts ofMeq). Whenever we encounter
an affine point the whole dual-affine part is already in the part enumerated. For
(1) it suffices to show

(1′) For any sectionU of an envelopeE of M, anda the next ele-
ment ofE, theL-type ofa overU determines its type overU .

In the algebraic case this holds by the choice ofk. In the nonalgebraic case the
L-type ofa overU ensures thata is nonalgebraic, again by the choice ofk.
Let P be the component of the coordinatizing tree in whicha lies. We claim
that

(∗) acl(U) ∩ P ⊆ U.

As a is not algebraic overU , P is neither finite nor a semiprojective geo-
metry “repeating” an earlier one. Thus it is either a semiprojective geometry
of new type or an affine-with-dual pair. Consider the affine case. Again by
the nonalgebraicity assumption,U will contain no affine point ofP , while a
is affine; asa is the next point of the enumeration,U contains the full dual-
affine part ofP in E, and asE is itself algebraically closed inM, the claim
(∗) holds in this case. Suppose now thatP is semiprojective of new type, so
orthogonal to all projective geometriesJ ′ at lower levels. Thenacl(U) ∩ P =
acl(U ∩ P ) ∩ P . This reduces our claim to the corresponding claim(∗) in a
single geometry, where it is a property of standard enumerations.

This gives(∗). Now in M asP is fully embedded, the type ofa over
acl(U) ∩ P implies its type overU , and by(∗) acl(U) ∩ P is U ∩ P . To
conclude, then, it suffices to observe thattpk(a/U ∩ P ) provestp(a/U ∩ P ),
which holds sincek ≥ 3 andP is a-definable (directly from the tree language,
in fact).
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For (2) we may proceed similarly, extendingf over an enumeration ofE.

Lemma 4.3.8. LetM be Lie coordinatized,L the standard language forM.
Then for any sectionU of any envelopeE, the theory ofU is model complete.

Proof. We must show that any type inU is equivalent to an existential type.
We show by induction on the sectionU :

(∗) For any finite sequencec in U there is a finite sequence
c′ in U such thattpL(cc

′) impliestpM(c).

Granted this, ifc is expanded first to contain a support forU , then the type of
c in M will determine its type inU , and our claim follows.

This statement passes through at limit stages, so we deal with the caseU =
U1 ∪ {a}. We may supposec = c1a with c1 from U1. We need first a finite
setC such thattpL(a/C) determinestp(a/c1). This is a consequence of(1′)
from the previous proof. (C will grow with c1 in general, whena is the first
affine point.) We may supposec1 ⊆ C.

It is useful at this stage to make the statement “tpL(a/C) determinestp(a/c1)”
more explicit. This is a statement belonging to the type ofC; another way of
putting it is that the type ofC and theL-type ofa overC determine the type
of c1a.

We letC′ be chosen by applying(∗) inductively toC andU ′. We claim
that tpL(CaC

′) determinestpM(c1a). Given tpL(CaC
′), we first recover

tpM(C). Then we know thattpL(aC) determinestpM(c1a).

4.4 QUASIFINITE AXIOMATIZABILITY

In this section we provide reasonably explicit axiomatizations of theories of
Lie coordinatized structures, modulo certain informationwhich is determined
only qualitatively by the geometrical finiteness of the coordinatizing geome-
tries.

Definition 4.4.1. LetM be Lie coordinatized andL a specified language for
M. Acharacteristic sentencefor M is anL-sentence whose countable mod-
els which are skeletal expansions with true dimensions are exactly the en-
velopes ofM and their isomorphic images.

Lemma 4.4.2. Let a skeletal type and corresponding skeletal languageLsk be
fixed. For anyk there is a (uniformly computable) integerk∗ such that any
2k elements of a sectionU of a skeletonM for Lsk, with supportS, are
contained in a subsectionU ′ whose supportS′ has the same bounded part
and satisfies|S′| ≤ k∗.
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Proof. Note that the subsection will be taken with respect to a different order-
ing.

This statement reduces to the same statement in a single projective geometry.
The existence ofk∗ follows from the geometric finiteness. Its computability
follows from the decidability of the theory of the geometry.

Proposition 4.4.3. Let a skeletal type and corresponding skeletal language
Lsk be fixed, and letL be a finite language containingLsk. Then there is a
recursive classΞ of (potential) characteristic sentences, which can be found
uniformly in the dataLsk, L, with the following properties:

1. If M is a skeletal expansion with true dimensions relative toLsk, and
M |= ξ (someξ ∈ Ξ), then every countable model ofξ with true dimen-
sions is isomorphic with an envelope ofM.

2. Any Lie coordinatized structure with coordinatizing skeletonMsk satis-
fies one of the sentences inΞ.

In particular, every Lie coordinatized structure has a characteristic sen-
tence.

Proof. We form the setΞ∗ of sextuples(ξ, k, k∗, k∗∗, L′,Σ) satisfying the
following six conditions, and then takeΞ to consist of the sentencesξ for which
some suitablek,k∗,k∗∗,L′,andΣ can be found; this will makeΞ recursively
enumerable but by a standard device any r.e. set of sentencesis equivalent to
a recursive set: it suffices to replace each sentenceξ by a logically equivalent
one whose length is at least the time taken to enumerateξ.

The conditions on(ξ, k, k∗, k∗∗, L′,Σ) are as follows:

(i) L′ is a list of formulas ofL, each with at mostk + 1 free variables.L′ is
to be thought of as a new language, and the given formulas willbe called
L′-atomic formulas. These formulas will include the atomic formulas of
L. Σ is a finite set of existentialL′-formulas.

(ii) ξ implies the skeletal theoryTsk, apart from the clause asserting infinite
dimensionality of certain geometries.

(iii) ξ asserts that certain quantifier freeL′-formulas ink + 1 free variables
are algebraic in the lastk variables, that is for each choice of thesek
variables, the formula has only finitely many solutions (with a specified
bound). These formulas will be calledexplicitly algebraic.

(iv) For any∀∃ L′-sentence withk∗ universal quantifiers andk+1 existential
ones,ξ specifies the truth or falsity of the statement.

(v) For any section supportS of sizel ≤ k∗ whose atomicL′-type isr (in
l variables), and for anyL′-formulaϕ in thesel variables with at most
k + 1 quantifiers,ξ implies that either all realizations ofr satisfyϕ, or
all realizations ofr satisfy¬ϕ.

(vi) For any sectionU of a modelM of ξ with supportS of size at most
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k∗, and anya ∈ M, ξ asserts that one of the following occurs (to be
elucidated more fully below):

(vi.a) There is a setB ⊆ U of order at mostk for which the quantifier-free
L′-type ofa overB is explicitly algebraic and “implies itsL′-type
overU ”;

(vi.b) a lies in an affine-with-dual geometryJ whose dual affine partD
(if present) lies inU , and the geometric type ofa overD “implies
its L′-type overU .”

(vi.c) a lies in a semiprojective geometry of new typeJ and the geometric
type ofa overJ ∩ U “implies itsL′-type overU .”

It remains to formalize condition (vi) more completely, andin so doing to
explain the role of the formulas inΣ. We are dealing with expressions of the
form “ξ states thattp∗(a/X) determinestp(a/U)” where the second type is an
atomicL′-type and the first type is some part of an atomicL′-type.

To formalize (vi.a) we consider a formulaα(x; y) expressing the atomicL′-
type ofa overB, |B| ≤ k, with x standing fora andy for B, and we consider
any other formulaβ(x; y′) in l ≤ k variables. We are trying to formalize (and
to put intoξ) the statement(α =⇒ β), whenever this is true. This is done as
follows, elaborating on the model completeness:

(vi.a′) For anyB′ ⊆ U with |B′| = l (enumerated as a sequence of length
l), and any section supportS′ ⊆ S with |S′| ≤ k∗ such that the
sectionU ′ supported byS′ containsB ∪ B′: if β(a,B′) holds
then there is an existential formulaσ(z, y, y′) in Σ wherez cor-
responds to an enumeration ofS′, true inU ′, such thatξ implies
that [σ(z, y, y′)&α(x, y)] =⇒ β(x, y′).

The existential quantifiers inσ will refer to the section supported byz. We
treat (vi.b) and (vi.c) similarly, e.g.:

(vi.b′) For anyB′ ⊆ U with |B′| = l (enumerated as a sequence of length
l), and any section supportS′ ⊆ S with |S′| ≤ k∗∗ such that the
sectionU ′ supported byS′ contains the affine dual of the com-
ponent ofa andB′: if β(a,B′) holds then there is an existential
formulaσ(z, y, y′) in Σ wherez corresponds to an enumeration of
S′ andy enumerates some elements of the affine dual part, thatσ
holds inU ′ andξ implies that[σ(z, y, y′)&α(x, y)] =⇒ β(x, y′).

We require of course that for everyβ involving k variables there should be
a suitableα for which the corresponding version of (vi) holds. This can be
viewed as a condition onk∗ andk∗∗, particularly when we wish to verify point
(2).
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We claim that with this choice ofξ, (1,2) hold. We begin by comment-
ing on (2), which amounts to an elaboration of the proof of theexistence of
a finite language. The parameterk is the one used to define a standard lan-
guage, andL′ is the standard language, given in terms of 0-definable relations
in the specified languageL. Clause (iii) is natural in view of the definition
of k; givenM, all the formulas of the given type which are algebraic inM
will be made explicitly algebraic. Point (v) reflects the homogeneity of sec-
tion supports. Finally, point (vi) reflects the control of types over envelopes,
and the model completeness of the theory of the envelopes. Part (vi.a) is an
accurate reflection of the role ofk as a bound for the base of algebraicity over
an envelope. Point (vi.b) requires further elucidation. We will have in general
tpG(a/D) ⊢ tpL′(a/U) (“G” for “geometric”). Now tpL′(a/U) consists of
formulasβ of the appropriate form for (vi.b′). The formulasα(x, y) coming
from tpG(a/D) may require more thank variables. However, givenM, there
will be a boundk1 for the number of variables needed, and a corresponding
boundk∗∗ for the size of a section support needed to capturek1 + k variables.
Then (vi.b′) expresses (vi.b).

We turn to (1):M is a properL-structure relative toLsk andM |= ξ (some
ξ ∈ Ξ). We claim that every countable modelM′ of ξ is isomorphic with an
envelope ofM (or with the restriction of an envelope in an adequate expansion
of M, to the sorts ofM).

If M∗ is anℵ1-saturated elementary extension ofM thenM is the count-
able envelope forM∗ with all µ-invariants infinite dimensional. It suffices to
show thatM′ is isomorphic with an envelope inM∗.

We enumerateM′ so that each initial segment is a section of the skeleton,
and we define a mapF : M′ → M∗ by induction. Anapproximationto F
will be a pair(f, U) satisfying the following three conditions:

(a) U is a section ofM′ with supportS;
(b) f is anL′-embedding ofU intoM∗;
(c) If Jb is a semiprojective component ofM′ of new type, withb ∈ U ,

Jb ⊆ U , thenacl(f [U ]) ∩ Jf(b) is f [Jb].

Condition(c) essentially rules out “accidents” in which asf is extended,
some new value generates a coordinate in a geometry which hasalready been
dealt with. Since we have been rather more careful in the axiomatization to
specify what is algebraic than we have been to avoid algebraicity, there is
something to be concerned with.

If we are able to carry out the inductive step in which a singleelement is
added toU , then the construction passes smoothly through limit stages and
produces a total(F,M′) satisfying the conditions(b, c) with U = M′. By (c)
the image ofF will be algebraically closed in each semiprojective component
of new type coded by an element of the image. It follows easilythatF [M′]
is algebraically closed inM∗. Also if c ∈ M∗ − F [M′] then there isc′
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definable fromc with the same property, lying in a semiprojective component
of new type, whose defining parameter is in the image ofF . Again(c) applies
and leads to the maximality clause in the definition of envelope after passing to
the canonical projective associated with the given component (one of the sorts
which should be added toM in an adequate expansion).

The last point is that the isomorphism type of a coordinatizing component
of F [M′] with a given defining parameterb is constant over all conjugates of
b (in M∗) lying in the image. This follows sinceF is anL-embedding.

So what remains to be checked is the extendability of an approximation
(f, U) to the next elementa of M′. Let J be the component ofM′ in which
a lies. Then theL′-type of a is determined either by an explicitly algebraic
formulaψ, or a geometric type over part ofU . We extendf by lettingf(a)
be any realization of the corresponding type inM∗. If a is explicitly algebraic
then condition (v) implies thatM∗, a model ofξ will realize this type. Ifa is
geometric, thenM∗, being a Lie coordinatized model in the first place, will
realize the appropriate type, using saturation. Let the extension be denoted
(f ′, U ′). We claim that the conditions(b, c) are preserved.

Condition(b) is controlled by properties (vi.a, vi.b) of ξ. Note here that the
auxiliary formulas inΣ are existential and hence are preserved by embedding.

The condition(c) is obviously preserved ifa is algebraic overU or more
generally ifaclf [U ′]∩ Jfb = aclf [U ]∩Jfb. So we must consider the case in
whicha is not algebraic overU but some element ofJfb not inaclf [U ]∩ Jfb
becomes algebraic overf [Ua]. Let S be the support of the sectionU , and let
U∗ be the section ofM∗ supported byf [S], which containsJfb in particular.
Thenfa is algebraic overU∗ and hence isk-algebraic over some section of
M∗ whose supportfS′ ⊆ fS is of size at mostk∗. Accordinglyξ asserts
some elementa′ of the geometryJ containinga in M will be algebraic over
the sectionU ′ supported byS′. In particularacl(U) meetsJ . On the other
handa /∈ acl(U ′). ThusJ is a new geometry and by orthogonality theory in
M∗, aclf [Ua] ∩ Jfb = aclf [U ] ∩ Jfb.

4.5 ZIEGLER’S FINITENESS CONJECTURE

Proposition 4.5.1. Let a skeletal type and corresponding skeletal language
Lsk be fixed, and letL be a fixed finite language containingLsk. Then there
are only finitely many Lie coordinatized structures in the languageL having
a given skeletonMsk, up to isomorphism.

Proof. It suffices to combine Proposition 4.4.3 with the Compactness Theo-
rem. For this one must check that the class of Lie coordinatized structures in
the languageL with the specified skeleton is an elementary class. Thus one
must review the various conditions involved in Lie coordinatization.
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Note that the skeleton fixes the language of the individual geometries. In
particular, the notion of canonical embedding is first order, as is the notion of
orientability.

One must also express the condition of stable embedding for the geometries.
We can use Lemma 2.3.3. Thus it suffices to bound the size ofacl(a) ∩ J
uniformly. But | acl(a) ∩ J | has dimension at most the height of the skeleton
times the length ofa.

Thus compactness applies.

Definition 4.5.2. LetM be a structure.
1. A coverof M is a structureN and a mapπ : N → M such that

the equivalence relationEπ given by “πx = πy” is 0-definable inN , and
the set ofEπ-invariant 0-definable relations onN coincides with the set of
pullbacks alongπ of the 0-definable relations inM.

2. Two coversπ1 : N1 → M, π2 : N2 → M are equivalentif there is a
bijectionι : N1 ↔ N2 compatible withπ1, π2 which carries the 0-definable
relations ofN1 onto those ofN2.

3. If π : N → M is a cover, then Aut(N/M) is the group of automor-
phisms ofN which act trivially on the quotientM. Thus Aut(N/M) ≤
∏

a∈M AutN (Ca) whereCa = π−1(a) and AutN (Ca) is the permutation
group induced by the setwise stabilizer ofCa in AutN .

The problem of the theory of covers is to classify or at least restrict the pos-
sible covers with given quotient and specified fiber; that is,typically the struc-
tures(Ca,AutN (Ca)) are specified in advance and are essentially independent
of a. Any automorphism group will be a closed subgroup of the symmetric
group (in the topology of pointwise convergence with the discrete topology on
the underlying set); by the finiteness of language, in the Liecoordinatized case
it is evenk-closed for some finitek: any permutation which agrees on every
set ofk elements with an automorphism is itself an automorphism. intheℵ0-
categorical context, furthermore,AutN inducesAutM; in particular, if the
automorphism group of the fibers is abelian, thenAut(N/M) is anAut(M)-
invariant subgroup of the product.

Proposition 4.5.3. LetM be a fixed Lie coordinatized structure and letJ be a
fixed geometry or a finite structure. Then there are only finitely many covers
π : N → M up to equivalence which have fiberJ and a given relative
automorphism group Aut(N/M) ≤∏N/E AutJ .

Proof. We apply Proposition 4.5.1. The skeletonNsk of N is determined by
the given data and thus it suffices to find a single finite languageL adequate for
all such coversN . Thus it suffices to bound the arityk of L and the number of
k-types occurring inN .

We deal first with the arity, using the language of permutation groups. We
must find a boundk so thatAut(N ) is ak-closed group, for all suitable covers
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N . Aut(M) is k◦-closed for somek◦. If we restrict attention tok ≥ k◦, then
Aut(N ) is k-closed if and only ifAut(N/M) is k-closed, as is easily checked.
(Note thatAutN inducesAutM by ℵ0-categoricity.)

Thus fork ≥ k◦ the choice ofk is independent of the cover, as long as the
relative automorphism group is fixed in advance.

Now with k fixed, consider the number ofk-types available inN . If the
fiber is finite of orderm, then eachk-type ofM corresponds to at mostmk

k-types ofN , so we have the desired bound in this case.
If the fiber is a geometry, to bound the number ofk-types we proceed by in-

duction, bounding the number of1-types over a setA of sizej for j < k. The
1-type of an elementa of the geometryJb overA is determined by its restric-
tion to the algebraic closure ofA in a limited part ofJeq

b , e.g. in the affine case
the linear version must also be taken. It suffices therefore to bound the dimen-
sion ofacl(a) ∩ J for geometriesJ associated toJb. As rk(Aa/π[A]a) ≤ j,
the spaceacl(π[A]a) has codimension at mostj in acl(Aa) ∩ J and thus the
desired bound forN can be given in terms of the data forM.

Remark 4.5.4
In cohomological terms, ifAutJ is abelian this may be expressed by:

H1
c (AutM, (

∏

M AutJ)/K) is finite

for K ≤∏M AutJ closed and (AutM)-invariant. Cf. [HoPi].
For a more algebraic approach to this type of problem, due to David Evans,

see the paper [Ev].
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Geometric Stability Generalized

5.1 TYPE AMALGAMATION

Definition 5.1.1. LetM be a structure.

1. Anamalgamation problem(for types) of lengthn is given by the following
data:

(i) A base set,A;

(ii) Typespi(xi) overA for 1 ≤ i ≤ n;

(iii) Typesrij(xi, xj) overA for 1 ≤ i < j ≤ n;

subject to the conditions:

(iv) rij containspi(xi) ∪ pj(xj);
(v) rij(xi, xj) implies the independence ofxi fromxj .

2. A solutionto such an amalgamation problem is a typer of an independent
n-tuplex1, . . . , xn such that the restrictions ofr coincide with the given
types.

Definition 5.1.2. A structureM has thetype amalgamation propertyif when-
ever (pi; rij) is an amalgamation problem defined over an algebraically
closed base set inMeq, then the amalgamation problem has a solution.

Our goal here is to prove that Lie coordinatized structures have the type
amalgamation property. By absorbing the base setA into the language we may
suppose it coincides withacl(∅) and we will do so whenever it is notationally
convenient. Our usual notation for an amalgamation problemwill be either
(pi; rij) or just (rij), assuming the lengthn is known. Occasionally we will
take note of generalized amalgamation problems where otherrestrictions are
placed on the desired typer.

We build up to the general result via a series of special cases, beginning
with types in a single geometry. The general result does not follow directly
from the case of a single geometry, but reflects more specific properties of the
geometries, as is seen in the proof of Lemma 5.1.13.
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Lemma 5.1.3. LetJ be a Lie geometry, and(pi; rij) an amalgamation prob-
lem of lengthn in which thepi are types of sequences of elements ofJ over
acl(∅). Then the amalgamation problem has a solution.

We will leave the details to the reader, but we make a few remarks. This
statement essentially comes down to the fact that inner products and quadra-
tic forms can be prescribed arbitrarily on a basis, subject to the restrictions
associated with the various types of inner product.

It may be more instructive to take note of some counterexamples to plausi-
ble strengthenings of this property. We give two examples where the solution
sought is not unique, and one example of an amalgamation property incorpo-
rating a bit more data which fails to have a solution.

Example 5.1.4.Let (V, V ∗) be a polar geometry, andA an affine space over
V ∗. Consider independent triples(a1, a2, a3) with a1 ∈ V anda2, a3 ∈ A.
The relevant typesrij are then determined but the type of the triple depends
on the value of(a1, a2 − a3), which is arbitrary.

Example 5.1.5. In a projective spacêV associated with a unitary geometryV
over a fieldK of orderq2, consider the 2-typer of a pairx̂, ŷ of independent
elements of̂V for which(x, y) 6= 0 and(x, x) = (y, y) = 0. This defines a
complete type over acl(∅). We consider the amalgamation problem of length
3 with all rij equal tor. For an independent triple(x̂, ŷ, ẑ) whose restric-
tions realize the typer, the quantity(x, y)(y, z)(z, x)/(y, x)(z, y)(x, z) is
a projective invariant taking onq + 1 possible valuesα/ασ (α ∈ K∗, σ an
involutory automorphism ofK).

Example 5.1.6.We will give a generalized amalgamation problem of length 4,
determined by a compatible family of 3-typesrijk over acl(∅) of independent
triples, which has no solution. LetV be a symplectic space,A affine over
V , and consider the type of a quadruplex1, x2, x3, x4 with x1 ∈ V and the
remainingxi affine. Let the typesr1ij all contain the requirement:(x1, xi−
xj) = 1. These requirements are incompatible.

Lemma 5.1.7. Let M be a structure, and suppose that every amalgamation
problem of length 3 inM over an algebraically closed subset has a solution.
Then every amalgamation problem inM has a solution.

Proof. This is a straightforward induction. Collapse the last twovariables
xn−1xn to one variableyn and define a new amalgamation problem(r′ij) of
lengthn − 1. The only point requiring attention is the choice of the types
r′i,n−1, which are 3-types when written in terms of thexi. These are taken to
be solutions to the amalgamation problem(ri,n−1, ri,n, rn−1,n) of length3.

In the next lemma we find it convenient to deal with a variant form of amal-
gamation problem incorporating some additional information.
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Lemma 5.1.8. LetM be a weakly Lie coordinatized structure, andJ a geo-
metry ofM. Suppose that(pi; r1,i, r2,...,n) is a generalized amalgamation
problem over acl(∅) in whichp1 is the type of some element ofJ andr2,...,n
is the type of an independent(n − 1)-tuple, with the typesr extending the
corresponding typesp appropriately. Then this generalized amalgamation
problem has a solution.

Proof. We fix a realization(c2, . . . , cn) of r2,...,n, we setCi = acl(ci) ∩ J ,
and we chooseci1ci satisfyingr1i for 2 ≤ i ≤ n. We define an auxiliary
generalized amalgamation problem inJ by settingr′1i = tp(ci1Ci), r′2,...,n =
tp(C2, . . . , Cn). By inspection of the geometries, this type of problem has a
solutionr′. We may choosec′1 so thatc′1C2 . . . Cn realizes the typer′. As any
ci-definable subset ofJ is Ci-definable, we find thattp(c′1ci) = tp(c1ci) and
the sequencec1, c2, . . . , cn is independent.

Roughly speaking our goal is now to treat the general amalgamation prob-
lem of length 3 by reduction to the case in which the typep1 has rank1. More
specifically we deal with the following notion.

Definition 5.1.9. LetM be a weakly Lie coordinatized structure andJ one of
its geometries.

A semigeometric1-type relative toJ is the type over acl(∅) of some pair
(a, b) with a ∈ J andb algebraic overa. Themultiplicity of such a type
is the multiplicity ofb overa.

Lemma 5.1.10.LetM be a weakly Lie coordinatized structure and suppose
that every amalgamation problem(pi; rij) of length 3 withp1 semigeometric
has a solution. Then every amalgamation problem of length 3 has a solution.

Proof. If we can solve amalgamation problems withp1 semigeometric, then
by compactness we can solve amalgamation problems in whichp1 is a type in
infinitely many variables, representing the full algebraicclosure inMeq of an
element of a geometry ofM.

We now argue by induction on the rank ofp1, which we may take to be
at least1. Let c1 realizep1 and leta1 ∈ acl(c1) belong to a coordinatizing
geometryJ of M. LetA beacl(a1) in Meq andp′1 = tp(A).

Takec2, c3 independent and such thatc1ci realizes the typer1i for i = 2, 3.
Let r′1i = tp(Aci/ acl(∅)) andr′23 = r23. Then(r′ij) gives an amalgamation
problem of length 3 of the type referred to at the outset. Letr′ be a solution to
this problem. We may suppose thatAc2c3 satisfiesr′.

Now we will work overA with p′′i = tp(ci/A) for i = 1, 2, 3 andr′′ij =
tp(cicj/A). By the choice ofr′ this is an amalgamation problem, and the rank
of p′1 is less than the rank ofp1, so we conclude by induction.

Before treating the general amalgamation problem of length3 with p1 semi-
geometric, we will deal with the case in whichr12 = r13 up to a change of
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variable. We begin with some technical considerations.

Definition 5.1.11. Let M be a structure,E a definable binary relation,D a
definable set, anda, b elements ofM.

1. E is a generic equivalence relationonD if it is generically symmetric
and transitive: for any independent triplea, b, c in its domain,E(a, b)
andE(b, c) implyE(b, a) andE(a, c).

2. An indiscernible sequenceI is 2-independentif acl(a)∩ acl(b) = acl(∅)
for a, b ∈ I distinct.

3. E2(x, y) is the smallest equivalence relation containing all pairs belong-
ing to infinite2-independent indiscernible sequences.

Lemma 5.1.12.LetM beℵ0-categorical of finite rank, andE a generic equiv-
alence relation defined on the locus of a complete typep over acl(∅). Then

1. E agrees with a definable equivalence relationE∗ on independent pairs
fromp.

2. If every pair of elements belonging to an infinite 2-independent indis-
cernible sequence belongs toE, then any pair of independent realiza-
tions ofp belongs toE.

Proof.
Ad1. DefineE∗(x, y) by “p(x) andp(y) hold and eitherx = y or there is a

z which realizesp and is independent fromx, y such thatE(x, z) andE(y, z)
both hold.” This is easily seen to agree withE on independent pairs, and is
reflexive and symmetric. We check transitivity.

AssumeE∗(a, b) andE∗(b, c) hold, specifically

E(a, d1), E(b, d1), E(b, d2), E(c, d2)

with d1 independent froma, b andd2 independent fromb, c; we may assume,
in fact, thatd2 is independent froma, b, c, d1. Thena, d1, d2 and b, d1, d2
are independent triples and thusE(d1, d2) andE(a, d2) hold. ThusE∗(a, c)
holds.

Ad 2. In view of the preceding and the hypotheses, we may assume thatE
is a definable equivalence relation containingE2. It suffices now to show that
any two elements ofM with the same type overacl(∅) areE2-equivalent. We
show in fact thatM/E2 is finite, and hence is part ofacl(∅) in Meq, yielding
the claim.

Suppose toward a contradiction thatM/E2 is infinite. We will choose real-
izationsai of p inductively, distinct moduloE2, so that

acl(an) ∩
⋃

i<n

acl(ai)) = acl(∅).

Then we may suppose that the sequenceI = (ai) is also indiscernible, and we
have a blatant contradiction to the definition ofE2.
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For the choice ofan given ai (i < n) we first choose a newE2-classC
outsideacl(∅) independent froma1, . . . , an−1 and then choosea ∈ C inde-
pendent froma1, . . . , an−1 overC.

Lemma 5.1.13.LetM be a weakly Lie coordinatized structure. Let(pi; rij)
be an amalgamation problem of length 3 over acl(∅) with p1 semigeometric
and withr12 = r13 up to a change of variable; in particularp2 = p3. Then
the amalgamation problem has a solution.

Proof. As a matter of notation, takep1 = p1(xy), pi = pi(zi) for i = 2, 3. Let
J be the geometry in which the first coordinates of realizations ofp1 are found,
and letC be the set defined byp2 or p3. We make a preliminary adjustment to
ensure that forc ∈ C we have

(∗) r12(xy, c) isolates a type overacl(c).

We may replacec by somec′ ∈ acl(c) such thatc ∈ dcl(c′) andr12(xy, c′)
isolates a typer′12 overacl(c) = acl(c′); the condition “c ∈ dcl(c′)” means
thatc′ can be thought of as being an extensioncc′′ of c. We then replace the
given amalgamation problem by a problem(r′ij) in which r′23(z

′
1z

′
2) is any

complete type overacl(∅) extendingr23(z′1z
′
2) ∪ p′(z1) ∪ p′(z2) wherep′ is

the type ofc′ and the connection between the variableszi andz′i reflects the
relationc ∈ dcl(c′); one may even suppose thatzi is an initial segment ofz′i.
After these adjustments(∗) holds.

Now for a ∈ J satisfyingp1, c, c′ ∈ C we consider the setB(a, c) = {y :
r12(ay, c)} and the setsJ(c) = {a ∈ J : B(a, c) 6= ∅}, J(c, c′) = {a ∈ J :
B(a, c) = B(a, c′) 6= ∅}. In particularJ(c, c′) ⊆ J(c) ∩ J(c′). We define a
relationE onC as follows:E(c, c′) if and only if J(c, c′) is infinite. Using
our understanding ofJ we will show thatE is a generic equivalence relation
extendingE2, and hence by the preceding lemma thatE(c2, c3) holds for any
independent pairc2, c3 in C, in particular for a realization ofr23. This then
allows us to solve the amalgamation problem directly.

We now check thatE contains all pairs belonging to an infinite 2-independent
indiscernible sequenceI. Let µ be the multiplicity of the semigeometric type
p1 and letI ′ be a subset ofI of cardinality2µ. By Lemma 5.1.8 we can find
an elementa independent fromI ′ such thatB(a, c) 6= ∅ for c ∈ I ′. As this
gives us2µ nonempty subsetsB(a, c) of {b : p1(a, b)}, two of them must co-
incide, and then by indiscernibility, any two of them must coincide. As there
are infinitely many such elementsa, E(c, c′) holds for pairs inI.

It remains to be seen thatE is a generic equivalence relation. We take
c, c′, c′′ independent withE(c, c′) andE(c′, c′′) holding. ThusJ(c, c′) and
J(c′, c′′) are infinite subsets ofJ(c′), and we claim thatJ(c, c′′) is also infi-
nite; in fact we claim that the intersectionJ(c, c′) ∩ J(c′, c′′) is itself infinite.
This involves specific features of the geometryJ . We consider two represen-
tative cases: an affine space, and a linear space with a quadratic form.
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Let A be an affine space corresponding to a linear modelV , with V ∗ the
definable dual. LetWc denote the minimalacl(c)-definable subspace ofV of
finite codimension. ThenJ(c) contains all but finitely many elements of some
coset ofWc in A. Similarly,J(c, c′) contains all but finitely many elements of
some coset of the minimalacl(c, c′)-definable subspaceWc,c′ of finite codi-
mension. NowWc,c′ + Wc′,c′′ ≤ Wc′ is definable over bothacl(c, c′) and
acl(c′, c′′), and asc, c′, c′′ are independent, this space is definable overacl(c′).
Thus the sum equalsWc′ , which means that any two cosets ofWc,c′ andWc′,c′′

will intersect; the intersection is then infinite, being a coset ofWc,c′ ∩Wc′,c′′ .
This completes the proof in the affine case.

If J is linear and carries a quadratic form then the argument is similar, but
the sets involved contain almost all elements of a subset of the spacesWc,
Wc,c′ on which the quadratic formQ takes on a specific value. This set will be
infinite on any subspace ofJ of finite codimension.

Lemma 5.1.14.LetM be weakly Lie coordinatized. Let(pi; rij) be an amal-
gamation problem of length3 over acl(∅) with p1 semigeometric. Then the
problem has a solution.

Proof. We proceed by induction on the multiplicityµ of p1.
Take realizationsa1b1ci of r1i for i = 2, 3. If the multiplicity of bi overa1ci

isµ for i = 2, 3 then we may use Lemma 5.1.8 to choosea1c2c3 appropriately,
and then addb1.

Accordingly, we may assume

The multiplicity ofb1 overa1c2 is less thanµ.

In this case the basic idea is to absorb the parameterc2 into the base of
the type and continue by induction. We first expandc2 to an algebraically
closed setC2 and adjust the amalgamation problem accordingly. We will keep
the notation as before apart from writingC2 for c2. The types involved now
have infinitely many variables but this can be handled using the compactness
theorem.

LetC2c3 realizer23 and supposea1b1c3 realizesr13 with a1b1 independent
from fromC2c3. TakeC′

2 with a1b1C′
2 realizingr12 andC′

2 independent from
a1b1C2c3. We will useC′

2 as the basis of a new amalgamation problem.
Let r′13 = tp(a1b1/C′

2), r
′
23 = tp(C2c3/C

′
2). To complete the specification

of our auxiliary amalgamation problem, we will require a typer′12(xy, z) over
C′

2 implying the independence ofxy from z and compatible withtp(a1b1/C′
2),

tp(C2/C
′
2), andr12(xy, z). If we construe the desiredr′12 as a type in the

variablesxy, z, z′, with z′ replacingC′
2, then this is itself an amalgamation

problem involving the typesr12(xy, z), r12(xy, z′), andtp(C2, C
′
2). This case

is covered by the preceding lemma. Thus we have a new amalgamation prob-
lem(r′ij) defined overC′

2, containing the original problem. As the multiplicity
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of the initial 1-typep′1 = tp(a1b1/C′
2) is less thanµ, we may conclude by

induction.

Proposition 5.1.15.LetM be weakly Lie coordinatized. ThenM has the type
amalgamation property.

The following corollary shows that the Shelah degree is bounded by the
rank.

Corollary 5.1.16. Let M be a weakly Lie coordinatized structure, or more
generally anℵ0-categorical structure of finite rank with the type amalgama-
tion property. LetI be an independent set,p(x) a complete type over acl(∅),
andϕa(a, x) (a ∈ I) a collection of formulas for whichϕa&p is consistent
of rank rkp. Then

∧

I ϕa&p is consistent of rank rkp.

Proof. We may assume first thatI is finite and then that|I| = 2, as the state-
ment is iterable. So we considerϕ1(a1, a3)&ϕ2(a2, a3)&p(a3), with a1, a2
independent. This can be converted into an amalgamation problem of the type
covered by the preceding proposition.

We now concern ourselves with the number of types of various sorts existing
over finite sets of a given order.

Lemma 5.1.17.LetM be a weakly Lie coordinatized structure, andϕ(x, y)
an unstable formula. Then for eachn there is a setI of sizen over which
there are2n distinctϕ-types. In particularϕ has the independence property.

Proof. The instability ofϕ means that there is an infinite sequenceI of pa-
rameters(ai, bi) such thatϕ(ai, bj) will hold if and only if i < j. We may
takeI to be indiscernible.I is independent over a finite setB and we may
take it to be indiscernible overB, which we absorb into the language. Let
p = tp(bi/ acl(∅). The formulasϕ(ai, x) and¬ϕ(ai, x) are consistent withp
and of maximal rank, so the same applies to their various conjunctions by the
preceding corollary.

Lemma 5.1.18.LetM be Lie coordinatized with finitely many sorts, andJ a
0-definable geometry ofM. Then forX ⊆ M finite, andb ∈ M , we have
the following estimate, uniformly:

| acl(Xb) ∩ J | = O(| acl(X) ∩ J |).

Proof. LetJ(X) = acl(X)∩J , J(Xb) = acl(Xb)∩J . It suffices to show that
dim(J(Xb)/J(X) = rk b. AsJ is stably embedded with weak elimination of
imaginaries, a basisB for J(Xb) moduloJ(X) will be independent fromX
overJ(X). Thusdim(J(Xb)/J(X)) = rk(B/X) ≤ rk(b/X) ≤ rk b.
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Lemma 5.1.19.Let M be a Lie coordinatized structure with finitely many
sorts,J a b-definable Lie geometry. Then forX varying over algebraically
closed subsets ofM we have

| acl(Xb) ∩ J | = O(|X |).

Proof. All cases are controlled by the projective case, so we assume thatJ is
projective. LetJ ′ be a canonical projective geometry nonorthogonal toJ , with
defining parameterb′ ∈ dcl(b).

If b′ ∈ acl(X), thenacl(Xb′) ∩ J ′ ⊆ X and otherwise,acl(Xb′) ∩ J ′ = ∅,
so in any case| acl(Xb′) ∩ J ′| ≤ |X |. Thus by the previous lemma

| acl(Xb) ∩ J | ≤ |J ′ ∩ acl(Xb)| = O(| acl(b′X) ∩ J ′|) = O(|X |).

Proposition 5.1.20.Let M be Lie coordinatizable,D ⊆ M 0-definable of
rank k. Then the number of types of elements ofD over an algebraically
closed set of ordern in M isO(nk).

Proof. Suppose first thatD = J is a coordinatizing geometry ofM. For
algebraically closedX the types under consideration are determined by their
restrictions toX∩J . Thus we may assumeM = J in this case. The statement
is then clear by inspection. For example, in the presence of aquadratic form,
the behavior of the the form on an extension of a subspace by a single point is
determined by its value on the additional point and an induced linear function
defined on the subspace. If the geometry is affine the situation remains much
the same.

We turn to the general case. We may assume thatD is the locus of a single
type. Takec ∈ D of rankk andb ∈ acl(c) of rankk−1 supporting a coordinate
geometryJb, with a ∈ Jb such thatc ∈ acl(ba). LetD′, D′′, andD′′′ be the
loci of the types ofb, ba, andbac respectively. Inductively, the number of types
of elements ofD′ over an algebraically closed subsetX of ordern isO(nk−1).
By Lemma 5.1.19 forb ∈ D′ we have| acl(Xb) ∩ J | = O(|X |) and thus the
number of types inJ overacl(Xb) is alsoO(|X |). Thus the number of types
in D′′ overX isO(nk). AsD′′′ is a finite cover ofD′′ the number of types of
elements inD′′′ is alsoO(nk) and as the types of elements ofD lift to types
of elements ofD′′′ this bound applies toD′′′.

Definition 5.1.21. ForD a definable set lets(D,n) denote the minimum num-
ber of types of elements ofD existing over a subset ofD of ordern.

Observe, for example, that in one of the standard geometriesthis will be
O(n), with the optimal subset being as close to a subspace as possible.

The following corollary depends on estimates for the sizes of envelopes to
be given shortly.
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Corollary 5.1.22. Let M be Lie coordinatized with finitely many sorts,D a
0-definable subset ofM. Thens(D,n) is polynomially bounded.

Proof. We show in Proposition 5.2.2 below that the size ofD in an enve-
lopeE is given by a polynomial function of certain quantitiesqd, q being
approximately the size of the base field andd varying over the dimensions of
E. Varying just one of these dimensions, we can find envelopes in which the
size ofD is asymptotically a constant timesqd for somed. Thus form large
we can find envelopesE in which the size ofD is comparable tom; that is,
m ≤ |D| ≤ (q + ǫ)m. Thus takingX to be a subset ofD ∩ E of orderm and
applying the previous result, we get the desired bound.

We mention two problems. The first relates to the amalgamation of types.

Problem 1. Find independent elementsa1, a2, a3 such that there is noB in-
dependent froma1a2a3 for which:

tp(a1a2/B) ∪ tp(a1a3/B) ∪ tp(a2a3/B) determines tp(a1a2a3/B).

Problem 2. Are types over envelopes uniformly definable?

5.2 THE SIZES OF ENVELOPES

We deal here with the computation of the size of an envelope asa function of
its dimensions, and also with the sizes of the automorphism groups. We wish
to express the sizes of envelopes as polynomial functions ofthe relevant data,
and to do so it will be convenient to work with square roots of the sizes of the
associated fields.

Notation 5.2.1. LetM be Lie coordinatized andp a canonical projective geo-
metry. For an envelopeE we letdE(p) be the corresponding dimension (or
cardinality in the degenerate case) and we letd∗E(p) = (−√

q)dE(p), where
q is the size of the base field; in the degenerate case we setd∗(p) =

√

d(p).
WhenE is understood we writed(p) andd∗(p).

Proposition 5.2.2. Let E be a family of envelopes for the Lie coordinatized
structureM such that for each dimensionp corresponding to an orthogonal
space, the signature and the parity of the dimension is constant on the family.
Then there is a polynomialρ in several variables such that for everyE in
E , |E| = ρ(d∗(E)), whered∗(E) is the vector(d∗E(p)). The total degree
of ρ is 2 rk(M) and all leading coefficients are positive. IfM is the locus
of a single type (with the coordinatization inMeq), thenρ is a product of
polynomials in one variable.

Proof. We show that for any definable setDa of M, there is a polynomial of
the type described giving the cardinality ofDa in anyE ∈ E which contains
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the parametera. We may suppose thatDa is the locus of a single type overa.
We will proceed by induction onrk(Da).

Taked ∈ Da andc ∈ acl(ad) lying in ana-definable geometryJ , which
we may take to be degenerate, linear, or affine, with associated canonical pro-
jectivep. Let D′

ac be the set of realizations oftp(d/ac). Then we may take
ρDa = ρJρ

′
Dac

/Mult(c/ad). This reduces to the caseD = J .
If J is affine or quadratic, add a parameter to reduce to a basic linear geo-

metryJ . Then the dimension ofJ in E is dE(p) minus a constant depending
on the type ofa. Thus it suffices to find a polynomial giving the number of
realizations of a type inJ in terms ofd∗E(p) or equivalently in terms of the cor-
responding expression(±√

q)dim J . The essential point is to compute the sizes
of sets defined by equationsQ(x) = α with Q a quadratic or unitary form. Let
n(d, α) be this cardinality as a function of the dimension andα, depending
also the type of the geometry. These are straightforward computations. We
give details.

In the orthogonal case we can break up the space as the orthogonal sum of a
2i-dimensional spaceH with a standard formQ(ᾱ, β̄) =

∑

αiβi and a com-
plement of dimensionj ≤ 2. So onH we haven(2i, 0) = (qi − 1)qi−1 + qi

andn(2i, α) = (q2i − n(2i, 0))/(q − 1) for α 6= 0. Thus on the whole space

n(2i+ j, α) = n(2i, 0)n(j, α) + [(q2i − n(2i, 0)/(q − 1)](qj − n(j, α))

where the parametern is computed with respect to the corresponding induced
form. This simplifies to

n(2i+ j, α) = qin(i, α) + qj−1(q2i − qi)

and for smalli n(i, α) is treated as a constant, corresponding to the particular
form used.

In the unitary casen(d, α) is independent ofα for α nonzero and thus
it suffices to computen(d, 0). Using an orthonormal basis and proceeding
inductively one getsn(d, 0) = qd−1(

√
q + 1) − n(d − 1, 0)

√
q and then

n(d, 0) = qd/
√
q + (−√

q)d−1(1−√
q).

Remarks 5.2.3. If we are working with graphs, for example, the number of
edges is given by a polynomial. The polynomialsρ can be determined given
a sufficiently large envelope in which the subenvelopes are known.

We now discuss the chief factors of automorphism group of an envelope,
which are the successive quotients in a maximal chain of normal subgroups of
this group.

Lemma 5.2.4. LetG be the automorphism group of the envelopeE(d) in a
Lie coordinatized structureM. Then the number of chief factors ofG is
bounded, independently ofd, and each chief factor is of one of the following
kinds:
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1. abelian;
2. Hρ(d), whereH is a fixed finite group andρ is one of the functions de-

scribed in the preceding proposition;
3. Kρ(d), withρ(d) as in the preceding proposition andK a classical group

PSL(di, qi), PSp(di, qi), PΩ±(di, qi), PSU(di, qi), or Alt(di), as appro-
priate to theith dimension.

Proof. Once the dimensions are sufficiently large, the socle of theautomor-
phism group of one layer of the coordinate tree over the previous layer is of
the form(3) or abelian, unless the geometry is finite (inM), with the number
of factors corresponding to the size of a definable set moduloan equivalence
relation. The remainder of the automorphism group at that layer is solvable. If
the layer consists of copies of a finite geometry, consider a chief factorH/K
with H,K Aut(E)-invariant subgroups acting trivially on the previous layer.
Let A be the automorphism group of the finite geometry involved, and letL
be the part ofE lying in the previous level of the coordinate tree, so thatH,K
lie in AL. If H/K is nonabelian then it is a product of a certain number of
copies of a single isomorphism type of finite simple groupS. The number of
factors is the order ofL modulo the following equivalence relation:a ∼ b if
the projection ofH/K ontoAa × Ab is a diagonal subgroup isomorphic to
S. This relation isAut(E)-invariant and hence definable. Thus the number
ρ of factors involved is equal to the size of a definable set in anenvelope (a
definable quotient ofL).

Corollary 5.2.5. LetM be a Lie coordinatized structure. Then for the dimen-
sion functiond large enough, Aut(E(d)) determinesd up to a permutation
of the coordinates and up to orientation in the odd-dimensional orthogonal
case.

Proof. Let f be a bound on the size of the chief factors of the second type
above. Letd be large enough that the chief factors of the third type are all
of order greater thanf . Then these chief factors can be recovered from the
automorphism group unambiguously and the datad can be read off.

Lemma 5.2.6. LetM be a Lie coordinatized structure andD a definable sub-
set. Then the following are equivalent:

1. rk(D) < rk(M).
2. limE→M |D[E]|/|E|) = 0.

Here the limit is taken over envelopes whose dimensions all go to infinity,
andD[E] meansD taken inE, which for large enoughE is D ∩ E. The
convergence is exponentially rapid if all geometries are nondegenerate.
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Proof. We compare the polynomialsρD, ρE giving the sizes ofD andE.
If the ranks are equal, then both polynomials have positive leading coeffi-

cients and total degree2 rk(M). For each dimensiondi, ρD, ρE involve the
parameterd∗i = αdi

i for an appropriateαi (read this expression asdi in the
degenerate case). Let the dimensionsdi be taken momentarily as arbitrary real
numbers going jointly to infinity along the curved∗1 = d∗2 = . . ., so that the
polynomialsρD, ρE reduce to one variable polynomials converging to a posi-
tive γ. After a slight perturbation we may suppose thatd1, d2, . . . are rational,
thatρD/ρE approachesγ, and that the terms of total degree less than2 rk(M)
make a negligible contribution. After rescaling by a commondenominator, the
“dimensions” are integers, the ratio of the highest order parts of ρD andρE
goes toγ, and the lower-order terms are even more negligible. Thus wehave
a sequence of dimension assignments tending jointly to infinity on which the
quotientρD/ρE will not go to zero.

Now assume thatrk(D) < rk(M). We may takeD, E to be realizations of
single types, so thatρD andρE factor as products of polynomials in one vari-
ableρD,i, ρE,i. The ratiosρD,i/ρE,i are bounded, as otherwise varying only
the one relevant dimension we would get a proper subset with more elements
than the whole setE. On the other hand at least one of theρD,i has degree
less than the degree ofρE,i so the limit goes to 0 (rapidly, if the geometry is
nondegenerate).

We now prove a finitary Löwenheim–Skolem principle.

Lemma 5.2.7. Let M be Lie coordinatized. For any subsetX of M there
is an envelopeE of M containingX , in which each dimension is at most
2 rk(X) ≤ 2 rk(M) · |X |.

Proof. LetJ1, . . . , Jn be theacl(∅)-definable dimensions, andEi = acl(X)∩
Ji. The dimension ofEi is at mostrk(X). If the geometryJi carries a form
then increaseEi to a nondegenerate subspace, of dimension at most2 rk(X).
Let M′ be a maximal algebraically closed subset ofM containingX , and
such thatM ′ ∩ Ji = Ei. ThenM′ is Lie coordinatized and has smaller rank,
unless these geometries are finite, in which case iteration of the process will
eventually lower the rank or the height of the coordinatizing tree. By induction
on rank we may suppose that inM′ there is an envelopeE with the desired
properties. This will then be an envelope inM, with the desired properties.

Remark 5.2.8. The existence of indiscernible sets of ordern in all large finite
structures with a fixed number of 5-types is proved in [CL]. Inparticular, an
infinite quasifinite structure contains an infinite set of indiscernibles. Con-
versely, from the latter result it follows that there is a constantc such that
for large n, a pseudofinite structure with at leastcn elements contains a
sequence of indiscernibles of lengthn. This follows from the last lemma
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using the bounds on the sizes of envelopes, since the ranks involved can be
bounded in terms of the number of4-types. It is possible that an explicit
bound of this kind can also be extracted by tracing through the arguments
in [CL].

Problem 3. Do the abelian chief factors of automorphism groups of envelopes
have orderspσ(d,d

∗) withσ a polynomial similar toρ—in particular, a prod-
uct of polynomials in one variable (i.e., depending on one dimension)?

One can treat the case of affine covers by dualization, reducing to finite
covers. Then by results in [EH] the problem reduces to the following: if J is
a definable combinatorial geometry on a definable setD of a Lie structureM,
which is subordinate to algebraic closure, show that the dimension ofJ in an
envelope ofM is given by a polynomial ind, d∗.

5.3 NONMULTIDIMENSIONAL EXPANSIONS

We show here that Lie coordinatizable structures have “nonmultidimensional”
expansions, lifting [HrTC,§3] to the present context. As in that earlier case,
the difficulty lies in the interaction of orthogonal geometries, which means that
the outer automorphism groups may be related even if the simple parts of the
groups are not.

Definition 5.3.1. A Lie coordinatized structure is said to benonmultidimen-
sional if it has only finitely many dimensions, or equivalently (andmore
explicitly) if all canonical projectives are definable overacl(∅).

Proposition 5.3.2. Every Lie coordinatized structure can be expanded to a
nonmultidimensional Lie coordinatized structure.

Proof. We use a locally transitive coordinatizing tree, meaning that the type
of a point at a given level depends only on the level. We also allow the in-
troduction of a finite number of additional sorts, each carrying a single basic
geometry.

LetMi be the coordinatizing tree up to leveli together with the elements of
the special sorts, and let∆ be the set of indicesi for which the geometriesJa
associated to points at leveli are orthogonal toMi. We proceed by induction
onMi, the case∆ = ∅ being the nonmultidimensional case. So we take∆
nonempty.

Now let n ∈ ∆ be maximal. LetTn be the set of elements lying at level
n in the coordinatizing tree. Fora ∈ Tn let Pa′ be the canonical projective
geometry associated withPa and letq be the type ofa′. Let Va′ be the corre-
sponding linear geometry. If these linear geometries are not actually present in
the structure, we may attach them freely to the canonical projectives. (In the
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degenerate case, the geometry is considered to be both linear and projective.)
The isomorphism type ofVa′ is independent ofa′, but there will not be any
system of identifications present between the variousVa′ .

Suppose for definiteness thatVa′ is of orthogonal type in odd characteristic,
with base fieldKa′ , and bilinear formBa′ : Va′ ×Va′ → La′ , a 1-dimensional
Ka′-space. Fix a copyK of the base field, and a 1-dimensional spaceL over
K. Fix a 2-dimensional spaceU◦ overK and a nondegenerate bilinear form
( )◦ : U◦ × U◦ → L which takes the value 0 at some nonzero point. The pair
(U◦, ( )◦) is unique up to an isomorphism fixingK andL.

Now letU1, Q1 be an infinite dimensional nondegenerate orthogonal space
over the prime fieldF ≤ K and setU = U1 ⊗ U◦ as aK-space. The forms
(, )◦ and(, )1 induce a bilinear form(, ) onU satisfying(a1 ⊗ a◦, b1 ⊗ b◦) =
(a1, b1)1 · (a◦, b◦)◦. This makes sense by the universal property of tensor
products. LetΓ be the family{a⊗ U◦ : a ∈ U1}. Then

(1) Any automorphismh of (K,L) extends to
an automorphism ofU fixing Γ pointwise.

The uniqueness ofU◦ signifies thath extends toU◦. To extend toU fix U1

pointwise. ThenΓ is fixed pointwise.
Add U as a new sort. Forb satisfyingq pick isomorphismshb : U → Vb,

and letΓb = hb[Γ]. Let M′ beM expanded by the sortU and a family of
mapsfb : Γ → Γb for b satisfyingq. fb is to be coded by a ternary relation
on q × U ×⋃b Vb. hb is not part of the structure but the setsΓ andΓb can be
recovered fromfb in (M′)eq. We claim thatM′ remains4-quasifinite and that
∆ is reduced by 1.

By a normalsubset ofMeq we mean a union of 0-definable sets. The re-
striction of a normal subset to a finite number of sorts is then0-definable. We
consider normal subsetsS satisfying the additional condition:

Forb satisfyingq, Vb is orthogonal toS.

This means that any basic geometry corresponding toVb (with acl(b) fixed) is
orthogonal toS. LetQ be a maximal normal subset of this type containingTn.
ThenQ contains the locus ofq and is algebraically closed. We claim thatQ is
also stably embedded inM, since for any projective or affine geometry inQ,
if the dual exists inM, then it is contained inQ.

We claim now:

(2) For any automorphismsα of Q andβ of U ,
the mapα ∪ β is induced by an automorphism ofM′.

Let Q1 = Q ∪ ⋃b Vb. ThenQ1, like Q, is stably embedded inM. We first
extendα ∪ β toQ1. Forb satisfyingq, α induces mapsKb → Kσb andLb to
Lσb. By (1) these maps are induced by a linear isomorphismθb : Vb → Vσb
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compatible withfσbβf
−1
b . Using the orthogonality condition,α ∪ β ∪⋃b θb

is elementary and extends to an automorphism ofM′.
It remains to be seen that apart from the introduction ofU , the rest of the

coordinatization ofM is unaffected; specifically, ifJc is a canonical projective
geometry ofM orthogonal to the geometriesVb, then

Jc has no extra structure as a subset ofM′;
If Jc is stably embedded inM, then it remains stably embedded
in M′.

We may assume thatJc is stably embedded inM. If Jc is contained inQ this
follows from(2), and otherwise any automorphism ofJc fixing acl(c) extends
to an automorphism ofM fixingQ1 pointwise. This is then elementary inN ′.

This completes the orthogonal case in odd characteristic. The linear, sym-
plectic, and unitary cases are similar, with the auxiliary spaceU◦ 1-dimensional
in the unitary case. In the orthogonal case in characteristic 2, the orthogonal
geometry is an enrichment of a symplectic geometry and we maysuppose that
the pure symplectic space occurs as well, and that the quadratic form used oc-
curs also as a point in an associated quadratic geometry. Then we can switch to
the symplectic case. Similarly, in the case of a polar geometry (V, V ∗) reduce
the scalars to the prime field and introduce linear isomorphismsιV : V → V ∗.
This can be done without destroying outer automorphisms andbrings us back
to the symplectic case.

Proposition 5.3.3. For M quasifinite the following are equivalent:

1. M is stable.
2. M is ℵ0-stable.
3. M does not interpret a polar space.

Proof. We must show that(3) implies(2). So assume (3). In particular none
of the canonical geometries forM involve bilinear forms. The geometries
occurring are therefore all strongly minimal and stably embedded. Morley
rank is subadditive in theℵ0-categorical setting, for stably embedded definable
subsets (cf. [HrTC]), so using the coordinatization,M has finite Morley rank.

Remarks 5.3.4
As the class ofstablepolar spaces is the class offinite polar spaces, which is
not an elementary class, the notion of a stable quasifinite structure in a given
language is not an elementary notion. On the other hand, for afixed finite
languageL, the class of stable homogeneousL-structures is elementary [CL].
This can be seen fairly directly as follows. By a result of Macpherson [Mp1]
in a finitely homogeneous structure, no infinite group is interpretable. In par-
ticular for finitely homogeneous structures, quasifiniteness and stability are
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equivalent. But for finitely homogeneous structures quasifiniteness is elemen-
tary.

Although we work outside the stable context, we still require the analysis of
[CL] for primitive groups with nonabelian socle, which enters via [KLM].

5.4 CANONICAL BASES

We do not have a theory of canonical bases as such, but the following result
serves as a partial substitute.

Proposition 5.4.1. LetM beℵ0-categorical of finite rank. Suppose thata1, a2, a3
is a triple of elements which are independent overa1, overa2, and overa3.
Thena1, a2, a3 are independent over the intersection of acl(ai), i = 1, 2, 3,
in Meq.

We begin with a few lemmas.

Lemma 5.4.2. LetM beℵ0-categorical of finite rank and letR be a 0-definable
symmetric binary relation satisfying

WheneverR(a, b), R(b, c) hold with a, c independent overb,
thenR(a, c) holds andb, c are independent overa.

Then there is a 0-definable equivalence relationE such that

R(a, b) implies the following:E(a, b) holds anda, b are inde-
pendent overa/E = b/E.

Proof. We defineE(a, b) as follows: For somec independent froma overb
and fromb overa,R(a, c) andR(b, c) holds.

We check first thatR impliesE. If R(a, b) holds, choosec independent
from a over b such thatR(c, b) holds. Then by(∗) R(a, c) holds andc is
independent fromb overa. ThusE holds. The domain ofE is the same as
the domain ofR andE is clearly reflexive and symmetric on this domain. We
now check transitivity.

SupposeE(a1, a2) andE(a2, a3) hold and leta12, a23 be witnesses. Thus
we haveR(ai, aij); R(aj , aij); andaij is independent fromai overaj and
from aj overai. As a12 is independent froma1 overa2, we may take it in-
dependent froma1a2a3 overa2; and similarly fora23. Furthermore, we may
takea12, a23 independent overa1, a2, a3 and hence overa2. FromR(a2, a12)
andR(a2, a23) we then deduceR(a12, a23).

Pick c independent froma1a2a3a23 overa12 such thatR(a12, c) holds. We
claim then:

(1) R(ai, c) holds for alli, and
c is independent fromaij overai and overaj .
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First, sincec is independent froma23 overa12 we getR(a23, c) andc is in-
dependent froma12 over a23; the latter implies thatc is independent from
a1a2a3a12 overa23. Soc is independent froma1 or a2 overc1, and froma2
or a3 overc2. By another application of(∗) the relation(1) follows.

Now using (1) we getc independent froma1a2a3a12a23 over eachai and, in
particular,c is independent froma3 overa1 and froma1 overa3; soE(a1, a3)
is witnessed byc. ThusE is transitive.

Finally, we must show that ifR(a, b) holds andc = a/E = b/E, thena, b
are independent overc. Let a′ realize the type ofa overc with a′ independent
froma overc. We will show then thata andb are independent overa′ and thus
a andb are independent overc.

AsE(a, a′) holds, there isd satisfying

R(a, d),R(a′, d), andd is independent froma overa′ and from
a′ overa.

We will takea′, d independent fromb overa. In particular we havea′ inde-
pendent fromb overad, andb independent fromd overa; the latter, with(∗),
givesb independent froma overd and then combined with the former, we get
aa′ independent fromb overd, hencea independent fromb overa′d. As a is
independent fromd overc we get finallya independent fromb overa′.

Definition 5.4.3. Let a1, . . . , an be a sequence of elements in a structure of
finite rank.

1. The sequence is said to be1-locally independentif it is independent over
any of its elements.

2. We setδ(a1, . . . , an) =
∑

i rk ai − rk(a1 . . . an).

Lemma 5.4.4. LetM be a structure of finite rank,a = a1, . . . , an a sequence
of elements. Then the sequencea is 1-locally independent if and only if:

The quantityδ = δ(aiaj) is independent ofi, j (distinct);

andδ(a) = (n− 1)δ.

Proof. We have in general for any fixed indexk, writing
∑′ for a sum exclud-

ing the indexk:

δ(a) =
∑

i

rk(ai)− (rk(a/ak) + rk(ak))

=
∑

i

′
rk(ai)− rk(a/ak)

≥
∑′

rk(ai)−
∑′

rk(ai/ak) =
∑′

δ(ai, ak)
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with equality if and only ifa is independent overak. Thus if δ = δ(ai, aj) is
constant andδ(a) = (n−1)δ, then we have equality regardless of the choice of
k and the sequence is 1-locally independent, while, conversely, if the sequence
is 1-locally independent, thenδ(a) =

∑′ δ(aiak) for any k and it suffices
to check that theδ(aiaj) are independent ofi, j. But the restriction ofa to
any three termsai, ai′ , ai′′ remains 1-locally independent, and applying our
equation to a sequence of length 3 withk = i′ or k = i′′ yields δ(i, i′) =
δ(i, i′′), from which it follows thatδ is constant.

Lemma 5.4.5. LetM be a structure of finite rank.

1. Suppose thata = a1, a2, a3, a4 is a sequence witha1, a2, a3, anda2, a3, a4
1-locally independent. Ifa1 anda4 are independent overa2a3, thena is
1-locally independent.

2. If a = a1a2b1b2c1c2 is a sequence whose first four and last four terms
are 1-locally independent, anda1a2 is independent fromc1c2 overb1b2,
thena is 1-locally independent.

Proof.
Ad1. We haveδ(aiaj) = δ constant, with the possible exception of the pair

a1, a4. Repeating the calculation of the previous lemma overa2a3 rather than
ak, usingrk(a1a2a3a4/a2a3) = rk(a1/a2a3) + rk(a4/a2a3), we getδ(a) =
3δ. Thus it remains only to be checked thatδ(a1a4) = δ. We may show easily
that a is independent overa2 or overa3, starting from the independence of
a1a2a3 from a4 overa2a3. Thus

rk a2 − δ = rk(a2/a1) ≥ rk(a2/a1a4) ≥ rk(a2/a1a3a4)

= rk(a2/a3) = rk(a2)− δ

and, in particular, we have the equationrk(a2/a1a4) = rk(a2)− δ. Now

rk(a) = rk(a1a4) + rk(a2/a1a4) + rk(a3/a1a2a4)
= rk(a1a4) + (rk(a2)− δ) + rk(a3)− δ

and thus
3δ =

∑

rk(ai)− rk(a) = δ(a1a4) + 2δ

andδ(a1a4) = δ.
Ad 2. It is straightforward thata is independent overb1 or overb2 and by

symmetry it will be sufficient to prove thata is independent overa1.
We have by assumptionc1c2 independent froma1a2b1b2 overb1b2 and thus

c1 is independent froma1a2b1b2 overb1b2c2, but alsoc1 is assumed indepen-
dent fromb1b2c2 overc2, and thus

c1 is independent froma1a2b1b2c2 overc2.
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In particular,c1c2 is independent froma1b1b2 overa1c2. By Case 1a1b1b2c2
is 1-locally independent and is, in particular, independent over a1, so from
the previous relation we derive the independence ofc1c2 from b1b2 overa1.
Combining this with the independence ofc1c2 from a1a2b1b2 over b1b2, we
find thatc1c2 is independent froma1a2b1b2 overa1. Now c1 is independent
from c2 overb1b2 andc1c2 is independent froma1 overb1b2 soc1 is indepen-
dent fromc2 overa1b1b2, and hence, by transitivity, overa1. Thusa1a2b1b2
is independent overa1, c1c2 is independent froma1a2b1b2 overa1, andc1 is
independent fromc2 overa1. Thusa is independent overa1.

Proof of Proposition 5.4.1. We havea1, a2, a3 1-locally independent. LetX
be the set of pairsx = (x1, x2) such that each coordinatex1 or x2 realizes the
type of one of the three elementsai, and define a relationR onX by: R(x, y)
if and only if x1, x2, y1, y2 is a 1-locally independent quadruple. We will ap-
ply Lemma 5.4.2 toR. Note first that ifR(x, y) andR(y, z) hold withx andz
independent overy then the 6-tuple(x, y, z) satisfies the conditions of case 2
of the previous lemma, and thus the six coordinates form a 1-locally indepen-
dent sequence. Thus Lemma 1 applies and there is a 0-definableequivalence
relationE such that

R(x, y) implies:E(x, y), andx, y are independent overx/E.

Now consider the 1-locally independent triple(a1, a2, a3). We extend it by
two further elementsa4, a5 satisfying the following conditions:tp(ai/a2a3) =
tp(a1/a2a3), for i = 4, 5; a4 independent froma1 overa2a3; anda5 is inde-
pendent froma1, a4 overa2, a3. We claim that any 4-tuple froma1, a2, a3, a4, a5
is 1-locally independent. This follows from Lemma 5.4.5, part (1), fora1a2a3a4,
a1a2a3a5, or a2a3a4a5. In the remaining two cases,a1a2a4a5 anda1a3a4a5,
we need to check thata5 is independent froma4 overa1a2 or a1a3. But a5 is
independent froma4 overa1a2a3 and froma1a2a3 overa2 or a3. Thus all of
these 4-tuples are 1-locally independent, and hence any twodisjoint pairs are
E-equivalent; and by transitivity any two pairs areE-equivalent. Lete be the
commonE-class of these pairs. Thena1a2 is independent froma3a4 overe
anda1a3 is independent froma2a4 overe. In particular, working overe we
havea3 independent froma1a2, anda1 independent froma2, and thusa1a2a3
is an independent set overe. It remains only to be checked thate is algebraic
over eachai. Certainlye ∈ acl(a1a2) andacl(a3a4), and as these pairs are
independent over anyai, we havee ∈ acl(ai) for all i.

5.5 MODULARITY

Definition 5.5.1. Let M be ℵ0-categorical of finite rank.M is modular if
wheneverA1, A2 are algebraically closed sets inMeq, they are independent
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over their intersection.

By conventionacl will always be taken to operate inMeq. This point may
be reemphasized occasionally.

Modularity, as defined here, is called “local modularity” inthe literature
dealing with the case of finite Morley rank, where the term “modular” is ap-
plied only to strongly minimal setsD which in addition to the stated property
have “geometric elimination of imaginaries”: fora ∈ Deq, there isA ⊆ D
with acl(e) = acl(A).

As a matter of notation we will use the symbol⊥ for independence, a sym-
bol which is more often used for model theoreticorthogonality; but the latter
concept does not really call for any special notation in our present develop-
ment.

Lemma 5.5.2. Let M beℵ0-categorical of finite rank. ThenM is modular
if and only if the lattice of algebraically closed subsets ofMeq satisfies the
modular law:

a ∧ (b ∨ c) = b ∨ (a ∧ c) for b ≤ a.

Proof. SupposeM is modular, andA,B,C are algebraically closed subsets
of Meq with B ⊆ A. Our claim is

A ∩ (acl(BC)) = acl(B ∪ (A ∩C))

the modular law. From modularity applied toA,C, asB ⊆ Awe deduce easily
thatA ⊥ BC overB ∪ (A ∩ C). ThusA ∩ acl(BC) = acl(B ∪ (A ∩ C)).

In the converse direction, assume the modular law inMeq, butA,B are
algebraically closed and dependent over their intersection. Minimizerk(A/B)
and, subject to this constraint,rk(A). We may supposeA ∩ B = acl(∅), as
the modular law holds in the corresponding sublattice (i.e., aboveA ∩B). We
adopt the notation0 = acl(∅) for the present. After these reductions, we claim
thatA is a lattice atom: a minimal nontrivial algebraically closed set.

Suppose0 < A′ ≤ A with A′ algebraically closed. AsA′ > A ∩ B,
rk(A′/B) is positive andrk(A/A′B) < rk(A/B), so by minimality

A ⊥ A′B overA ∩ acl(A′B).

If A ∩ acl(AB′) is independent fromB overA ∩ acl(AB′) ∩ B = 0, then
A ⊥ B over0, a contradiction. ThusAmay be replaced byA∩acl(A′B), and
by the minimality ofrkA we findA ⊆ acl(A′B). By the modular law

A = A ∩ acl(A′B) = acl(A′ ∪ (A ∩B)) = A′

as claimed.



102 GEOMETRIC STABILITY GENERALIZED

Now consider a conjugateB′ ofB overA independent fromB overA. Note
that

acl(AB) ∩B′ = 0

sinceacl(AB) ∩ B′ ⊆ A ∩ B′ = 0. If the tripleA,B,B′ is 1-locally inde-
pendent, then it is independent over the intersection0 by Proposition 5.4.1, a
contradiction. If it is not 1-locally independent, then eitherA,B are depen-
dent overB′, orA,B′ are dependent overB, and in any caserk(A/BB′) <
rk(A/B). Thus by the minimality ofrk(A/B), we have independence ofA
fromBB′ overA◦ = A∩acl(BB′). AsA is an atom, we have eitherA◦ = 0,
contradicting the choice ofA, orA ⊆ acl(BB′). In the latter case, applying
the modular law toacl(A,B), B, andB′ we getA ⊆ acl(AB) ∩ acl(BB′) =
acl(B, acl(AB) ∩B′) = B, which is absurd.

Proposition 5.5.3. LetM beℵ0-categorical of finite rank. Then the following
are equivalent.

1. M is modular.
2. For all finiteA1, A2 in M,A1 andA2 are independent over the intersec-

tion of their algebraic closures.
3. For all finite A1, A2 in M, there is a finiteC independent fromA1, A2

such thatA1, A2 are independent over the intersection of the algebraic
closures ofA1 ∪ C andA2 ∪ C.

4. The lattice of algebraically closed subset ofMeq is a modular lattice.

Proof. The equivalence of(1) and(2) is clear and the equivalence of(1) and
(4) is the previous lemma, so we concern ourselves with the implication “(3)
implies (2).” We actually show that each instance of(3) implies the corre-
sponding instance of(2).

LetA1,A2 be the algebraic closures of two finite subsets ofMeq. We must
work with sets generated by subsets ofM rather thanMeq, so takeA∗

1, A∗
2

finite subsets ofM such thatAi ⊆ aclA∗
i and, in addition,

(3.1) A∗
1 ⊥ A2 overA1

(3.2) A∗
2 ⊥ A∗

1 overA2

This ensuresacl(A∗
1) ∩ acl(A∗

2) = acl(A1) ∩ acl(A2) by applying first (3.2)
and then (3.1). Accordingly, the problem is reduced to the following:

A∗
1 ⊥ A∗

2 overacl(A∗
1) ∩ acl(A∗

2).

By (3), we have a finite setC independent fromA∗
1A

∗
2 for which

A∗
1 ⊥ A∗

2 overacl(A∗
1 ∪ C) ∩ acl(A∗

2 ∪ C).
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LetA = acl(A∗
1∪C)∩acl(A∗

2∪C) and takeA∗
3 conjugate toA∗

1 overacl(A∗
2∪

C), and independent fromA∗
1 overA∗

2C. ThenA∗
3 is independent fromA∗

1A
∗
2

overA since

rk(A∗
3/A

∗
1A

∗
2A) ≤ rk(A∗

3/A
∗
1A

∗
2C) = rk(A∗

3/A
∗
2C)

= rk(A∗
3/A

∗
2A) = rk(A∗

3/A)

As A∗
3 is independent fromA∗

1A
∗
2 overA andA∗

1, A∗
2 are independent over

A, A∗
3, A

∗
1, A

∗
2 is an independent triple overA. As A∗

1 andA∗
3 are conjugate

over acl(A∗
2C), they are conjugate overA, and thusA ⊆ acl(A∗

3C). Thus
C ⊆ A ⊆ acl(A∗

iC) for all i. For any permutationi, j, k of 1, 2, 3, we have:
A∗

i ⊥ A∗
j overAA∗

k, henceA∗
i ⊥ A∗

j overCA∗
k, and thusA∗

i ⊥ A∗
J overA∗

k.
By Proposition 5.4.1 the tripleA∗

1, A
∗
2, A

∗
3 is independent over the intersection

of their algebraic closures, and in particularA∗
1, A

∗
2 are independent over the

intersection of their algebraic closures.

Proposition 5.5.4 (Fundamental Rank Inequality, cf. [CHL])
LetM beℵ0-categorical, of finite rank, modular, and with the type amalga-
mation property (cf.§5.1). LetD,D′ be 0-definable sets withD′ parametriz-
ing a family of definable subsetsDb of D of constant rankr for b ∈ D′.
Suppose thatE is a 0-definable equivalence relation onD′ such that for
inequivalentb, b′ ∈ D′ we have

rk(Db) ∩ rk(Db′) < r.

Then rk(D′/E) + r ≤ rkD.

Proof. We may assume that bothD andD′ each realize a unique type over the
empty set. Takeb ∈ D′ anda ∈ Db with rk(a/b) = r. LetC = acl(a)∩acl(b).
Thusa ⊥ b overC by modularity, andrk(a/C) = rk(a/b) = r. We will show

(∗) b/E ∈ C.

Thusrk(D′/E) ≤ rkC = rk(aC) − rk(a/C) = rk(a) − r as claimed. So we
turn to(∗).

Let b′/E be a conjugate ofb/E overC distinct fromb/E, with b′ indepen-
dent fromb overC. We seek an elementb′′ of D′ satisfying

tp(b′′b/C) = tp(b′b/C); tp(b′′, a/C) = tp(b, a/C)

with a, b, b′′ independent overC. This amounts to an amalgamation problem
for three compatible 2-types:tp(ba/C), tp(b′b/C), tp(ba/C). By the type
amalgamation property, this can be done.

In particular,a ∈ Db ∩ Db′′ and thusrk(a/bb′′) < r; but rk(a/bb′′) =
rk(a/C) = r, a contradiction. Thus there is no such conjugateb′ and b ∈
dcl(C) = C.



104 GEOMETRIC STABILITY GENERALIZED

Corollary 5.5.5. With the hypotheses above,M interprets no Lachlan pseu-
doplane.

Remark 5.5.6. This refers to a combinatorial geometry(P,L; I) of points and
lines such that each point is incident with infinitely many lines, two points
are incident with only finitely many lines, and dually. The relevance of these
structures to the behavior ofℵ0-categorical stable structures was shown in
[LaPP], and the corollary settles a question raised in [KLM].

Proof. If (P,L; I) is such a pseudoplane, then after dualizing if necessary we
may taken = rk(L) ≥ rkP . We apply the fundamental rank inequality with
D = P ,Dl is the set of points incident with the linel asl varies over a subset
D′ of L of rankn on whichr = rkDl is constant, withE the equality relation.
By the axioms for pseudoplanes, the previous proposition applies and yields
rkD′ + r ≤ rkP ≤ rkL = rkD′ and thusr = 0, a contradiction.

We give a more precise version of the fundamental rank inequality.

Proposition 5.5.7. LetD,D′ be the loci of single types over the empty set, and
Db a uniformlyb-definable family of rankr subsets ofD parametrized by
D′. Then there is a finite cover : D′′ → D′ and an equivalence relation
E onD′′ such that

1. rk(D′′/E) = rkD − r;
2. For b, b′ E-equivalent inD′′, we have rk(Db̄ ∩Db̄′) = r.

Proof. We work witha, b, c as in the proof of Proposition 5.5.4, but withc
finite rather than algebraically closed: so we requirec ∈ acl(a) ∩ acl(b) finite,
a ⊥ b overc. LetD′′ be the locus ofbc over the empty set, withb1c1 = b1,
and withE(b1c1, b2c2) if and only if c1 = c2 and the types ofb1 overacl(c1)
and ofb2 overacl(c2) coincide. Then the amalgamation argument yields (2),
andrk(D′′)/E = rk(c) = rk(a) − rk(a/c) = rk(D) − rk(a/b) = rkD − r.

5.6 LOCAL CHARACTERIZATION OF MODULARITY

We show in this section that Lie coordinatized structures are modular by reduc-
ing the global property of modularity to local properties ofthe coordinatizing
structures.

Definition 5.6.1. LetM be a structure.
1. A definable subsetD of M is modularif for every finite subsetA of

M, the structure with universeD and relations theA-definable relations of
M restricted toD, is modular.

2. LetF be a collection of definable subsets ofM. ThenM is eventually
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coordinatizedbyF if for anya ∈ M and finiteB ⊆ M , with a /∈ acl(B),
there isB′ ⊇ B independent froma overB and aB′-definable memberD
ofF for whichD ∩ acl(aB′) contains an element not algebraic overB′.

Lemma 5.6.2. If M is eventually coordinatized by a family of modular defin-
able sets, then it is eventually coordinatized by a family ofmodular definable
sets of rank1.

Proof. Replace each modular definable set by its definable subsets of rank 1.
If a ∈ M andB is a finite set, takeB′ ⊇ B independent froma overB and
takeD definable and modular such thatD ∩ acl(aB′) contains an elementb
not algebraic overB′.

TakeB1 ⊇ B′ such thatrk(b/B1) = 1. We may suppose thatB1 is inde-
pendent froma overB. LetB2 = acl(bB′) ∩ acl(B1). ThenB′ ⊆ B2, B2

is independent froma overB, and by modularity ofD, b is independent from
B1 overB2, sork(b/B2) = 1. Let b′ be finite, withB′ ⊆ b′ ⊆ B2, such that
rk(b/b′) = 1, and letD′

b be the locus oftp(b/b′). ThenD′
b ⊆ D is rank 1,

and is modular sinceD is. Furthermore,b ∈ Db′ ∩ acl(ab′)\ acl(b′), andb′ is
independent froma overB.

Proposition 5.6.3. LetM beℵ0-categorical of finite rank. IfM is eventually
coordinatized by modular definable sets, thenM is modular.

Proof. By the preceding lemma we may take the coordinatization to be in
terms of rank 1 modular sets.

SupposeM is not modular. Then there are elementsa, b and a setE such
thatacl(a,E) ∩ acl(b, E) = E, with a andb dependent overE. Takea, b, E
with rk(a/E) + rk(b/E) minimal. Then as noted in the proof of Proposition
5.5.3, for anyE′ ⊇ E, independent froma, b overE, a andb remain dependent
overacl(a,E′)∩ acl(b, E′). Thus after applying the eventual coordinatization
we may assume in addition thatacl(a,E) andacl(b, E) contain elementsa1,
b1 of rank 1 overE, lying in rank 1 modular definable setsD1, D2 respec-
tively, defined overE. For the argument below some further expansion ofE
may be necessary. Specifically, we will assume thatE satisfies the following
condition:

1. If it is possible to expandE to E′ independent fromab overE so that
acl(a,E′) contains an elementa2 of rank 1 overE′ independent froma1
overE, then the same occurs already over the baseE; and similarly for
b.

We will also want to assume the following condition for a finite number of
elementsa′ ∈ acl(a) of rank 1 overE, to be determined below:

2. If there existsE′ as described in(1) anda′′ ∈ D1 with acl(a′, E′) =
acl(a′′, E′), then there isa∗ ∈ D1 for which acl(a′, E) = acl(a∗, E);
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and similarly forb.

After these preliminaries, we may add constants and takeE = acl(∅). We
will write 0 = acl(∅) = E. We will show thata ⊆ acl(a1b) andb ⊆ acl(b1a).

We haveacl(a) ∩ acl(b) = 0, anda, b are dependent. Furthermore,a1 ∈
acl(a) has rank 1 andacl(a1) ∩ acl(b) = 0, so a1 and b are independent.
As rk(a/a1) < rk a, by minimality we havea andb independent overA =
acl(a) ∩ acl(a1, b). Sincea andb are not independent,A andb are not inde-
pendent. ButA ⊆ acl(a) and hence by minimality of total rank (applied to a
finite subset ofA, andb) we getrk(A) = rk a, soa ⊆ A. Thusa ⊆ acl(a1b);
similarly b ⊆ acl(b1, a).

Now we claim there isa2 with

a2 ∈ acl(a); rk(a2) = 1; a2 ⊥ a1

Takeb′, b′1 conjugates ofb, b1 overa, and independent fromb, b1 overa. Thus
a ⊆ acl(a1b′), andb′1 is independent froma, b. As b depends ona andb1 does
not, we haverk b > rk b1 and hence we may chooseE′ containingb′1, indepen-
dent froma, b, b′ overb′1, and someb′2 ∈ acl(b′, E′), so thatrk(b′2/E

′) = 1.
NowE′ is independent froma, b′ andb′2 ∈ acl(b′, E′) ⊆ acl acl(a, b′1, E

′) =
acl(a,E′), with a1 independent fromb′2 overE′, so the same holds for some
conjugate ofE′ independent froma, b, and then by condition (1) the same
holds over0 for somea2 in place ofb′2.

Now a2 ∈ acl(a1b) and thusa1a2 depends onb, but a1a2 ∈ acl(a), so
by minimality a = acl(a1a2). Similarly, we getb = acl(b1b2) with b2 of
rank 1. Here noai ∈ acl(b) and nobi ∈ acl(a), but any one ofa1, a2, b1, b2
is algebraic over the remainder, anda1 ∈ D1. Consider the base setF =
{a2, b2}. ThenF is independent fromb1 andD1 contains an elementx = a1
such thatacl(x, F ) = acl(b1, F ). Taking a conjugateE′ of F over b1 free
from a, b, (2) applies and yields an element ofD1 that may replaceb1. In the
same fashion we may assumeb2 ∈ D1, and then after reversing the argument,
thata2 ∈ D1. Then the pair(a1a2, b1b2) violates modularity inD1.

Corollary 5.6.4. If M is Lie coordinatized thenM is modular.

Proof. The embedded linear and projective geometries are seen to be modular
using the last criterion in Proposition 5.5.3, as arbitraryparameters fromM
may be replaced by parameters in the geometry. Thus it suffices to show that
these geometries eventually coordinatizeM.

Let a ∈ M , B a finite subset ofM , anda /∈ acl(B). One may findc ∈
acl(a,B) − acl(B) lying in aB-definable coordinatizing projective or affine
geometryJ . If the geometry is affine, then expandB to B′ = B ∪ {c◦},
adding a generic point ofJ , and replacec by c− c◦ in the corresponding linear
geometry.

Thus the previous proposition applies.
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Definition 5.6.5. Let a and b be elements of a structure of finite rank. Then
b is said to befiltered over a if there is a sequenceb = b1, . . . , bn with
rk(bi/ab1 . . . bi−1) = 1 and acl(ab) = acl(ab).

The following was essentially invoked above, and will be applied again sub-
sequently.

Lemma 5.6.6. LetM beℵ0-categorical of finite rank and modular. Then for
anya, b in M′, b is filtered overa in M′eq.

Proof. Adding constants we may work over the empty set in place ofa. We
use induction onn = rk(b) and we may supposen ≥ 1. We takeb′ ∈ M′eq

with rk(b/b′) = 1. In particular,b is filtered overb′ by b itself, and hence by
the previous lemma is independent fromb′ overB = acl(b) ∩ acl(b′). Thus
rk(b/B) = rk(b/b′) = 1 andrk(B) = n − 1, so by induction after replacing
B by a finite setb′′ we have a filtration forb′ to which we may appendb.

5.7 REDUCTS OF MODULAR STRUCTURES

In this section we prove the following theorem on reducts of modular struc-
tures:

Proposition 5.7.1. LetM beℵ0-categorical of finite rank, and modular. Then
every structureM′ interpretable inM inherits these properties.

As we will to some extent have bothM andM′ in view throughout the
analysis, we adopt the convention that when not otherwise specified, model
theoretic notions like rank and algebraic closure that depend on the ambient
model will be taken to refer toM′. In any caseM′ inherits theℵ0-categoricity
and finite rank. The latter point would however be dubious in general for
other notions of rank such asS1-rank. Furthermore, we cannot assume that the
notions of independence inM andM′ stand in any close relationship.

The main case is that of reducts. In fact, as we can add some parameters and
work inMeq, we may suppose thatM′ has as its universe a 0-definable subset
of M, and that the structure present onM′ is a reduct of the full structure
induced fromM. We will refer to this situation as a reduct in (not “of”)M.

Lemma 5.7.2. LetM beℵ0-categorical,M′ a reduct, anda a finite sequence
which is algebraically independent in the naive sense: noneof its entries is
algebraic inM′ over the remainder. Then there is a realizationb of the type
of a in M′, which is algebraically independent inM.

Proof. Let b be a realization of the specified type withaclM(b) as large as
possible. Ifb contains an entryb which is algebraic over the remainder inM,
b′, note that inM′ b /∈ acl(b′) and hence there is another realization of the
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type consisting ofb′ extended by somec /∈ aclM(b′). But then| aclM(b)| =
| aclM(b′b)| < | aclM(b′c)|, a contradiction.

Lemma 5.7.3. Let M be ℵ0-categorical of finite rank and modular,M′ a
reduct inM, anda, b elements ofM′ with rk(b/a) = 1. Thena is indepen-
dent fromb over acl(a) ∩ acl(b).

We emphasize that our convention applies here, to the effectthat the notions
used are those ofM′ rather thanM.
Proof. We will proceed by induction on the rank ofa. We may suppose thata
andb are algebraically independent, since ifa ∈ acl(b) our claim becomes triv-
ial. By the preceding lemma we may even suppose that they are algebraically
independent inM.

Now in M let I = (c1, c2, . . .) be an infiniteM-independent andM-
indiscernible sequence overa, with tpM(ci/a) = tpM(b/a). We claim the se-
quenceI is M′-independent overa. For example,rk(cn+1/ac1, . . . , cn) = 1
sincerk(cn+1/a) = 1 andcn+1 is not algebraic overac1, . . . , cn in M, hence
certainly not inM′.

The quantityrk(a/c1 . . . ci) as a function ofi is eventually constant, say
from i = m onward. Letd = (c1, . . . , cm) and d′ = (cm+1, . . . , c2m).
rk(a/d) = rk(a/d′) = rk(a/dd′), the latter equality by the choice ofm. Thus
in M′ we havea ⊥ d over d′, a ⊥ d′ over d, and alsod ⊥ d′ over a as
checked above. By Proposition 5.4.1, which is applicable toM′, the triple
a, d, d′ is independent overA = acl(a) ∩ acl(d) ∩ acl(d′). In particulara, c1
are independent overA.

We now apply the modularity ofM. LetA∗ = aclM(a)∩ aclM(c1). Since
a /∈ aclM(b), alsoa /∈ aclM(c1) and thusa /∈ A∗. By modularitya ⊥M c1
overA∗ and by indiscernibilitya ⊥M ck overA∗. As ac1 . . . ci−1 is M-
independent fromci overa, we find thata, c1, c2, . . . areM-independent over
A∗. Hencea /∈ aclM(c1, c2, . . .) and inM′ we havea /∈ acl(d), a /∈ A,
andrk(A) < rk(a). Thus by inductionA ⊥ c1 overA′ = A ∩ acl(c1), and
henceA ⊥ c1 overA′. Sincetp(ac1) = tp(ab) we havea, b independent over
acl(a) ∩ acl(b).

Lemma 5.7.4. Let M beℵ0-categorical of finite rank, and modular, and let
M′ be a reduct inM. Then every rank 1 subsetD of M′ is modular.

Proof. After absorbing an arbitrary finite set of parameters into the language
our claim is that ifa, b are two algebraically independent sequences inD
with acl(a) ∩ acl(b) = acl(∅) in M′eq, thena andb are independent. This
claim reduces inductively (after further absorption of parameters) to the case
in which a andb have length 2. In this case if they are not independent, we
haverk(b/a) = 1, and this case was handled in the previous lemma.
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Proof of Proposition 5.7.1. It suffices to show thatM′ is eventually coordina-
tized by its rank 1 subsets, since these are modular; we then apply Proposition
5.6.3.

So takea /∈ acl(B) with B finite. Letn = rk(a/B). We may finda′, c with
a′ ∈ acl(aBc) − acl(Bc) and rk(a/a′Bc) = n − 1 (cf. Lemma 2.2.3). As
rk(aa′/Bc) = rk(a/Bc) this yields

rk(a/Bc) = (n− 1) + rk(a′/Bc) ≥ rk(a/B)

and thusa andc are independent overB anda′ has rank1 overBc. This shows
thatM′ is eventually coordinatized by rank 1 subsets.



6

Definable Groups

We study groups definable in Lie coordinatized structures. We will eventually
characterize the groups interpretable in Lie coordinatized structures in terms of
their intrinsic model theoretic properties. For the stabletheory, see the mono-
graph by Poizat [PoGS] and the relevant sections of [Bu, PiGS].

6.1 GENERATION AND STABILIZERS

We work withMeq, and we will consider certain subsets that may meet in-
finitely many sorts ofMeq. In such cases we adopt the following terminology,
reflecting the greater generality of this situation relative to the usual context of
model theory.

Definition 6.1.1. LetM be a many-sorted structure. A subsetS of M is lo-
cally definableif its restriction to any sort (equivalently, any finite set of
sorts) is definable. In particular, a group is said to be locally definable in
M if its underlying set and its operations are locally definable. When the
sorts ofM all have finite rank, a locally definable subset is said to have
finite rankif its restrictions to each sort haveboundedrank; in this case, the
maximum such rank is called therank ofS.

Remark 6.1.2. One sort of pathology should be noted here. Suppose that in
M, dcl(∅) meets infinitely many sorts. LetC be a subset of dcl(∅) meeting
each sort in a finite set. Then any group structure whatsoeveronC is locally
definable.

As in §5.5 we say that a structure has the type amalgamation property if
Proposition 5.1.15 applies.

We have to be unusually careful with our notation for types inthe presence
of a group operation, distinguishingtp(ab) (i.e.,tp(a ·b)) from tp(a, b); indeed,
the two notions will occur in close proximity.

Lemma 6.1.3. Let M be ℵ0-categorical of finite rank. LetG be a locally
definable group inMeq, andS a definable subset closed under inversion
and generic multiplication: fora, b in S independent,ab ∈ S. ThenH =
S · S is the subgroup ofG generated byS and rk(H − S) < rkS.
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Proof. We show first that the product of any three elementsa1, a2, a3 of S lies
in S ·S; this shows both thatS ·S is a subgroup ofG, and thatS ⊆ S ·S (take
a2 = a−1

1 ).
Givena1, a2, a3 we takeu ∈ S independent froma1, a2, a3 and of maximal

rank. Letb1 = a1u andb2 = u−1a2. Thenb1, b2 ∈ S. Furthermore,b2, a3 are
independent and thusb2a3 ∈ S. But a1a2a3 = b1 · b2a3.

It remains to considerrk(H − S). Let a1a2 ∈ H have rank at leastrk(S).
Takeu ∈ S of maximal rank independent froma1, a2. Thena2u belongs toS
and is independent froma1. Thusb = a1a2u is also inS and

rk(b/u) = rk(a1a2/u) = rk(a1a2) ≥ rkS

and thus equality holds, andb and u are independent. We therefore have
a1a2 = bu−1 ∈ S. Thusrk(H − S) < rkS.

Lemma 6.1.4. LetM beℵ0-categorical of finite rank, with the type amalga-
mation property. LetG be a locally 0-definable group of finite rankk in
Meq, andS ⊆ G the locus of a complete type over acl(∅), of rankk. Then
S · S−1 generates a definable subgroup ofG.

We do not claim thatS itself generates a definable subgroup; for example, if
S reduces to a single element then the group in question is trivial. On the other
hand, the statement of the lemma is equivalent to the claim thatS generates a
coset of a definable group under the affine group operationab−1c.
Proof. LetX = {ab−1 : a, b ∈ S; rk(a, b) = 2k}. Note that fora, b ∈ S
independent of rankk, rk(a, ab−1) = rk(a, b) = 2k and thus alsoa, ab−1 are
independent of rankk. We claim that the previous lemma applies toX , and
that the groups generated byS · S−1 and byX coincide. In any caseX is
closed under inversion. We show now thatX is closed generically under the
operationab−1, and hence also under multiplication.

Let c1, c2 ∈ X be independent,ci = aib
−1
i with ai, bi ∈ S, rk(ai, bi) =

2k. We may suppose that(a1, b1) is independent from(a2, b2) and hence that
a1, a2, b1, b2 is an independent quadruple. We seekd independent from this
quadruple satisfying

tp(d/c1) = tp(b1/c1); tp(d/c2) = tp(b2/c2).

As S is a complete type overacl(∅) andbi is independent fromci, this is a
type amalgamation problem of the sort that can be solved. Thetype ofd now
ensures the solvability of the equations

c1 = a′1d
−1; c2 = a′2d

−1

with a′1, a
′
2 in S. Thusc1c

−1
2 = a′1a

′
2
−1. We claim that this forcesc1c

−1
2

into S, with a′1, a
′
2 as witnesses. Sincea′i ∈ dcl(ai, bi, d), we havea′1 anda′2
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independent overd. Also rk(a′i, bi, d) = rk(ai, bi, d) = 3k, soai ande are
independent. Thusa′1 anda′2 are independent. Thusc1c

−1
2 ∈ X .

Now supposea, b ∈ S. Taked ∈ S independent froma. Thenab−1 =
(ad) · (bd)−1 ∈ X ·X . ThusS · S−1 andX generate the same subgroup.

Lemma 6.1.5. Let M be ℵ0-categorical of finite rank. LetG be a locally
definable group inMeq, andS a definable subset generically closed under
the ternary operationab−1c (an affine group law). ThenS lies in a cosetC
of a definable subgroupH ofG, with rk(C − S) < rkS.

Proof. We considerX = {ab−1 : a, b ∈ S independent}. The condition on
S implies thatX is generically closed under multiplication and Lemma 6.1.3
applies, soX generates a definable subgroupH with rk(H −X) < rkX .

We claim thatS lies in a single cosetC of H . Indeed, ifa, b ∈ S andc ∈ S
is independent froma, b, thenab−1 = (ab−1c)c−1 ∈ H .

Lastly, we claim thatrk(C − S) < rkS. Let a◦ ∈ S and leth ∈ H be
independent froma, of maximal rank. Thenh ∈ X andh = ab−1 with
a, b, a◦ independent. Thenha◦ = ab−1a◦ ∈ S. ThusHa◦ lies inS up to a set
of smaller rank.

Definition 6.1.6. Let h : G1 → G2 be a map between groups. Thenh is an
affine homomorphismif it respects the operationab−1c.

Lemma 6.1.7. Let M beℵ0-categorical of finite rank. LetG,H be locally
0-definable groups inMeq, S a 0-definable subset ofG, andh : S → H a
0-definable function.

1. If S is generically closed under the affine group operationab−1c and
h generically respects this operation, thenh extends to an affine group
homomorphism with domain the coset of a definable subgroup generated
byS (under the affine group operation).

2. If S is generically closed under the operationab−1 and h generically
respects this operation, thenh extends to a group homomorphism defined
on the subgroup ofG generated byS.

Proof. Consider the graphΓ of the maph as a definable subset of the product
groupG × H . ThenΓ satisfies the hypotheses of Lemma 6.1.5 or Lemma
6.1.3, respectively. Thus in case (1) under the affine group operationΓ lies in a
cosetΓ̄ of a definable subgroup ofG×H , with rk(Γ̄− Γ) < rkΓ, and in case
(2)Γ lies in a definable subgroup̄Γ of G×H , with rk(Γ̄− Γ) < rkΓ. HereΓ̄
will again be the graph of a function, as otherwiseΓ̄ will contain a translate of
Γ disjoint fromΓ, violating the rank condition.̄Γ is of course the graph of the
desired extension ofΓ in either case.

In the next lemma the avoidance (or neutralization) of the pathological case
referred to at the outset is particularly important.
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Lemma 6.1.8. LetM beℵ0-categorical of finite rank, with the type amalga-
mation property. LetG be a locally definable group inMeq of bounded
rank which is abelian, of bounded exponent. Then for any definable subset
S ofG, the subgroup generated byS is definable.

Proof. We may take everything (locally) 0-definable. We may also suppose
thatS generatesG. Our statement then amounts to the claim thatGmeets only
finitely many sorts ofMeq. The case of rank 0 will play a key role below; in
this case we are considering a finitely generated subgroup ofa locally finite
group, so the group in question is finite and hence definable.

Now letk = rkG. ReplacingS by a larger set if necessary we may suppose
S has rankk. LetS◦ be the locus of some type of rankk overacl(∅) contained
in S. Then under the affine group operationS◦ generates a coset of a definable
subgroupH of rankk (Lemma 6.1.4). Now work inG/H . S+H meets a finite
number of sorts, andk ≥ rk(S +H) ≥ rk(S/H) + rk(H) ≥ rk(S/H) + k,
soS/H is finite and therefore generates a finite subgroup of the locally finite
quotientG/H , as noted at the outset.

We now turn to the notion of the stabilizer of a definable setS. Though it is
tempting to define this as the group ofg ∈ G such thatgS andS agree modulo
sets of smaller rank, this tends to define the trivial subgroup and is therefore
not useful. Note that most of our underlying geometries do not in any sense
have “Morley degree” 1, or even finite degree.

Definition 6.1.9. LetM have finite rank,G a definable group inM, and let
D,D′ be complete types over acl(∅), contained inG, with rkD = rkD′ =
r. Then

1. Stab◦(D,D′) = {g ∈ G : rk(Dg ∩D′) = r}.
2. Stab◦(D) = Stab◦(D,D) and Stab(D) (the full stabilizer ofD) is the

subgroup ofG generated by Stab◦(D).

Though we claim thatStab◦(D) is generically closed under multiplication,
it will not in general actually be a subgroup.

Example 6.1.10.Let (V,Q) be an infinite dimensional orthogonal space
over a finite field of characteristic 2, with the associated symplectic form
degenerate, with a 1-dimensional radicalK on whichQ is nonzero. Let
D = {x 6= 0 : Q(x) = 0}. Then Stab◦(D) = V − (K − (0)) is not a
subgroup.

Lemma 6.1.11.Let M beℵ0-categorical of finite rank with the type amal-
gamation property,G a 0-definable group inMeq. LetD, D′, andD′′ be
complete types over acl(∅) of rankr contained inG. If a ∈ Stab◦(D,D′)
andb ∈ Stab◦(D′, D′′) are independent, thenab ∈ Stab◦(D,D′′).



114 DEFINABLE GROUPS

Proof. rk(Da)∩D′ = r = rk(D′′b−1∩D′), so by the corollary to Proposition
5.1.15 we have alsork(Da ∩ D′ ∩ D′′b−1) = r, and after multiplication on
the right byb we haverk(Dab ∩D′′) = r.

Lemma 6.1.12.LetM beℵ0-categorical of finite rank with the type amalga-
mation property,G a 0-definable group inMeq, andD a complete type over
acl(∅). Then

Stab(D) = Stab◦(D)Stab◦(D);
rk(Stab(D)− Stab◦(D)) < rk(Stab◦(D)).

Proof. Lemmas 6.1.3 and 6.1.11.

Lemma 6.1.13.LetM beℵ0-categorical of finite rank with the type amalga-
mation property,G a 0-definable group inMeq, andD a complete type over
acl(∅) with rkD = rkG. Then[G : Stab(D)] <∞.

Proof. It suffices to show thatrk Stab◦(D) = rkG. Let a, b be indepen-
dent elements ofD of rankr = rkG andc = a−1b. Thenrk(b, c) = 2r so
rk(b/c) = r, andb ∈ D ∩ Dc. Thusc ∈ Stab◦D. As c has rankr, we are
done.

Lemma 6.1.14.LetM beℵ0-categorical of finite rank with the type amalga-
mation property,G a 0-definable group inMeq,D a 0-definable subset ofG
with rkD = rkG, and suppose thatG has no proper 0-definable subgroup
of finite index. Then there are pairwise independenta1, a2, a3 ∈ D with
a1a2 = a3.

Proof. We may takeD to be the locus of a complete type overacl(∅). Then
by the preceding lemma and our hypothesisStab(D) = G. By Lemma 7
rk(D ∩ Stab◦D) = rkG. Pick a1 ∈ D ∩ Stab◦D of rank rkG anda3 ∈
Da1 ∩D with rk(a3/a1) = rkG. Then seta2 = a3a

−1
1 .

6.2 MODULAR GROUPS

Definition 6.2.1. Two subgroupsH1, H2 of a groupG are said to becommen-
surableif their intersection has finite index in each. This is an equivalence
relation. WhenG has finite rank, this is equivalent to rk(H1) = rk(H2) =
rk(H1 ∩H2).

Lemma 6.2.2. Let M beℵ0-categorical of finite rank and modular. LetG
be a definable group inM, andHd a subgroup defined uniformly from the
parameterd for d varying over a definable setD. LetE(d, d′) hold if and
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only if Hd andHd′ are commensurable. Then the relationE has finitely
many equivalence classes.

Proof. Choosed ∈ D of maximal rank,a ∈ G of maximal rank overd,
and b in Hda of maximal rank overa, d. Let B = acl(b) ∩ acl(d, a). Let
d′, a′ be conjugate tod, a over b and independent fromd, a over b. Thenb,
d, a, andd′, a′ are independent overB by modularity and the choice ofd′, a′.
Thusrk(b/aa′dd′) = rk(b/B) = rk(b/ad) andrk(Hda ∩Hd′a′) = rk(Hda).
Thereforerk(Hd∩Hd′) = rk(Hd), in other wordsE(d, d′) holds. Thusd/E ∈
B.

Furthermore, as(Hd ∩ Hd′)a′a−1 is nonempty,a′a−1 lies in HdHd′ =
XdXd′(Hd ∩Hd′) for setsXd, Xd′ of coset representatives of the intersection
in Hd, Hd′ , respectively. Thusrk(a′/a, d, d′) ≤ rkHd and hencerk(a/B) ≤
rkHd. Now we computerk(d/E):

rk(d, a, b) = rk(d) + rk(a) + rk(b/a, d) = rk(a) + rkG+ rkHd

= rk(b) + rk(a/b) + rk(d/a, b)

≤ rkG+ rkHd + rk(d/(d/E))

showingrk(d/(d/E)) = rk(d) andrk((d/E)) = 0, sod/E ∈ acl(∅).
The next proposition, for which we give a purely model theoretic argument,

can be proved in greater generality as a purely group theoretic statement [Sch,
BeLe]. This was drawn to our attention by Frank Wagner, who has generalized
the result even further [Wa].

Proposition 6.2.3. LetM beℵ0-categorical of finite rank with the type amal-
gamation property and modular. LetG be a 0-definable group inM, andH
a definable subgroup. ThenH is commensurable with a group defined over
acl(∅).

Proof. LetH = Hd have defining parameterd ∈ D, with D a complete type
overacl(∅). LetE(d, d′) be the equivalence relation:Hd, Hd′ are commen-
surable. As this has finitely many classes andD realizes a unique type over
acl(∅), all groupsHd (d ∈ D) are commensurable.

DefineB = {g ∈ G : For somed ∈ D independent fromg, g ∈ Hd}. By
the corollary to Proposition 5.1.15,

For b1, b2 in B independent,b1b
−1
2 ∈ B.

Thus by Lemma 6.1.3,H = 〈B〉 is a definable subgroup ofG with rk(H −
B) < rkH . Let h ∈ H be an element of maximal rank. Thenh ∈ B. Take
d ∈ D independent fromh with h ∈ Hd. Then rk(h) ≤ rkHd and thus
rkH ≤ rkHd. On the other hand any element ofHd independent fromd is in
B, so rk(H ∩ Hd) ≥ rkHd. This shows thatH andHd are commensurable.
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Proposition 6.2.4. LetM beℵ0-categorical of finite rank with the type amal-
gamation property, and modular. LetG be a 0-definable group inM. Then
G has a finite normal subgroupN such thatG/N contains an abelian sub-
group of finite index.

Proof. Let Z∗ = {g ∈ G : [G : C(g)] < ∞}. We work mainly inG2 =
G × G. Fora ∈ G letHa be the subgroup{(x, xa) : x ∈ G} of G2. Define
E(a, a′) as follows:Ha andHa′ are commensurable. This is an equivalence
relation with finitely many classes. Notice thatE(a, a′) holds if and only if
Z∗a = Z∗a′: E(a, a′) holds if and only if on a subgroupG1 of G of finite
index we havexa = xa

′

; that is,G1 ≤ C(a′a−1), a′a−1 ∈ Z∗.
Thus we have proved thatZ∗ is of finite index inG and we may replace

G by Z∗. Then any element ofG has finitely many conjugates and thus for
x, y ∈ G, the commutator[x, y] is algebraic overx and overy. In particular for
x, y ∈ G independent, the commutator[x, y] is algebraic over∅. On the other
hand, every commutator[x, y] can be written as[x, y′] with y′ independent
from x, sinceC(x) has finite index inG. ThusN = G′ is finite, andG/N is
abelian.

As this result tends to reduce the study of definable groups tothe abelian
case, we will generally restrict our attention to abelian groups in the sequel,
even when this hypothesis is superfluous.

Lemma 6.2.5. LetM beℵ0-categorical of finite rank with the type amalga-
mation property, and modular. LetA be a 0-definable abelian group inM,
andD ⊆ A the locus of a complete type over acl(∅), S the stabilizer ofD
in A. Then

1. rkS = rkD.
2. D is contained in a single coset ofS.
3. If D′ is the locus of another complete type over acl(∅) of the same rank,

and if Stab◦(D,D′) is nonempty, then Stab◦(D,D
′) agrees with a coset

of S up to sets of smaller rank, and Stab(D′) = S.
4. If a, b ∈ S are independent with the same type over acl(∅), thena− b ∈

Stab◦(D).

Proof.
Ad1. We apply the fundamental rank inequality of Proposition 5.5.4 taking

both 0-definable sets to beG, andGa = D + a, relative to the equivalence
relationE(a, b): a−b ∈ S. Then for inequivalent elementsa, b the intersection
Ga ∩Gb has lower rank, so the fundamental rank inequality 5.5.4 applies and
yields

rk(A/S) ≤ rkA− rkD, hencerk(S) ≥ rk(D).

The opposite inequality is elementary: ifs ∈ S has maximal rank andd ∈ D
has maximal rank overs, with d+ s ∈ D, thenrk(d+ s/d) = rk(s/d) = rkS,
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sork(S) ≤ rk(D). Notice also thata+ S meetsD in a set of rankrkD.
Ad 2. We have seen that some coset ofS meetsD in a set of rankrkD.

There can be only finitely many such cosets, so they lie inacl(∅), and asD
realizes a single type overacl(∅), there is only one such coset, and it contains
D.

Ad 3. According to Lemma 6.1.11, ifa ∈ Stab(D), b ∈ Stab(D,D′)
are independent, thena + b ∈ Stab(D,D′). Thus under the stated hypoth-
esisStab(D,D′) contains most of a coset ofS, up to a set of lower rank.
Conversely ifa, b ∈ Stab(D,D′) are independent then by the same lemma
a − b ∈ S, so Stab(D,D′) agrees with a single coset ofS modulo sets of
lower rank. Replacinga by −a we find thatStab(D′, D) agrees with a single
coset ofStab(D′) modulo sets of lower rank and thusS andStab(D′) agree
modulo sets of lower rank; as they are groups, they are equal.

Ad4. By (1, 2) we haverkSD = rkD = rk Stab◦D. Thus the corollary to
Proposition 5.1.15 applies.

Lemma 6.2.6. Let M beℵ0-categorical of finite rank with the type amalga-
mation property, and modular. LetA be a0-definable group inMeq of rank
n. Then there is a sequence of subgroups(0) = A◦ ⊲ A1 ⊲ . . . ⊲ An = A
with rk(Ai/Ai−1)=1, and allAi defined over acl(∅).

Proof. We may replaceA by a quotient modulo a finite normal subgroup of
a subgroup of a finite index, so we may takeA abelian. It suffices then to
find a subgroup of rank 1 defined overacl(∅) as we may factor it out and
proceed inductively. LetD be the locus inA of a complete rank1 type over an
algebraically closed set. By Lemma 6.2.5 the stabilizer ofD in A is a rank 1
subgroup. By Proposition 6.2.3 it is commensurable with a group defined over
acl(∅).

Lemma 6.2.7. Let M beℵ0-categorical of finite rank with the type amalga-
mation property,G,H 0-definable groups inMeq, D ⊆ G the locus of a
complete type over acl(∅) with rkD = rkG, f : D → H 0-definable, and
suppose that for any independent triplea1, a2, a3 ∈ D for whicha1a

−1
2 a3 ∈

D, we havef(a1a
−1
2 a3) = f(a1)f(a2)

−1f(a3). Thenf extends to a defin-
able affine homomorphism from the coset inG generated byD, toH .

Proof. Let r = rkG. We first define a functionh : Stab(D) → H . Let
S∗ = {a ∈ Stab(D) : rk(a) = rkG}. ThenS∗ ⊆ Stab◦(D).

If a ∈ S∗ thena = b1b
−1
2 with b1, b2 independent elements of rankr in

D. We defineh(a) = h(b1)h(b2)
−1 and we must check that this is in fact

well defined. Suppose alsoa = b3b
−1
4 with b3, b4 independent of rankr in

D. Take furtherb5, b6 independent and of rankr, with a = b5b
−1
6 , such that

rk(b5, b6/ab1b2b3b4) = r. Thenb1, b2, b6 andb3, b4, b6 are independent triples
with b6b

−1
2 b1 = b6b

−1
4 b3 = b5, so applying the affine homomorphism law for
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f and cancellingf(b6), we getf(b1)b(b2)−1 = f(b3)f(b5)
−1 andf is well

defined onS∗.
In order to extendh from S∗ to Stab(D), we show that part (2) of Lemma

6.1.7 applies. Leta, b ∈ S∗ be independent, andc = ab−1. Certainlyc ∈ S∗.
We haverk(D ∩ Da) = rk(D ∩ Db) = rkD and thus by the corollary to
Proposition 5.1.15rk(D ∩Da ∩Db) = r. Taked1 ∈ D ∩Da ∩Db of rankr
overa, b, and setd2 = d1a

−1, d3 = d1b
−1. Thusa = d−1

2 d1, b = d−1
3 d1, c =

d−1
2 d3, with pairs of independent elements of rankr. The resulting formulas
h(a) = f(d2)

−1f(d1) and so forth combine to giveh(c) = h(a)h(b)−1, as
required. Thus we may now takeh to be a homomorphism fromS = Stab(D)
toH .
D is contained in a single left cosetC of S. For b ∈ D we define a map

fb : C → H by fb(x) = f(b)h(b−1x). This is an affine homomorphism from
C → H which agrees withf on elements ofD independent fromb, using the
basic property off and the definition ofh. Our final point will be thatfb is
independent ofb ∈ D and therefore gives the desired extensionf∗ of f toC.

To see thatfb does not depend onb it suffices to provefb = fb′ for b, b′ ∈ D
independent. For anyc ∈ C we haveh(b−1c)h(b′

−1
c)−1 = h(b−1b′) =

f(b−1)f(b′) and thusfb(c) = fb′(c).

Lemma 6.2.8. LetM beℵ0-categorical of finite rank with the type amalga-
mation property and modular. LetA1, A2 be 0-definable abelian groups in
Meq. Suppose that any acl(∅)-definable subgroup ofA1×A2 is0-definable,
and that acl(∅) ∩ A1 = (0). LetC be a finite set with acl(C ∩ A1) ⊆ C,
and leta2 ∈ A2 have maximal rank overC. Then

1. acl(a2, C) ∩ A1 ⊆ dcl(a2, acl(C));
2. If no proper definable subgroup ofA2 of finite index is definable over

acl(∅), then acl(a2, C) ∩ A1 = [dcl(a2) ∩ A1] + [C ∩ A1].

Proof. Let a1 ∈ acl(a2, C) ∩ A1. LetD be the locus of(a1, a2) overacl(C),
andS = Stab(D) in A1 × A2. By Proposition 6.2.3, the groupS is commen-
surable with a groupS′ defined overacl(∅); by hypothesis,S′ is 0-definable.

By Lemma 6.2.6D is contained in a coset ofS, and hence in a finite union
of cosets ofS ∩ S′; asD is the locus of a complete type over an algebraically
closed set,D is contained in a single cosetX of S ∩ S′. In particularS ⊆
D −D ⊆ S′. ThusX is a coset ofS′.

NowS∩[A1×(0)] is finite, sincea1 is algebraic overa2, C. ThusS′∩[A1×
(0)] is finite, and sinceacl(∅)∩A1 = (0), we conclude thatS′ ∩ [A1 × (0)] =
0. Let π2 : A1 × A2 → A2 be the projection. ThusS′ = S ∩ S′ is the
graph of a homomorphism fromπ2S′ to A1 andX is the graph of an affine
homomorphismf : π2X → A1. As X is definable overacl(C), f(a2) ∈
dcl(a2, acl(C)). This proves the first claim. Under the hypothesis of(2), S′ is
the domain of a homomorphismh : A2 → A1 andf − h is a constanta ∈ A1,
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soa ∈ acl(C)∩A1 = C∩A1 anda1 = h(a2)+a ∈ [dcl(a2)∩A1]+[C∩A1]
as claimed.

Remark 6.2.9. With the above hypotheses and notation, the same result can
be proved, with the same proof, for the affine spaceS1 overA1, assuming
acl(C) ∩ S1 = dcl(C) ∩ S1.

Proposition 6.2.10.LetM beℵ0-categorical of finite rank with the type amal-
gamation property, and modular. LetA be a 0-definable rank 1 abelian
group inMeq. Assume that acl(∅) ∩ A = (0) and thatA has no proper
acl(∅)-definable subgroup of finite index. Then there is a finite fieldF such
thatA has a definable vector space structure overF for which linear de-
pendence coincides with algebraic dependence.

Proof. Let F be the ring ofacl(∅)-definable endomorphisms ofA. Our as-
sumptions onA imply thatF is a division ring and byℵ0-categoricity ofM,
F is finite; thus it is a finite field. TakeA now as a vector space overF .

We show by induction onn that anyn algebraically dependent elements
a1, . . . , an of A will be linearly dependent. For the inductive step, suppose
thata1, . . . , an+1 are algebraically dependent anda1, . . . , an are algebraically
independent. Thusa = an+1 ∈ acl(a1, . . . , an) and we wish to expressa as
anF -linear combination ofa1, . . . , an. LetD be the locus of(a1, . . . , an, a)
overacl(∅), andS its stabilizer. We haverkS = rkD = n × rkA = n, with
D contained in a coset ofS. LetT be the projection ofS onto the firstn coor-
dinates. As the projection ofD to these coordinates contains(a1, . . . , an) and
is contained in a coset ofT , rkT = n. Therefore the kernel of this projection
has rank 0 and is finite, andT has finite index inAn. By our hypotheses on
A, the kernel is trivial andT = An (consider the intersection ofT with the
standard copies ofA inAn). In other wordsS is the graph of a homomorphism
h : An → A, i.e.,h = (α1, . . . , αn) with αi : A → A definable overacl(∅).
We claim naturally thata =

∑

αiai with αi ∈ F .
As D is contained in a coset ofS, for (x1, . . . , xn, y) and(x′1, . . . , x

′
n, y

′)
in D, we gety− y′ = h(x− x′) =

∑

i αi(xi − x′i) and thusy−∑i αixi is a
constant onD, belonging toacl(∅) ∩ A = (0). This proves our claim.

Lemma 6.2.11.LetM be Lie coordinatized, andA an infinite abelian group
interpreted inM without parameters. Suppose thatA has no nontrivial
acl(∅)-definable proper subgroup, and that acl(∅) = dcl(∅). ThenA is part
of a basic linear geometry inM.

Proof. By the previous propositionA has a vector space structure over a finite
field F such that algebraic dependence coincides withF -linear dependence.
LetP be the corresponding projective space. ThenP is nonorthogonal to some
acl(∅)-definable projective Lie geometryPJ , and there is then a 0-definable
bijection between these geometries. Taking a cover ofM if necessary,PJ will
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be the projectivization of a basic linear geometryJ . By Lemma 2.4.7 there is
a 0-definable isomorphism ofA with J , soA is a basic linear geometry.

6.3 DUALITY

We will be dealing with groups definable in weakly Lie coordinatized struc-
tures below. As we make some use of envelopes, we observe thatby Lemma
6.2.6 any such group is nonmultidimensional in the sense that it lies in a part
of the structure which is coordinatized by a finite number of Lie geometries,
each defined overacl(∅). (More precisely: first adjust the base language tem-
porarily so that the group in question is viewed as defined over acl(∅).) In
particular, only a finite number of quadratic geometries areinvolved, and after
naming the Witt classes by introducing finitely many algebraic parameters, we
may work in a Lie coordinatized structure. This being the case, it suffices to
state the results in the Lie coordinatized setting; they then apply in the weakly
Lie coordinatized setting as well.

Definition 6.3.1. If M is a structure, andA a group of prime exponentp inter-
preted inM, thenA∗ denotes the group ofMeq-definable homomorphisms
fromA to a cyclic group of orderp (equivalently the set of definableF -linear
maps fromA to the fieldF of orderp).

Note that the elements ofA∗ are almost determined by their kernels, which
are definable subgroups ofA. However, we do not necessarily haveA∗ ⊆ Aeq;
for example,A may be one side of a polar geometry.

The reader should bear in mind that the abelian groupsA of this section are
not intended to be reminiscent of affine geometries.

Proposition 6.3.2. Let M be a Lie coordinatized structure,A a 0-definable
group inMeq of prime exponentp. ThenA∗ and the evaluation mapA ×
A∗ → Fp are 0-definable inMeq. If A has no nontrivial proper 0-definable
subgroups, then eitherA∗ = (0) or the pairingA × A∗ → Fp is a perfect
pairing (the annihilator of each factor in the other is trivial).

Proof. A∗ is a locally definable group. Arrange the sorts ofMeq in some
order and letDn be the definable subset ofA∗ consisting of elements which
lie in the firstn sorts.

Our first claim is thatrkA∗ is finite, bounded byrkA. Fix a definable subset
D of A∗, and supposerkD > rkA. We apply Proposition 5.2.2 concerning
the sizes of envelopes. Accordingly, the number of elementsofD is a polyno-
mial of degree2 rkD in the variables used there, and similarly forA. Taking
envelopes of large and constant dimension, we deduce thatD∩E eventually is
larger thanA∩E, while (again for large enough envelopes)D∩E ⊆ (A∩E)∗;
this is a contradiction.
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We apply Lemma 6.1.8 and deduce that for anyn the subgroupA∗
n generated

by Dn is 0-definable. LetKn be the annihilator inA of A∗
n. The decreasing

chainKn of 0-definable groups must stabilize withKn = K constant from
some point on. We may factor outK and supposeK = (0) (note in passing
that the last part of the proposition will be covered by the argument from this
point on).

After these preliminaries we see thatA × A∗
n → F is a perfect pairing for

all largen. Therefore, withn, n′ fixed, looking at the same situation in large
finite envelopes, we find thatA∗

n ∩ E = A∗
n′ in such envelopes. ThusA∗

n is
independent ofn for n large, andA∗

n = A∗.

We note that one can form a structure consisting of a setD and a vector
spaceV , with a generic interaction ofD with V in which the elements ofD
act linearly onV . The foregoing proposition will fail for this structure, which
is not Lie coordinatizable.

We now mention a variation of somewhat greater generality:

Lemma 6.3.3. LetM be a Lie coordinatized structure,A a 0-definable group
in Meq of finite exponentn, andA∗ the definableZ/pZ-dual ofA. ThenA∗

and the pairingA×A∗ → Z/nZ are interpretable inM. Furthermore, any
definable subgroupB ofA of finite index is an intersection of the kernels of
elements ofA∗.

Proof. The definability ofA∗ is just as before. For the final statement, since
A/B has exponent dividingn, it is perfectly paired with itsZ/nZ dual.

Lemma 6.3.4. LetM be a Lie coordinatized structure,A a 0-definable vector
space inMeq relative to a finite fieldK of characteristicp. LetA∗ be the
definableZ/pZ-dual ofA, and Tr the trace fromK to the prime field. Then
A∗ can also be given aK-space structure, and there is then a definableK-
bilinear mapµ : A × A∗ → K such that Trµ(a, f) = f(a) for (a, f) ∈
A×A∗. This pairing makesA∗ the full definableK-linear dual ofA.

Proof. Let A′ be the space of all definableK-linear maps ofA to K. Let
Tr : A′ → A∗ be defined byTr(f)(a) = Tr(f(a)). If Tr(f) = 0 then for
a ∈ A andα ∈ K we haveTr(αf(a)) = Tr(f)(αa) = 0, and thusf(a) = 0
by the nondegeneracy of the bilinear formTr(xy). ThusTr embedsA′ into
A∗. Conversely, ifg ∈ A∗ then fora ∈ A the linear mapga : K → F
defined byga(α) = g(αa) must have the formTr(γaα) = g(αa) for a unique
γa ∈ K. Letting f(a) = γa we getTr(f) = g, andf is K-linear since
f(αβa) = Tr(βγaα). ThusTr identifies theK-linear dual with theF -linear
dual. Letµ be the transport toA∗ of the natural pairing onA×A′.

Definition 6.3.5. LetM be a structure of finite rank,A a group interpretable
in M without parameters.
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1. Let S, T be definable sets. We writeS ⊆∗ T if rk(S − T ) < rkS. For
corresponding definable formulasσ, τ we use the notationσ =⇒∗ τ .

2. If B is a subgroup ofA∗, anda ∈ A, then gtp(a/B) denotes the atomic
type ofa overB in the language containing only the bilinear mapA ×
A∗ → Z/nZ, withn the exact exponent ofA.

3. The groupA is settledif for every algebraically closed parameter setC
anda ∈ A of maximal rank overC, we have tp(a)∪gtp(a/A∗∩C) =⇒∗

tp(a/C).
4. The groupA is 2-aryif for any algebraically closed parameter setC and

any setb = b1, . . . , bn in A of elements which are independent overC
of maximal rank, we have

⋃

i

tp(bi/C) ∪
⋃

ij

tp(bibj/ acl∅) =⇒∗ tp(b/C).

Our primary objective in the long run is to show that every group becomes
both settled and 2-ary after introducing finitely many constants. The linear part
of a quadratic geometry is an example of an unsettled group.

We close this section with a few miscellaneous lemmas.

Lemma 6.3.6. LetM be a Lie coordinatizable structure andA, B groups 0-
definably interpreted inM with no proper 0-definable subgroups of finite
index. Suppose thatB is settled. Ifa, b, c are independent, witha ∈ A and
b ∈ B of maximal rank, then

tp(b/a, acl(∅)) ∪ tp(b/ acl(c)) =⇒∗ tp(b/a, c).

Proof. AsB is settled, takingC = acl(a, c) we get

tp(b/ acl(∅)) ∪ gtp(b/ acl(a, c) ∩B∗) =⇒∗ tp(b/a, c).

We will check that

(∗) tp(b/a, acl(∅)) ∪ tp(b/ acl(c)) =⇒ gtp(b/ acl(a, c) ∩B∗)

Let d ∈ acl(a, c) ∩ B∗. We will apply Lemma 6.2.8 with:A1 = B∗;
A2 = A; C = {c} ∪ [acl(c) ∩ B∗]; a2 = a. To do so, we must work over
acl(∅), noting that there are noacl(∅)-definable proper subgroups ofA orB of
finite index, and thus, in particular,acl(∅)∩B∗ = (0). Thus by Lemma 6.2.8,

d = da + dc with da ∈ dcl(a, acl(∅)) ∩B∗ anddc ∈ acl(c) ∩B∗.

Thus(∗) holds.

Lemma 6.3.7. Let M be a Lie coordinatizable structure and suppose that
Ai (1 ≤ i ≤ n) is a family of groups0-definable inMeq, each hav-
ing no 0-definable subgroups of finite index, and all but the first settled.
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LetC be algebraically closed and letai, bi ∈ Ai have maximal rank with
a1, b1, . . . , an, bn independent overC. If tp(ai/C) = tp(bi/C) for all i and
tp(ai, aj/ acl(∅)) = tp(bi, bj/ acl(∅)) for all i, j, then tp(a/C) = tp(b/C).

Proof. We proceed inductively. Thus we may suppose

tp(a1, . . . , an−1/C) = tp(b1, . . . , bn−1/C)

and even thatai = bi for i < n. Let A = A1 × · · · × An−1 and apply the
previous lemma to the pairA,Bn.

Corollary 6.3.8. LetM be a Lie coordinatizable structure andA a0-definable
settled group inMeq such that acl(∅) ∩ A∗ = (0). ThenA is 2-ary.

Note that the property thatA is 2-ary will persist over a larger set of param-
eters, though the hypothesis will not necessarily persist.

Lemma 6.3.9. LetM be a Lie coordinatizable structure,A andB 0-definable
groups of exponentn with no 0-definable subgroups of finite index. Let
D ⊆ (A × B) be a type over acl(∅) of maximal rank. Then the following
are equivalent:

1. For (a, b) ∈ D, a lies in everyb-definable subgroup ofA of finite index.
1′. For (a, b) ∈ D, b lies in everya-definable subgroup ofA of finite index.
2. For (a, b) ∈ D, there area1, a2, a3 in A with a1 + a2 = a3, all realizing

tp(a/ acl(b)), and witha1, a2, b independent.
3. There area1, a2, a3 inA andb ∈ B such that(a1, b) ∈ D, witha1+a2 =
a3, and

tp(a2b/ acl(∅)) = tp(a3b/ acl(∅)).
4. Every acl(∅)-definable bilinear mapA×B → Z/nZ vanishes onD.

Proof. (1) implies (2): Let(a, b) ∈ D, and letAb be the smallestb-definable
subgroup ofA of finite index. Thena ∈ Ab. Let D′ be the locus ofa
over acl(b). Working overacl(b), Lemma 6.1.4 applies. Thus the stabilizer
Stab(D′) is ab-definable subgroup ofAb of finite index, andStab(D′) = Ab.
Let a3 = a. As rk[Stab(D′) − Stab◦(D′)] < rkAb, we can finda2 ∈
D′ ∩ Stab◦(D′) independent froma3, b, and leta1 = a3 − a2.

Evidently(3) is a weakening of(2). We show next that(3) implies(4). Let
f : A×B → Z/nZ beZ-bilinear and algebraic overacl(∅). AsD represents
a complete type overacl(∅), f is constant onD; let the value beu. Then
f(a2, b) = f(a3, b) = f(a1, b) + f(a2, b) sou = f(a1, b) = 0.

Since condition(4) is symmetric inA andB it suffices now to show that
(4) implies (1). Assume condition(1) fails: (a, b) ∈ D, H is a b-definable
subgroup ofA of finite index, anda /∈ H . Fix f ∈ A∗ vanishing onH with
f(a) 6= 0. Note thatf ∈ acl(b). LetD∗ be the locus of(f, b) overacl(∅), and
S the stabilizer ofD∗ in A∗ × A. As f is algebraic overb, S ∩ [A∗ × (0)] is
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finite, and thus lies inacl(∅) ∩ A∗ = (0) by the condition onA. Furthermore
rkS = rkB, and thusS projects ontoB and is the graph of a homomorphism
h : B → A∗. D∗ lies in the cosetS + (f, b) = S + (f − h(b), 0). Now the
representativef − h(b) ∈ acl(∅) ∩ A∗ = (0) sof = h(b). Define(x, y) =
[h(y)](x); then(a, b) = f(a) 6= 0. Thus(4) fails.

6.4 RANK AND MEASURE

We can attempt to construct a measure on subsets of a groupA by taking cosets
of a subgroup of indexn to have measure1/n. Thus we may assign to a setS
the infimum of the sums

∑

i 1/ni corresponding to coverings ofS by finitely
many such cosets. Our objective here is to show that the “measure zero” sets
are those of less than full rank.

Lemma 6.4.1. Let M be a Lie coordinatizable structure andA an abelian
group of exponentp, 0-definably interpretable inM. LetD be a 0-definable
subset ofA of full rank, anda∗1, . . . , a

∗
n ∈ A∗ independent generics. Let

α1, . . . , αn be elements of the prime fieldFp. Then{d ∈ D : (d, a∗i ) = αi}
has full rank.

Proof. By induction and the addition of parameters this reduces tothe case
n = 1. If this fails, then fora∗ = an a generic element ofA∗, the complement
D′ ofD contains a cosetCa∗ of ker(a∗), modulo a set of smaller rank. We will
argue thatrkD < rkA.

Fixm, and letb1, . . . , bm be independent conjugates ofa∗. We will consider
the cardinality ofD and of other definable sets in large envelopesE of M. We
have|Ca∗ | = q−1|A| for some fixedq. The bi are linearly independent in
A∗, sob1, . . . , bm mapsA ontoFm

p and theCbi are statistically independent.
Thus the complement of

⋃

i Cbi has cardinality(1− q−1)m|A|. NowCbi ∩D
has rank less thanrkA, so in the limit|Cbi ∩ D|/|A| → 0 by Lemma 5.2.6.
Thus lim supE |D|/|A| ≤ (1 − q−1)m; varyingm, limE |D|/|A| = 0 and
rkD < rkA by Lemma 5.2.6.

Lemma 6.4.2. LetM be Lie coordinatizable, letA be an abelian group inter-
preted inM, and letD ⊆ A be definable with rkD = rkA. Then finitely
many translates ofD coverA. More specifically, ifD is c-definable then one
may findb = (b1, . . . , bn) in A with A =

⋃

i(D + bi) andb independent
from c.

Proof. We may suppose thatA is 0-definable, and we proceed by induction on
the maximal length of a chain ofacl(∅)-definable subgroups ofA.

We claim first that the result holds whenA is part of a basic linear geometry
for M. We leave this essentially to the reader, but as an example, supposeA is



RANK AND MEASURE 125

an orthogonal space with quadratic formQ andD = {x 6= 0 : Q(x) = 0}. Let
V ≤ A be nondegenerate of dimension5. Then we claimD + V = A. Take
v ∈ A, and choosew so that〈v, w〉 is nondegenerate. ThenV◦ = 〈v, w〉⊥ ∩ V
is a nondegenerate subspace of dimension at least3, not containingv, and
Q(v) = Q(u) for some nonzerou ∈ V◦. Thenv − u ∈ D.

Now suppose thatA has a nontrivialacl(∅)-definable finite subgroupB.
Then D̄ = (D + B)/B has full rank inA/B and induction applies tōD,
A/B. AsB is finite this yields the claim inA.

Assume now thatA has no nontrivialacl(∅)-definable finite subgroup, and
is not part of a basic linear geometry. There is anacl(∅)-definable subgroupA1

of A which is part of a stably embedded basic linear geometry ofM (Lemma
6.2.11). LetD bec-definable of full rank inA. Pick b ∈ A of maximal rank
overc such that[b + A1] ∩ D is infinite. ThenD − b meetsA1 in an infinite
set and thus there is a finite subsetF ⊆ A1 such thatA1 ⊆ F + D − b, and
we may take the elements ofF to be independent fromb, c. LetB be the locus
of b overF ∪ {c}. ThenB has full rank and forb′ ∈ B, A1 ⊆ F +D − b′.
Now by induction inA/A1, for some finite setF ′, F ′ +B+A1 coversA. We
claim thatF + F ′ +D = A.

Let a ∈ A. Then for someb′ ∈ B, we havea ∈ F ′ + b′ +A1 ⊆ F ′ + b′ +
(F +D − b′) = F ′ + F +D, as claimed.

Lemma 6.4.3. Let M be Lie coordinatizable, letA be an abelian group in-
terpreted 0-definably inM, and supposeA has no proper 0-definable sub-
groups of finite index. Lethi : A → Bi for i = 1, 2 be definable homomor-
phisms onto finite0-definable groupsB1, B2 and leth = (h1, h2) : A →
B1 ×B2 be the induced map. Ifh1, h2 are independent thenh is surjective.

Proof. Let the range ofh beC ≤ B1 × B2 and letC1 = C ∩ [B1 × (0)],
C2 = C ∩ [(0)×B2]. C can be interpreted as the graph of an isomorphism
betweenB1/C1 andB2/C2. Let gi : A → Bi/Ci be the map induced byhi.
Thengi ∈ acl(hi) andg1 andg2 differ only by an automorphism of the range.
Thusgi ∈ acl(h1) ∩ acl(h2) = acl(∅) and thus by assumptionB1 = C1,
B2 = C2, andh is surjective.

Lemma 6.4.4. Let M be Lie coordinatizable, letA be an abelian group in-
terpreted 0-definably inM, letA0 be the smallest0-definable subgroup of
finite index, and letD ⊆ A be 0-definable with rkD = rkA. Assume that
D lies in a single cosetC of A0 and leth : A → B be a definable homo-
morphism into a finite groupB. Then for anyb ∈ h[C], D meetsh−1[b] in
a set of full rank.

Proof. If h is algebraic over∅ thenh is constant onC and there is nothing to
prove. Suppose, therefore, thath /∈ acl(∅).
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Using the previous lemma, the proof of Lemma 6.4.1 can be repeated (for the
casen = 1), using independent conjugates ofh. Alternatively, the following
argument can be given which does not make use of finite approximations but
again makes use of an infinite family of independent conjugates ofh.

Let ν(h) = νD(h) = |{c ∈ h[C] : D ∩ h−1[c] has full rank}|/|h[C]|.
We claim ν(h) = 1. For h′ = (h1, h2) induced by two homomorphisms,
if h′−1

[(c1, c2)] ∩ D has full rank, then the same applies toh−1
i [ci] and thus

by the previous lemma, ifh1 andh2 are independent then we getν(h′) ≤
ν(h1)ν(h2). Thus ifν(h) < 1, then by taking enough independent conjugates
hi of h we can construct a homomorphismf with finite image for whichν(f)
is arbitrarily small. But a finite numberm of translatesD + ai coverC, and
νD = νD+a for each translate. Hence1 = νC(f) ≤ mνD(f), and we have a
lower bound onνD, a contradiction.

Lemma 6.4.5. Let M be Lie coordinatizable, letA be an abelian group in-
terpreted 0-definably inM, and letD be the locus of a complete type over
acl(∅) of maximal rank. Then there are independenta, a′ ∈ D such that
a− a′ lies in everya-definable subgroup ofA of finite index.

Proof. Takea ∈ D. Let Aa be the smallesta-definable subgroup ofA of
finite index. We consider the canonical homomorphismh : A → A/Aa. The
previous lemma applies and shows that(Aa + a) ∩D has full rank. It suffices
to takea′ in the intersection, of maximal rank.

6.5 THE SEMI-DUAL COVER

It is remarkable that duality can be used to reduce many aspects of the treat-
ment of affine covers to the treatment of finite covers. (Affinecovers are covers
with affine fibers in the sense of§4.5, corresponding, for us, to stages in a Lie
coordinatization in which affine geometries are involved.)

Suppose thatπ : N → A is a cover with affine fibersNa = π−1[a], affine
overA. (Some might prefer to callA “V ” here, but as in the previous section
we tend to call our abelian groupsA for the present.) Then the affine dualN∗

a

is a finite cover of the linear dualA∗. LetN ∗ be the corresponding cover; then
it seems thatN ∗ should contain the same information asN . We show below
that a group structure onN corresponds to what we call a “bilinear group
structure” onN ∗. This approach will lead to our sharpest result on groups,
the “finite basis theorem” for definability in definable groups. Cf. the work of
Ahlbrandt and Ziegler in [AZ2].

On the other hand, this method does not appear to apply to iterated covers,
as a cover ofN does not appear to correspond to a cover ofN ∗, and thus the
use of affine covers cannot be eliminated systematically.



THE SEMI-DUAL COVER 127

Definition 6.5.1. LetA1, A2 be abelian groups. Abilinear coverofA1, A2 is
a surjective mapπ = (π1, π2) : L → A1 × A2, whereL is a structure
with two partial binary operationsq1, q2 : L × L → L, with the following
properties:

BL1. qi is defined on∪a∈Ai [π
−1
i [a] × π−1

i [a]], and gives an abelian group
operation on each subsetL[a] = π−1

i [a].
BL2. For i, i′ = 1, 2 in either order,πi′ is a group homomorphism on each

group(L[a]; qi) for a ∈ Ai.
BL3. Given elementsaij ∈ Ai for i = 1, 2, j = 1, 2, andcij ∈ π−1(a1i, a2j),

we have

q2(q1(c11, c12), q1(c21, c22)) = q1(q2(c11, c21), q2(c12, c22)).

In (BL3), note that the result of the calculation on either side lies inπ−1(a11+
a12, a21 + a22).

Such covers will normally occur interpreted within someMeq, in which
caseL and all the associated structure is taken to be interpretable inM. Gen-
erally,q1 andq2 will be given the more suggestive notations “+1, +2,” or just
“+” if no ambiguity results. The same applies to iterated sums

∑1,
∑2, or

∑

. We will also writeL(a1, a2) for π−1[(a1, a2)].

Lemma 6.5.2. Let π : L → A1 × A2 be a bilinear cover relative to the
operationsq1 andq2. Then:

1. q1 andq2 agree onL(0, 0).
Let this group be denoted(A,+).

2. If 01, 02 are the identity elements ofA1 andA2 respectively, then there
are canonical identificationsL(01) ≃ A×A2 andL(02) ≃ A1 ×A.

3. Each setL(a1, a2) is naturally an affine space overL(0, a2) andL(a1, 0),
giving twoA-affine structures onL(a1, a2) which coincide.

Proof.
Ad1. LetA = L(0, 0) as a set. Lete1, e2 be the0-element ofA with respect

to q1 andq2 respectively. With allaij equal to0 (in A1 orA2, as the case may
be) and withcij equal toe1 in (BL3), and settinge′ = q2(e1, e1), condition
(BL3) can be written ase′ = q1(e

′, e′). Hence we haveq2(e1, e1) = e′ = e1,
and this impliese1 = e2.

Then withc12 = c21 = e1 we getq2 = q1 onA. We note in passing that
with c11 = c22 = e1 we would also get the commutative law (or laws) onA,
which in any case we have assumed.

Ad2. We now consider the structure ofL(01). By (BL2) we have

q2[L(a1, a2), L(a
′
1, a2)] ⊆ L(a1 + a′1, a2)]

and, in particular,L(01, a2) is a subgroup ofL(a2) for a2 ∈ A2. Let its
identity element be denotedz(a2). We will show thatz : A2 → L(01) is a
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homomorphism. Leta, a′ ∈ A2 and letz = q1(z(a), z(a
′)). Applying (BL3),

we getq2(z, z) = q1(q2(z(a), z(a)), q2(z(a
′), z(a′))) = q1(z(a), z(a

′)) = z
and thusz = z(a + a′). Thusz is a homomorphism. By definitionπ2z is
the identity and as the kernel ofπ2 onL(01) is the groupA, we get a direct
product decomposition(L(01), q1) ≃ A2 ×A. This identification respectsπ2;
that is,L(01, a) corresponds to(a2)×A with q2 acting onL(01, a) as onA.

A similar analysis applies on the other side.
Ad 3. According to (BL2) underq2 L(0, a2) acts onL(a1, a2) for any

a1 ∈ A1, making the latter an affine space over the former. After iden-
tifying A with L(01, a2) andL(a1, 02) we get two affine actions ofA on
L(a1, a2). These can be compared as follows. Letx ∈ A, y ∈ L(a1, a2),
and letz1 be the identity element ofL(a1), z2 the identity element ofL(a2).
The identification ofA with L(01, a2) takesx to q1(x, z2); the other identifi-
cation takesx to q2(x, z1). For the action ofA via L(01, a2) onL(a1, a2) we
get q2(q1(x, z2), y) = q2(q1(x, z2), q1(z1, y)) = q1(q2(x, z1), q2(z2, y)) =
q1(q2(x, z1), y), which is the action ofA viaL(a1, 02).

Lemma 6.5.3. LetL be a bilinear cover ofA1 × A2. Letai ∈ A1, a′j ∈ A2,

and letxij ∈ L(ai, a
′
j), ri, sj integer coefficients. Then

∑2
i ri
∑1

j sjxij =
∑1

j sj
∑2

i rixij and, in particular, ifri = sj = 1 then the order of summa-
tion can be reversed.

Proof. We first deal with the case in whichri = sj = 1, proceeding by
induction on the numbersm,n of indicesi andj respectively, beginning with
m = n = 2, which is (BL3). Case(m,n + 1) is easily derived from cases
(m,n) and(m, 2) as in the usual proofs of basic properties of sums, and case
(m + 1, n) follows similarly from (m,n) and(2, 2), so from the basic case
m = 2, n = 2 we can first get case(m, 2) for anym and then(m,n) for any
m,n.

The general case of integer coefficients follows by simply expanding out the
definitions from the case of coefficients±1. So consider now the case in which
theri are±1, but keep thesj = 1. Splitting the setI of indicesi into I+ and
I− according to the sign ofri, our claim is

∑

I+

2





∑

j

1
xij



−2
∑

I−

2





∑

j

1
xij



 =
∑

j

1∑

i

2
rixij .

Moving the negative term from left to right and applying the positive case
twice, with a little care, the claim falls out. The case ofri, sj = ±1 then
follows by repeating the argument.

Lemma 6.5.4. LetM be a structure, and

0 → A1 → B → A2 → 0
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be an exact sequence of abelian groups withA1, A2 of prime exponentp,
and assume this sequence is interpreted inM. For a ∈ A2 let Ba be the
preimage inB of a, a coset ofA1, and letB∗

a be the set of definable affine
homomorphisms fromBa to the fieldF of p elements. LetL = {(a, f) :
a ∈ A2, f ∈ B∗

a}, takeπ1 : L → A2 natural, and letπ2 : L → A∗
1 be

defined byπ2f ∈ A∗
1 the linear map associated tof , i.e.f(x+ y)− f(y) as

a function ofx. ThenL is a cover ofA2 ×A∗
1 with respect to the operations

q1, q2 described as follows. The operationq1 acts by addition in the second
coordinate. The operationq2 also acts by addition but in a somewhat more
delicate sense: ifπ2(a, f) = π2(a

′, f ′) thenf andf ′ are affine translates
of the same linear mapf◦, and we setq2((a, f), (a′, f ′)) = (a+ a′, f + f ′)
wheref+f ′ is the functiong onBa+a′ defined byg(b+b′) = f(b)+f ′(b′)
for b ∈ Ba, b′ ∈ Ba′ .

Proof. One checks in the first place thatq2 is well defined: fora1 ∈ A1,
f(b+ a1) + f ′(b′ − a1) = f(b) + f◦(a1) + f ′(b′)− f◦(a1) = f(b) + f ′(b′).

The verification of the axioms is straightforward. Axiom (BL3) concerns
the situationa, a′ ∈ A2, f1, f2 ∈ B∗

a , f ′
1, f

′
2 ∈ B∗

a′ , f1 andf2 induce the same
linear map, andf ′

1 andf ′
2 induce the same linear map. The result of applying

the appropriate combinations ofq1 andq2 in either order is(a+a′, (f1+f2)+
(f ′

1 + f ′
2)) with the sum on the right involvingBa+a′ = Ba +Ba′ .

The cover associated to an exact sequence as described abovewill be called
a semi-dualcover since it involves two groups, one of which is a dual group.
Notice that the “structure group”L(0, 0) for the semi-dual cover associated
with such an exact sequence is the set of constant maps fromA1 to F , which
we identify with F . If M is Lie coordinatized then the cover obtained is
definable since the dual group is definable.

Now we present a construction in the reverse direction.

Lemma 6.5.5. LetM be a structure,A1 andA2 abelian groups interpreted in
M, andL a bilinear cover ofA2 × A1 interpreted inM. SetF = L(0, 0),
and letB be the set

{(a, f) : a ∈ A2, f : L(a) → F definable,

f is the identity onL(a, 0) identified withL(0, 0)}.
ThenB is a group with respect to the operation(a, f) + (a′, f ′) = (a +
a′, f ′′) with f ′′(q2(x, x

′)) = f(x) + f(x′) for x ∈ L(a), x′ ∈ L(a′) and
π2(x) = π2(x

′), and there is an exact sequence

0 → Hom(A1, F ) → B → A2 → 0

where Hom is the group of definable homomorphisms.

Proof. Wherever one sees an expressionq2(x, x
′) it should be assumed that

π2(x) = π2(x
′), both in the above and in the proof following.
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We check first that the operation+ onB is well defined. Letx, y ∈ L(a),
x′, y′ ∈ L(a′), with q2(x, x′) = q2(y, y

′). We may writey = q1(x, α), y′ =
q1(y, β), with α ∈ L(a, 0), β ∈ L(a′, 0) (or α, β ∈ L(0, 0) after appropriate
identifications). The relationq2(x, x′) = q2(y, y

′) after application of (BL3)
becomesq1(α, β) = 0 or α + β = 0 in L(0, 0). Thusf(y) + f ′(y′) =
f(x) + α+ f ′(x′) + β = f(x) + f ′(x′) as needed.

The operation+ is clearly commutative and associative, and one can easily
construct inverses. Thus we have a groupB, and a projection fromB to A2.
The kernel is{(0, f) : 0 ∈ A2, f : L(0) → F , f is the identity onF}. But
L(0) can be identified withA1 × F and thus this kernel can be identified with
the definable homomorphism groupHom(A1, F ).

Definition 6.5.6. An abelian groupA of prime exponent interpreted in a Lie
coordinatized structure will be calledreflexiveif the natural mapA→ A∗∗

is an isomorphism.

Lemma 6.5.7. LetM be a Lie coordinatizable structure,A an abelian group
interpreted inM. Then the following are equivalent:

1. A is reflexive.
2. The natural mapA→ A∗∗ is injective.
3. A is definably isomorphic to a dual groupB∗.

Proof. (2) implies (1): As in the proof of Proposition 6.3.2, usingfinite ap-
proximations to compare cardinalities, we get|A∗∗| ≤ |A∗| ≤ |A|.

Evidently (3) implies (2) and (1) implies (3).

Lemma 6.5.8. Let M be a Lie coordinatized structure, andA1, A2 abelian
groups interpreted inM of prime exponentp, with A1 reflexive. LetF
be the field of orderp. Then there is a natural correspondence between
interpretable exact sequences0 → A1 → B → A2 → 0 and definable
bilinear coversL of A2 × A∗

1 with structure groupL(0, 0) = F , up to the
natural notions of isomorphism.

Proof. This is largely contained in Lemmas 6.5.4 and 6.5.5, bearing in mind
that the groupsA1, A2 of Lemma 6.5.5 areA∗

1 andA2 in our present notation.
It is also necessary to trace through the claim that these twocorrespondences
reverse one another up to canonical isomorphism, a point which we leave to
the reader.

The next proposition (after a preparatory lemma) states essentially that de-
finable sections of bilinear covers are locally affinely bilinear, uniformly in a
parameter: on a complete type, they respect the bilinear structure, up to trans-
lation. It would be interesting to get a global analysis. Theproof requires that
one of the groups be settled, a hypothesis which will eventually be seen to
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hold generally over an appropriate set of parameters; but the proof of the latter
result requires the present one.

Notation 6.5.9
1. For D ⊆ A × B, s : A × B → C, and a ∈ A, we writeDa for
{b ∈ B : (a, b) ∈ D} andsa : Da → C for the map induced bys.
2. ForA anℵ0-categorical group,c a parameter or finite set of parameters,
letAc be the smallestc-definable subgroup ofA of finite index. This will be
called theprincipal componentofA overc.

Notice the law
(A1 × A2)

c = Ac
1 ×Ac

2

and hence(An)c = (Ac)n.

Lemma 6.5.10.LetM be Lie coordinatizable,A andB abelian groups and
π : L → A × B a bilinear cover, all 0-definably interpreted inM, with
structure groupF = L(0, 0). Let f : A′ → A be a generically sur-
jective 0-definable map,D ⊆ A′ × B the locus of a complete type over
acl(∅) of maximal rank, ands : D → L a 0-definable section relative tof ,
i.e.s(a′, b) ∈ L(fa′, b) onD. Assume

1. The groupB is settled.
2. A andB have no 0-definable proper subgroups of finite index.
3. acl(a′) ∩B∗ = dcl(a′) ∩B∗ for a′ ∈ A′.
4. For (a′, b) ∈ D, b lies inBa′

, the principal component ofB overa′.

Then for anya′ ∈ A′, the mapsa′ : Da′ → L(fa′) is affine; that is, it is
induced by an affine map.

Proof. We may work overacl(∅). AsB is settled it follows from(3) thatDa′

is the locus of a complete type overacl(a′).
LetD∗ be

{(a′, b1, b2, b3, b4) : the first four coordinates are independent,

all (a′, bi) lie in D, andb4 = b1 − b2 + b3}.

By Lemma 6.2.7 it suffices to check the relation

s(a′, b4) = s(a′, b1)− s(a′, b2) + s(a′, b3)

onD∗.
Fix (a′, b1, b2, b3, b4) in D∗. We claim that there are elementsa′1, a

′
2, a

′
3 in

A′ such that

(i) fa′3 = fa′1 + fa′2;
(ii) tp(a′1a

′
2a

′
3bi) does not depend oni = 1, . . . , 4;

(iii) tp(a′i,b) = tp(a′,b) for i = 1, 2, 3.
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Granted this, we may complete the computation as follows. Set αi =
∑

j

1
(−1)js(a′i, bj), andβj =

∑

i

2
(−1)is(a′i, bj). By Lemma 6.5.3 we have

∑

i

2
(−1)iαi =

∑

j

1
(−1)jβj . As

∑

j

(−1)jbj = 0, αi ∈ L(ai, 0B). Let

θ : L(0B) → A × F be the canonical isomorphism:θ(x) = (a, θ2(x)) for
x ∈ L(a, 0B). Since we are working overacl(∅), θ2 : L(a, 0b) → F is con-
stant on theαi, by condition (iii). Setα = θ2(αi). Thus

θ2

(

∑

i

2
(−1)iαi

)

= (0,−α).

Similarly, βj ∈ L(0A, bj) and under the isomorphismψ : L(0A) → B × F
we getψ(βj) = (bj , β) for a fixedβ, and thus

ψ





∑

j

1
(−1)βj



 = (0, 0).

But ψ and θ agree onL(0, 0), so the last two computations yieldα = 0,

θ(αi) = 0 in L(0B) and hence also inL(ai); that is,
∑

j

1
s(a′i, bj) = 0, as

required.
It remains to choose the elementsa1, a2, a3. Let a = fa′. Eachbi is in

Ba′

, and hence(b1, b2, b3) ∈ (B3)a. By Lemma 6.3.9 there area1, a2, a3
in A with a1 + a2 = a3 such thata1, a2, b1, b2, b3 are independent and all
ai realizetp(a/ acl(b1, b2, b3)). Again by Lemma 6.3.9, eachai lies in Ab

for b = (b1, b2, b3) and thus(a1, a2) ∈ (A2)b, and again by Lemma 6.3.9
b ∈ (B3)a1,a2 . As a3 ∈ dcl(a1, a2) we conclude

bi ∈ (B3)a

with a = (a1, a2, a3), for i = 1, 2, 3, but also fori = 4, as(B3)a is a group.
Choose elementsa′i ∈ A′ aboveai for i = 1, 2, 3 satisfying tp(a′i) =

tp(a′). These are not yet the desired elements. Chooseb′ = (b′1, b
′
2, b

′
3) ∈

(B3)a
′

1,a
′

2,a
′

3 with tpb′ = tpb andrkb′ = 3 rkB. This is possible by Lemma
6.4.4 applied toB3.

AsB is settledtp(b′i/a1a2a3) = tp(bi/a1a2a3). By the corollary to Lemma
6.3.7B is 2-ary and thustp(b′1b

′
2b

′
3/a1a2a3) = tp(b1b2b3/a1a2a3). Applying

an automorphism, we may supposeb′i = bi for i = 1, 2, 3; this gives new
values ofa′i. Condition (i) is satisfied, and asB is settled andbi ∈ Ba′

1,a
′

2,a
′

3

for all i, condition (ii) is also satisfied. Finally, asB is settled and 2-ary we get
condition (iii) as well.
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The next proposition is the preceding lemma with its fourth hypothesis
deleted.

Proposition 6.5.11.Let M be Lie coordinatizable,A andB abelian groups
and π : L → A × B a bilinear cover, all 0-definably interpreted inM,
with structure groupF = L(0, 0). Let f : A′ → A be a generically sur-
jective 0-definable map,D ⊆ A′ × B the locus of a complete type over
acl(∅) of maximal rank, ands : D → L a 0-definable section relative tof ,
i.e.s(a′, b) ∈ L(fa′, b) onD. Assume

1. The groupB is settled.
2. A andB have no 0-definable proper subgroups of finite index.
3. acl(a′) ∩B∗ = dcl(a′) ∩B∗ for a′ ∈ A′.

Then for anya′ ∈ A′, the mapsa′ : Da′ → L(fa′) is affine, that is, is
induced by an affine map.

Proof. As in the previous argument we work overacl(∅).
In the notation of the preceding proof, our claim is this:for(a′, b1, b2, b3, b4)

in D∗, we have
∑

j(−1)js(a′, bj) = 0. We claim first that there isb ∈ Da′ ,

independent froma′, b1, b2, b3, b4, with b− bi ∈ Ba′,b for i = 1, 2, 3, 4. As the
principal component is a group, it suffices to deal withbi for i ≤ 3. AsDa′

is the locus of a complete type over the algebraically closedsetacl(a′), by the
type amalgamation property it will suffice to deal with a single bi. This case is
covered by Lemma 6.4.5.

Now leta′′ enumerate[acl(a′, b) ∩B∗] ∪ {a′, b} and letf1, f2 be definable
functions picking outa′, b, respectively, froma′′. Let A′′ be the locus ofa′′

and letf ′′ bef ◦ f1. LetD′ be the locus of(a′′, bi − b). AsB is settled, this
set does not depend oni. Defines′ : D′ → L by s′(x, u) = s(f1x, u+ f2x)−
s(f1x, f2x) with the subtraction performed inL(f1x). Then in the context
of A′′, D′, s′, hypothesis (3) again holds, and hypothesis(4) of the preceding
lemma is achieved. Thuss′a′′ is affine. Furthermore, eachbi − b lies inD′

a′′ ,
so we get

0 =
∑

i(−1)is′(a′′, bi − b) =
∑

i

(−1)i[s(a′, bi)− s(a′, b)]

=
∑

i

(−1)is(a′, bi)

as claimed.

6.6 THE FINITE BASIS PROPERTY

Our objective in the present section is to pin down definability in groups rather
thoroughly, as follows.
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Proposition 6.6.1 (Finite Basis Property).LetM be Lie coordinatizable and
A an abelian group interpreted inM. Then there is a finite collection of de-
finable subsetsDi of A such that every definable subset ofA is a boolean
combination of the setsDi, cosets of definable subgroups ofA of finite index,
and sets of rank less than rk(A).

The proof will occupy most of this section.

Lemma 6.6.2. Let M be Lie coordinatizable andA an abelian group inter-
preted inM. The following are equivalent:

1. A is settled over∅; i.e., we have

(∗) tp(a/∅) ∪ gtp(a/C ∩ A∗) =⇒∗ tp(a/C)

for a ∈ A of maximal rank over the algebraically closed setC.
2. For every finite setC◦ there is an algebraically closed setC containing
C◦ such that fora ∈ A of maximal rank overC the relation(∗) holds.

3. Every definable subset ofA is a boolean combination of 0-definable sets,
cosets of definable subgroups of finite index, and sets of rankless than
rkA.

Proof. (2) is a weakening of(1), of course, and it implies(3), takingC◦ to be
a defining set of parameters for the given definable set. Thus we are concerned
only with the implication from(3) to (1).

Suppose on the contrary the implication

(∗) tp(a/∅) ∪ gtp(a/C ∩ A∗) =⇒∗ tp(a/C)

fails to hold generically over some algebraically closed set C, which we may
take to be finitely generated. Take a typep overC of full rank other than
tp(a/C), compatible with the data in(∗). LetD be the locus ofp. NowD lies
in a single cosetX of the principal componentAC . By (3), the typetp(a/C)
contains the intersection of some definable coset withtp(a/∅) up to a set of
smaller rank; that is, there is a definable homomorphismh from A to a finite
group, and a valuec of h, such thattp(a/∅) ∪ {h(x) = c} =⇒∗ tp(a/C).
Hencerk(D ∩ h−1[c]) < rkA, contradicting Lemma 6.4.4.

Thus Proposition 6.6.1 is equivalent to the statement that every group be-
comes settled over some finite set.

Lemma 6.6.3. LetM be a Lie coordinatizable structure, and letA1, . . . , An

be settled groups 0-definably interpreted inM, with no proper 0-definable
subgroups of finite index. Then the productA =

∏

iAi is settled over acl(∅).
Proof. We may assumen = 2 andacl(∅) = dcl(∅). Let C be algebraically
closed, anda = (a1, a2) ∈ A = A1 × A2 of maximal rank overC. Note that
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A∗ = A∗
1 ×A∗

2 andC ∩ A∗ = (C ∩A∗
1)× (C ∩A∗

2). Our claim is

tp(a1, a2/∅) ∪ gtp(a1/C ∩ A∗
1) ∪ gtp(a2/C ∩ A∗

2) =⇒∗ tp(a/C).

We havetp(a2/∅) ∪ gtp(a2/C ∩ A∗
2) =⇒∗ tp(a2/C), so to conclude it will

suffice to show thattp(a1/a2) ∪ gtp(a1/C ∩ A∗
1) =⇒∗ tp(a1/a2C), which is

not quite what we have assumed. AsA1 is settled we have, in fact,

tp(a1/∅) ∪ gtp(a1/ acl(a2, C) ∩ A∗
1) =⇒∗ tp(a1/a2C)

so it remains to understandgtp(a1/ acl(a2, C) ∩ A∗
1).

We apply Lemma 6.2.8 toA∗
1 andA2. Thusacl(a2, C) ∩ A∗

1 = [dcl(a2) ∩
A∗

1] + [C ∩A∗
1]. As gtp(a1/ dcl(a2)∩A∗

1) is determined bytp(a1/a2), we are
done.

Definition 6.6.4. LetA be an abelian group interpreted in a Lie coordinatiz-
able structureM. A definable subsetQ of A will be called tameif every
definable subset ofQ is the intersection withQ of a boolean combination
of cosets of definable subgroups of finite index, and sets of lower rank. This
notion is of interest only when rkQ = rkA.

Lemma 6.6.5. Let M be a Lie coordinatizable structure, and letA be an
abelian group interpreted inM.

1. If A contains a definable tame subsetQ of full rank, thenA is settled
over some finite set.

2. If A contains a settled definable subgroupB of finite index thenA is
settled over some finite set.

Proof.
Ad1. By Lemma 6.4.2A can be covered by finitely many translates ofQ. It

suffices to work over a set of parametersC containing defining parameters for
Q together with sufficiently many parameters of translation to coverA.

Ad 2. This is a special case of the first part, takingQ to be the locus of a
1-type over∅ of full rank inB.

Lemma 6.6.6. Let M be a Lie coordinatizable structure, and letA be an
abelian group interpreted inM. If A contains a finite subgroupA◦ for
which the quotientA/A◦ is settled over a finite set, thenA is settled over a
finite set.

Proof. LetA/A◦ be settled overC◦. Takea ∈ A of maximal rank overC◦ and
let ā = a+A◦ viewed as an element of the quotient group. Thena is algebraic
over ā. TakeC containingC◦, independent froma, with the multiplicity of
tp(a/ā, C) minimized. Letq be the type ofa overC. We claim that the locus
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Q of q is tame, in other words that forC′ containingC and independent from
a overC, we have

q ∪ gtp(a/ acl(C′) ∩ A∗) =⇒∗ tp(a/C′).

In any case our choice ofC ensures that

(∗) tp(a/ā, C) =⇒ tp(a/C′).

Let q′ betp(ā/C). As the quotient group is settled,

q′ ∪ gtp(ā/(A/A◦)
∗) =⇒∗ tp(ā/C).

Now (A/A◦)
∗ may be identified with a definable subset ofA∗ and thus in

view of (∗), q ∪ gtp(a/A∗ ∩ acl(C′)) =⇒∗ tp(a/C′). ThusQ is tame andA
is settled over some finite set.

Lemma 6.6.7. Let M be a Lie coordinatizable structure, and letA be an
abelian group interpreted inM, A1 a rank 1 acl(∅)-definable subgroup
of A, and suppose acl(∅) ∩ A∗ = (0) (i.e. A has no0-definable subgroup
of finite index), and acl(∅) ∩ A1 = (0). Supposea is an element ofA of
full rank over∅, with a ∈ acl(a/A1, c) for somec independent froma/A1

(an element ofA/A1). Then there is an acl(∅)-definable subgroupA2 with
A = A1 ⊕A2.

Proof. LetQ be the locus ofa overacl(c). With n = rkA, the hypotheses
give rk(a/c) = n − 1. LetS = Stab(Q). ThenS is a subgroup ofA of rank
n− 1 (Lemma 6.2.5), andQ lies in a single coset ofS. We claim thatS ∩ A1

is finite.
If S ∩ A1 is infinite, letb ∈ S ∩ A1 have rank1 over∅. By Lemma 6.2.5,

part(4), we may takeb ∈ Stab◦Q. Then there isa′ ∈ Q of rankn−1 overb, c
such thata′′ = a′ − b ∈ Q. Thustp(a′′/c) = tp(a/c) anda′′ ∈ acl(a′′/A1, c);
that is,a′ − b ∈ acl(a′/A1, c) and henceb ∈ acl(a′, c). This contradicts the
independence ofa′, b overc.

Now by Proposition 6.2.3 there is anacl(∅)-definable subgroupA2 com-
mensurable withS. It follows easily thatA1 ∩A2 = 0 andA1⊕A2 is a defin-
able subgroup ofA of finite index defined overacl(∅), and thusA1⊕A2 = A.

Lemma 6.6.8. LetM be a Lie coordinatizable structure, let

(0) → A1 → B → A2 → (0)

be an exact sequence of abelian groups interpreted inM, with A2 settled
over∅, and letπ : L → A2 × A∗

1 be the corresponding bilinear cover. As-
sume that acl(∅)∩A1 = (0) and acl(∅)∩A∗

2 = (0). LetC be algebraically
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closed, and letD be a complete type overC in A2 of maximal rank. Let
a∗ ∈ C ∩ A∗

1 be generic inA∗
1 over∅, and supposeg : D → L(a∗) is aC-

definable section, that is:g(a) ∈ L(a, g2(a)) for some functiong2; here we
use the standard representation of the bilinear coverL, and, in particular,
g2(a) inducesa∗ onA1. Then there is aC-definable homomorphismj from
A2 to a finite group, such that for anyb ∈ B with b/A1 ∈ D, the quantity

[g2(b/A1)](b)

is determined byj(b).

Proof. We apply Proposition 6.5.11 with the groupsA∗
1 andA2 here playing

the role of theA of B from that proposition. ForA′ we take the locus ofC
(as an enumerated set) over∅ and for theD of Proposition 6.5.11 we take the
locus of(C, d) with d a realization of the typeD from the present Lemma. The
function f picks out the element corresponding to oura∗ in any realization
of the type of the sequenceC. In particular, in the notation of Proposition
6.5.11, our presentC is a typical elementa′. Now applying Proposition 6.5.11,
the sectiong is affine. In other words, ifA′

2 is the principal componentAC
2 ,

thenA′
2 is aC-definable subgroup of finite index inA2, and there is aC-

definable homomorphismh : A′
2 → L(a∗) such that ford, d′ ∈ D we have

g(d) − g(d′) = h(d − d′). We may writeh(a) = (h1(a), h2(a)) and asg is a
section we findh1(a) = a.

LetB′ = {b ∈ B : b/A1 ∈ A′
2}. Define a mapj◦ fromB′ to the prime field

F by j◦(b) = [h2(b/A1)](a). We will show thatj◦ is a homomorphism.
As h is a homomorphism,j◦(b+ b′) is the second component ofh(b/A1) +

h(b′/A1), evaluated atb+ b′; by the definition of the operationq2 onL, this is
h2(b/A1)(b) + h2(b

′/A1)(b
′) = j◦(b) + j◦(b

′).
Thusj◦ is a homomorphism. LetB′′ be its kernel, and letj be the canon-

ical homomorphism fromB to B/B′′. We claim that thisj works. Sup-
poseb1, b2 ∈ B, bi/A1 ∈ D, andj(b1) = j(b2). Thenb1 − b2 ∈ B′′ and
j◦(b1 − b2) = 0, so g2(b1/A1)(b1) = g2(b2/A1)(b2) is determined by the
value ofj.

Lemma 6.6.9. LetM be a Lie coordinatizable structure, letA be 0-definably
interpretable inM,A1 a definable subgroup, and suppose thatA1 is settled.
Suppose there is a 0-definable type of full rank inA with locusQ such that
for anyC and anya ∈ Q with a/A1 of maximal rank overC,

(∗) tp(a/(a/A1)) ∪ gtp(a/ acl(C) ∩ A∗) =⇒ tp(a/(a/A1), C).

ThenQ is tame inA, and henceA is settled over some finite set.

Proof. Let ā = a/A1, and letq = tp(ā/C). Then

q ∪ gtp(ā/ acl(C) ∩ (A/A1)
∗) =⇒∗ tp(ā/C).



138 DEFINABLE GROUPS

As (A/A1)
∗ can be identified with a definable subset ofA∗, this together with

(∗) yields
tp(a/C) ∪ gtp(a/ acl(C) ∩ A∗) =⇒∗ tp(a/C).

ThusQ is tame.

The following lemma is critical.

Lemma 6.6.10.LetM be a Lie coordinatizable structure, letA be 0-definably
interpretable inM, with acl(∅) ∩ A∗ = (0), and letA1 be a0-definable
subgroup ofA which is part of a stably embedded linear geometryJ in
M, not of quadratic type. Assume thatA/A1 is settled and that there is no
acl(∅)-definable complement toA1 in A. ThenA is settled over some finite
set.

Proof. We will arrive at the situation of the previous lemma, relative to some
finite set of auxiliary parametersC◦ (so the setsC of the previous lemma
should containC◦). We work overacl(∅).

Let Ā = A/A1. Fix an elementa ∈ A of maximal rank, and let̄a = a/A1.
LetS = a+A1 viewed as an affine space overA1. LetS∗◦ be the prime field
affine dual defined in§2.3. Call a setC basalif C is algebraically closed and
independent froma. Then we claim

ForC basal,a is not inacl(ā, C, J).

Otherwise, takea ∈ acl(ā, C, d1, . . . , dk) with di ∈ J andk minimal. Then
the sequence

ā, C, d1, . . . , dk

is independent. We apply Lemma 6.6.7, noting thatacl(∅) ∩ A1 = (0) by
our hypothesis. Then Lemma 6.6.7 produces a complement toA1 in A, a
contradiction. Also, by Lemma 6.2.8acl(ā, C) ∩ J = dcl(ā, C) ∩ J . Now
Lemma 2.3.17 applies, giving

tp(a/ā, dcl(ā, C) ∩ S∗◦) =⇒ tp(a/ā, C).

Let T (C) be dcl(C) ∩ S∗◦ . We need to examineT (C) more closely for
basalC. Forf ∈ A∗

1 let S∗◦(f) be the set of elements ofS∗◦ lying abovef ;
this is an affine space over the prime fieldF◦, of dimension1. LetA∗

1(C) =
acl(C) ∩ A∗

1. Let T1(C) = dcl(C, ā) ∩⋃{S∗◦(f) : f ∈ A∗
1(C)}. We claim

that for some basalC, for all C′ containingC, we have

(∗) T (C′) = T (C) + T1(C
′)

and henceT (C′) ⊆ dcl(ā, T (C), T1(C′)).
Let β(C) = {x ∈ A∗

1(ā) : for somey ∈ A∗
1(C), S

∗◦(x+ y) ∩ T (C) 6= ∅}.
ChooseC basal withβ(C) maximal. LetC′ ⊇ C be basal,t ∈ T (C′). Then
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t ∈ S∗◦(x + y) for somex ∈ A∗
1(ā), y ∈ A∗

1(C
′). So t ∈ β(C′) − β(C).

Thus there isy′ ∈ A∗
1(C) and t′ ∈ T (C) ∩ S∗◦(x + y′). Then t − t′ ∈

T (C′) ∩ S∗◦(y − y′) ⊆ T1(C
′) and ast = t′ + (t− t′), our claim is proved.

Using quantifier elimination in(J, S, S∗◦), the claim gives

tp(a/ā, T (C)) ∪ tp(a/ā, T1(C
′)) =⇒ tp(a/ā, T (C′)).

Now in order to show

tp(a/C′) ∪ gtp(a/ acl(C′) ∩ A∗) =⇒∗ tp(a/C′)

it will suffice to check that

(∗∗) tp(a/ā) ∪ gtp(a/C′ ∩ A∗) =⇒ tp(a/ā, T1(C
′)).

We fix C′ and letπ : L → Ā × A∗
1 be the semi-dual cover corresponding

to (0) → A1 → A → Ā → (0). Let D′ be the locus of̄a overC′. If t ∈
T1(C

′), then(ā, t) ∈ L; let a∗ = π2(ā, t) be the induced element ofA∗. Then
a∗ ∈ C′ ∩ A∗

1. As t ∈ dcl(ā, C′) we may write(ā, t) = g(ā) = (ā, g2(ā)),
whereg : D′ → L(a∗) is aC′-definable section. By Lemma 6.6.8 there is
aC′-definable homomorphismj onto a finite group whose values determine
g2(ū)(u) for u ∈ A, ū ∈ D′. By definitiongtp(a/C′ ∩ A∗) determines the
value ofj(a) and hence oft(a). Claim(∗∗) follows.

Proof of Proposition 6.6.1We proceed by induction on the length of a maximal
chain ofacl(∅)-definable subgroups. We may work overacl(∅). If A contains a
finite subgroup defined overacl(∅) we may apply induction and Lemma 6.6.6.
Accordingly we may supposeacl(∅) ∩ A = (0). Similarly we may suppose
acl(∅) ∩ A∗ = (0), using Lemma 6.6.5, part (2).

NowA contains anacl(∅)-definable rank 1 subgroupA1 which is part of a
basic linear geometryJ (Lemmas 6.2.6, 6.2.11). IfA1 has anacl(∅)-definable
complementA2 then we may assume bothA1 andA2 are settled, and thenA =
A1⊕A2 is settled. Accordingly we may suppose thatA1 is not complemented.
Now by inductionA/A1 is settled over some setC and after enlargingC if
necessary, we may assume that the associated linear geometry is not quadratic
(adding an element of the quadratic spaceQ, if needed). Now the previous
lemma applies.

The following is another version of the finite basis property.

Proposition 6.6.11.
Let M be Lie coordinatizable andA an abelian group interpreted inM.

Then there is a finite collectionDi of definable subsets ofA, such that ev-
ery definable subset ofA is a boolean combination of translates of theDi

together with cosets of definable subgroups.
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Proof. We proceed by induction onrk(A). LetDi be a finite list of definable
sets including all the definable sets associated correspondingly to all acl(∅)-
definable subgroups of smaller rank. In addition letC be a finite set over
whichA is settled, and assume that allC-definable sets occur as well in the
list (Di). We claim this suffices.

As A is settled overC, it will suffice to consider definable subsetsD of A
of rank less thanrkA. Such a set lies in the union of a finite number of cosets
of acl(∅)-definable subgroups ofA of rank less thanrk(A), by Lemma 6.2.5
and Proposition 6.2.3. We may therefore assume thatD lies in one such coset,
and since our problem is invariant under translation, we mayeven assumeD
lies in anacl(∅)-definable subgroup of smaller rank, and conclude.



7

Reducts

7.1 RECOGNIZING GEOMETRIES

Our main objective in the present section is to characterizecoordinatizing ge-
ometries as follows.

Proposition 7.1.1. Let M beℵ0-categorical of finite rank, and letA, A∗ be
rank 1 groups equipped with vector space structures over a finite fieldF ,
and a definableF -bilinear pairing intoF , with everything 0-definably in-
terpreted inM. Assume the following properties:

L1. EveryM-definableF -linear mapA→ F is represented by some element
ofA∗, and dually.

L2. Algebraic closure and linear dependence coincide onA and onA∗.
L3. A andA∗ have no nontrivial proper 0-definable subspaces.
L4. Every definable subset ofA or of A∗ is a boolean combination of0-

definable subsets and cosets of definable subgroups.
L5. If D is the locus of a complete type inA over acl(∅), anda′1, . . . , a

′
n are

F -linearly independent elements ofA∗, then there is an elementd ofD
with (d, a′i) prescribed arbitrarily.

Then the pair(A,A∗) is a linear Lie geometry, possibly weak, which is
stably embedded inM.

The proof will require a number of preliminary lemmas. We remark that
in view of hypothesis (L3), either one of the groupsA,A∗ vanishes (in which
case we might as well assumeA∗ = (0)), or the pairing is nondegenerate on
both sides. In the latter case the notationA∗ is justified by hypothesis (L1).

We will continue to label the various hypotheses as in the statement of
Proposition 7.1.1.

Lemma 7.1.2. LetM beℵ0-categorical of finite rank and letA, A∗ be rank
1 groups equipped with vector space structures over a finite fieldF , and a
definableF -bilinear pairing intoF , with everything 0-definably interpreted
in M. Assume that

L2. Algebraic closure and linear dependence coincide onA and onA∗.
L3. A andA∗ have no nontrivial proper 0-definable subspaces.
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Then eitherA andA∗ are algebraically independent, or there is a0-
definable bijection between their projectivizationsP andP ∗.

Proof. This is the standard nonorthogonality result. We assume analgebraic
relation betweenA andA∗, specificallyrk(a) = k, rk(a∗) = k∗, rk(aa∗) <
k + k∗ with a ∈ A anda∗ ∈ A∗. We will first find an element ofA al-
gebraic overa∗. Supposea is not itself algebraic overa∗. Then we take
independent conjugatesai of a overacl(a∗) and findrk(a1, . . . , an) < nk for
n large. By the dimension law in projective space there is thena ∈ A− (0) in
acl(a1, . . . , ai) ∩ acl(ai+1, . . . , an) and hence algebraic overa∗.

Switching sides, we may then finda∗ ∈ A∗ − (0) algebraic overa. Then
acl(a) = acl(a∗) and this gives a bijection between a subset ofP and a subset
of P ∗. Furthermore, the argument shows that the domain and range of the bi-
jection are algebraically closed, and thus correspond to0-definable subspaces
of A andA∗. By hypothesis (L3) the bijection is total.

Lemma 7.1.3. LetM beℵ0-categorical of finite rank and letA, A∗ be rank
1 groups equipped with vector space structures over a finite fieldF , and a
definableF -bilinear pairing intoF , with everything 0-definably interpreted
in M. Assume that

L1. EveryM-definableF -linear mapA→ F is represented by some element
ofA∗, and dually.

L2. Algebraic closure and linear dependence coincide onA and onA∗.

Assume in addition that the projectivizationsP, P ∗ of A andA∗ corre-
spond by a 0-definable bijection. Then there is an identification ofA with
A∗ according to which the given pairingA×A∗ → F is symplectic, unitary,
or orthogonal.

Proof. As P andP ∗ are definably isomorphic, there is a semilinear isomor-
phism ofA with A∗, which gives rise to a self-pairingA × A → F which
is linear in the first variable and satisfies(x, αy) = ασ(x, y) with an auto-
morphismσ on the right. In particular the mapλx : A → A defined by
(x, y)σ

−1

is F -linear and hence by hypothesis is given by a unique element
x∗: (y, x∗)σ = (x, y). As x∗ is definable fromx, we havex∗ = αx for some
α = α(x) ∈ F possibly dependent onx.

We have

(y, (βx)∗)σ = (βx, y) = β(x, y) = β(y, x∗)σ = (βσ−1

(y, x∗))σ

= (y, βσ−2

x∗)σ

and thus(βx)∗ = βσ−2

x∗. Now forx1, x2 linearly independent withα(x1) =
α(x2) = α◦ we have(x1 + βx2)

∗ = α◦(x1 + βσ−2

x2), and as the latter
is a scalar multiple ofx1 + βx2, we find thatσ2 is the identity andx∗ is



RECOGNIZING GEOMETRIES 143

a linear function ofx. The same computation shows that forx1, x2 linearly
independent,α(x1) = α(x2), and thusα(x) is independent ofx; sox∗ = αx
for a fixedα:

(x, y) = α(y, x)σ .

Applying this law twice,(x, y) = αασ(x, y) and

αασ = 1.

If σ is the identity, thenα = ±1 and the form(x, y) is either symmetric
or symplectic. In characteristic 2 we conclude only that it is symmetric, but
in this case the form(x, x) is the square of a linear functional and vanishes
on a subspace of codimension at most1. If we exclude0-definable proper
subspaces of finite codimension we may conclude that in characteristic 2 the
form is symplectic.

Whenσ is nontrivial we have in any case the norm ofα equal to 1 and thus
α = γσ/γ for someγ ∈ F . Then one checks thatγ(x, y) is a unitary form on
A.

Definition 7.1.4. Thegeometric languagefor (A,A∗) consists of theF -space
structure, the pairing, an identification ofA withA∗ as above, if available,
and all acl(∅)-definable subsets ofA andA∗. Vector space operations and
the identification, if present, are taken as functions, rather than being en-
coded by relations.

We are working overacl(∅) here. The identification betweenA andA∗

depends in the unitary case on a parameter from the fixed field of the automor-
phism, but is algebraic overacl(∅).
Lemma 7.1.5. LetM beℵ0-categorical of finite rank and letA, A∗ be rank

1 groups equipped with vector space structures over a finite fieldF , and a
definableF -bilinear pairing intoF , with everything 0-definably interpreted
in M. Assume

L1. EveryM-definableF -linear mapA→ F is represented by some element
ofA∗, and dually.

L2. Algebraic closure and linear dependence coincide onA and onA∗.
L3. A andA∗ have no nontrivial proper 0-definable subspaces.
L4. Every definable subset ofA or of A∗ is a boolean combination of0-

definable subsets and cosets of definable subgroups.
L5. If D is the locus of a complete type inA over acl(∅) and a′1, . . . , a

′
n

areF -linearly independent, then there is an elementd ofD with (d, a′i)
prescribed arbitrarily.

Then the induced structure on(A,A∗) admits quantifier elimination in
the geometric language.
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Proof. This may seem obvious; but condition (L4) is rather vague asto the
provenance of the parameters involved.

We show by induction onn that the quantifier-free type ofa1, . . . , an deter-
mines its full type. IfA andA∗ are identified, we work inA exclusively. By
hypothesis (L2) we may suppose theai are algebraically independent.

We will establish the following for any finite setC and anyC-definable
subsetD of A:

(∗)
D is a boolean combination of0-definable sets, a
finite subset ofacl(C), and cosets of the form
Hα = {x ∈ A : (x, c) = α} with c ∈ A∗ algebraic overC.

Assuming the claim, letC beacl(a1, . . . , an−1) = dcl(a1, . . . , an−1). By
our induction hypothesis the type ofC is known. By(∗) the typetp(an/C) is
determined by its atomic type overC, and hence overa1, . . . , an−1, sinceC
is generated by functions overa1, . . . , an−1.

It remains to establish(∗). We may suppose that the setD is the locus of
a complete nonalgebraic type overacl(C) = dcl(C). LetD′ be the minimal
acl(∅)-definable set containingD. We note first that in hypothesis (L4) we may
take the definable subgroups involved to be subspaces of finite codimension.
Indeed, ifB is an infinite definable subgroup ofA then it has finite index in
A and the intersection ofαB for α ∈ F× is a definable subspace of finite
codimension contained inB. Thus modulo the ideal of finite sets,D is the
intersection withD′ of a boolean combinationD1 of translates of definable
subspaces of finite codimension. There is a definable linear mapθ fromA to a
finite dimensional spaceFn, and a subsetX of Fn, such thatD1 = θ−1[X ].
Minimize n. We may representθ as (a∗1, . . . , a

∗
n) for somea∗i ∈ A∗. We

claim thea∗i lie in acl(C). We may in any case assumeai ∈ acl(C) for
i ≤ n◦ and the remainingai are algebraically independent overacl(C). If
n◦ < n then leta′n◦+1, . . . , a

′
n be conjugate toa∗n◦+1, . . . , a

∗
n overC and

linearly independent froma∗1, . . . , a
∗
n. As n has been minimized we can find

α ∈ Fn◦ andβ, β′ ∈ Fn−n◦ with (α, β) ∈ X , (α, β′) /∈ X . Applying (L5),
we may find infinitely many elementsd ∈ D′ satisfying

(d, a∗i ) = αi; (d, a
∗
n◦+i) = βi; (d, a

′
n◦+i) = β′

i.

Off a finite set this yieldsd ∈ D andd /∈ D, a contradiction. Thus thea∗i are
algebraic overC. Finally, the finite set involved is the difference of two sets
defined overacl(C) and hence lies inacl(C).

Proof of Proposition 7.1.1. In view of Lemma 7.1.5, to complete the analysis
of (A,A∗), we must determine the0-definable subsets ofA (and similarly,A∗)
more or less explicitly. LetP be the set of types of nonzero elements ofA over
acl(∅). Fora ∈ A setq(a) = tp(a/ acl(∅)). Note that these types have rank
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1, with the exception oftp(0/ acl(∅)). By the proof of the previous lemma,
if a andb are algebraically independent elements ofA then the type ofa + b
overacl(∅) is determined by:q(a), q(b), and(a, b) ∈ F . (When there is no
identification ofA with A∗, let the form(a, b) be identically0 onA.) Thus
q(a+ b) = f(q(a), q(b), (a, b)) for some functionf : P × P × F → P .

Consider+ : P 2 → P defined byp1 + p2 = f(p1, p2, 0). We claim that+
is an abelian group operation onP . This operation is clearly commutative. For
associativity, letp1, p2, p3 ∈ P . We may assume they are all nonzero. By type
amalgamation and the hypothesis (L5) we can finda1, a2, a3 independent with
the prescribed types and with(ai, aj) = 0 for distincti, j. Thenp1 + p2 + p3,
computed in either possible way, will giveq(a + b + c). Finally we check
cancellation. Supposep◦ + p1 = p◦ + p2. We may then choose independent
a◦, a1, a2 realizing the prescribed types, with(a◦, a1) = (a◦, a2) = 0, and we
find thatq(a◦ + a1) = q(a◦ + a2) and(−a◦, a◦ + a1) = (−a◦, a◦ + a2) =
−(a, a). Thusq(a1) = f(q(−a), p◦ + p1,−(a, a)) = q(a2), as claimed.

ThusP is a finite abelian group. Let the zero element ofP be denotedp◦,
and letD be the locus of this type inA.

We now dispose of the polar case, in which there is no identification of
A with A∗. Thenq : A → P is generically a homomorphism and hence
extends to a homomorphism by sending0 to 0. AsA has no proper 0-definable
subspace of finite codimension, it has no proper 0-definable subgroup of finite
index, and thus the homomorphism is trivial, andA − (0) realizes a unique
type overacl(∅). This completes the analysis of the polar case.

For the remainder of the argument we may suppose thatA andA∗ have been
identified, or, in other words, thatA carries a symmetric, symplectic, or unitary
form. If P consists of a single type, then this form is symplectic and the types
are entirely known. We may assume therefore thatP contains more than one
type. It is of course still possible that the form is symplectic.
D is infinite, and is the locus of a type overacl(∅), and hence generatesA.

The groupStab(D) has rank 1, and hence coincides withA. Thus a generic
element ofA belongs toStab◦(D) and can therefore be expressed asa + b,
with a, b ∈ D independent. As the type ofa+ b is determined by the value of
(a, b), for a, b ∈ D independent, this gives rise to a functionf∗ : F → P .

For independenta, b, c ∈ D with (a, b) = 0 we have

q(a+ b) = q(a) + q(b) = p◦

and thusa + b ∈ D, and as(a + b, c) = (a, c) + (b, c) it follows thatf∗ is
an additive homomorphism. We define a mapν : F× → End(P ) by ν(α) ·
q(a) = q(αa). This is clearly a well-defined multiplicative homomorphism
into End(P ). In particularp◦ is fixed byν[F×], and thusD is invariant under
nonzero scalar multiplication. Thus we may make the following computation
with a, b ∈ D independent,(a, b) = α:

(∗) f∗(ββσα) = q(βa+ βb) = ν(β)q(a + b) = ν(β)f∗(α).
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Now letK be the kernel off∗, andF◦ the fixed field ofσ (which may be all
of F ). We will show thatK = kerTr with Tr the trace fromF to F◦, which
will allow us to identifyP andF◦.

By (∗) K is invariant under multiplication by elementsββσ, that is by
norms or squares according asσ is nontrivial or trivial, and therefore is an
F◦-subspace ofF in all cases. Furthermore,K < F sinceP has more than
one element. Thus ifσ is the identity andF◦ = F we have only the possibility
K = (0), which is the claim in this case. Suppose now thatσ is nontrivial,
so thatF is a quadratic extension ofF◦. As q(x + y) = q(y + x) we get
f∗(α) = f∗(ασ) soK contains the kernel{α − ασ : α ∈ F} of the trace,
which is of codimension 1 inF . ThusK coincides with this kernel.

Accordingly, we now identifyP with F◦ andf∗ with the trace. The formula
(∗) then states thatν is the norm ifσ is nontrivial, and the squaring map other-
wise. In particular there are|F◦| nontrivial types overacl(∅). These types must
therefore be determined by the function(x, x), unless the form is symplectic.

Suppose, finally, that the form is symplectic; we still suppose that|P | =
|F◦|. Takex, y independent and orthogonal. Then(x − y, y) = 0 and thus
q(x) = q(x−y)+q(y) = q(x)+q(−y)+q(y), that isq(−y) = −q(y). On the
other hand, by(∗) we haveq(−y) = q(y), and thus the characteristic is 2. Our
final objective is to show thatq is a quadratic form, so thatA is an orthogonal
space in characteristic 2. In any case,(∗) says thatq(αx) = α2q(x), and it
remains to studyq(x+ y).

Takex1, x2, y1, y2 in D independent withxi orthogonal toyi for i = 1, 2,
and letα = (x1, x2), β = (y1, y2). Let zi = xi + yi; thenzi ∈ D and

q(z1 + z2) = (z1, z2) = α+ β + (x1, y2) + (x2, y1).

Let x = x1 + x2 andy = y1 + y2. Thenx andy are independent;q(x) = α
andq(y) = β; and(x, y) = (x1, y2) + (x2, y1). Asx+ y = z1 + z2, we have
q(x+y) = q(x)+q(y)+(x, y). This argument applies tox, y independent and
nonzero. Whenx, y are dependent they are linearly dependent, and it follows
easily that this formula holds in general. Thusq is a quadratic form associated
to the given symplectic form. This determines the structureof A in this last
case.

Lemma 7.1.6. LetM beℵ0-categorical of finite rank. LetA,A∗ be 0-definably
interpreted rank 1 vector spaces over a finite fieldF with a definableF -
bilinear pairing satisfying

L1. EveryM-definableF -linear mapA→ F is represented by some element
ofA∗, and dually.

L2. Algebraic closure and linear dependence coincide onA and onA∗.
L3. A andA∗ have no nontrivial proper 0-definable subspaces.

Suppose that over acl(∅), A,A∗ are part of a linear Lie geometry sta-
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bly embedded inM. ThenA,A∗ are part of a linear Lie geometry stably
embedded inM.

Proof. We have to show that ifA carries a bilinear form or quadratic form
defined overacl(∅) then the set of scalar multiples of the form is0-definable,
and similarly ifA,A∗ are part of a quadratic geometry in characteristic 2.

Note that anyacl(∅)-definable linear automorphism ofA acts trivially on the
projective spacePA, by (L2), and hence is given by a scalar multiplication. As
A∗ contains all definable linear forms onA, any two nondegenerate bilinear
forms differ by a definable automorphism ofA, hence differ by a scalar. In
odd characteristic this disposes of all cases since quadratic forms correspond
to inner products.

Consider now the case of a symplectic space in characteristic 2, where the
form is known up to a scalar multiple. With the form fixed, the set of quadratic
forms compatible with it and definable overacl(∅) corresponds toA∗∩acl(∅).
By (L3) this is (0). Thus if there are quadratic forms definable overacl(∅),
they are the scalar multiples of a single form.

Suppose, finally, that there are noacl(∅)-definable quadratic forms but that
there is anacl(∅)-definable quadratic geometry. In this case, the set ofacl(∅)-
definable quadratic forms compatible with one of the bilinear forms carries a
regular action byA∗; hence this is the standard quadratic geometry over∅,
corresponding to a form known up to a scalar multiple. Note that the pairing
is known but the identification ofA with A∗ is known only up to a scalar
multiple.

Proposition 7.1.7. Let M beℵ0-categorical of finite rank. LetA,A∗ be 0-
definably interpreted rank 1 vector spaces over a finite fieldF with a defin-
ableF -bilinear pairing satisfying

L1. EveryM-definableF -linear mapA→ F is represented by some element
ofA∗, and dually.

L3. A andA∗ have no nontrivial proper 0-definable subspaces.

Let c ∈ M, with acl(c) ∩ (A,A∗) = dcl(c) ∩ (A,A∗) nondegenerate,
and set(A′, A′∗) = [acl(c) ∩ (A,A∗)]⊥. Assume that relative to a possibly
larger fieldF ′, in M′ = M with c added as a constant, (L1,L3) hold for
A′,A′∗ as well as:

L2 Algebraic closure (overc and linear dependence (over the extended scalar
field) coincide onA′ and onA′∗.

L4′ Every definable subset ofA′ or of A′∗ is a boolean combination ofc-
definable subsets and cosets of definable subgroups.

L5′ If D is the locus of a complete type inA′ over acl(c) and a′1, . . . , a
′
n

areF -linearly independent, then there is an elementd ofD with (d, a′i)
prescribed arbitrarily.
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Then there is a0-definable sortQ in M such that(A,A∗, Q) form a weak
linear Lie geometry, stably embedded inM.

Proof. We will work overacl(∅). We letQ be∅ unlessA carries anacl(∅)-
definable symplectic bilinear form in characteristic 2, in which case we letQ
be the set of all definable quadratic forms which are compatible with one of
these symplectic forms onA; each component of this set, corresponding to
a particular form, has a regular action byA∗ and is, in particular, uniformly
definable. ThusQ is 0-definable. We letJ = (A,A∗, Q), equipped with all
structure defined overacl(∅), and we claim that this is stably embedded.

Let M′ be the expansion ofM by the constantc, andJ ′ the geometry
A′, A′∗ with the structure inherited fromM′. By Proposition 7.1.1,J ′ is a
stably embedded weak linear geometry. LetA◦ = acl(c) ∩ A. ThenA =
A◦ ⊕ A′, and similarly forA∗, andQ. ThusJ is contained in the definable
closure ofJ ′ in M′. ThusJ inherits the following properties:

J is stably embedded inM;
J has finite rank and is modular;
J has the type amalgamation property of Proposition 5.1.15.

By Proposition 6.2.3, ifH is a parametrically definable subgroup ofA×A or
A×A∗ in M, thenH is commensurable with anacl(∅)-definable subgroup.

Let F ′ be the ring of endomorphisms ofA which are0-definable inJ . By
the third hypothesis,F ′ is a field, and it must restrict to a subfield of the field
of scalars forJ ′. We claim, in fact, thatF ′ induces the scalars ofJ ′. Let α
be one of the scalar multiplications onJ ′. The graph ofα is commensurable
with anacl(∅)-definable subgroupH of A × A. By the third condition,H is
the graph of a group isomorphism fromA to A. Let α ∈ F ′ be the element
with graphH . As the graphs ofα andα′ are commensurableacl(c)-definable
automorphisms ofA′, they agree there.

The same sort of argument shows that an isomorphismA′ → A′∗ is induced
by anacl(∅)-definable isomorphism onA of the same type. The same applies
to quadratic forms in odd characteristic since they correspond to bilinear forms.
In characteristic 2 one can, in any case, extend quadratic forms to forms onA
in acl(c), taking them to vanish onacl(c) ∩ A.

Now let J− beJ reduced to its geometric structure. The structure onJ ′ is
known and is defined from this geometric structure by Proposition 7.1.1. As
J is interpreted inJ ′, every0-definable relation inJ is definable inJ− from
parameters inacl(c). Let R be 0-definable inJ , with canonical parameter
e ∈ J−, and definable inJ− from the parametera. By weak elimination of
imaginaries inJ− we may takea ∈ acl(e) in J−; but e ∈ acl(∅) in J , so
a ∈ aclJ (∅)∩J−, which is trivial by assumption. ThusR is 0-definable inJ−

andJ = J− is a stably embedded Lie geometry.
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This argument took place overacl(∅) (and our last0-definability claim is
blatantly false in general); to remove this, we use the preceding lemma.

Remark 7.1.8.

We are dealing in Proposition 7.1.1 with the rank 1 case of theanalysis of set-
tled groups withacl(∅)∩A = (0), acl(∅)∩A∗ = (0). It would be interesting to
tackle the general case. Two special cases: analyze the caseof prime exponent,
or the case of rank 2.

7.2 FORGETTING CONSTANTS

The following is a special case of Proposition 7.5.4 below, for which we will
give a proof by a method not depending on the classification offinite simple
groups. The proof given here goes via smooth approximation rather than coor-
dinatization and involves [KLM], hence the classification of the finite simple
groups.

Proposition 7.2.1. Let M be a structure andMc an expansion ofM by a
constantc. If Mc is smoothly approximable by finite structures, then there
is an expansionM◦ of M by an algebraic constant which is smoothly ap-
proximable.

The key example here is due to David Evans: one takesM to be the reduct
of a basic quadratic geometry in which the orientation is forgotten, but the
corresponding equivalence relation is remembered. In a finite approximation
the two classes are distinguished, soM is not smoothly approximable by finite
structures. The orientation itself is an algebraic constant. It can be shown that
this is the only sort of algebraic constant which comes in to Proposition 7.2.1.

Definition 7.2.2. If M is Lie coordinatizable andE is an envelope inM it is
said to beequidimensionalif all the isomorphism types of specified geome-
tries of a given type are the same; that is, the dimensions andWitt defects
are constant.

Lemma 7.2.3. LetN be smoothly approximable,c ∈ N , E a finite subset of
N containingc. Then

1. If E is an envelope ofN , it is an envelope ofNc.
2. If E is an equidimensional envelope ofNc, it is an envelope ofN , pro-

vided that:

(i) The locus ofc over∅ is nonmultidimensional;

(ii) For any acl(∅)-definable canonical projective geometryPb with canon-
ical parameterb, tp(b) implies tp(b/c).
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Proof. We use the criterion given in the corollary to Lemma 3.2.4. Of the three
conditions given there, only the last one is actually sensitive to the presence of
the parameterc. In N this may be phrased as follows:

If c1, c2 are conjugate inM andDc1 , Dc2 are corresponding
conjugate definable sets, thenDc1∩E andDc2∩E are conjugate
by an elementary automorphism ofE.

This condition is certainly inherited “upward,” giving thefirst point. For the
second, assuming conditions (i) and (ii), and the conjugacycondition inNc, it
suffices to to show the conjugacy condition for canonical projective geometries
Dci. There are two cases.

Suppose first thatci /∈ acl(∅). ThenDci is orthogonal totp(c/ci) as the
latter is analyzed byacl(∅)-definable geometries. HenceDci remains a pro-
jective geometry inNc. It is also canonical: every proper conjugate inNc is in
particular a conjugate inN , and hence orthogonal toDci . Thus the dimension
of Dci in E is one of the specified dimensions as an envelope inNc; these
are all assumed equal, soDc1 andDc2 have the same dimension and similarly,
where applicable, the same Witt defect.

Now supposeci ∈ acl(∅). Then by 2(ii)tp(c1/c) = tp(c2/c) and thus they
are conjugate inEc, and theDci ∩ E are conjugate.

We now deal with a special case of Proposition 7.2.1.

Lemma 7.2.4. Let M be a structure andMc an expansion ofM by a con-
stantc. Assume that the locusP of c in M is nonmultidimensional inMc

and that for any acl(c)-definable canonical projective geometryJb, tp(b/c)
implies tp(b/ acl(c). If Mc is smoothly approximable by finite structures,
then there is an expansionM◦ of M by an algebraic constant which is
smoothly approximable.

Proof. An envelope inMc is determined by ak-tuple of dimensions for some
k. Let q be a 2-type realized inP . Define a binary relationRq betweenk-
tuples of dimensions as follows:Rq(d, d

′) if and only if there is a realization
(c, c′) of q, and a finite subsetE of M which is an envelope of dimensiond
in Mc and is an envelope of dimensiond′ in Mc′ . We claim thatRq defines a
partial function. If(c, c′) realizesq, thentp(c′/c) in Mc determinestp(c′/c) in
U and hence determines the corresponding dimensiond′. We will use function
notation, writingfq(d) = d′.

We define an equivalence relation onP as follows:E(a, b) holds if there is
a finite subsetC◦ of P such that for any finite subsetC of P containingC◦,
any equidimensional envelope ofMC is an envelope ofMa andMb, with the
same dimensions. We claim:

If a, b, b′ ∈ P andtp(ab) = tp(ab′), thenE(b, b′).
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Given sucha, b, b′ we letq = tp(ab) = tp(ab′) andC◦ = {a, b, b′}. If C
containsa, b, b′ andU is an equidimensional envelope ofMC , thenU is an
equidimensional envelope overa, b, or b′; and the dimension overb or b′ is fq
applied to the dimension overa.

Thus the relationE has finitely many equivalence classes. Letc◦ be the
classc/E ∈ acl(∅). We claim thatM is smoothly approximable overc◦.

Let P be the increasing union of finite subsetsCn with C1 = {c} and let
Un be ann-equidimensional envelope inMCn containingUn−1. Let M be
the canonical language forM (consisting of complete types over∅). LetF be
a nonprincipal ultrafilter onω and let the term “almost alln” be understood
with reference to this ultrafilter. LetM∗ be the set of relations which are0-
definable inM(c) whose restrictions toUn areL-definable for almost alln.
We will show thatM∗ = L(c◦) and thatM is smoothly approximable in the
languageL∗.
M∗ is a sublanguage ofM(c) which containsM(c◦) since the proof thatE

has finitely many classes also showsc◦ is definable inUn from some point on.
To see thatM is smoothly approximable in the languageM∗, let k be fixed
and leta,b bek-tuples with the same type inM∗. It suffices to show that for
almost alln, two suchk-tuples inUn will be conjugate inUn. If not, then for
almost alln, there is a0-definablek-ary relationRn onU which does agree
onUn with any relation inM∗. However, it must agree with somec-definable
relation restricted toUn, and there are only finitely many such, so for almost all
n Rn agrees with the samec-definable relation onUn, which means it agrees
with a relation ofM∗, a contradiction.

It remains to be shown thatM∗ ⊆ M(c◦). LetP ′ be the equivalence class
of c with respect toE; this is a subset ofP . We claim first that

P ′ realizes a uniqueM∗-type.

Take c′ ∈ P ′. It suffices to show that for almost alln, and indeed for all
sufficiently largen, there is an automorphism ofUn carryingc to c′. For large
n, Un containsc and c′ and is an equidimensional envelope with the same
dimensions relative toc and toc′. ThusMc andMc′ are isomorphic smoothly
approximable models andUn overc or c′ is an equidimensional envelope with
respect to the same data in both cases; by uniqueness of envelopes,(Un, c) ≃
(Un, c

′).
It follows that any automorphismσ of Mc◦ preservesM∗: asσ preserves

P ′, by the previous claim we may suppose thatσ fixesc, and henceM∗. Thus
M∗ ⊆ M(c◦).

Lemma 7.2.5. LetM be smoothly approximable, and fora ∈ M let a(1) =
{a′ ∈ acl(a) : rk(a′) = 1}. DefineE(a, b) by: a(1) = b(1). Then we have:

1. If S is an acl(∅)-definable subset ofM of rankn > 0, then eachE-class
in S has rank less thann.
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2. M/E is nonmultidimensional.
3. If c ∈ M anda andb are both independent fromc, thena(1) = b(1) if

and only if the same relation holds inMc.

Proof. The first point is the coordinatization theorem, i.e., without loss of
generalityM is Lie coordinatized. The second point is clear as the0-definable
closure ofa(1) is a set of rank at most 1 over∅.

For the final point, writea(1)c for a(1) computed overc. We wish to show
that each ofa(1), a(1)c determines the other. As

a(1) = {a′ ∈ a(1)c : a′ is independent fromc}

it suffices to deal with the reverse direction. We claim that

a(1)c = acl(a(1), c)

In any case, the right side is contained in the left. Conversely, we must show
that if d ∈ acl(a, c) has rank at most1 over c thend ∈ acl(a(1), c). By
modularitya andc, d are independent overa′ = acl(a)∩acl(c, d). Thusa and
d are independent overa′c and therefored ∈ acl(a′c). But rk(a′/c) ≤ 1 and
a, c are independent, sork(a′) ≤ 1. Thusa′ ∈ a(1) andd ∈ acl(a(1), c).

Proof of Proposition 7.2.1. We assumeMc is smoothly approximable and we
seekc◦ ∈ acl(∅) with Mc◦ smoothly approximable. We work overacl(∅),
and we replacec by a finite subsetC of acl(c) such that forPb an acl(c)-
definable canonical projective geometry,tp(b/C) implies tp(b/ acl(c)). We
again writec rather thanC. After these adjustments, if the locusP of c is
nonmultidimensional, then Lemma 7.2.4 applies. We treat the general case by
induction onrk c.

If there isc1 ∈ acl(c) with c /∈ acl(c1), then after expandingc1 if necessary
to a slightly larger subset ofacl(c1) we may takeMc1 to be smoothly approx-
imable, by induction, asrk(c/c1) < rk(c), and then by a second application of
induction, asrk(c1) < rk(c), we reduce to a parameter inacl(∅). We assume
therefore that there is no such elementc1.

We define a relationE on P as follows:E(a, b) holds if for somec ∈ P

independent froma, b we havea(1)c = b
(1)
c ; herea(1)c is a(1) computed over

c, as in the previous lemma. We claim that ifc, c′ ∈ P are both independent
from ab anda(1)c = a

(1)
c , then the same applies overc′. Working with an

elementc′′ independent froma, b, c, c′, we reduce to the case in whichc and
c′ are independent overa, b; in other words, the tripleab, c, c′ is independent.
As Mc is smoothly approximable, andab andc′ are independent there, the
previous lemma applies and yieldsa(1)c = b

(1)
c if and only if a(1)c,c′ = b

(1)
c,c′ ;

arguing similarly overc′, our claim follows. In particular,E is a0-definable
equivalence relation.
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Suppose toward a contradiction that is degenerate, i.e.E = P 2. Then for
c ∈ P fixed, the relationEc(a, b) : a

(1)
c = b

(1)
c has a class of maximal rank.

This violates the first clause of the previous lemma. As we areworking over
acl(∅), it follows thatP/E is infinite. If c1 is c/E, thenc1 ∈ acl(c) and
rk(c/c1) < rk(c). Therefore, by our initial assumption,c1 ∈ acl(∅); that is,E
has finite classes.

LetP have rankn and letc1, . . . , c2n+1 ∈ P be independent. LetEi be the
equivalence relationa(1)ci = b

(1)
ci , andE′ the intersection of theEi. For any

a, b in P , there is ani for whichab is independent fromci and thusE′ refines
E, and has finite classes. NowP/E′ ↔ ∏

i P/Ei, {c1, . . . , c2n+1}-definably,
and the quotientsP/Ei are nonmultidimensional. HenceP is nonmultidimen-
sional inMc1,...,c2n+1

. ThereforeP is also nonmultidimensional overM(c1),
since any orthogonality overc1 would be preserved (after conjugation) over
c1, . . . , c2n+1. As this case is the base of our induction, we are done.

7.3 DEGENERATE GEOMETRIES

Lemma 7.3.1. LetM be a structure andD 0-definable inM. Then the fol-
lowing are equivalent:

1. D is stable and stably embedded inM.
2. There is no unstable formulaϕ(x, y) withϕ(x, y) =⇒ (x ∈ D).
3. There is no unstable formulaϕ(x1, . . . , xn, y) satisfyingϕ(x, y) =⇒

(xi ∈ D), for all i.

Proof. The equivalence of(2) and(3) is [Sh, II:2.13 (3, 4), p. 36]. We check
the equivalence of(1) and(3).

Suppose first that(1) fails. If D is unstable then relativization toD produces
a suitableϕ. If D is not stably embedded andϕ(x, c) defines a subset ofD
which is notD-definable, one can find a countable set of parameters inD over
which there are2ℵ0 ϕ∗-types (ϕ∗ beingϕ with the variables interchanged).
Indeed, for any finite setA ⊆ D and anyϕ∗-type p overA realized by a
conjugate ofc, there are conjugates ofc realizing contradictoryϕ-types over a
larger finite subset ofD; for this, we may suppose thatp is satisfied byc, and
take a 1-type overA in D which is split byϕ(x, c); then we haveϕ(d1, c) and
¬ϕ(d2, c) with d1 conjugate tod2 overA, and after identifyingd1 with d2 we
have realizationsc, c′ of contradictoryϕ-types by elements conjugate toc.

It follows thatϕ∗ is unstable [Sh] [II:2.2 (1,2), pp. 30–31].
Now suppose(1) holds. LetA be a countable subset ofD andM∗ an

elementary extension ofM. As D is stably embedded, anyϕ-type overD
realized inM∗ is definable with a parametere inD[M∗], and sinceD is stable
tp(e/A) is definable. Thus the types overA are definable and(3) follows [Sh,
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II:2.2 (1, 8), pp. 30–31].

Lemma 7.3.2. Let M be anℵ0-categorical structure which does not inter-
pret a Lachlan pseudoplane. Ifa, b ∈ M with neither algebraic over the
other, then there is a conjugateb′ of b over a distinct from b for which
a /∈ acl(b, b′).

Proof. Write down a theory asserting thata1, a2, . . . are distinct solutions to
the conditionstp(xb) = tp(xb′) = tp(ab), with b 6= b′. Our claim is that this
theory is consistent.

Suppose that this theory is inconsistent. Then for somen, b is definable
from anyn distinct conjugatesa1, . . . , an of a overb, by the conjunction of
the formulas:

(∗) tp(ai, y) = tp(ab).

With nminimized (and at least 2) leta = {a1, . . . , an−1} be a set (unordered)
of conjugates ofa overb, chosen so thatb /∈ acl(a). By assumption, none of
theai is algebraic overb.

We claim that

1. a /∈ acl(b).
2. b /∈ acl(a).
3. b is definable from any two distinct conjugates ofa overb.
4. a is definable from any two distinct conjugates ofb overa.

Granted this, we have a Lachlan pseudoplane with points conjugate toa,
lines conjugate tob, and incidence relation given bytp(ab).

Now (1) is clear,(2) holds by the choice ofa (andn), and for(3) observe
that any two conjugates ofa overb will involve at leastn distinct conjugates
of a over b. Finally, for (4), if b andb′ have the same type overa anda, a′

are distinct and have the same type overbb′, thenb is definable fromaa′ in the
manner of(∗) above, as isb′, sob = b′.

Definition 7.3.3. A subsetD of a structureM is algebraically irreducibleif
for b ∈ D we have

a ∈ acl(b)− acl(∅) impliesb ∈ acl(a).

Lemma 7.3.4. LetM beℵ0-categorical, letD be the locus of a 1-type over
∅ in M, and suppose thatD is algebraically irreducible andM does not
interpret a pseudoplane. If there is a definable strongly minimal subsetDb

ofD with defining parameterb, then finitely many conjugates ofDb cover
D.

Proof. LetQ be the locus ofb over∅. Define an equivalence relationE(b, b′)
onQ by the following condition:Db andDb′ differ by a finite set. By Lach-
lan’s normalization lemma [LaPP], for eachb ∈ Q there is aDb/E-definable
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set agreeing withDb up to a finite set. Thus we may factor outE and as-
sume that distinct conjugates ofDb have finite intersection. Then the previous
lemma applies toa ∈ Db − acl(b) andb, and as the conclusion fails, we find
that for such pairsa, b we haveb ∈ acl(a). Now by the algebraic irreducibility
of D it follows thatb ∈ acl(∅). This yields our claim.

Lemma 7.3.5. Let M− be a reduct of the smoothly approximable structure
M. LetD be a rank 1 0-definable set inM−, and suppose that for any finite
subsetB ofM− and anya1, a2 in D: acl(Ba1a2) = acl(Ba1)∪ acl(Ba2)
where the algebraic closure is taken inD, and in the sense ofM−. ThenD
is stable and is stably embedded inM−.

Proof. Model theoretic notions are to be understood inM− except where
otherwise noted. The proof of(1) will proceed by induction on the rankr of
D in M. By Lemma 7.3.1 the class of stable and stably embedded 0-definable
subsets ofM− is closed under finite unions. Thus we may suppose thatD
realizes a single type over∅.

We show first that

Any infinite subset ofD which is definable inM− has rankr in M.

Suppose, on the contrary, thatD′ is of lower rank inM. Then by induction
D′ is stable and is stably embedded inM relative to a defining parameter for
D′. FromM D′ inherits the following properties: it isℵ0-categorical, and
does not interpret a pseudoplane. By Lachlan’s theorem [LaPP] it is ℵ0-stable
and, in particular, contains a definable strongly minimal subsetD′

b definable
in M−. Then by the previous lemma finitely many conjugates ofD′

b in M−

coverD and thusD is stable and stably embedded inM−.
From this it follows that for any sequencea1, a2, . . . in D which is alge-

braically independent inM−, there is a conjugate sequence which is indepen-
dent inM. Indeed, choosing the conjugates inductively, at stagen we have to
realize the type ofan overa1, . . . , an−1 in M− (or more exactly a conjugate
type) by an element independent froma1, . . . , an−1 in M. The locus of this
type is an infinite set defined inM− and hence of full rankr in M, so this is
possible.

Now suppose we do not haveD stable and stably embedded inM−, or
equivalently that we have an unstable formulaϕ(x, y) which implies(x ∈
D). We then find a finite setB and typesp, q over acl(B) such that both
p(x), q(y), ϕ(x, y) andp(x), q(y),¬ϕ(x, y) have solutions withx, y indepen-
dent overB. For this it suffices to take an indiscernible sequence(ai, bi) such
thatϕ(ai, bj) holds if and only ifi < j, lettingB be an initial segment over
which the sequence is independent.

Now fix realizationsb−1, b1 of q independent overB and setB′ = B ∪
{b−1, b1}. LetD′ = {x ∈ D : ϕ(x, b1)&¬ϕ(x, b−1)}. As M− inherits the
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type amalgamation property fromM, by the corollary to Proposition 5.1.15
the setD′ is infinite. LetD′′ ⊆ D′ be the locus of a complete nonalgebraic
type overB′ in M−.

Now let a1, . . . , an be elements ofD′′, pairwise algebraically independent
overB′. We will show that there are2n ϕ-types overa1, . . . , an. By our basic
assumption onD the setA = {a1, . . . , an} is algebraically independent over
B′and after conjugation we may suppose that these elements areindependent
in M overB′. For eachi bothϕ(ai, y)&q(y) and¬ϕ(ai, y)&q(y) are con-
sistent, with rank equal tork(q), so by the corollary to type amalgamation the
same applies to any combination of these properties asi varies. This produces
the desired2n types.

Now let k be the size ofacl(B′a) ∩ D in M− for a ∈ D′′. Then any set
of n elements ofD′′ contains[n/k] pairwise independent elements and hence
allows2[n/k] ϕ-types. This is greater than the bound allowed by the corollary
to Proposition 5.1.20. So we have a contradiction.

Corollary 7.3.6. With the hypotheses and notation of Lemma 7.3.5, ifD car-
ries no nontrivial 0-definable equivalence relation, then there is no induced
structure onD beyond the equality relation.

Proof. The additional hypothesis implies thatacl(a) = a for a ∈ D and hence
acl(X) = X for x ⊆ D.

As we remarked in the previous proof, once we know thatD is stable, we
know that it isℵ0-stable and of Morley rank1. By the Finite Equivalence
Relation Theorem, the Morley degree is1; that is,D is strongly minimal. As
acl is trivial onD, the claim follows.

7.4 REDUCTS WITH GROUPS

Lemma 7.4.1. LetM− be a reduct of a Lie coordinatizable structureM, A
a locally definable abelian group of bounded exponentn in M−. Then we
have the following:

1. For any definable subsetS of A, the subgroup generated byS is defin-
able.

2. If A is 0-definable inM− of exponentp, then the dualA∗ and the pairing
A × A∗ → Fp are interpretable inM−. If A has no nontrivial proper
0-definable subgroups inM−, then eitherA∗ is trivial or the pairing is
a perfect pairing.

3. If A is 0-definable and carries a 0-definable vector space structure over
a finite fieldK, thenA∗ (the definableFp-dual) allows a 0-definable
K-bilinear pairingµ : A×A∗ → K with Tr◦µ(a, f) = f(a).
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Proof. These statements were proved in the Lie coordinatizable context as
Lemma 6.1.8, Proposition 6.3.2, and Lemma 6.3.4.

The first statement is inherited fromM. The subgroup generated byS is
definable inM if and only if it is generated in a finite number of steps, and
this is equivalent to its definability inM−. Thus this first property passes to
reducts.

For the second statement we have a definable dualÂ in M, which, in partic-
ular, involves only finitely many sorts ofM, and we are interested in the sub-
groupA∗ of M−-definable elements. LetA∗

n be the subset ofM−-definable
elements which are definable from at mostn parameters. This generates a
0-definable subgroup of̂A and hence for largen is all of A∗ in the sense of
M−.

The proof of the third property is purely formal, given the second.

Lemma 7.4.2. Let M be a structure, andA a 0-definable abelian group in
M−. LetHi (i = 1, . . . , n) be a finite set of subgroups ofA, and letD be a
finite union of cosets of theHi, such that

1. [Hi : Hi ∩Hj ] is infinite fori, j distinct;
2. D contains a coset of eachHi and ifDi is the union of the cosets ofHi

which are contained inD, there is no groupT > Hi commensurable
withHi for whichDi is the union of cosets ofT .

Then the groupsHi are acl(∅)-definable in(A;D).

Proof. This is an application of Beth’s definability theorem applied to the set
{H1, . . . , Hn}, which we claim is implicitly definable. Letni be the number
of cosets ofHi contained inDi and letT be the theory of(A,D) expanded
by axiomsϕ for theHi: they are subgroups with the stated properties, for
which Di is the union of exactlyni cosets. Suppose we have two models
of the form(A,D, H̄) and(A,D, H̄ ′) with the same(A,D). For eachi, as
some coset ofHi is covered by cosets of theH ′

j , by Neumann’s lemma we
have[Hi : Hi ∩ H ′

j ] < ∞ for somej. Similarly for eachj we can find a
correspondingi; by the hypothesis on theHi, these two correspondences are
reciprocal, and after rearrangement this means thatHi is commensurable with
H ′

i for all i. Then for eachi Di is the same set in both models and is a union
of cosets of bothHi andH ′

i, hence ofHi+H ′
i; if this group extendsHi orH ′

i

properly, we contradict (2); but (2) can be included inϕ since there is a bound
on the possible index[Hi +H ′

i : Hi]. ThusHi = H ′
i.

Lemma 7.4.3. LetM− be a reduct of a Lie coordinatizable structureM, and
A a 0-definable abelian group inM−. Suppose thatA has no definable
subgroups inM− ofM-rank strictly between0 and rkM(A). Then inM−,
A has rank 1, and every infiniteM−-definable subset ofA has full rank in
M.
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Proof. The first statement follows from the second.
Suppose the second statement fails, andD is M−-definable inA with 0 <

rkM(D) < rkM(A). Let r = rkM(D) be minimal. By Lemma 6.2.5 inM,
D is contained in a finite union of cosetsCi of subgroupsHi ofA definable in
M with rkHi = r, and a set of rank less thanr. LetD be chosen to minimize
the numbern of distinct subgroups involved. Then the indices[Hi : Hi ∩Hj ]
are infinite fori, j distinct.

We show thatn = 1. By Lemma 6.2.5S1 = Stab(D ∩ C1) has rankr, and
evidentlyS1 ≤ H1; butrkH1 = r, so[H1 : S1] <∞. Leta be a generic point
of Stab◦(D ∩ C1). Thena ∈ H1 anda /∈ Hj for Hj 6= H1, and furthermore
[a+Cj]∩Ck = ∅ for j, k distinct. LetD′ = D∩ (D+a); thenrkD′ = r and
up to a set of rankr D′ is contained in the union of theCi ∩ (Cj + a), which
up to a set of rank less thanr is the union of the cosetsCi for Hi = H1. By
the choice ofD, the same applies toD and allHi = H coincide.

For a ∈ A the setD ∩ (D + a) is M−-definable and hence is of rankr
or finite. ThusS◦ = {a ∈ A : rk(D ∩ (D + a)) = r} is definable inM−.
DecomposeD into loci of typesDi overacl(∅) in M. ThenS◦ =

⋃

ij Sij with
Sij = {a ∈ A : rk(Di∩ (Dj +a)) = r}. By Lemma 6.2.5 each nonemptySij

is contained in a cosetCij of a subgroupTij of rankr, with Cij − Sij of rank
less thanr. AsD is contained in a finite union of cosets ofH , also of rankr,
H and theTij are commensurable.

Thus for some subgroupT of finite index inH , S◦ is a union of setsAk

contained in cosets ofT and differing from these cosets by sets of rank less
thanr. Takeak ∈ Ak for eachk, and letYkl = (Ak−ak)∩(Al−al). ThenYkl
is generically closed under addition and inverse, and applying Lemma 6.1.3,
Ak −Al is a coset of a subgroup ofT which differs fromT by a set of smaller
rank; soAk − Al is a coset ofT . From all of this it follows thatS◦ − S◦ is
itself a finite union of cosets ofT . As the setS◦ − S◦ is definable inM−, the
preceding lemma implies that some subgroup commensurable with T is also
definable inM−. This contradicts our assumption onA.

Lemma 7.4.4. LetM− be a reduct of a Lie coordinatizable structureM, and
A a rank 1 0-definable abelian group of prime exponentp in M−. LetA∗

be the dual inM− and letÂ be the dual inM. Then:

1. In M−,A∗ has rank at most 1.
2. If in M− we have acl(∅) ∩ A = (0), acl(∅) ∩ A∗ = (0), andA∗ 6= (0),

thenA∗ = Â.

Proof
Ad1. We apply the preceding lemma. SupposeA∗ has a definable subgroup

B in M− with B andA∗/B infinite. LetB⊥ be the annihilator ofB in A.
ThenA∗/B acts faithfully onB⊥, soB⊥ is infinite. Similarly (A/B⊥, B)
form a nondegenerate pair, soA/B⊥ is infinite. This is a contradiction.
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Ad2. LetB be the annihilator inA of A∗. By hypothesisB < A and hence
B = (0). Thus inM we have two perfect pairings(A,A∗) and(A, Â), and
by the pseudofiniteness ofM these dual groups coincide.

Lemma 7.4.5. LetM− be a reduct of a Lie coordinatizable structureM, A
a rank 1 0-definable abelian group of prime exponentp in M−, andD an
infinite0-definable subset ofA. Then for generic independenta∗1, . . . , a

∗
n in

A∗ there isd ∈ D with (d, a∗i ) prescribed arbitrarily.

Proof. By the last two lemmas every infiniteM−-definable subset ofA∗ has
full rank and thus the sequencea∗1, . . . , a

∗
n is conjugate inM to a generic

independent sequence inA∗. Apply Lemma 6.4.1 inM.

Lemma 7.4.6. LetM be a Lie coordinatizable structure,A a definable group
abelian of rankr, andD a definable subset ofA of rankr whose complement
is also of rankr. Then there is a cosetC of a definable subgroup of finite
index inA, and an intersectionD′ of finitely many translates ofD, such that

rk(D′) = r; rk(D′ ∩ C) < r.

Proof. We may assume thatA is settled over the empty set and thatD is 0-
definable. LetP be the locus of a 1-type overacl(∅). Then every definable
subset ofP is the intersection ofP with a boolean combination of definable
cosets ofA of finite index, and of sets of rank less thanr = rk(P ) (Lemma
6.6.2).

We may find a generic elementg ∈ A for which the rank ofP\(D + g) is
r: takea ∈ A\D generic,b ∈ P generic witha, b independent, andg = b− a.
There is a cosetC of a definable subgroup of finite index inA, for which
C ∩P is contained inP\(D+ g) up to a set of lower rank, or, in other words,
(D+ g)∩C ∩P has rank less thanr. Furthermore, asA is settled overacl(g),
we may takeC to beacl(g)-definable.

For each 1-typeP overacl(∅) choosegP andCP as in the foregoing para-
graph so that

⋂

P (D + gP ) ∩
⋂

P CP has rank less thanr. Taking thegP
independent over the empty set, both intersections

⋂

P (D + gP ) and
⋂

P CP

will have rankr, and the latter is a coset of a definable subgroup ofA of finite
index. This proves the claim.

Lemma 7.4.7. LetM be a Lie coordinatizable structure,A a definable abelian
group of rankr, andD a definable subset ofA of rankr whose complement
is also of rankr. Then there is an intersectionD′ of finitely many translates
ofD, which has rankr and is contained in a proper subgroup of finite index
in A. In particular, the subgroup generated byD′ will be a proper subgroup
of finite index inA, which is definable in the structure(A,D).
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Proof. We apply the previous lemma to find a definable subgroupH of finite
index inA, a cosetC of H , and a finite intersectionD′ of finitely many trans-
lates ofD, such thatD′∩C has rank less thanr. TakeD′ such an intersection,
and suppose that the number of cosets ofH which meetD′ in a set of rankr
is minimized, subject to the constraint thatrkD′ = r. We may suppose that
D = D′: so ifD meetsD + g in a set of rankr, thenD andD + g meet the
same cosets ofH in a set of rankr.

LetX ⊆ A/H be the set of cosets which meetD in a set of rankr. We may
supposeH ∈ X .

We claim thatX is a subgroup ofA/H . We may takeD andH to be0-
definable. TakeC ∈ X and choose a representativeg forC as follows. Fix a 1-
type overacl(∅) whose locusP is contained inD∩H , and letQ be the locus of
a 1-type overacl(∅) which is contained inD∩C. Take(a, b) ∈ P×Q generic;
theng = b − a is generic, andg +H = C. Furthermore,(g +D) ∩ D ∩ Q
contains(g + P ) ∩ Q (in particular,a) and hence has full rank. Thusg + D
also meets all the cosets inX in sets of rankr, in other wordsX − g = X .
ThusX is a group.

LetX = B/H withH ≤ B ≤ A. AsC /∈ X , we haveB < A. In addition,
by our constructionD\B has rank less thanr. Let S = D\B. As rkS < r,
for any r + 1 independent generic elementsh1, . . . , hr+1 in A we will have
⋂

i(S + hi) = ∅; if c lies in the intersection and is independent fromhi, then
rk(hi/c) = r, andc− hi ∈ S, a contradiction.

Thus if we replaceD by the intersectionD′ of its translates byr + 1 inde-
pendent generic elements ofB, we will retainrkD′ = r, while nowD′ ⊆ B.

Proposition 7.4.8. LetM− be a reduct of a Lie coordinatizable structureM,
A a rank 1 0-definable group inM−. If A∗ = (0) in M−, thenA is strongly
minimal and stably embedded inM−.

Proof. Supposing the contrary, there is a subsetD of A which is definable in
M− (from parameters inM−), is infinite, and has infinite complement. By
Lemma 7.4.3, bothD and its complement have full rank inA. By Lemma
7.4.7 there is a proper subgroup of finite index inA which is definable inM−;
soA∗ is nontrivial inM−.

Proposition 7.4.9. LetM− be a reduct of a Lie coordinatizable structureM,
A a rank 1 0-definable group inM−. Suppose acl(∅) ∩ A = (0), and
acl(∅) ∩ A∗ = (0). Then there is a finite fieldF and an acl(∅)-definable
F -space structure onA for which algebraic closure onA andF -linear span
coincide.

Proof. We letF be the ring ofacl(∅)-definable group endomorphisms ofA,
which is a division ring and is finite byℵ0-categoricity; thus it is a finite field.
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We show by induction onn that anyn F -linearly independent elements ofA
are independent. Assuming the claim forn, suppose thata ∈ acl(a1, . . . , an)
with a1, . . . , an independent. We claim thata is a linear combination of the
ai. Taking a conjugate ofa1, . . . , an in M− we may suppose that the elements
a1, . . . , an are independent of maximal rank inM.

Consider the locusD of a1, . . . , an, a overacl(∅) inM, and letS = Stab(D).
By Lemma 6.2.5rkS = rkD = n · rkM(A), andD is contained in a coset
of S. Let T be the projection ofS onto the firstn coordinates. Then the pro-
jection ofD is contained in a coset ofT and thusrkT = rkS. Therefore the
kernel is finite, andT has finite index inAn. We claim:

(∗) Some subgroupS′ of An commensurable withS
is acl(∅)-definable inM−.

For anyM−-definable subsetX of An one sees easily by induction onn that
rkMX = rkX · rkMA. AccordinglyStab◦(D) in the sense ofM is definable
in M−. One then continues as in the final paragraph of the proof of Lemma
7.4.3. Thus(∗) holds.

In M, S′ ∩ S is alsoacl(∅)-definable and induces an equivalence relation
onD with finitely many classes. AsD is complete overacl(∅) in M, it is
contained in a single coset ofS ∩ S′ and thusS ≤ S′ with [S′ : S] < ∞.
The kernel of the projection ofS′ to the firstn coordinates is also finite, hence
trivial by our hypotheses, and the image is of finite index inAn, hence the
projection is surjective. It follows thatS′ represents a linear functions(x) =
∑

i αixi with coefficients inF . AsD lies in a coset ofS, it lies in a coset of
S′, and the functiony − s(x) is constant onD, hence inacl(∅) in M−, hence
0. Thush(a) =

∑

i αiai.

Lemma 7.4.10.Let M be ℵ0-categorical and modular of finite rank,M−

a reduct ofM with aclM(∅) = aclM−(∅). If X,Y are sets which are
independent inM, then they are independent inM−.

Proof. If X,Y are dependent inM− then inM− by inherited modularity
there isa ∈ acl(X)∩ acl(Y )− acl(∅) and by our hypothesis this holds also in
M.

Proposition 7.4.11.Let M− be a reduct of a Lie coordinatizable structure
M, A a rank 1 0-definable group inM−, and suppose that aclM(∅) ∩
(M−)eq = dclM−(∅). If A is settled over∅ in M, then it is settled over∅
in M− and thus every definable subset inM− is a boolean combination of
0-definable subsets, a finite set, and cosets of definable subgroups.

Proof. We must show inM− that for a independent from an algebraically
closed setc,

tp(a) ∪ gtp(a/c ∩ A∗) =⇒∗ tp(a/c)
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(all types are computed inM−). We will show in fact that foranyc there is a
linearly independentk-tupleb ∈ A∗ for somek for which

(∗) tpM−(a) ∪ gtp(a/b) =⇒ tpM−(a/c)
for anya ∈ A not algebraic overb, c.

After absorbing those parameters inb which are algebraic overc into c, the rest
are independent overc and are conjugate inM− to parameters independent in
M overc. Fora independent fromc in M− with gtp(a/c ∩ A∗) as specified,
we can conjugatea over c to an independent element inM, then by type
amalgamation completea, c to a,b, c with the same 2-typestp(ab) andtp(bc)
as in the original triplea,b, c (that is, the version in whichb is independent
from c). This then determinestp(a/c). Note that in the course of the argument
a portion ofacl(c ∩ A∗) was absorbed intoc.

We now begin the lengthy verification of(∗).
LetC be the locus of the type ofc over∅ in M− and letk be the maximum

dimension ofaclM(c)∩A∗ for c ∈ C. LetBk be the set of linearly independent
k-tuples inA∗. We introduce the notationcl c for {a ∈ A : rkM(a/c) <
rkM(A)}.

We consider the following two relationsE−, E on pairs fromBk × C.
E−((b, c), (b′, c′)) holds if and only if(b, c) is independent from(b′, c′) in
M− and fora ∈ A − acl(b, b′, c, c′), we havegtp(a/b) = gtp(a/b′) implies
tp(a/c) = tp(a/c′); E((b, c), (b′, c′)) holds if and only if(b, c) is indepen-
dent from(b′, c′) in M and fora ∈ A − cl(b, b′, c, c′), we havegtp(a/b) =
gtp(a/b′) impliestp(a/c) = tp(a/c′).

Then easilyE holds if and only ifE− holds and the pairs involved are
independent inM. Now we show thatE is a generic equivalence relation in
the sense of§5.1. So take an independent triplex = (b, c); x′ = (b′, c′);
x′′ = (b′′, c′′) in M, with E(x, x′) andE(x′, x′′) holding. We must show
E(x, x′′).

Takea ∈ A−cl(b, b′′, c, c′′)with gtp(a/b) = gtp(a/b′′). We claimtp(a/c) =
tp(a/c′′). Let q = tp(a), r = gtp(a/b) = gtp(a/b′′). By Lemma 6.4.1
q(x) ∪ r(x/b′) is consistent, of rankrk q. By the corollary to type amalga-
mation (Proposition 5.1.15), the same holds for the typeq(x) ∪ r(x/b′) ∪
tpM(a/bb′′cc′′).

Takea′ ∈ A−clM(bb′b′′cc′c′′) realizing this type. FromE(x, x′),E(x′, x′′)
we find inM− thattp(a′c) = tp(a′c′) = tp(a′c′′), and thustp(ac) = tp(ac′′).

Now we claim thatE− is also a generic equivalence relation. Letx, x′, x′′

be independent inM− with E−(x, x′) andE−(x′, x′′). We can conjugate
x, x′, x′′ in M− to an independent triple inM and reduce to the case ofE.

Accordingly by Lemma 5.1.12 there is a 0-definable equivalence relationE′

in M− that agrees withE− on independent pairs inBk × C. ThenE′ also
agrees withE on M-independent elements ofBk × C. The domain of the
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relationE′ isD =:

{x ∈ Bk × C : There isx′ ∈ Bk × C independent fromx

such thatE−(x, x′)}.

Note that in this definition we may take independence in the sense either ofM
or ofM− since these notions agree up to conjugation inM−.

We consider also the following set, which will turn out to coincide withD:

D1 = {(b, c) ∈ Bk × C : Fora ∈ A− cl(b, c),

tpM(a) ∪ gtp(a/b) determinestpM−(a/c)}.

Note that if b includes a basis foracl(c) ∩ A∗, then asA is settled inM,
(b, c) ∈ D1. ThusD1 projects ontoC. Furthermore,E has finitely many
classes onD1 since forx ∈ D1, the class ofx/E′ is determined by information
in tpM(x′). (This is clear first for independent pairsx, x′ using the definition
of E− and then for general pairs.)

We will show shortly thatD = D1. First we check thatD projects ontoC.
Takec ∈ C, andb linearly independent containing a basis foraclM(c) ∩ A∗.
Take a conjugate(b′, c′) in M independent from(b, c) in M. Then easily
E((b, c), (b′, c′)) and thus(b, c) ∈ D. By the same argumentD1 ⊆ D.

We will now showD ⊆ D1. Let x ∈ D, andx′ independent fromx in
M, with E(x, x′). With x = (b, c) we must show thattpM(a) ∪ gtp(a/b)
determinestpM−(a/c) for a ∈ A − cl(x). Let a, a′ ∈ A − cl(x) satisfy
tpM(a) = tpM(a′) = q and gtp(a/b) = gtp(a′/b) = r(x/b). By type
amalgamation we may choosea, a′ so that the triplea; a′; bb′cc′ is indepen-
dent inM and a and a′ satisfy the same type overb′c′. This then yields
tpM−(a/c) = tpM−(a/c′) = tpM−(a′/c′) = tpM−(a′/c). Thus(b, c) ∈ D1.

Finally ,we prove(∗). The relationE′ has finitely many classes onD1 = D.
As acl(∅) = dcl(∅) any such classD◦ is 0-definable inM−. Let (b, c) ∈ D◦

and suppose that our claim fails for(b, c). Fix a, a′ ∈ A − acl(b, c), with
equal types inM− and withgtp(a/b) = gtp(a′/b) but with tpM−(a/c) 6=
tpM−(a′/c). Let σ be an automorphism carryinga′ to a. Thengtp(a/b) =
gtp(a/σb) but tpM−(a/c) 6= tpM−(a/σc).

Take(b′, c′) conjugate to(b, c) overa inM− and independent fromb, c, σb, σc.
Then

gtp(a/σb) = gtp(a/b) = gtp(a/b′)

and tpM−(a/c′) 6= tpM−(a/σc). As (σb, σc) and (b′c′) are independent,
this shows they are inequivalent with respect toE. However, these pairs are
conjugate inM−, a contradiction.

Corollary 7.4.12. LetM− be a reduct of a Lie coordinatizable structureM,
A a rank 1 0-definable group inM−. If A is settled over∅ in M then it is
settled inM− over a finite set ofM-algebraic constants.
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Proof. By the preceding resultA becomes settled overaclM(∅) and hence
over the collection of definable subsets ofA which belong toaclM(∅); there
are finitely many such.

7.5 REDUCTS

In the present section we show that reducts of Lie coordinatized structures are
weakly Lie coordinatized; we may lose the orientation. We must deal mainly
with the primitive case (meaning there is no nontrivial 0-definable equivalence
relation).

Lemma 7.5.1. LetM be a structure realizing finitely many3-types, anda ∈
M. Let acl(a) be computed inMeq. Then the lattice of algebraically closed
subsets of acl(a) is finite.

Proof. Let Ea be the collection ofa-definable equivalence relations onM
which have finitely many classes,Ca =

⋃{M/E : E ∈ Ea}, and Ĉa the
collection of subsets ofM which are unions of subsets ofCa. Viewing Ĉa
as a subset ofMeq, we haveĈa ⊆ acl(a), and it suffices to show that for
α ∈ acl(a) we have

(∗) α ∈ acl(acl(α) ∩ Ĉa).

Let α ∈ acl(a) and letϕ(x, a) be a formula which defines a finite setA
containingα. Let S = {b ∈ M : ϕ(α, b)}, which we view as an element of
Meq, and letAS = {β : ∀x ∈ S ϕ(β, x)}. Then easilyS ∈ dcl(α) ∩ Ĉa, and
asα ∈ AS ⊆ A, we haveα ∈ acl(S). This proves(∗) (and a little more).

Remark 7.5.2. WhenM is ℵ0-categorical, the foregoing lemma applies to
any elementa of Meq. (For another approach, see the note at the end of this
section.)

Proposition 7.5.3. Let M be a weakly Lie coordinatized structure,M− a
reduct ofM, andD a primitive, rank 1, definable subset ofM−. ThenD
is a Lie geometry forming part of a Lie geometry stably embedded inM−;
this geometry may be unoriented, and may be affine.

Proof. AsD has rank 1,acl gives a combinatorial geometry onD; the same
holds over any finite set.

Suppose first thataclB gives a degenerate geometry over any finiteB, or in
other words, thatacl(A,B) =

⋃

a∈A acl(a,B) in D. In this case, by Lemma
7.3.5,D is a trivial structure, and is stably embedded.

Now we deal with the nondegenerate case. Let{Di} be a set of represen-
tatives for the primitive rank 1acl(∅)-definable sets inDeq, up to 0-definable
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bijections, withD1 = D, and letD∞ =
⋃

iDi. We claim thatD∞, with acl,
is a projective space (of infinite dimension) over a field; thefield will be finite
by the previous lemma, applied as indicated in the subsequent remark.

We show first that some line has more than two points. Takec1, c2, c3 in
D andB a finite set such thatc3 ∈ acl(c1c2B) − [acl(c1B) ∪ acl(c2B)].
By modularity there ise ∈ acl(c1c2) ∩ acl(c3B) such thatc1c2 andc3B are
independent overe. Then rk(e) = 1 and we may takee ∈ D∞. As e ∈
acl(c1, c2)− [acl(c1) ∪ acl(c2)], this suffices.

Now we show that coplanar lines meet. Takea1, a2, a3, a4 in D∞ pairwise
algebraically independent withrk(a1a2a3a4) = 3. Takee in acl(a1a2) ∩
acl(a3a4) such thata1a2 anda3a4 are independent overe. Then againrk e = 1
ande may be taken inD∞.

ThusD∞ is an infinite-dimensional projective geometry with finite lines,
and there is a vector space model, that is a mapπ : V − (0) → D∞ in which
linear dependence inV corresponds to algebraic independence inD∞. We do
not claim that this vector space is interpreted globally in the model.

Let Vi = π−1[Di], thought of as a new sort for eachi. We enrichM− by
the Vi with the relevant structure, takingπi to be the restriction ofπ to Vi,
and restricting+ and scalar multiplication to a family of relations on the new
sorts. The expanded structure will be calledM−∗; it can be thought of also
as a reductM∗− of an expansion of the original structureM by the new sorts
and relations. HereM∗ is a finite cover ofM by sets of orderq − 1; any
automorphism ofM over acl(∅) extends to an automorphism ofM∗. Thus
M∗ is weakly Lie coordinatizable.

By Lemma 7.4.1V1 lies in a0-definable rank 1 groupA in M−∗. We may
suppose thatA has no 0-definable finite subgroups. Our claim is that

(∗) A is part of a stably embedded Lie geometry inM−∗.

Assuming(∗), D forms part of an embedded Lie geometryJ in M−; the
induced structure may be computed inM−∗. Furthermore, the geometry in
M−∗ is algebraic overJ ; A is algebraic overD and if for exampleA∗ is
nontrivial then it is algebraic over its projectivization,which is inJ . ThusJ
is stably embedded inM−∗ anda fortiori in M−: for e ∈ M−∗, tp(e/A)
is definable by parametersa ∈ A, whose type overJ is algebraic and hence
definable. Thus it suffices to prove(∗).

Suppose first thatA has no 0-definable proper subgroup of finite index. If
A∗ = (0) in M−∗ then Proposition 7.4.8 applies. Otherwise,A∗ is the full
definable linear dual toA, also inM∗, by Lemma 7.4.4.A andA∗ are settled
over some parameterc in M∗, hence inM−∗ settled over some parameter
algebraic inc by the corollary to Proposition 7.4.11. After enlargingc further
we may suppose thatacl(c) ∩ (A,A∗) also carries a nondegenerate pairing
and lies indcl(c). By Lemma 7.4.5 and Proposition 7.4.9, Proposition 7.1.7
applies.
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Now suppose thatA does have a proper 0-definable subgroup of finite in-
dex; letB be the least such. Then by the preceding paragraphB is part of a
stably embedded Lie geometry(B,B∗, Q), some components of which may
be empty.A is generated by a complete type whose image inA/B must be
a single point. Thus the dimension ofA/B is 1. Then(A,B,B∗, Q) may be
viewed as an affine geometry, by Lemma 2.3.17(1), withC = ∅.

Below we give another treatment of the degenerate case on somewhat dif-
ferent lines.

Proposition 7.5.4. LetM− be a reduct of a Lie coordinatized structure. Then
M− is weakly Lie coordinatized.

Proof. M− is ℵ0-categorical, has finite rank, is modular, and enjoys the fol-
lowing additional property:

If a, b ∈ M−, a /∈ acl(b), then there isa′ ∈ acl(a) of rank 1 overb.

This is contained in Lemma 5.6.6. Thus for anya ∈ M we can find a chain of
“coordinates”a1, . . . , an of finite length withai belonging to a rank 1 primi-
tive acl(ai−1)-definable setDi andan = a. By Proposition 7.5.3Di is part of
a stably embedded Lie geometry and after interposing the algebraic parameters
needed to define theDi we obtain a weak Lie coordinatization.

We now return to the degenerate case, indicating a treatmentbased on weaker
hypotheses. We refer here to the preprint [HrS1], which introduced theS1 rank
on formulas as the least rank subject to:

(∗) S1(ϕ) > n iff there are(bi)i∈N indiscernible over a set of definition for
ϕ, and a formulaϕ′(x, y), such that

1. S1(ϕ&ϕ
′(x, bi)) ≥ n for eachi;

2. For somek: S1(ϕ
′(x, b1)& . . .&ϕ′(x, bk)) < n.

The independence theorem can be proved for theories of finiteS1 rank by an
argument isomorphic to the one which will be given at the end of §8.4.

Lemma 7.5.5. LetM be anℵ0-categorical structure of finite rank with amal-
gamation of types, not interpreting the generic bipartite graph, and letM−

be a reduct ofM. LetD be a primitive rank one definable subset inM−

whose geometry is orthogonal to every primitive rank 1 set whose geometry
is nondegenerate; in particularD is degenerate over any finite set. ThenD
is stably embedded and trivial.

Proof. Any rank 1 subset ofM− will inherit from M the property of finite
S1-rank, and hence satisfy the type amalgamation property by [HrS1].

To see thatD is stably embedded and trivial we will show that for any finite
B, D remains primitive overD − acl(B). For this we may use induction on
rkB, and thus by analyzingB we may suppose thatB = {b} has rank1. Let
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D′ be the locus ofb over∅, a rank1 set. LetE be ab-definable equivalence
relation onD − acl(b). As D is degenerate this will not have finite classes,
so it will have finitely many infinite classes. Supposea1, a2 ∈ D − acl(b)
are distinct and equivalent, whilea′1, a

′
2 are inequivalent. Thenb, a1, a2 are

pairwise independent, as areb, a′1, a
′
2, and hence independent. Ifa1, a2, anda′1

all have the same type overacl(b) then amalgamating types overacl(b) we can
find a∗1, a

∗
2, a

′
1
∗ realizing this type withtp(ba∗1a

∗
2) = tp(ba1a2) = tp(ba∗1a

′
1
∗
),

andtp(ba∗2a
∗
1
′) = tp(ba′1a

′
2). Thena∗1 is E-equivalent toa∗2 anda′1

∗ but they
are notE-equivalent to each other, a contradiction.

ThusD − acl(b) splits into at least two types overacl(b). In particularD
carries a nontrivial equivalence relation definable from the setacl(b) (or a part
of it meeting finitely many sorts), viewed as a single elementof M−eq. This
being the case, we may replaceD′ by a primitive quotient, and the argument
of the previous paragraph yields a 0-definable relationR(x, y) onD′×D such
thatR(b, y) splitsD−acl(b) for b ∈ D′. We view(D′, D) as a bipartite graph
with edge relationR. By our hypothesisD′ also carries a degenerate geometry.

As R(b, a) and¬R(b, a) both occur witha /∈ acl(b), by amalgamation of
types any two finite subsets ofD can be separated by an element ofD′, and
similarly forD′ overD. Thus this is the generic bipartite graph, a contradic-
tion.

We now return to Theorem 7 of§1.2.

Theorem 7.5.6 (Theorem 7: Model Theoretic Analysis)

The weakly Lie coordinatizable structuresM are characterized by the
following nine model theoretic properties.

LC1. ℵ0-categoricity.

LC2. Pseudofiniteness.

LC3. Finite rank.

LC4. Independent type amalgamation.

LC5. Modularity ofMeq.

LC6. The finite basis property for definability in groups.

LC7. Lemma 6.4.1: we call this “general position of large0-definable
sets.”

LC8. M does not interpret the generic bipartite graph.

LC9. For every vector spaceV interpreted inM, the definable dualV ∗

(the set of all definable linear maps onV ) is interpreted inM.

Proof. One has to check in the first place that these properties holdin weakly
Lie coordinatizable structures. These statements have been proved in vari-
ous earlier sections. Note however that the properties (LC6) and (LC7) were
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treated in the Lie coordinatizable context. As noted at the outset in§6.3, any
group interpreted in a weakly Lie coordinatizable structure is also interpreted
in a Lie coordinatizable structure, so these properties also apply in the weakly
Lie coordinatizable context.

For the converse, observe that we have listed here most of theproperties used
in the analysis of reducts of Lie coordinatized structures,with the noteworthy
exception of aspects of the theory of envelopes. We need to see that the proof
of Proposition 7.5.4 can be carried out in this context.

This proposition depends on Proposition 7.5.3 and Lemma 5.6.6; the lat-
ter holds in our context, so we need only concern ourselves with Proposition
7.5.3. The use of Lemma 7.3.5 in the proof of that propositiondoes not fit into
the present context, and it must be replaced by Lemma 7.5.5, using hypothesis
(LC9) to see that the orthogonality condition in Lemma 7.5.5will hold for any
geometryD which is degenerate over every finite set. In a wider context,it is
possible for a set to act as a generic set of linear maps on a vector space, giving
a bipartite structure reminiscent of both the generic bipartite graph and the po-
lar geometry; in this case, one would have a degenerate geometry nonorthog-
onal to a linear geometry, and, in fact, embedded in the definable dual (which,
however, would not itself be interpretable.) Condition (LC9) and nonorthogo-
nality imply that over some parameter set,acl(D) contains an infinite definable
group; we leave the details of this (involving the definitionof orthogonality as
well as the nature of the definable sets in a nondegenerate geometry) to the
reader.

So it remains to verify that the rest of the proof of Proposition 7.5.3, which
makes use of a large body of machinery, is available in the context of proper-
ties (LC1–LC9). The ingredients of Proposition 7.5.3, apart from (LC1, LC3,
LC5), are the following: a particular finite covering ofM−; Lemmas 2.3.17
and 6.6.2; Propositions 6.6.1 and 7.1.7; the contents of§7.4.

Properties (LC1-LC5) are inherited directly by the cover. Properties (LC6,
LC7) can be deduced by showing that the groups interpreted inthe cover are
also interpretable inM−. This is because each sort (Vi) in the cover is in-
terpretable in (part of) the underlying projective geometry: fix two linearly
independent vectorsv1, v2 and associate with any linearly independentv the
pair 〈v − v1〉, 〈v − v2〉.

Lemma 2.3.17 simply holds, and Lemma 6.6.2 holds for the caseneeded
by (LC7). Proposition 6.6.1 is assumption (LC6) and Proposition 7.1.7 was
proved under our assumptions. So it suffices to reexamine§7.4. Lemma 7.4.1
may be replaced by Lemma 6.1.8 in the present context. The remaining lem-
mas, down to Lemma 7.4.7, are available in our context; note that Lemma 7.4.3
depends on lemmas in§§6.1-6.2 which were proved under sufficiently general
hypotheses. Then the proofs of Propositions 7.4.9 and 7.4.11 can be repeated.
We do not need Proposition 7.4.11 since we assume (LC6).
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Note. The following alternative route to the finiteness statement needed for
the proof of Proposition 7.5.3 (Lemma 7.5.1 and the subsequent remark) has
its own interest:

Lemma 7.5.7. If M is saturated anda ∈ M, then every algebraically closed
subset of acl(a) is of the form acl(a)∩ acl(a′) for some conjugatea′ of a in
M.

Proof. LetA ⊆ acl(a) be algebraically closed. We need to check the consis-
tency of the following theory, involving a new constantc and constants for the
elements ofA:

tp(c/A) = tp(a/A); b /∈ acl(c) (for b ∈ acl(a)\A).

For this it suffices to check for each finitea-definable subsetB of acl(a) that
there is an automorphismα of M fixing A such that

(∗) (B\A) ∩ (B\A)α = ∅

LetG = Aut(M)A, the pointwise stabilizer ofA in Aut(M). For b1, b2 ∈
B\A, letG(b1, b2) = {α ∈ G : bα1 = b2}. This is a coset ofGb1 , and ifG
is covered byG(b1, b2) asb1, b2 vary overB\A, then by Neumann’s Lemma
one of the subgroupsGb (b ∈ B\A) has finite index inG; but this means
b ∈ acl(A) = A, a contradiction. Thus condition(∗) can be met.
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Effectivity

8.1 THE HOMOGENEOUS CASE

If M is a finite relational language letM∞, or more properlyM∞,eq, be the
language augmented by the quantifier∃∞ “there exist infinitely many,” and
expanded so as to apply to imaginary elements.

We consider the following effectivity problems.

Problems
(A) Given a finite relational languageM and a sentenceϕ in the language

M∞, is there a stable homogeneous model (of typeM) ofϕ?
(B) Given a finite relational language and a finite set of forbidden isomor-

phism typesC, consisting of isomorphism types of finiteM-structures, is the
corresponding classA(¬C) an amalgamation class with stable generic struc-
ture? HereA(¬C) denotes the class of finite structures omitting the structures
of typeC.

A restricted version of Problem A was considered by Knight and Lachlan in
[KL], and treated in the binary case. As there is an a priori bound on the rank
in this case, the question is one of the consistency of a theory in the extended
language, hence a negative answer will have a finite verification.

The idea of [KL] is to reduce the positive case to Problem B. IfM is a stable
homogeneous model satisfyingϕ andC is the class of minimal isomorphism
types of structures omitted byM, thenC is finite, as a consequence of the
quasifinite axiomatizability. ThusC is a finite object witnessing the existence
of M, and the problem is to recognizeC.

If N bounds the sizes of the constraints inC, then the quantifier∃∞ is equiv-
alent to∃N∗

, whereN∗ is so large that everyM-structure of sizeN∗ contains
an indiscernible sequence of sizeN . This reduces the problem to the first or-
der case. AsC determines a “quantifier elimination” procedure—where the
quotation marks reflect a bad conscience in cases where thereis, in fact, no
associated homogeneous structureM—the question of the truth ofϕ is decid-
able, modulo the fundamental question stated as Problem B.

The variant of Problem B in which we drop the stability requirement is more
general than Problem B and remains open. The problem of amalgamation
for relational structures reduces to the case of structuresA1, A2 extending a
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common substructureA◦ by a pair of new pointsa1 ∈ A1 anda2 ∈ A2,
but this problem remains open except in the binary case, where a direct check
produces a finite procedure.

We will give a solution to Problem B. LetM be the hypothetical structure
whose set of constraintsC is specified. The rank ofM is bounded by the
number of 2-types and can therefore be computed using quantifier elimination.
An inconsistent outcome at this point simply means thatM does not exist. So
assume the rank of the still hypothetical structureM is determined ask. For
any definable equivalence relationE onM2 whose definition involves at most
2k parameters, we decide similarly whether the quotient is finite, and if it is
finite we determine its size. Letµ bound the size of the finite quotients of this
type. Then for any formulaϕ(x, y;Z) one can bound the rank and multiplicity
of ϕ(x, y;B) as a function oftp(B). Do so for|B| ≤ 2k. Letρ be the arity of
M.

Lemma 8.1.1. LetM beℵ0-categorical andℵ0-stable, and coordinatized by
degenerate geometries. Then

1. For all a ∈ M andA ⊆ B ⊆ M , if rk(a/B) < rk(a/A), then for some
b ∈ B we have rk(a/Ab) < rk(a/A).

2. For all a ∈ M andA ⊆M , there isA1 ⊆ A with rk(a/A1) = rk(a/A),
and|A1| ≤ rkM.

Proof. Evidently it suffices to deal with the first point, and we may suppose
thatB − A is finite. We will proceed by induction onrk(B/A). Clearly,
rk(B/A) > 0.

For b ∈ B, if b /∈ acl(A) then chooseb′ ∈ acl(b) with rk(b′/A) = 1, and
otherwiseb′ = b. SetB′ = {b′ : b ∈ B − acl(A)}. As the geometries are
degenerate, ifrk(a/B′) < rk(a/A), then there isb ∈ B with rk(a/Ab′) <
rk(a/A) and this yields the claim. Ifrk(a/B′) = rk(a/A) thenrk(a/B) <
rk(a/B′) andrk(B′/A) < rk(B/A), so induction applies, yielding

rk(a/B′b) < rk(a/B′)

for someb ∈ B. Let b′1, . . . , b
′
n be a maximal subset ofB′ which is indepen-

dent fromb overA. We are assuminga is independent fromb′1, . . . , b
′
n overA,

but not fromb′1, . . . , b
′
n, b. By the degeneracy of the geometriesrk(a/Ab) <

rkA, as desired.

Lemma 8.1.2. LetM be stable, finitely homogeneous, for a language of arity
ρ. Leta, b ∈ M,A1 ⊆ A ⊆ M, with rk(ab/A1) = rk(ab/A). Then there is
a subsetA2 ⊆ A containingA1 such that

|A2 −A1| ≤ ρ · Mult(ab/A1) and Mult(ab/A2) = Mult(ab/A).

Proof. We proceed by induction onMult(ab/A1). We may suppose that
Mult(ab/A) < Mult(ab/A1). Take two distinct types overA extendingtp(ab/A1)
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and a setC of size at mostρ over which they are distinct. Working overA1C
we conclude by induction.

Definition 8.1.3
1. We consider amalgamation problems of the form(A; b1, b2), signifying
that a finite relational languageM is specified,A′ = Ab1 andA′′ = Ab2
are specified finiteM-structures agreeing onA, and we seek an amalgam
Ab1b2 which should omit some specified class of forbidden structuresC. We
are looking for an amalgam in a stable homogeneous structureand it is
assumed that the preliminary analysis ofk, µ, and so on, has been carried
out in advance as described above.
2. Thestandard amalgamation procedurefor such amalgamation problems
(A; b1, b2) under the specified conditions is the following:

(i) Find E1, E2 ⊆ A with |Ei| ≤ k and rk(bi/Ei) minimized. (For|Ei|
of this size, rk(bi/Ei) has been given a definite meaning.) SetA1 =
E1 ∪ E2.

(ii) For X ⊆ A containingA1, let A(X) be the set of amalgams ofb1A1,
b2A1, andX overA1 which omit the specified forbidden structures and
satisfy

(∗X) For Y ⊆ X , if |Y | ≤ k then rk(b1b2/Y ) ≥ rk(b1b2/A).

These amalgams are not required to be compatible withbiX .
(iii) Check whether|A(X)| ≤ µ for all X ⊆ A with A1 ⊆ X such that

|X − A1| ≤ ρ
(

µ
2

)

. If not, then the procedure fails (and halts) at this
stage.

(iv) Check whether for all subsetsX ⊆ Y ⊆ A with A1 ⊆ X , such that
|X − A1| ≤ 2k + ρ ·

(

µ
2

)

and |Y − X | ≤ 2ρ, each element ofA(X)
extends to an element ofA(Y ). If not, fail and halt.

(v) At this point, if the procedure has not failed, thenA(A) ≤ µ. Run
through the possibilities inA(A); if one extendsAb1 andAb2, the pro-
cedure succeeds.

Lemma 8.1.4. LetC be a finite set of constraints (forbidden structures) for the
finite relational languageM of arity ρ, all of size at mostN . Letk, µ be the
invariants associated to a hypothetical stable homogeneous M-structure
M with constraintsC, that is the rank and a bound on the sizes of finite
quotients ofM2 by equivalence relations definable from2k parameters,
computed according to the canonical quantifier eliminationprocedure from
C.

1. If there is, in fact, a stable homogeneousM-structure with finite sub-
structures exactly those omittingC, then the standard amalgamation pro-
cedure will succeed for any appropriate data(A; b1, b2).
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2. If the standard amalgamation procedure fails for(A,Ab1, Ab2), then
there isA′ ⊆ A of order at most2k + ρ ·

(

µ
2

)

+ µ · max(ρ,N) for
which it fails.

Proof. The first point has essentially been dealt with in the previous lemmas,
modulo the basic properties of independence. For the second, a failure at stage
(iii) or (iv) produces a corresponding subset of size at most2k+ρ·

(

µ
2

)

+2ρ over
which the procedure fails. If the procedure continues successfully to the final
step, then|A(X)| ≤ µ for anyX containingA1. Fix a subsetA′ ofA contain-
ingA1 such that any two possible amalgams differ onA′b1b2, and|A(A′)| is
as large as possible. We may take|A′| ≤ 2k+ρ

(

µ
2

)

. ForY containingA′ with
|Y −A′| ≤ ρ each element ofA(A′) extends uniquely toA(Y ). With step (iv)
this gives a unique extension satisfying the definition ofA(A) apart from the
omission ofC. Those which omit the forbidden substructures are incompatible
with Ab1 or Ab2. Thusµ sets of sizeN or ρ suffice to eliminate all potential
solutions to the standard amalgamation procedure, overA′.

Proposition 8.1.5. Problem B is decidable. Hence Problem A is decidable.

Proof. Compute the putative rankk and the invariantµ. Attempt the standard
amalgamation procedure for all(A; b1, b2) with |A| satisfying the bound of the
previous lemma. If this fails then the desired structure does not exist. If it suc-
ceeds, then there is at least a homogeneous structureM corresponding to the
specified constraints. Furthermore, the quantifier elimination procedure used
is correct forM, and so, in particular, its rank has been correctly computed,
and it is stable.

8.2 EFFECTIVITY

We continue in the spirit of quasifinite axiomatizability and Ziegler’s Conjec-
ture, with attention to issues of effectivity. Recall the notion of a skeletal type
and skeletal languageLsk from §4.2. From the results in§4.5 we may derive

Lemma 8.2.1. With the languageL and skeletal languageLsk fixed, there is
a finite setX0(L,Lsk) of pseudo-characteristic sentences such that

1. If M is a Lie coordinatizedL-structure with full skeletonMsk, then some
pseudo-characteristic sentenceχ is true inM.

2. WithM, χ as in (1), every proper model ofχ is isomorphic to an enve-
lope ofM.

3. X0 is recursive as a function ofL andLsk.

The prefixpseudois called for as no claim is made thatall of these formu-
las actually have models. This is the price to be paid, initially, for requiring
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effectivity.
Proof. This is proved in Proposition 4.4.3 with a potentially infinite setX0.
The finiteness (without regard to effectivity) is in Proposition 4.5.1, by com-
pactness. Paying attention to the effective (and explicit)axiomatizability of the
class of structures with the given full skeleton, the effectivity follows from the
same argument (via an unlimited search until a proof of a suitable disjunction
is found).

Evidently, this is not satisfactory, and we wish to prune offthe bogus char-
acteristic sentences, preferably carrying along some sideinformation about
dimensions as well, as in the following definition.

Definition 8.2.2. AssumeL andLsk are given.

1. A skeletal specification∆ forLsk consists of a skeletal type augmented by
dimension specifications for each of the geometries of the forms: “= n”;
“ ≥ n”; or “ = ∞,” where n stands for a specified finite number (≥ 0 is
acceptable, of course). The specification iscompleteif “ ≥ n” does not
occur.

2. If ∆ is a skeletal specification, thenX1(L,Lsk,∆) is the set of sentences
from X0(L,Lsk) that have a modelM with full skeleton satisfying the
specification∆.

3. If ∆ is a skeletal specification, then∆∞ denotes itsmost general com-
pletion: each specification≥ n is replaced by the specification= ∞.

By definition, Lemma 8.2.1 holds in a sharper form forX1(L,Lsk,∆). We
claim further:

Proposition 8.2.3.X1 is effectively computable, as a function ofL, Lsk, and
∆.

This requires substantial argument. We will use induction on the height
of the Lie coordinatization. The remainder of this section is devoted to that
argument. In particular,L, Lsk, and∆ are given. However, we first make
some reductions.
First reduction

We replace∆ by∆∞ (so that the characteristic sentences become complete,
modulo the underlying theory).

To justify this reduction, note that for any∆, X0\X1 is in any case recur-
sively enumerable since it consists of sentences which are inconsistent with the
base theory. The problem is to enumerateX1 effectively. However, each for-
mulaϕ in X1(L,Lsk,∆) is derivable from another inX(L,Lsk,∆

′) with ∆′

complete (working always modulo a background theory). It suffices to handle
all the∆′ (uniformly), and as∆′ = ∆′∞ the first reduction is accomplished.
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Second reduction
We assume thatM is nonmultidimensional and has no “naked” vector

spaces.
The point is that these areconservative extensions: if a characteristic sen-

tence holds in someM, then that structure can be expanded to a nonmulti-
dimensional one in which, furthermore, every vector space comes equipped
with an isomorphism to its definable dual. Compare§5.3. If we can recognize
the characteristic sentences in this context, then we can find one that implies
the original one (and find the derivation as well). This reduction changes the
skeletal type, in an effective way.

Note that if we happen to be interested only in the stable category, at this
point the proof leaves that category in any case.

To take advantage of the nonmultidimensionality it is convenient to relax
the notion of skeleton, allowing the bottom level to consistof finitely many
orthogonal Lie geometries sitting side by side. At higher levels we may restrict
ourselves to finite covers and affine covers, with the dual affine part present and
covering a self-dual linear geometry lying at the bottom.

As the first level presents no problems, we have only to deal with the ad-
dition of subsequent levels, in other words with finite or affine covers. The
problem is the following. IfM is the given (hypothetical) structure, andM−

is the structure obtained fromM by stripping off the top level, then assum-
ing that we can effectively determine what the possibilities for M− are, we
must determine what the possibilities forM are. Actually, the emphasis at the
outset is on pseudo-characteristic sentences, which whilepossibly contradic-
tory have at least the virtue of actually existing, rather than the more nebulous
M andM−, which may not in fact exist. Still the criterion that a pseudo-
characteristic sentenceχ be acceptable (relative to a given specification∆) is
that there should be an associatedχ− already known to be acceptable, and
hence associated with a structureM−, such thatχ− “says” (or rather implies)
thatM− has a covering of the appropriate type, with the propertyχ. So we
may concern ourselves here with a reduction of the properties of a hypothetical
M to those of a realM−.

The Case of a Finite Cover
We haveM−, or equivalently a characteristic sentenceχ− for it (which is

complete when supplemented by the appropriate background theory including
the relevant∆− extracted from∆). We have also a characteristic sentenceχ
putatively describing a finite coverM of M−. Here the details of the con-
struction of these sentences, in the proof of quasifinite axiomatizability, be-
come important. The point is thatχ gives a highly overdetermined recipe for
the explicit determination of all structure onM, proceeding inductively along
an Ahlbrandt–Ziegler enumeration; if one begins with the structureM, one of
course writes down the facts inM, but to capture all possibleχ is a matter
of writing down all conceivable recipes, most of which presumably have inter-
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nal contradictions. The problem is to detect these contradictions effectively by
confrontingχ with M−.

LetK be a bound for the various numbers occurring in the proof of Proposi-
tion 4.4.3, sayK = 2k+max(k∗, k∗∗) + 1. Letd be the Löwenheim-Skolem
number associated withK in M−; i.e., anyK elements ofM− lie in a d-
dimensional envelope inM− (effectively computable, by Lemma 5.2.7). Test
χ by testing the satisfiability ofχ in a finite cover of such ad-dimensional en-
velope (by a search through all possibilities). Here we should emphasize that
χ is of the specific form given in the proof of Proposition 4.4.3, so that if true
in someM it would pass to this particular envelope.

Conversely, ifχ passes this test, we claim that the construction ofM ac-
cording toχ succeeds. Running over an Ahlbrandt–Ziegler enumeration of
M−, at each stage we have covered certain elements ofM− by appropriate
finite sets with additional structure, and have the task of covering one more el-
ementa of M− by a finite set, and specifying its atomic type over everything
so far.

Look for a formulaθ(x,y), wherex refers to the elements of the fiber being
added, andy (of length at mostk) refers tok previously constructed elements,
with the following properties:

1. χ implies that such anx exists (more on this momentarily),
2. the multiplicity ofx over everything so far is minimized, according toθ.

Let us consider (1) more carefully. We require previously constructed ele-
mentsz and a valid atomic formulaρ(y, z), such that

χ =⇒ ∀y, z[ρ(y, z) =⇒ ∃xθ(x,y)].

We then hope to see the following:

3. For all y′, there arez′ such thatχ together with the atomic type of
y,y′, z′ will imply the atomic type ofx,y′.

4. After addingx as specified, the universal part ofχ holds.

If any of these hopes are disappointed, then the failure is witnessed by at
mostK elements and hence is also visible in the envelope with dimensionsd.

One of the simplifying features in this case is that “everything is algebraic.”
In the case of affine covers, the behavior of algebraic closure in the hypothetical
cover is one of the sticking points. For this the affine dual ishelpful.
The Case of Affine Covers

We first shift the notation slightly. We may suppose that the dual-affine part
of the cover is absorbed intoM−, since it is a finite cover of a linear geometry
in M−—just apply the previous case.

The following remark may be useful as motivation. Since the dual affine
part is present inM−, M is rigid overM−; that is, the extension is canonical,
but not definable. Questions of multiplicity do not arise, and the question of
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existence ofM is transformed into a different question: does thecanonicalM
have the posited propertyχ? It will suffice to show that this can be expressed
in M−.

We fix the following notation:V = V ∗ is the linear geometry inM−; A∗

is an affine cover (with componentsA∗
t , each a finite cover ofV ∗); A is the

affine cover, inM but not inM−, with componentsAt dual toA∗
t .

The elementsa ∈ At will be identified with hyperplanes inA∗
t which project

bijectively ontoV ∗. From this point of view, the problem is one of elimination
of a second-order quantifier (for such hyperplanes) from thelanguage ofM−.

Lemma 8.2.4. Let M0 be the reduct ofM including all structure onM−

(which we take to include the affine dualsA∗) as well as the geometrical
structure onA: affine space structure ofAt overV , and duality withA∗

t .
Then this is the full structure onM (all 0-definable relations remain 0-
definable).

Proof. It suffices to show that if two tuplesa, b have the same types in the
reduct, then they have the same types. Take an envelopeE containing them
and view the affine elements ina, b as predicates (for hyperplanes). These
predicates are conjugate under the automorphism group ofE− (the top layer
is stripped off) by assumption, and any such automorphism extends to one of
E. Thusa, b have the same type in the full language.

Lemma 8.2.5. Let M− be a countable (or hyperfinite) Lie coordinatizable
structure with distinguished sortsT, V, V ∗, A∗ with the usual properties;
e.g.,A∗ is a T -parametrized family of affine dual covers ofV ∗ (or more
generallyV ∗

t ), possibly with additional parameters fixed. Then there is a
cover by an affine sortA =

⋃

T At compatible with the affine dualsA∗
t , in

the geometric language of the previous lemma, and its theoryis uniquely
determined.

Proof. For the existence, we may assumeM− is nonmultidimensional (as we
have been, in any case) and does not have quadratic geometries (it suffices to
adjoin some parameters). The issue of orientability falls away andM can be
thought of as nonstandard-finite. In this case, existence follows from the finite
case: adjoin all internal linear sections for the mapsA∗

t → V ∗
t in a nonstandard

universe, and this is locally Lie, hence Lie.
For uniqueness of the theory, fix a formula, and shrink a givenaffine expan-

sion to a finite envelope large enough to test the truth of the formula; at the
finite level the expansion is completely canonical, so the answer is determined.

Lemma 8.2.6. In the context of the previous lemma, the theory of the affine
expansionM can be computed from the theory ofM−.
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Proof. Follow the line of the previous argument. One needs to determine the
theory of a finite envelopeMd. This is the canonical expansion of a finite
envelopeM−

d . Its theory can be determined by inspection.

8.3 DIMENSION QUANTIFIERS

In this section we consider enhancements of first order logicexpressing numer-
ical properties of geometries in large finite (or nonstandard-finite) structures.
That some such expansion is necessary to carry through the analysis of Lie co-
ordinatization in a definable and effective way is made clearby the following
example given in [HrBa].

Let V be a finite dimensional vector space over a finite field, and letm,n
be distinct nonnegative integers. LetV 3

m,n be a free cover of the cartesian cube
V 3 by finite sets of sizesm orn; the triple(v1, v2, v3) will be covered by a set
of sizem if v3 = v1 + v2, and by a set of sizen otherwise. LetM(m,n) be
the reduct ofV 3

m,n in which the vector space structure ofV is forgotten. We
can view this as having sortsV andV 3 in addition to the coveringM , with the
covering mapπ : M → V 3 and the projections fromV 3 to V . The collection
M(m,n) should be thought of as a uniform family of examples, but the recov-
ery of the vector space structure from the covering is nonuniform with respect
to first order logic. In the usual approach to effectivity, one sorts out all the
structures under consideration into finitely many classes,each axiomatizable
in first order logic. We propose to follow much the same route here, after aug-
menting the logic to allow us to decode numerical information of the type used
here: note that it is not necessary to know the value ofm andn, but only which
is larger (or actually, with a little more care, that they aredifferent). This will
be done using adimension comparison quantifierto be introduced shortly.

The specific quantifier introduced in [HrBa] in its “most general form” is
actually too general, as we will now indicate. The simplest way to add the
desired numerical quantifier would be with aless thanquantifier “<”. Ap-
plied to two formulasϕ, ϕ′ involving the variablex, and possibly other free
variables, the formula<x(ϕ;ϕ′) would represent the formula:the cardinal-
ity of the set defined byϕ is less than the cardinality of the set defined byϕ′;
as usual, variables other thanx which are free inϕ or ϕ′ remain free in the
quantified expression. The problem with this is that it encodes undecidable
problems—namely, any diophantine problem overZ—into the basic proper-
ties of structures with a bounded number of4-types (in fact, directly into a
multisorted theory of pure equality). A polynomial equation p(x) = 0 may be
encoded as an equation with nonnegative coefficientsp1(x) = p2(x), and af-
ter interpreting multiplication as cartesian product and sum as disjoint union,
the solvability of such an equation is equivalent to the existence of a model
M of the theory of equality with a number of sorts equal to the number of
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variablesx, satisfying one additional sentence involving the cardinality quan-
tifier (which expresses the stated equality). We require a less expressive logic,
for which we can determine effectively whether a Lie coordinatizable struc-
ture with a specified number of 4-types exists, having any specified property
expressible in the logic.

Strictly speaking, we will make use of three enhancements offirst order
logic: a finite set offully embedded geometryquantifiersGt, adimension com-
parison quantiferD<, and the standard quantifier∃∞—there are infinitely
many. The second has a natural model only in finite structures, where the third
encounters a frosty reception, so we will have to pay some attention toweak
(i.e., not canonical) interpretations of the logic as well.We will need complete-
ness and compactness theorems for various combinations of these notions, in a
limited context (essentially the context of Lie coordinatizable structures). Our
specification of intended interpretations below will be less useful from a tech-
nical point of view than the axioms specified subsequently, determining the
notion of a “weak” interpretation.

Definition 8.3.1

1. A type t (of geometry) is one of the following:(i) set; (ii) linear;
(iii) orthogonal−; (iv) orthogonal+; (v) symplectic;(vi) unitary. For each
typet, the quantifierGt has the syntax of an ordinary quantifier: ifϕ is a
formula, thenGtxϕ is also a formula, withx bound byGt. The intended
interpretation in a modelM is that the subset ofM defined byϕ(x) is a
fully embedded geometry of typet. The distinction between the two types
of orthogonal geometry has a clear meaning only in the finite case, but will
be carried along formally in all cases (in other words, the Witt defect is
included in the type). As usual, variables other thanx which are free inϕ
remain free inGtxϕ, and have the effect of auxiliary parameters.

2. Thelesser dimensionquantifierD< acts on pairs of formulasϕ, ϕ′ to
produce a new formulaDx(ϕ < ϕ′). The intended meaning in a structure
M is that:

(i) ϕ andϕ′ define fully embedded canonical projective geometriesJ, J ′ of
the same type; and

(ii) dim J < dim J ′.

Evidently,(i) is already expressible using theGt.
3. The quantifier∃∞ is the usual quantifier “there exist infinitely many.”

It may also have nonstandard interpretations in finite models, essentially of
the form “there exist a lot.”

4. The logicsMG,MD,MD∞ are obtained syntactically by augmenting
first order logic by, respectively: all theGt; all theGt, andD<; all theGt,
D<, and∃∞. In each case the logic is taken to be closed under iterated
applications of all the operations.
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Context. Our basic context will consist of a fixed finite language together
with a specified boundk on the number of4-types; the latter is formalized by
a theory which we denoteB4(k); more exactlyB4(L, k) whereL is the logic
in use. (The richer the language, the more powerful this theory becomes.)
In finite models with at mostk 4-types, the languageMD has a canonical
interpretation. We writeC4(L, k) for the class of finiteL-structures with at
mostk 4-types.

Proposition 8.3.2 (Effective Coordinatizability). There is a computable func-
tion b(L, k) such that with the languageL and the boundk fixed, every
M ∈ C4(L, k) has a Lie coordinatization via formulas inMD of total
length at mostb = b(L, k).

Proof. Both the boundedness and the effectivity are at issue.
For the boundedness, we use a modified compactness argument.Suppose

toward a contradiction thatMn ∈ C4(L, k) has minimal coordinatization of
total length at leastn, for eachn. Without loss of generality these all involve
the same skeleton (but the actual definitions of the geometries vary erratically).
Consider the first order structureM∗

n obtained by adjoining predicates toMn

for all formulas inMD, as well as predicates giving the appropriate coordi-
natization. (Note that asMn is finite, this does not affect definability in the
individual structures, but does change the collection of uniformly definable
relations asn varies.) Pass to an ultraproductM∗

∞. This is weakly Lie co-
ordinatized. LetM∞ be the reduct ofM∗

∞ to MD (or rather the first-order
language used to encodeMD in theMn). By the theorem on reductsthis is
also Lie coordinatizable, definably. One would like to say that this “property”
is inherited by theMn. By the proof of quasifinite axiomatizability, there is
a sentence which characterizes theenvelopesin M∞, for models whose di-
mensions are true (constant over geometries parametrized by realizations of
the same type). Use ofMD-definable predicates ensures that theMn have
true dimensions in this sense, and hence are envelopes. In particular they are
Lie coordinatizable uniformly, contradicting their choice.

Now we turn to the effectivity ofb(k). There is a set of formulas in the
languageMD which is adequate for the Lie coordinatization of any struc-
ture in our class. We wish to argue that this is a first order property and is a
consequence of an explicitly known theory, and then to conclude via the com-
pleteness theorem.

As a base theory one may take a first order theory in which allMD formulas
occur as atomic predicates, and their definitions—to the extent that they have
definitions—are included as axioms. To a very large extent theMD formulas
do have first order definitions, since it is possible to say in afirst order way
what the dimension is when it is finite. Thus we may include in the axioms:
if a given dimension is finite (i.e., specified explicitly), then it isformally less
than another if and only if it is, in fact, less than that other. These axioms leave
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open what happens when the dimensions are infinite. (In general, it is a good
idea to require that “less than” be transitive, but this is not yet relevant.)

Now for b ≥ b(k), there is a finite disjunction of potential Lie coordinatiza-
tions, and a corresponding collection of characteristic sentences (in the sense
of the previous section) for which, in fact, one of the coordinatizations works
within every structure of our class, and one of the corresponding characteristic
sentences is valid. This is a first order sentence. Furthermore, whenever the
appropriate characteristic sentence is valid, the corresponding Lie coordinati-
zation is, in fact, a valid Lie coordinatization. This is thedelicate point: to
verify that a potential Lie coordinatization is in fact valid, it is necessary to
have complete control over definability; for example, one must know that if
no vector space structure is specified on a set, then it has no definable vector
space structure. The characteristic sentences give this kind of control.

Accordingly, one can search for a provable first order sentence of the desired
form, and when it is found then one has found an effective bound onb(k) (we
are not concerned here with the minimum value ofb(k)).

Now we will develop a completeness theorem forMD and use it to produce
more explicit results on effectivity.

Definition 8.3.3. TF4k is the following axiom system, whose models are called
weak modelsfor MD.

1. Background axioms as in the preceding proof: predicates correspond to
all formulas ofMD and the axioms force “formal less than” to mean
“less than” when at least one of the numbers is finite.

2. There are at mostk pairwise contradictory formulas in4 variables.
3. For the quantifiersGt, assert that when they hold then the corresponding

geometry is embedded and stably embedded.
4. Some group of formulas of total length less thanb(k) (from the preceding

lemma) forms a Lie coordinatization. Use the quantifiersGt here.
5. Transitivity of the relation “dim(J) < dim(J ′).” (Supplementing (1)

above.)
6. If the definable setD is not a canonical Lie geometry, then some formula

of length at mostb′(k) shows that it is not. Hereb′(k) is also effective;
failure involves failure of primitivity, rank bigger than 1, or a richer Lie
structure than the one specified is definable. In all cases there is a defin-
able predicate that shows this. The boundb′(k) can be found in the same
way asb(k).

Proposition 8.3.4. Let ϕ be a sentence inMD which is consistent with the
axioms given above. Thenϕ has a finite model with at mostk 4-types.

Proof. Begin with a weak model, which will be Lie coordinatized. Note that
if it is finite, then it already has all required properties asthey are expressed by
the theory in this case. Otherwise, shrink it (i.e., take an envelope), preserving
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the truth ofϕ by keeping infinite dimensions large. Note that the formal less
than relation on the infinite dimensions determines a linearordering of finite
length and hence can be respected by the shrinking process. (Note that the
position in this sequence of a given infinite dimension is part of the type of the
associated parameter to begin with.)

Corollary 8.3.5. TF4k is decidable, uniformly ink.

Proposition 8.3.6. Extend the logic by the quantifier∃∞ to getMD,∞. The
theory remains decidable.

Proof. One must extend the axiom system to get a suitable notion of weak
model, then convert each weak model into one in which all setswhose size is
formally not infinite become sets which are in fact finite. To avoid pathology
(or paying more attention over the formalization) one may suppose all struc-
tures contain at least two elements.

The axioms are as follows. We use the term “finite” here for “definable and
formally finite” rather than “of specified size.”

1. ∃∞ implies the existence of arbitrarily many (the conclusion is a first
order scheme).

2. If ∃∞x∃yϕ(x, y), then either∃y∃∞xϕ(x, y) or ∃∞y∃xϕ(x, y). In other
words, the image of an infinite set under a finite-to-one function is infi-
nite.

3. A definable subset of a definable finite set is finite.
4. Given two embedded, stably embedded geometries, one of which is for-

mally infinite, and the other having dimension at least as large, then the
second geometry is also formally infinite. (This relates∃∞ and the di-
mension quantifier.)

Note that (2) implies that a finite union of finite sets is finite.
The problem now is to take a formulaϕ which has a weak model and give it

a model in which all sets asserted to be of finite size are in fact of finite size. We
may assume thatϕ specifies a coordinatization, and using(2, 3) we may also
assume that the only sets whose finitude or infinitude are asserted are subsets
of canonical projective geometries (possibly degenerate), and in view of the
nature of definability in such geometries, we reduce furtherto the finitude or
infinitude of the geometry itself. So the problem is to shrinkgeometries which
are asserted to be of finite size to ones which are finite, whileleaving alone
those asserted to be infinite, and preserving both the order relationships (for
which (4) is clearly essential, and largely sufficient) and the other (essentially
first order) properties asserted byϕ. Note that axiom (1) is not required to “do”
a great deal; but it guarantees that unmitigated sloth is an adequate treatment
of the infinite case.

For all of this to make sense, one thing is necessary: the formally finite



RECAPITULATION AND FURTHER REMARKS 183

and the formally infinite canonical projective geometries should be orthogonal
(otherwise, there is no appropriate dimension function to begin with). This is
guaranteed by (2, 3).

8.4 RECAPITULATION AND FURTHER REMARKS

We return very briefly to the survey given in the Introduction. The theory of
envelopes was summarized in Theorem 1 and in terms of finite structures in
Theorem 6, the latter incorporating the numerical estimates of §5.2 and some
effectivity. The families referred to in Theorem 6 are determined by a specific
type of Lie coordinatization in the languageMD as well as a definite char-
acteristic sentence. Evidently, the truth of a sentence canbe determined in
polynomial time. Part(5) of Theorem 6 is dealt with in§5.2, as far as sizes go,
and the construction is given by the characteristic sentence.

Theorem 2 gave six conditions equivalent to Lie coordinatizability. The
first five conditions were dealt with by the end of§3.5; this is discussed at the
beginning of that section. In particular, to get from Lie coordinatizability to
smooth approximability one uses the theory of envelopes, notably §3.2. The
converse direction was the subject of§3.5. For the validity of the last condition,
use Lemma 5.2.7 and the estimate on the sizes of envelopes.

Theorem 3 is the theory of reducts, given in§7.5. Theorem 5 summarizes
the effectivity results of§§8.1–8.3. Theorem 7 has been dealt with in§7.5.

We recall one problem mentioned in [HrBa]: are envelopes “constructible”
in time polynomial in the dimension function? As noted there, the underlying
sets are, in fact, too large to be constructed in polynomial time, but the problem
has a sensible interpretation: the underlying set can be treated as known, and
one can ask whether the basic relations on it can be recognized in polynomial
time (for example, think of the basic case in which the envelope is simply a
geometry of specified dimension). This problem has model theoretic content.
The proof of quasifinite axiomatizability is based on a 1-wayversion of “back-
and-forth” which may be called “carefully forth.” We do not know how to give
this proof in a “back-and-forth” format, and it seems that the polynomial time
problem involves difficulties of the type which have been successfully eluded
here.

8.4.1 The role of finite simple groups

In view of the special status of the classification of the finite simple groups it
seems useful both to clarify the dependence of the present paper on that result,
and to consider the possibilities for eliminating that dependence, and arguing
in the opposite direction.
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The work carried out here can be viewed as a chapter within model theory
which is dependent in part on the classification of the finite simple groups for
its motivation, but which in terms of its content is largely independent of that
classification both logically and methodologically.

For example, Theorem 7 as we have stated it is independent from that classi-
fication. Similarly, the proof of Theorem 6 really involves Lie coordinatizable
structures, and as such does not involve the classification of the finite sim-
ple groups, which is invoked at the end, via Theorem 2, to givethe present
statement of that result. As far as Theorem 2 is concerned, wecombine the
primitive case from [KLM], which may be taken here as a “blackbox,” with
independent model theoretic methods.

However, the proof of [KLM] is strongly dependent on the classification of
the finite simple groups. Theorem 7 offers an array of model theoretic proper-
ties which can be taken as defining a certain portion of the theory provided
by the classification of the finite simple groups. No such model theoretic
version is known for the whole classification, and for that matter we are not
aware of any other comparable portion of the classification that can be ex-
pressed in model theoretic terms. Initially one might try toassume Theorem
2-Characterizations (3) (i.e., 2 (6) with an arbitrary function), so that one has
(LC1) and (LC2), and ask whether one can prove (LC3–LC9) directly and not
inductively. The combinatorial flavor of the properties (LC4–LC9) suggests
that this may not be an unreasonable endeavor.

This issue was raised in [HrBa] and remains both open and of considerable
interest. It was noted there that the results on sizes of definable sets can be
reversed to give a definition of rank and indpendence in purely combinatorial
terms, that is in terms of asymptotic sizes of sets. In particular the properties
(LC4) and (LC5) then become cleanly combinatorial. Property (LC4) becomes
the statement that model-theoretically independent subsets of a single type over
an algebraically closed base are statistically independent (giving unexpected
support for the old term: “independence theorem”). We give adirect proof of
this below. This proof is closely analogous to the proof of (LC4) from finite
S1-rank given in [HrS1]], but it emerged only on following upa suggestion of
L. Babai regarding the similarity of the desired result withSzemeredi’s regu-
larity lemma, a similarity which will not be pursued here. The next challenge,
accordingly, would be a direct proof of (LC5).

In the following, we work with the extension of first order logic by car-
dinality quantifiers, allowing us to assert that one definable set is smaller than
another, and also allowing cardinality comparisons of the formm|D| < n|D′|,
via some definable encoding of disjoint unions. This could berecast more gen-
erally in a context where one has a definable probability measure on the defin-
able sets. Indeed, the general relation between simplicityand the existence of
such probability measures remains to be clarified.

LetM be a nonstandard member (e.g., an ultraproduct) of a family of finite
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structures, where cardinality quantifiers receive their canonical interpretations
in finite structures, and the corresponding nonstandard interpretations in the
ultraproduct. Call a definable setD small if |D|/|M | is infinitesimal, where
M is the underlying set ofM.

Lemma 8.4.1. If D forks over∅ thenD is small.

Proof. We may suppose thatD divides over∅; that is,D has an an arbitrarily
large indiscernible set{Di} of conjugates which isk-inconsistent for some
fixed k. It follows by induction onk thatD is small; more exactly (for the
sake of the induction) that|Di|/|

⋃

Di| goes to0 as the sizer of the set of
conjugates increases. Ifk = 1, then these sets are empty, and fork > 1 we
may consider for eachi the(k − 1)-inconsistent family{Di ∩Dj} for j 6= i.
Then by induction|Di ∩ Dj |/|Di| goes to 0 asr increases, so the cardinality
of a union of lengthn of conjugatesDi is of the order ofn|Di|, as long as
(

n
2

)

|Di ∩Dj |/|Di| is negligible.

Lemma 8.4.2. Suppose thatM is a nonstandard member of a family of finite
structures that realize boundedly many 4-types. Letp1, p2, p3 be 1-types,
and letp12, p13, p23 be 2-types projecting onto the corresponding 1-types
appropriately. Then there is a formulaϕ(x, y) such thatϕ(a1, a2) holds if
and only if{y : p13(a1, y)&p23(a2, y)} is small, and this formula is stable,
and is even an equation in the sense of Srour [PS].

Proof. The setD = {y : p13(a1, y)&p23(a2, y)} is definable from two pa-
rameters and can take on only a finite number of cardinalitiesin M (as this
holds, with a bound, in the family of finite structures associated withM).
Henceϕ can be defined. Now we must show that if(ai, bi) is an indiscernible
sequence, andϕ(ai, bj) holds for i < j, thenϕ(ai, bi) holds for all i. Let
Di = {y : p13(ai, y)&p23(bi, y)}. Then by assumption|Di ∩Dj |/|M | is in-
finitesimal fori 6= j. As in the previous argument, if|Di| is not small relative
to |M |, then|Di| is small relative to

⋃

Di, and hence also relative to|M |, a
contradiction.

Proposition 8.4.3. With the hypotheses of the preceding lemma, suppose that
there is no finite 0-definable equivalence relation splitting pi (i = 1, 2, or
3), and thatpij is not small relative toM2 for i, j = 1, 2; 1, 3; 2, 3. Let
P123 be the set of triples(a1, a2, a3) ∈ M3 such thatM |= pij(ai, aj) for
each pairi, j = 1, 2; 1, 3; 2, 3. ThenP123 is not small relative toM3, and,
in particular, is nonempty.

Proof. We use similar notationsPi, Pij for the loci of the given types.
Compute the number of triples(a1, a2, a3) satisfyingp13(a1, a3) andp23(a2, a3)

by first choosinga3 in |P3| ways, then choosingai for i = 2, 3 in |Pi3|/|P3|
ways; this yields|P13||P23|/|P3|, which is not small relative to|M3|. It fol-
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lows that for somea1 satisfyingp1, the number ofa2 for which ¬ϕ(a1, a2)
holds is not small relative to|M |, and hence the formula¬ϕ(a1, x) does
not fork over∅. Hence¬ϕ(a1, a2) holds for some pair(a1, a2) which isϕ-
independent in the sense of local stability theory. Then by stability and our
hypothesis onp1, p2, ¬ϕ(a1, a2) holds for all such independent pairs. Simi-
larly, we can chooseϕ-independent(a1, a2) satisfyingp12. So all solutions to
p12 satisfy¬ϕ, and the claim follows.

We have not touched on the other directions for further research which were
already mentioned in [HrBa]. As far as the diagonal theory envisaged there is
concerned, the completion, or near-completion, of the foundations of geomet-
ric simplicity theory ought to be helpful in this connection.
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