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1

Introduction

1.1 THE SUBJECT

In the present monograph we develop a structure theory fdeiss of finite
structures whose description lies on the border betweenehtbeory and
group theory. Model theoretically, we study large finitaustures for a fixed
finite language, with a bounded numberdefypes. In group theoretic terms,
we study all sufficiently large finite permutation groups @thhave a bounded
number of orbits on 4-tuples and which dreclosed for a fixed value of.
The primitive case is analyzed in [KLM; cf. Mp2]. The treatmi@f the gen-
eral case involves application of model theoretic ideas@lines pioneered
by Lachlan.

We show that such structures fall into finitely many classegamally param-
etrized by “dimensions” in the sense of Lachlan, which agpnate finitely
many infinite limit structures (a version of Lachlan’s thgof shrinking and
stretching), and we prove uniform finite axiomatizabilitpdulo appropriate
axioms of infinity (quasifinite axiomatizability). We alsea with issues of
effectivity. At our level of generality, the proofs involthe extension of the
methods of stability theory—geometries, orthogonalitgdularity, definable
groups—to this somewhat unstable context. Our treatmemtiagively self-
contained, although knowledge of the model theoretic bamkgd provides
considerable motivation for the results and their prooftie Teader who is
more interested in the statement of precise results thdreimibdel theoretic
background will find them in the next section.

On the model theoretic side, this work has two sources. laachlorked
out the theory originally in the context of stable structuvéhich are homo-
geneous for a finite relational language [La], emphasiziegatarametrization
by numerical invariants. Zilber, on the other hand, ingegtd totally cate-
gorical structures and developed a theory of finite apprafions called “en-
velopes,” in his work on the problems of finite axiomatizail The class of

Ng-categoricalRy-stable structures provides a broad model theoretic contex

to which both aspects of the theory are relevant. The theasmworked out at
this level in [CHL], including the appropriate theory of @bwpes. These were
used in particular to show that the corresponding theoresat finitely ax-
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iomatizable, by Zilber's method. The basic tool used in [§Hh accordance
with Shelah’s general approach to stability theory and getanal refinements
due to Zilber, was a “coordinatization” of an arbitrary stiure in the class by
a tree of standard coordinate geometries (affine or progotier finite fields,
or degenerate. Other classical geometries involving qudiorms were con-
spicuous only by their absence at this point.

The more delicate issue of finite axiomatizability modulgpegpriate “ax-
ioms of infinity,” which is closely connected with other figitess problems as
well as problems of effectivity, took some time to resolve[AZ1] Ahlbrandt
and Ziegler isolated the relevant combinatorial propeftthe coordinatizing
geometries, which we refer to here as “geometrical finitefiesd used it to
prove quasifinite axiomatizability in the case of a singlerclinatizing geo-
metry. The case ofy-stable Ny-categorical structures in general was treated
in [HITC].

The class osmoothly approximablstructures was introduced by Lachlan
as a natural generalization of the clas8\gfcategoricak,-stable structures, in
essence taking the theory of envelopes as a definition. $ryagiproximable
structures ar&,-categorical structures which can be well approximated-by fi
nite structures in a sense to be given precisefi2ii. One of the achievements
of the structure theory foRy-categoricaR-stable theories was the proof that
they are smoothly approximable in Lachlan’s sense. Whilg was useful
model theoretically, Lachlan’s point was that in dealinghihe model theory
of large finite structures, one should also look at the reveisection, from
smooth approximability to the structure theory. We showeheonfirming this
not very explicitly formulated conjecture of Lachlan, ttia bulk of the struc-
ture theory applies to smoothly approximable structuregven, as stated at
the outset, to sufficiently large finite structures with a diXanite language,
having a bounded number éftypes.

Lachlan’s project was launched by Kantor, Liebeck, and Niacgon in
[KLM] with the classification of the primitive smoothly apmximable struc-
tures in terms of various more or less classical geomettiesl¢ast classical
being the “quadratic” geometry in characteristic 2, déxemtiin§2.1.2). These
turn up in projective, linear, and affine flavors, and in thiinafcase there are
some additional nonprimitive structures that play no rolgdLM] but will be
needed here (“affine duality§2.3). Bearing in mind that any,-categorical
structure can be analyzed to some degree in terms of its tiy@sections,
the results of [KLM] furnish a rough coordinatization theor for smoothly
approximable structures. This must be massaged a bit tatlggveort of co-
ordinatization that has been exploited previously in.astable context. We
will refer to a structure as “Lie coordinatizable” if it is{mterpretable with a
structure which has a nice coordinatization of the typeoithiiced below. Lie
coordinatizability will prove to be equivalent to smoottpapximability, in one
direction largely because of [KLM], and in the other by thelag of Zilber’'s
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theory of envelopes in this context. One tends to work with ¢dordinatiz-
ability as the basic technical notion in the subject. Theyaimin [KLM] was
in fact carried out for primitive structures with a bound be humber of orbits
on 5-tuples, and in [Mp2] it was indicated how the proof mayniadified so
as to work with a bound o#-tuples. (Using only [KLM], we would also be
forced to state everything done here with 5 in place of 4.)

In model theory, techniques for going from a good descnptibprimitive
pieces to meaningful statements about imprimitive stmestgenerally fall un-
der the heading of “geometrical stability theory,” whosetsdie in early work
of Zilber on R;-categorical theories, much developed subsequently. gtou
the present theory lies slightly outside stability thedtycén find a home in
the more recent developments relating to simple theogesmetrical stability
theory provided a very useful template [Bu, PiGS].

Before entering into greater detail regarding the presesrtkywve make
some comments on the Galois correspondence between sésiand permu-
tation groups implicit in the above, and on its limitations.

Let X be a finite set. There is then a Galois correspondence betsuden
groups of the symmetric grolpyn{X') on X, and model theoretic structures
with universeX, associating to a permutation group the invariant relation
and to a structure its automorphism group. This corresporelextends to
Ng-categorical structures ([AZ1, Introduction], [CaO]).

When we consider infinite families of finite structures in geal, or a pas-
sage to an infinite limit, this correspondence is not welldwetd. For instance,
the automorphism group of a large finite random graph of ord@vith con-
stant and nontrivial edge probability) is trivial with prafility approaching
1 asn goes to infinity, while the natural model theoretic limit Feetrandom
countable graph, which has many automorphisms.

It was shown in [CHL], building on work of Zilber for totallyategorical
structures, that structures which are b8thcategorical andt,-stable can be
approximated by finite structures simultaneously in botlegaries. Lachlan
emphasized the importance of this property, which will biéndsel precisely in
§2.1, and proposed that the class of structures with thisgrtgghesmoothly
approximable structureshould be amenable to a strong structure theory, ap-
propriately generalizing [CHL]. Moreover, Lachlan suggesthat the direc-
tion of the analysis can be reversed, from the finite to thaiiefi one could
classify the large finite structures that appear to be “smagpproximations”
to an infinite limit, or in other words, classify the familie$ finite structures
which appear to be Cauchy sequences both as structures gednastation
groups. This line of thought was suggested by Lachlan’s warktable finitely
homogeneous structures [La], much of which predates thk ingCHL], and
provided an additional ideological framework for that pape

In the context of stable finitely homogeneous structuresghalysis in terms
of families parametrized by dimensions was carried out i) [t€f. [CL, La]),
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but was not known to go through even in the totally categboaae. Harring-
ton pointed out that this reversal would follow immediatiEtyn compactness
if one were able to work systematically within an elemenfamynework [Ha].
This idea is implemented here: we will replace the originass of “smoothly
approximable structures” by an elementary class, a progdr. Part of our
effort then goes into developing the structure theory ferdbtensibly broader
class.

From the point of view of permutation group theory, it is mafuo begin
the analysis with the case of finite primitive structuresisThas carried out
using group theoretic methods in [KLM], and we rely on thaalsteis. How-
ever, there are model theoretic issues which are not imnedgisesolved by
such a classification, even for primitive structures. Fatance, if some fi-
nite graphs~,, are assumed to be primitive, and to have a uniformly bounded
number of4-types, our theory shows that an ultraprodG¢tof the G,, is bi-
interpretable with a Grassmannian structure, which doésyear to follow
from [KLM] by direct considerations. The point here is thiafi,, is “the same
as” a Grassmannian structure in the category of permutatioups, then it
is bi-interpretable with such a structure on the model tegéoside. To deal
with families, one must deal (at least implicitly) with thaiformity of such
interpretations; se§B.3, and the sections on reducts. It is noteworthy that our
proofin this case actually passes through the theory forimmipive structures:
any nonuniform interpretation of a Grassmannian struaiar@,, gives rise to
a certain structure o6, a reduct of the structure which would be obtained
from a uniform interpretation, and one argues that finiterapimations (on
the model theoretic side) t8* would have too many automorphisms. In other
words, we can obtain results on uniformity (and hence dffigg} by ensur-
ing that the class for which we have a structure theory issdlasder reducts.
This turns out to be a very delicate point, and perhaps th@extion with
effectivity explains why it should be delicate.

1.2 RESULTS

A rapid but thorough summary of this theory was sketched iBf], with oc-
casional inaccuracies. For ease of reference we now rdpeatdin results of
the theory as presented there, making use of a considerabierd of special-
ized terminology which will be reintroduced in the presewrkv The various
finiteness conditions referred to are all given in Definitibh.1.

Theorem 1 (Structure Theory)
Let M be a Lie coordinatizable structure. TheW can be presented in a
finite language. Assumingt is so presented, there are finitely many de-
finable dimension invariants fok1 which are infinite, up to equivalence of
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such invariants. I is a set of representatives for such definable dimension
invariants, then there is a sentenge= ¢, with the following properties:

1. Every model ofp in which the definable dimension invariants@fare
well-defined is determined up to isomorphism by these ianési

2. Any sufficiently large reasonable sequence of dimensiarians is re-
alized by some model ¢f

3. The models op for which the definable dimension invariants@fare
well-defined embed homogeneously intb and these embeddings are
unique up to an automorphism &f.

There are a considerable number of terms occurring herehwtiltbe de-
fined later. Readers familiar with “shrinking” and “streilety” in the sense
of Lachlan should recognize the situation. Definable direnmvariants are
simply the dimensions of coordinatizing geometries whichu in families
of geometries of constant dimension; when the appropriatensions are not
constant within each family, the corresponding invariartsno longer well-
defined. A dimension invariant is reasonable if its paritgasnpatible with
the type of the geometry under consideration; in particutdinite values are
always reasonable.

The statements of the next two theorems are slight defoomstf the ver-
sions given in [HrBa]. We include more clauses here, and wededinitions
which vary slightly from those used in [HrBa].

Theorem 2 (Characterizations)
The following conditions on a modaH are equivalent:

. M is smoothly approximable.

. M is weakly approximable.

. M is strongly quasifinite.

. M is strongly4-quasifinite.

M is Lie coordinatizable.

. The theory oM has a mode/M* in a nonstandard universe whose size
is an infinite nonstandard integer, and for which the numifenternal
n-typess;, (M*) satisfies

oOUAWN P

for some finitec, and in which internaln-types andn-types coincide.
(Heren varies over standard natural numbers.)

The class characterized above is not closed under redusighé& closure
under reducts we have:

Theorem 3 (Reducts)
The following conditions on a modaH are equivalent:



6 INTRODUCTION

. M has a smoothly approximable expansion.

M has a weakly approximable expansion.

M is quasifinite.

M is 4-quasifinite.

. M is weakly Lie coordinatizable

. The theory ofM has a mode/M* in a nonstandard universe whose size
is an infinite nonstandard integer, and for which the numbieinternal
n-typess’, (M*) satisfies:

N

for some finite. (Heren varies over standard natural numbers.)

On the other hand, once the class is closed under reductslitsed under
interpretation, hence:

Theorem 4 (Interpretations)
The closure of the class of Lie coordinatizable structunedar interpreta-
tion is the class of weakly Lie coordinatizable structures.

An earlier claim that the class of Lie coordinatizable stuwes is closed
under interpretations was refuted by an example of DavidhEwehich will be
given below.

Theorem 5 (Decidability)

For any k& and any finite language, the theory of finite structures with a
mostk 4-types is decidable, uniformly in The same applies in an extended
language with dimension comparison quantifiers and Witclafuantifiers.
Thus one can decide effectively whether a sentence in swigadge has
a finite model with a given number ¢ftypes.

This is a distant relation of a family of theorems in permiotagroup theory
giving explicit classifications of primitive permutationayps with very few 2-
types. Dimension comparison quantifiers do not allow us tntjty over the
dimensions of spaces, but they allow us to compare the diom@nef any two
geometries. Witt defect quantifiers are more technigall| Definition 2.1.1).

Theorem 6 (Finite structures)
Let L be afinite language ankla natural number. Then the class of finite
structures having at mogt4-types can be divided into famili€s,, . . ., 7,
for some effectively computabtesuch that

1. Each familyF; is finitely axiomatizable in a language with dimension
comparison and Witt defect quantifiers.

2. Each familyF; is associated with a single countable Lie coordinatizable
structure M;. The familyF; is the class of “envelopes” aM;, which
are the structures described in Theorem 1, parametrizeddahf vary-
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ing definable dimension invariants (above a certain minibaind, with
appropriate parity constraints).

3. For M, N in F;, if the dimension invariants satisj(M) < d(N)
then there is a homogeneous embeddingv6fin A/, unique up to an
automorphism ofV.

4. Membership in each of the famili&s (and in particular, in their union)
can be determined in polynomial time, and the dimensiorriants can
be computed in polynomial time. Thus the isomorphism prolfethe
class of finite structures with a bounded number of types essolved in
polynomial time.

5. The cardinality of an envelope of dimensidris an exponential poly-
nomial ind; specifically, a polynomial in exponentials of the entriés o
d (with bases roughly the sizes of the base fields involvedg. stiuc-
ture IV;(d) which is the member of; of specified dimensionscan be
constructed in time which is polynomial in its cardinality.

Theorem 7 (Model Theoretic Analysis)
The weakly Lie coordinatizable structurad are characterized by the fol-
lowing nine model theoretic properties:

LC1. Ny-categoricity.

LC2. Pseudofiniteness.

LC3. Finite rank.

LC4. Independent type amalgamation.

LC5. Modularity in M4,

LC6. The finite basis property in groups.

LC7. General position of larg@-definable sets.

LC8. M does not interpret the generic bipartite graph.

LC9. For every vector spack interpreted inM, the definable dual’*
(the set of all definable linear maps &) is interpreted inM.

Some of these notions were first introduced in [HrBa], somes using
different terminology. In particular, the rank functionrist a standard rank
function, the finite basis property in groups (or “lineafjtyeduces to local
modularity in the stable case, and the general position f@nk/measure”)
property is an additional group theoretic property thasesiin the unstable
case, when groups tend to have many definable subgroupstefifidex. The
eighth condition is peculiarly different from the ninth. i$Hs a corrected
version of Theorem 6 of [HrBa].

David Evans made several contributions to the theory giesa,motably the
observation that the orientation of quadratic geometsessential, and bears
on the problem of reducts. The detection of all such pointsitgcal. Evans
also gave a treatment of weak elimination of imaginariegiedr geometries,
in [EvSI].
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We will say a few words about the development of this mateuisihg tech-
nical notions explained fully in the text. The first author @ading [KLM]
understood that one could extract stably embedded ge@sétom the anal-
ysis of primitive smoothly approximable structures givaere, and that the
group theory gives a decent orthogonality theory (but tibagonality the-
ory given here will be based more on geometry than on groupryheThese
ingredients seemed at first to be enough to reproduce therdidb-Ziegler
analysis, after the routine verification that the necesgaometrical finiteness
principle follows from Higman'’s lemma; all of this follows¢ lead of [AZ1],
along the lines developed in [HrTC]. An attempt to implemtri$ strategy
failed, in part because at this stage there was no hint oftaffuality.”

The second author then produced affine duality and gave aletempoof
of quasifinite axiomatizability, introducing some furthraodifications of the
basic strategy, notably canonical projectives and a clasalysis of the affine
case. The theme in all of this is that one should worry everenatout the
interactions of affine geometries than one does in the stalske. This can per-
haps be explained by the following heuristic. Only the pctje geometries
are actually coordinatizing geometries; the linear anchaffieometries are
introduced to analyze definable group structures, in keppith the general
philosophy that structures are built from basidimensional pieces, algebraic
closure, and definable groups. Here higher dimensionalpgrate not needed
largely because of the analog of 1-basedness, referredtw be the finite ba-
sis property. The developments that go beyond what is nefedegliasifinite
axiomatizability are all due to the second author. The esitenof a consid-
erable body of geometric stability theory to this contex¢ssential to further
developements. The high points of these developmentsr as fapplications
are concerned, are the analysigeductsand its applications to issues ef
fectivity. It may be noted also that the remarkable quadratic geossetave
been known for some time, and play an essential role in [KLiMparticular.
In our view they add considerably to the appeal of the theory.

The treatment of reducts requires a considerably more edtdovansference
of techniques of stability theory to this unstable settimgtwould be required
for the quasifinite axiomatizability alone. This would netindispensable for
the treatment of structures already equipped with a Lie dioatization; but
to apply these results to classes which are closed undepiatation requires
the ability to recognize an appropriate coordinatizatstarting from global
properties of the structure; thus one must find the modelrétigocontent of
the property of coordinatizability by the geometries ondhan

Our subject has also been illuminated by recent develommecbnnection
with Shelah’s “simple theories,” and is likely to be furthiduminated by that
theory.

Various versions of this material, less fully worked outyédeen in circu-
lation for a considerable period of time (beginning withewtvritten in Spring
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1990) and have motivated some of the work in simple theotieparticular,
versions of sections 5.1 [KiP], 5.4, and 6.1 [PiGr] have bebtained in that
very general context; all of this rests on the theoreticahftation provided by
the original paper of Shelah [ShS] and subsequent work by[Kiin

Some comments on the relationship of this theory to Shelahisple the-
ories” are in order. Evidently a central preoccupation & pinesent work is
the extension of methods of stability theory to an unstablgext. Stability
theory is a multilayered edifice. The first layer consists tifesory of rank and
the related combinatorial behavior of definable sets. Th lager includes
the theory of orthogonality, regular types, and modula@dtyd was initially
believed to be entirely dependent on the foundational layiés precise form.
One of the key conclusions of the present work is that is ptes$o recover
the second “geometric model theory” layer over an unsta#debBecause we
haveX,-categoricity and finiteness of the rank, our basic rankijhbecomes
as simple as possible; nonetheless, almost all of the “setawel” phenomena
connected with simplicity appear in our context with theil tomplexity—
the main exception being the Lascar group. It was perhapscthinbination
of circumstances that facilitated a very successful gdzaten of the “geo-
metric theory” to the simple context, once the first layer Wesught into an
adequate state by Kim’s thesis [KiTh].

As far as the present work is concerned, the development offigiently
general theory was often due to necessity rather than indigit example, if
we—or the creator of the finite simple groups—had been abdsd¢tude from
consideration the orthogonal geometries in characterstive would have
had a considerably simpler theory of generics in groupd) %&b = Stal
(cf. §6.1, Definition 6.1.9, and the Example following). Such aifred the-
ory would have been much less readily generalizable to thplsicontext; in
addition, under the same hypothesis, this simplified theayld have largely
obviated the need for the theory of the semi-dual cover.

A number of features of the theory exposed here have beenajized with
gratifying success to the context of simple theories, butestvave not. On
the positive side, one has first of all the theorem which wgioaily called
the independence theorerfihis name has become standard in the literature,
although in the present manuscript it was eventually remgitie type amal-
gamation property.” In any case this is still a misnomerhés amalgamation
involves a triple over a base rather than a pair. Compareotteniing “homo-
logical” description. Let/(n) be the space of-types, over some fixed base,
of independent:-tuples (whose elements are themselves finite sequences of
elements). We have “projection” maps : I(n) — I(n — 1) obtained by
deletion of one coordinate. The uniqueness of forking ibilta theory is the
statement that the induced maf2) — 1(1)? is injective We replace this by
an exactnesgroperty, characterizing the image bf3) in 1(2)® by minimal
coherence conditions.
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The first proof found for this theorem consisted of inspetctio the 1-
dimensional case, followed by an induction on rank. In therse of related
work, an abstract proof was found, assuming finite simplicdink and defin-
ability of the rank. This proof was later generalized by KimdaPillay, and
together with their realization of the relevance of the leaiggroup, it became
the central pillar of simplicity theory. 165.1 we retain the original clumsy in-
ductive proof. This may be of use in situations where siniylis not known
in advance.

The main pointin any case is not the proof of this theoremhmitéalization
that the uniqueness of nonforking extensions, which seasharthcteristic of
stability theory and essential to its fabric, can be replddensely often” with
an appropriatexistentialstatement.

The definition oimodularitycould largely be taken over from the stable case.
A new idea was required (c§5.4) to produce enough geometric imaginaries
for proof of the local—global principle; this idea survivieshe contemporary
treatment of canonical bases in simple theories. The comesegs of mod-
ularity for groups are not as decisive in general as in thblstease, even
generically, so we had to consider stronger variants. Tt@gmtion theorems
in rank one which use these properties serve to situate tkie gaometries
model theoretically to a degree. One would like to see thHeserems general-
ized, as Zilber's characterizations of modular groups vesttended from the
totally categorical to the strongly minimal case.

The strong presence of duality is also a new feature as faeanddel theory
is concerned. Initially it arose as a particular instancmstability, which we
sought to circumscribe and neutralize as much as possibthefutset duals
must be recognized in order to render the basic geometeabyystmbedded;
the dual space of a finite vector space is also a prime exarhplaanuniform
interpretation. Eventually duality also emerged as a pastbol, useful for
certain purposes even in contexts where stability is ihteEssumed: se§b.5,
on the semi-dual cover, and also the treatment of secorel-guentifiers in
Chapter 8, dealing with effectivity. It seems possible tivagar duality, like
modularity, has some significance in general model theofietmeworks, but
at this time our situation remains isolated, awaiting fartitiumination.

The proof of Theorem 2 will be largely complete by the end®b (see the
discussion irg3.5 for more on this). The final sectiof84) contains some
retrospective remarks on the structure of our development.

Various versions of this paper have benefited from remarks bariety
of model theorists. We thank particularly Ambar Chowdhubgyvid Evans,
Bradd Hart, Dugald Macpherson, Anand Pillay, and Frank \eador their
remarks. We thank Virginia Dunn, Amélie Cherlin, and Jakaddiner for
various forms of editorial and technical assistance. Tisedinthor also thanks
Amaal for diverting correspondence during the preparaifahe final version.
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Basic Notions

2.1 FINITENESS PROPERTIES

We discuss at length the various finiteness properties tobsidered here.

We will make use of nonstandard terminology as a conveniegta¥ deal-
ing with “large” integers; see [FJ, Chapter 13] (in partanlthe examples
treated therein, i§13.5) for a full presentation of this method. The method is
based on the idea of replacing the standard model of setytlirearhich one
normally works by a proper elementary extension, the “g@arent,” in which
there are “new” (hence, infinite) integers. Since the exteris elementary, all
notions of set theory continue to have meaning, and (moress) their usual
properties. In particular, for any sStoccurring in the enlargement, there is
an associated collection of “all” subsets®in the sense of the enlargement;
this will not actually contain all subsets §fin general, and those which are in
fact present in the enlargement are called “internal” (tthes could be called
“external,” but we do not use them). The word “internal” isedsin other
related ways: we may call an internal set which is finite in $kase of the
enlargement either “internally finite,” or “nonstandarélhjite.” A subset of an
internally finite set need not be internal, but if it is, it Ikdle internally finite.
Again, we refer to the presentation by Fried and Jarden rJhfe essential
foundational material.

2.1.1 Quasifiniteness, weak or smooth approximability

Definition 2.1.1. Let M be a structure.
1. M is Xy-categoricalor oligomorphig if for eachn M has finitely many
n-types.
the same language).
3. M is k-quasifiniteif in a nonstandard extension of the set theoretical uni-
verse it is elementarily equivalent to an internally finitedel with finitely
many internak-types.
4. M is quasifiniteif in a nonstandard extension of the set theoretical uni-
verse it is elementarily equivalent (in the original langed.) to an inter-
nally finite L*-structure with a finite number of internattypes, for allk.
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5. A finite substructurdy/” of M is k-homogeneouim M if all 0-definable
relations onM induce0-definable relations ooV, and for every pair of
k-tuplesa, b in N, a andb have the same type i if and only if they have
the same type inM.

6. A structureM is weakly approximabldy finite structures if it if,-
categorical, and every finite subs&t of M is contained in a finite sub-
structure A/ which is| X |-homogeneous ii.

7. A structureM is smoothly approximablby finite structures if it ifXg-
categorical, and every finite subsgtof M is contained in a finite substruc-
ture \ which is|\/|-homogeneous itM.

8. M is stronglyk-quasifiniteif in a nonstandard extension of the set the-
oretical universe it is elementarily equivalent to an imaflly finite model
with finitely many internak-types, which coincide with thietypes.

9. M is strongly quasifinitéf in a nonstandard extension of the set theoret-
ical universe it is elementarily equivalent (in the origit@nguagel) to an
internally finite L*-structure with a finite number of intern&types, which
coincide with the-types, for allk.

Remarks 2.1.2

We use freely the usual characterization®gfcategoricity. Pseudofiniteness
is also commonly referred to as tli@ite model property Quasifiniteness
strengthens pseudofiniteness (which is perhaps etymalbgiacorrect), as
one sees by expressing pseudofiniteness in nonstandasl té@iso implies
No-categoricity, since the condition on interrkatypes is equivalent to a sim-
ilar condition on internal formulas with free variables, and this includes the
standard formulas. Decoding the nonstandard formulafieids:

3’. A structureM is k-quasifinite if and only if there is a finite numbé&¥
such that for an arbitrary sentengdrue in M, there is a finite structure
N satisfyingy in which there are at mo#¥ formulas ink free variables.

4’. A structureM is quasifinite if and only if there is a function: N — N
such that for any, and an arbitrary sentengetrue in M, there is a finite
structureN satisfyingy in which there are at most(k) formulas ink
free variables fok < n.

For strong quasifiniteness one specifies the formulas rdtharthe number
of formulas.

Note that a weakly approximable structuké is strongly quasifinite, using
the formulas which defing-types in a finitek-homogeneous substructure.

One gets an equivalent notion by bounding types rather tbanulas, or
equivalently, by bounding the number of orbits of the autgshtsm group
of N on k-tuples. This concept would seem to be the most natural ame fr
a purely permutation group theoretic standpoint. The déeimiof (strong)
quasifiniteness implies (strong}quasifiniteness for alk, but the converse
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is not immediate. As noted ifil, Theorem 2, we will show that (strond)
quasifiniteness (or using only [KLM]: (strong}quasifiniteness) already im-
plies (strong) quasifiniteness, so in particular this cosweloes hold. One
might have the impression th&g-categorical pseudofinite structures are strong-
ly quasifinite in general, but this is very far from the casée Qeneric graph
seems to be the canonical counterexample; it is not quasifiiiihe point is
that while one might reasonably expect the propergyety formula irk vari-
ables is equivalent to one in a specified finite set of forminlasvariables to

be first order, it is not, in general.

As defined here all of these notions are invariant under atésng equiv-
alence. WhenM\ is countable, weak and smooth approximability can be ex-
pressed somewhat more concretely in the form &t a union of a countable
chain of finite substructure$t; such thatM; is i-homogeneous (in the weak
case), ot M;|-homogeneous (in the smooth case), respectively.

Digression 2.1.3

It is generally assumed that therenistgoing to be a coherent structure theory
for Ng-categorical pseudofinite structures in a finite languath®ugh there
is no solid evidence for this. One complication is that itraego be quite
hard in practice to determine whether a given finitely honmegeis structure
is pseudofinite. For finitely homogeneous structures, psfiniteness holds
in the stable case [La], fails in cases involving nondegategpartial orders,
and is obscure in most other cases, apart from those amenairiebabilistic
analysis. The test case would be whether the generic tadingg graph is
pseudofinite.

2.1.2 Geometries

We have described most of the finiteness notions occurrirtgdrstatement
of Theorem 2, with the exception of the technical notion afrctinatizability
by Lie geometries. This notion in its most useful form inedvsome detailed
properties of specific geometries. The relevant collectibgeometries was
given almost completely in [KLM], with the exception of what call affine
duality, which was not needed there. In addition a certain cooridiatin
theorem was proved there, which requires a further layingfdrands before
it acquires the form most useful for a model theoretic anglyg/e will now
present the relevant geometries, which we give first in thie#ar forms, and
then in projective and affine versions. It should be borne indnthat ge-
ometries are understood to be structures in the model ttiesense, and not
simply lattices or combinatorial geometries.

Definition 2.1.4. A weak linear geometris a structure of one of the follow-
ing six types, and éinear geometrys an expansion of a weak one by the
introduction of a set of algebraic constantsA©4.
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. A degenerate space: a pure set, with equality alone.

We tend to ignore this case, as our claims are trivial in tbigtext. One
may perhaps pretend that it is a vector space over a field ef drdand
that linear dependence over a set is membership; in thisitoageals its
projectivization and has no affine version.

. A pure vector space(V, K), with K a finite field andV a K-vector

space, with the usual algebraic structure.

Scalar multiplication is treated as a map fréfnx V to V rather than as
a set of unary operators. This allows the Galois groufi ab act on the
structure.

. A polar space:(V U W, K, L; 8), whereK is a finite field,L a K-line

(1-dimensional -space)V andW are K-spaces, and there is a nonde-
generate bilinear pairing : V x W — L.

We write V U W rather thanl/, W because we tredf U IV as a set on
which there is an equivalence relation with two classesgthepreserv-
ing the symmetry betweeW andW. In particular, the domain of is
actually(V x W)U (W x V), andj3 is symmetric.

. An inner product space(V, K, L, ) where K is a finite field,L a K-

line, 8 : V x V — L anondegenerate sesquilinear form with respect
to a fixed automorphism with 02 = 1, and eitheros is trivial and 3 is
symplectic, ow is nontrivial andg is hermitian with respect te.

(The symmetric case is included in the following class.)

. An orthogonal space(V, K, L, q) whereK is a finite field,L a K-line,

andgq a quadratic form ori/ with values inL, whose associated bilinear
form is nondegenerate.
This point of view allows a treatment independent of the abgaristic.

. A quadratic geometry(V, Q, K; By, +q, —q, Bg,w), whereK is a fi-

nite field of characteristic 2V is a K-vector spacepy is a nondegen-
erate symplectic bilinear form oW, @ is a set of quadratic formg on
V for which the associated bilinear forgtv + w) + ¢(v) + g(w) is By,
chosen so that acts regularly onQ by translation, with3q, +¢q, —¢
giving the interaction betwea and V', andw specifying the Witt defect
[CoAt], which is fairly obscure in the infinite dimensionalse.

There is, evidently, a considerable amount to be elucidatee.

In the first place, there are always quadratic foknfer which the as-
sociated bilinear forng(v + w) + ¢(v) + ¢(w) is the given symplectic
form 3y, and any two of them differ by a quadratic form which is ad-
ditive; this is just the square of &-linear map. The full linear dual
V* acts regularly by — ¢ + A2 (¢ € Q, A € V*) on this set of
quadratic forms, and via the identification Bfwith a subspace of *,
coming from the given symplectic inner produst, we get a semireg-
ular action ofV' on this space of quadratic forms will be one of
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the V-orbits. We takeBg : @ x V' — K to be the evaluation map
Bolg,v) = q(v), while+¢ : V x Q — Q is the regular action of” on

Q and—q : Q x Q — V the corresponding “subtraction” map; both of
these are definable fropy,, e.g.:v +¢ ¢ = ¢ + A2 where), is the lin-
ear formgy (v, -). The mapw(q) is not definable fronBg. In the finite
(2n) dimensional case it will give the Witt defeedt of ¢, which is the
difference between and the dimension of a maximal totaljyisotropic
subspace; this is eith@ror 1. In the infinite dimensional case we require
a different description. Faf1, ¢2 € Q, v/q1 + g2 is a linear function of
the form A, for a uniquev € V. ldentifyingv and A,, we may write
4(v/@ T g2) € K furthermore, we find (var + &) = a2V T &),
which translates tgv, v) = 0. We will write [¢1, ¢2] for ¢1 (/a1 + ¢2)-
Forqi,q2,q3 € Qif v = /g1 + q2, w = /g1 + g3, anda = (v, w)
we find [q1, q2] + [q1, 93] + [q2, 3] = 7() with 7(2) = 22 + z the
Artin—Schreier polynomial. Hence the relatigp, ¢2] € 7[K] is an
equivalence relation with two classes.has the effect of naming these
classes as unary predicates. We will constswses a function fromg) to
{0,1} C K. In particular, the Witt defect is taken modulo 2, which is
quite convenient since it is then additive with respect tba@gonal sums.

Remarks 2.1.5

1. In the case of polar geometries we may wiite= V* andV = W*,
informally, but as we are dealing with infinite dimensionghses this should
not be taken too literally. One can give this a precise sehnsed associates
with each ofVV and W the corresponding weak topology on its companion,
making each the continuous dual of the other.

2. We useK-lines L rather thank itself in order to allow certain permu-
tations of the language as automorphisms. The point is thatd a bilinear
form or a quadratic form and is a scalar, themf is another form of the
same type with the same automorphism group. It will be comrrdno view
two structures with the same underlying set whose formedif{ a scalar as
isomorphic. Ifa is a square they are isomorphic via multiplication\gy, but
in our formalism the identity map on the space extends to@masphism by
allowing « to act onL. The same effect would be achieved by replacing the
L-valued formf by the set ofK -valued forms{a.f : « € K*} and allowing
scalars to act on the set of forms.

3. We can view a geometry as having as its underlying set @wveptce in
most cases, or a pair of spaces in duality in the polar cagbeaet(V, @) in
the quadratic case, with the additional structure encoaed <.

Definition 2.1.6

1. Anunoriented weakinear geometry is defined as one of the six types of
geometry listed above, with the proviso that in the sixtrecas omit the
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Witt defect functiom.

2. Abasic lineageometry is a linear geometry in which the element& of
and L are named, and in the polar case the two spdcemnd Il are named
(or, equivalently, treated as unary predicates).

Definition 2.1.7

1. A projective geometrys the structure obtained from a linear geometry
by factoring out the equivalence relation defined by(arl= acl(y), with
algebraic closure understood in the model theoretic sense.

2. A semiprojective geometrg the structure obtained from a basic linear
geometry by factoring out the relatiat = 3%, where Z is the center
of the automorphism group, that is, the set of scalars respgany addi-
tional structure present. For example, in the symplect®ecaéhe symplectic
scalars aret1.

After we check quantifier elimination in basic linear geories, it will be
clear that this algebraic closure operation is just lingems(in the sense ap-
propriate to each case) and that our projective geometgdadeed projective
geometries in the nonquadratic case; in the polar case wéavie two pro-
jective space$PV, PV*) with a notion of perpendicularity.

Definition 2.1.8. If V' is a definable vector space antlis a definable set,
then A is anaffine V-space ifV’ acts definably and regularly od. If J is
a linear geometry and’ is its underlying vector space (or one of the two
underlying vector spaces in the polar case) theraffine geometryJ, A)
is a structure in which/ carries its given structure and carries the action
of V, with no further structure.

We will deal subsequently with the model theoretic propsriof linear,
affine, and projective geometries, but first we will deal vilile notion of co-
ordinatization that enters into the statement of Theorero@ Chapter 1

2.1.3 Coordinatization

Definition 2.1.9. Let M C N be structures with\M definable inV/, and let
a € N*4 represent the set (its so-called canonical parameter).
1. M is canonically embeddeid N if the 0-definable relations of\1 are
the relations onM which area-definable in the sense 4f.
2. M is stably embeddeih N if every \/-definable relation on\ is M-
definable, uniformly. The uniformity can be expressed elblgarequiring
that the form of the definition ovekt be determined by the form of the
definition over\, or by requiring that the same condition apply to all ele-
mentary extensions of the pdit1, \V).
3. M is fully embeddedn N if it is both canonically and stably embedded
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in V.

Definition 2.1.10. A structureM is coordinatized by Lie geometridst car-
ries a tree structure of finite height with a unique, 0-defieabot, such that
the following coordinatization and orientation propesigold.

1. (Coordinatization) For eacla € M above the root eithed is algebraic
over its immediate predecessor in the tree ordering, oralexists < a
and ab-definable projective geometry fully embedded ioV such that
either

() a € Jy; or

(i) thereiscin M withb < ¢ < a, and ac-definable affine or quad-
ratic geometry(J.., A.) with vector partJ., such thatu € A, and
the projectivization of/. is J,. (Note that the projectivization of
a symplectic geometry in characterisfianay have both quadratic
and affine geometries attached to it in this way.)

2. (Orientation) Ifa,b € M have the same type and are associated with
coordinatizing quadratic geometriek,, J, in M, then there is no defin-
able orientation-reversing isomorphism.&f and.J, as unoriented weak
linear geometries; in other words, if a definable map betwibem pre-
serves everything other than then it also preserves.

Example 2.1.11
Let A be the infinite direct sum of copies ¢f/p?Z) with p a fixed prime.
One coordinatizes this by placirigat the root, as a finite set, then putting
the projectivization of

Alpl ={a € A:pa=0}

above it, andA[p]\{0} itself above that (covering each projective point by
the corresponding finite set of points above it); finally, @uls A\ A[p];
above eaclr € A[p]\{0} one has the affine spagg, = {z € A : px = a}.
This gives a tree of height 4, with layers of the form: finitegjpctive, finite,
affine, respectively.

We also use the briefer expressibie coordinatizedvith the same mean-
ing. However, we make a rather sharp distinction betweeresience of
a coordinatization, as defined above, and coordinatizgliilithe following
more general sense.

Definition 2.1.12. The structureM is Lie coordinatizablé it is bi-interpretable
with a structure having finitely many 1-types which is cooatized by Lie
geometries.

At this point the notions involved in Theorem 2 of Chapter Yéall been
defined. In Theorems 3 and 4 we also use the notiomeak Lie coordinatiz-
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ability, which involves a notion of Lie coordinatization in whicletbrientation
condition is suppressed.

2.2 RANK

2.2.1 The rank function

Definition 2.2.1. Let D C M be definable. Aank function(with finite values,
or the symboto if undefined) is determined by the following conditions:

1. rk D > 0if and only if D is infinite.
2. tkD > n + 1if and only if there are definabl®,, Do, «, f with 7 :
D1 — D, f: Dy — D5 such that

(i) rkr=1(d) =0ford e D;
(i) rk Dy > O;
(iii) rk f=1(d) > nford € D,.

If we are not in theX-categorical case then these definitions should take
place in a saturated model, and variations are possible ugpe-definable
sets. We work in th&,-categorical setting. We writk(a/B) for the rank of
the type ofa over B, which is the minimum ofk D for a € D, D B-definable.

In practiceB is finite and the type reduces to tlieusof a over B, which is
the smallesBB-definable set containing

Our definition of rank can be applied eithertd or to M°9, and the latter is
the more useful convention in the long run. When the distinds significant,
in connection with specific structurgegl, we will refer tork computed in\
aspre-rank and the rank computed i1°? asrank.

Lemma 2.2.2

1. rk D = 0if and only if D is finite.

1". rk(a/B) = 0if and only ifa € acl B.

2. rk(D1 U Dg) = max(rk Dl, rk Dg)

2'. (Extension property) 1D is B-definable, then there is a complete type
over B containingD and having the same rank.

2. 1If By C By then rKG,/BQ) < rk(a/Bl).

Proof. Claims (., 2) are straightforward and {, 2) are direct consequences.
Claim (2"") corresponds to the law: “iD; C D, thenrk Dy < rk Dy”; this is
included in (2). ]

Lemma 2.2.3. Let M be Ny-categorical. Then the following are equivalent
fora,b € M:

1. rk(a/b) > n + 1.
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2. There area’, c with o’ € acl(abc) — acl(be), and rka/a’be) > n.

Proof. Let D be the locus of: overb.

(1) = (2). Suppose that : D; — D has finite fibersf : D; — D5 has
fibers of rank at least, and D is infinite, with D1, D5, 7, andf c-definable.
Takea’' € Dy — acl(be), anda; € f~1(a’) with rk(a;/a’bc) > n (using the
Extension Property). Sety = wa;. Then we have’ € acl(agbc) — acl(be),
and agk(a; /a’be) > n we findrk(ag/a’be) > n. Furthermore, ap(ag/b) =
tp(a/b) we can replace, by a, replacinga’, ¢ by other elements.

(2) = (1). Leta’, c have the stated properties. LiB{ be

{(x,) : tp(wy/bc) = tp(aa’/be)}

and letr : Dy — D, f : D; — D, be the projections of); onto the
first and second coordinates, respectively. Tlieh(a’) contains(a, a’) and
rk(a/a’be) > n, so easilyf~1(a’) has rank at least and hence the same
applies to all fibers of . It follows easily thatD,, D, f, = have the required
properties for (1). ]

Lemma 2.2.4. Let M be Yy-categorical. If rKa/bc) and rk(b/c) are finite,
then ri(ab/c) is finite and

rk(ab/c) = rk(a/bc) + rk(b/c).

Proof. We use induction om = rk(a/bc) + rk(b/c), and the criterion of
Lemma 2.2.3.

We show first thatk(ab/c) < n. Letd, e satisfy:e € acl(abed) — acl(cd).
We will show thatrk(ab/cde) < n. We have eithee € acl(abed) —acl(bed) or
e € acl(bed) — acl(ed) and correspondingly eithek(a/bede) < rk(a/be) or
rk(b/cde) < rk(b/c). In either case induction applies to gikdab/cde) < n.

Now we show thatk(ab/c) > n. If rk(b/c) = 0 we observe that

rk(ab/c) > rk(a/c) > rk(a/bc) = n.

Assumerk(b/c) > 0, and taked’, d with ¥’ € acl(bed) — acl(ed), such that
rk(b/b'ed) = rk(b/c) — 1. Using the Extension Property we may suppose also
thatrk(a/bb'cd) = rk(a/bc). By induction we findrk(ab/b’'cd) = n — 1 and
hencerk(ab/c) > n. |

Corollary 2.2.5. If rk D = 1, then acl defines a pregeometry fn that is, a
closure property of finite character with the exchange prope

Definition 2.2.6. We say that andb are independentverC' if
rk(ab/C) = rk(a/C) + rk(b/C);
equivalently, rka/bC) = rk(a/C).
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Lemma 2.2.7. The independence relation has the following properties:

1. Symmetry: Ith andb are independent over, then the same applies to
anda overC.

2. If ais algebraic ovebC, thena is independent frorh overC' if and only
if it is algebraic overC.

3. The following are equivalent:

(i) a andbc are independent over;

(i) a andb are independent ovdr'c, anda andc are independent over
E.

Proof. Each of these statements is clear on the basis of at leastfahe
criteria given in Definition 2.2.6. ]

This theory is relevant to our geometries, as they all hamk ta This will
be verified below.

2.2.2 Geometries

Lemma 2.2.8.If J is a basic linear geometry then it has elimination of quan-
tifiers.

Proof. One checks that any suitably normalized atomic type idzedl In
other words, using the basic universal axioms appropriatach case, one
shows that any existential formula in one variable can baced to a standard
form, which is either visibly inconsistent or always reatliz As we are dealing
with basic geometries, the base field has been incorponatiethe language,
and we deal with structures whose underlying universe is\efaf four types:
degenerate, a vector space, a polar pair of spaces, or aatjoguhtir (V, Q);
these carry, variously, linear, bilinear, and quadratiectire. We may ignore
the degenerate case and we defer the case of a quadratictgetinibe end.
By taking the relevant bilinear or quadratic form to be idesity zero in cases
where it is not present, and expanding the domain of the typesubspac®&
(or pair of subspaces in the polar case) which is nondegenetenever that
notion is meaningful (this includes the polar case), we n&syme the type to
be realized has the following form:

(1) v ¢ B

(2) Bz, b) = A(b)

(3) q(z) = a

The justification for(1) is that the excluded case is trivial, and the point of

(3) is that any remaining conditions ancan be expressed in terms of the
associated bilinear form i2). Furthermore, the conditiof®) is satisfied by
an element of3, either because it is vacuous, or becaidsis nondegenerate,
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and after translation by such an element we get a similaesystith (1, 3) as
above and?2) replaced by

(2" z € Bt

There is then nothing more to check unlgss nondegenerate. In this case one
needs to know that takes on all possible values in the orthogonal complement
of any finite dimensional space. The following argument eggphithout look-
ing at the classification of quadratic forms on finite dimensil spaces.

Let Ky C K be the set of values such that; takes on the value in the
orthogonal complement to any finite dimensional space.fE&§j contains a
nonzero element, is closed under multiplication by squanedis closed under
addition asg(x + y) = q(z) + q(y) whenz, y are orthogonal with respect to
the associated bilinear form. It follows thaly = K.

Returning to the quadratic case, if the domairof the type meets the set
Q, then this is covered by the orthogonal case. Otherwise, isedid to
the domain an elementof @ (we will have occasion later, in the treatment
of imaginary elements, to revert to this point); the quastifree type of the
extension is determined by the actiongobn B, and thew-invariant, both of
which may be specified arbitrarily. ]

Corollary 2.2.9. The definable linear functions on the vector sp&cén a
linear geometry are those afforded either by the inner podif one is
given, or is derivable from a quadratic form), or by the dualthe polar
case.

Proof. One checks that a definable subspace of finite codimensiuaios
the kernel of a finite set of linear forms encoded directlyhia structure (via
a bilinear form, or polarity). Then any linear form whoserrcontains the
kernels of these forms is expressible as a linear combimafithem. ]

Lemma 2.2.10.The linear, affine, and projective geometries are all of pre-
rank1.

Proof. It suffices to handle the basic linear case, and we can reteapad-
ratic geometries to the orthogonal case. By quantifier elitidn, algebraic
closure is then linear span in the appropriate sense, whithe polar case
takes place in two disjoint vector spaces. Thus the comipataf rank is un-
affected by the fact that the vector space structure may heee enriched.
|

In the next section we discuss weak elimination of imagesmmnd one may
then replace “pre-rank” by “rank” in the preceding.

Corollary 2.2.11. If M is Lie coordinatizable, thes has finite rank, at most
the height of the coordinatizing tree.
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Corollary 2.2.12. If J is a linear, projective, or affine geometry, angdb are
finite sequences with gel) Nacl(b) = C, thena andb are independent over
C.

Proof. Note that by definition the affine geometries include thedirmodel as
a component. Inthe linear nonquadratic case we have ndliagthe algebraic
closure is the linear span; the analogous statement hottls jprojective case.
So in the linear and projective cases this is essentiallgtarstent about linear
algebra.

The affine and quadratic cases are similar: they may be esquidn the
form (J;, A), whereJ; is linear andJ; (or in the polar case, part of) acts
regularly on the additional set. A subspace is either an ordinary subspace of
Ji (which may be polar) or a paiB;, B,), whereB; is linear andB,, is an
affine copy ofB; (with the usual modification in the polar case).atfl(a) N
acl(b) contains an affine (or quadratic) point then we are still eSaky in
the linear case; otherwise, we are working with affine din@mswhich is1
greater than the corresponding linear dimension. In thég dis important
thatacl(a) andacl(b) have a linear part determined by their affine parts (this
should be rephrased slightly in the polar case, but the faetthe same). 1

2.2.3 Adigression

The remainder of this section is devoted to additional ré&aman rank notions
which are far removed from our main topic.

Definition 2.2.13. Let M beR,-categorical. Then ranks tkvalued inN U {co}
are defined as follows:

1. rko(D) = 0if D is finite, and isco otherwise.
2. ko (D) > 0ifand only if rkg(D) = oo for 5 < a.
3. ko (D) > n+ 1ifand only if there arer : D1 — D, f : D1 — Dy
definable, with
(i) rko(7=1(d)) = 0ford € D;
(ii) rka(f~1(d)) > nford € Dy;
0

(iii) ko (D2) > 0.

Remarks 2.2.14

1. In the superstable case working in saturated models wite-tlefinable
sets, forD complete andy arbitrary there is @-definable quotienD’ with
rk,, D' finite and maximal. Writingk, (D) for rk, (D’) we will haveU (D) =
>, werk, (D).

2. The rankgk,, are additive and sets aefrank1 carry a geometry.



IMAGINARY ELEMENTS 23

Definition 2.2.15. If 0 < rk, M < oo, we call«a thetier of M. According to
the definition of rk, there is at most one tier fok1.

Lemma 2.2.16. There are pseudofinit&-categorical structures of arbitrarily
large countable tier, as well as structures of the same tyifie wo tier.

Proof. We deal first with countable tier. We have examplesdce 0. In all
other cases we proceed inductively, writing= sup(8,, + 1). We take count-
able pseudofinit&,-categorical structure®,, of tier 5, with rkg, (D)) >
n(n + 1) (replaceD,, by a power if necessary) and encode them iBt§ for
a new setD as follows.

We take initially a languagé* with sortsD, D1, Da, . . ., whose restriction
to D,, is the language ob,,. We also add generic mags : [D]"*! — D,;
here the notatiofD]’ refers to unordered sets. The axioms are the axioms of
D, relativized to that set, together with the following:

(+) Fort € [D]™ and anyh; : [t]* — D, there is
a € D forwhich f;(s U {a}) = h;(s) for s € [t]".

This theory hadD-quantifier elimination and is complete, consistent, &g
categorical when interpreted as a theorynfwith D,, encoded inM*®4. For
the finite model property, we begin with finite approximaseoD; fori < N,
and we letD be large finite,f,, random; most choices satisfy). As D"*!
maps ontaD,, definably, we findkg, D > n. Thusrk, D > 1; one can show
rk, D = 1 and the tier is exactlyt.

To get no tier we use sor9,, and functionsf,, : D)} — Dzil, satisfying
the analog ofx). Thenrk,,(D,,) > nrk, D, for all n and easilyk,, D,, =
oo for all n anda.. We view this structure as encodeditj®. |

2.3 IMAGINARY ELEMENTS

Definition 2.3.1. M hasweak elimination of imaginarig§for all a € M9,
we have: € dcl(acl(a) N M).

Lemma 2.3.2.If D is0-definable inM andD(a) = acl(a)ND fora € M*9,
then the following are equivalent:

1. Dis stably embedded it and admits weak elimination of imaginaries.
2. Fora € M®4,tp(a/D(a)) implies ta/D).

Proof. (1) = (2). Let ¢(z,y) be a formula withz a single variable (of
the same sort ag). The relationy(a, y) defined onD is D-definable and
hence has a canonical parametgin D°?; note thatd, € acl(a). By weak
elimination of imaginaries there B C D(dy) C D(a) such thatd, € dclB
and hencep(a, y) is B-definable:p(a,y) <= ¢*(b,y), withbin B. This
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last fact is part ofp(a/B) and determines the-type ofa over D. Thus(2)
holds.

(2) = (1). If @ € D9, thena € dcl(D), and hence by (2) we have
a € dcl(D(a)), as required for weak elimination of imaginaries.

Now suppose thap(z, a) is a formula implyingz € D, wherez is a string
of free variables. Led = D(a). If tp(b/A) = tp(a/A), theny(z,a) and
o(z, b) are equivalent, by (2). Thus(x, a) is D-definable. ]

Lemma 2.3.3. Let J be a linear, projective, or affine geometry. leet J°9,
andA = acl(a) N J. Then acla) = acl(A).

Proof. We may take/ basic. Writea = f(b) with b in J and f 0-definable.
Takebd’ independentfrorh overacl(a) in the sense df2.2.1, withtp(b'/ acl(a)) =
tp(b/ acl(a)).

We claim that) andd’ are independent ovet. We haven = f(b) = f(V)
and thusA C acl(b) nacl(y’) N J C acl(a) N J = A. Thus this reduces to
Corollary 2.2.12.

Our two independence statements may be written out as fellow

rk(b'/Aab) = rk(b'/Aa); k(b /Ab) = rk(b'/A).

Sincerk(d’'/Aab) = rk(b’'/Ab) andrk(b'/Aa) = rk(b'a/A) — rtk(a/A) =
rk(b'/A) — rk(a/A), on comparing the two equations we finda/A) = 0,
anda € acl(A), as claimed. |

Corollary 2.3.4. Let P be a projective geometry stably embeddedin A a
subset ofM, and P4 the geometry obtained by taking acl relativeAcas
the closure operation. TheR, is modular, i.e.,

rk(ab) = rk(a) + rk(b) — rk(a N'd)
for finite algebraically closed., b.

Proof. By stable embedding and the preceding lemma we may repldne
acl(A)n P. |

Lemma 2.3.5. Let.J be a basic linear geometry. Therhas weak elimination
of imaginaries.

Proof. By the preceding lemma it suffices to prove the followingAiC J is
algebraically closed; € J°4, anda € acl(A), thena € dcl(A).

We write a = f(b) with f A-definable and = (b1,...,b,), and we
minimize n. Assuminga ¢ dcl(A), we haven > 1. Working overA U
{b1,...,bn_1} we may suppose = 1 andb = b,,. Let D C .J be the locus of
b over A; of coursep ¢ A. We examine the dependencefobn the element
of D chosen.
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Let I = {(z,y) € D? : (xA) N (yA) = A}. The corner brackets are
another notation for algebraic closurejnintended to suggest linear span. For
(x,y) € I the type ofzy over A is determined by the inner produétz, y),
with 8 nondegenerate or trivial, and possibly derived from a qaideform;
or else in the quadratic case /i C Q, by [z, y] = z(v/z + y). We will write
x - y for the corresponding function in each case. So for somestubsf the
field K we have

For(z,y) € I, f(z) = f(y) ifandonly ifz - y € X.

Let X, = K when we are dealing with a bilinear form, ai@ = 7[K] with
7(x) = 22 + x in the quadratic case with C Q. Thenin any cas& C X,
and it suffices to show thaX = X, as thenf is constant on independent
pairs, and hence constant én

To see thaX = X it suffices to check that fak,», 13, a3 € X there are
x1,x2, x3 independent oved for whichz;-x; = a5 forl <i < j < 3,aswe
then taken o = ass € X andays € X arbitrary to concludeX = Xg. This
is essentially a special case of the statement from whichtdiga elimination
was derived, though this was slightly obscured in the quadcase by the
suppression of some details.

We leave this calculation to the reader, but note that in thedcgatic case,
if the three elements, zo, 23 are quadratic forms, we may write them as
g+ A\2,q,q + A2, respectively, and find that the “target” values satisfy:
a12 = q(v); aes = ¢q(w); and

a3 = (¢ + 22 (v 4+ w) = a12 + a1z + 7((v, w)). i

Corollary 2.3.6. LetJ be a basic semiprojective geometry. Thehas weak
elimination of imaginaries.

Proof. Leta € J*4, let V be the vector space model coveridg and let
A =acl(a) NV. Thena € dcl(A). Leta be a sequence of elements.bbver
whicha is definable, and leB = acl(a) N J. The orbit ofa in J over B is the
same as its orbit ovet, soa € dcl(B). |

Remark 2.3.7 Projective geometried need not have weak elimination of
imaginaries, since the semiprojective geometry liegh

Definition 2.3.8. Let V be a vector space and an affinel/-space, withA
andV definable in a structuré\. Let K be the base field.
1. A K-affinemap) : A — K is a map satisfying

A (Z aiai> = Z ai\(a;)
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for scalarsa; with ). o; = 1 (in which case the left side makes sense;
linear operations make sensedtrelative to a base pointinl, and affine
sums are independent of the basepoint).

2. A* is the set ofM-definableK -affine maps om.

Lemma 2.3.9. In the notation of the previous definition, there is an exaet s
quence

0)—=K—A"—>V"—=(0)

whereV* is the definable dual df (consisting of all definable linear func-
tionals).

Proof. K represents the set of constant functions. The map #érto V* is
defined as follows. Fak € A* andv € V, let X (v) = A(a+v) — A(a), which
is independent of the base point This is surjective sinc&* lifts to A* by
choosing a base point iA. ]

Remarks 2.3.10

1. In this exact sequence it is possible thdt= K andV* = (0); indeed,
this must occur in the stable cadé® is described by the corollary to quantifier
elimination in§2.2.1; in particular}) * is definable.

2. Note thatA* is coded in(V, V*, A)°4. The algebraic closure of an ele-
mentofA* in (V, V*, A) will be the line inV* generated by the corresponding
linear map. For this reason we do not have weak eliminatiamafjinaries
in (V,V*, A). Note also thal’* is normally not mentioned explicitly, as it is
identified with V' when there is a nondegenerate bilinear map (assuming the
situation is stably embedded).

3. We do have weak elimination of imaginarieg(ii V*, A*), as in the the
proof of Lemma 2.3.12 below, but this is not stably embeddé®j 17, A, A*),
as a base point il gives a definable splitting afi*—that is, a hyperplane
complementary to the line of constants.

4. V* is definable oved*, so even in the polar case it is not necessary to
include it in the geometry wheA* is present.

Lemma 2.3.11. LetJ be a basic, nonquadratic, linear geometry, aidA) a
corresponding affine geometry. Theh A, A*) admits quantifier elimina-
tion in its natural language.

Proof. We take as the language the previous language fqredicates for

A and A*, addition and subtraction mapsx A — AandA x A — V, an
evaluation mapl x A* — K, a K-vector space structure ofi, distinguished
elements ofA* corresponding to the constant functions, the canonical map
A* — V*if V*is presentin some form, or an evaluation mipx V — K if

V* is left to be encoded byl*. As in the linear case we verify the realizability
of suitably normalized atomic types. Since we can enlargadtimain of the
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types we can take a base pointdn identify A with V', and identifyA* with
K @ V*, putting us into the linear case. ]

Lemma 2.3.12.Let J be a basic nonquadratic linear geometry and(ét A)
be a corresponding basic affine geometry. Thé&nd, A*) has weak elimi-
nation of imaginaries.

Proof. As we have Lemma 2.3.3 for the affine case, arids algebraic over
V*, we just have to check that the proof of Lemma 2.3.5 also duesigh.
As in that proof, our claim is that iB C (J, A, A*) is algebraically closed
andf : (J, A, A*) — (J, A, A*)°? is B-definable, thery is constant on each
1-type D overB.

We consider! = {(z,y) € D? : (zxB) N (yB) = B}, where the span is
the algebraic closure ifJ, A, A*). (This includes the constant line iA*.)
We claim thatf is constant along pairs ify; this will suffice. WhenD C J
it is convenient to view/* as included inJ, which is automatically the case
except in the polar geometries. Then in dealing vitlve may dispense with
A andA* and we are in the situation we treated previously. There iretha
possibilities thatD C Aor D C A*.

Suppose thaDD C A. If B meetsA, then we can replac® by a type
realized inJ. Suppose therefore th& N A = (). The type ofD includes the
values of affine maps oP and gives no further information about the type of
a pairini. Since the linear maps iB are covered by affine maps, this means
that the only relevant part a8 is B NV, and furthermore fofz,y) € D?,

x —y is orthogonal taB N V. Thus the type of such a pair, if it is not already
determined, depends on the valueiifr — y) for a nondegenerate quadratic
form Q. To repeat the previous argument we need independent efemein
lying in B+ with Q(v), Q(w), andQ (v + w) taking on arbitrary values. This
we have.

Now supposeD C A*. If B meetsA, then A* becomes identified with
K & V* and we return to the linear case.Bin A = (), then for(z, y) € I the
type of the pair oveB is determined by the type of the imagelitf, and we
again return to the linear case. ]

We now consider the relationship between the linear duatik@dual over
the prime field. It turns out that the distinction is unimg@antin the linear case
but of some significance in the affine case.

Definition 2.3.13. Let V' be a vector space over the finite figitdwith prime
field F5,, and A the corresponding affine space. We wrifé> and A*> for
the linear and affine dual with respect to thg-structure.

Lemma 2.3.14.There is a 0-definable group isomorphisrbetweeri/* and
V*e given byrf = Trof, and a O-definable surjection : A* — A*°
given similarly by the trace Tt ' — F,, with kernel the set of constant
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maps of trace O.

Proof. In the linear case, the two spaces have the same dimengohowWe
check that the kernel af is trivial. Assumer f = 0. Then for anyw € V and
a € F, 7f(av) = Tr(af(v)) = 0. As the trace form is nondegenerateBn
this meansf (v) = 0.

In the affine case the difference in dimensions is the dinoensf £/ F,
corresponding to the difference in the space of constansmapr4 induces
7 its kernel is contained in the space of constant maps. ]

We record the degree of elimination of imaginary elemerftewdéd by A*e.

Lemma 2.3.15.Let (V, A) be a basic affine geometry, not of quadratic type.
LetC C (V, A, A*)°1 be definably closed and locally finite, that is, finite in
each sort.

Ifacl(C)N (VUA) CC,thenC =dcl(CnN(VUAUA*)).

Proof. LetVe = VNG, Ac = ANnC, A = A* nacl(C). By weak
elimination of imaginarie€’ = dcl(acl(C)N(VUAUA*)) = dcl(VeUAc U
Af). As V™ is identified with a quotient ofi*° it will suffice to check that

Mult(A%/C) = Mult(AL /C N A™,C A V*).

Leto], ..., v} be abasis fo€ N V* and leta] be a lifting ofv} to A*. The
elementa? is chosen from an affine line over the base fi€ld We have for
eachi

Mult(a] /a3, ...,a;_1,C) < Mult(a}/aj,...,a;_, V' NC, A NC)

and it suffices to show equality.

Let K = Aut(a} + F/aj,...,a;_,,C), asubgroup ofF,+). Let L be the
space of-invariant affine maps ovéfr, ona}+F. We haveAut(a; +F/L) =
K, since a translation — x + a ona; + F' leavesL invariant if and only
if the linear maps induced b¥ annihilate«, and these are just thgé,-linear
maps annihilatindg<. Accordingly, forA} = (a},...,a}) we have

Aut(A} /a3,...,a;_1,C) = Aul(A] Jv;, L).
Now L C dcl(aj,...,af_{,C) N (a} + F)*, and we need
L Cdcl(af,...,al_;,C)n A*e.

For f € L inducing the linear may anda* € af + F definef,. € A*
by fo<(a) = f((a,a*)) — f(a*). This does not depend on the choiceudf

farrala) = f((a,a*) + @) = [f(a*) + f(a)] = fa(a). Thusf defines
f' = f.~ and the converse is obvious. |
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Lemma 2.3.16.Let V' be part of a stably embedded basic linear geometry
with base fieldF'. Let A be an affine space ovéf. Assumed andV are
O-definable. Then there is@&definable space, which we will denat&d,
such thatF" A containsV’ as a subspace of codimensibrand A as a coset
of V. The spacé A is unique up to canonical definable isomorphism.

Proof. We letF’A be F' x A x V modulo the equivalence relation defined by:
(o, a,v) ~ (o/,d,v") ifand only ifa = o/, a(a — @) = v —v'. Equivalence
classes will be denoted in terms of their representativesias v. The scalar
multiplication will be defined by

Blaa +v) = (Ba)a + Bu.

This is clearly well defined.
To define addition orf’ A, note that for any,, € A the elements of'A are
uniquely representable in the forma, + v. Thus we may set

(aao +v) + (das + ') = (a + a)ao + (v + ).

This definition is immediately seen to be independent of teae ofa,. Thus
the construction is 0-definable. One checks the vector spaoms. Evidently
V sits as a subspace of codimensiosnd A as a coset.

Verification of the uniqueness statement is straightfodwar ]

Lemma 2.3.17.LetV be a nonquadratic basic linear geometry, possibly with
distinguished elements, forming part of a geometwyith field of scalarg”
which is stably embedded iiv. Let A be aC-definable affine space over
V. Then

1. FAUJandFAU (FA)* U J are stably embedded.
2. Supposel is not in aclJ, C) and letC, be

[acl(C) N J] U [acl(C) N A] U [acl(C) N A*e].

Then(J, FA, F A*, C,) with its intrinsic geometric structure is fully em-
bedded inM overC U Cs.

Proof.

Ad 1. Fora € A we haveFA C dcl(a,V). Furthermore(FA)* C
dcl(a, V*) sincef € (FA)* is determined by its restriction g and its value
ata. Thus this is immediate.

Ad2. Let NV be(J, FA, FA* C,) with its intrinsic geometric structure,
and let\’ be NV with its full induced structure. A4/ is stably embedded, any
0-definable seD in N is definable in\ with parameters. We claim tha is
0-definable inV.

Let d be the canonical parameter forin A/, andd’ = [acl(d) N (AU J)] U
[dcl(d) N A*e]. By Lemma 2.3.15] € dcl(d’) in /. In N/ by assumption
d' € dcl(0), and thus!’ € C,. ThusD is 0-definable inV. |
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Lemma 2.3.18.LetV be a nonquadratic basic linear geometry, possibly with
distinguished elements, forming part of a geometwyith field of scalars”
which is stably embedded itv. Let A be aC-definable affine space over
V. LetC’ 2 C with acl(C’) N (J U A*) C " and aclC’,J) N A = 0.
Then fora € A, tp(a/C" N A*) implies ta/C").

Proof. We may takeC' = (). By the preceding lemma U A* U J is fully
embedded i over the parameters, = C' N (J U A*). Thus

tp(a/ dcl(C”) N (A, A*, J)*Y) = tp(a/C").
By Lemma 2.3.15
dcl(C”) N (A, A*, J)*4 C dcl(Cs).

By quantifier eliminationfp(v/C’ N A**) determinegp(v/C’ N A*>,a) for
v € J, sotp(a/C’ N A**) determinedp(a/C’ N A*>,J). The claim follows.
|

Lemma 2.3.19. A Lie coordinatizable structure i3y-categorical.

Proof. It suffices to treat the case of a structwéequipped with a Lie coor-
dinatization. The argument is inductive, using Lemmas52a®d 2.3.12 with
Lemma 2.3.2, and some control of the algebraic closure Aebe the part
of M coordinatized by the tree up to height let ' be N}, together with
finitely many coordinatizing geometries at height 1, and letJ be a further
coordinatizing geometry at any level, with defining paraenet Our claim is:

J realizes finitely many types over any finite subseMot) {a}.

In the main case] is itself at heighf,+1 and thus: is already inV},. However,
with J fixed, we proceed inductively ola and on the number of components
at levelh + 1, beginning with\/ empty.

Given this result, one can then get the uniform bounds reduior X,-
categoricity by one more induction over the tree (by heiddnea).

It will be convenient to assume that the geometries involedbasic, and
are either finite, linear, or affine; that is, projective getries should be re-
placed by their linear covers. This cannot be done definabigce the ex-
panded version oM interpretsM and has essentially the same coordinatizing
tree, this implies the stated result fé.

Since the case in whicli is finite is trivial, we need deal only with the
linear and affine cases, to which Lemmas 2.3.5 and 2.3.1%,aapd may be
combined with Lemma 2.3.2. This reduces the problem to theviing: for
A C N finite, show thaticl(Aa) N J is finite.

Suppose on the contrary thatl(Aa) N J contains arbitrarily large finite-
dimensionalAa-definable subspacés of J. Fix such anAa-definable sub-
spaceV of J. N is B-definable for some set of parametd?dying in N3,
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and by inductioracl(Ba) N J is finite. As A’ varies over the set of realizations
in A of the type ofA over Ba, the correspondingl’-definable subspace’
varies over the realizations of the typeléfoveracl(Ba) N J. Letn; be the
number of types of setd A’ as A’ varies in this manner, and let be the num-
ber of types of the corresponding s&t¥”’. Now n; is bounded, by induction
hypothesis, sincé& C A}, andA C N; A can be thought of as obtained by
appending one geometdy to a structureN” with ] = N} and with one
fewer component at heiglit + 1. We have arrived at the followingn; is
bounded, and as the dimensionlofncreases;- is unbounded; but; > ns.
This contradiction yields a bound on the dimensiof¥cdnd hence on the size
of acl(Aa) N J. |

2.4 ORTHOGONALITY

Definition 2.4.1

1. Anormal geometryis a structureJ with the following properties
(uniformly—in every elementary extension):

() aclla) =aforae J.

(i) Exchange: ifa € acl(Ba’) — acl(B), thena’ € acl(Ba).

(i) If a € J°4, then acla) = acl(B) for someB C J.

(iv) For Jy C J 0O-definable and nonempty,dfa’ € J and tpa/Jy) =
tp(a’/Jo) thena = o’.

2. A normal geometry ilzducedf it satisfies the further condition:
(v) acl(®) = dcl(®) in Jeq.
This distinction is illustrated by Example 2.4.5.

Lemma 2.4.2. Projective geometries in our sense are normal geometries. T
basic projective geometries are normal and reduced.

Proof. Note that we include the polar and quadratic cases.

Conditions (i) and (ii) are the usual geometric propertiemiost cases. In
the polar and quadratic case this includes the fact that sineus parts of
the geometry do not interact pointwise, e.g., Jog @ in the quadratic case,
acl(q)NV = (). This can be computed in the basic linear model using quentifi
elimination. We remark also that (i) requirasl(¢) = (), which is not so much
true as a matter of how the structure is viewed; for this psepane takes a
model in which objects such as the field are encoded inV¢? (or in the
language). Condition (iii) was verified i§2.3. For (iv), note that apart from
the polar and quadratic cases, if there are nontrivial Oadbfe subsets they
are determined by the set of values of a quadratic form or mitian form on
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the line representing a projective point.dfanda’ have the same type over
Jo, then they lift to points in the linear space having the saype bver the
preimage ofJ,. But these sets generate the whole vector space.

In the polar case it may happen (e.g., in the basic case)htbdto vector
spaces involved are 0-definable. However, the type of adifan over a
vector space determines the linear form. Similarly in thadyatic case, the
type of a quadratic form over its domain determines the fana conversely
the type of a vector ovef) determines the vector as an element of the dual
space, and hence determines the vector.

For (v) in the basic case, apply weak elimination of imagemfor the as-
sociated basic semiprojective geometry to an elemeaciof). ]

The following is a modified form of Lemm&aof [HrBa].

Lemma 2.4.3. LetJ;, J> be normal geometries, fully embedded andifinable
in a structure M. Then one of the following occurs:

1. Ji, Jo areorthogonal every 0-definable relation o, U J5 is a boolean
combination of sets of the forfl; x R, with R; an acl)-definable
relation onJ;; or

2. Jy, Jo are O-linked there is a 0-definable bijection betwednand Js.

Proof. If (1) fails then there is a 0-definable relatidh C J{'* x J3* for
somen;, ny Which is not a finite union oécl(())-definable rectangled; x A,
(A; C J acl(0)-definable). It follows by compactness that we haye J;"*
such thatR(b1) = {b2 € J3* : R(b1,bs)} is notacl(p)-definable. Our first
claimis

(%) If by € J*, R C J"* x J3? is O-definable, andk(b;)
is notacl(()-definable, themcl(b, ) meets/;.

By stable embedding? (b, ) is Jo-definable. Let, € J5% be its canonical
parameter. Then by assumptienis not algebraic ove, and then by (iii) we
conclude thatcl(cz) meets/,, and(x) follows.

Now takeas € acl(b;) N Jo and letS(aq) be the locus 0b; overas. As as
is algebraic oveS(az), S(az) is not definable oveacl(()). Thus by another
application of(x), acl(az) meetsJ;. Leta; € acl(az) N J;. By the argument
just given, we can also find, € acl(a,) N Jo. But thena), € acl(az) N Jy =
{a2} and thusacl(a;) = acl(az), and furthermore we have shown that in this
relationa; determines (and of course, conversely). Thdsl(a;) = dcl(as)
and we have a 0-definable bijectigrbetween two 0-definable sefy C J;
andD, C J. By (iv) and compactness each elemenbf J; is determined
by someu;-definable subset ab;, and hence (using) by someua;-definable
subsetT’(a;) C Ds. Therefore this sef’(a;) is not definable oveacl((),
and by(x) and the subsequent argumentbelongs to the domain of some
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0-definable bijection between parts .6f and.J,. By compactnesd; and.Js
are 0-linked. [

Remark 2.4.4
Under the hypotheses of the preceding lemma; iind .J; are reduced,
then the first alternative can be strengthened as follows:

1’. Jp, Jo arestrictly orthogonal every 0-definable relation od; U .J; is a
boolean combination of sets of the fofia x Ry with R; a 0-definable
relation onJ;.

This holds sincelcl(())-definable sets are 0-definable.

Example 2.4.5. J;, J, carry equivalence relationd’;, F5 with two infinite
classes and no other structure. Then these are normal geiesidbut not
reduced. InJ; x Jo we may add a bijection betweeh/E; and J2/Es.
This would fall under the orthogonal case, but not the diricrthogonal
case.

Lemma 2.4.6. Let J; and.J; be basic linear geometries canonically embed-
ded in the structureM. Suppose that itM there is a 0-definable bijection
f: PJy + PJs between their projectivizations. Then there is a 0-defi@abl
bijectionf : J1 > J2 which is an isomorphism of unoriented weak geome-
tries, and which induceg.

Proof. Without loss of generality we may take the universe ta/be J,. Re-
call that in the basic linear geometries any bilinear or qaacforms involved
may be taken to b& -valued, andacl(()) = dcl(().

J; consists either of a single vector space, a pair of spacesality or
a quadratic geometr{/, Q) and correspondingly?J; consists either of the
corresponding projective model, two projective spacegherpair(PV, Q).
The givenf preserves algebraic closure, which is the span in the piagec
sense (except i) and hencef is covered by a maﬁ which is linear on each
vector space inJ; (relative to an isomorphism of the base fields) and which
agrees withf on @ in the quadratic case. At this point we will identify the
base fields, writings = K; = K,. There are finitely many such magpsand
the set of them is implicitly definable, so by Beth’s theoréeptare definable
overacl(()) = dcl(@), or in other words, are 0-definable.

Fix one suchyf. The type off(a) is determined by the type of for a a finite
string of elements. When a quadratic form is present we meggrze the
totally isotropic spaces as those on which only one nomtrivitype is realized,;
in the polar case atotally isotropic space consists of agbaithogonal spaces,
and one nontrivial 1-type is realized in each factor. Itdul thatf preserves
orthogonality. Furthermore, if quadratic or skew quadrédrmsQ,, Q- are
present (given, or derived from a hermitian form), thenétiela function’ for

which Q2 (f(z)) = F(Q1(x)), whereF : Ky — K, with Ky = K except in
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the hermitian case, where it is the fixed field of an automamphi of order 2.
The functionF is additive (consider orthogonal pairs) and linear withpeest

to elements of<? or in the hermitian caséy,. In any case, it follows thaF’

is linear onKy and is given by multiplication by an elemenbf Ky; in other
words,Q2 = a@Q)1. This sort of shiftis allowed by a weak isomorphism, so our
claim follows except in the polar, symplectic, and quadrasises, to which we
now turn.

In the polar and symplectic cases the 1-type structureviskdand we have
a functionF' : K — K for which ﬁg(fv, fw) = F(p1(v,w)), wheres; gives
either a duality between two spaces, or a symplectic streictlthis map is
visibly linear, so we are in the situation considered presig.

Now we consider the quadratic case. On the symplectic pahawvegsy, =
afy, for somea. Considering pair§v, ¢) in V x Q we find thatfq(fv) =
F'(q(v)) for some functionF” which similarly must be multiplication by a
constant (for example, by considering the effect of replgei by a scalar
multiple); as the form associatedfq isa- By, we findfq = aq. This leads
to the particularly unsatisfactory conclusion that theéaa of V; andV; on
Q1 andQ, are related by

fa+s fo* = fla+1 (@'?0)?).

We can, however, adjugtby taking f’(v) = a!/2v and then we find that the
inner product, action of), and translation by all agree in the two models.
|

Lemma 2.4.7. Let J, and J, be basic quadratic or polar linear geometries
canonically embedded in the pseudofinite structite Suppose that ithM
there is a O-definable bijectiofi : PJ; < P.Js between the projectiviza-
tions ofV; andV; (V; is one of the two factors of;, in the polar case, and
the vector part, in the quadratic case). Then there is a Onddlie bijec-
tionf : J1 < Jo which is an isomorphism of weak geometries, and which
inducesf.

Proof. By the preceding lemmg; lifts to the linear part of/;, Jo covering
PV;. It remains to be seen that the linear or quadratic form3/pmvhich
correspond to elements df, transported by, are realized by elements d5.

In finite approximations to\, all such maps are realized, and in particular, all
definable ones are realized.M by elements off,. If fis chosen to preserve
the symplectic structure (exactly) in the quadratic casen all structure will
be preserved by the induced map. ]

Lemma 2.4.8. Let M be a structure,D and I definable subsets o¥1,and
{A; : i € I} a collection of uniformlyi-definable subsets 0¥1. Assume
thatacl()) = dcl(@) in D°4, and thatD is orthogonal tal and is orthogonal
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to eachA; overi. ThenD is orthogonal tol U | J; A; (and hence strictly
orthogonal to the same set).

Proof. It will be convenient to use the term “relation betweémand B” for a
subset ofA™ x B™ with m, n arbitrary. We have to analyze a relation between
D andI UlJ; A;, and it suffices to consider the part relatifgo | J, A;. Fix .
ThenR gives a relation betweeR and 4; involving a finite number o&cl(7)-
definable subsets dD™ for somem. These belong to a finitédefinable
boolean algebra of subsetsof*, which by strict orthogonality is 0-definable
overD, and may be taken to be independent by dividing I into 0-definable
sets. The elements of this boolean algebra belorgld@) in D°* and hence
are 0-definable. The relation with; can be expressed in terms of them, and
1 may be broken up further into finitely many 0-definable piemesvhich the
definition is constant. ]

Definition 2.4.9. Thelocalization P/A of a projective geometry over a fi-
nite setA is the geometry obtained from the associated linear gegnietis
follows. LetL, = acl(A) N L, and projectivizeLg-/ rad(Lo). If the vector
spaceLg /rad(Lo) supports a quadratic geometry, then add that geo-
metry to the localization as well. (The radical rdd) is Lo N Lg; in the
quadratic caséd.g has a quadratic part which is taken to consist of quadra-
tic forms which vanish on rdd.y); in the orthogonal case in characteristic
2 we may also have to add a quadratic part—see the followingrk.)

Remark 2.4.10.

The previous definition uses the convention that inner petsdared where
undefined. In the linear case one therefore works With,. In the polar case
L consists of two spaces and the orthogonal spaces “swites.5idn the
quadratic cas€)/Q N Ly is a space of quadratic forms on the correct space
(L N Lg)/rad(Lo). (It would not be well-defined, however, as a space of
forms onL/rad(Ly).) Finally, one unusual phenomenon occurs in localizing
orthogonal geometries in characteristid_et ¢ be a quadratic form associated
to a nondegenerate symplectic form n and for simplicity letA = {v}
be a single nonzero vector &f. If ¢(v) = 0, then the formg descends to
L = vt /(v); otherwise, for each nonsingulsspaceH containing(v) in L,
the restriction of; to H- induces a quadratic form ob, and asH varies the
collection@ enlarged. to a quadratic geometiyL, Q).

If P is a basic projective geometry, then this geometry is agimséc pro-
jective geometry, since the base field is named. In most dagiges a geome-
try of the same type we began with. We could also defindtithiéocalization
by taking P modulo the equivalence relatiatl(zA) = acl(yA), with all
induced structure. The nontrivial atoms of the full location are either com-
ponents of our localization or affine spaces over its lineat.p
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Lemma 2.4.11.Let P, Q be basic projective geometries defined and orthogo-
nal over the sefl and fully embedded ovef in M. Then their localizations
are orthogonal over any sd® over which they are defined.

Proof. We may suppose that C B or B C A, with the proviso in the latter
case that we allowP, @ to be localizations of geometries defined o¥gr

If A C BandP/B,Q/B are nonorthogonal, then they havé&adefinable
bijection which is unique and hence defined over (acl(B) N (P U Q))
(which serves to define the localizations). But ovethis gives a relation on
P U @ which violates the orthogonality.

If BC AandP = P/A, Q = Q/A with P, basic B-definable projec-
tive geometries, then nonorthogonality overgives a B-definable bijection
between? and(Q which induces ami-definable bijection between the local-
izations. ]

2.5 CANONICAL PROJECTIVE GEOMETRIES

Throughout this section we work in a Lie coordinatized dnoe M.

Definition 2.5.1. LetJ = J, be ab-definable weak projective Lie geometry in
the structureM. ThenJ is acanonical projectivgeometry if

1. Jis fully embedded ovér, and
2. Iftp(t/) = tp(b) andd’ # b, then.J, andJ,, are orthogonal.

A terminological note: there is no connection between treeafghe term
“canonical” in connection with canonical embeddings, aadanical projec-
tives. In the case of embeddings the term refers to the dedcatanonical
language,” which has not been introduced explicitly herkilevin the latter
case it refers to the canonicity condition (2).

Lemma 2.5.2. Let P, be ab-definable projective geometry fully embedded in
a Lie coordinatizable structuré\1. Then there is a canonical projective
geometry inM*°4 nonorthogonal taP, over a finite set.

Proof. We may assumé, is basic, and since it lives in%, we may replace
M by a bi-interpretable structure and suppose thats coordinatized by Lie
geometries. IfP, is orthogonal to each of the coordinatizing geometries over
their defining parameters, then repeated use of Lemma hdwssthatP, is
orthogonal to the ambient mod#f, and hence to itself, which is not the case
(the equality relation refutes this).

So we may suppose tha}, is one of the coordinatizing geometries, and
thatb is the parameter associated wity in the coordinatization of\, so
that it represents a branc¢h, ..., b,) (or by, ..., b, with by the O-definable
root) of the tree structure o associated with a sequence of geometries (and



CANONICAL PROJECTIVE GEOMETRIES 37

finite algebraically closed sets) i, with b,, = b. Minimize n subject to
nonorthogonality to the original geometry, so that for egelometry of the
form Jy,, with i < n, the associated projective geometry is orthogonakto

Consider the conjugatds, of P,. If P,, P, are nonorthogonal over a finite
set, then the appropriate localization/@f is orthogonal to the coordinatizing
geometriex) for b over any set over whicl?,, and@ are defined. It follows
by induction thatP, N acl(t’,by,...,b;) = 0 for all i < n; notice that the
induction step is vacuous wheépis algebraic over its predecessor. Fet n
we haveacl(b,’) N P, = @ and similarlyacl(b,’) N P, = (. Thus the
nonorthogonality gives a uniqyg, b’)-definable bijection betweeR, and Py,
preserving the unoriented weak structure, and also, by plicéxhypothesis,
preserving the Witt defect in the quadratic case.

Nonorthogonality of the associated geometries defines awalgnce rela-
tion on the conjugates @fand for any pai’, " of equivalent conjugates we
have a canonicdb’, b )-definable isomorphismy, ;» between the geometries
as weak geometries. L&t, b2, b3 be three conjugates éffor which the corre-
sponding geometries are nonorthogonal. Using the orthaldpas above we
may show thagcl(by, b2, b3) N P,, = 0 and hence the uniquael(b;, b2, b3)-
definable bijection betweeR,, and P,, agrees with the composition of the
canonical bijections?,, + P,, and P, <> P;,. So these identifications co-
here and we can attach to an equivalence ctasisconjugates ob a single
weak projective geometr®? canonically identified with the given weak pro-
jective geometries. The geometry we want is the basic pliegegeometry
Q). associated witlQ?. We still must check that it is in fact canonical. This
follows since the conjugates ofdistinct fromc are the classes of conjugates
of b inequivalent ta. ]

Lemma 2.5.3. Let P, be ab-definable projective geometry fully embeddedin a
Lie coordinatizable structure, and lgt. be a canonical projective geometry
nonorthogonal toF, with canonical parametee. Thenc € dcl(b) and
P, Cdcl(b, J.).

Proof. For the first point, it/ is a conjugate of overbd, thenP,, is nonorthog-
onal to P, and hence tdP.; soc = ¢. Thuse € dcl(b). There is a, ¢)-
definable bijection between the localizationggfand.J.., and the localization
of P, over{b,c} is P, sincec € dcl(b) (or for that matter since € acl(b)).
Thus this bijection induces a function fraf onto P,. |

Lemma 2.5.4. Let P, P,y be nonorthogondl-definable and’-definable canon-
ical projective geometries, not assumed to be conjugatenTe(b) =
dcl(v’) and there is a uniquéb, b’)-definable bijection between them, which
is an isomorphism of weak, unoriented geometries.
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Proof. The first point follows from Lemma 2.5.3 and allows us to daunes
(b,b') as eitheb or ’. The restis in Lemmas 2.4.3 and 2.4.6. |

We wiill discuss the issue of orientation further.

Lemma 2.5.5. Let P, be a canonical projective quadratic geometry. There
is a coordinatizing quadratic geomettf. and a definable unoriented weak
isomorphism ofP, with J.. We may choose so that if we orientP, ac-
cording to this isomorphism, the orientation is indepertddrthe choice of
¢ within its type oveb.

Proof. Let J. be a coordinatizing geometry not orthogonabktand minimized

in the sense thatis as low in the tree structure owt as possible. Then by the
previous lemma < dcl(c) and by the minimization, as in the proof of Lemma
2.5.2,acl(c) N P = . Thus the nonorthogonality gives a definable weak un-
oriented isomorphism. Conjugatescbverb, or for that matter conjugates of

c over the empty set for which the corresponding geometryii®rthogonal to

Py, have compatible orientations by the orientation conditiothe definition

of Lie coordinatization. |

For a discussion of orientation the following terminologycbnvenient.

Definition 2.5.6
1. Astandard system of geometrissa 0-definable function : A — M1
whose domaii is a complete type ovdrand whose range is a family of
canonical projective geometries.
2. Two standard systems of geometriesegeivalentf they contain a pair
of nonorthogonal geometries. In this case there is a O-dbfeientifica-
tion between the systems, since nonorthogonality giveslu$ eorrespon-
dence between the domains, and the nonorthogonal pairs ¢evenical
identifications.

Lemma 2.5.7.In a Lie coordinatized structure the quadratic geometriaa c
be assigned compatible orientations, in the sense thatoribogonal ge-
ometries the orientations are identified by the canonicadkvenoriented
isomorphism between appropriate localizations. This caddne 0-definably.

Proof. We first orient the standard systems made up of projectiaeliGuic
geometries. Here we just choose one representative of gadlatence class
of such systems, and use the given orientations.

With this as a frame of reference we orient an arbitrary qaécigeometry
P,. There is a unique canonical projective quadratic geomgtigriented in
the first step and nonorthogonal i, and we have: € dcl(b). There is a
canonical isomorphism betweé® and the localization of . at A = acl(b) N
J.. (By Lemma 2.5.5 it provides a well-defined identificatiorooientations.)
It will be convenient to look at the linear quadratic geomé€lr, Q) associated
with J., and atB = acl(b) N (V, @), which carries the same information 4s
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(as far as/. is concerned).

B does not meef), as this would result in the localization df at B, and
hence alsaP,, being orthogonal rather than quadratic. L& be a linear
complementtead B in B. We can localize aB in two steps: first with respect
to By, then with respect toad B. At the first step the se is unchanged,
but we modify the Witt defect as followss? (¢~ By) = w(q) + w(q™Bo).
Here, on the rightw is in one case the orientation function chosen already
on J., and in the other the ordinary Witt defect for a form on an &rand
even dimensional spacé{ carries a hondegenerate symplectic form and is
therefore even dimensional). At the second localizatigriadl B, the linear
part is replaced by a subspace of finite codimension and thealas factored
out; the spacé is also reduced to the set of forms vanishingad B. As this
does not alter the Witt defect of such forms in the finite disienal case, we
letw? = wPo-Q N B*L.

One must check the consistency of such conventions, butrehisces to
their correctness in the finite dimensional case, using comocalizations.

The initial orientations on the coordinate geometries wil necessarily
agree with the ones given here; according to the orientatbmdition, on a
given level of the coordinatization tree, within a given nahogonality class,
they will be completely correct or completely incorrect. Way change the
orientations of the coordinate geometries to agree withcanpnical assign-
ment, and nothing is lost. ]

Example 2.5.8

It is appropriate to return to the canonical unoriented eamat this point.
Take an unoriented quadratic geometry, andAétconsist of two copies of
this geometry, with an identification, and with both possibtientations. To
orient this geometry one must name an elemerato(f)).

There are two canonical projectives in this example, wittheaf the two
possible orientations. Our canonical orientation procednot available. We
can, however, pick an orientation on one of the canonicgéeptive quadratic
geometries and extend this orientation to the rest of thecstre. Since the
orientation is inacl(f)) — dcl(), this produces a slightly enriched structure.

If the example is put higher up the coordinatization tree stracture, it
forces us to break the symmetry between elements which dralgebraic
over(.
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Smooth Approximability

3.1 ENVELOPES

We defined standard systems of geometries at the end of treetd®on. These
provide a framework for the construction of Zilber/Lachinvelopes.

Definition 3.1.1. Let M be Lie coordinatized.
1. Aregular expansioof M is the structure obtained by adjoining &1
finitely many sorts aM“4 with the induced structure.

Note that a regular expansion #ff is Lie coordinatizable but not liter-
ally Lie coordinatized, since the additional sorts arediigjfrom the tree
structure.

A regular expansion aM is adequaté it contains a copy of each canon-
ical projective which is nonorthogonal to a coordinatiziggometry ofM.

The remainder of this definition should be applied only tocage regu-
lar expansions of Lie coordinatized structures (as will&enson inspection
of the definition of envelopes, below).

2. Anapproximatiorto a geometry of a given type is a finite or countable
dimensional geometry of the same type.

This includes, of course, a nondegeneracy condition on iliveear or
guadratic forms involved, and in the case of a quadratic gdonthe quad-
ratic part must be present (a symplectic space @ithmpty is not an approx-
imate quadratic space), andin the finite dimensional case must actually
be the Witt defect.

3. Adimension functions a functiony defined on equivalence classes of
standard systems of geometries, with values isomorphises tyf approxi-
mations to canonical projective geometries of the giver.tyfphis is actu-
ally determined by a dimension, and the type.)

By the usual abuse of notation, we construe these functi®fisretions
whose domain consists of all standard systems.

4. If u is a dimension function, thenaenvelopds a subset satisfying
the following three conditions:

() E is algebraically closed in\ (not M©9);
(i) For c € M — E, there is a standard system of geometriesvith
domainA and an elemeni € A N E for which aclE, ¢) N J, properly
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contains adlE) N J;
(iii) For J a standard system of geometries defineddoandb € AN E,
Jy N E has the isomorphism type given /).

5. If u is a dimension function anf is a y-envelope we writdim ; (E) for
w(J) whenE meets the domain of, and otherwise we writdim ;(F) =
—1;inthe latter case the valug(J) is irrelevant to the structure af.

Our goals are existence, finiteness, and homogeneity ofcgres

Lemma 3.1.2. Let M be an adequate regular expansion of a Lie coordina-
tized structure. Suppose that is algebraically closed, and satisfies (iii)
with respect to the standard system of geometfieSuppose thaf’ is an
equivalent standard system of geometries and fhdt are in M (not just
Me9). ThenFE satisfies (iii) with respect td”.

Proof. We note that ag C M it would not make a great deal of sense to
attempt to say something substantial about its interseatith a geometry
lying partly outsideM.

Condition (iii) for /' means that it’ € £ N A’, whereA’ is the domain of
J', thenE N Jj, has the structure specified pyJ’) = u(J). The element’
corresponds to an elemenof £ N A, with A the domain of/, and there is a
0-definable bijection betweefin J, andE N J;, which is an isomorphism of
weak unoriented structures. This may involve twisting bgllfautomorphism
or switching the sides of a polar geometry, but does not efffiecisomorphism
type. If we use canonical orientations, it will preserventhe ]

Lemma 3.1.3 (Existence).Let M be an adequate regular expansion of a Lie
coordinatized structure.
1. LetEy C M be algebraically closed i\t and suppose that for each
standard system of geometrigswith domainA and eachb € Ey N A,
J» N Ey embeds into a structure of the isomorphism typé). ThenE, is
contained in gu-envelope.
2. In particular, u-envelopes exist, for any.

Proof. Let 7 be a representative set of standard systems of geometnes. B
the previous lemma it suffices to work with. We may takeF containingE
maximal algebraically closed such that

(%) ForJ € J with domainA, andb € EN A,
Jy N E embeds into a structure of the type specifiedky).

We need to check both (ii) and (iii) fat.

We begin with (ii). Supposee M — E. Let E’ = acl(E U {c}). Then we
have some/ € J with domainA4, and somé < E' N A, for whichJ, N E’
does not embed into a structure of the type specified®@}). If b € ANE



42 SMOOTH APPROXIMABILITY

thenJ, N E does embed in such a structure, and (ii) follows. Now suppose
thatb ¢ AN E. In this case we show thal, N E = @ # J, N E’, so that

(i) holds also in this case. AE is definably closed it is a subtree 8fl with
respect to the coordinatizing tree. As not definable oveE, J;, is orthogonal

to the geometries associated with this tree. Thus by indnaiver this tree,
acl(E)yn J, = 0.

We turn to (iii), and we need only concern ourselves here Witk 7.
Suppose that has domain4, andb € E N A, and letB be an extension
of J, N E inside J;, of the desired isomorphism typg.J). Our claim is that
B C E. Let ' = acl(F U B). We will argue thatr’ also has the property
(), SOE’ = E.

If J/ € J has domaind’, andd’ € A’, then unless/’ = J andd’ = b,
the geometried,, J,» are orthogonal and,y N E' = J, N E. On the other
hand, by Lemma 2.3.3 any elementjf* algebraic ovet is algebraic over
JyN E. This applies in particular to any-definable formula(z, y) such that
for some elements € B, ¢(z, b) isolates an algebraic type ovBiU B in J,.
ThusJ, N E' = JyNnacl((ENJ,)UB)=B. |

Lemma 3.1.4 (Finiteness).Let M be an adequate regular expansion of a Lie
coordinatized structure. Suppose that for each standastesy of geome-
tries J the dimension functiop is finite. Then every-envelopéV is finite.

Proof. E is algebraically closed i and hence inherits a coordinatizing tree
from M. It suffices, therefore, to check that for amye F, its successors in
the tree form a finite set. We may suppose the successors e @mE N

P, with P, ana-definable geometry iM, nonorthogonal to some canonical
projective geometry, with b < a in the tree. The size of, N E is controlled
by 1 and there is am-definable bijection between the localization .6f at
acl(a) N J, and the projective version d?,, so this goes over t& as well.
ThusE N P, is finite. |

3.2 HOMOGENEITY
Definition 3.2.1

1. Let(V, A) be an affine space (a linear space with a regular action) define
over the seBB. A isfreeover B if there is no projective geometryydefined
over B for which A C acl(B, J). An element, or its type overB, is said
to beaffinely isolatedover B if a belongs to the affine componefitof an
affine spacéV, A) defined and free oveB.

Note: As a copy ol is definable overd in A°4, it can and will be
suppressed in this context.
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2. Let A and A be two affine spaces free ov@r They arealmost orthogonal
if there is no paire € A, o’ € A" with acl(a, B) = acl(a’, B).

Lemma 3.2.2 (Uniqueness of Parallel Lines)

Let (V, A), (V', A") be almost orthogonal affine spaces defined and free
over the algebraically closed sé&, with PV and PV’ completel-types
over B. LetJ be a projective geometry defined ov@r not of quadratic
type, and stably embedded M. Fora € A,a’ € A’, andc € J — B, the
triple (a, d’, ¢) is algebraically independent ovés.

Proof. We have(V, A), (V/, A"), andJ all defined overB. Our definitions
amount to the hypothesis that the elemdnts:’, c) are pairwise independent
over B, so if two of these geometries are orthogonal there is ngttarprove.
We suppose therefore that they are all nonorthogonal. tticpéar, the projec-
tivization PV of V' can be identified with part of .

We consider the structuréU A. Fora € A, A is definable oved U {a}
and hence/ U A is stably embedded iM. As PV can be identified with part
of J, J U A carries a modular geometry ovBr

Now suppose toward a contradiction thikfaa’c/B) = 2. Take indepen-
dent conjugates,, ¢; of a,c overa’. Thenrk(acaic;/B) = 3. This takes
place inJ U A, so there is] € (J U A) — B algebraic oveucB anda;c; B,
hence inacl(a’, B). Thusacl(dB) = acl(a’B) and eitherd € A, andA, A’
are not almost orthogonal, dre .J, andA’ is not free overB. ]

Lemma 3.2.3. Let M be Lie coordinatized. Lefl be an affine space defined
and free over the algebraically closed g8t Let B C B’ = acl(B’) with
B’ finite, and letJ be a canonical projective geometry associated with
Assume

1. JnB' C B,
2. J N B is nondegenerate (if there is some form or polarity present)
3. If J is a quadratic geometry, then its quadratic pgjtmeetss.

ThenA either meetd3’, or is free over it.

Proof. We remark that ifA does not meeB’, A need not remain a geometry
over B’, but will splitinto a finite number of affine pregeometriesoB’. We
will call A free overB’ if this applies to each of the associated geometries over
B

The claim will be proved by induction with respect to the atinatization of
the algebraically closed sé&’ relative to B, inherited fromM. Accordingly
we may takeB’ = acl(B,d’), wherea’ comes from an affine, quadratic, or
projective geometryd’ defined overB.

Assume thatd N B’ = () and some affine par, of A relative toB’ is con-
tained inacl(B, da’, J') with J' = J,, projective and defined oveé’. As J’' C
acl(J, ') the same applies withi’ replaced byJ, thatis: Ay C acl(B, d’, J),
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while Anacl(B, J) = 0. It follows that A’ and.J are nonorthogonal, and that
A’ Nnacl(B, J) = 0. In view of (iii) we haveA’ affine, and easily free ovés.

If Aand A’ are not almost orthogonal ovét, then B’ meetsA. Suppose
therefore thatd and A’ are almost orthogonal oves. Then we will apply
the previous lemma. Choogsec A. Asa € acl(B,d’, J), and the geometry
of (4, J) is modular, there i € J N acl(Baa') with a € acl(Ba’c). Then
¢ ¢ B, and in view of (iii) we may supposeis not in the quadratic part of,
if there is a quadratic part.

Let Jp be the localization of/ over B. By hypothesis (iii) this is not a
guadratic geometry. By hypothesis (#)is in the algebraic closure & U Jg;
normally overB, J would break up into a number of pregeometries, at least
one (J N B)1) sitting over the localization, while some of the cosets ldou
be affine pregeometries. However, sinta B is nondegenerate, all elements
of J lie in translations by elements & of (J N B)+. Of course, when forms
are absent, the situation is trivial.

Replacinge momentarily by an element ofs having the same algebraic
closure overB, we may apply the previous lemmadoa’, ¢, reaching a con-
tradiction. |

Lemma 3.2.4.Let M be an adequate regular explansion of a Lie coordi-
natized structure, let: be a dimension function, and Iét and £’ be u-
envelopes. IfA C E, A’ C E' are finite, andf : A — A’ is elementary
in M, then f extends to an elementary map frdthto E’. In particular,
u-envelopes are unique, and (takifig= E’) homogeneous.

Proof. It suffices to treat the case in whighand £’ are finite, as the existence
and finiteness properties then suffice for a back-and-fogtiraent using finite
envelopes. What we must show is thatli£ E then there is an extension 6f
toacl(AU{b}) forsomeb € E— A. There are essentially two cases, depending
on whether we are trying to add a point to the domain comingfaaanonical
projective geometry, or we are extending to the other pahthe envelope.
We may supposé and A’ are algebraically closed.

Case 1. There is a standard system of geomettiasd ana € A for which
Jo, N E is not contained irA.

Expand/, to a basic projective geometry}. defined over.* = acl(a). Let
L, L' be finite dimensional linear geometries coveriffg N £ and.J,. N £,
respectively. Therl. and L’ are isomorphic, and their isomorphism type is
characterized by its type, dimension, and Witt defect (glegable).

As f is elementary, it gives a partial isomorphism between s@gpmeE and
Jra N E’, which lifts to an elementary map between the corresponplémts
of L andL’. Let f be an extension of by an isomorphism of, with L’. The
existence of such a compatible extension is trivial in theealoe of forms and
given by Witt's theorem [Wi] otherwise, with the exceptiofitbe polar and
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guadratic cases. The polar case is quite straightforwarthd quadratic case
one first extendg' so that its domain meet3, and then the problem reduces
to the orthogonal case, in other words to Witt's theorem.

By weak elimination of imaginaries and stable embeddingesit = acl 4,
we find thattp(A/L N A) determinesp(A/L). Similarly, the typep(A’/L' N
A’") determinesp(A’/L’). Implicit in this determination is knowledge of the
type of L or L’ over{. Sincef preserves the two relevant types, it preserves
tp(A/L) and is thus elementary.

Case 2. For any standard system of geometfiegnd anya € A, J,NE C
A.

It follows that the same applies td’. We extendf to a minimal element
a in the coordinatization tree fak/, not already in the domain. So the tree
predecessdrof a is in A, anda is not algebraic ovelr. Accordinglya belongs
to a geometry/, which is nonorthogonal to a canonical projective geometry.
As we are not in Case 1], is affine, and free oved. If f is extended to
acl(A) n M1 we may takeJ, basic.

In E’ we have, correspondinglyy; affine and free oved’. However, as’
is an envelope, the maximality condition (clause (ii)) implthatJ/s, cannot
be free ovel?’. Lemma 3.2.3 applies in this situation, to the affine spage
and the algebraically closed setsand E’, in view of the hypothesis for Case
2. Thus the conclusion is thdiy, meetsE’.

We will next find an elemeni’ of J;;, N E’ satisfying the condition

(a,\) = (d, fA) forall A € Jf N A (the affine dual)

Here one should, strictly speaking, again ext¢no the algebraic closure of
A in M*®4, We consider a stably embedded canonical projective gegnitet
associated withy,. ThenP is b-definable and the projectivization of the linear
spaceV;, which acts regularly od), is definably isomorphic to one of the sorts
of the localizationP/b of P atb. By our case assumptidPN E is as specified
by p and is, in particular, nondegenerate. The same appli®s foE’. Thus
the action of the definable linear dual ©§ is represented, in its action on
Vi N E’, by elements ofd’ (or acl(A’) N M®%, more precisely). A&’ meets
the affine spacéey/, the same applies to the affine dual. Again by the linear
nondegeneracy and the fact tligtmeetsJ,, the specified values fd@r’, f\)
can be realized it?" N J . We extendf by f(a) = ao’.

Now the type ofA over (PV4, Jy, J;) is determined by its type over its
algebraic closure in that geometry, and this applies inqdatr to the type of
A overa. So in order to see thgtremains elementary, it suffices to check that
a anda’ have corresponding types ovéfd N (PV;, Jp, J;) and itsf-image;
and this is what we have done. ]

Corollary 3.2.5. Let M be an adequate regular expansion of a Lie coordi-
natized structure. Then a subsBtof M is an envelope if and only if the
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following conditions are satisfied:

1. E is algebraically closed;

2. Foranyc € M — E, there is a projective geometrydefined ovel, not
quadratic, and an element € (J Nnacl(Ec)) — E;

3. If ¢1, co € E are conjugate inM and D(c1), D(cz) are correspond-
ing conjugate definable geometries, thf;) N E and D(c2) N E are
isomorphic.

This does not depend on a particular coordinatizatiofnvbf

3.3 FINITE STRUCTURES

In this part we summarize some useful facts applying to figitemetries and
their automorphism groups, notably the result of [KLM].

Definition 3.3.1. A simpleLie geometryL is either a weak linear geometry
of any type other than polar or quadratic, the projectivirat of such a
geometry, or the affine or quadratic part of a geometry; in lditer case
the “missing,’ linear part is to be considered as encodeaint<.

These do not have the best properties model theoreticalllyagolar geo-
metry cannot be recovered at all from a single simple Lie ggtombut apart
from this, at the level o€ there is little difference between simple Lie ge-
ometries and the geometries considered previously.

Definition 3.3.2
1. Acoordinatizing structuref type(e, K) and dimensiom is a structureC
with a transitive automorphism group, carrying an equivale relationE
with e < oo classes, such that each class carries the structure of alsimp
Lie geometry over the finite field, of dimensioni. (One could include the
type of the geometry as well in the typeCof
2. LetC be a coordinatizing structure of tyge, K') and dimensiorl, and
let 7 be the type over the empty set of a finite algebraically clesdabet
(not sequence) of C. TheGrassmannial'(C, 7) is the set of realizations
of the typer in C, with the structure induced hy. It is said to havaype
(e, K, 7) anddimensiond.
3. LetC be a coordinatizing structure® is properif each equivalence class
of C as a geometry is canonically embeddedCinor equivalently if the
automorphism group induced on each class is dense in itsvarghism
group as a geometry (in the finite dimensional case, densesnegual).
If C is finite dimensional, it isemi-propeif the automorphism group «f
induces a subgroup of the automorphism gratipf the geometry which
containsG ().
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4. A structure isprimitive if it has no nontrivial 0-definable equivalence
relation.

Fact 3.3.3 [KLM]. For eachk there isn; such that for any finite primitive
structure M of order at least, if M has at mosk 5-types then\ is iso-
morphic to a semiproper Grassmannian of tfpeK, 7) with e, | K|, |7]| <
k, where|7| has the obvious meaning.

As noted in the introduction, D. Macpherson found [Mp2] ttfe¢ method
of proof of [KLM] suffices to prove the same fact withreduced tol. The
statement is quite false f@t

The next set of facts is standard in content, though not nibyrpharased
precisely as follows.

Fact 3.3.4 [Cal]
1. Letk be aninteger. There is@= dj, such that for any finite basic simple
projective Lie geometry, of dimension at least we have

(i) The socles of Aut(L), is simple and nonabelian, and AllY) /G is
solvable of class at most 2;

(i) G and AutL have the same orbits aff*;

(iif) The automorphism group df as a weak geometmpincides with
AutG. with one exception: if. is a pure vector space then the
automorphism group of. is a subgroup of index 2 in Ad, and
the full group Aut is realized geometrically as the automorphism
group of the weak polar geometty,, L*).

2. If J1, Jo are nondegenerate basic projective geometries, not quadra
of large enough dimension, and their automorphism groupgehao-
morphic socles, then they are isomorphic as weak geometries

Here our policy of leaving the degenerate case to fend feifitray be
too lax; but the statement certainly applies also in theedndf Syni{n) and
Aut(n).

Remarks 3.3.5

Note that the automorphism groups of the basic geometredassical groups
with no Galois action. In the first statement we ignore 4-disienal symplec-

tic groups over fields of characteristic 2 and 8-dimensionlogonal groups

of positive Witt defect by takingl > 8. The polar geometry implements a
“graph automorphism,” of the general linear group in any etision. The
graph automorphism of order 2 for Chevalley groups of typeis part of
the geometric automorphism grougs is usually equal to the commutator
subgroup ofAut L, with exceptions in the orthogonal case (and a few small
exceptions that can be ignored here).
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Fact 3.3.6. For any finite basic simple linear geomefryof dimension at least
5,if G = (AutV)(>) acts on an affine spacé overV so as to induce its
standard action orV/, then eitherG fixes a point ofd or the characteristic
is 2, G is the symplectic group operating on its natural moduleand the
action of G on A is definably equivalent to its action ap, the space of
guadratic maps oV associated to the given form.

Proof. Taking any point. € A as a base point, the functigitg) = a9 —a can
be construed as a function fro@to V, and is a 1-cocycle. Change of base
point gives a cohomologous cocycle. If this cocycle is #livit means we may
choose the base point so that this cocycle vanishesqama fixed point for
the action ofG.

Typically the first cohomology group for a (possibly twiste@hevalley
group on its natural module vanishes; see the tables in fdPlexample.
Rather large counterexamples are associated with excepGhevalley groups,
but for the classical typesA(— D, possibly twisted) restricted to dimension
greater than 4, the only counterexamples involving natomatiules are 1-
dimensional cohomology groups for symplectic groups irrabiristic 2 (listed
twice in [JP], once a€’,, and once a®,,, since the natural module for the odd
dimensional orthogonal groups in even characteristicespwonds to a repre-
sentation of this group as the symplectic group in one lovirmedsion). This
is the case in which we havg, or more exacthn@ for o € K*. The latter
can be thought of most naturally as the space of quadratieanducing3,
whereg is the given symplectic form oW, but can also be viewed as the space
@ with the action; — ¢ + A2 replaced by the actiop— ¢ + A2, , .

Thus we can either considet as isomorphic ta, by an isomorphism
which is not the identity o, or as definably equivalent 19 overV, holding
V fixed and rescaling the regular action dn our formulation of the result
reflects the second alternative. ]

Remark 3.3.7.
It seems advisable to remember that the™alternative in the preceding state-
ment is in faciv@ for some uniquex € K.

Fact 3.3.8 [CaK]. Let G be a subgroup of a classical group acting naturally
on a finite basic simple classical projective geomdtryand suppose that
G has the same action oR® as AutP. ThenG contains(AutP)(>) (the
iterated derived group).

This iterated derived group is at worgut P)(®) and is a simple normal
subgroup with solvable quotient.

Remark 3.3.9.
In this connection, our general policy of leaving the degateecase to fend for
itself is definitely too lax. A similar statement does applisoain the context
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of Synfn) andAut(n), with 6-tuples in place oB-tuples, but one needs the
classification of the finite simple groups to see this.

Fact 3.3.8 is phrased rather differently in [CaK], as theitds considerably
sharper in more than one respect. Here we ignore low dimealséxamples
and also invoke a significantly stronger transitivity hypegis. A somewhat
more complete statement of the result of [CaK] goes as fallow

Fact 3.3.10 [CaK, cf. Theorem IV].LetG < I'L(n,q), n > 3, and suppose
G is 2-transitive on the corresponding projective space. riTagherG >
Sl(n,q) or G < SL(4,2).

Fact 3.3.11 [CaK, cf. Theorem IV].LetG < H =T'Sp(n,q), TO(n,q),
or I'U(n,q) with n. > 13 and suppose that has the same orbits on 2-
dimensional spaces &@. ThenG > H (™),

Theorem IV of [CaK] varies from Fact 3.3.10 in the followingspects. The
transitivity hypothesis is weaker, amounting to trangi§ivon pairs consist-
ing of two isotropic nonorthogonal lines. This allows thtees dimensional
exceptions and two families defined over the fiéld whereG normalizes a
classical subgroup with coefficients iy, so thatG has more than one orbit
on totally isotropic planes.

Lemma 3.3.12.Let H be a normal subgroup of a product
G=Gy x--xGy

such thatd projects surjectively onto each product of the fofm x G;.
ThenG/ H is nilpotent of class at most — 2. In particular, if G is perfect
thenG = H.

Proof. Leto; for1 < i < n — 1 be a sequence of elements @f, and
for eachi let o € G be an element off which projects ontw; in the nth
coordinate, and in thei-th coordinate. Then any iterated commutafs)
in the elements; will project ontoy(o;) in Gy, andl in the other coordinates.
It follows easily that any iterated commutator of length- 1 belongs toH,
and our claim follows. [

Remark 3.3.13. The proof of Fact 3.3.6 actually involves a great deal of cal-
culation, somewhat disguised by the fact that the referglitlgpresents the
final outcome in tabular form. A qualitative version of thifficient for
our purposes, can be obtained by postponing the issue scahawtt mak-
ing use of our later results. We will indicate this approach.

View (A4,V) as a structure by endowing it with all invariant relations.
Replacing the bound “5” by “sufficiently large,” we may taketo have a
nonstandard dimension. If we show thhhas either &-definable point, or
quadratic structure, then the same follows for sufficielattge finite dimen-
sions.
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The induced structure oW is that of a standard linear geometry. L1ét
be the structure induced dnby (V, A, a) with a a point ofA. Note thatl”’
interprets the tripl¢V, A, a). One cannot expedt’ to be stably embedded,
in view of the characteristi2 case, but we still expect

(%) V' is Lie coordinatized.

Given (x), one deduces Fact 3.3.6 from the theorem on reducts and the
recognition lemmas: by Proposition 7.5¥, A) is weakly Lie coordina-
tized. By Lemma6.2.1Y is part of a basic linear geometry in this structure,
and Proposition 7.1.7 recognizds

The theorem on reducts can also be used in the proof)atself. Note
that any two unstable linear geometries interpret eachrgtihevided only
that the characteristics of the base fields are equal. Ogleeteare under
control, one can expand the geometry to a polar geometryedfiedd of size
greater thar2. This has the effect of reducing all caseg-ofto the simplest
case of Fact 3.3.6, namely the general linear group, whiolbeahandled
by a direct argument.

3.4 ORTHOGONALITY REVISITED

For simplicity we will work for some time in a nonstandardexsion of the set
theoretic universe in which we have infinite integers. Thvgga rigorous ba-
sis for the treatment of sequences of finite structures oéamsing size in terms
of one infinitely large structure of integral cardinality. this context it will be
important to distinguish internal and external objectgabty in connection
with the languages used, and the supply of automorphisnilglalea

Definition 3.4.1. Let M be an internally finite structure with internal lan-
guageL, in a nonstandard extension of the universe of set theory.n The
M* is the structure with the same universe, in a language whosmia
relation symbols consist of names for all the relations iitdig many vari-
ables defined oM by Ly-formulas.

Observe thatM* is not an element of the nonstandard universeMifis a
nonstandard finite model of a standard the®rin the languagd., then the
corresponding languagk, (normally calledZ* in this case) is the language
corresponding td in the nonstandard universe; this has more variables than
L (z,, for all integersn, standard or nonstandard), and more importantly, con-
sists of arbitrary internally finite well-formed formulas its language. This
includes formulas with infinitely many (but internally fiely many) free vari-
ables; these are discarded in forming the languagéAér so M* is a reduct
of M from the nonstandard languag#&, one which is in general richer than
the reduct ofM to the standard languade For a concrete example, consider a
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discrete linear order of nonstandard finite length: amoegtiedicates of1*
one has, for example, the distance predicdg$z, y) in two variables, for
everyn up to the (nonstandard) size of the order. Of course, in tse there
are no nontrivial internal automorphisms.®t; in fact, there are no nontrivial
automorphisms of\1*.

Lemma 3.4.2. Let M be an internally finite structure, and a finite disjoint
union of basic 0-definable projective simple Lie geometniéh no addi-
tional structure. LetG be Aut/ and letG; be (Aut.J)(*) (the iterated
derived group), where both Adtand Aut/(>) are understood internally
(the latter coinciding with the internal socle here), and@morphisms are
taken with respect to the geometric structure. Eebe the group of auto-
morphisms of/ which are induced by internal automorphisms/af. Then
J is canonically embedded it * if and only if H containsG .

Proof. Suppose first that’ consists of a single projective geometry. is
canonically embedded in* if and only if for each finiten, G and H have
the same orbits on-tuples inJ; applying Fact 3.3.4, part 1(ii), this means
thatG; and H have the same orbits ontuples inJ. This certainly holds if
H D G;. Conversely ifH has the same orbits ohasG, it containsG; by
Fact 3.3.8.

The argument is similar in the general case, but we musfyustither the
claim that if H acts omn-tuples ofJ as doe<7, then it containgz;. Arguing
inductively, it suffices to show that the pointwise stalgtiof J; in H acts
on m-tuples fromJ; x --- x J, asG; does. LetB C Jy x --- x J, have
cardinalitym, and letg € GG;. By the argument of the first part, the action of
the pointwise stabilizef/ 5, on J; induces the action gf on J;. Hence in its
action onJy x J,, H; has the same orbits on-tuples as; by induction
thenH ;, induces the action aff; on J; x J,. It follows that H inducesG;.

|

Lemma 3.4.3. Let M be an internally finite infinite structure. L&k, J> be a
pair of basic pure projective geometries (with no forms)mediand orthog-
onal over the algebraically closed sétin the sense thdt/;, Jo; J1NA, JoN
A) is canonically embedded iM. LetJ = J; U Jo, Ay = AN J. Then
the permutation groupr induced onJ by the internal automorphism group
of M contains AutJ; A;)>) (which in this case is just the commutator
subgroup of Aut/; A;)). All group theoretic notions are to be understood
internally here.

Proof. For notational definiteness let us assume that J; is nonempty for
eachi. In the linear model we have vector spadgswith PV; = J; and we
will take U; = acl(4) N V;, and decompos®; = U; @ W;. Then we may
check
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Our claim is that the grou@ contains the product of the two grougem(WV;, U, ) x
SLW;), acting onJ. We know that on the localizatiodsit M inducePSL(TV; ) x
PSL(W,) as these geometries are orthogonal. Hetbe the kernel of the
natural map fronz to Aut.Jo/(A N J3). ThenH; covers at leasPSL(W;)
and is normal inG. It follows that the same applies to the perfect subgroup
Hl("o). Now H1(°°) projects trivially into the second factor and may therefore
be thought of as a normal subgroupfaft(.J;; AN J;) coveringPSL(WW7); any
such subgroup contaidom(1Wy, A N J1) x SLW7), by inspection. |

Remark 3.4.4. We are working here with automorphismgointedprojective
geometries, in which constants have been added. It is n@yshwpossible
to reduce their analysis to a localization. In a similar velrtemma 3.4.2
may be proved for pointed pure projective geometries as, welfor that
matter for any pointed projective geometries, if we areimgilto write out
the stabilizers of various sets.

Definition 3.4.5. A collection of A-definable sets; is said to bgointly or-
thogonal over A in M if the disjoint union of the structures
(Si,acl(A) N S;) is canonically embedded if1.

Lemma 3.4.6. Let J; be defined oveA in M, with weak elimination of imag-
inaries, and letB C J = (J, J;. Then theJ; are jointly orthogonal inM
over A if and only if they are jointly orthogonal iM over A U B.

Proof. If they are jointly orthogonal oved andR is a relation on/ definable
from AulJ, acl(AB)NJ;, thenR is the specialization of a 0-definable relation
S over J to parameters fromyJ, acl(AB) N J;. Accordingly.S is a boolean
combination of products dfacl(A) N J;)-definable relations od;, and after
specialization the same appliesRoover AB.

Conversely, assuming orthogonality ovérJ B, let R be A-definable on
J. This is definable by hypothesis A, with respect to parameters from
U;acl(AB) n J;. Viewing R as an element of*4, lete = acl(R) N J.
By weak elimination of imaginaries; is e-definable ané C acl(A)N.J. &

Lemma 3.4.7.Let M be an internally finite structure. Lef; (i € I) be
canonically embedded projective Lie geometries\itt, defined over, and
orthogonal in pairs over, the set in M*. Then they are jointly orthogonal
overA in M*.

Proof. Let A; = acl(A) N J;. The assumption is th&t/; U J;; A; U A;) is
canonically embedded iv*. ExtendA by finite subset$3; of J; containing

A; so thatB; is a nondegenerate subspace containing a quadratic point, i
possible. In the pure projective cagg = A;. We may replaced by B =
AU, B;. ThenA, is replaced by3;, the geometries continue to be pairwise
orthogonal, and it suffices to prove joint orthogonality ovg3. For this, by
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the choice ofB;, except in the pure projective case it suffices to go to the
(nondegenerate) localizations, which are definably edpivaover B; to the
previous structures. Now we consider the grddfipf permutations induced
by AutM on |J;(J;; B;). Write G; for Aut(J;; B;)>). Applying Lemma
3.4.2 0f§3.3 to H(*), using the pairwise orthogonality, we firidl O [, G;.

By Lemma 3.4.2 and the remark following Lemma 3.4.3 (usechrhore
straightforward of the two directions) our claim follows. ]

Lemma 3.4.8. Let M be an internally finite structure. Lek, J> be 0-definable
basic simple projective Lie geometries canonically emieddd M*. Then
in M* we have one of the following:

1. J; andJ; are orthogonal.

2. There is a 0-definable bijection betwegnand .J;.

3. Jy and J; are of pure projective type—that is, with no forms—and there
is a 0-definable duality between them making the pdir, J2) a polar
space.

Proof. Let S be the internal permutation group induced.on= J; U Js by
internal automorphisms o¥1 and letG; be the internal automorphism group
of the geometry/;. SetS; = SN (G x G5)(>), again working internally (as
we will throughout). AsS projects onta?;, () C S, projects ontaG'>
fori=1,2. As GE"O) is simple,S(>) is either the full product or the graph of
an isomorphism betwee (> andG\™.

In the first case/; and J, are orthogonal by Lemma 3.4.2. In the sec-
ond case, by Fact 3.3.11, the geometrigsand J> are isomorphic as weak
geometries, and if we identify them by an isomorphism, therieentifying
their automorphism groups; is then the graph of an automorphism. With
the exception of the pure projective case, this automonpligsan inner au-
tomorphism with respect to the full automorphism group &f gfeometry, by
Fact 3.3.4, 1(iii); in the exceptional case it may be the cositpn of an inner
automorphism and a graph automorphismSilfis the graph of an inner auto-
morphism corresponding to an isomorphism.J; ~ J,, then asS; is normal
in S, this isomorphism isS-invariant, hencé-definable. In the exceptional
caseS; can be viewed as an isomorphism.gf and Jz; in particular,J; is
interpretable inM, and isO-definably isomorphic with/s. ]

Lemma 3.4.9. Let M be an internally finite structure. Le4 be a 0-definable
basic affine space, with corresponding linear and projectieometried”
and J. Suppose thaf is canonically embedded iv*. Then one of the
following holds inM*:

1. Ais canonically embedded ift*.
2. There is a 0-definable point of in M*.
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3. J is of quadratic type and there is a 0-definable bijectiomofvith aQ)
for some uniquex.

Proof. As usual all computations with automorphisms will be tatedative to
the internal automorphism groups.

We argue first thal” is canonically embedded iv*. Let V; be V' with
all 0-definable relations fromM. Then.J is canonically embedded {{¥/, V1),
and stably embedded sintg C acl(J). Fora € V, V; C dcl(Ja), and hence
(Vi,a) = (V,a) as structures. By weak elimination of imaginaries ¥orit
follows thatV; = V' as structures.

Now consider

U = {v € V : Translation by is an automorphism ofl overV'}.

Forv in U let 7, be the corresponding translation map.4n Then fora €
AutM* we haver? = 7,-1,. ThusU is (AutM*)-invariant, and hence also
0-definable inM*, since M is internally finite. Butl” is canonically embed-
ded inM*, soU =V orU = (0).

If U = V then A is canonically embedded iM*, sinceV is. Suppose
thatU = (0). Every automorphism of extends taM* and hence to4; as
U = (0), this extension is unique, arkutV acts onA. By Fact 3.3.6, we
have either a fixed point or a bijection withQ, as in possibilities (2,3) above,
fixed by (AutV)(>). Furthermore, the fixed point or bijection, as the case may
be, is unique, as otherwise tHigut)(>) would fix correspondingly either a
point of V, or a nonidentity bijection ofi) with itself. The first alternative is
obviously impossible. In the second case, & aQ is moved by the bijection,
sayq — q+a)?, thenv is fixed by the corresponding orthogonal group, which
is again a contradiction. Thus the unique fixed point, or thigue bijection
with aQ), is fixed byAut M*. ]

3.5 LIE COORDINATIZATION

In this section we introduce the notion of a locally Lie caoatized struc-
ture, which is approximately a structure coordinatizedhrmnanner of [KLM]
(in other words, without concern for stable embedding), exedcheck that
the internally finite structures associated with 4-quais#fietructures are bi-
interpretable with locally Lie coordinatized structuregyich is another way
of phrasing the results of [KLM] (witls reduced tot). Then to complete the
proof of the equivalence of the first five conditions given inebrem 2, we
show that4-quasifinite locally Lie coordinatized structures are Loodina-
tizable. See the discussion at the end of the present sdotiarreview of the
situation up to this point.
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Definition 3.5.1. A structure M in some nonstandard set theoretic universe
is locally Lie coordinatizedf it has nonstandard finite order, has finitely
many 1-types, carries a tree structure of finite height whasgue root is
0-definable, and has a collectioff of pairs (b, J) with b € M, J a b-
definable component oftadefinable basic semiprojective, linear, or affine
geometryJ C M, satisfying the following conditions:

1. If ais not the root, then there is< a such that eithet. € acl(b) or there
is a pair (b, J,) € J witha € Js.

2. If (b,J) € J with J semiprojective or linear thed is canonically em-
bedded inM.

3. Affine spaces are preceded in the tree by their linear vession

Lemma 3.5.2. LetT" be an infinite dimensional proper Grassmannian of type
(e, K,7),anda € . Then there are elements, ...,a, € T'**Nacl(a)
and Lie geometried;, possibly affine, withy; 0-definable and canonically
embedded relative to the structufg; ao, .. ., a;), such thatay € acl(®),
ai+1 € J;, anda € acl(ag, - . ., an).

Proof. The componentd of the underlying coordinatizing structutecan
be recovered from equivalence relations on pairs fiamLet a consist of
these components as element&%f, together with enough elementsafi((})
in C°1 to make them all basic. We defirg inductively, stopping whea €
acl(ag, . ..,a;). Given(ao,...,a;), with a not algebraic over them, pick a
component/ meetingacl(a) — acl(ay, ..., a;) and leta’ be a point of the
intersection. Consider the localization= .J/(ao, . . ., a;). This is notin gen-
eral the full quotient of/ modulo algebraic closure relative tay, ..., a;),
but just a part of that. The remainder consists of variousrgetdes which are
either O-definably equivalent to the localization, or affaver it. In particular,
we may takea’ to represent either an element of this localization or an ele
ment of an affine geometry over the localization. More prgjghere is an
elementa” lying either in the localization/, or in an affine geometry over it,
for which acl(ao, . . .,a;,a’) = acl(ag,...,a;,a”). We seta;11 = o” and
correspondingly/; = J or an affine geometry ovet.

The localizations are canonically embeddedlinay, . . ., a;). In the affine
case Lemma 3.4.9 applies. If the affine space is actually g ab@, thena”
is taken in@ (which is part of the semiprojective model). ]

Lemma 3.5.3. Let M be a structurek an integer, and let be a finite set of
first order formulas in four free variables. Suppose thatdwery first order
sentence true in M there is a finite modeM’ satisfying

1. M =
2. M’ has at most 4-types.
3. Every O-definable 4-ary relation aft’ is defined by one of the formulas
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inw.

ThenM is bi-interpretable with a locally Lie coordinatized stiuce M’
which forms a finite cover oM: M’ has M as a0-definable quotient with
finite fibers (se@4.5 for a formal discussion of covers).

Proof. These conditions imply that1 itself has at mosk 4-types, and that
every 4-ary relation oM is defined by one of the formulas. In particular,
one can select a maximal chalfy < ... < FE, of 0-definable equivalence
relations onM and we may suppose that in all the modal this chain
remains a maximal chain of 0-definable equivalence relat{omaking use,
among other things, of condition (1)). We takk < F;., to mean thatz; ;

is coarser thaily;.

Fori fixed, anda € M, we consider thé’; , ;-classC of a, and its quotient
C/E;. It will suffice to prove thaC/ E; is either finite or a proper Grassman-
nian, as we can then coordinatizd by coordinatizing each infinite section
C/E;, starting from the coarsest, using Lemma 3.5.2; of couf<g/ F; is fi-
nite, then its elements are algebraic ogeMWhen projective geometries occur
they can be replaced by semiprojective onesif.

If C/E; is infinite, then by [KLM], specifically by Fact 3.3.3, abowee
may suppose that in the finite structutk$’ approximatingM in the sense
of clauses (1-3) above, the corresponding$etE; carries the structure of a
semiproper Grassmannian of fixed type. Theredaptace relations?; which
encode the components of the coordinatizing structurenlyidg the Grass-
mannian, as well as the geometric structure on this coadtiding structure.
Primarily, theR; should be equivalence relations on pairs, so as to encode the
elements of the coordinatizing structure; one can alsodmoe.g., a ternary
addition relation, with some care, by using four variabtethe Grassmannian.

There is also a statementRy, ..., R,) expressing the fact th&’/E; is a
Grassmannian of the given type for this coordinatizingdtrre. Accordingly
in view of our hypotheses, a formula of the same type will ggplC/E;,
for some choice of th&;, andC/ E; is the Grassmannian of a coordinatizing
structure.

To conclude we must check properness: that i§; iif;, we claim that each
0-definable relatioy is geometrically definable (i.e., definable from the struc-
ture with which the Grassmannian inherits from the coortiltivag structure)
overacl(f). For fixedS this will hold in sufficiently large finite approxima-
tions M’ and by (1) this property passesAd. ]

Corollary 3.5.4. If M is strongly4-quasifinite, thenM is bi-interpretable
with a locally Lie coordinatized structure which forms atincover ofM.

Lemma 3.5.5. Let M be an internally finite structure and suppose that*
has a finite numbek of 4-types. Then\* is bi-interpretable with a locally
Lie coordinatized structure which forms a finite cover\ef .
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Proof. We apply the previous lemma. L&t be a set of representatives for
the internally O-definable formulas in 4 variablesht*. Let ¢ be a first order
statement true io\*. Let L O W be a finite language contained in the lan-
guage ofM* such thatp is a formula ofL. We seek a finite structuc®t’ for
the languagd. such that

1. M=o

2. M’ has at mosk 4-types.

3. Every(Aut M')-invariant4-ary relation onM’ is defined by one of the
symbols inL.

Note that properties (1-3) taken jointly constitute a staddroperty of a
finite language, and are satisfied (in the internal sensefidmatandardly finite
structure, hence also in some finite structure. |

Lemma 3.5.6. LetJ be a semiprojective or basic linear Lie geomettyC J
finite, and suppose thdt’; C) (C treated as a set of constants) is canoni-
cally embedded in the structu(é1; A). LetC’ = acly(A) N J. ThenC’
is finite and(J; C") is canonically embedded io\; A).

Proof. C’ C acl(C) in the sense of, soC" is finite.
Let R be anA-definable relation oif. ThenR is C-definable and thug <
Je4, It follows from weak elimination of imaginaries th&t is C’-definable.
|

Lemma 3.5.7. Let M be internally finite,J a semiprojective or linear geo-
metry, B-definable, and” C J finite with (.//C) canonically embedded in
(M*; B). Assume that’ is nondegenerate if involves a form, and other-
wise, if J is pure projective, then assume thati* the definable dual of
the linear model/ is trivial. Then the groug induced onJ by the internal
automorphism group of1 over B contains(Aut(.J; C'))(>).

Proof. In the nondegenerate case, dealing withverC' is equivalent to deal-
ing with J/C and Lemma 3.5.2 0§3.4 applies. In the pure projective case
(Aut(.J; C))(>) has the formHom(W, U) x SL(W) relative to a decomposi-
tion of the linear modeV = W & U with U coveringC, and all we learn from
looking at the localization is tha&¥ induces at leassL(WW') on the localization;
thus the subgroup dlom(W, U) x SL(WW) induced byG is H x SLW) with
H anSL(W)-invariant subgroup dflom(W, U). ThenH will be Hom(W, Up)
for some subspack, of U and P(W @& Uy) is the unique minimat(>)-
invariant subspace of. Thus this space i§-invariant. But as we are in the
pure projective case there can be no definable subspacetefdadimension,
soUy =U andH = Hom(W,U) x SLW). |
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Lemma 3.5.8. Let M be an internally finite locally Lie coordinatized struc-
ture with respect to the coordinate systems/imnd suppose that

1. WhenevetJ, € J is pure projective, with linear modéf, the definable
dual V* is (0).

2. Whenever, € J is symplectic of characteristic 2, there are no definable
guadratic forms onJ, compatible with the given symplectic form.

Then for any finite subset of M closed downwards with respect to the
coordinatizing tree, we have

3. Forb € A, if Jp is nonaffine, then for some finite subsetC .J,, the
structure(.J; C') is canonically embedded ifv{* over A.

4. For Jy,Jo € J nonaffine, with defining parameters i, if C; =
acly- (A) N J;, then either(J;; Cy) and (J3; Cy) are orthogonal over
A, or else there is aml-definable bijection of/; /C; with J5/Cs.

Proof. We prove (3, 4) simultaneously by induction on the sizelof

Let A, b be given. We prove (3). If is the branch below then (3) holds
by definition of local lie coordinatization. So we may suppdsatA contains
elements not on the branch beléwlet ¢ € A be maximal among such ele-
ments, andB = A — {c}. Induction applies ta3. In particular(Jy; Co) is
canonically embedded iM* over B, for some finiteCy C J,. We may take
Cp nondegenerate when a form is present. Then the internainaupdism
group of M* over B induces at leagtAut(.J,; C))(*) on J;.

If ¢ is algebraic overB, then its stabilizer in the internal automorphism
group of (M*; B) has finite index, hence also covérsut(.J,; Cp))(>). Thus
in this cas€ Jy,; C) is canonically embedded ifv* over A.

Suppose therefore thatis not algebraic oveB. Thus there is a geometry
Jo associated to a parameteof B, with ¢ € J,. We will write .J; for J;. Let
C; = acly~(B) N J;. Then(J;; C;) is canonically embedded iv* over B
by Lemma 3.5.6, and (4) applies to this paidifis also nonaffine.

Case 1.J; is nonaffine, and.J»; Cs) is orthogonal to(.J1; C1 ).

Then (J1, J2; C1C5) is canonically embedded int* over B and hence
(J1; C1) is canonically embedded ifvt* over A.

Case 2.J; is affine, with corresponding linear geometry, and the projec-
tivization P, = P(V,/B) is orthogonal toJ; / B over B.

As the orthogonality statement is preserved by adding petens from.Jy,
and this does not affect the desired conclusion (3), we nia/da to be non-
degenerate, of; to be pure projective. We now work with the internal auto-
morphism groups.

Let G be the automorphism group 0f;; B), H the automorphism group of
Ja, andG(X') andH (X)) the pointwise stabilizers. The®(P,) = G since the
geometries are orthogonal and basic. TEY&/(.J2) ~ H (P2, B)/H (Pz, J1, B).
On the right hand side we have a solvable group and héfide) contains
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G(*), Thus(.J;; B) is canonically embedded i/, ; B.J,) and in particular is
canonically embedded ovéruU {c} = A.

Case 3.J; is nonaffine and is nonorthogonal 1§ over B.

Find J' = Jy with ¥ < b minimal such that/’ and.J; are nonorthogo-
nal. By the induction hypothesis (4) applied to the branclowe, there s
a b-definable bijection betwee#’ /b and J;, which must be an isomorphism
of weak geometries. Accordingly, we may replageby J’, and if’ < b
conclude by induction. Thus we now assuifies orthogonal to every earlier
geometry. In much the same way we may assumeih@atorthogonal to every
earlier geometry.

As these geometries are nonorthogonal, they are now assortregjonal
to every geometry associated with a parameter bélawrd. It follows that
acl(bd) N J; = @ for i = 1,2. The induction hypothesis (4) applies to the
union of the branches up tcandd, and gives ad-definable bijection between
J1 andJ,. Thusc € dcl(Bc¢') for somec’ € Jp, and (3) follows.

Case 4..J, is affine, with corresponding linear geometfry; and the pro-
jectivizationP (V> /B) is nonorthogonal to/; over B.

We minimize parameters as in the previous case, tafingrthogonal to
its predecessors, and takiiy to be a (nonaffine) geometry nonorthogonal to
P(V2/B) and minimal belowd. ThenP, andJ; can be identified, as in the
previous case, and we apply Lemma 3.5.8/40and P,/ B. There are then
three possibilities.

If J> has a O-definable point int*, thendcl(A) = dcl(B, ¢') for some
¢ € V4 and we may replaceby ¢’ and return to the previous case.

If in M* we have aB-definable bijection of/; with @, then by hypothesis
(2) Q is also part of;, and again we reduce to the previous case.

Suppose finally thaf, is canonically embedded if*. Now P, /B is ge-
ometrically definable ovefs, so(P./B, J3) is canonically embedded ifvt*.
Furthermore P,/ B is canonically embedded P,/ B, J2; ¢) (one affine pa-
rameter). Thus /B is embedded iftM*; ¢). As P, and.J; are B-definably
identified, we wish to show thd®, is itself canonically embedded {tM*; ¢).
When P, carries a form ther, is geometrically definable fron®, /B and
additional parameters from,. When P, is pure projective it follows from
Lemma 3.5.7 that it is canonically embeddedufi.

This exhausts the cases and proves (3). We now considerd4ye have
J1, J2 nonaffine, with defining parameters.iy andC; = acly- (A) N J;.

We apply Lemma 3.5.8 ¢f3.4. By hypothesis (1) if the geometries involved
are pure projective, the polar case cannot arise between tis® either we
have and-definable bijection off, /C; with J>/C5, or these localizations are
orthogonal over.

Suppose therefore thdt /C; andJ,/C> are orthogonal oved. Our claim
is that then(J;; C1) and(Jo; Cs) are orthogonal oveA. If .J; is pure projec-
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tive then Lemma 3.5.7 applies to give the orthogonalityat C1) and.J /Cs.
If J1 involves a form then considé€r = Aut(J;; Cy) and the pointwise stabi-
lizer G(J,/C1). The quotientG/G(.J,/C}) is solvable and as in Case 2 above
it follows that (J1; C1) and.Jo/C5 are orthogonal over. In this case they
remain orthogonal over a nondegenerate extenSionf C; and(Jy; C}) is
definably equivalent to; /C7.

If J5 is pure projective the same argument gives us(tfatCy ) or (J1; C}),
as the case may be, is orthogonal(th; Cy). Otherwise, we may suppose
that both.J; and J; involve forms, and thatJ;; C}) is definably equivalent
to J;/C1, so that repetition of the first argument gives the orthotjgnaf
(J1; C1) and(Jz; C2), using the solvability of the relative automorphism group
for (Jo; Cy) overJs/Cs. By Lemma 3.5.6 the orthogonality holds ovér B

Lemma 3.5.9. Let M be an internally finite locally Lie coordinatized struc-
ture. ThenM* is Lie coordinatizable. If in additionM is strongly 4-
quasifinite thenM is Lie coordinatizable.

Proof. We will apply the previous lemma. The first point is that witit loss
of generality we may suppose that the coordinatizing fargilgatisfies the
following:

(i) wheneverJ, € J is pure projective, with linear modé&l, the definable
dual J* is (0);

(i) wheneverJ, € J is symplectic of characteristic 2, there are no definable
guadratic forms on/, compatible with the given symplectic form.

In other words, if the definable dudf is nontrivial, thenJ is part of a polar
geometry encoded iM which may be used in place df and if a symplectic
space carries a nontrivial form (and is acted on by the futhggctic group)
then it may be replaced by the corresponding quadratic gepnigerpreted
in M.

So we have, in particular, the following conclusion from Lrem3.5.8 for
any finite subsetl of M:

Forb € A, if J, is nonaffine then for some finite subgetC .J,,
the structuré.J; C') is canonically embedded iv1* over A]

Varying A, this implies that the nonaffine geometries are stably einidbedh
M*. By Lemma 3.5.8 0§3.4 the same is true for the affine geometries. Thus
after replacing the semiprojective geometries with pribjecmnes M* is Lie
coordinatized.

If in addition M is strongly4-quasifinite, then the Lie coordinatization can
be defined using formulas in the language\df ]
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There has been a certain amount of vacillation between gtiogeand semi-
projective geometries visible. The orthogonality theargimpler for projec-
tives, and elimination of imaginaries holds for the semjgctives. Further-
more, they are bi-interpretable, so in a sense both thearesvailable for
either version.

We recall the statements of Theorems 2 and &102.

Theorem 3.5.10 (Theorem 2: Characterizations)
The following conditions on a modgH are equivalent:

. M is smoothly approximable.

. M is weakly approximable.

. M is strongly quasifinite.

. M is strongly4-quasifinite.

. M is Lie coordinatizable.

. The theory oM has a mode/M* in a nonstandard universe whose size
is an infinite nonstandard integer, and for which the numifenternal
n-typess;, (M*) satisfies:

OO~ WNPE

for some finitec, and in which internaln-types andn-types coincide.
(Heren varies over standard natural numbers.)

Theorem 3.5.11 (Theorem 3: Reducts)The following conditions on a model
M are equivalent:

. M has a smoothly approximable expansion.

M has a weakly approximable expansion.

M is quasifinite.

M is 4-quasifinite.

. M is weakly Lie coordinatizable.

. The theory ofM has a mode/M* in a nonstandard universe whose size
is an infinite nonstandard integer, and for which the numkfenternal
n-typess;, (M*) satisfies

N

n <
for some finite=. (Heren varies over standard natural numbers.)

We remarked irg2.1 that weak approximability implies strong quasifinite-
ness; thus the implications = 2 = 3 = 4 in Theorem 2 all hold.
Furthermore, by existence, finiteness, and homogeneitypaflepes, Lie co-
ordinatizability gives smooth approximation. In the prasection we showed
that 4-quasifinite structures are Lie coordinatizable. Thus tpewalence of
the first five conditions in Theorem 2 has been verified; thienade needed for
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the sixth clause will be found if5.2. One can also verify the equivalence of
the first five conditions in Theorem 3 if one replacesakly Lie coordinatiz-
able’ by “reduct of a Lie coordinatizable structuteHowever, the proof that
these two conditions are equivalent is subtle and is theestibf Chapter 7.
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Finiteness Theorems

4.1 GEOMETRICAL FINITENESS

As Ahlbrandt and Ziegler showed, the key combinatorial prop of coor-
dinatizing geometries depends on Higman’s lemma, itselfexisl case of
the Kruskal tree lemma. This was given an additional degfékexibility in
[HrTC], adequate to our present purposes, once we verityttieageometries
we are using possess the following property. The proof ig waich the same
as in the pure linear case.

Definition 4.1.1. A countable structuré is geometrically finitewith respect
to an ordering< of typew, if for eachn the following holds:

For any sequence of-tuplesa; (i = 1,2,...) in M thereis an
order-preserving elementary embedding M — M taking
a; toa; for somei < j.

Lemma 4.1.2. Suppose thai is Ry-categorical and geometrically finite with
respect to the ordering:. Leta be a finite sequence of elements\df and
suppose that for each= 1,2, ... there are giverk finite initial segments
Si1, ..., Sk Of (M;<). Then there is an automorphismof M, a finite
initial segmentS of M, and a pairi < ¢’ such that

acs; Sz] gSfOI’]:L,k

«~S is order preserving.

« fixesa.

Oé[Sij] - Si/j fij =1,...,k.

5. a(max Sij) = max Si’j forj =1,...,k.

PowbdpE

Proof. Setb;; = maxS;; for all ¢, j and apply geometrical finiteness to the
sequencega, b;) with b; = (b;1,...,b;). The result is an order-preserving
elementary map : M — M fixing a and carrying somb; to b;s with 7 < 7',
Restricts to a large initial segmert of M, and then extend the restriction to
an automorphism oM. ]

In proving the geometrical finiteness of a geometry we first déth linear
models. We work with the following orderings.
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Definition 4.1.3. The standardorderings of basic linear (or degenerate) ge-
ometries are defined as follows.

1. Any ordering of a pure set in order typeis standard.

2. If X is an ordered basis for a vector spateand < i is an ordering on
the base field, witb as the first element, then tireduced orderingn V'
is derived from the reverse lexicographic ordering on wardthe alpha-
bet K as follows. To any vectar we assign the word consisting of the
sequence of its coordinates, truncated after the last monzasordinate.
A standard ordering of the pure vector spdces any ordering induced
by such a pair( X, <), where the order type of isw.

3. If V is a vector space carrying a nondegenerate symplectic anfiam
form, or a nondegenerate quadratic forpwith an associated symmetric
form, then an ordered basi¥ for VV will be considered standard if it has
the form(ey, f1, €2, fo2,...) where in all casege;,e;) = (fi, fi) = 0,
(es, fi) = 1, the subspaceH; = (e;, f;) are pairwise orthogonal, and in
the presence of a quadratic for@ywe require furthermore thad(e;) =
Q(fi) = 0.

In this case an ordering ol is considered standard if it is induced by a
pair (X, <x) whereX is a standard ordered basis.

4. A standard ordering of the linear polar geometfy, W) is defined as in
the previous case, using the appropriate version of a stehHasis for
V U W, here thee; form a basis forl/, and thef; form a basis fodl’.

We remark that given any standard ordering on a vector spageed from
an ordered basiX, the subspaces generated by initial segments @fill be
initial segments of” with respect to the induced ordering. We note also that
we include the polar case here because it does not reducepaié projective
case, but we exclude the quadratic case for notational ooewee since its
underlying set is not a vector space; however, this is aalifyj since after
fixing a point of the quadratic geometry it can be treated asrédmogonal
geometry.

We review the combinatorial lemma on which geometrical diméss de-
pends.

Definition 4.1.4. Let X be a finite set.

1. A word in the alphabet is a finite sequence of elementsaf ¥* =
U,.>o X" is the set of all words in the alphabgt

2. Theembeddability orderingn X* is the partial ordering defined as fol-
lows: w < w' if there is an order-preserving embeddingwfnto w’.

3. A partially ordered set X, <) is well quasi-orderedf it has no decreas-
ing sequences and no infinite antichains; by Ramsey’s the@rs equiv-
alent condition is that any infinite sequence of distinchaats ofX
contains an infinite strictly increasing subsequence.
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Fact 4.1.5 (Higman’s Lemma [Hi]). If ¥ is a finite alphabet, then the par-
tially ordered set(¥, <), under the embeddability ordering, is well quasi-
ordered. Thus for any infinite sequence of woxd8 € X*, there is a pair
i, withi < j such thatw® embeds inv(?).

We note that this fact is proved more generally in a relatbrenf, for words
in any alphabet which is well quasi-ordered, with an appetply modified
embeddability relation. Only the finite case is used here.

Lemma 4.1.6. The countably infinite versions of the linear and degenerate
geometries—a pure set, a pure vector space, a symplectiitien, or
orthogonal space, or a polar pair—are geometrically finitéhawrespect to
their standard orderings.

Proof. It will suffice to treat the cases of nondegenerate symigldotrmitian,
or orthogonal spaces, where the notation is uniform. Theratbndegenerate
cases are simple variations.

We fix a standard ordering on V' with respect to a standard basts =
(e1, f1,...) for V and an ordering ofC with 0 as initial element. Lefi; =
(es, fi); this is a nondegenerate plane of the same tygé.as

With n fixed we considen-tuplesa? = (v;1, ..., v:,) from V. For each,
expanding relative to the basl§, think of a®) as a matrix withn semi-infinite
rows, and entries if. Letb® = (w;,...,w;n,,) be the corresponding
matrix in reduced row echelon form, and Ief; be then x m; matrix overkK
connecting the two forms bya(¥ = M;b(). Without loss of generality, the
numbersm; = m and the matriced/; = M are independent af and we
may also suppose that the mag® — b() defined byw,; — w;; are all
isometries with respect to whatever forms are present.

Now we will make the reduction to Higman’s lemma, encoding He-
quences® by a word in an appropriate alphabet. We expand each vector
wij asy_, hij whereh;;,. € H,. As theH, are all isometric we will identify
them all with a single planél = (e, f) and considef;;. to be an element
of H. We say that- is theleading indexfor w;; if r is maximal such that
hijr # 0; we say that the leading indexfor w;; is oftypee if h;;, € (e), and
of typef otherwise. We associatebd” a sequence™ = (h;1, hia, . . ., hir)
with r the maximal leading index of the;; in such a way thak;, encodes the
following sequence of data far< j < m:

the value ofh;;s € H;
whethers is the leading index ofv;; (yes/no).

Clearly this information can be expressed by a finite alphabe

By Higman’s lemma we have a pair< i’ such thatv(® embeds inv(").
We will now write out exactly what this means. Lg&t’ be the lengths of
w® andw(), respectively. Since < i, there is an increasing functian:
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{1,...,1} = {1,...,U'} such that

(1) hi/b(s) = Ry for s <.

or more explicitly, in terms of the data encoded, §o£ | we have
(11) hi’jb(s) = hijs forj <m.

(1.2) If s is the leading index fow;;, then

t(s) is the leading index fow; ;.

Sety; = > {hy;s : s ¢ im:}. The leading index of; is less than the leading
index Ofwi/j, by (12)

We now associate with a linear maps3, which is defined on the span of
e1, f1,...,e, f1, as follows:

(2.1) Bles) = e, unless

s is the leading index of some;; and is of typee for it.
(22> ﬂ(fs) = fL(S) unless

s is the leading index of some;; and is of typef for it.
(2.3) Blhijs)= hirjucs) +y; if

s is the leading index ofy; ;.

By the initial reduction to row echelon form, a given indegan occur at most
once as the leading index of a given type( f) for one of thew;;. If s is the
leading index forw;; and is of typee for it, then (2.3) and linearity determine
B(es), while if, on the other hand has typef for w;;, then (2.3), linearity,
and the value of(e,) determine3(f;). So (2.1-2.3) determine some linear
function. For anyr let H. = {H; : s < i(r),s ¢ im:}. Theng has the
following properties:

(3.1) B(higr) € hirju(r) + Hy

(3.2) Bwiz) = wir;

From (3.1) it follows that5 is order preserving: ift;, us have their last
difference in the'th component, thefi(u;) and3(u2) will differ last in their
+(r)th component, and in th@ame mannerBy (3.2) and the relations(?) =
Mib(i), we flndﬁ(’UU) = V.

It remains to check thdt is an isometry. We make use of a ba&igJ X, for
(e1, f1, ..., e, f1) of the following form: X consists of altv;; for j < m; X»
consists of the, and thef,. for whichr is not a leading index of corresponding
type for any of thew;;. Then by (3.2)3 is an isometry o{X;), andj is also
an isometry on X5). So we need only check thAtpreserves inner products
betweenX; and X, (even in the orthogonal case, this now suffices). In view
of the orthogonality of the spacéd$,, the relation (3.1), and the definition of
3, this follows. |
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Corollary 4.1.7. The basic geometries are geometrically finite.

Proof. LetJ be the geometry, arld the corresponding linear model, equipped
with a standard ordering.

If J is projective order it as follows: < b if the first representative for a
in V precedes the first representativef b in V.

If J is affine, then call one elemeft place it first, and order the remainder
of JasinV. Similarly, if J is of quadratic type pick one elementf the space
Q of quadratic forms oV compatible with the symplectic structure, place it
first, and then identifyV, Q) with the orthogonal spadéd’; ¢); order it as two
copies of a standard orthogonal space. ]

4.2 SECTIONS

We will establish the notation used in proving that Lie caoatized structures
have finite languages and quasifinite axiomatizations. Aiqudar coordinati-
zation is fixed throughout. The coordinatizing tree, togethith some relevant
data, will be called the skeleton of the model.

It will be convenient to coordinatize using semiprojecsivie place of pro-
jectives from this point on.

Definition 4.2.1
1. Askeletal typeconsists of the following data:

a parameteh (the height of a tree);

anassignment associating to eachwith 1 < i < h the type of a basic
semiprojective or affine-with-dual Lie geometry, or a firsteicture;

a partial functiono from {1,...,h} to {1,..., h}. Hereo satisfies the
following conditions:

(i) the domain and range of are disjoint and their union is contained
in the set of indices for which(¢) is not a finite structure;

(i) o(i) <74;
(iii) the domain ofr contains the set of indiceisfor which 7(i) is a
basic affine-with-dual Lie geometry.

A leveli for which 7 (i) is a semiprojective type geometry anid not in the
domain ofs is said to be a level afew type

2. Theskeletal languagé. and skeletal theoryly, associated with a
given skeletal type (not shown in the notation) are definddlésvs.

L, contains symbols< and P, (0 < ¢ < h) which are asserted by
T to constitute a tree ordering of heightwith levels given by the unary
predicatesP,, . .., Py; Py consists of the root alone. There should also be
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predecessor functions for the tree order, so that a subsiraowill be a
subtree.

L, contains several additional symbols. In the first place,oihtains
languages suitable to the description of structures of yipes specified by
the r-component of the skeletal typg,, asserts, using these symbols, that
the tree successors of a given point at level 1 form a structure of the
type specified by(7), that is, either a specific finite structure or an infinite
dimensional basic geometry of specified type. It will be eaient to write
P;(a) for the successors of a poiatat leveli — 1; so Ty, controls the type
of eachP;(a).

Finally, and crucially, thes-component of the skeletal type furnishes
nonorthogonality information. L, contains function symbols in several
variablesf;; wheneveyj = o (%) representing a parametrized family of func-
tions f;;., wherea varies over the points at level- 1, providing a bijection
between the projectivization &% (a) and a localization of the projectiviza-
tion of P;(a’) relative to some finite subset, whereis the element lying
belowa at heightj — 1.

It is not quite necessary to fix the skeletal data, as longasdhious vari-
ables involved, such as the sizes of the finite structureskept bounded.
However, we can analyze more general situations of this lbypgealing with
each possible refinement to full skeletal data.

Definition 4.2.2. Let the skeletal datay(, , o) be fixed, hence also the skeletal
languagel g, and the skeletal theor¥,. Let L be an expansion afy.

1. A skeletonwith given skeletal data is a model fé,.

2. A skeletal expansiois a structure for the languag®é whose reduct to
Lg is a model off. It hastrue dimension# not only the type of the
geometry, but its isomorphism type, is determined by thmiattype of
its controlling parameter.

3. A fully propermodel for the languagé, is a skeletal expansion which
satisfies

(i) TheLgk-reduct of each layeP;(a) with i in the range ot (that s,
the pure geometry) is fully embedded/.

(i) If @’ < ainthe tree lie atlevel — 1 andj — 1 respectively, with
i,j inthe range obr, thenP;(a’) and P;(a) are orthogonal

(i) The dual affine part of an affine-with-dual geometry is thedat
finable affine dual.

Lemma 4.2.3. The class of fully propeL-structures relative to a given skele-
tal theory is an elementary class.

Proof. The point that requires care is the axiomatization of staibhbedded-
ness of a given geometryin M, since in order to state in first-order terms the



SECTIONS 69

definability of the relativization of a formula to J using parameters of, it
is necessary to give an a priori bound on the number of pammpeeded in
J.

SoletD, = {x € J : o(x,b)} be anM-definable subset of with pa-
rameters (containing defining parameters fdj. If this is J-definable, it is
definable using parameters.dm acl(b), by weak elimination of imaginaries.
This is a finite dimensional subspacebdf dimension at mosk(b), andrk(b)
is at most the height times the number of entries in the sequehce ]

We now deal at length with skeletons and expansions of skedetView
L andTyy as fixed for the present.

Definition 4.2.4. Let M be a countable skeletal expansion.
AnAhlbrandt-Ziegler enumeratigor more specifically, &readth-firshlbrandt—
Ziegler enumeration) is an enumeration/of derived from some data of the
following type, according to the recipe following. The daii#l be

1. A standard enumeration of the projectivization of each ohthe semi-
projective layers at levelwherei is a level of new type;

2. An enumeration of each of the finite structures found in therdinate
tree;

3. A setC;(a) of at most| K| elements K is the base field) in each of the
component$; (a) of theith layer, whenevep;(a) is not finite, chosen so
that

if P;(a) is semiprojective, theld;(a) is the set of semiprojective
points above some point of the projectivization Bf(a) (in the
sense explained below); ®;(a) is affine thenC;(a) enumerates
an affine line inP;(a).

Relative to these data, we ord#1 as follows. Enumerate successive lay-
ers of the tree; the order in which thih layer is enumerated is determined
first by the enumeration of the previous layer, and for a fidethenta of
layeri — 1, either

e the enumeration oP;(a) is given as part of the data, using one of the
clauseq1,2), or

e in the event thaj = o(i) is defined, the enumeration &(a) is deter-
mined by the enumeration &% (a’) wherea’ lies belowq at levelj — 1,
as follows. We have by hypothesis a specific identificatichefro-
jectivization P, of P;(a) with a localizationP,, of P;(a’). If P;(a) is
semiprojective then enumerate the point€£pfa) first; then over these
points there is a definable function from the projectiviaatontoP;(a),
so an ordering of the rest d?;(a) is determined by an ordering on the
corresponding localization aP;(a’) wherej = (i) anda’ lies below
a at levelj — 1. Such an ordering on the localization & (a") can be
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induced from the ordering d?; (a’) using first representatives, as in the

original discussion of geometrical finiteness P{«) is affine-with-dual
then the dual part is enumerated first, following the enuriensof the

projective dual (which is part of the corresponding projeetgeometry),
and then the affine part is enumerated by taking the affinedirte) of

(3) first, after which one follows the enumeration of its paijvization
as in the semiprojective case.

Definition 4.2.5. Let M be a countable skeletal expansion.

A sectionof M is an initial segment oM with respect to an Ahlbrandt—

Ziegler enumeration. Theeighth of a section is the least level not com-

pletely contained in the section. According to this defimitthe height of

M itself should be considered to be undefined.

Definition 4.2.6. Let M be a countable skeletal expansion dia section of
M of heighth.

A supportfor U consists of the following dat@3, a, C) :

1. The sequenc® = (By,..., By), with B; consisting of all points at

leveli for which a lies below some point df’ at levelh, and the tree
predecessor af lies below some point at leviinot inU;

. If i < his maximal such thaB; is nonempty: let. = (ag, a1, ...,a;—1)

be the (unique) branch leading 18;;

. If P;(a;—1) is finite letC;(a) be the complete enumeration Bf(a;—_1);

if P;(a) is semiprojective or iB; meets the affine part, |€t;(a) be the
finite subset chosen originally in the construction of theéesifrom which
U was derived; ifP;(a) is an affine-with-dual pair and; is contained
in the affine dual, leC;(a) be an enumeration of the points Bf which
lie over the last point of the projectivization (the pointifge that the
ordering of the projectivization does not define a uniquesarty of the
affine dual, but knowin@’;(a) and the projective ordering, the initial
segment of the affine dual is determined).

Note here that a section does not quite determine its sugdoce the same

section may be derivable from different orderings; thisiist an abuse of lan-
guage, and in any case in practice supports are used to detesections,
rather than the reverse.

Lemma4.2.7. Let (B,a,C) be given withB = (By,..., By) a sequence

of subsets of the first + 1 layers of a countable skeletal expansion,

a = (ag,a1,...,ap—1) the branch leading tadB,/, whereh’ is maximal
such that this is nonempty, ard = (C1,...,C) ) a sequence of finite
enumerated subsets; of P;(a;—1). Then whethe(B, a,C) is a section
support or not is determined by its type Iny, and if this is so, then the
sectionU supported by it consists of everything of level less thawgether
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with everything of level that lies above an element of one of the dgts

Furthermore,a andC are of bounded size, and alloi®¥ to be recovered
from data of the forniB;; B;;)i newtype. WhereB is a finite subset aP; (a)
for i of new type andB;; is a sequence of subsetsByf.

Proof. The last paragraph is really the key. In the case in whichneérafact
dealing with a section support, th&; should be the initial segments at level
i gotten by projecting thé; whenh(j) = ¢ (butin the affine-with-dual case
B, is either a finite subset of the dual part, or the whole dualmmment plus
a finite subset of the affine part, and in the present contextstiould throw
away the affine dual part if it is completely containeddr), andB; should be
their union (i.e., the longest one).

To determine whether we actually have a section supportf wkamust
determine is whether a candidate sequeBgeof finite subsets of a geometry
does, in fact, constitute a sequence of initial segmenthaifgeometry with
respect to some standard ordering.

An initial segment of a standard ordering on one of the ptdjegeometries
contains an initial segment of the standard basis from wthielordering was
defined; conversely, if such a finite basis is found in theBjeisomorphic to
an initial segment of a standard basis, and makinggllinitial segments in
the induced ordering (relative to some ordering of the basd)fithen it can
be completed to a standard basis for the whole space, fohwihégiven sets
constitute initial segments. ]

Definition 4.2.8. A reduced section suppoit a sequence3 of sequences
B; = (B;;) for i of new type ang = i or o(j) = 4, together with aux-
iliary data (of bounded size), C;(a) (¢ € a) as in the previous lemma,
and the maximal elements; of the B;; in a standard ordering of3;. The
C;i(a), a, anda;; will be called thebounded parof the section support.

Remarks 4.2.9

When the standard ordering on the projectivizations of i) is fixed, the
B;; are determined bys; and the bounded part, specifically thg.

Sections are atomicallf.-definable from their reduced section supports.
We may speak also of sections and section supports in eregelufplie co-
ordinatized structures, as they can be described in terrtfseofatomic Ly
types.

4.3 FINITE LANGUAGE

Definition 4.3.1. Let M be a fully proper countable skeletal expansion.
Triples (E, X, e) with E an envelope forM, X C FE, ande a finite se-
quence of elements &f, will be partially ordered by the following relation:
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(E,X,e) < (E',X',¢) if and only if there is an elementary
mapf : E — E’ for which f[X] C X" and f(e) = €'

The partial orderings of interest to us here will be restidcis of this
ordering to the setsf,, andS,, of triples in whicha has lengthn and X is,
respectively, a sectiobi of £ or a reduced section suppastfor £.

Lemma 4.3.2. Let M be a proper countable skeletal expansion. Suppose that
(ao,as1,...,ap) is a branch of the tree, and; is an automorphism of the
P;(a;—1) for i of new type. Then the union of the is an elementary map
in M.

Proof. Full embedding and orthogonality. The orthogonality ttyeapplies di-
rectly to the projectivizations, but the semiprojectivegetries are definable
over them and have the same automorphism group. ]

Lemma 4.3.3. Let M be a proper countable skeletal expansion. The partial
orderings defined above @4, andS,, are well quasi-orderings.

Proof. The result for reduced section supports implies the résukections,
so we focus orf,,. We can drop the envelopg from the triple, since given
(E, B,a) and(E’, B',a’) with E a u-envelope ,E’ a u/-envelope, andi(J)
embedding inu'(J) everywhere, and an elementary mawith f[B] C B’
andf(a) = o, there is an elementary mdp — E’ extending it, by (essen-
tially) Lemma 3.2.4. We may thin the original sequence sa tifva condition
on comparability ofx andy” holds everywhere.

We treat the case of reduced section supports. This is doire[bsTC,
Lemma 2.10], which, however, makes use of rather abstrdetioo for part
of the situation.

Increasingn slightly, we may suppose that the bounded part of the reduced
section support is encoded in Now take a sequencs, = (B*) a(¥) of
reduced section supports with auxiliary data. Adjustingabyomorphisms of
the geometries, using the previous lemma, we may supposththarderings
used on the projective geometries of new type are fixed stdratderings, so
that the termsB; (which initially are sequenceB;;)) can be thought of as
initial segments of these geometries. Moving up throughlelels: which
are of new type, and thinning the sequesgeat each stage, we will construct
the desired elementary maps in stages. What we requiregatisisithat the
maps be defined through thih level, be order-preserving on each projective
geometry associated with a level of new type, and fix the aeié occurring
up to theith level. We require of the sequensSg that the type of(*) over
U, P; (6", (with b® the branch being followed by the{") be fixed. If this
is the case at a given stage, it can be preserved withoututiffigp to the next
new leveli. At such a new level, the elementary maps will have to be chosen
carefully to preserve the types @f*) over the union including thgh level.
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LetA, = U, Pj(bg.’i)l). The type ofs(¥) over4,UP,(b\"), ) is determined

by its (known) type over; and its type over; = acl(a®) n P,(b{*),). So
we impose on our elementary maps the additional consttehthey preserve
the ¢i.. Exactly this condition is allowed by geometrical finiteggafter thin-
ning the sequencs; (and applying Ramsey’s theorem): for< [ we may
carryBl(k) into BZ.(Z) by an order-preserving elementary map which carties
to ¢;. Thinning down so that the types of th&) over thec;, correspond, this
completes théth stage. ]

Lemma 4.3.4. Let E be an envelopd/ a section off, and E’ an envelope
contained inE, with the supportS of U contained inE’. ThenE’' N U is
the section of’ supported bys.

Proof. The statement is a bit misleading; the issue is not so mugthehS
supportst’ N U, but rather whethe$ fulfills the definition of section support
relative to £’ in the first place. This is essentially one of the points made i
Lemma 4.2.7. In the present version, the statement is tliatdfan increasing
sequence of initial segments of a projective Lie geomdiryith respect to
some standard ordering, and lies in a subgeométryf .J, thenB is also a
sequence of initial segments gf with respect to a standard order, the point
being that an initial segment of an appropriate standaris lcas be extracted
from B and completed ity or J'. ]

Lemma 4.3.5. Let M be a Lie coordinatized structure. Then there is an inte-
ger k with the following properties:

1. For any envelop&®, any sectiorl/ of E, and anya € E, if a € acl(U)
then for some subsét of U of size at most, a is algebraic oveiC' and
its multiplicity overU and overC' coincide.

2. For any enveloper, any section suppor$ in E, and anya € E, if
a € acl(S) then for some subsét of S of size at mosk, a is algebraic
over(C and its multiplicity overS and overC' coincide.

Proof. The contrary to (1) would yield as a counterexample a sexpien
(Ex, Uy, ai) refuting the claim for each. After passing to a subsequence and
applying Lemma 4.3.3 we get a single elememtigebraic over an increasing
chain of setd/;, but whose type ovdy, cannot be fixed by, elements. The
multiplicity m of a over(J, Uy, is of course the same as its multiplicity over
some finite seC' contained in all/;, from some point on, and ondg > |C|
we reach a contradiction.

The failure of (2) is refuted similarly. |

Definition 4.3.6. Thestandard languader a Lie coordinatized structure will
be the languagé containing all 0-definablék + 1)-ary predicates withk
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(minimal) furnished by the preceding lemma. Note that 2.

Proposition 4.3.7. Every Lie coordinatized structurd1 admits a finite lan-
guageL. The standard language will do. The standard language adsis-s
fies the following homogeneity conditions:

1. Every section of any envelope #f is L-homogeneous: i is an en-
velope ofM, U a section of, and f : U — M an L-map, thenf is
elementary.

2. Every section support of any envelope/of is L-homogeneous in the
same sense.

Proof. Let L be the standard language 1. Part (1) includes the statement
that the languagé is adequate folM. We use semiprojectives rather than
projectives in the coordinatization.

Both (1) and (2) reduce to finite envelopes, using Lemma 4\8elcan enu-
merate the envelopE so that any initial segment df is a section. Here we
are viewing the envelope as a subset of a coordinatizedsteu@in the con-
struction of envelopes, we added some sort&45f). Whenever we encounter
an affine point the whole dual-affine part is already in the eanmerated. For
(2) it suffices to show

(1) For any sectiort/ of an envelopd’ of M, anda the next ele-
ment of E, the L-type ofa overU determines its type ovér.

In the algebraic case this holds by the choicé.ai the nonalgebraic case the
L-type ofa overU ensures that is nonalgebraic, again by the choice/of
Let P be the component of the coordinatizing tree in whicles. We claim
that

(%) aclU)ynP CU.

As a is not algebraic ovel/, P is neither finite nor a semiprojective geo-
metry “repeating” an earlier one. Thus it is either a senjgmtive geometry
of new type or an affine-with-dual pair. Consider the affineecaAgain by
the nonalgebraicity assumptiold, will contain no affine point ofP, while a
is affine; asa is the next point of the enumeratioli, contains the full dual-
affine part of P in E, and asF is itself algebraically closed i, the claim
(%) holds in this case. Suppose now ttfats semiprojective of new type, so
orthogonal to all projective geometrig$ at lower levels. Theacl(U) N P =
acl(U n P) N P. This reduces our claim to the corresponding cl&imin a
single geometry, where it is a property of standard enuriogrst

This gives(x). Now in M as P is fully embedded, the type af over
acl(U) n P implies its type ovell/, and by(x) ac(U) N PisU N P. To
conclude, then, it suffices to observe th@t(a/U N P) provestp(a/U N P),
which holds sincé& > 3 andP is a-definable (directly from the tree language,
in fact).
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For (2) we may proceed similarly, extendinfgover an enumeration af.
|

Lemma 4.3.8. Let M be Lie coordinatized[ the standard language fo1.
Then for any sectioty of any envelopé’, the theory ot/ is model complete.

Proof. We must show that any type @i is equivalent to an existential type.
We show by induction on the sectiéf

(%) For any finite sequencein U there is a finite sequence
¢ in U such thatp; (cc’) impliestp,(c).

Granted this, ifc is expanded first to contain a support oy then the type of
¢ in M will determine its type ir/, and our claim follows.

This statement passes through at limit stages, so we ddatheitcasé’ =
Uy U {a}. We may suppose = cya with ¢; from U;. We need first a finite
setC such thatp; (a/C) determinedp(a/c;). This is a consequence ¢f)
from the previous proof. ¢ will grow with ¢; in general, whem is the first
affine point.) We may suppose C C.

Itis useful at this stage to make the statemémt (a/C) determinesp(a/c1)”
more explicit. This is a statement belonging to the typ€panother way of
putting it is that the type of’ and theL-type ofa overC determine the type
of c1a.

We let C’ be chosen by applying«) inductively toC' andU’. We claim
that tp, (CaC’) determinedp,,(cia). Giventp,(CaC"), we first recover
tp,,(C). Then we know thatp; (aC') determinesp,,(cia). |

4.4 QUASIFINITE AXIOMATIZABILITY

In this section we provide reasonably explicit axiomatas of theories of
Lie coordinatized structures, modulo certain informatidrich is determined
only qualitatively by the geometrical finiteness of the cionatizing geome-
tries.

Definition 4.4.1. Let M be Lie coordinatized and a specified language for
M. Acharacteristic sentenéer M is an L-sentence whose countable mod-
els which are skeletal expansions with true dimensions saetly/ the en-
velopes ofM and their isomorphic images.

Lemma 4.4.2. Let a skeletal type and corresponding skeletal languagebe
fixed. For anyk there is a (uniformly computable) integkt such that any
2k elements of a sectioll of a skeletonM for Ly, with supportS, are
contained in a subsectioti’ whose supporf’ has the same bounded part
and satisfie$S’| < k*.
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Proof. Note that the subsection will be taken with respect to adiffit order-
ing.

This statement reduces to the same statement in a singéepivejgeometry.
The existence ok* follows from the geometric finiteness. Its computability
follows from the decidability of the theory of the geometry. ]

Proposition 4.4.3. Let a skeletal type and corresponding skeletal language
Ly be fixed, and leL be a finite language containinf,. Then there is a
recursive clas& of (potential) characteristic sentences, which can be ébun
uniformly in the datalg, L, with the following properties:

1. If M is a skeletal expansion with true dimensions relativd {p, and
M [ £ (someg € E), then every countable modelofvith true dimen-
sions is isomorphic with an envelope/bf.

2. Any Lie coordinatized structure with coordinatizing skete)M, satis-
fies one of the sentencesdn

In particular, every Lie coordinatized structure has a caeteristic sen-
tence.

Proof. We form the seE* of sextuples(¢, k, k*, k**, L', %) satisfying the
following six conditions, and then taleto consist of the sentencg$or which
some suitablé;,k*,k**, I/, and> can be found; this will mak& recursively
enumerable but by a standard device any r.e. set of sentEneggivalent to
a recursive set: it suffices to replace each sentérmea logically equivalent
one whose length is at least the time taken to enumérate

The conditions orf¢, k, k*, k**, L', X) are as follows:

(i) L'isalist of formulas ofL, each with at most + 1 free variablesL’ is
to be thought of as a new language, and the given formuladeitialled
L’-atomic formulas. These formulas will include the atomimfialas of
L. Y is afinite set of existential’-formulas.

(i) ¢ implies the skeletal theor¥s, apart from the clause asserting infinite
dimensionality of certain geometries.

(iii) ¢ asserts that certain quantifier frééformulas ink + 1 free variables
are algebraic in the lagt variables, that is for each choice of these
variables, the formula has only finitely many solutions fwatspecified
bound). These formulas will be calleaplicitly algebraic

(iv) ForanyVv3 L’-sentence wittk* universal quantifiers anic4- 1 existential
ones¢ specifies the truth or falsity of the statement.

(v) For any section suppo# of sizel < k* whose atomid.’-type isr (in
[ variables), and for any.’-formula ¢ in thesel variables with at most
k + 1 quantifiers¢ implies that either all realizations ofsatisfy ¢, or
all realizations of- satisfy—.

(vi) For any section/ of a modelM of ¢ with supportS of size at most
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k*, and anya € M, ¢ asserts that one of the following occurs (to be
elucidated more fully below):

(vi.a) ThereisaseB C U of order at mosk for which the quantifier-free
L'-type ofa over B is explicitly algebraic and “implies it&/-type
overU”,

(vi.b) a lies in an affine-with-dual geometty whose dual affine parD
(if present) lies inU/, and the geometric type afover D “implies
its L'-type overU."

(vi.c) aliesin a semiprojective geometry of new typ@nd the geometric
type ofa overJ N U “implies its L'-type overU.”

It remains to formalize condition (vi) more completely, andso doing to
explain the role of the formulas iH. We are dealing with expressions of the
form “¢ states thatp*(a/ X ) determinesp(a/U)” where the second type is an
atomicL’-type and the first type is some part of an atomigype.

To formalize (vi.a) we consider a formulgz; y) expressing the atomik’-
type ofa over B, | B| < k, with z standing fore andy for B, and we consider
any other formul&(z;y’) in I < k variables. We are trying to formalize (and
to put into¢) the statementa = f3), whenever this is true. This is done as
follows, elaborating on the model completeness:

(vi.a’) ForanyB’ C U with |B’| = I (enumerated as a sequence of length
1), and any section suppoft C S with |S’| < k* such that the
sectionU’ supported byS’ containsB U B’: if 8(a, B’) holds
then there is an existential formugz, y,y’) in ¥ wherez cor-
responds to an enumeration 8f, true inU’, such thatt implies
that[o(z,y,y" ) &a(z, y)] = Blx,y’).

The existential quantifiers it will refer to the section supported hy We
treat (vib) and (vic) similarly, e.g.:

(vi.t') ForanyB’ C U with |B’| = I (enumerated as a sequence of length
1), and any section suppaft C S with |S’| < k** such that the
sectionU’ supported byS’ contains the affine dual of the com-
ponent ofa and B’: if 3(a, B’) holds then there is an existential
formulac(z,y,y’) in ¥ wherez corresponds to an enumeration of
S’ andy enumerates some elements of the affine dual partgthat
holds inU’ and¢ implies thaflo (2, y, v ) &a(z, y)] = B(x,y’).

We require of course that for evefyinvolving & variables there should be
a suitablea for which the corresponding version of (vi) holds. This can b
viewed as a condition ok* andk**, particularly when we wish to verify point

).
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We claim that with this choice of, (1,2) hold. We begin by comment-
ing on (2), which amounts to an elaboration of the proof of ¢kistence of
a finite language. The parameteis the one used to define a standard lan-
guage, and.’ is the standard language, given in terms of 0-definableioekat
in the specified languagk. Clause (iii) is natural in view of the definition
of k; given M, all the formulas of the given type which are algebraichif
will be made explicitly algebraic. Point (v) reflects the hageneity of sec-
tion supports. Finally, point (vi) reflects the control opgs over envelopes,
and the model completeness of the theory of the envelopes.(Wa) is an
accurate reflection of the role &fas a bound for the base of algebraicity over
an envelope. Point () requires further elucidation. We will have in general
tpe(a/D) + tpg (a/U) (“*G” for “geometric”). Nowtp,,(a/U) consists of
formulasg of the appropriate form for (\W'). The formulasx(z,y) coming
fromtp (a/D) may require more thah variables. However, giveM, there
will be a boundk; for the number of variables needed, and a corresponding
boundk** for the size of a section support needed to captyre & variables.
Then (vid') expresses ().

We turn to (1):M is a propetL-structure relative td.qx, and M = £ (some
¢ € Z). We claim that every countable mod#l’ of ¢ is isomorphic with an
envelope ofM (or with the restriction of an envelope in an adequate expans
of M, to the sorts ofM).

If M* is anR;-saturated elementary extension/of then M is the count-
able envelope foA1* with all pu-invariants infinite dimensional. It suffices to
show thatM’ is isomorphic with an envelope ifvt*.

We enumeratéM’ so that each initial segment is a section of the skeleton,
and we define a map : M’ — M* by induction. Anapproximationto F’
will be a pair(f, U) satisfying the following three conditions:

(a) U is a section of\’ with supportS;

(b) fisanL’-embedding ot/ into M*;

(¢) If Jp is a semiprojective component gft’ of new type, withb € U,
Jy C U, thenacl(f[U]) N ¢y is f[Js).

Condition (¢) essentially rules out “accidents” in which gsis extended,
some new value generates a coordinate in a geometry whicilieasly been
dealt with. Since we have been rather more careful in thenaxization to
specify what is algebraic than we have been to avoid algebrathere is
something to be concerned with.

If we are able to carry out the inductive step in which a sirglement is
added toU, then the construction passes smoothly through limit stagel
produces a totdlF, M’) satisfying the condition&, ¢) with U = M. By (c)
the image off’ will be algebraically closed in each semiprojective comgran
of new type coded by an element of the image. It follows eakiat F/[M’]
is algebraically closed inM*. Also if ¢ € M* — F[M’] then there i/
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definable frome with the same property, lying in a semiprojective component
of new type, whose defining parameter is in the imagg oAgain (¢) applies
and leads to the maximality clause in the definition of enpelafter passing to
the canonical projective associated with the given compbfone of the sorts
which should be added t®1 in an adequate expansion).

The last point is that the isomorphism type of a coordinajizitomponent
of F[M’] with a given defining parametéris constant over all conjugates of
b (in M*) lying in the image. This follows sincg' is an L-embedding.

So what remains to be checked is the extendability of an ajppedion
(f,U) to the next element of M’. Let J be the component of1’ in which
a lies. Then thel’-type ofa is determined either by an explicitly algebraic
formulat, or a geometric type over part 6f. We extendf by letting f(a)
be any realization of the corresponding typeMti. If a is explicitly algebraic
then condition (v) implies thadM*, a model of¢ will realize this type. Ifa is
geometric, them\*, being a Lie coordinatized model in the first place, will
realize the appropriate type, using saturation. Let theresibn be denoted
(f',U’). We claim that the condition®, ¢) are preserved.

Condition(b) is controlled by properties (vi, vi.b) of £&. Note here that the
auxiliary formulas inX are existential and hence are preserved by embedding.

The condition(c) is obviously preserved i is algebraic ovet/ or more
generally ifacl f[U'] N Jy, = acl f[U] N Jp,. SO we must consider the case in
whicha is not algebraic ovel/ but some element of , notinacl f[U] N Jgy
becomes algebraic ovgfUa]. Let .S be the support of the sectidh, and let
U* be the section aM* supported byf[S], which contains/y; in particular.
Then fa is algebraic ovet/* and hence ig-algebraic over some section of
M* whose supporffS” C fS is of size at mosk*. Accordingly¢ asserts
some element’ of the geometry/ containinga in M will be algebraic over
the sectionV’ supported byS’. In particularacl(U) meets.J. On the other
handa ¢ acl(U’). ThusJ is a new geometry and by orthogonality theory in
M*,acl flUa] N gy = acl f[U] N Jp. |

4.5 ZIEGLER’'S FINITENESS CONJECTURE

Proposition 4.5.1. Let a skeletal type and corresponding skeletal language
L be fixed, and leL be a fixed finite language containitg,. Then there
are only finitely many Lie coordinatized structures in thedaagel having
a given skeletod/y, up to isomorphism.

Proof. It suffices to combine Proposition 4.4.3 with the CompassrEheo-
rem. For this one must check that the class of Lie coordiadtstructures in

the languagd. with the specified skeleton is an elementary class. Thus one
must review the various conditions involved in Lie coordination.



80 FINITENESS THEOREMS

Note that the skeleton fixes the language of the individuahggtries. In
particular, the notion of canonical embedding is first ordsris the notion of
orientability.

One must also express the condition of stable embeddingéargometries.
We can use Lemma 2.3.3. Thus it suffices to bound the sizlof) N J
uniformly. But|acl(a) N J| has dimension at most the height of the skeleton
times the length ofi.

Thus compactness applies. ]

Definition 4.5.2. Let M be a structure.

1. Acoverof M is a structureA/ and a mapr : N — M such that
the equivalence relatiofv,, given by “rz = =y” is 0-definable in\, and
the set off . -invariant O-definable relations aiv" coincides with the set of
pullbacks alongr of the 0-definable relations iM.

2. Two coversr : N1 — M, m : No — M are equivalenif there is a
bijection. : N1 «+» N, compatible withry, 7o which carries the 0-definable
relations of; onto those of\5.

3. Ifm: N = M is a cover, then A@V'/ M) is the group of automor-
phisms ofA" which act trivially on the quotient. Thus AufN /M) <
[Tocn Auty (C,) whereC, = 7~ !(a) and Aulv(C,) is the permutation
group induced by the setwise stabilizer®f in Aut\V.

The problem of the theory of covers is to classify or at leastrict the pos-
sible covers with given quotient and specified fiber; thatyigically the struc-
tures(C,, Auty (C,,)) are specified in advance and are essentially independent
of a. Any automorphism group will be a closed subgroup of the sytnic
group (in the topology of pointwise convergence with thedite topology on
the underlying set); by the finiteness of language, in theeh@rdinatized case
it is evenk-closed for some finité&: any permutation which agrees on every
set of k elements with an automorphism is itself an automorphisnthém-
categorical context, furthermordut " inducesAutM; in particular, if the
automorphism group of the fibers is abelian, the(N/ M) is anAut( M )-
invariant subgroup of the product.

Proposition 4.5.3. Let M be a fixed Lie coordinatized structure and Jebe a
fixed geometry or a finite structure. Then there are only finiteany covers
7 : N — M up to equivalence which have fibérand a given relative
automorphism group AW /M) <[]y, AutJ.

Proof. We apply Proposition 4.5.1. The skeletdiy, of A is determined by
the given data and thus it suffices to find a single finite laggdsadequate for
all such covergV. Thus it suffices to bound the arikyof L and the number of
k-types occurring inV'.

We deal first with the arity, using the language of permutatjooups. We
must find a bound so thatAut(\/) is ak-closed group, for all suitable covers
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N. Aut(M) is k.-closed for somé;. If we restrict attention td > k., then
Aut(N) is k-closed if and only ifAut(A// M) is k-closed, as is easily checked.
(Note thatAut V" inducesAut M by Rq-categoricity.)

Thus fork > k. the choice oft is independent of the cover, as long as the
relative automorphism group is fixed in advance.

Now with k fixed, consider the number @ftypes available inV. If the
fiber is finite of ordenn, then eachk-type of M corresponds to at most*
k-types of/, so we have the desired bound in this case.

If the fiber is a geometry, to bound the numbeketfypes we proceed by in-
duction, bounding the number dftypes over a sefl of sizej for j < k. The
1-type of an element of the geometry/, over A is determined by its restric-
tion to the algebraic closure of in a limited part of/;?, e.g. in the affine case
the linear version must also be taken. It suffices therefobmtind the dimen-
sion ofacl(a) N J for geometries/ associated to;,. Asrk(Aa/7[A]a) < j,
the spacecl(r[A]a) has codimension at mogtin acl(Aa) N J and thus the
desired bound fa\ can be given in terms of the data . ]

Remark 4.5.4
In cohomological terms, iRut.J is abelian this may be expressed by:

H} (AutM, (TT, AutJ)/K) is finite

for K <[], AutJ closed andAutM)-invariant. Cf. [HoPIi].
For a more algebraic approach to this type of problem, dueatodEvans,
see the paper [EV].
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Geometric Stability Generalized

5.1 TYPE AMALGAMATION

Definition 5.1.1. Let M be a structure.

1. Anamalgamation probleiffior types) of length is given by the following
data:

(i) A base set4;

(i) Typesp;(x;) overAforl <i <n;

(i) Typesr;j(z;,z;) overAforl <i<j<m;
subject to the conditions:

(iv) r;; containsp;(z;) U p;(x;);

(V) 7i;(z;, ;) implies the independence of from ;.

2. Asolutionto such an amalgamation problem is a typaf an independent
n-tuplexy, ..., x, such that the restrictions ofcoincide with the given

types.

Definition 5.1.2. A structureM has thetype amalgamation properifywhen-
ever (p;;7;;) is an amalgamation problem defined over an algebraically
closed base set iM*4, then the amalgamation problem has a solution.

Our goal here is to prove that Lie coordinatized structuragetthe type
amalgamation property. By absorbing the basedsato the language we may
suppose it coincides withacl(()) and we will do so whenever it is notationally
convenient. Our usual notation for an amalgamation problgiinbe either
(ps;745) or just(r;;), assuming the length is known. Occasionally we will
take note of generalized amalgamation problems where otis&ictions are
placed on the desired type

We build up to the general result via a series of special ¢cdsgginning
with types in a single geometry. The general result does altmv directly
from the case of a single geometry, but reflects more speciiggsties of the
geometries, as is seen in the proof of Lemma 5.1.13.
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Lemma 5.1.3. Let J be a Lie geometry, angp;; r;;) an amalgamation prob-
lem of lengthn in which thep, are types of sequences of elementg ofrer
acl(). Then the amalgamation problem has a solution.

We will leave the details to the reader, but we make a few remarhis
statement essentially comes down to the fact that inneryastsdand quadra-
tic forms can be prescribed arbitrarily on a basis, subjedhé restrictions
associated with the various types of inner product.

It may be more instructive to take note of some counterexastpl plausi-
ble strengthenings of this property. We give two examplesrelthe solution
sought is not unique, and one example of an amalgamatiorefyoipcorpo-
rating a bit more data which fails to have a solution.

Example 5.1.4.Let (V,V*) be a polar geometry, and an affine space over
V*. Consider independent triplé€g , as, ag) witha; € V andas, as € A.
The relevant types;; are then determined but the type of the triple depends
on the value ofay, az — a3), which is arbitrary.

Example 5.1.5.1n a projective spac& associated with a unitary geometvy
over afieldK of orderq?, consider the 2-typeof a pair £, 4 of independent
elements ot/ for which (z,y) # 0 and (z, z) = (y,y) = 0. This defines a
complete type over a@l). We consider the amalgamation problem of length
3 with all r;; equal tor. For an independent tripléz, §, 2) whose restric-
tions realize the type, the quantity(x, y)(y, 2)(z,z)/(y, z)(z,y)(z, z) is
a projective invariant taking og + 1 possible values/a’ (o« € K*, o an
involutory automorphism ak).

Example 5.1.6. We will give a generalized amalgamation problem of length 4,
determined by a compatible family of 3-typgs over ac()) of independent
triples, which has no solution. L&t be a symplectic space} affine over
V', and consider the type of a quadruple, x5, z3, x4 With z; € V and the
remainingz; affine. Let the types;;; all contain the requirement(z, x; —

x;) = 1. These requirements are incompatible.

Lemma 5.1.7. Let M be a structure, and suppose that every amalgamation
problem of length 3 in\ over an algebraically closed subset has a solution.
Then every amalgamation problemA has a solution.

Proof. This is a straightforward induction. Collapse the last tvesiables
r,—17, t0 One variabley, and define a new amalgamation problérfy ) of
lengthn — 1. The only point requiring attention is the choice of the type

71, Which are 3-types when written in terms of the These are taken to
be solutions to the amalgamation problém,,_1,7; n, 7.—1,n) Of length3.
|

In the next lemma we find it convenient to deal with a variantfof amal-
gamation problem incorporating some additional inforomati



84 GEOMETRIC STABILITY GENERALIZED

Lemma5.1.8. Let M be a weakly Lie coordinatized structure, arfich geo-
metry of M. Suppose thalp;; 1,72, ) iS @ generalized amalgamation
problem over adl)) in whichp, is the type of some elementbéndrs, .,
is the type of an independefit — 1)-tuple, with the types extending the
corresponding types appropriately. Then this generalized amalgamation
problem has a solution.

Proof. We fix a realization(cs, . .., ¢,) of ro_._,, we setC; = acl(¢;) N J,

and we choose!c; satisfyingry; for 2 < i < n. We define an auxiliary
generalized amalgamation problem.rby settingrj;, = tp(c¢iC), 75, =
tp(Cs, ..., Cy). By inspection of the geometries, this type of problem has a
solutionr’. We may choose, so thate| Cs . . . C,, realizes the type’. As any
c¢;-definable subset of is C;-definable, we find thap(cic;) = tp(cic;) and

the sequence, cs, . . ., ¢, IS independent. |

Roughly speaking our goal is how to treat the general amadtgjamprob-
lem of length 3 by reduction to the case in which the typéas ranki. More
specifically we deal with the following notion.

Definition 5.1.9. Let M be a weakly Lie coordinatized structure afiadne of
its geometries.

A semigeometrid-type relative toJ is the type over a¢f)) of some pair
(a,b) with a € J andb algebraic overa. Themultiplicity of such a type
is the multiplicity ofb overa.

Lemma 5.1.10.Let M be a weakly Lie coordinatized structure and suppose
that every amalgamation problefp;; r;;) of length 3 withp; semigeometric
has a solution. Then every amalgamation problem of lengtis3tsolution.

Proof. If we can solve amalgamation problems wijthsemigeometric, then
by compactness we can solve amalgamation problems in whiisha type in
infinitely many variables, representing the full algebmr@dasure inM*®? of an
element of a geometry o¥1.

We now argue by induction on the rank pf, which we may take to be
at leastl. Let ¢ realizep; and leta; € acl(c¢;) belong to a coordinatizing
geometryJ of M. Let A beacl(a,) in M andp)| = tp(A).

Takec,, c3 independent and such that; realizes the type;; fori = 2, 3.
Letr); = tp(Ac;/acl(h)) andryy = ro3. Then(r};) gives an amalgamation
problem of length 3 of the type referred to at the outset.sf_&k a solution to
this problem. We may suppose théd,c; satisfies'.

Now we will work over A with p} = tp(c;/A) fori = 1,2,3 andr}; =
tp(c;c;/A). By the choice of this is an amalgamation problem, and the rank
of p) is less than the rank gf;, so we conclude by induction. ]

Before treating the general amalgamation problem of leBgtith p; semi-
geometric, we will deal with the case in whieh, = r15 up to a change of
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variable. We begin with some technical considerations.

Definition 5.1.11. Let M be a structure £ a definable binary relation)D a
definable set, and, b elements of\.

1. E is ageneric equivalence relatiam D if it is generically symmetric
and transitive: for any independent tripte b, c in its domain,E(a, b)
and E(b, ¢) imply E(b, a) and E(a, c).

2. Anindiscernible sequendeis 2-independerit acl(a) N acl(b) = acl()
for a, b € I distinct.

3. Es(x,y) is the smallest equivalence relation containing all paiesdng-
ing to infinite2-independent indiscernible sequences.

Lemma 5.1.12. Let M beX,-categorical of finite rank, ané’ a generic equiv-
alence relation defined on the locus of a complete fypeer ac(()). Then

1. E agrees with a definable equivalence relatibh on independent pairs
from p.

2. If every pair of elements belonging to an infinite 2-indepardndis-
cernible sequence belongs i then any pair of independent realiza-
tions ofp belongs toE.

Proof.

Ad 1. DefineE* (z,y) by “p(x) andp(y) hold and either: = y or there is a
z which realizew and is independent from, y such thatF(z, z) and E(y, z)
both hold.” This is easily seen to agree withon independent pairs, and is
reflexive and symmetric. We check transitivity.

AssumeE*(a,b) and E* (b, ¢) hold, specifically

E(a, dl), E(b, dl), E(b, d2), E’(C7 dg)

with d; independent frona, b andd, independent fronb, ¢; we may assume,
in fact, thatds is independent froma, b, c,d;. Thena,d;,ds andb,d;,ds
are independent triples and thB$d,, d2) and E(a, d2) hold. ThusE*(a, ¢)
holds.

Ad 2. In view of the preceding and the hypotheses, we may assush&’'th
is a definable equivalence relation containiig It suffices now to show that
any two elements oM with the same type ovexcl(()) are E»-equivalent. We
show in fact that\// F is finite, and hence is part acl() in M©9, yielding
the claim.

Suppose toward a contradiction thet/ E5 is infinite. We will choose real-
izationsa, of p inductively, distinct moduldy,, so that

acl(an) N | J acl(a,)) = acl(®).
<n
Then we may suppose that the sequehee(q;) is also indiscernible, and we
have a blatant contradiction to the definitionfof.
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For the choice ofi,, givena; (i < n) we first choose a news-classC
outsideacl(()) independent frona,, . .., a,—; and then choose € C inde-
pendent fromug, ..., a,_1 overC. |

Lemma5.1.13.Let M be a weakly Lie coordinatized structure. L(gt;r;;)
be an amalgamation problem of length 3 over(@thwith p; semigeometric
and withr15 = r13 up to a change of variable; in particular, = ps3. Then
the amalgamation problem has a solution.

Proof. As a matter of notation, take = p;(xy), p; = pi(z;) fori = 2, 3. Let

J be the geometry in which the first coordinates of realizatiofp, are found,
and letC be the set defined by, or ps. We make a preliminary adjustment to
ensure that for € C' we have

(%) r12(xy, ¢) isolates a type oveacl(c).

We may replace by somec’ € acl(c) such thate € dcl(¢’) andri2(zy, ¢)
isolates a type, overacl(c) = acl(¢); the condition ¢ € dcl(¢’)” means
thatc’ can be thought of as being an extensiofi of ¢. We then replace the
given amalgamation problem by a problénj;) in which rj;(z]25) is any
complete type oveacl(p) extendingras(z25) U p'(21) U p'(22) wherep’ is
the type ofc¢’ and the connection between the variableand 2, reflects the
relationc € dcl(¢’); one may even suppose thatis an initial segment of..
After these adjustments) holds.

Now for a € J satisfyingps, ¢, ¢’ € C we consider the seB(a,c) = {y :
r12(ay, c)} and the setd(c) = {a € J : B(a,c) # 0}, J(¢,d/) = {a € J :
B(a,c) = B(a,d') # 0}. In particularJ(c,c’) C J(c) N J(c'). We define a
relation £ on C as follows: E(c, ¢’) if and only if J(c, ') is infinite. Using
our understanding of we will show thatE is a generic equivalence relation
extendingE,, and hence by the preceding lemma thét-, cs3) holds for any
independent paits, c3 in C, in particular for a realization ofy3. This then
allows us to solve the amalgamation problem directly.

We now check thaE’ contains all pairs belonging to an infinite 2-independent
indiscernible sequence Let i be the multiplicity of the semigeometric type
p1 and let!’ be a subset of of cardinality2#. By Lemma 5.1.8 we can find
an element independent fromi’ such thatB(a,c) # () for ¢ € I'. As this
gives us2# nonempty subsetB(a, ¢) of {b : p1(a,b)}, two of them must co-
incide, and then by indiscernibility, any two of them musinoide. As there
are infinitely many such elemenis E(c, ¢) holds for pairs inl.

It remains to be seen thdi is a generic equivalence relation. We take
¢, ¢” independent withF (¢, ¢’) and E(¢/, ¢’) holding. ThusJ(c,¢’) and
J(c', ") are infinite subsets of (¢'), and we claim that/(c, ¢”) is also infi-
nite; in fact we claim that the intersectiofic, ¢') N J(¢/, ¢’) is itself infinite.
This involves specific features of the geomefryWe consider two represen-
tative cases: an affine space, and a linear space with a dicddran.
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Let A be an affine space corresponding to a linear mégelith V* the
definable dual. LetV, denote the minimacl(c)-definable subspace &f of
finite codimension. Thed(c) contains all but finitely many elements of some
coset ofi¥.. in A. Similarly, J(¢, ¢’) contains all but finitely many elements of
some coset of the minimaicl(c, ¢’)-definable subspadd’, .. of finite codi-
mension. NowW, . + W . < W, is definable over botlacl(c,¢’) and
acl(¢/,¢"), and as:, ¢/, ¢’ are independent, this space is definable aedi’).
Thus the sum equald’.,, which means that any two cosetsof .- andW,/ .~
will intersect; the intersection is then infinite, being @ebofW, ., N W .
This completes the proof in the affine case.

If J is linear and carries a quadratic form then the argumentrgasi, but
the sets involved contain almost all elements of a subsetekpacesV,,

W . on which the quadratic forr§ takes on a specific value. This set will be
infinite on any subspace of of finite codimension. ]

Lemma 5.1.14. Let M be weakly Lie coordinatized. L&t;; r;;) be an amal-
gamation problem of length over acl()) with p; semigeometric. Then the
problem has a solution.

Proof. We proceed by induction on the multiplicityof p; .

Take realizationa b, ¢; of r1; fori = 2, 3. If the multiplicity of b; overa;¢;
is u fori = 2, 3 then we may use Lemma5.1.8 to choase,c; appropriately,
and then add; .

Accordingly, we may assume

The multiplicity ofb; overa;c, is less than..

In this case the basic idea is to absorb the paramgtérto the base of
the type and continue by induction. We first expando an algebraically
closed set’; and adjust the amalgamation problem accordingly. We wilke
the notation as before apart from writiidgy for co. The types involved now
have infinitely many variables but this can be handled udiegcompactness
theorem.

Let Cyc3 realizerys and suppose; by cs realizes ;3 with a;b; independent
from from Cac3. TakeCY, with a,b, CY realizingri2 andC?, independent from
a1b1Cac5. We will useCy, as the basis of a new amalgamation problem.

Letris = tp(ai1b1/CY), rhs = tp(Cacs/CY). To complete the specification
of our auxiliary amalgamation problem, we will require agyp,(xy, z) over
C! implying the independence afy from z and compatible wittp(a1b1/C%),
tp(C2/C%), andri2(zy, z). If we construe the desired, as a type in the
variableszy, z, 2/, with 2’ replacingCy, then this is itself an amalgamation
problem involving the types,»(zy, 2), r12(zy, '), andtp(Cs, C%). This case
is covered by the preceding lemma. Thus we have a new amatiganpaob-
lem (r;) defined over’;, containing the original problem. As the multiplicity
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of the initial 1-typep] = tp(a1b1/C%) is less thanu, we may conclude by
induction. ]

Proposition 5.1.15. Let M be weakly Lie coordinatized. The has the type
amalgamation property.

The following corollary shows that the Shelah degree is bednby the
rank.

Corollary 5.1.16. Let M be a weakly Lie coordinatized structure, or more
generally ank,-categorical structure of finite rank with the type amalgama
tion property. Letl be an independent set,z) a complete type over adl),
andy,(a,z) (a € I) a collection of formulas for whicly, &p is consistent
of rank rkp. Then/\; p.&p is consistent of rank rk.

Proof. We may assume first thdtis finite and then thgt/| = 2, as the state-
ment is iterable. So we consider (a1, a3)&p2(az, as)&plas), with a1, as
independent. This can be converted into an amalgamatidigimoof the type
covered by the preceding proposition. ]

We now concern ourselves with the number of types of variotts gxisting
over finite sets of a given order.

Lemma5.1.17.Let M be a weakly Lie coordinatized structure, apt, y)
an unstable formula. Then for eaehthere is a sefl of sizen over which
there are2™ distinctp-types. In particulary has the independence property.

Proof. The instability ofp means that there is an infinite sequeroef pa-
rameters(a;, b;) such thatp(a;, b;) will hold if and only if ¢ < j. We may
take I to be indiscernible.l is independent over a finite s& and we may
take it to be indiscernible oveB, which we absorb into the language. Let
p = tp(b;/ acl(®). The formulasp(a;, z) and—y(a;, ) are consistent with
and of maximal rank, so the same applies to their variousucatijons by the
preceding corollary. ]

Lemma 5.1.18.Let M be Lie coordinatized with finitely many sorts, ané
0-definable geometry o%1. Then forX C M finite, andb € M, we have
the following estimate, uniformly:

|acl(Xb) N J| = O(lacl(X) N J)).

Proof. LetJ(X) = acl(X)NJ, J(Xb) = acl(Xb)NJ. It suffices to show that
dim(J(Xb)/J(X) = rkb. As J is stably embedded with weak elimination of
imaginaries, a basi® for J(Xb) modulo.J(X) will be independent fronX
overJ(X). Thusdim(J(Xb)/J(X)) =rk(B/X) < rk(b/X) < rkb. |
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Lemma 5.1.19.Let M be a Lie coordinatized structure with finitely many
sorts,J a b-definable Lie geometry. Then f&f varying over algebraically
closed subsets 0¥1 we have

lacl(Xb) N J| = O(|X]).

Proof. All cases are controlled by the projective case, so we asshat/ is
projective. Let/’ be a canonical projective geometry nonorthogondl,tevith
defining parametdr € dcl(b).

If ¥ € acl(X), thenacl(Xb') N J’ C X and otherwiseacl(Xbv') N J' = 0,
so in any casg¢acl(Xb') N J'| < |X]|. Thus by the previous lemma

lacl(Xb) N J| < |J Nnacl(Xb)| = O(lacl(t’X)n J'|) = O(|X]). 1

Proposition 5.1.20.Let M be Lie coordinatizableD C M 0-definable of
rank k. Then the number of types of elementdobver an algebraically
closed set of orden in M is O(n*).

Proof. Suppose first thaD = J is a coordinatizing geometry oM. For
algebraically closed the types under consideration are determined by their
restrictions taX NJ. Thus we may assum®t = J in this case. The statement
is then clear by inspection. For example, in the presencegofialratic form,
the behavior of the the form on an extension of a subspace ingke point is
determined by its value on the additional point and an inddieear function
defined on the subspace. If the geometry is affine the situagimains much
the same.

We turn to the general case. We may assumefhistthe locus of a single
type. Take: € D of rankk andb € acl(c) of rankk—1 supporting a coordinate
geometry.Jy, with a € J,, such that € acl(ba). Let D', D", and D"’ be the
loci of the types ob, ba, andbac respectively. Inductively, the number of types
of elements ofD’ over an algebraically closed subséof ordern is O(n*~1).

By Lemma 5.1.19 fob € D’ we have|acl(Xb) N J| = O(|X|) and thus the
number of types i/ overacl(Xb) is alsoO(| X|). Thus the number of types
in D" over X is O(n*). As D" is a finite cover ofD” the number of types of
elements inD" is alsoO(n*) and as the types of elements Bflift to types
of elements ofD"”’ this bound applies t®"". |

Definition 5.1.21. For D a definable set let(D, n) denote the minimum num-
ber of types of elements 6f existing over a subset @ of ordern.

Observe, for example, that in one of the standard geometriewill be
O(n), with the optimal subset being as close to a subspace abfmssi

The following corollary depends on estimates for the siZemnoelopes to
be given shortly.
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Corollary 5.1.22. Let M be Lie coordinatized with finitely many sorts, a
0-definable subset 0¥1. Thens(D, n) is polynomially bounded.

Proof. We show in Proposition 5.2.2 below that the size[®fin an enve-
lope E is given by a polynomial function of certain quantiti¢$, ¢ being
approximately the size of the base field ahdarying over the dimensions of
E. Varying just one of these dimensions, we can find envelap&gich the
size of D is asymptotically a constant timeé for somed. Thus form large
we can find envelopeE in which the size ofD is comparable ton; that is,
m < |D| < (¢ + €)m. Thus takingX to be a subset ab N E of orderm and
applying the previous result, we get the desired bound. ]

We mention two problems. The first relates to the amalgamatidypes.

Problem 1. Find independent elemenis, as, as such that there is n@ in-
dependent from; asas for which:

tp(ara2/B) Utp(aias/B) Utp(azas/B) determines tuiasasz/B).

Problem 2. Are types over envelopes uniformly definable?

5.2 THE SIZES OF ENVELOPES

We deal here with the computation of the size of an envelogefaaction of

its dimensions, and also with the sizes of the automorphigags. We wish
to express the sizes of envelopes as polynomial functiottseofelevant data,
and to do so it will be convenient to work with square rootshef sizes of the
associated fields.

Notation 5.2.1. Let M be Lie coordinatized anga canonical projective geo-
metry. For an envelop& we letdz (p) be the corresponding dimension (or
cardinality in the degenerate case) and wedgt(p) = (—./q)?#?), where
q is the size of the base field; in the degenerate case w& get= /d(p).
WhenE is understood we writd(p) andd*(p).

Proposition 5.2.2. Let £ be a family of envelopes for the Lie coordinatized
structure M such that for each dimensigrcorresponding to an orthogonal
space, the signature and the parity of the dimension is emtsh the family.
Then there is a polynomial in several variables such that for evefyin
E, |E| = p(d*(E)), whered*(E) is the vector(d},(p)). The total degree
of p is 2rk(M) and all leading coefficients are positive. Ml is the locus
of a single type (with the coordinatization i#°%), thenp is a product of
polynomials in one variable.

Proof. We show that for any definable sBt, of M, there is a polynomial of
the type described giving the cardinality b, in any & € £ which contains
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the parametes. We may suppose thdd, is the locus of a single type over
We will proceed by induction ork(D,,).

Taked € D, andc € acl(ad) lying in ana-definable geometry, which
we may take to be degenerate, linear, or affine, with assstnonical pro-
jectivep. Let D! . be the set of realizations ¢(d/ac). Then we may take
pp, = psPp,./ Mult(c/ad). This reduces to the cade = J.

If J is affine or quadratic, add a parameter to reduce to a basiarligeo-
metry J. Then the dimension of in E is dg(p) minus a constant depending
on the type ofe. Thus it suffices to find a polynomial giving the number of
realizations of a type i in terms ofd}; (p) or equivalently in terms of the cor-
responding expressidet,/q)4™ /. The essential pointis to compute the sizes
of sets defined by equatiofi§z) = « with ) a quadratic or unitary form. Let
n(d, ) be this cardinality as a function of the dimension anddepending
also the type of the geometry. These are straightforwardpotations. We
give details.

In the orthogonal case we can break up the space as the ondiegon of a
2i-dimensional spacél with a standard forn@(a, 3) = 3 «;3; and a com-
plement of dimensiori < 2. So onH we haven(22 0)=(¢"—1)g" *+¢'
andn(2i,a) = (¢** — n(2i,0))/(q — 1) for a # 0. Thus on the whole space

n(2i + j, ) = n(2i,0)n(j, @) + [(¢* — n(2,0)/(¢ = D)](¢’ —n(j, a))

where the parameteris computed with respect to the corresponding induced
form. This simplifies to

n(2i + j,a) = ¢'n(i,a) + ¢ (¢* — ¢)

and for smalli n(7, «) is treated as a constant, corresponding to the particular
form used.

In the unitary case(
it suffices to computen(

d,a) is independent ofx for & nonzero and thus
d,0). Using an orthonormal basis and proceeding
inductively one getsi(d,0) = ¢?~'(,/g + 1) — n(d — 1,0),/g and then
(dO—qd/\f+(fd1 V) i

Remarks 5.2.3.1f we are working with graphs, for example, the number of
edges is given by a polynomial. The polynomjatsn be determined given
a sufficiently large envelope in which the subenvelopesrmoak.

We now discuss the chief factors of automorphism group ofrarelepe,
which are the successive quotients in a maximal chain of absabgroups of
this group.

Lemma 5.2.4. Let G be the automorphism group of the enveldpgl) in a
Lie coordinatized structuré\t. Then the number of chief factors Gfis
bounded, independently éfand each chief factor is of one of the following
kinds:
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1. abelian;

2. H9) whereH is a fixed finite group ang is one of the functions de-
scribed in the preceding proposition;

3. K74, with p(d) as in the preceding proposition arid a classical group
PSW(d;, ¢:), PSHd;, ¢i), PQ*(ds, ¢:), PSUds, ¢:), or Alt(d;), as appro-
priate to thesth dimension.

Proof. Once the dimensions are sufficiently large, the socle oatitemor-
phism group of one layer of the coordinate tree over the prevlayer is of
the form(3) or abelian, unless the geometry is finite {u), with the number

of factors corresponding to the size of a definable set moallequivalence
relation. The remainder of the automorphism group at thegrles solvable. If
the layer consists of copies of a finite geometry, considérief ¢actor H/ K
with H, K’ Aut(E')-invariant subgroups acting trivially on the previous laye
Let A be the automorphism group of the finite geometry involved, lah L

be the part of’ lying in the previous level of the coordinate tree, so tHaf{
liein AL. If H/K is nonabelian then it is a product of a certain number of
copies of a single isomorphism type of finite simple grauprhe number of
factors is the order of. modulo the following equivalence relation: ~ b if

the projection ofH/K onto A, x A, is a diagonal subgroup isomorphic to
S. This relation isAut(E)-invariant and hence definable. Thus the number
p of factors involved is equal to the size of a definable set ir@arelope (a
definable quotient of.). ]

Corollary 5.2.5. Let M be a Lie coordinatized structure. Then for the dimen-
sion functiond large enough, A (d)) determinesi up to a permutation
of the coordinates and up to orientation in the odd-dimemai@rthogonal
case.

Proof. Let f be a bound on the size of the chief factors of the second type
above. Letd be large enough that the chief factors of the third type dre al

of order greater tharf. Then these chief factors can be recovered from the
automorphism group unambiguously and the diatan be read off. ]

Lemma 5.2.6. Let M be a Lie coordinatized structure ardd a definable sub-
set. Then the following are equivalent:

1. k(D) < rk(M).
2. limg_, o |D[E]|/|E|) = 0.

Here the limit is taken over envelopes whose dimension®ab gnfinity,
and D[E] meansD taken inE, which for large enougltf is D N E. The
convergence is exponentially rapid if all geometries aradegenerate.
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Proof. We compare the polynomiats,, pr giving the sizes oD andFE.

If the ranks are equal, then both polynomials have positagling coeffi-
cients and total degreerk(M). For each dimensiod;, pp, pg involve the
parameted = afi for an appropriatey; (read this expression a% in the
degenerate case). Let the dimensidnse taken momentarily as arbitrary real
numbers going jointly to infinity along the curne® = d; = ..., so that the
polynomialspp, pg reduce to one variable polynomials converging to a posi-
tive v. After a slight perturbation we may suppose tliatds, . . . are rational,
thatpp /pr approaches, and that the terms of total degree less thak( M)
make a negligible contribution. After rescaling by a commdenominator, the
“dimensions” are integers, the ratio of the highest ordetspaf pp andpg
goes toy, and the lower-order terms are even more negligible. Thubave
a sequence of dimension assignments tending jointly toifpfim which the
quotientp /pg will not go to zero.

Now assume thak(D) < rk(M). We may takeD, E to be realizations of
single types, so thatp andpg factor as products of polynomials in one vari-
ablepp ;, pei. The ratiospp ;/pg,; are bounded, as otherwise varying only
the one relevant dimension we would get a proper subset witte mlements
than the whole sefZ. On the other hand at least one of thg ; has degree
less than the degree pf; ; so the limit goes to O (rapidly, if the geometry is
nondegenerate). ]

We now prove a finitary Lowenheim—Skolem principle.

Lemma 5.2.7. Let M be Lie coordinatized. For any subs&t of M there
is an envelop&’ of M containingX, in which each dimension is at most
2rk(X) < 2rk(M) - | X].

Proof. Let.Jy, ..., J, be theacl())-definable dimensions, arg, = acl(X )N
Ji. The dimension of; is at mostrk(X). If the geometryJ; carries a form
then increasé’; to a nondegenerate subspace, of dimension at 21&$iX ).
Let M’ be a maximal algebraically closed subset/df containingX’, and
such thatM’ N J; = E;. ThenM’ is Lie coordinatized and has smaller rank,
unless these geometries are finite, in which case iterafitimeoprocess will
eventually lower the rank or the height of the coordinatiziree. By induction
on rank we may suppose that.ivt’ there is an envelop& with the desired
properties. This will then be an envelopeM, with the desired properties.
|

Remark 5.2.8. The existence of indiscernible sets of orden all large finite
structures with a fixed number of 5-types is proved in [CL]p#mticular, an
infinite quasifinite structure contains an infinite set ofigwernibles. Con-
versely, from the latter result it follows that there is a stantc such that
for large n, a pseudofinite structure with at least elements contains a
sequence of indiscernibles of length This follows from the last lemma
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using the bounds on the sizes of envelopes, since the rar{ged can be
bounded in terms of the number types. It is possible that an explicit
bound of this kind can also be extracted by tracing throughdatguments
in [CL].

Problem 3. Do the abelian chief factors of automorphism groups of espes
have orderg?(%:4") with o a polynomial similar togp—in particular, a prod-
uct of polynomials in one variable (i.e., depending on omeatision)?

One can treat the case of affine covers by dualization, raduci finite
covers. Then by results in [EH] the problem reduces to thewahg: if J is
a definable combinatorial geometry on a definablgsef a Lie structureM,
which is subordinate to algebraic closure, show that theedsion ofJ in an
envelope ofM is given by a polynomial inl, d*.

5.3 NONMULTIDIMENSIONAL EXPANSIONS

We show here that Lie coordinatizable structures have “ndtidimensional”
expansions, lifting [HrTC§3] to the present context. As in that earlier case,
the difficulty lies in the interaction of orthogonal geonies$; which means that
the outer automorphism groups may be related even if thelsipgrts of the
groups are not.

Definition 5.3.1. A Lie coordinatized structure is said to Im@nmultidimen-
sionalif it has only finitely many dimensions, or equivalently (andre
explicitly) if all canonical projectives are definable owel(().

Proposition 5.3.2. Every Lie coordinatized structure can be expanded to a
nonmultidimensional Lie coordinatized structure.

Proof. We use a locally transitive coordinatizing tree, meanhnat the type
of a point at a given level depends only on the level. We alkawathe in-
troduction of a finite number of additional sorts, each dagya single basic
geometry.

Let M; be the coordinatizing tree up to leviglogether with the elements of
the special sorts, and Iét be the set of indicesfor which the geometrieg,
associated to points at levieare orthogonal td//;. We proceed by induction
on M;, the caseA = () being the nonmultidimensional case. So we take
nonempty.

Now letn € A be maximal. Letl;, be the set of elements lying at level
n in the coordinatizing tree. Far € T, let P,, be the canonical projective
geometry associated witR, and letq be the type ofi’. Let V. be the corre-
sponding linear geometry. If these linear geometries aractoally presentin
the structure, we may attach them freely to the canonicgéptiges. (In the
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degenerate case, the geometry is considered to be both dindgrojective.)
The isomorphism type of,. is independent of’, but there will not be any
system of identifications present between the varigus

Suppose for definiteness tHa} is of orthogonal type in odd characteristic,
with base fieldX,., and bilinear formB,, : V,» x V,» — L/, a 1-dimensional
K, -space. Fix a copys of the base field, and a 1-dimensional spacaver
K. Fix a 2-dimensional spadg, over K and a nondegenerate bilinear form
()o : Us x Us — L which takes the value 0 at some nonzero point. The pair
(Us, ()o) is unique up to an isomorphism fixing and L.

Now let Uy, Q1 be an infinite dimensional nondegenerate orthogonal space
over the prime field? < K and set/ = U; ® U, as aK-space. The forms
(,)o and(, ); induce a bilinear forn{, ) on U satisfying(a; ® ao, b1 ® b,) =
(a1,b1)1 - (ao,bs)o. This makes sense by the universal property of tensor
products. Let" be the family{a @ U, : a € U1 }. Then

(1) Any automorphisnh of (K, L) extends to
an automorphism af/ fixing I" pointwise.

The uniqueness df, signifies thath extends tol/,. To extend toU fix U
pointwise. Therl" is fixed pointwise.

Add U as a new sort. Fadr satisfyingq pick isomorphismsy, : U — V},
and letl’, = h[[]. Let M’ be M expanded by the soff and a family of
mapsf, : I' — T’ for b satisfyingq. f; is to be coded by a ternary relation
ong x U x |J, Va. hy is not part of the structure but the s€teindI’, can be
recovered fromy; in (M’)*4. We claim thatM’ remainst-quasifinite and that
A isreduced by 1.

By a normalsubset ofA°? we mean a union of O-definable sets. The re-
striction of a normal subset to a finite number of sorts is ixelefinable. We
consider normal subsesssatisfying the additional condition:

Forb satisfyingq, V; is orthogonal toS.

This means that any basic geometry corresponding {evith acl(b) fixed) is
orthogonal taS. Let@ be a maximal normal subset of this type contairilhg
Then(@ contains the locus af and is algebraically closed. We claim ttatis
also stably embedded i, since for any projective or affine geometrydn
if the dual exists inM, then it is contained ind).

We claim now:

2) For any automorphisms of Q and of U,
the mapa U 3 is induced by an automorphism aft’.

Let@, = QU U, Vb. ThenQy, like Q, is stably embedded in1. We first
extenda U 3 to Q1. Forb satisfyingg, o induces map#(, — K., and/L,; to
L,y By (1) these maps are induced by a linear isomorphliismV, — V,;
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compatible withf,,bﬁfljl. Using the orthogonality conditiomy U 3 U |, 05
is elementary and extends to an automorphisovtf

It remains to be seen that apart from the introductiof/othe rest of the
coordinatization oM is unaffected; specifically, if.. is a canonical projective
geometry ofM orthogonal to the geometriég, then

J. has no extra structure as a subsetf;
If J.is stably embedded iM, then it remains stably embedded
in M’.

We may assume thak, is stably embedded iM. If J. is contained irQ this
follows from (2), and otherwise any automorphism.bffixing acl(c) extends
to an automorphism o# fixing @, pointwise. This is then elementary.i’.
This completes the orthogonal case in odd characteristie. lifiear, sym-
plectic, and unitary cases are similar, with the auxiligrgeelU, 1-dimensional
in the unitary case. In the orthogonal case in characte@stthe orthogonal
geometry is an enrichment of a symplectic geometry and wesupgose that
the pure symplectic space occurs as well, and that the giiafinan used oc-
curs also as a point in an associated quadratic geometrp.Wéean switch to
the symplectic case. Similarly, in the case of a polar geon{&t V*) reduce
the scalars to the prime field and introduce linear isomearpbiy : V' — V*.
This can be done without destroying outer automorphismsaings us back
to the symplectic case. ]

Proposition 5.3.3. For M quasifinite the following are equivalent:

1. M is stable.
2. M is Ny-stable.
3. M does not interpret a polar space.

Proof. We must show tha3) implies(2). So assume (3). In particular none
of the canonical geometries fov1 involve bilinear forms. The geometries
occurring are therefore all strongly minimal and stably edded. Morley
rank is subadditive in thg,-categorical setting, for stably embedded definable
subsets (cf. [HrTC]), so using the coordinatizatidr,has finite Morley rank.

|

Remarks 5.3.4

As the class oftablepolar spaces is the classfifite polar spaces, which is
not an elementary class, the notion of a stable quasifinitetsire in a given
language is not an elementary notion. On the other hand, fixed finite
languagéd., the class of stable homogenedustructures is elementary [CL].
This can be seen fairly directly as follows. By a result of idaerson [Mp1]
in a finitely homogeneous structure, no infinite group isriptetable. In par-
ticular for finitely homogeneous structures, quasifinismsnand stability are
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equivalent. But for finitely homogeneous structures quastiness is elemen-
tary.

Although we work outside the stable context, we still requiire analysis of
[CL] for primitive groups with nonabelian socle, which erge&ia [KLM].

5.4 CANONICAL BASES

We do not have a theory of canonical bases as such, but tleeviog result
serves as a partial substitute.

Proposition 5.4.1. Let M beX,-categorical of finite rank. Suppose that, as, as
is a triple of elements which are independent avgrovera,, and overas.
Thenay, as, a3 are independent over the intersection of(ag), i = 1, 2, 3,
in Meq,

We begin with a few lemmas.

Lemma 5.4.2. Let M beX,-categorical of finite rank and |k be a 0-definable
symmetric binary relation satisfying

WhenevertR(a,b), R(b,c) hold with a,c independent oveb,
thenR(a, c) holds andb, c are independent over.

Then there is a 0-definable equivalence relatiosuch that

R(a,b) implies the following:E(a, b) holds anda, b are inde-
pendentoveu/E = b/E.

Proof. We defineE(a, b) as follows: For some independent frona overb
and fromb overa, R(a, c) andR(b, ¢) holds.

We check first thai? implies E. If R(a,b) holds, choose independent
from a overd such thatR(c,b) holds. Then by(x) R(a,c) holds andc is
independent frond overa. ThusFE holds. The domain of is the same as
the domain ofR and E is clearly reflexive and symmetric on this domain. We
now check transitivity.

SupposeF(ay, az) andE(asq, as) hold and leta;5, ass be witnesses. Thus
we haveR(a;, a;;5); R(aj,a;;); anda;; is independent frona; overa; and
from a; overa,;. Asajs is independent frona; overas, we may take it in-
dependent frona, azas overas; and similarly forazs. Furthermore, we may
takeas2, ags independent ovety, as, az and hence oveat,. From R(asg, ai2)
andR(az, az3) we then deduc®(ai2, ass).

Pick ¢ independent from; asasass overaio such thatk(aq2, ¢) holds. We
claim then:

1 R(ay, ¢) holds for alli, and
(1) 32
cis independent from;; overa; and over;.
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First, sincec is independent fromays over a2 we getR(ass,c) andc is in-
dependent fronui, Over aqs; the latter implies that is independent from
aiasaszaiz OVerass. Soc is independent from; or as overcy, and fromay
or az overcy. By another application of«) the relation(1) follows.

Now using (1) we get independent from;asazai2a23 over eachu; and, in
particular,c is independent froms overa; and froma, overas; SO E(aq, as)
is witnessed by. ThusF is transitive.

Finally, we must show that iR(a, b) holds and: = a/E = b/E, thena,b
are independent over Let o’ realize the type of overc with a’ independent
from a overc. We will show then that andb are independent ovef and thus
a andb are independent over

As E(a,a’) holds, there igl satisfying

R(a,d), R(d’,d), andd is independent from overa’ and from
a’ overa.

We will take a’, d independent fronb overa. In particular we have’ inde-
pendent fronb overad, andb independent frond overa; the latter, with(x),
givesh independent froma, overd and then combined with the former, we get
aa’ independent frond overd, hences independent fronh overa’d. Asa is

independent fromd overc we get finallya independent fronh overa’'. ]
Definition 5.4.3. Let a4, ..., a, be a sequence of elements in a structure of
finite rank.

1. The sequence is said to idocally independerif it is independent over
any of its elements.
2. Weseb(ai,...,an) =, tka; —rk(ay ...an).

Lemma 5.4.4. Let M be a structure of finite ranlg = a4, ..., a, a sequence
of elements. Then the sequends 1-locally independent if and only if:

The quantityy = d(a,a;) is independent of, j (distinct);
andj(a) = (n — 1)4.

Proof. We have in general for any fixed indéxwriting 3"’ for a sum exclud-
ing the indexk:

S@) = > rk(a;) — (rk(a/ax) + rk(ax))

i

S tk(a:) — rk(a/ar)

%

S k(@) = 3 k(as/ar) = S 6(as, ar)

v
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with equality if and only ifa is independent ovet;,. Thusifd = d(a;, a;) is
constantand(a) = (n—1)J, then we have equality regardless of the choice of
k and the sequence is 1-locally independent, while, conlyeisthe sequence

is 1-locally independent, thef{a) = >’ 6(a;ax) for any k and it suffices

to check that théf(a;a;) are independent of, j. But the restriction of to
any three terms;, a;/, a;» remains 1-locally independent, and applying our
equation to a sequence of length 3 with= ¢’ or k = ¢" yields 6(i,") =
d(i,4"), from which it follows that is constant. |

Lemma 5.4.5. Let M be a structure of finite rank.

1. Supposethat = aq, as, as, a4 IS a sSequence withy , as, as, andas, as, ay
1-locally independent. ki; anday are independent ovetas, thena is
1-locally independent.

2. If a = ajasbibacico is a sequence whose first four and last four terms
are 1-locally independent, and as is independent from; ¢, overb;bs,
thena is 1-locally independent.

Proof.

Ad1. We haved(a;a;) = ¢ constant, with the possible exception of the pair
a1, a4. Repeating the calculation of the previous lemma aneg rather than
ak, usingrk(ajasazay/asas) = rk(ay/asas) + rk(as/azas), we geté(a) =
30. Thus it remains only to be checked thét,a,) = §. We may show easily
that a is independent ovets or overas, starting from the independence of
aiasas fromay overasas. Thus

rkas — 6 = rk(az/a1) > rk(az/araq) > rk(as/arasasq)
= rk(ag/a3) = rk(ag) -0

and, in particular, we have the equatitias/a1a4) = rk(az) — 6. Now

rk(a) = rk(ajaq)+rk(az/araq) + rk(as/arasays)
= rk(a1a4) + (rk(ag) — 5) + rk(ag) )

and thus
30 =) rk(a;) — rk(a) = d(aras) + 26

and6(a1a4) =4.

Ad 2. It is straightforward thah is independent over, or overb, and by
symmetry it will be sufficient to prove thatis independent over; .

We have by assumption ce independent from; a2b1bo overb; by and thus
c¢1 is independent fromyasb1 ba overb;baco, but alsoc; is assumed indepen-
dent frombyboco OVercs, and thus

c1 is independent from asb1 boco OVErcs.
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In particular,c; ¢ is independent from; b1 b2 overa;co. By Case laibibace
is 1-locally independent and is, in particular, independ®r a;, so from
the previous relation we derive the independence;of from b,b, overa;.
Combining this with the independence @fco from a;a2b,b2 overb by, we
find thatc; o is independent frona; asb1 b overa;. Now ¢; is independent
from ¢, overbbs andc; ¢ is independent from; overbibs SOc¢; is indepen-
dent fromcsy overa;byb2, and hence, by transitivity, over. Thusajasbibs
is independent ovet;, c;cs is independent from; asby by overay, ande; is
independent from, overa;. Thusa is independent over; . ]

Proof of Proposition 5.4.1We haveu, as, a3 1-locally independent. Lek

be the set of pairs = (x1, x2) such that each coordinate or x» realizes the
type of one of the three elements and define a relatioR on X by: R(z, y)

if and only if x1, z2, 41, y2 iS @ 1-locally independent quadruple. We will ap-
ply Lemma 5.4.2 taR. Note first that ifR(x, y) andR(y, z) hold withz andz
independent ovey then the 6-tupléz, y, z) satisfies the conditions of case 2
of the previous lemma, and thus the six coordinates formacéaHy indepen-
dent sequence. Thus Lemma 1 applies and there is a O-defemlilealence
relation £’ such that

R(z,y) implies: E(z,y), andz, y are independent over/ E.

Now consider the 1-locally independent trigle , a2, as). We extend it by
two further elements,, a5 satisfying the following conditiongp(a; /azas) =
tp(ay /aza3), fori = 4,5; ay independent frona; overasas; andas is inde-
pendentfronu;, ay OVeras, as. We claim that any 4-tuple fromn , as, as, ay, as
is 1-locally independent. This follows from Lemma 5.4.5t[§4), fora;azasay,
aiasasas, Of asasagas. In the remaining two cases; asagsas andajasaqas,
we need to check thak is independent from, overajas Or ajas. Butas is
independent froma, overa;asaz and fromajasas overas or az. Thus all of
these 4-tuples are 1-locally independent, and hence angisjaint pairs are
E-equivalent; and by transitivity any two pairs affleequivalent. Lek be the
commonkE-class of these pairs. Thenas is independent fromsa, overe
anda;ag is independent fronaay Overe. In particular, working over we
haveas independent from, as, anda; independent froms, and thusi; asas
is an independent set over It remains only to be checked thats algebraic
over eachu;. Certainlye € acl(a;az) andacl(asay), and as these pairs are
independent over any;, we havee € acl(a;) for all i. |

5.5 MODULARITY

Definition 5.5.1. Let M be X,-categorical of finite rank. M is modularif
whenever, A, are algebraically closed sets jiv“4, they are independent
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over their intersection.

By conventioracl will always be taken to operate iv®4. This point may
be reemphasized occasionally.

Modularity, as defined here, is called “local modularity”time literature
dealing with the case of finite Morley rank, where the term tular” is ap-
plied only to strongly minimal set® which in addition to the stated property
have “geometric elimination of imaginaries”: fare D*4, there isA C D
with acl(e) = acl(A).

As a matter of notation we will use the symhblfor independence sym-
bol which is more often used for model theoratithogonality but the latter
concept does not really call for any special notation in awspnt develop-
ment.

Lemma 5.5.2. Let M be Xy-categorical of finite rank. Them is modular
if and only if the lattice of algebraically closed subsets\df< satisfies the
modular law:

aN(dVe)=bV(aNc) forb < a.

Proof. SupposeM is modular, and4, B, C' are algebraically closed subsets
of Me1with B C A. Our claim is

An(acl(BC)) =acl(BU(ANC))

the modular law. From modularity appliedfo C, asB C A we deduce easily
thatA L BC overBU (ANC). ThusAnacl(BC) =acl(BU (ANC)).

In the converse direction, assume the modular lawMf4, but A, B are
algebraically closed and dependent over their interseckiinimizerk(A/B)
and, subject to this constraimk(A4). We may supposél N B = acl((}), as
the modular law holds in the corresponding sublattice, @eoveA N B). We
adopt the notatiofh = acl(()) for the present. After these reductions, we claim
that A is a lattice atom: a minimal nontrivial algebraically cldsget.

Supposd) < A’ < A with A’ algebraically closed. Asl’ > AN B,
rk(A’/B) is positive andk(A/A’B) < rk(A/B), so by minimality

A L ABoverAnacl(A'B).
If Anacl(AB’) is independent fronB over A N acl(AB’) N B = 0, then
A 1 Bover0, a contradiction. Thugl may be replaced byt nacl(A’B), and
by the minimality ofrk A we find A C acl(A’B). By the modular law
A=Anacl(A’'B) =acl(lA U(ANB)) = A

as claimed.
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Now consider a conjugat@’ of B over A independent fronB over A. Note
that
acllAB)NnB =0

sinceacl(AB) N B' C An B’ = 0. Ifthe triple A, B, B" is 1-locally inde-
pendent, then it is independent over the intersedliby Proposition 5.4.1, a
contradiction. If it is not 1-locally independent, thenheit A, B are depen-
dent overB’, or A, B’ are dependent oves, and in any casek(A/BB’) <
rk(4/B). Thus by the minimality ofk(A/B), we have independence df
from BB’ overA, = Anacl(BB’). As A is an atom, we have eithel, = 0,
contradicting the choice aofl, or A C acl(BB’). In the latter case, applying
the modular law tacl(4, B), B, andB’ we getA C acl(AB) Nnacl(BB') =
acl(B,acl(AB) N B’) = B, which is absurd. |

Proposition 5.5.3. Let M beR,-categorical of finite rank. Then the following
are equivalent.

1. M is modular.

2. For all finite A, A5 in M, A; and A; are independent over the intersec-
tion of their algebraic closures.

3. For all finite A,, A in M, there is a finiteC' independent fromi, A,
such that4,, A, are independent over the intersection of the algebraic
closures ofA; UC and A, U C.

4. The lattice of algebraically closed subset/of? is a modular lattice.

Proof. The equivalence dfl) and(2) is clear and the equivalence @f) and
(4) is the previous lemma, so we concern ourselves with the @afdin “(3)
implies (2).” We actually show that each instance (@f implies the corre-
sponding instance dR).

Let A;, A, be the algebraic closures of two finite subsetd.¢f1. We must
work with sets generated by subsets/df rather thanM*®9, so takeA7, A3
finite subsets oM such that4; C acl A} and, in addition,

(3.1) A7 L A overA;

(3.2) A; 1 Aj overAs

This ensuresicl(A}) Nacl(A%) = acl(A;) N acl(Az) by applying first (3.2)
and then (3.1). Accordingly, the problem is reduced to thiedong:

A7 L Aj overacl(A7) Nnacl(Aj).
By (3), we have a finite s’ independent frord} A3 for which

Ay L Aj overacl(A3 UC) nacl(A5 U C).
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Let A = acl(AjuC)nacl(A5UC) and takeA} conjugate tod; overacl(Aj;U
(), and independent frord; over A;C. ThenAj is independent froni; A%
over A since

K(A5/AA5A) < TK(A5/ATA3C) = 1k(A3/A5C)
= rk(A3/A34) = rk(43/4)

As A3 is independent fromd} A% over A and A}, A% are independent over
A, A%, A7, As is an independent triple ovet. As A7 and A} are conjugate
overacl(A;C), they are conjugate ovet, and thusA C acl(A3C). Thus
C C A C acl(ArC) for all 4. For any permutation, j, k of 1,2, 3, we have:
A} L A7 over AAj, henceA; L A% overCAjy, and thusd? L A% over A;.
By Proposition 5.4.1 the tripld}, A%, A3 is independent over the intersection
of their algebraic closures, and in particuléf, A5 are independent over the
intersection of their algebraic closures. ]

Proposition 5.5.4 (Fundamental Rank Inequality, cf. [CHL])
Let M beX,-categorical, of finite rank, modular, and with the type ageal
mation property (cf§5.1). LetD, D’ be 0-definable sets with’ parametriz-
ing a family of definable subsef3, of D of constant rank- for b € D’.
Suppose that’ is a 0-definable equivalence relation @ such that for
inequivalend, b’ € D’ we have

rk(Dy) NTK(Dyr) < 7.

ThenrKD'/E) +r <rkD.

Proof. We may assume that bofhand D’ each realize a unique type over the
empty set. Také € D’ anda € D, withrk(a/b) = r. LetC = acl(a)Nacl(b).
Thusa L b overC by modularity, andk(a/C) = rk(a/b) = r. We will show

(+) b/E € C.

Thusrk(D'/E) < rkC = rk(aC') — rk(a/C) = rk(a) — r as claimed. So we
turn to ().

Letd’/E be a conjugate df/ E over(C distinct fromb/ E, with " indepen-
dent fromb overC'. We seek an elemedt of D’ satisfying

tp(s"b/C) = tp(H'b/C): tp(¥", a/C) = tp(b, a/C)

with a, b,b” independent ovef’. This amounts to an amalgamation problem
for three compatible 2-typesp(ba/C), tp(b’b/C), tp(ba/C). By the type
amalgamation property, this can be done.

In particular,a € D, N Dy and thusrk(a/bb") < r; butrk(a/bb”) =
rk(a/C) = r, a contradiction. Thus there is no such conjugatandb <
del(C) = C. |
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Corollary 5.5.5. With the hypotheses abow#{ interprets no Lachlan pseu-
doplane.

Remark 5.5.6. This refers to a combinatorial geomet#, L; I) of points and
lines such that each point is incident with infinitely mamel, two points
are incident with only finitely many lines, and dually. Thievance of these
structures to the behavior f)-categorical stable structures was shown in
[LaPP], and the corollary settles a question raised in [KLM]

Proof. If (P, L; I) is such a pseudoplane, then after dualizing if necessary we
may taken = rk(L) > rk P. We apply the fundamental rank inequality with
D = P, Dy is the set of points incident with the lidies! varies over a subset

D' of L of rankn on whichr = rk D, is constant, withZ’ the equality relation.

By the axioms for pseudoplanes, the previous propositighiegpand yields

rk D' +r <rk P <rkL =rk D’ and thus- = 0, a contradiction. |

We give a more precise version of the fundamental rank in@gua

Proposition 5.5.7. Let D, D’ be the loci of single types over the empty set, and
Dy, a uniformlyb-definable family of rank subsets of> parametrized by
D’. Then there is a finite cover : D” — D’ and an equivalence relation
E on D" such that

1. rk(D"/E) =rkD —r;
2. For b, b’ E-equivalentinD”, we have rkD; N D) = .

Proof. We work witha, b, ¢ as in the proof of Proposition 5.5.4, but with
finite rather than algebraically closed: so we requireacl(a) N acl(d) finite,
a L boverc. Let D" be the locus obc over the empty set, with;c; = b,
and withE(byc1, baco) if and only if ¢; = ¢o and the types of; overacl(c;)
and ofb, overacl(cy) coincide. Then the amalgamation argument yields (2),
andrk(D")/E = rk(c) = rk(a) — rk(a/c) = rk(D) — rk(a/b) = rk D — r.

|

5.6 LOCAL CHARACTERIZATION OF MODULARITY

We show in this section that Lie coordinatized structuresaodular by reduc-
ing the global property of modularity to local propertiesioé coordinatizing
structures.

Definition 5.6.1. Let M be a structure.
1. A definable subsd? of M is modularif for every finite subsetl of
M, the structure with univers® and relations thed-definable relations of
M restricted toD, is modular.
2. LetF be a collection of definable subsets/ef. ThenM is eventually
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coordinatizedby F if for anya € M and finiteB C M, with a ¢ acl(B),
there isB’ O B independent froma over B and a B’-definable membeb
of F for which D N acl(aB’) contains an element not algebraic ovef.

Lemma 5.6.2. If M is eventually coordinatized by a family of modular defin-
able sets, then it is eventually coordinatized by a familpoéiular definable
sets of ranki.

Proof. Replace each modular definable set by its definable sublsetalol.
If « € M andB is a finite set, také3’ O B independent frona over B and
take D definable and modular such th&tn acl(aB’) contains an elemerbt
not algebraic oveB’.

Take B; O B’ such thatk(b/B;) = 1. We may suppose thad; is inde-
pendent fronu over B. Let B, = acl(bB’) Nnacl(B;). ThenB’ C Bs, By
is independent from over B, and by modularity ofD, b is independent from
B over By, sork(b/Bs) = 1. Letd’ be finite, withB’ C &’ C By, such that
rk(b/b") = 1, and letD; be the locus ofp(b/t’). ThenD; C D is rank 1,
and is modular sinc® is. Furthermore) € Dy N acl(abd’)\ acl(y’), andd’ is
independent from over B. ]

Proposition 5.6.3. Let M beX,-categorical of finite rank. /M is eventually
coordinatized by modular definable sets, thehis modular.

Proof. By the preceding lemma we may take the coordinatizationetdnb
terms of rank 1 modular sets.

SupposeM is not modular. Then there are elements and a sef? such
thatacl(a, E') N acl(b, E) = E, with a andb dependent oveE. Takea,b, E
with rk(a/E) + rk(b/E) minimal. Then as noted in the proof of Proposition
5.5.3,foranyE’ O E, independentfrom, b overE, a andb remain dependent
overacl(a, E') Nacl(b, E'). Thus after applying the eventual coordinatization
we may assume in addition thatl(a, E') andacl(b, F') contain elementa,
b1 of rank 1 overE, lying in rank 1 modular definable sef2;, D, respec-
tively, defined overr. For the argument below some further expansioof
may be necessary. Specifically, we will assume fiaatisfies the following
condition:

1. If it is possible to expand’ to E’ independent fromub over E' so that
acl(a, E') contains an element of rank 1 overE’ independent from,
over E, then the same occurs already over the biasand similarly for
b.

We will also want to assume the following condition for a finitumber of
elements:’ € acl(a) of rank 1 overE, to be determined below:

2. If there existst as described if1) anda” € D, with acl(a/, E') =
acl(a”, E'), then there isi* € D, for whichacl(¢/, E) = acl(a*, E);
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and similarly forb.

After these preliminaries, we may add constants and take acl(()). We
will write 0 = acl(®) = E. We will show thata C acl(a,b) andb C acl(bia).

We haveacl(a) N acl(b) = 0, anda, b are dependent. Furthermorg, €
acl(a) has rank 1 andcl(a;) N acl(b) = 0, soa; andb are independent.
As rk(a/a1) < rka, by minimality we have: andb independent oved =
acl(a) Nacl(aq,b). Sincea andb are not independentl andb are not inde-
pendent. Butd C acl(a) and hence by minimality of total rank (applied to a
finite subset of4, andb) we getrk(A) = rka, soa C A. Thusa C acl(a1b);
similarly b C acl(by, a).

Now we claim there ig5 with

az € acl(a); rk(az)=1; a2l ay

Takeb’, b} conjugates ob, b; overa, and independent from b; overa. Thus

a C acl(a1b’), andd) is independent from, b. Asb depends om andb; does
not, we havek b > rk b; and hence we may choog containingb, indepen-
dent froma, b, b’ overd}, and somé), € acl(b’, E’), so thatrk(b;/E’) = 1.
Now E’ is independent from, b’ andb), € acl(¥’, E’) C aclacla, b, E') =
acl(a, E'), with a; independent frond, over E’, so the same holds for some
conjugate ofE’ independent fromu, b, and then by condition (1) the same
holds ovel0 for somea, in place ofby,.

Now ay € acl(a;1b) and thusa;as depends o, butajas € acl(a), so
by minimality « = acl(ajaz). Similarly, we getb = acl(b;b2) with by of
rank 1. Here na; € acl(b) and nob; € acl(a), but any one oti1, as, by, bo
is algebraic over the remainder, and € D;. Consider the base sét =
{a2,b2}. ThenF is independent frorh; and D; contains an element = a;
such thatacl(z, F) = acl(bs, F'). Taking a conjugatd’’ of F' overb,; free
from a, b, (2) applies and yields an elementBf that may replacé;. In the
same fashion we may assuiec D, and then after reversing the argument,
thatas € D;. Then the paifa;as, b1b2) violates modularity inD;. ]

Corollary 5.6.4. If M is Lie coordinatized theM is modular.

Proof. The embedded linear and projective geometries are seaenrtmbular
using the last criterion in Proposition 5.5.3, as arbitpaayameters froro\t
may be replaced by parameters in the geometry. Thus it ssifiicehow that
these geometries eventually coordinatize

Leta € M, B a finite subset of\/, anda ¢ acl(B). One may findc €
acl(a, B) — acl(B) lying in a B-definable coordinatizing projective or affine
geometryJ. If the geometry is affine, then expa®ito B’ = B U {¢.},
adding a generic point of, and replace by ¢ — ¢, in the corresponding linear
geometry.

Thus the previous proposition applies. ]
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Definition 5.6.5. Let a and b be elements of a structure of finite rank. Then
b is said to befiltered over a if there is a sequench = by, ..., b, with
rk(b;/aby ...b;—1) = 1 and aclab) = acl(abd).

The following was essentially invoked above, and will belaggpagain sub-
sequently.

Lemma 5.6.6. Let M beR,-categorical of finite rank and modular. Then for
anya,bin M’, bis filtered overa in M9,

Proof. Adding constants we may work over the empty set in place dive
use induction om = rk(b) and we may suppose > 1. We taket’ € M’
with rk(b/b") = 1. In particular,p is filtered overy’ by b itself, and hence by
the previous lemma is independent fréfrover B = acl(b) N acl(t’). Thus
rk(b/B) = rk(b/b') = 1 andrk(B) = n — 1, so by induction after replacing
B by a finite seb” we have a filtration fob’ to which we may append 1

5.7 REDUCTS OF MODULAR STRUCTURES

In this section we prove the following theorem on reducts ofdoiar struc-
tures:

Proposition 5.7.1. Let M beX,-categorical of finite rank, and modular. Then
every structureM’ interpretable inM inherits these properties.

As we will to some extent have both and M’ in view throughout the
analysis, we adopt the convention that when not otherwiseifipd, model
theoretic notions like rank and algebraic closure that ddpen the ambient
model will be taken to refer tdA’. In any caseM’ inherits theX-categoricity
and finite rank. The latter point would however be dubious émeyal for
other notions of rank such &-rank. Furthermore, we cannot assume that the
notions of independence iiv and M’ stand in any close relationship.

The main case is that of reducts. In fact, as we can add sorampégers and
work in M4, we may suppose thdt!’ has as its universe a 0-definable subset
of M, and that the structure present 81’ is a reduct of the full structure
induced fromM. We will refer to this situation as a reduct in (not “ofM.

Lemma 5.7.2. Let M beR,-categorical M’ a reduct, anch a finite sequence
which is algebraically independent in the naive sense: rafrits entries is
algebraic inM’ over the remainder. Then there is a realizationf the type
ofa in M’, which is algebraically independent ji.

Proof. Letb be a realization of the specified type willy((b) as large as
possible. Ifb contains an entry which is algebraic over the remainder,
b’, note that inM’ b ¢ acl(b’) and hence there is another realization of the
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type consisting ob’ extended by some¢ acly(b’). But then|acly(b)| =
|acly(b'b)| < |acly(b’c)|, a contradiction. |

Lemma 5.7.3. Let M be Xy-categorical of finite rank and modulai’ a
reduct inM, anda, b elements oM’ with rk(b/a) = 1. Thena is indepen-
dent fromb over acla) N acl(b).

We emphasize that our convention applies here, to the éffatthe notions
used are those o$1’ rather thanM.

Proof. We will proceed by induction on the rank @f We may suppose that
andb are algebraically independent, since i€ acl(b) our claim becomes triv-
ial. By the preceding lemma we may even suppose that theyigebraically
independent in\1.

Now in M let I = (c1,¢2,...) be an infinite M-independent andv-
indiscernible sequence overwith tp,,(c;/a) = tp,((b/a). We claim the se-
quencel is M'-independent over. For examplerk(c,+1/acy,...,c,) =1
sincerk(cy+1/a) = 1 ande, 11 is not algebraic ovetcy, .. ., ¢, in M, hence
certainly not inAM’.

The quantityrk(a/c; ... ¢;) as a function ofi is eventually constant, say
from ¢ = m onward. Letd = (c1,...,¢) andd’ = (¢m+1,---,Com)-
rk(a/d) = rk(a/d") = rk(a/dd’), the latter equality by the choice of. Thus
in M’ we havea | d overd’, a L d' overd, and alsod L d’ overa as
checked above. By Proposition 5.4.1, which is applicabl@tg the triple
a,d,d is independent oved = acl(a) Nacl(d) N acl(d’). In particulara, ¢
are independent ovet.

We now apply the modularity oM. Let A* = acla(a) Nacly(cq). Since
a ¢ aclyp(b), alsoa ¢ acly(cr) and thuse ¢ A*. By modularitya L g
over A* and by indiscernibilitya | o ¢, over A*. Asacy...ci—1 is M-
independent from; overa, we find thata, c1, co, . . . are M-independent over
A*. Hencea ¢ aclp(cq,c2,...) and in M’ we havea ¢ acl(d), a ¢ A,
andrk(A4) < rk(a). Thus by inductionA L ¢; overA’ = Anacl(¢;), and
henceA 1 ¢, overA’. Sincetp(ac;) = tp(ab) we havea, b independent over
acl(a) Nacl(b). |

Lemma 5.7.4. Let M be R,-categorical of finite rank, and modular, and let
M’ be areduct inM. Then every rank 1 subsgxof M’ is modular.

Proof. After absorbing an arbitrary finite set of parameters ih language
our claim is that ifa, b are two algebraically independent sequence®in
with acl(a) N acl(b) = acl(@) in M’“, thena andb are independent. This
claim reduces inductively (after further absorption ofgraeters) to the case

in which a andb have length 2. In this case if they are not independent, we
haverk(b/a) = 1, and this case was handled in the previous lemma. 1
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Proof of Proposition 5.7.1lt suffices to show that’ is eventually coordina-
tized by its rank 1 subsets, since these are modular; we fy#n Broposition
5.6.3.

So taken ¢ acl(B) with B finite. Letn = rk(a/B). We may finda/, ¢ with
a’ € acl(aBc) — acl(Bc) andrk(a/a’Be) = n — 1 (cf. Lemma 2.2.3). As
rk(aa’/Bc) = rk(a/Bc) this yields

rk(a/Bc) = (n — 1) + rk(a’/Bc) > rk(a/B)

and thus: andc are independent ovét anda’ has rankl over Be. This shows
that M’ is eventually coordinatized by rank 1 subsets. ]
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Definable Groups

We study groups definable in Lie coordinatized structures vl eventually
characterize the groups interpretable in Lie coordindt&euctures in terms of
their intrinsic model theoretic properties. For the stahkpory, see the mono-
graph by Poizat [PoGS] and the relevant sections of [Bu, RiGS

6.1 GENERATION AND STABILIZERS

We work with M°4, and we will consider certain subsets that may meet in-
finitely many sorts ofM°4. In such cases we adopt the following terminology,
reflecting the greater generality of this situation relativ the usual context of
model theory.

Definition 6.1.1. Let M be a many-sorted structure. A subseof M is lo-
cally definableif its restriction to any sort (equivalently, any finite sdt o
sorts) is definable. In particular, a group is said to be Idgalefinable in
M if its underlying set and its operations are locally defirabWhen the
sorts of M all have finite rank, a locally definable subset is said to have
finite rankif its restrictions to each sort hav@undedank; in this case, the
maximum such rank is called thank of S.

Remark 6.1.2. One sort of pathology should be noted here. Suppose that in
M, dcl(0) meets infinitely many sorts. Létbe a subset of dff)) meeting
each sort in a finite set. Then any group structure whatsoewér is locally
definable.

As in §5.5 we say that a structure has the type amalgamation pyoibert
Proposition 5.1.15 applies.

We have to be unusually careful with our notation for typethimpresence
of a group operation, distinguishitygyab) (i.e.,tp(a-b)) fromtp(a, b); indeed,
the two notions will occur in close proximity.

Lemma 6.1.3. Let M be Ny-categorical of finite rank. Let&G be a locally
definable group inM°®4, and S a definable subset closed under inversion
and generic multiplication: fowr, b in .S independentgb € S. ThenH =
S - S'is the subgroup off generated bys and rk H — S) < rk S.
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Proof. We show first that the product of any three elementsis, az of S lies
in S - S; this shows both that - S is a subgroup of7, and thatS C S - S (take
as = ai’t).

Givenay, as, a3 we takeu € S independent from;, a2, as and of maximal
rank. Letb; = aju andby = u~las. Thenby, by € S. Furthermorebs, as are
independent and thisas € S. Butajasas = by - baas.

It remains to considek(H — S). Letajas € H have rank at leask(S).
Takeu € S of maximal rank independent from, a;. Thenasu belongs taS
and is independent fromy, . Thusb = ajaqu is also inS and

rk(b/u) = rk(araz/u) = rk(aiaz) > rk S

and thus equality holds, andand « are independent. We therefore have
ajaz = bu=t € S. Thustk(H — S) <1k S. ]

Lemma 6.1.4. Let M be N,-categorical of finite rank, with the type amalga-
mation property. LetG be a locally 0-definable group of finite rarikin
M°*%, andS C G the locus of a complete type over @), of rankk. Then
S - S~1 generates a definable subgroupGf

We do not claim tha¥ itself generates a definable subgroup; for example, if
S reduces to a single element then the group in question ialtr®n the other
hand, the statement of the lemma is equivalent to the claamnStlyenerates a
coset of a definable group under the affine group operafiohc.

Proof. Let X = {ab~! : a,b € S;rk(a,b) = 2k}. Note that fora,b € S
independent of rank, rk(a, ab=!) = rk(a,b) = 2k and thus alsa, ab~! are
independent of rank. We claim that the previous lemma appliesXo and
that the groups generated I5y- S—! and by X coincide. In any cas« is
closed under inversion. We show now thtis closed generically under the
operationzb~!, and hence also under multiplication.

Leteci,co € X be independent; = a;b; ' with a;,b; € S, rk(a;,b;) =
2k. We may suppose thét,, b;) is independent fronfaz, b2) and hence that
a1,a2,b1,bs is an independent quadruple. We sekindependent from this
guadruple satisfying

tp(d/c1) = tp(b1/c1); tp(d/c2) = tp(bz/ca).

As S is a complete type oveacl(()) andb; is independent frone;, this is a
type amalgamation problem of the sort that can be solved tylffeeof d now
ensures the solvability of the equations

! g— ! g—
c1 =ayd™; ey =ahd!
1

with @/, a} in S. Thuscic;' = ajal,™". We claim that this forces;c;, !
into S, with o}, af, as witnesses. Sineg < dcl(a,, b;, d), we havea] anda/,
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independent oved. Also rk(al, b;,d) = rk(a;,b;,d) = 3k, soa; ande are
independent. Thus, anda’, are independent. Thusc, ' € X.

Now suppose:r, b € S. Taked € S independent fronu. Thenab=! =
(ad) - (bd)~1 € X - X. ThusS - S~ and X generate the same subgroupli

Lemma 6.1.5. Let M be Xy-categorical of finite rank. Let&G be a locally
definable group infV°4, and S a definable subset generically closed under
the ternary operatiomb~'c (an affine group law). TheSf lies in a coset”
of a definable subgroufi of G, with rk(C' — S) < rk S.

Proof. We considetX = {ab~! : a,b € Sindependent The condition on
S implies thatX is generically closed under multiplication and Lemma 6.1.3
applies, saX generates a definable subgradpwith rk(H — X) < rk X.
We claim thatS lies in a single cosef' of H. Indeed, ifa,b € S andc € S
is independent from, b, thenab=! = (ab~'c)c! € H.
Lastly, we claim thatk(C — S) < rkS. Leta, € S and leth € H be
independent fronu, of maximal rank. Therh € X andh = ab~! with
a, b, a, independent. Theha, = ab~la, € S. ThusHa, liesin S up to a set
of smaller rank. |

Definition 6.1.6. Leth : G; — G2 be a map between groups. Thieiis an
affine homomorphisrif it respects the operationb—!c.

Lemma 6.1.7. Let M be R,-categorical of finite rank. Le&, H be locally
0-definable groups it\°4, S a 0-definable subset ¢f, andh : S — H a
0-definable function.

1. If S is generically closed under the affine group operatidim'c and
h generically respects this operation, thérextends to an affine group
homomorphism with domain the coset of a definable subgrougrgeed
by S (under the affine group operation).

2. If S is generically closed under the operatiah—! and h generically
respects this operation, thénextends to a group homomorphism defined
on the subgroup off generated bys.

Proof. Consider the graph of the maph as a definable subset of the product
groupG x H. ThenT satisfies the hypotheses of Lemma 6.1.5 or Lemma
6.1.3, respectively. Thusin case (1) under the affine groapationl” lies in a
cosetl” of a definable subgroup &f x H, with rk(I' —T") < rk T, and in case

(2)T lies in a definable subgrodpof G' x H, with rk(I' —T") < rkI". Herel’

will again be the graph of a function, as otherwiswill contain a translate of

I disjoint fromT, violating the rank conditionl is of course the graph of the
desired extension df in either case. |

In the next lemma the avoidance (or neutralization) of thg@agical case
referred to at the outset is particularly important.
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Lemma 6.1.8. Let M be N,-categorical of finite rank, with the type amalga-
mation property. Le(G be a locally definable group itM°? of bounded
rank which is abelian, of bounded exponent. Then for any alelénsubset
S of G, the subgroup generated I$yis definable.

Proof. We may take everything (locally) O-definable. We may alsopsise
thatS generates;. Our statement then amounts to the claim thameets only
finitely many sorts ofM®4. The case of rank 0 will play a key role below; in
this case we are considering a finitely generated subgroapl@tally finite
group, so the group in question is finite and hence definable.

Now letk = rk G. ReplacingS by a larger set if necessary we may suppose
S has rankk. Let.S, be the locus of some type of rakloveracl(()) contained
in S. Then under the affine group operatigingenerates a coset of a definable
subgroupH of rankk (Lemma6.1.4). Now work itz / H. S+ H meets afinite
number of sorts, andl > rk(S + H) > rk(S/H) + rk(H) > rk(S/H) + k,
so S/ H is finite and therefore generates a finite subgroup of thdljofiaite
quotientG/H, as noted at the outset. |

We now turn to the notion of the stabilizer of a definableseThough it is
tempting to define this as the groupg€ G such thayS and.S agree modulo
sets of smaller rank, this tends to define the trivial subgrand is therefore
not useful. Note that most of our underlying geometries doimany sense
have “Morley degree” 1, or even finite degree.

Definition 6.1.9. Let M have finite rank( a definable group inMV, and let
D, D' be complete types over &¢), contained inGG, with rk D = rk D’ =
r. Then

1. Stab(D,D')={g e G :tk(DgNnD’) = r}.
2. Stab (D) = Stab (D, D) and StaloD) (the full stabilizer ofD) is the
subgroup ofz generated by StalpD).

Though we claim thaStah (D) is generically closed under multiplication,
it will not in general actually be a subgroup.

Example 6.1.10.Let (V,@) be an infinite dimensional orthogonal space
over a finite field of characteristic 2, with the associatethplectic form
degenerate, with a 1-dimensional radic&l on which@ is nonzero. Let
D ={z #0: Q(x) = 0}. Then Stah(D) = V — (K — (0)) is not a
subgroup.

Lemma 6.1.11.Let M be Xy-categorical of finite rank with the type amal-
gamation property(z a 0-definable group in\i¢4. Let D, D’, and D" be
complete types over &@l) of rankr contained inG. If a € Stak (D, D’)
andb € Stah (D', D") are independent, thesb € Stah, (D, D").
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Proof. rk(Da)ND' = r = rk(D"b=tN D’), so by the corollary to Proposition
5.1.15 we have alstk(Da N D" N D"b~1) = r, and after multiplication on
the right byb we haverk(Dab N D") = r. ]

Lemma 6.1.12. Let M beX,-categorical of finite rank with the type amalga-
mation property(= a 0-definable group itM®4, and D a complete type over
acl(®). Then

Stal{D) = Stak (D) Stab (D);
rk(Stal{ D) — Staky (D)) < rk(Stak (D)).

Proof. Lemmas 6.1.3 and 6.1.11. |

Lemma 6.1.13.Let M beXy-categorical of finite rank with the type amalga-
mation property(z a 0-definable group itM°4, and D a complete type over
acl(®) with rk D = rk G. Then|G : Stal{D)] < .

Proof. It suffices to show thatk Staky (D) = rkG. Leta,b be indepen-
dent elements ob of rankr = rk G andc = a~'b. Thenrk(b,c) = 2r so
rk(b/c) = r, andb € D N Dec. Thusc € Stab D. As ¢ has rank-, we are
done. -

Lemma 6.1.14. Let M beXy-categorical of finite rank with the type amalga-
mation property(s a 0-definable group itM*4, D a 0-definable subset ¢f
with rk D = rk G, and suppose tha¥ has no proper 0-definable subgroup
of finite index. Then there are pairwise independentas, as € D with
ai1a2 = as.

Proof. We may takeD to be the locus of a complete type oxal((})). Then
by the preceding lemma and our hypotheStal{ D) = G. By Lemma 7
rk(D N Stak D) = rkG. Picka; € D N Stak D of rankrk G andas €
Day N D with rk(az/a;) = rkG. Then setiz = azaj . ]

6.2 MODULAR GROUPS

Definition 6.2.1. Two subgroup$i;, H, of a groupG are said to becommen-
surableif their intersection has finite index in each. This is an egieénce
relation. WhenG has finite rank, this is equivalent to(tk,) = rk(Hz) =
rk(H1 N Hg)

Lemma 6.2.2. Let M be Xy-categorical of finite rank and modular. L&t
be a definable group iM, and H; a subgroup defined uniformly from the
parameterd for d varying over a definable séb. Let E(d, d’) hold if and
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only if H; and Hy; are commensurable. Then the relatiéhhas finitely
many equivalence classes.

Proof. Choosed € D of maximal rank,a € G of maximal rank over,
andb in Hza of maximal rank over,d. Let B = acl(b) N acl(d,a). Let
d',a’ be conjugate tel,a overb and independent frond, a overb. Thenb,
d,a, andd’, o’ are independent ove?® by modularity and the choice af, a'.
Thusrk(b/aa’dd") = rk(b/B) = rk(b/ad) andrk(Hgza N Hya') = rk(Hga).
Thereforek(HgNHy ) = rk(Hg), in other wordgE(d, d’) holds. Thusl/E €
B.

Furthermore, asH, N Hy)a’a™! is nonempty,a’a=! lies in HyHy =
XaXa(HqgN Hy ) for setsXy, X4 of coset representatives of the intersection
in Hy, Hy, respectively. Thusk(a'/a, d,d") < rk H; and hencek(a/B) <
rk H;. Now we computek(d/E):

rk(d,a,b) = rk(d)+rk(a)+rk(b/a,d) =rk(a) +rkG +rk Hy
rk(b) + rk(a/b) + rk(d/a,b)
< rkG+rkHy+rk(d/(d/E))

showingrk(d/(d/FE)) = rk(d) andrk((d/FE)) = 0, sod/E € acl((). |

The next proposition, for which we give a purely model théicrargument,
can be proved in greater generality as a purely group theatetement [Sch,
BeLe]. This was drawn to our attention by Frank Wagner, wisdeneralized
the result even further [Wal].

Proposition 6.2.3. Let M beX,-categorical of finite rank with the type amal-
gamation property and modular. Létbe a 0-definable group iM, and H
a definable subgroup. Thdi is commensurable with a group defined over

acl().

Proof. Let H = H, have defining parametdre D, with D a complete type
overacl(). Let E(d,d’) be the equivalence relatiod{;, H, are commen-
surable. As this has finitely many classes dndealizes a unigue type over
acl(®), all groupsH, (d € D) are commensurable.

DefineB = {g € G : Forsomel € D independentfrong, g € H;}. By
the corollary to Proposition 5.1.15,

Forb, by in B independent) b, ! € B.

Thus by Lemma 6.1.3 = (B) is a definable subgroup @f with rk(H —

B) < rkH. Leth € H be an element of maximal rank. Thénc B. Take

d € D independent fronk with h € H,. Thenrk(h) < rk Hy and thus

rk H < rk Hg. On the other hand any element@f; independent fromd is in

B, sork(H N Hy) > rk Hy. This shows thaf{ and H; are commensurable.
|
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Proposition 6.2.4. Let M beR,-categorical of finite rank with the type amal-
gamation property, and modular. L&t be a 0-definable group in. Then
G has a finite normal subgrouly such thatG /N contains an abelian sub-
group of finite index.

Proof. LetZ* = {g € G : [G : C(g)] < oo}. We work mainly inG? =

G x G. Fora € G let H, be the subgroup(z, %) : x € G} of G*. Define
E(a,d’) as follows: H, and H,, are commensurable. This is an equivalence
relation with finitely many classes. Notice thB{a, «’) holds if and only if
Z*a = Z*a': E(a,d’) holds if and only if on a subgrou@; of G of finite
index we haver® = z¢; thatis,G; < C(d’a™1), da™t € Z*.

Thus we have proved that* is of finite index inG and we may replace
G by Z*. Then any element af has finitely many conjugates and thus for
x,y € G, the commutatof, y] is algebraic over. and ovew. In particular for
x,y € G independent, the commutatoar, y| is algebraic ovef). On the other
hand, every commutatdse, y] can be written asz, y'] with 3’ independent
from z, sinceC(z) has finite index inG. ThusN = G is finite, andG/N is
abelian. ]

As this result tends to reduce the study of definable groupkdabelian
case, we will generally restrict our attention to abeliaougs in the sequel,
even when this hypothesis is superfluous.

Lemma 6.2.5. Let M be X,-categorical of finite rank with the type amalga-
mation property, and modular. Let be a 0-definable abelian group i,
and D C A the locus of a complete type over @b, S the stabilizer ofD
in A. Then

1. rkS =rkD.

2. D is contained in a single coset 6f

3. If D' is the locus of another complete type over@tbf the same rank,
and if Sta (D, D') is nonempty, then StabD, D’) agrees with a coset
of S up to sets of smaller rank, and Stdp') = S.

4. If a,b € S are independent with the same type ovel@glthena — b €
Stak (D).

Proof.

Ad 1. We apply the fundamental rank inequality of Propositidn4taking
both 0-definable sets to W&, andG, = D + aq, relative to the equivalence
relationE(a,b): a—b € S. Then for inequivalent elemenisb the intersection
G, N Gy has lower rank, so the fundamental rank inequality 5.5.4ieppnd
yields

rk(4/S) <rk A —rk D, hencek(S) > rk(D).

The opposite inequality is elementary:siie .S has maximal rank and € D
has maximal rank oves, with d+ s € D, thenrk(d + s/d) = rk(s/d) =rk S,
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sork(S) < rk(D). Notice also that + S meetsD in a set of rankk D.

Ad 2. We have seen that some cosetSofmeetsD in a set of rankk D.
There can be only finitely many such cosets, so they liadki@)), and asD
realizes a single type ovecl(f), there is only one such coset, and it contains
D.

Ad 3. According to Lemma 6.1.11, i& € StalfD), b € Stal{D,D’)
are independent, then+ b € StaliD, D’). Thus under the stated hypoth-
esisStal{ D, D’) contains most of a coset &f, up to a set of lower rank.
Conversely ifa,b € Stal{D, D’) are independent then by the same lemma
a—b € S, soStal{D, D’) agrees with a single coset 6f modulo sets of
lower rank. Replacing by —a we find thatStal{ D’, D) agrees with a single
coset ofStal{D’) modulo sets of lower rank and thésand StalfD’) agree
modulo sets of lower rank; as they are groups, they are equal.

Ad4. By (1,2) we haverk SD = rk D = rk Staky D. Thus the corollary to
Proposition 5.1.15 applies. |

Lemma 6.2.6. Let M be R,-categorical of finite rank with the type amalga-
mation property, and modular. Let be a0-definable group inV°4 of rank
n. Then there is a sequence of subgroyps= A, > A;>...0 A, = A
with rk(A;/A;—1)=1, and all A; defined over a¢h).

Proof. We may replaced by a quotient modulo a finite normal subgroup of
a subgroup of a finite index, so we may takeabelian. It suffices then to
find a subgroup of rank 1 defined ovacl(#) as we may factor it out and
proceed inductively. LeD be the locus irA of a complete rank type over an
algebraically closed set. By Lemma 6.2.5 the stabilizebdh A is a rank 1
subgroup. By Proposition 6.2.3 it is commensurable withcugrdefined over
acl(9). |

Lemma 6.2.7. Let M be R,-categorical of finite rank with the type amalga-
mation property,GG, H 0-definable groups ioM°4, D C G the locus of a
complete type over a@d) with rk D = rk G, f : D — H 0-definable, and
suppose that for any independenttriplg as, a3 € D for whicha,a; *az €
D, we havef(aya; "a3) = f(a1)f(az)~ f(as). Thenf extends to a defin-
able affine homomorphism from the cosetimenerated byD, to H.

Proof. Letr = rkG. We first define a functio : Stal{D) — H. Let
S* ={a € StallD) : rk(a) = rk G}. ThenS* C Stah (D).

If a € S* thena = blbgl with b1, by independent elements of ramkin
D. We defineh(a) = h(b1)h(b2)~! and we must check that this is in fact
well defined. Suppose also = bsb,; * with b3, by independent of rank in
D. Take furthems, bg independent and of rank with a = b5b6‘1, such that
rk(bs, bg/abibabsbs) = r. Thenby, ba, bg andbs, by, b are independent triples
with bgby 'by = bgby *bs = bs, S0 applying the affine homomorphism law for
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f and cancellingf (bg), we getf(b1)b(ba)~t = f(b3)f(bs)~! and f is well
defined onS™.

In order to extend: from S* to Stal{ D), we show that part (2) of Lemma
6.1.7 applies. Let, b € S* be independent, and= ab~!. Certainlyc € S*.
We haverk(D N Da) = rk(D N Db) = rk D and thus by the corollary to
Proposition 5.1.18k(D N Da N Db) = r. Taked; € D N Da N Db of rankr
overa,b, and setly = dia~!, d3 = dib~ . Thusa = dy'dy, b=d3'dy, c =
dy *dsz, with pairs of independent elements of rankThe resulting formulas
h(a) = f(d2)~1f(d1) and so forth combine to give(c) = h(a)h(b)~!, as
required. Thus we may now taketo be a homomorphism frofi = Stal{ D)
to H.

D is contained in a single left cosét of S. Forb € D we define a map
fo: C — Hby f(x) = f(b)h(b~1x). This is an affine homomorphism from
C — H which agrees witlf on elements oD independent fronh, using the
basic property off and the definition of. Our final point will be thatf, is
independent of € D and therefore gives the desired extensférof f to C.

To see thaf, does not depend dnit suffices to prove, = fi forb, b’ € D
independent. For any € C we haveh(b=1c)h(b' '¢)™! = h(b~1) =
fO71) f(b') and thusfy(c) = fi (c). i

Lemma 6.2.8. Let M be Ry-categorical of finite rank with the type amalga-
mation property and modular. Let;, A; be 0-definable abelian groups in
Me®4, Suppose that any a@l)-definable subgroup of; x A, is 0-definable,
and that ac{)) N 4; = (0). LetC be a finite set with a¢C' N A;) C C,
and letas € A5 have maximal rank ovef'’. Then

1. acl(az, C) N A; C dcl(az, acl(C));
2. If no proper definable subgroup of; of finite index is definable over
acl(), then aclas, C) N Ay = [dcl(az) N A1] + [C N A4].

Proof. Letay € acl(az, C) N A;. Let D be the locus ofaq, az) overacl(C),
andS = Stal{D) in A; x A,. By Proposition 6.2.3, the groupis commen-
surable with a groups’ defined overcl()); by hypothesisS’ is 0-definable.

By Lemma 6.2.6D is contained in a coset ¢f, and hence in a finite union
of cosets of5 N S’; asD is the locus of a complete type over an algebraically
closed setD is contained in a single coséf of S N S’. In particularS C
D — D C S ThusX is a coset of5’.

Now SN[A; x (0)] is finite, sincex; is algebraic ovediy, C. ThusS'N[A; x
(0)] is finite, and sincecl(¢)) N 4; = (0), we conclude tha$’ N [4; x (0)] =
0. Letms : Ay x A2 — A, be the projection. Thus’ = SN S’ is the
graph of a homomorphism from, S’ to A; and X is the graph of an affine
homomorphismf : mX — A;. As X is definable overcl(C), f(a2) €
dcl(az, acl(C)). This proves the first claim. Under the hypothesi$df S’ is
the domain of a homomorphism: A, — A; andf — his a constant € A,
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soa € acl(C)NA; = CN Ay anda; = h(az)+a € [dcl(az) N A1)+ [CN A
as claimed. ]

Remark 6.2.9. With the above hypotheses and notation, the same result can
be proved, with the same proof, for the affine space@ver A, assuming
acl(C)nS; =dcl(C) N S;.

Proposition 6.2.10. Let M beX,-categorical of finite rank with the type amal-
gamation property, and modular. Let be a 0-definable rank 1 abelian
group in M®4, Assume that a@f) N A = (0) and thatA has no proper
acl(p)-definable subgroup of finite index. Then there is a finite fleklich
that A has a definable vector space structure o¥&for which linear de-
pendence coincides with algebraic dependence.

Proof. Let F' be the ring ofacl(f)-definable endomorphisms ¢f. Our as-
sumptions o4 imply that F' is a division ring and by,-categoricity ofM,
F is finite; thus it is a finite field. Takd now as a vector space ovEt

We show by induction om that anyn algebraically dependent elements
ai,...,a, of A will be linearly dependent. For the inductive step, suppose
thatas, ..., a,+1 are algebraically dependentamd . . ., a,, are algebraically
independent. Thug = a,,4+1 € acl(ay,...,a,) and we wish to expressas
an F-linear combination ofi1, ..., a,. Let D be the locus ofas,...,a,,a)
overacl($), andS its stabilizer. We havek S = rk D = n x rk A = n, with
D contained in a coset &f. LetT" be the projection of onto the first: coor-
dinates. As the projection dd to these coordinates contaifis, . . . ,a,) and
is contained in a coset @f, rk T' = n. Therefore the kernel of this projection
has rank 0 and is finite, arifl has finite index inA™. By our hypotheses on
A, the kernel is trivial and” = A™ (consider the intersection @f with the
standard copies of in A™). In other wordsS is the graph of a homomorphism
h:A" = A i.e h = (a,...,a,) with a; : A — A definable overcl().
We claim naturally that, = Y «;a; with «; € F.

As D is contained in a coset &, for (x1,...,z,,y) and(z),...,z.,y)
inD,wegety —y' = h(x—x") = aj(z; —)) and thugy — > . oz is a
constant orD, belonging teacl(#) N A = (0). This proves our claim. |

Lemma 6.2.11.Let M be Lie coordinatized, and an infinite abelian group
interpreted in M without parameters. Suppose thathas no nontrivial
acl(f)-definable proper subgroup, and that gl = dcl(#). ThenA is part
of a basic linear geometry in.

Proof. By the previous propositiod has a vector space structure over a finite
field F' such that algebraic dependence coincides fithnear dependence.
Let P be the corresponding projective space. Tiaa nonorthogonal to some
acl()-definable projective Lie geomety.J, and there is then a 0-definable
bijection between these geometries. Taking a covevidf necessaryP.J will
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be the projectivization of a basic linear geomeiryBy Lemma 2.4.7 there is
a 0-definable isomorphism of with .J, so A is a basic linear geometry. 1

6.3 DUALITY

We will be dealing with groups definable in weakly Lie cooralized struc-
tures below. As we make some use of envelopes, we observeythamma
6.2.6 any such group is nonmultidimensional in the senggtthias in a part
of the structure which is coordinatized by a finite number & fjeometries,
each defined oveacl((}). (More precisely: first adjust the base language tem-
porarily so that the group in question is viewed as defined ac().) In
particular, only a finite number of quadratic geometriesiavelved, and after
naming the Witt classes by introducing finitely many algébparameters, we
may work in a Lie coordinatized structure. This being theecéissuffices to
state the results in the Lie coordinatized setting; thew dqeply in the weakly
Lie coordinatized setting as well.

Definition 6.3.1. If M is a structure, andd a group of prime exponeptinter-
preted inM, thenA* denotes the group o¥1°4-definable homomorphisms
from A to a cyclic group of ordep (equivalently the set of definabielinear
maps fromA to the fieldF" of orderp).

Note that the elements of* are almost determined by their kernels, which
are definable subgroups df However, we do not necessarily hadé C A,
for example, A may be one side of a polar geometry.

The reader should bear in mind that the abelian grouip$this section are
not intended to be reminiscent of affine geometries.

Proposition 6.3.2. Let M be a Lie coordinatized structure a 0-definable
group in M*4 of prime exponent. ThenA* and the evaluation mag x
A* — F, are 0-definable in\°%. If A has no nontrivial proper O-definable
subgroups, then eithed* = (0) or the pairingA x A* — F, is a perfect
pairing (the annihilator of each factor in the other is tral).

Proof. A* is a locally definable group. Arrange the sorts/of*? in some
order and letD,, be the definable subset df* consisting of elements which
lie in the firstn sorts.

Our first claim is thatk A* is finite, bounded byk A. Fix a definable subset
D of A*, and suppose&k D > rk A. We apply Proposition 5.2.2 concerning
the sizes of envelopes. Accordingly, the number of elemeini is a polyno-
mial of degree rk D in the variables used there, and similarly for Taking
envelopes of large and constant dimension, we deducéthdf eventually is
larger thamAN E, while (again for large enough envelopésh E C (ANE)*;
this is a contradiction.
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We apply Lemma 6.1.8 and deduce that for arilie subgroup!’ generated
by D,, is 0-definable. Letk,, be the annihilator ird of A} . The decreasing
chain K, of 0-definable groups must stabilize wilti, = K constant from
some point on. We may factor o&f and suppos&” = (0) (note in passing
that the last part of the proposition will be covered by thguanent from this
point on).

After these preliminaries we see thatx A — F'is a perfect pairing for
all largen. Therefore, withn, n’ fixed, looking at the same situation in large
finite envelopes, we find that; N E = A}, in such envelopes. Thu$; is
independent of, for n large, andA}, = A*. ]

We note that one can form a structure consisting of alseind a vector
spacel/, with a generic interaction ab with V' in which the elements ob
act linearly onV. The foregoing proposition will fail for this structure, veh
is not Lie coordinatizable.

We now mention a variation of somewhat greater generality:

Lemma 6.3.3. Let M be a Lie coordinatized structurg, a 0-definable group
in M®4 of finite exponent, and A* the definablé /pZ-dual of A. ThenA*
and the pairingA x A* — Z/nZ are interpretable inM. Furthermore, any
definable subgroug of A of finite index is an intersection of the kernels of
elements ofA*.

Proof. The definability ofA* is just as before. For the final statement, since
A/ B has exponent dividing, it is perfectly paired with itZ/nZ dual. ]

Lemma 6.3.4. Let M be a Lie coordinatized structure}, a 0-definable vector
space inM*1 relative to a finite field<” of characteristicp. Let A* be the
definableZ/pZ-dual of A, and Tr the trace froni to the prime field. Then
A* can also be given & -space structure, and there is then a definakile
bilinear mapy : A x A* — K such that Tiu(a, f) = f(a) for (a, f) €
A x A*. This pairing makest* the full definablel -linear dual of A.

Proof. Let A’ be the space of all definabl€-linear maps of4 to K. Let
Tr : A’ — A* be defined byTr(f)(a) = Tr(f(a)). If Tr(f) = 0 then for
a € Aanda € K we haveTr(af(a)) = Tr(f)(aa) = 0, and thusf(a) = 0
by the nondegeneracy of the bilinear fofi(zy). ThusTr embedsA’ into
A*. Conversely, ifg € A* then fora € A the linear mapy, : K — F
defined byg, () = g(aa) must have the forrir(y,a) = g(aa) for a unique
Yo € K. Letting f(a) = 7, we getTr(f) = g, and f is K-linear since
flaBa) = Tr(By.«). ThusTr identifies theK -linear dual with theF-linear
dual. Letu be the transport tel* of the natural pairing ol x A’. ]

Definition 6.3.5. Let M be a structure of finite rank4 a group interpretable
in M without parameters.
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1. Let S, T be definable sets. We write C* T'if rk(S — T') < rkS. For
corresponding definable formulasT we use the notation —* .

2. If Bis a subgroup ofA*, anda € A, then gtfja/B) denotes the atomic
type ofa over B in the language containing only the bilinear majpx
A* — Z/nZ, withn the exact exponent of.

3. The groupA is settledif for every algebraically closed parameter sgt
anda € A of maximal rank ove€, we have tfa) Ugtp(a/A*NC) =*

tp(a/C).
4. The groupA is 2-aryif for any algebraically closed parameter setand
any setb = by,...,b, in A of elements which are independent ogér

of maximal rank, we have
Jte(b:/C) u| Jtp(bib;/ aclp) =" tp(b/C).
i i
Our primary objective in the long run is to show that everyugrbecomes
both settled and 2-ary after introducing finitely many canss. The linear part

of a quadratic geometry is an example of an unsettled group.
We close this section with a few miscellaneous lemmas.

Lemma 6.3.6. Let M be a Lie coordinatizable structure amtl B groups 0-
definably interpreted infV with no proper 0-definable subgroups of finite
index. Suppose thad is settled. Ifa, b, ¢ are independent, with € A and
b € B of maximal rank, then

tp(b/a,acl(®)) Utp(b/ acl(c)) =" tp(b/a, c).
Proof. As B is settled, taking” = acl(a, ¢) we get
tp(b/ acl(P)) U gtp(b/ acl(a, c) N B*) =" tp(b/a, c).
We will check that
(%) tp(b/a, acl(®)) U tp(b/ acl(c)) = gtp(b/ acl(a, c) N B*)

Letd € acl(a,c) N B*. We will apply Lemma 6.2.8 with:A; = B*;
As = A; C = {c} UJacl(c) N B*]; az = a. To do so, we must work over
acl(0), noting that there are racl(())-definable proper subgroups dfor B of
finite index, and thus, in particulaacl(p) N B* = (0). Thus by Lemma 6.2.8,

d =d, + d. with d, € dcl(a,acl(§))) n B* andd,. € acl(c) N B*.
Thus(x) holds. |

Lemma 6.3.7.Let M be a Lie coordinatizable structure and suppose that
A; (1 < i < n)is a family of groupsD-definable inM®4, each hav-
ing no 0-definable subgroups of finite index, and all but the firstlseit
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Let C be algebraically closed and let;, b; € A; have maximal rank with
ay,bi,...,an,b, independentovef'. If tp(a;/C) = tp(b;/C) for all i and
tp(ai, a;/ acl(®)) = tp(b;, b;/ acl(®)) for all 4, j, then tfa/C) = tp(b/C).

Proof. We proceed inductively. Thus we may suppose
tp(al, - ,an_l/C) = tp(bl, . ,bn_l/C)

and even that; = b; fori < n. LetA = A; x --- x A,_; and apply the
previous lemma to the pa#, B,. ]

Corollary 6.3.8. Let M be a Lie coordinatizable structure antla 0-definable
settled group inM°? such that adld) N A* = (0). ThenA is 2-ary.

Note that the property that is 2-ary will persist over a larger set of param-
eters, though the hypothesis will not necessarily persist.

Lemma 6.3.9. Let M be a Lie coordinatizable structurel and B 0-definable
groups of exponent with no 0-definable subgroups of finite index. Let
D C (A x B) be a type over a¢f) of maximal rank. Then the following
are equivalent:

1. For (a,b) € D, alies in everyb-definable subgroup of of finite index.
1 For (a,b) € D, b lies in everyu-definable subgroup of of finite index.
2. For (a,b) € D, there areay, as, ag in A with a; + a2 = a3, all realizing
tp(a/ acl(b)), and withay, as, b independent.
3. There areuy, as, asz in Aandb € B suchtha{a;,b) € D, witha;+as =
as, and
tp(azb/ acl(®)) = tp(asb/ acl(®)).
4. Every ac()-definable bilinear mapl x B — Z/nZ vanishes orD.

Proof. (1) implies (2): Let(a,b) € D, and letA® be the smallesi-definable
subgroup ofA of finite index. Thena € A’. Let D’ be the locus ol
overacl(b). Working overacl(b), Lemma 6.1.4 applies. Thus the stabilizer
Stal{ D') is ab-definable subgroup o’ of finite index, andStalf D’) = A°.
Let a3 = a. Asrk[StalfD’) — Stab(D’)] < rk Ab, we can finday €
D’ n Stak (D’) independent fromas, b, and leta; = a3 — as.

Evidently(3) is a weakening of2). We show next thaf3) implies(4). Let
f: Ax B — Z/nZ beZ-bilinear and algebraic overcl(d). As D represents
a complete type oveacl(}), f is constant onD; let the value be:. Then
flaz,b) = f(as,b) = f(a1,b) + f(az,b) sou = f(a1,b) = 0.

Since condition(4) is symmetric inA and B it suffices now to show that
(4) implies (1). Assume conditior{1) fails: (a,b) € D, H is ab-definable
subgroup of4 of finite index, andz ¢ H. Fix f € A* vanishing onH with
f(a) # 0. Note thatf € acl(b). Let D* be the locus of f, b) overacl((}), and
S the stabilizer ofD* in A* x A. As f is algebraic oveb, S N [A* x (0)] is
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finite, and thus lies imcl()) N A* = (0) by the condition omA. Furthermore
rk S = rk B, and thusS projects ontaB and is the graph of a homomorphism
h: B — A*. D* liesin the coseb + (f,b) = S + (f — h(b),0). Now the
representativg — h(b) € acl(@) N A* = (0) so f = h(b). Define(z,y) =
[h(y)](x); then(a,b) = f(a) # 0. Thus(4) fails. |

6.4 RANK AND MEASURE

We can attempt to construct a measure on subsets of a grbypaking cosets
of a subgroup of index to have measurg/n. Thus we may assign to a sgt
the infimum of the sum3_, 1/n, corresponding to coverings 6f by finitely
many such cosets. Our objective here is to show that the ‘tmearo” sets
are those of less than full rank.

Lemma 6.4.1. Let M be a Lie coordinatizable structure andl an abelian
group of exponent, 0-definably interpretable M. Let D be a 0-definable
subset ofA of full rank, andaj,...,a; € A* independent generics. Let
ai, ..., o, be elements of the prime field. Then{d € D : (d,a}) = o}
has full rank.

Proof. By induction and the addition of parameters this reduceféocase
n = 1. If this fails, then fora, = a,, a generic element ol*, the complement
D' of D contains a coset, - of ker(a*), modulo a set of smaller rank. We will
argue thatk D < rk A.

Fix m, andlet, ..., b, be independent conjugatesast We will consider
the cardinality ofD and of other definable sets in large envelopesf M. We
have|C,-| = ¢ '|A| for some fixedg. Theb; are linearly independent in
A*,s0bq,...,b, mapsA onto F," and theC), are statistically independent.
Thus the complement ¢f), C,, has cardinality1 — ¢—!)™|A|. Now C,,, N D
has rank less thark A, so in the limit|C,, N D|/|A| — 0 by Lemma 5.2.6.
Thuslimsupg |D|/|A] < (1 — ¢~1)™; varyingm, limg |D|/|A] = 0 and
rk D < rk AbylLemmab.2.6. ]

Lemma 6.4.2. Let M be Lie coordinatizable, left be an abelian group inter-
preted inM, and letD C A be definable with rlO = rk A. Then finitely
many translates ab coverA. More specifically, ifD is c-definable then one
may findb = (b1,...,b,) in Awith A = |J,(D + b;) andb independent
frome.

Proof. We may suppose that is 0-definable, and we proceed by induction on
the maximal length of a chain afl(@)-definable subgroups of.

We claim first that the result holds whehis part of a basic linear geometry
for M. We leave this essentially to the reader, but as an examydppseA is



RANK AND MEASURE 125

an orthogonal space with quadratic fo@randD = {z # 0 : Q(x) = 0}. Let
V < A be nondegenerate of dimensienThen we claimD + V' = A. Take
v € A, and choose so that(v, w) is nondegenerate. Théf = (v,w)t NV
is a nhondegenerate subspace of dimension at kasot containingu, and
Q(v) = Q(u) for some nonzera € V,,. Thenv — u € D.

Now suppose thatl has a nontrivialacl(f)-definable finite subgroups.
ThenD = (D + B)/B has full rank inA/B and induction applies td,
A/B. As B is finite this yields the claim im.

Assume now thatl has no nontriviahcl((})-definable finite subgroup, and
is not part of a basic linear geometry. There isali))-definable subgroug;
of A which is part of a stably embedded basic linear geometrdfofLemma
6.2.11). LetD be c-definable of full rank inA. Pickb € A of maximal rank
overc such thatfb + A;] N D is infinite. ThenD — b meetsA; in an infinite
set and thus there is a finite sub$eiC A; such thatd; € '+ D — b, and
we may take the elements 6fto be independent froi c. Let B be the locus
of b over F U {c}. ThenB has fullrank and fob/ € B, Ay C F+ D - V.
Now by induction inA/A;, for some finite sef”, F’ + B + A; coversA. We
claimthatF' + F' + D = A.

Leta € A. Thenforsomé’ ¢ B,wehavea € F/ +b + A1 C F' +b +
(F+D-V)=F+ F + D, as claimed. |

Lemma 6.4.3. Let M be Lie coordinatizable, lefl be an abelian group in-
terpreted O-definably itM, and supposel has no proper 0-definable sub-
groups of finite index. Let; : A — B, fori = 1,2 be definable homomor-
phisms onto finit®-definable group$B:, B, and leth = (hy,hs) : A —
By x By be the induced map. If;, ho are independent thefnis surjective.

Proof. Let the range oh be C < B; x By and letC; = C N [By x (0)],

Cy = CNJ(0) x Bg]. C can be interpreted as the graph of an isomorphism
betweenB; /Cy andBy/Cs. Letg; : A — B;/C; be the map induced by;.
Theng; € acl(h;) andg; andg- differ only by an automorphism of the range.
Thusg; € acl(hi) Nacl(hy) = acl(0) and thus by assumptioB; = C,

By = Co, andh is surjective. ]

Lemma 6.4.4. Let M be Lie coordinatizable, lefl be an abelian group in-
terpreted 0-definably ioM, let A° be the smallesi-definable subgroup of
finite index, and letD C A be 0-definable with ri©0 = rk A. Assume that
D lies in a single coset of A and leth : A — B be a definable homo-
morphism into a finite grou. Then for any € h[C], D meetsh1[b] in
a set of full rank.

Proof. If & is algebraic ovefl thenh is constant orC' and there is nothing to
prove. Suppose, therefore, tha acl().



126 DEFINABLE GROUPS

Using the previous lemma, the proof of Lemma 6.4.1 can beatep€for the
casen = 1), using independent conjugates/of Alternatively, the following
argument can be given which does not make use of finite appaiiins but
again makes use of an infinite family of independent congmgyath.

Letv(h) = vp(h) = |{c € h[C] : DN h~ ] has full rank}|/|h[C]].
We claimv(h) = 1. Forh’ = (hq,hs) induced by two homomorphisms,
if h'""[(c1,¢2)] N D has full rank, then the same applies/tp![¢;] and thus
by the previous lemma, if; andhs are independent then we geth’) <
v(h1)v(hs). Thusifv(h) < 1, then by taking enough independent conjugates
h; of h we can construct a homomorphighwith finite image for which/( f)
is arbitrarily small. But a finite numbern of translatesD + a; coverC, and
VD = Vp4, fOr each translate. Hende= ve(f) < myp(f), and we have a
lower bound orvp, a contradiction. |

Lemma 6.4.5. Let M be Lie coordinatizable, lef be an abelian group in-
terpreted O-definably ioM, and letD be the locus of a complete type over
acl(0) of maximal rank. Then there are independent’ € D such that
a — d' lies in everya-definable subgroup o of finite index.

Proof. Takea € D. Let A® be the smallest-definable subgroup oft of
finite index. We consider the canonical homomorphismA — A/A%. The
previous lemma applies and shows that + a) N D has full rank. It suffices
to takea’ in the intersection, of maximal rank. |

6.5 THE SEMI-DUAL COVER

It is remarkable that duality can be used to reduce many &spéthe treat-
ment of affine covers to the treatment of finite covers. (Afioeers are covers
with affine fibers in the sense 6#.5, corresponding, for us, to stages in a Lie
coordinatization in which affine geometries are involved.)

Suppose that : N/ — A is a cover with affine fiber&/, = 7—1[a], affine
over A. (Some might prefer to call “V” here, but as in the previous section
we tend to call our abelian groupsfor the present.) Then the affine dusf
is a finite cover of the linear dual*. Let A'* be the corresponding cover; then
it seems thatV™* should contain the same information/&s We show below
that a group structure oV corresponds to what we call a “bilinear group
structure” on\*. This approach will lead to our sharpest result on groups,
the “finite basis theorem” for definability in definable greuiCf. the work of
Ahlbrandt and Ziegler in [AZ2].

On the other hand, this method does not appear to apply tietkicovers,
as a cover of\ does not appear to correspond to a coveldf and thus the
use of affine covers cannot be eliminated systematically.
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Definition 6.5.1. Let A;, A5 be abelian groups. Ailinear coverof A;, As is
a surjective mapr = (m,m) : L — A; x Ay, whereL is a structure
with two partial binary operationg,, ¢» : L x L — L, with the following
properties:

BL1. ¢; is defined onu,ea,[7; *[a] x 7; ' [a]], and gives an abelian group
operation on each subsé{a] = 7; ' [a].

BL2. Fori,i’ = 1,2 in either order,r; is a group homomorphism on each
group(Llal; ¢;) fora € A;.

BL3. Givenelements;; € A, fori =1,2,j = 1,2,andc;; € 7~ (a1;, asj),
we have

QQ((J1 (0117 012), Q1(C21, 022)) =q1 (QQ(CH, 021)7 Q2(0127 022))-

In (BL3), note that the result of the calculation on eitheesiies inr ! (a11+
a1z, a1 + as2).

Such covers will normally occur interpreted within sophé®?, in which
caseL and all the associated structure is taken to be interpeetat1. Gen-
erally, ¢; andg, will be given the more suggestive notations™ +2,” or just
“4 if no ambiguity results. The same applies to iterated sjmis 37, or
>°. We will also write L(ay, as) for 7=![(a1, az)].

Lemma6.5.2.Let7w : L — A; x Ay be a bilinear cover relative to the
operationsg; andgs. Then:

1. ¢1 andg, agree onL(0, 0).
Let this group be denotgdi, +).

2. If 01,04 are the identity elements of; and A, respectively, then there
are canonical identificationg (01) ~ A x Ay andL(03) ~ A; x A.

3. EachsefL(a1, az2) is naturally an affine space ovéx0, az) andL (a4, 0),
giving two A-affine structures ot (a1, a2) which coincide.

Proof.

Ad1. LetA = L(0,0) as a set. Let;, es be thed-element of4 with respect
to g1 andg, respectively. With alk;; equal to0 (in A; or A, as the case may
be) and withe;; equal toe; in (BL3), and setting’ = ¢2(e1, e1), condition
(BL3) can be written ag’ = ¢1(¢’, ¢’). Hence we havesz(ei,e1) = €’ = ey,
and this implies:; = es.

Then withcio, = co1 = €1 we getgs = ¢1 on A. We note in passing that
with ¢17 = c29 = e; we would also get the commutative law (or laws) 4n
which in any case we have assumed.

Ad 2. We now consider the structure 5{0,). By (BL2) we have

g2[L(a1,a2), L(a},a2)] € L(ay + a, az)]

and, in particular,L(01, a2) is a subgroup ofL(az) for a; € A,. Letits
identity element be denotedaz). We will show thatz : A, — L(0;) is a
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homomorphism. Let, o’ € Ay and letz = ¢1(z(a), z(a’)). Applying (BL3),
we getgs(z, 2) = q1(g2(2(a), 2(a)), g2(2(a’), 2(a))) = a1 (2(a), 2(a’)) = 2
and thusz = z(a + a’). Thusz is a homomorphism. By definitionsz is
the identity and as the kernel af, on L(0,) is the groupA, we get a direct
product decompositiof.(01), 1) ~ A2 x A. This identification respects;;
thatis, L(01, a) corresponds t¢az) x A with g2 acting onL(01, a) as onA.

A similar analysis applies on the other side.

Ad 3. According to (BL2) undergz L(0,a2) acts onL(ay,as) for any
a1 € Aj, making the latter an affine space over the former. After iden
tifying A with L(04,a2) and L(a1,02) we get two affine actions ofi on
L(ay,a2). These can be compared as follows. ket A, y € L(ay,a2),
and letz; be the identity element df(a;), 22 the identity element of (as).
The identification ofA with L(01, a2) takesx to ¢1 (z, 22); the other identifi-
cation takes: to ¢2(x, z1). For the action ofd via L(01, a2) on L(a1, az) we
getgz(qi(z, 22),y) = q2(q1(@, 22),q1(21,9)) = qi(a2(z, 21),q2(22,9)) =
q1(q2(z, z1),y), which is the action ofd via L(ay, 02). |

Lemma 6.5.3. Let L be a bilinear cover ofd; x A,. Leta; € A;, a;- € As,
and letz;; € L(a;, a}), r;, s; integer coefficients. TheEf 7 Z; $jTi; =
Z; S5 Zf riz;; and, in particular, ifr; = s; = 1 then the order of summa-
tion can be reversed.

Proof. We first deal with the case in which = s; = 1, proceeding by
induction on the numbers, n of indicesi and; respectively, beginning with
m = n = 2, which is (BL3). Casdm,n + 1) is easily derived from cases
(m,n) and(m, 2) as in the usual proofs of basic properties of sums, and case
(m + 1,n) follows similarly from (m,n) and (2, 2), so from the basic case
m = 2, n = 2 we can first get casen, 2) for anym and then(m, n) for any
m,n.

The general case of integer coefficients follows by simplyagding out the
definitions from the case of coefficientd. So consider now the case in which
ther; are+1, but keep thes; = 1. Splitting the sef’ of indices: into I and
I~ according to the sign of;, our claim is

2 1 9 2 1 1 2
E E Lij - E E Lij = E E TiZij-
I+ J I— 7 7 A

Moving the negative term from left to right and applying thesjive case
twice, with a little care, the claim falls out. The caserpfs; = +1 then
follows by repeating the argument. ]

Lemma 6.5.4. Let M be a structure, and

0—-A; -—B— A4, —0
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be an exact sequence of abelian groups with A> of prime exponeng,
and assume this sequence is interpretedvin For a € A, let B, be the
preimage inB of a, a coset ofd;, and letB; be the set of definable affine
homomorphisms fronB, to the fieldF' of p elements. Lel. = {(a, f) :

a € Ag, f € BX}, takem; : L — Ay natural, and letry : L — A7 be
defined byrs f € A7 the linear map associated fhi.e. f(z+y) — f(y) as

a function ofz. ThenL is a cover ofd; x A with respect to the operations
q1, g2 described as follows. The operatignacts by addition in the second
coordinate. The operatiog, also acts by addition but in a somewhat more
delicate sense: ifrz(a, f) = m(a’, f') thenf and f are affine translates
of the same linear may,, and we set((a, f), (¢, f')) = (a+d', f+ f)
wheref + f is the functiory on B, defined by (b+b') = f(b) + f'(b')
forbe B,, bV € B,.

Proof. One checks in the first place that is well defined: fora; € Ay,

Fo+a) + F/O —ar) = F(0) + folar) + f'(V) — folar) = £(B) + (V).
The verification of the axioms is straightforward. Axiom (BLconcerns

the situatiorn, a’ € As, f1, fo € B, f1, f3 € B%, f1 andf; induce the same

linear map, and| and f} induce the same linear map. The result of applying

the appropriate combinations@f andg: in either orderiga+a’, (f1 + f2) +

(f1 + £3)) with the sum on the right involving,, . .- = B, + Ba:. |

The cover associated to an exact sequence as describedvelthdpeecalled
a semi-dualcover since it involves two groups, one of which is a dual grou
Notice that the “structure groupl:(0,0) for the semi-dual cover associated
with such an exact sequence is the set of constant mapsAxotm ', which
we identify with F'. If M is Lie coordinatized then the cover obtained is
definable since the dual group is definable.

Now we present a construction in the reverse direction.

Lemma 6.5.5. Let M be a structureA; and A, abelian groups interpreted in
M, and L a bilinear cover ofA; x A, interpreted inM. SetF’ = L(0,0),
and letB be the set

{(a, f): a € Az, f: L(a) — F definable,
f is the identity on(a, 0) identified withLZ(0,0)}.

ThenB is a group with respect to the operatign, f) + (a’, f') = (a +
a, ") with f"(g2(x,2")) = f(x) + f(') forz € L(a), 2’ € L(a’) and
ma(x) = me(a’), and there is an exact sequence

0 — Hom(A4;,F) - B — A2 — 0
where Hom is the group of definable homomorphisms.

Proof. Wherever one sees an expressjofr, =) it should be assumed that
ma(z) = mo(a’), both in the above and in the proof following.
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We check first that the operation on B is well defined. Letr,y € L(a),
',y € L(a'), with ga(z, 2") = ¢2(y,y"). We may writey = ¢1(x, @), v’ =
@1(y, B), with « € L(a,0), 8 € L(a’,0) (ora, 5 € L(0,0) after appropriate
identifications). The relations(z, 2') = ¢2(y,y’) after application of (BL3)
becomesy; (o, 3) = 0 ora+ B = 0in L(0,0). Thusf(y) + f'(y') =
f@)+a+ f'(2')+ 8 = f(x) + f'(«') as needed.

The operationt is clearly commutative and associative, and one can easily
construct inverses. Thus we have a grdsipand a projection fronB to A,.
The kernel is{(0, f) : 0 € Ay, f : L(0) — F, f is the identity onF'}. But
L(0) can be identified withd; x F' and thus this kernel can be identified with
the definable homomorphism grotfom(A;, F). ]

Definition 6.5.6. An abelian groupA of prime exponent interpreted in a Lie
coordinatized structure will be callegflexiveif the natural mapAd — A**
is an isomorphism.

Lemma 6.5.7. Let M be a Lie coordinatizable structure} an abelian group
interpreted inM. Then the following are equivalent:

1. Ais reflexive.
2. The natural mapd — A** is injective.
3. Ais definably isomorphic to a dual group*.

Proof. (2) implies (1): As in the proof of Proposition 6.3.2, usifiigjite ap-
proximations to compare cardinalities, we gét*| < |A*| < |A].
Evidently (3) implies (2) and (1) implies (3). ]

Lemma 6.5.8. Let M be a Lie coordinatized structure, andl;, A, abelian
groups interpreted inM of prime exponenp, with A; reflexive. LetF
be the field of ordep. Then there is a natural correspondence between
interpretable exact sequences— A; — B — A; — 0 and definable
bilinear coversL of A; x Aj with structure group(0,0) = F, up to the
natural notions of isomorphism.

Proof. This is largely contained in Lemmas 6.5.4 and 6.5.5, bgdarimmind
that the groupsi;, A, of Lemma 6.5.5 arel} and As in our present notation.
It is also necessary to trace through the claim that theseebm@spondences
reverse one another up to canonical isomorphism, a pointhwiie leave to
the reader. ]

The next proposition (after a preparatory lemma) statesngisdly that de-
finable sections of bilinear covers are locally affinelyrmiar, uniformly in a
parameter: on a complete type, they respect the bilineactstie, up to trans-
lation. It would be interesting to get a global analysis. Pheof requires that
one of the groups be settled, a hypothesis which will evdiytbe seen to
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hold generally over an appropriate set of parameters; leyttbof of the latter
result requires the present one.

Notation 6.5.9
l.ForD C Ax B,s: Ax B — C,anda € A, we write D, for
{be€ B:(a,b) € D} ands, : D, — C for the map induced by.
2. For A anXg-categorical groupg¢ a parameter or finite set of parameters,
let A¢ be the smallest-definable subgroup od of finite index. This will be
called theprincipal componentf A overc.

Notice the law
(A1 x Ag)® = Af x A§

and hencg A™)° = (A°)".

Lemma 6.5.10.Let M be Lie coordinatizabled and B abelian groups and
7 : L — A x B a bilinear cover, all 0-definably interpreted i, with
structure groupF = L(0,0). Letf : A’ — A be a generically sur-
jective O-definable mapp) C A’ x B the locus of a complete type over
acl(@) of maximal rank, and : D — L a 0-definable section relative tf
i.e.s(a’,b) € L(fa’,b) onD. Assume
1. The groupB is settled.

2. A and B have no 0-definable proper subgroups of finite index.

3. aclld’) N B* =dcl(a’) N B*fora’ € A'.

4. For (a/,b) € D, blies in B, the principal component d8 overa’.
Then for anya’ € A’, the maps,. : D, — L(fd’) is affine; that is, it is

induced by an affine map.

Proof. We may work oveacl(f)). As B is settled it follows from(3) that D,
is the locus of a complete type owvaxl(a’).
Let D* be

{(a’,b1,ba,b3,b4) : the first four coordinates are independent,
all (a/,b;) liein D, andby = by — by + bs}.

By Lemma 6.2.7 it suffices to check the relation
s(a’,by) = s(a’,b1) — s(a’,bay) + s(a’, b3)

onD*.
Fix (a’, b1, b2, bs,bs) in D*. We claim that there are elements a5, a5 in
A’ such that
(i) fas = fai + faj;
(i) tp(ajabasb;) does notdependan=1,...,4;
(i) tp(a},b) =tp(a’,b)fori=1,2,3.
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Granted this, we may complete the computation as followst oSe=

1 . 2 .
> (=1)s(al,b;), andB; = > " (~1)'s(a},b;). By Lemma 6.5.3 we have
J

2

Z (—1)iai = Zl(—l)jﬁj. As Z(—l)jbj =0,q; € L(ai,OB). Let

i j j
6 : L(0g) — A x F be the canonical isomorphismi{z) = (a, f2(z)) for
x € L(a,0p). Since we are working ovexcl(d), 65 : L(a,0,) — F is con-
stant on they;, by condition (iii). Sefe = 62(a;). Thus

0, <22(1)iai> — (0, —a).

%

Similarly, 3; € L(04,b;) and under the isomorphisgh: L(04) — B x F'
we gety(8,) = (b;, ) for a fixeds, and thus

1
(D=1 =(0,0).
J
But ¢ and 6 agree onL(0,0), so the last two computations yietd = 0,
1
O(a;) = 0in L(0p) and hence also iti.(a;); that is,z s(aj,b;) = 0, as
J

required.

It remains to choose the elements a»,a3. Leta = fa’. Eachb; is in
B%, and hencdby, by, b3) € (B*)*. By Lemma 6.3.9 there are,, az, a3
in A with a; + as = a3 such thatay, as, b1, bs, b3 are independent and all
a; realizetp(a/ acl(by, b2, b3)). Again by Lemma 6.3.9, each lies in AP
for b = (b1,b2,b3) and thus(a;,az) € (A2?)P, and again by Lemma 6.3.9
b € (B3?)*:%. Asaj € dcl(ay,az) we conclude

b; € (B®)®

with a = (a1, a2, a3), fori = 1,2, 3, but also fori = 4, as(B?) is a group.

Choose elements, € A’ aboveq, for i = 1,2,3 satisfyingtp(a}) =
tp(a’). These are not yet the desired elements. Chbodse (b, b5,b%) €
(B3)®1:92:05 with tpb’ = tpb andrk b’ = 3rk B. This is possible by Lemma
6.4.4 applied ta33.

As B is settledp(b;/a1aza3) = tp(b;/a1az2a3). By the corollary to Lemma
6.3.7B is 2-ary and thugp(b] b50% /arazas) = tp(b1babs/arazas). Applying
an automorphism, we may suppdge= b; for i = 1,2, 3; this gives new
values ofa/. Condition (i) is satisfied, and a3 is settled and; € B“1:92:93
for all 4, condition (ii) is also satisfied. Finally, d$is settled and 2-ary we get
condition (iii) as well. ]
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The next proposition is the preceding lemma with its fouryipdthesis
deleted.

Proposition 6.5.11.Let M be Lie coordinatizableA and B abelian groups
andw : L — A x B a bilinear cover, all 0-definably interpreted i,
with structure groupF’ = L(0,0). Letf : A — A be a generically sur-
jective O-definable map) C A’ x B the locus of a complete type over
acl(@) of maximal rank, and : D — L a 0-definable section relative tf
i.e.s(a’,b) € L(fa’,b) onD. Assume

1. The groupB is settled.
2. A and B have no 0-definable proper subgroups of finite index.
3. aclld’) N B* =dcl(a’) N B*fora’ € A'.

Then for anya’ € A’, the maps, : D, — L(fd’) is affine, that is, is
induced by an affine map.

Proof. As in the previous argument we work oasi(()).

In the notation of the preceding proof, our claim is this{@t, by, b, b3, bs)
in D*, we havezj(fl)js(a’, b;) = 0. We claim first that there i8 € D/,
independent fromy/, by, ba, by, by, Withb—b; € B¢ * fori = 1,2, 3, 4. As the
principal component is a group, it suffices to deal witHor ¢ < 3. As D,
is the locus of a complete type over the algebraically clesgdcl(a’), by the
type amalgamation property it will suffice to deal with a $enly. This case is
covered by Lemma 6.4.5.

Now leta” enumeratéacl(a’, b) N B*] U {d/,b} and letf,, f» be definable
functions picking out’, b, respectively, fromu”’. Let A” be the locus of,”
and letf” be f o f1. Let D’ be the locus ofa”,b; — b). As B is settled, this
set does not depend enDefines’ : D’ — L by s'(z,u) = s(fiz,u+ fox) —
s(fiz, fox) with the subtraction performed ib(f;2). Then in the context
of A”,D’, s, hypothesis (3) again holds, and hypothégisof the preceding
lemma is achieved. Thus,, is affine. Furthermore, each — b lies in D/,,,,
so we get

0= > ,(-1)(a",b; —b) = Z(fl)i[s(a’,bi) —s(a’,b)]

i

= 3 (- 1)'s(ab)

%
as claimed. ]

6.6 THE FINITE BASIS PROPERTY

Our objective in the present section is to pin down definhiiti groups rather
thoroughly, as follows.
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Proposition 6.6.1 (Finite Basis Property).Let M be Lie coordinatizable and
A an abelian group interpreted iM. Then there is a finite collection of de-
finable subset®); of A such that every definable subsethfs a boolean
combination of the set®;, cosets of definable subgroupsbbf finite index,
and sets of rank less than(tk).

The proof will occupy most of this section.

Lemma 6.6.2. Let M be Lie coordinatizable andl an abelian group inter-
preted inM. The following are equivalent:

1. Ais settled ovef); i.e., we have
(%) tp(a/0) U gtp(a/C N A™) =" tp(a/C)

for a € A of maximal rank over the algebraically closed &t

2. For every finite set’, there is an algebraically closed sét containing
C, such that fora € A of maximal rank ove€' the relation(x) holds.

3. Every definable subset dfis a boolean combination of 0-definable sets,
cosets of definable subgroups of finite index, and sets oflemskthan
rk A.

Proof. (2) is a weakening of1), of course, and it implie€3), takingC, to be
a defining set of parameters for the given definable set. Tleusr@/concerned
only with the implication from(3) to (1).

Suppose on the contrary the implication

(%) tp(a/0) U gtp(a/C N A™) =" tp(a/C)

fails to hold generically over some algebraically closed($ewhich we may
take to be finitely generated. Take a typ@ver C of full rank other than
tp(a/C), compatible with the data ifx). Let D be the locus op. Now D lies
in a single cosek of the principal componem®. By (3), the typetp(a/C)
contains the intersection of some definable coset tpith/?) up to a set of
smaller rank; that is, there is a definable homomorpHiditom A to a finite
group, and a value of h, such thatp(a/0) U {h(z) = ¢} =* tp(a/C).
Hencerk(D N h~1[c]) < rk A, contradicting Lemma 6.4.4. |

Thus Proposition 6.6.1 is equivalent to the statement thatyegroup be-
comes settled over some finite set.

Lemma 6.6.3. Let M be a Lie coordinatizable structure, and ldt, ..., A,
be settled groups 0-definably interpretedi, with no proper 0-definable
subgroups of finite index. Then the proddct [, A, is settled over a¢l).

Proof. We may assume = 2 andacl(()) = dcl()). Let C be algebraically
closed, and: = (a1,a2) € A = A; x A, of maximal rank over”. Note that
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A* = A} x ASandC N A* = (C N Ay) x (C N Aj). Our claim is
tp(ar, az/0) U gtp(a1 /C N A7) U gtplas/C N A3) —* tp(a/C).

We havetp(az/0) U gtp(az/C N A%) =* tp(az/C), so to conclude it will
suffice to show thatp(a, /az) U gtp(a /C N AT) =" tp(a1/a2C), which is
not quite what we have assumed. As s settled we have, in fact,

tp(a1/0) U gtp(a; / acl(az, C) N A7) =" tp(ay /axC)

so it remains to understamdp(a, / acl(az, C) N A¥).

We apply Lemma 6.2.8 tdl} and A;. Thusacl(ag, C') N A = [dcl(az) N
A+ [C N Af]. Asgtp(ay / dcl(az) N AT) is determined byp(a; /az), we are
done. -

Definition 6.6.4. Let A be an abelian group interpreted in a Lie coordinatiz-
able structureM. A definable subsep of A will be calledtameif every
definable subset @ is the intersection witl) of a boolean combination
of cosets of definable subgroups of finite index, and setsvefrlcank. This
notion is of interest only when g = rk A.

Lemma 6.6.5. Let M be a Lie coordinatizable structure, and let be an
abelian group interpreted ivM.

1. If A contains a definable tame subsgtof full rank, thenA is settled
over some finite set.

2. If A contains a settled definable subgroipof finite index then4 is
settled over some finite set.

Proof.

Ad1. By Lemma 6.4.24 can be covered by finitely many translategoflt
suffices to work over a set of parametérgontaining defining parameters for
Q together with sufficiently many parameters of translatmodverA.

Ad 2. This is a special case of the first part, takiggo be the locus of a
1-type ovet) of full rank in B. (]

Lemma 6.6.6. Let M be a Lie coordinatizable structure, and ldt be an
abelian group interpreted inM. If A contains a finite subgroupl, for
which the quotient /A, is settled over a finite set, thehis settled over a
finite set.

Proof. Let A/ A, be settled ovef’,. Takea € A of maximal rank ove€’, and
leta = a+ A, viewed as an element of the quotient group. Thénalgebraic
overa. TakeC containingC,, independent frona, with the multiplicity of
tp(a/a, C') minimized. Letg be the type ofi overC. We claim that the locus
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Q of g is tame, in other words that f@’ containingC and independent from
a overC, we have

qugtp(a/acl(C’) N A*) =" tp(a/C").
In any case our choice @f ensures that
(%) tp(a/a, C) = tp(a/C").
Let¢’ betp(a/C). As the quotient group is settled,
¢ ugtp(a/(A/A.)") =" tp(a/C).

Now (A/A,)* may be identified with a definable subset4f and thus in
view of (x), ¢ U gtp(a/A* Nacl(C’)) =* tp(a/C"). ThusQ is tame andd
is settled over some finite set. |

Lemma6.6.7.Let M be a Lie coordinatizable structure, and ldt be an
abelian group interpreted inV, A; a rank 1 ac{)-definable subgroup
of A, and suppose af) N A* = (0) (i.e. A has no0-definable subgroup
of finite index), and a¢#) N 4; = (0). Suppose is an element oA of
full rank overf), with a € acl(a/A1, ¢) for somec independent from/A4;
(an element ofi/A;). Then there is an a@)-definable subgroupl, with
A=A D As.

Proof. Let @ be the locus ofi overacl(c). With n = rk A, the hypotheses
giverk(a/c) = n — 1. LetS = Stal{@). ThensS is a subgroup ofd of rank
n — 1 (Lemma 6.2.5), an@) lies in a single coset of. We claim thatS N A4,
is finite.

If SN Ajisinfinite, leth € S N A; have rankl over(). By Lemma 6.2.5,
part(4), we may také € Stah Q. Thenthereis’ € @ of rankn—1 overd, ¢
suchthat” = o’ —b € Q. Thustp(a”/c) = tp(a/c) anda” € acl(a” /Ay, ¢);
thatis,a’ — b € acl(a’/A1, c) and hencé € acl(da’, ¢). This contradicts the
independence af’, b overc.

Now by Proposition 6.2.3 there is atl(())-definable subgroupls com-
mensurable withs. It follows easily thatd; N A, = 0 andA; @ A is a defin-
able subgroup oft of finite index defined oveacl(()), and thusd; ¢ A, = A.

|

Lemma 6.6.8. Let M be a Lie coordinatizable structure, let
(0) > A1 = B — Ay — (0)

be an exact sequence of abelian groups interpretedinwith A, settled
over(), and letr : L — A, x A} be the corresponding bilinear cover. As-
sume that a¢l)) N 4; = (0) and acl()) N A5 = (0). LetC be algebraically
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closed, and letD be a complete type over in A> of maximal rank. Let
a* € C'N A7 be generic inA} over(), and suppose : D — L(a*) isaC-
definable section, thatigj(a) € L(a, g2(a)) for some functiomz; here we
use the standard representation of the bilinear colzgeand, in particular,
g2(a) inducesz* on A;. Then there is &'-definable homomorphisgrfrom
A, to a finite group, such that for artye B withb/A; € D, the quantity

[92(b/A1)](b)
is determined byi(b).

Proof. We apply Proposition 6.5.11 with the groug$ and A, here playing
the role of theA of B from that proposition. FoA’ we take the locus of’
(as an enumerated set) oWeand for theD of Proposition 6.5.11 we take the
locus of(C, d) with d a realization of the typ® from the present Lemma. The
function f picks out the element corresponding to atirin any realization
of the type of the sequendag. In particular, in the notation of Proposition
6.5.11, our presertt is a typical elemeni’. Now applying Proposition 6.5.11,
the sectiory is affine. In other words, ifd}, is the principal componems’,
then A} is a C-definable subgroup of finite index iA;, and there is &-
definable homomorphisit : A} — L(a*) such that ford, d’ € D we have
g(d) — g(d") = h(d — d'). We may writeh(a) = (h1(a), h2(a)) and ay is a
section we findvy (a) = a.

LetB'={be B:b/A;, € A,}. Define a mag, from B’ to the prime field
F by jo(b) = [ha(b/A1)](a). We will show thatj, is a homomorphism.

As h is a homomorphisny, (b + ') is the second componenthfb/A;) +
h(b'/A1), evaluated ab + b’; by the definition of the operatiap on L, this is
ha(b/A1)(b) + ha (V' /A1) (V') = jo(b) + jo ().

Thusj, is a homomorphism. LeB” be its kernel, and let be the canon-
ical homomorphism fromB to B/B”. We claim that thisj works. Sup-
poseby, by € B, b;/A; € D, andj(by) = j(b2). Thenb; — by € B” and
Jo(br — ba) = 0, s0ga(b1/A1)(b1) = g2(ba/A1)(bs) is determined by the
value ofj. ]

Lemma 6.6.9. Let M be a Lie coordinatizable structure, let be 0-definably
interpretable inM, A, a definable subgroup, and suppose tHais settled.
Suppose there is a 0-definable type of full rankdimwith locus@ such that
for anyC and anya € @ with a/A; of maximal rank ove€,

(x)  tp(a/(a/A1)) Ugtp(a/acC) N A”) = tp(a/(a/A1), C).
ThenQ is tame inA, and henced is settled over some finite set.

Proof. Leta = a/A;, and letg = tp(a/C'). Then
qugtp(a/ acC) N (A/A1)*) =" tp(a/C).
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As (A/A;)* can be identified with a definable subset4f, this together with
(%) yields
tp(a/C) Ugtp(a/acl(C) N A*) =" tp(a/C).

ThusQ is tame. |
The following lemma is critical.

Lemma 6.6.10. Let M be a Lie coordinatizable structure, ldtbe 0-definably
interpretable inM, with acl(®) N A* = (0), and letA; be a0-definable
subgroup ofA which is part of a stably embedded linear geomefrjn
M, not of quadratic type. Assume thdf A; is settled and that there is no
acl(0)-definable complement té, in A. ThenA is settled over some finite
set.

Proof. We will arrive at the situation of the previous lemma, rielato some
finite set of auxiliary parameterS, (so the sets” of the previous lemma
should contairC,,). We work overacl(f).

Let A = A/A;. Fix an element € A of maximal rank, and let = a/A;.
LetS = a + A; viewed as an affine space ovéy. Let S* be the prime field
affine dual defined i§2.3. Call a seC basalif C is algebraically closed and
independent froma. Then we claim

For C basala is notinacl(a, C, J).

Otherwise, take: € acl(a, C,ds,...,dx) with d; € J andk minimal. Then
the sequence
a,C,dy,...,dg

is independent. We apply Lemma 6.6.7, noting thelf#)) N A; = (0) by
our hypothesis. Then Lemma 6.6.7 produces a complemendt tm A, a
contradiction. Also, by Lemma 6.2&l(a, C) N J = dcl(a,C) N J. Now
Lemma 2.3.17 applies, giving

tp(a/a,dcl(a, C) N S*) = tp(a/a, C).

Let T'(C) bedcl(C) N S*>. We need to examin@(C') more closely for
basalC. For f € A} let S**(f) be the set of elements &f> lying abovef;
this is an affine space over the prime fidlg, of dimensionl. Let A7 (C) =
acl(C) N A;. LetTy(C) = dcl(C,a) n|Y{S*(f) : f € A1(C)}. We claim
that for some basal', for all C’ containingC, we have

(*) T(C") =T(C)+ Ta(C")
and hencd’(C") C dcl(a, T(C), T1(C")).

Let 8(C) = {z € Aj(a) : for somey € A% (C), S*(z+y) NT(C) # 0}.
ChooseC basal with5(C) maximal. LetC’ O C be basalt € T(C’). Then
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t € S*(x + y) for somez € Aj(a), y € A5(C"). Sot € B(C") — B(C).

Thus there is) € A;(C) andt’ € T(C) N S*(x +y'). Thent — ¢ €

T(C"YNS*(y—y") CTi(C")and ag =t' + (¢ — '), our claim is proved.
Using quantifier elimination if.J, S, S*°), the claim gives

tp(a/a, T(C)) Utp(a/a, To(C")) = tp(a/a, T(C")).
Now in order to show
tp(a/C") U gtp(a/ acl(C’) N A™) =" tp(a/C")
it will suffice to check that
(%) tp(a/a) Ugtp(a/C’ N A”) = tp(a/a, T1(C")).

We fix C” and letr : L — A x A} be the semi-dual cover corresponding
to (0) - A; - A — A — (0). Let D’ be the locus ofi overC’. If t €
T,(C"), then(a,t) € L; leta* = w2 (a, t) be the induced element aff*. Then
a* € C'N Af. Ast € dcl(a, C’) we may write(a, t) = g(a) = (a, g2(a)),
whereg : D' — L(a*) is aC’-definable section. By Lemma 6.6.8 there is
a C’-definable homomorphismonto a finite group whose values determine
g2(u)(u) foru € A, w € D’. By definitiongtp(a/C’ N A*) determines the
value ofj(a) and hence of(a). Claim (xx) follows. |

Proof of Proposition 6.6.We proceed by induction on the length of a maximal
chain ofacl())-definable subgroups. We may work oeet((}). If A contains a
finite subgroup defined ovecl!(?)) we may apply induction and Lemma 6.6.6.
Accordingly we may supposacl(f) N A = (0). Similarly we may suppose
acl(®) n A* = (0), using Lemma 6.6.5, part (2).

Now A contains aracl(())-definable rank 1 subgroug; which is part of a
basic linear geometry (Lemmas 6.2.6, 6.2.11). i, has aracl(f)-definable
complementd, then we may assume bath andA, are settled, and thef =
A1 ® A, is settled. Accordingly we may suppose thgtis not complemented.
Now by inductionA/A; is settled over some sét and after enlarging’ if
necessary, we may assume that the associated linear ggasnadt quadratic
(adding an element of the quadratic spageif needed). Now the previous
lemma applies. ]

The following is another version of the finite basis property

Proposition 6.6.11.

Let M be Lie coordinatizable andl an abelian group interpreted in1.
Then there is a finite collectio; of definable subsets of, such that ev-
ery definable subset of is a boolean combination of translates of the
together with cosets of definable subgroups.
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Proof. We proceed by induction ak(A). Let D; be a finite list of definable
sets including all the definable sets associated corregpgigdo all acl(()-
definable subgroups of smaller rank. In additiondéte a finite set over
which A is settled, and assume that élidefinable sets occur as well in the
list (D;). We claim this suffices.

As A is settled over”, it will suffice to consider definable subsdisof A
of rank less thamk A. Such a set lies in the union of a finite number of cosets
of acl(f)-definable subgroups of of rank less thamk(A), by Lemma 6.2.5
and Proposition 6.2.3. We may therefore assumelihigs in one such coset,
and since our problem is invariant under translation, we egn assume
lies in anacl(())-definable subgroup of smaller rank, and conclude. |



Reducts

7.1 RECOGNIZING GEOMETRIES

Our main objective in the present section is to charactetoedinatizing ge-
ometries as follows.

Proposition 7.1.1. Let M be X,-categorical of finite rank, and lefl, A* be
rank 1 groups equipped with vector space structures overite ffield £,
and a definablg-bilinear pairing into F', with everything 0-definably in-
terpreted inM. Assume the following properties:

L1. EveryM-definable-linear mapA — F'is represented by some element
of A*, and dually.

L2. Algebraic closure and linear dependence coincidedoand onA*.

L3. A and A* have no nontrivial proper 0-definable subspaces.

L4. Every definable subset of or of A* is a boolean combination df-
definable subsets and cosets of definable subgroups.

L5. If D is the locus of a complete type ihover ac(), anda),...,a, are
F-linearly independent elements af, then there is an elementof D
with (d, a}) prescribed arbitrarily.

Then the pair(A, A*) is a linear Lie geometry, possibly weak, which is
stably embedded in.

The proof will require a number of preliminary lemmas. We azknthat
in view of hypothesis (L3), either one of the groupsA* vanishes (in which
case we might as well assurdé = (0)), or the pairing is nondegenerate on
both sides. In the latter case the notatibhis justified by hypothesis (L1).

We will continue to label the various hypotheses as in thé&estant of
Proposition 7.1.1.

Lemma 7.1.2. Let M beXq-categorical of finite rank and lef, A* be rank
1 groups equipped with vector space structures over a firgtd i, and a
definableF-bilinear pairing into F', with everything 0-definably interpreted
in M. Assume that

L2. Algebraic closure and linear dependence coincidedoand onA*.
L3. A and A* have no nontrivial proper 0-definable subspaces.
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Then eitherA and A* are algebraically independent, or there is(a
definable bijection between their projectivizatiaRsand P*.

Proof. This is the standard nonorthogonality result. We assunmagebraic
relation betweem and A*, specificallyrk(a) = k, rk(a*) = k*, rk(aa*) <
k + k* with a € A anda* € A*. We will first find an element ofd al-
gebraic overa*. Supposea is not itself algebraic ovea*. Then we take

independent conjugates of a overacl(a*) and findrk(ay, . .., a,) < nk for
n large. By the dimension law in projective space there is thend — (0) in
acl(ay,...,a;)Nnacl(a;y1,...,a,) and hence algebraic ovet.

Switching sides, we may then find € A* — (0) algebraic overn. Then
acl(a) = acl(a*) and this gives a bijection between a subsePaind a subset
of P*. Furthermore, the argument shows that the domain and rdrtpe bi-
jection are algebraically closed, and thus corresporiddefinable subspaces
of A andA*. By hypothesis (L3) the bijection is total. ]

Lemma 7.1.3. Let M be X,-categorical of finite rank and lefl, A* be rank
1 groups equipped with vector space structures over a firgte fi, and a
definableF-bilinear pairing into F', with everything 0-definably interpreted
in M. Assume that

L1. EveryM-definablel-linear mapA — F'is represented by some element
of A*, and dually.
L2. Algebraic closure and linear dependence coincidedoand onA*.

Assume in addition that the projectivizatiof’sP* of A and A* corre-
spond by a 0-definable bijection. Then there is an identificadf A with
A* according to which the given pairind x A* — F'is symplectic, unitary,
or orthogonal.

Proof. As P and P* are definably isomorphic, there is a semilinear isomor-
phism of A with A*, which gives rise to a self-pairing x A — F which
is linear in the first variable and satisfiés, ay) = a(z,y) with an auto-
morphismo on the right. In particular the map, : A — A defined by
(z, y)‘f1 is F-linear and hence by hypothesis is given by a unique element
x*: (y,x*)° = (x,y). Asz* is definable fromx, we haver* = ax for some
a = «afz) € F possibly dependent on

We have

(v, (B)")7 = (Bw,y) = Bla,y) = Bly.a")” = (87 (y,2"))"
= (1,87 @)
and thuggz)* = B° “z*. Now forzy, zs linearly independent with(z,) =

a(22) = a, we have(z; + Bz2)* = ao(z1 + A7 22), and as the latter
is a scalar multiple ofz; + Bxo, we find thato? is the identity andc* is
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a linear function ofr. The same computation shows that far, - linearly
independenty(x1) = a(x2), and thusy(x) is independent of; soz* = ax
for a fixeda:

(z,y) = oy, z)7.

Applying this law twice,(z,y) = aa? (z,y) and
aa’ = 1.

If o is the identity, themw = +1 and the form(z, y) is either symmetric
or symplectic. In characteristic 2 we conclude only thasisymmetric, but
in this case the fornjz, ) is the square of a linear functional and vanishes
on a subspace of codimension at mbstIf we exclude0-definable proper
subspaces of finite codimension we may conclude that in cteaistic 2 the
form is symplectic.

Wheno is nontrivial we have in any case the normeoéqual to 1 and thus
a = 7/~ for somey € F. Then one checks tha{x, y) is a unitary form on
A. |

Definition 7.1.4. Thegeometric languager (A, A*) consists of thé"-space
structure, the pairing, an identification of with A* as above, if available,
and all ac(})-definable subsets of and A*. Vector space operations and
the identification, if present, are taken as functions, eatthan being en-
coded by relations.

We are working overcl(()) here. The identification betwees and A*
depends in the unitary case on a parameter from the fixed fi¢ghe: @utomor-
phism, but is algebraic overcl(().

Lemma 7.1.5. Let M beX,-categorical of finite rank and lef, A* be rank
1 groups equipped with vector space structures over a firgtd i, and a
definableF-bilinear pairing into F', with everything 0-definably interpreted
in M. Assume

L1. EveryM-definableF-linear mapA — F'is represented by some element
of A*, and dually.

L2. Algebraic closure and linear dependence coincidedoand onA*.

L3. A and A* have no nontrivial proper 0-definable subspaces.

L4. Every definable subset of or of A* is a boolean combination df-
definable subsets and cosets of definable subgroups.

L5. If D is the locus of a complete type i over acl@)) and a},...,al,
are F-linearly independent, then there is an elemémtf D with (d, a})
prescribed arbitrarily.

Then the induced structure dm, A*) admits quantifier elimination in
the geometric language.
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Proof. This may seem obvious; but condition (L4) is rather vagueoabe
provenance of the parameters involved.

We show by induction on that the quantifier-free type af, . . . , a,, deter-
mines its full type. IfA and A* are identified, we work ird exclusively. By
hypothesis (L2) we may suppose theare algebraically independent.

We will establish the following for any finite se&f and anyC-definable
subsetD of A:

D is a boolean combination otdefinable sets, a
(%) finite subset ofcl(C), and cosets of the form
H,={xz € A:(x,¢) = a} with c € A* algebraic over.

Assuming the claim, le€ beacl(a,...,a,—1) = dcl(a,...,an—1). By
our induction hypothesis the type 6fis known. By(x) the typetp(a,,/C) is
determined by its atomic type ovél, and hence ovet;, ..., a,_1, SinceC
is generated by functions ovey, ..., a,_1.

It remains to establisfk). We may suppose that the sitis the locus of
a complete nonalgebraic type owasl(C) = dcl(C). Let D’ be the minimal
acl(p)-definable set containing. We note first that in hypothesis (L4) we may
take the definable subgroups involved to be subspaces & findimension.
Indeed, if B is an infinite definable subgroup &f then it has finite index in
A and the intersection akB for a € F* is a definable subspace of finite
codimension contained iB. Thus modulo the ideal of finite setf) is the
intersection withD’ of a boolean combinatio®; of translates of definable
subspaces of finite codimension. There is a definable linagdrfrom A to a
finite dimensional space™, and a subseX of I, such thatD; = 6~ X].
Minimize n. We may represertt as (af,...,a}) for somea’ € A*. We
claim thea} lie in acl(C). We may in any case assume € acl(C) for
i < mno and the remaining,; are algebraically independent owaxl(C). If
no < n then leta;,_,,,...,a;, be conjugate ta, ,,,...,a; overC and
linearly independent from7, ..., a}. Asn has been minimized we can find
a € F™ andgB, ' € F*» " with (o, 8) € X, (o, f') ¢ X. Applying (L5),
we may find infinitely many elementse D’ satisfying

(d,a7) = a;; (d, GZOH) = fBi; (d, a;zoJri) = ﬁ;

Off a finite set this yieldel € D andd ¢ D, a contradiction. Thus the' are
algebraic oveC'. Finally, the finite set involved is the difference of twoset
defined overcl(C) and hence lies iacl(C'). |

Proof of Proposition 7.1.1In view of Lemma 7.1.5, to complete the analysis
of (A, A*), we must determine tHiedefinable subsets of (and similarly,A*)
more or less explicitly. LeP be the set of types of nonzero elementslafver
acl(0). Fora € A setg(a) = tp(a/ acl()). Note that these types have rank
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1, with the exception ofp(0/ acl(®)). By the proof of the previous lemma,
if a andb are algebraically independent elementsAathen the type of. + b
overacl()) is determined byg(a), ¢(b), and(a,b) € F. (When there is no
identification of A with A*, let the form(a,b) be identically0 on A.) Thus
q(a+b) = f(q(a), q(b), (a,b)) for some functionf : P x P x F — P.

Consider+ : P2 — P defined byp; + p2 = f(p1,p2,0). We claim thatt
is an abelian group operation ¢h This operation is clearly commutative. For
associativity, lep1, p2, p3 € P. We may assume they are all nonzero. By type
amalgamation and the hypothesis (L5) we can find:-, a3 independent with
the prescribed types and with;, a;) = 0 for distincts, j. Thenp; + ps + ps,
computed in either possible way, will givéa + b + ¢). Finally we check
cancellation. Suppose, + p1 = p, + p2. We may then choose independent
ao, a1, ay realizing the prescribed types, with,, a1) = (ao, a2) = 0, and we
find thatg(a, + a1) = q(ac + a2) and(—ae,ac + a1) = (—ao, a0 + az) =
—(a,a). Thusq(ai) = f(g(—a), po + p1,—(a,a)) = q(az), as claimed.

ThusP is a finite abelian group. Let the zero elementfobe denoteg,,
and letD be the locus of this type id.

We now dispose of the polar case, in which there is no ideatifin of
A with A*. Thenq : A — P is generically a homomorphism and hence
extends to a homomorphism by sendintp 0. As A has no proper 0-definable
subspace of finite codimension, it has no proper 0-definaffdgreup of finite
index, and thus the homomorphism is trivial, add- (0) realizes a unique
type overacl(f)). This completes the analysis of the polar case.

For the remainder of the argument we may supposeAfaatd A* have been
identified, or, in other words, that carries a symmetric, symplectic, or unitary
form. If P consists of a single type, then this form is symplectic arctyipes
are entirely known. We may assume therefore thaontains more than one
type. It is of course still possible that the form is sympiect

D is infinite, and is the locus of a type ovecl(f)), and hence generatels
The groupStal{ D) has rank 1, and hence coincides with Thus a generic
element ofA belongs toStah (D) and can therefore be expressedias b,
with a,b € D independent. As the type af+ b is determined by the value of
(a,b), fora,b € D independent, this gives rise to a functiph: F — P.

For independent, b, ¢ € D with (a,b) = 0 we have

q(a+b) = q(a) +q(b) = po

and thuse + b € D, and asa + b,c) = (a,c) + (b, ¢) it follows that f* is
an additive homomorphism. We define a map F* — End P) by v(«a) -
q(a) = q(aa). This is clearly a well-defined multiplicative homomorphis
into End(P). In particularp, is fixed byyv[F*], and thusD is invariant under
nonzero scalar multiplication. Thus we may make the follapéomputation
with a,b € D independentia, b) = «:

(%) fr (867 a) = q(Ba + pb) = v(B)g(a + b) = v(B)f* ().
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Now let K be the kernel off*, and F,, the fixed field ofs (which may be all
of F). We will show thatK = ker Tr with Tr the trace from#’ to F,, which
will allow us to identify P and F5.

By (x) K is invariant under multiplication by elements3“, that is by
norms or squares according ass nontrivial or trivial, and therefore is an
F,-subspace of' in all cases. Furthermords < F' sinceP has more than
one element. Thus i is the identity andr, = F we have only the possibility
K = (0), which is the claim in this case. Suppose now thas nontrivial,
so thatF is a quadratic extension df,. Asq¢(x + y) = q(y + ) we get
f*(a) = f*(a) so K contains the kernela — o : « € F'} of the trace,
which is of codimension 1 id". ThusK coincides with this kernel.

Accordingly, we now identifyP with £, and f* with the trace. The formula
(%) then states that is the norm ifo is nontrivial, and the squaring map other-
wise. In particular there aré’, | nontrivial types oveacl(()). These types must
therefore be determined by the functi@n ), unless the form is symplectic.

Suppose, finally, that the form is symplectic; we still suppthat| P| =
|F,|. Takez,y independent and orthogonal. Then— y,y) = 0 and thus
q(z) = q(x—y)+4q(y) = q(z)+q(—y) +q(y), thatisg(—y) = —q(y). Onthe
other hand, byx) we havey(—y) = ¢(y), and thus the characteristic is 2. Our
final objective is to show thatis a quadratic form, so that is an orthogonal
space in characteristic 2. In any cage) says thay(ax) = o?q(z), and it
remains to study(z + y).

Takez1, 2,91,y in D independent with:; orthogonal toy; fori = 1,2,
and leta = (z1, 22), 8 = (y1,42). Letz; = x; + y;; thenz; € D and

q(z1 + 22) = (21,22) = a+ B+ (21,92) + (T2, 1)

Letz = 21 + 22 andy = y1 + y2. Thenz andy are independentj(z) = «
andq(y) = B; and(z,y) = (z1,y2) + (2,91). ASx + y = 21 + 22, we have
q(z+y) = q(x)+q(y)+(x,y). Thisargument applies ta y independent and
nonzero. When, y are dependent they are linearly dependent, and it follows
easily that this formula holds in general. Thuis a quadratic form associated
to the given symplectic form. This determines the structfrd in this last
case. ]

Lemma 7.1.6. Let M beX,-categorical of finite rank. Leti, A* be 0-definably
interpreted rank 1 vector spaces over a finite fiéldvith a definableF-
bilinear pairing satisfying

L1. EveryM-definablel-linear mapA — F'is represented by some element
of A*, and dually.

L2. Algebraic closure and linear dependence coincidedoand onA*.

L3. A and A* have no nontrivial proper 0-definable subspaces.

Suppose that over adl), A, A* are part of a linear Lie geometry sta-
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bly embedded ioVi. ThenA, A* are part of a linear Lie geometry stably
embedded ioM.

Proof. We have to show that ifi carries a bilinear form or quadratic form
defined overcl(()) then the set of scalar multiples of the fornDiglefinable,
and similarly if A, A* are part of a quadratic geometry in characteristic 2.

Note that anyacl((})-definable linear automorphism dfacts trivially on the
projective spac® A, by (L2), and hence is given by a scalar multiplication. As
A* contains all definable linear forms ofy any two nondegenerate bilinear
forms differ by a definable automorphism df hence differ by a scalar. In
odd characteristic this disposes of all cases since quadoams correspond
to inner products.

Consider now the case of a symplectic space in characte2istvhere the
form is known up to a scalar multiple. With the form fixed, tle¢ of quadratic
forms compatible with it and definable oveel(()) corresponds tet* Nacl().
By (L3) this is (0). Thus if there are quadratic forms definable omel((),
they are the scalar multiples of a single form.

Suppose, finally, that there are aol()-definable quadratic forms but that
there is aracl(f)-definable quadratic geometry. In this case, the settf)-
definable quadratic forms compatible with one of the bilifeams carries a
regular action by4*; hence this is the standard quadratic geometry @yer
corresponding to a form known up to a scalar multiple. No& the pairing
is known but the identification ofi with A* is known only up to a scalar
multiple. ]

Proposition 7.1.7. Let M be R,-categorical of finite rank. Le#i, A* be O-
definably interpreted rank 1 vector spaces over a finite fiéldith a defin-
able F-bilinear pairing satisfying

L1. EveryM-definableF-linear mapA — F is represented by some element
of A*, and dually.
L3. A and A* have no nontrivial proper 0-definable subspaces.

Letc € M, with acl(c) N (A, A*) = dcl(c) N (A4, A*) nondegenerate,
and set(A’, A”") = [acl(c) N (A, A*)]*. Assume that relative to a possibly
larger field F’, in M’ = M with ¢ added as a constant, (L1,L3) hold for
A, A" as well as:

L2 Algebraic closure (over and linear dependence (over the extended scalar
field) coincide on4’ and onA’".

L4’ Every definable subset of or of A" is a boolean combination af
definable subsets and cosets of definable subgroups.

L5" If D is the locus of a complete type i over aclc) anddf,...,al,
are F-linearly independent, then there is an elemémtf D with (d, a})
prescribed arbitrarily.
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Then there is &-definable sort) in M such that A, A*, Q) form a weak
linear Lie geometry, stably embeddedh.

Proof. We will work overacl(f). We let@ be ) unlessA carries aracl(()-
definable symplectic bilinear form in characteristic 2, ihigh case we le®
be the set of all definable quadratic forms which are comfgatilith one of
these symplectic forms oA; each component of this set, corresponding to
a particular form, has a regular action By and is, in particular, uniformly
definable. Thug) is 0-definable. We let/ = (4, A*, Q), equipped with all
structure defined ovexcl(()), and we claim that this is stably embedded.

Let M’ be the expansion aM by the constant, and.J’ the geometry
A’ A”* with the structure inherited from1’. By Proposition 7.1.1)" is a
stably embedded weak linear geometry. 4t = acl(c) N A. ThenA =
A, @ A, and similarly forA*, and@. ThusJ is contained in the definable
closure ofJ’ in M’. ThusJ inherits the following properties:

J is stably embedded in;
J has finite rank and is modular;
J has the type amalgamation property of Proposition 5.1.15.

By Proposition 6.2.3, if{ is a parametrically definable subgroupA4fx A or
A x A* in M, thenH is commensurable with aaxcl(())-definable subgroup.

Let F’ be the ring of endomorphisms df which are0-definable inJ. By
the third hypothesist” is a field, and it must restrict to a subfield of the field
of scalars forJ’. We claim, in fact, tha#"” induces the scalars of. Let«
be one of the scalar multiplications oi. The graph ofx is commensurable
with anacl(())-definable subgroufl of A x A. By the third conditionH is
the graph of a group isomorphism fromto A. Leta € F’ be the element
with graphH . As the graphs of anda’ are commensurabkel(c)-definable
automorphisms ofl’, they agree there.

The same sort of argument shows that an isomorphisas A’* is induced
by anacl()-definable isomorphism oA of the same type. The same applies
to quadratic forms in odd characteristic since they cowadto bilinear forms.
In characteristic 2 one can, in any case, extend quadratitsfto forms ond
in acl(c), taking them to vanish oacl(c) N A.

Now let.J~ beJ reduced to its geometric structure. The structure/bis
known and is defined from this geometric structure by Prdmosir.1.1. As
J is interpreted inJ’, every0-definable relation irJ is definable in/~ from
parameters iracl(c). Let R be 0-definable inJ, with canonical parameter
e € J~, and definable i7— from the parametes. By weak elimination of
imaginaries inJ~ we may takex € acl(e) in J~; bute € acl(®) in J, so
a € acly(P) N J~, which is trivial by assumption. Thus is 0-definable in/~
andJ = J~ is a stably embedded Lie geometry.
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This argument took place ovecl(f)) (and our lasD-definability claim is
blatantly false in general); to remove this, we use the glacgemma. ]

Remark 7.1.8.

We are dealing in Proposition 7.1.1 with the rank 1 case o#tiadysis of set-
tled groups witracl(h)nA = (0), acl(®)nA* = (0). It would be interesting to
tackle the general case. Two special cases: analyze thefgasee exponent,
or the case of rank 2.

7.2 FORGETTING CONSTANTS

The following is a special case of Proposition 7.5.4 belaw\vihich we will
give a proof by a method not depending on the classificatidimé simple
groups. The proof given here goes via smooth approximatitiver than coor-
dinatization and involves [KLM], hence the classificatiditire finite simple
groups.

Proposition 7.2.1. Let M be a structure and\, an expansion of\1 by a
constante. If M. is smoothly approximable by finite structures, then there
is an expansion\° of M by an algebraic constant which is smoothly ap-
proximable.

The key example here is due to David Evans: one take® be the reduct
of a basic quadratic geometry in which the orientation igétten, but the
corresponding equivalence relation is remembered. In g fapproximation
the two classes are distinguished,/gbis not smoothly approximable by finite
structures. The orientation itself is an algebraic cortstagan be shown that
this is the only sort of algebraic constant which comes inrtgpBsition 7.2.1.

Definition 7.2.2. If M is Lie coordinatizable and’ is an envelope i\ it is
said to beequidimensionaif all the isomorphism types of specified geome-
tries of a given type are the same; that is, the dimensionsvditiddefects
are constant.

Lemma 7.2.3. Let N be smoothly approximable,c N, E a finite subset of
N containinge. Then

1. If E is an envelope aof/, it is an envelope af/...
2. If E is an equidimensional envelope.ti, it is an envelope oV, pro-
vided that:

(i) The locus ot over() is nonmultidimensional;

(i) Forany acl())-definable canonical projective geomeffywith canon-
ical parametem, tp(b) implies tlb/c).
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Proof. We use the criterion given in the corollary to Lemma 3.2.4th@ three
conditions given there, only the last one is actually sesesib the presence of
the parameter. In \V this may be phrased as follows:

If c1,co are conjugate it and D..,, D., are corresponding
conjugate definable sets, then, NE andD.,NE are conjugate
by an elementary automorphism Bf

This condition is certainly inherited “upward,” giving tHigst point. For the
second, assuming conditions (i) and (ii), and the conjugaeglition in\, it
suffices to to show the conjugacy condition for canonicajgmtive geometries
D,,. There are two cases.

Suppose first that; ¢ acl(()). ThenD,, is orthogonal tap(c/c;) as the
latter is analyzed bywcl(())-definable geometries. Hende., remains a pro-
jective geometry inV,.. Itis also canonical: every proper conjugaté\ipis in
particular a conjugate iV, and hence orthogonal #0.,. Thus the dimension
of D, in E is one of the specified dimensions as an envelop&inthese
are all assumed equal, 8., andD., have the same dimension and similarly,
where applicable, the same Witt defect.

Now suppose; € acl(#). Then by 2(ii)tp(c1/¢) = tp(cz/c) and thus they
are conjugate ik, and theD., N E are conjugate. ]

We now deal with a special case of Proposition 7.2.1.

Lemma 7.2.4.Let M be a structure and\1,. an expansion of\ by a con-
stantc. Assume that the locuB of ¢ in M is nonmultidimensional i\ .
and that for any adk)-definable canonical projective geometfy, tp(b/c)
implies tlb/ acl(c). If M. is smoothly approximable by finite structures,
then there is an expansiaf® of M by an algebraic constant which is
smoothly approximable.

Proof. An envelope inM . is determined by &-tuple of dimensions for some
k. Letg be a 2-type realized i*. Define a binary relatio?, betweenk-
tuples of dimensions as follows?, (d, d’) if and only if there is a realization
(¢, ') of ¢, and a finite subset of M which is an envelope of dimensiah
in M. and is an envelope of dimensidhin M... We claim thatR, defines a
partial function. If(c, ¢’) realizes;, thentp(c¢’/c) in M. determines$p(c’/c) in
U and hence determines the corresponding dimengidive will use function
notation, writingf,(d) = d'.

We define an equivalence relation #ras follows: E(a, b) holds if there is
a finite subset, of P such that for any finite subsét of P containingCs,,
any equidimensional envelope M is an envelope oM, andM,, with the
same dimensions. We claim:

If a,b,b" € P andtp(ab) = tp(ad’), thenE (b, V').
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Given sucha, b, b’ we letqg = tp(ab) = tp(ab’) andCs = {a,b,b'}. If C
containsa, b, b’ andU is an equidimensional envelope 8, thenU is an
equidimensional envelope overb, or b’; and the dimension ovéror b’ is f,
applied to the dimension over

Thus the relation® has finitely many equivalence classes. ketbe the
classc/E € acl(). We claim thatM is smoothly approximable oves.

Let P be the increasing union of finite subséts with C; = {¢} and let
U,, be ann-equidimensional envelope iM, containinglU,,—;. Let M be
the canonical language fav1 (consisting of complete types ové. Let 7 be
a nonprincipal ultrafilter o and let the term “almost akt” be understood
with reference to this ultrafilter. Let1* be the set of relations which afe
definable inM (c) whose restrictions t&/,, are L-definable for almost alh.
We will show thatM* = L(c¢,) and thatM is smoothly approximable in the
languagel.*.

M* is a sublanguage 0¥1(c¢) which containsM (¢, ) since the proof thab
has finitely many classes also shawss definable irn/,, from some point on.
To see thatM is smoothly approximable in the languagé™*, let k be fixed
and leta, b be k-tuples with the same type ifnt*. It suffices to show that for
almost alln, two suchk-tuples inU,, will be conjugate inJ,,. If not, then for
almost alln, there is a)-definablek-ary relationR,, on U which does agree
onU,, with any relation inM*. However, it must agree with somedefinable
relation restricted t&/,,, and there are only finitely many such, so for almost all
n R, agrees with the samedefinable relation oW/,,, which means it agrees
with a relation ofAM*, a contradiction.

It remains to be shown tha1* C M(c,). Let P’ be the equivalence class
of ¢ with respect ta%; this is a subset oP. We claim first that

P’ realizes a uniqua1*-type.

Taked € P’. It suffices to show that for almost all, and indeed for all
sufficiently largen, there is an automorphism 67, carryingc to ¢’. For large
n, U, containsc and ¢’ and is an equidimensional envelope with the same
dimensions relative toand toc’. ThusM,. and M. are isomorphic smoothly
approximable models arid, overc or ¢’ is an equidimensional envelope with
respect to the same data in both cases; by uniqueness obpeasgl,,, c) ~
(Un, ).

It follows that any automorphism of M., preserves\i*: aso preserves
P’, by the previous claim we may suppose thdixesc, and henceVi*. Thus
M* C M(eo). [ |

Lemma 7.2.5. Let M be smoothly approximable, and fare M leta") =
{a’ € acl(a) : rk(a’) = 1}. DefineE(a, b) by: a'*) = b(1). Then we have:

1. If Sis an ac[®)-definable subset 0¥1 of rankn > 0, then eachF-class
in S has rank less than.



152 REDUCTS

2. M/Eis nonmultidimensional.
3. If ¢ € M anda andb are both independent from thena(") = b if
and only if the same relation holds j#..

Proof. The first point is the coordinatization theorem, i.e., withloss of
generalityM is Lie coordinatized. The second point is clear adHuefinable
closure ofa(!) is a set of rank at most 1 ovér

For the final point, write” for o) computed over. We wish to show

that each ofi(1), a{" determines the other. As
oM = {a’ € Y : ¢’ is independent from}
it suffices to deal with the reverse direction. We claim that
oM = acl(a, ¢)

In any case, the right side is contained in the left. Conygraes must show
that if d € acl(a, c) has rank at most over ¢ thend € acl(a(!),c). By
modularitya ande, d are independent ovef = acl(a) Nacl(c, d). Thusa and
d are independent overc and thereforel € acl(a’c). Butrk(a’/c) < 1 and
a,c are independent, s#(a’) < 1. Thusa’ € oV andd € acl(aM,c). &

Proof of Proposition 7.2.1We assume\1 .. is smoothly approximable and we
seeke, € acl(p) with M., smoothly approximable. We work ovecl(),
and we replace by a finite subset of acl(c) such that forP, an acl(c)-
definable canonical projective geometiy(b/C') impliestp(b/ acl(c)). We
again writec rather thanC'. After these adjustments, if the loc#sof ¢ is
nonmultidimensional, then Lemma 7.2.4 applies. We treagtimeral case by
induction onrk c.

If there iscy € acl(c) with ¢ ¢ acl(c,), then after expanding if necessary
to a slightly larger subset @icl(c; ) we may takeM ., to be smoothly approx-
imable, by induction, a&k(c/c1) < rk(c), and then by a second application of
induction, agk(c;) < rk(c), we reduce to a parameterael()). We assume
therefore that there is no such element

We define a relatiotE' on P as follows: E(a,b) holds if for somec € P
independent frona,, b we havea'” = b"; hereal" is a( computed over
¢, as in the previous lemma. We claim thatjt’ € P are both independent
from ab andal’ = o', then the same applies over Working with an
element:” independent froma, b, ¢, ¢/, we reduce to the case in whictand
¢ are independent over, b; in other words, the triplab, ¢, ¢’ is independent.
As M. is smoothly approximable, anth and¢’ are independent there, the
previous lemma applies and yields" = b{") if and only if a'”), = b{"),;
arguing similarly over’, our claim follows. In particularf is a0-definable
equivalence relation.
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Suppose toward a contradiction that is degeneratefi.e= P2. Then for
c € P fixed, the relationE, (a,b) : at” = b has a class of maximal rank.
This violates the first clause of the previous lemma. As wenanking over
acl((), it follows that P/E is infinite. If ¢; is ¢/FE, thenc; € acl(c) and
rk(c/c1) < rk(c). Therefore, by our initial assumptioa, € acl(); that is, F
has finite classes.

Let P have rank: and letey, . . ., cont1 € P be independent. Ldt; be the
equivalence relationg) = bg), and E’ the intersection of thd;. For any
a,bin P, there is an for which ab is independent from; and thusE’ refines
E, and has finite classes. NdW E’ < [[, P/E;, {c1, ..., can41}-definably,
and the quotient®/ E; are nonmultidimensional. Hendeis nonmultidimen-
sional inM., . c,..,. ThereforeP is also nonmultidimensional ovett (c, ),
since any orthogonality over, would be preserved (after conjugation) over
c1,---,Cont1. AS this case is the base of our induction, we are done. 1

7.3 DEGENERATE GEOMETRIES

Lemma 7.3.1. Let M be a structure and 0-definable inM. Then the fol-
lowing are equivalent:

1. D is stable and stably embeddedid.

2. There is no unstable formula(z, y) with p(z,y) = (x € D).

3. There is no unstable formula(xy, ..., z,,y) satisfyingp(x,y) =
(x; € D), forall i.

Proof. The equivalence af2) and(3) is [Sh, 11:2.13 (3, 4), p. 36]. We check
the equivalence ofl) and(3).

Suppose first thdtl ) fails. If D is unstable then relativization @ produces
a suitablep. If D is not stably embedded ang(x, ¢) defines a subset dp
which is notD-definable, one can find a countable set of parametdbsomer
which there are@® y*-types (o* beingy with the variables interchanged).
Indeed, for any finite sed C D and anyy*-type p over A realized by a
conjugate ot there are conjugates ofealizing contradictory-types over a
larger finite subset ab; for this, we may suppose thatis satisfied by, and
take a 1-type oved in D which is split byy(z, ¢); then we haver(d;, ¢) and
—p(da, ¢) with d; conjugate tal, over A, and after identifyingl; with d» we
have realizations, ¢’ of contradictoryy-types by elements conjugatedo

It follows thaty* is unstable [Sh] [II:2.2 (1,2), pp. 30-31].

Now suppose€1) holds. LetA be a countable subset @& and M* an
elementary extension o81. As D is stably embedded, any-type overD
realized inM* is definable with a parametein D|AM*], and sinceD is stable
tp(e/A) is definable. Thus the types ovérare definable an(B) follows [Sh,
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11:2.2 (1, 8), pp. 30-31]. ]

Lemma 7.3.2. Let M be anX,-categorical structure which does not inter-
pret a Lachlan pseudoplane. df b € M with neither algebraic over the
other, then there is a conjugaté of b over a distinct fromb for which
a ¢ acl(b,b').

Proof. Write down a theory asserting that, as, . . . are distinct solutions to
the conditiongp(zb) = tp(zd’) = tp(ad), with b # b’. Our claim is that this
theory is consistent.

Suppose that this theory is inconsistent. Then for same is definable

from anyn distinct conjugates, . .., a, of a overd, by the conjunction of
the formulas:

(%) tp(a;, y) = tp(ab).

With n minimized (and at least 2) let= {ay,...,a,—_1} be aset (unordered)

of conjugates ot overb, chosen so thdt ¢ acl(a). By assumption, none of
thea; is algebraic oveb.
We claim that

1. a ¢ acl(b).
2. b ¢ acl(a).
3. bis definable from any two distinct conjugatesaobverb.
4. ais definable from any two distinct conjugateshaivera.

Granted this, we have a Lachlan pseudoplane with pointsigaig toa,
lines conjugate td, and incidence relation given lyg(ab).

Now (1) is clear,(2) holds by the choice oA (andn), and for(3) observe
that any two conjugates af overb will involve at leastn distinct conjugates
of a overd. Finally, for (4), if b andd’ have the same type ovaranda, a’
are distinct and have the same type awérthenb is definable fromaa’ in the
manner of(x) above, as i¥, sob = V'. |

Definition 7.3.3. A subsetD of a structure M is algebraically irreducibléf
forb € D we have

a € acl(b) — acl(@) impliesb € acl(a).

Lemma 7.3.4. Let M be Ry-categorical, letD be the locus of a 1-type over
¢ in M, and suppose thab is algebraically irreducible and\ does not
interpret a pseudoplane. If there is a definable stronglyiméi subsetD,
of D with defining parameteb, then finitely many conjugates 6f, cover
D.

Proof. Let @ be the locus ob over(). Define an equivalence relatidty(b, ')
on @ by the following condition:D;,, and D, differ by a finite set. By Lach-
lan’s normalization lemma [LaPP], for eaéhe @ there is aD,, ;-definable
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set agreeing withD, up to a finite set. Thus we may factor oitand as-
sume that distinct conjugates b, have finite intersection. Then the previous
lemma applies ta € Dy, — acl(b) andb, and as the conclusion fails, we find
that for such paira, b we haveh € acl(a). Now by the algebraic irreducibility
of D it follows thatb € acl(f). This yields our claim. |

Lemma 7.3.5. Let M~ be a reduct of the smoothly approximable structure
M. LetD be arank 1 0-definable set i ~, and suppose that for any finite
subsetB of M~ and anyas, as in D: acl(Bajas) = acl(Ba;) Uacl(Bas)
where the algebraic closure is takenin and in the sense o¥1~. ThenD
is stable and is stably embedded/n—.

Proof. Model theoretic notions are to be understoodhMifi- except where
otherwise noted. The proof ¢1) will proceed by induction on the rankof
D in M. By Lemma 7.3.1 the class of stable and stably embedded Oatbédi
subsets ofM ~ is closed under finite unions. Thus we may suppose Ehat
realizes a single type ovér

We show first that

Any infinite subset ofD which is definable il?M~ has rank: in M.

Suppose, on the contrary, that is of lower rank inM. Then by induction
D’ is stable and is stably embeddedA relative to a defining parameter for
D’. From M D’ inherits the following properties: it i8y-categorical, and
does not interpret a pseudoplane. By Lachlan’s theoremRLaRs R,-stable
and, in particular, contains a definable strongly minim&saiD; definable
in M. Then by the previous lemma finitely many conjugate®gfin M~
coverD and thusD is stable and stably embedded/jn—.

From this it follows that for any sequeneg, as, ... in D which is alge-
braically independent i —, there is a conjugate sequence which is indepen-
dentinM. Indeed, choosing the conjugates inductively, at stage have to
realize the type ofi,, overay,...,a,_1 in M~ (or more exactly a conjugate
type) by an element independent fram . .., a,,—1 in M. The locus of this
type is an infinite set defined i~ and hence of full rank in M, so this is
possible.

Now suppose we do not have stable and stably embedded M —, or
equivalently that we have an unstable formuyla:, y) which implies(z €
D). We then find a finite seB and typesp, ¢ over acl(B) such that both
p(x), q(y), ¢(x,y) andp(x), ¢(y), ~¢(x, y) have solutions with, y indepen-
dent overB. For this it suffices to take an indiscernible sequefageb;) such
that o(a;, b;) holds if and only ifi < j, letting B be an initial segment over
which the sequence is independent.

Now fix realizationsb_;, b; of ¢ independent oveB and setB’ = B U
{b_1,b1}. LetD’ = {z € D : p(x,b1)&—p(z,b_1)}. As M~ inherits the
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type amalgamation property froriv, by the corollary to Proposition 5.1.15
the setD’ is infinite. LetD” C D’ be the locus of a complete nonalgebraic
type overB’ in M.

Now letay, ..., a, be elements oD”, pairwise algebraically independent
over B’. We will show that there arg” p-types ovew,, ..., a,. By our basic
assumption orD the setd = {a4,...,a,} is algebraically independent over

B’and after conjugation we may suppose that these elemenitsd@gendent
in M over B’. For each bothy(a;,y)&q(y) and—p(as, y)&q(y) are con-
sistent, with rank equal trk(¢), so by the corollary to type amalgamation the
same applies to any combination of these propertiéwvases. This produces
the desire@” types.

Now let k& be the size ofcl(B’a) N D in M~ for a € D”. Then any set
of n elements ofD” containgn/k] pairwise independent elements and hence
allows 2"/ (-types. This is greater than the bound allowed by the cagolla
to Proposition 5.1.20. So we have a contradiction. ]

Corollary 7.3.6. With the hypotheses and notation of Lemma 7.3.D, @ar-
ries no nontrivial 0-definable equivalence relation, thkare is no induced
structure onD beyond the equality relation.

Proof. The additional hypothesis implies thatl(a) = a for a € D and hence
acl(X) = X forxz C D.

As we remarked in the previous proof, once we know thas stable, we
know that it isN(-stable and of Morley rank. By the Finite Equivalence
Relation Theorem, the Morley degreelisthat is, D is strongly minimal. As
aclis trivial on D, the claim follows. |

7.4 REDUCTS WITH GROUPS

Lemma 7.4.1.Let M~ be a reduct of a Lie coordinatizable structute, A
a locally definable abelian group of bounded exponeit M~—. Then we
have the following:

1. For any definable subsét of A, the subgroup generated I#is defin-
able.

2. If Ais O-definable inV~ of exponenp, then the duald* and the pairing
A x A* — F, are interpretable inM~. If A has no nontrivial proper
0-definable subgroups iM —, then eitherA* is trivial or the pairing is
a perfect pairing.

3. If Ais 0-definable and carries a 0-definable vector space straaiuer
a finite field K, then A* (the definablel},-dual) allows a O-definable
K-bilinear pairing s : A x A* — K with Trou(a, f) = f(a).
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Proof. These statements were proved in the Lie coordinatizabieegbas
Lemma 6.1.8, Proposition 6.3.2, and Lemma 6.3.4.

The first statement is inherited fro. The subgroup generated Byis
definable inM if and only if it is generated in a finite number of steps, and
this is equivalent to its definability im1—. Thus this first property passes to
reducts.

For the second statement we have a definable diralM, which, in partic-
ular, involves only finitely many sorts o¥1, and we are interested in the sub-
groupA* of M~ -definable elements. Let! be the subset oM ~-definable
elements which are definable from at masparameters. This generates a
0-definable subgroup afl and hence for large is all of A* in the sense of
M.

The proof of the third property is purely formal, given thesed. ]

Lemma 7.4.2. Let M be a structure, andd a 0-definable abelian group in
M~. LetH; (i =1,...,n) be afinite set of subgroups df and letD be a
finite union of cosets of thH;, such that

1. [H; : H; N H,] is infinite fori, j distinct;

2. D contains a coset of eacH; and if D; is the union of the cosets &f;
which are contained irD, there is no grougl” > H; commensurable
with H; for which D; is the union of cosets af.

Then the groups$; are acl())-definable in(A4; D).

Proof. This is an application of Beth’s definability theorem apgito the set
{H.,...,H,}, which we claim is implicitly definable. Let; be the number
of cosets ofH; contained inD; and letT be the theory of A, D) expanded
by axiomsy for the H;: they are subgroups with the stated properties, for
which D; is the union of exactlyr; cosets. Suppose we have two models
of the form (A, D, H) and (A, D, H') with the sam& A, D). For eachi, as
some coset off; is covered by cosets of thE}, by Neumann’s lemma we
have[H; : H; N Hj’-] < oo for somej. Similarly for eachj we can find a
corresponding; by the hypothesis on thH;, these two correspondences are
reciprocal, and after rearrangement this meansfhas commensurable with
H for all i. Then for eachi D; is the same set in both models and is a union
of cosets of bott; and H/, hence ofH; + H/; if this group extend$7; or H]
properly, we contradict (2); but (2) can be includedigince there is a bound
on the possible indepfl; + H! : H;]. ThusH; = H]. |

Lemma 7.4.3. Let M~ be areduct of a Lie coordinatizable structute, and
A a 0-definable abelian group im~—. Suppose thatl has no definable
subgroups inM ~ of M-rank strictly betwee and rky((A4). TheninM—,
A has rank 1, and every infinit& ~-definable subset o has full rank in
M.
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Proof. The first statement follows from the second.

Suppose the second statement fails, &nid M ~-definable inA with 0 <
rkat(D) < rkam(A). Letr = rkaq(D) be minimal. By Lemma 6.2.5 inM,
D is contained in a finite union of coset$ of subgroupdd; of A definable in
Mwith rk H; = r, and a set of rank less thanLet D be chosen to minimize
the number of distinct subgroups involved. Then the indidég : H; N H]
are infinite fori, j distinct.

We show thats = 1. By Lemma 6.2.55; = Stal{D N C;) has rankr, and
evidentlyS; < Hy; butrk H; = r, so[H; : S1] < oo. Leta be a generic point
of Stab (D N C4). Thena € H, anda ¢ H; for H; # H;, and furthermore
[a+ C;]NCy, = b for j, k distinct. LetD’ = DN (D +a); thenrk D’ = r and
up to a set of rank D’ is contained in the union of th€; N (C; + a), which
up to a set of rank less thanis the union of the cosets; for H; = H;. By
the choice ofD, the same applies tb and all H; = H coincide.

Fora € A the setD N (D + a) is M~ -definable and hence is of ramk
or finite. ThusS, = {a € A : k(DN (D + a)) = r} is definable inM .
Decomposé into loci of typesD; overacl(() in M. ThenS, = J;; Si; with
Sij ={a€ A:rk(D;N(D;j+a)) =r}. By Lemma6.2.5 each nonempiy;
is contained in a cosét;; of a subgrou;; of rankr, with C;; — S;; of rank
less than. As D is contained in a finite union of cosets Hf, also of rankr,
H and theT;; are commensurable.

Thus for some subgroup of finite index in H, S, is a union of setsA;,
contained in cosets af and differing from these cosets by sets of rank less
thanr. Takea, € Ay foreachk, and letYy, = (Ax —ax)N(A;—a;). ThenYy,
is generically closed under addition and inverse, and apglyemma 6.1.3,
Ay — Ay is a coset of a subgroup @fwhich differs fromT" by a set of smaller
rank; soA, — A; is a coset ofl". From all of this it follows thatS, — S, is
itself a finite union of cosets df. As the setS, — S, is definable inM —, the
preceding lemma implies that some subgroup commensurathielns also
definable inM~. This contradicts our assumption @n ]

Lemma 7.4.4. Let M~ be areduct of a Lie coordinatizable structukd, and
A arank 1 0-definable abelian group of prime expongeim M. Let A*
be the dual inM~ and letA be the dual inM. Then:

1. In M—, A* has rank at most 1.
2. Ifin M~ we have adl)) N A = (0), acl(@) N A* = (0), and A* # (0),
thenA* = A.

Proof

Ad1. We apply the preceding lemma. Suppgasehas a definable subgroup
B in M~ with B and A*/B infinite. Let B+ be the annihilator o3 in A.
Then A* /B acts faithfully onB+, so B+ is infinite. Similarly (A/B*, B)
form a nondegenerate pair, g B+ is infinite. This is a contradiction.
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Ad2. Let B be the annihilator i of A*. By hypothesish < A and hence
B = (0). Thus inM we have two perfect pairingsd, A*) and (A4, A), and
by the pseudofiniteness aff these dual groups coincide. ]

Lemma 7.4.5. Let M~ be a reduct of a Lie coordinatizable structufe, A
a rank 1 0-definable abelian group of prime expongimt M~, andD an
infinite 0-definable subset oA. Then for generic independedt, . . ., a}, in
A* there isd € D with (d, a}) prescribed arbitrarily.

Proof. By the last two lemmas every infinite1 ~-definable subset of* has
full rank and thus the sequened, ..., a’, is conjugate inM to a generic

'

independent sequence.tt. Apply Lemma 6.4.1 inM. ]

Lemma 7.4.6. Let M be a Lie coordinatizable structurel a definable group
abelian of rank-, and D a definable subset of of rankr whose complement
is also of rankr. Then there is a cosét of a definable subgroup of finite
index inA, and an intersectio®’ of finitely many translates dp, such that

k(D) =r; rk(D'NC) <.

Proof. We may assume that is settled over the empty set and tHatis 0-
definable. LetP be the locus of a 1-type overcl()). Then every definable
subset ofP is the intersection of with a boolean combination of definable
cosets ofA of finite index, and of sets of rank less than= rk(P) (Lemma
6.6.2).

We may find a generic elemegite A for which the rank ofP\ (D + g) is
r: takea € A\D genericp € P generic witha, b independent, ang=b — a.
There is a cose€ of a definable subgroup of finite index 4, for which
C N Pis contained inP\ (D + g) up to a set of lower rank, or, in other words,
(D+g¢g)NCN P hasrank less than Furthermore, adl is settled oveacl(g),
we may takeC' to beacl(g)-definable.

For each 1-typd’ overacl(()) choosegpr andCp as in the foregoing para-
graph so thaf),(D + gp) N (p Cp has rank less than. Taking thegp
independent over the empty set, both intersecfgp$D + gp) and(), Cp
will have rankr, and the latter is a coset of a definable subgroug of finite
index. This proves the claim. ]

Lemma 7.4.7. Let M be a Lie coordinatizable structurd, a definable abelian
group of rankr, and D a definable subset of of rankr whose complement
is also of rankr. Then there is an intersectian’ of finitely many translates
of D, which has rank: and is contained in a proper subgroup of finite index
in A. In particular, the subgroup generated B will be a proper subgroup
of finite index inA4, which is definable in the structufel, D).
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Proof. We apply the previous lemma to find a definable subgugf finite
index in A, a coseC of H, and a finite intersectioP’ of finitely many trans-
lates ofD, such thatD’ N C has rank less than TakeD’ such an intersection,
and suppose that the number of coset#lofvhich meetD’ in a set of rank
is minimized, subject to the constraint th&tD’ = r. We may suppose that
D = D’: soif D meetsD + g in a set of rank:, thenD andD + g meet the
same cosets dff in a set of rank:.

Let X C A/H be the set of cosets which mdetin a set of rank.. We may
supposdd € X.

We claim thatX is a subgroup ofA/H. We may takeD and H to be0-
definable. Tak€' € X and choose a representativior C' as follows. Fix a 1-
type overacl() whose locug” is contained inDN H, and letQ be the locus of
a 1-type overcl()) which is contained ilDNC. Take(a, b) € P x Q generic;
theng = b — a is generic, ang + H = C. Furthermore(g + D)NDNQ
contains(g + P) N @ (in particular,c) and hence has full rank. Thys+ D
also meets all the cosets i in sets of rankr, in other wordsX — g = X.
ThusX is a group.

LetX = B/Hwith H < B < A. AsC ¢ X, we haveB < A. In addition,
by our constructiorD\ B has rank less than LetS = D\B. AsrkS < r,
for anyr + 1 independent generic elemelrits, . .., h,+1 in A we will have
N;(S + hi) = 0; if clies in the intersection and is independent framthen
rk(h;/c) = r, andc — h; € S, a contradiction.

Thus if we replaceD by the intersectiorD’ of its translates by + 1 inde-
pendent generic elements Bf we will retainrk D’ = r, while nowD’ C B.

|

Proposition 7.4.8. Let M~ be a reduct of a Lie coordinatizable structuke,
Aarank 1 0-definable groupim~. If A* = (0) in M~, thenA is strongly
minimal and stably embedded.v~.

Proof. Supposing the contrary, there is a subBetf A which is definable in
M~ (from parameters il ), is infinite, and has infinite complement. By
Lemma 7.4.3, botiD and its complement have full rank iA. By Lemma
7.4.7 there is a proper subgroup of finite indeximvhich is definable inV1—;

so A* is nontrivial in M~ ]

Proposition 7.4.9. Let M~ be a reduct of a Lie coordinatizable structuke,
A a rank 1 0-definable group itM~. Suppose a¢f) N A = (0), and
acl(®) N A* = (0). Then there is a finite field and an ac{(})-definable
F-space structure od for which algebraic closure od and F'-linear span
coincide.

Proof. We let F' be the ring ofacl()-definable group endomorphisms 4f
which is a division ring and is finite by,-categoricity; thus it is a finite field.
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We show by induction on that anyn F-linearly independent elements 4f
are independent. Assuming the claim fgrsuppose that € acl(ay, ..., ay)
with aq, ..., a, independent. We claim thatis a linear combination of the
a;. Taking a conjugate afy, . . ., a, in M~ we may suppose that the elements
ai,...,a, are independent of maximal rank.vt.

Consider the locu® of ay, . . ., a,, a overacl(() in M, and letS = Stal{ D).
By Lemma 6.2.5k.S = rkD = n - rka(A), andD is contained in a coset
of S. LetT be the projection of' onto the firstn coordinates. Then the pro-
jection of D is contained in a coset df and thusk T = rk S. Therefore the
kernel is finite, and" has finite index inA™. We claim:

(+) Some subgroup’ of A” commensurable witl¥
is acl(P)-definable inM~.

For any M ~-definable subseX of A™ one sees easily by induction arthat
rkaq X = rk X -rkaq A. AccordinglyStah (D) in the sense oM is definable
in M~. One then continues as in the final paragraph of the proof ofrha
7.4.3. Thugx) holds.

In M, S" N S is alsoacl(p)-definable and induces an equivalence relation
on D with finitely many classes. A® is complete overncl(}) in M, it is
contained in a single coset 6fN S’ and thusS < S’ with [S” : S| < oc.
The kernel of the projection &’ to the firstn coordinates is also finite, hence
trivial by our hypotheses, and the image is of finite indexdifh, hence the
projection is surjective. It follows thaf’ represents a linear functionix) =
>, a;x; with coefficients inF'. As D lies in a coset of5, it lies in a coset of
S’, and the functiory — s(x) is constant orD, hence imacl(@) in M~, hence
0. Thush(a) = >, aja;. |

Lemma 7.4.10.Let M be X,-categorical and modular of finite rank\~
a reduct of M with acly(0) = acly-(0). If X,Y are sets which are
independent in\, then they are independent.inl .

Proof. If X,Y are dependent i~ then in M~ by inherited modularity
there isa € acl(X)Nnacl(Y) — acl(®) and by our hypothesis this holds also in
M. |

Proposition 7.4.11.Let M~ be a reduct of a Lie coordinatizable structure
M, A arank 1 0-definable group iot\{~, and suppose that a¢l(d) N
(M™)°9 = dcly- (D). If Ais settled ovef) in M, then it is settled oveld
in M~ and thus every definable subsethi~ is a boolean combination of
0-definable subsets, a finite set, and cosets of definablemyix

Proof. We must show inM~ that fora independent from an algebraically
closed set,
tp(a) U gtp(a/cn A™) =" tp(a/c)
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(all types are computed iv ~). We will show in fact that foanyc there is a
linearly independent-tupleb € A* for somek for which

(+) tpre- (a) Ugtp(a/b) = tp - (a/c)
for anya € A not algebraic oveb, c.

After absorbing those parameterdinvhich are algebraic overinto ¢, the rest
are independent overand are conjugate M~ to parameters independentin
M overe. Fora independent frona in M~ with gtp(a/c N A*) as specified,
we can conjugate over ¢ to an independent element i, then by type
amalgamation complete c to a, b, ¢ with the same 2-typep(ab) andtp(bc)

as in the original triplez, b, ¢ (that is, the version in which is independent
from ¢). This then determingp(a/c). Note that in the course of the argument
a portion ofacl(c N A*) was absorbed into.

We now begin the lengthy verification ¢f).

Let C be the locus of the type efover() in M~ and letk be the maximum
dimension oBcly (c)NA* forc € C. Let By, be the set of linearly independent
k-tuples in A*. We introduce the notationl ¢ for {a € A : rkyp(a/c) <
rka(A)}-

We consider the following two relation8—, ' on pairs fromBy x C.
E—((b,c), (V/,)) holds if and only if(b, ¢) is independent frontd’, ¢’) in
M~ and fora € A — acl(b, b, c,¢’), we havegtp(a/b) = gtp(a/b’") implies
tp(a/c) = tp(a/c’); E((b,c), (b, ")) holds if and only if(b, ¢) is indepen-
dent from(¥’,¢’) in M and fora € A — cl(b, V', ¢, "), we havegtp(a/b) =
gtp(a/b") impliestp(a/c) = tp(a/c).

Then easilyE holds if and only if E~ holds and the pairs involved are
independent intl. Now we show thai is a generic equivalence relation in
the sense 0§5.1. So take an independent tripte= (b,¢); 2’ = (V/,);
2 = (b",") in M, with E(z,2’) and E(z’, 2”) holding. We must show
E(z,2").

Takea € A—cl(b, V", ¢, ) with gtp(a/b) = gtp(a/b”). We claimtp(a/c) =
tp(a/c”). Letq = tp(a), r = gtp(a/b) = gtp(a/b”). By Lemma 6.4.1
q(z) U r(z/b") is consistent, of rankk q. By the corollary to type amalga-
mation (Proposition 5.1.15), the same holds for the type U r(x/b') U
tp (a/bb"cc”).

Takea’ € A—clp (b0’ cc’ ") realizing this type. Fronk (z, 2'), E(x’, «)
we find in M~ thattp(a’c) = tp(a’c’) = tp(a’c”), and thugp(ac) = tp(ac”).

Now we claim thatE'— is also a generic equivalence relation. ket’, z”
be independent io\{~ with £~ (z,2’) and E~ (2/,2"). We can conjugate
z,z’,z"” in M~ to an independent triple M and reduce to the case bt

Accordingly by Lemma 5.1.12 there is a 0-definable equivedarlationt’
in M~ that agrees wittE~ on independent pairs iB; x C. ThenE’ also
agrees withE on M-independent elements &}, x C. The domain of the
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relationE’ is D =:

{zx € B, xC : Thereisz’ € B, x C independent from:
such thatt' = (z,z') }.

Note that in this definition we may take independence in theeseither of\
or of M~ since these notions agree up to conjugatioMi .
We consider also the following set, which will turn out to ecide with D:

Dy=  {(b,c) e By xC:Forae A—cl(b,c),
tp(a) U gtp(a/b) determinesp,, (a/c)}.

Note that ifb includes a basis foacl(c) N A*, then asA is settled inM,
(b,c¢) € D;. ThusD; projects ontoC. FurthermoreFE has finitely many
classes otD; since forx € Dy, the class of/ E’ is determined by information
intp,,(z'). (This is clear first for independent paitsz’ using the definition
of £~ and then for general pairs.)

We will show shortly thatD = D;. First we check thab projects onta’.
Takec € C, andb linearly independent containing a basis &y (c) N A*.
Take a conjugatéd’, ¢’) in M independent fronib, ¢) in M. Then easily
E((b,c), (¥, ")) and thudgb, ¢) € D. By the same argumel; C D.

We will now showD C D;. Letx € D, andz’ independent fronx in
M, with E(z,z"). With 2 = (b, ¢) we must show thatp ,,(a) U gtp(a/b)
determinedp,,—(a/c) for a € A — cl(z). Leta,a’ € A — cl(x) satisfy
tpri(a) = tpp (@) = g andgtp(a/b) = gtp(a’/b) = r(x/b). By type
amalgamation we may choosead’ so that the triplesz; a’; bb'cc’ is indepen-
dent in M anda andd’ satisfy the same type ovéftc’. This then yields
tpr-(a/c) =tpp—(a/c) =tpp—(a’' /) =tpp—(a’/c). Thus(b, c) € D;.

Finally ,we provex). The relation’ has finitely many classes dm = D.
As acl(@) = dcl(#) any such clas®, is 0-definable inM~. Let (b,c) € D,
and suppose that our claim fails f@F, c). Fix a,a’ € A — acl(b, ¢), with
equal types inM~ and withgtp(a/b) = gtp(a’/b) but withtp,,— (a/c) #
tpr-(a’/c). Leto be an automorphism carrying to a. Thengtp(a/b) =
gtp(a/ob) buttp,— (a/c) # thp,- (a/oc).

Take(b', ¢') conjugate tdb, ¢) overa in M~ and independent frol ¢, ob, oc.
Then

gtp(a/ob) = gtp(a/b) = gtp(a/b’)
andtp,,—(a/c') # tpy-(a/oc). As (ob,oc) and (b'¢’) are independent,
this shows they are inequivalent with respectio However, these pairs are
conjugate inM—, a contradiction. ]

Corollary 7.4.12. Let M~ be a reduct of a Lie coordinatizable structufd,
A arank 1 0-definable group i ~. If A is settled ovef) in M then itis
settled inM~ over a finite set ofM-algebraic constants.
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Proof. By the preceding resuld becomes settled overcly () and hence
over the collection of definable subsetsAfvhich belong taacly(0); there
are finitely many such. ]

7.5 REDUCTS

In the present section we show that reducts of Lie coordiadtstructures are
weakly Lie coordinatized; we may lose the orientation. Westaeal mainly
with the primitive case (meaning there is no nontrivial Gitkegble equivalence
relation).

Lemma 7.5.1. Let M be a structure realizing finitely marstypes, and: €
M. Letacla) be computed itM 4. Then the lattice of algebraically closed
subsets of a¢h) is finite.

Proof. Let &, be the collection oti-definable equivalence relations ol
which have finitely many classe€, = |J{M/E : E € &,}, and(, the
collection of subsets aM which are unions of subsets 6f. Viewing C.
as a subset oM“4, we havel, C acl(a), and it suffices to show that for
a € acl(a) we have

(%) o € acl(acl(a) N C,).

Let o € acl(a) and lety(z, a) be a formula which defines a finite sdt
containinga.. LetS = {b € M : p(a,b)}, which we view as an element of
Me9, and letAs = {3 : Vz € S ¢(8,z)}. Then easilys € dcl(ar) N C,, and
asa € Ag C A, we havex € acl(.S). This provegx) (and a little more). 1

Remark 7.5.2. When M is Xy-categorical, the foregoing lemma applies to
any element of M*°4. (For another approach, see the note at the end of this
section.)

Proposition 7.5.3. Let M be a weakly Lie coordinatized structurdg— a
reduct of M, and D a primitive, rank 1, definable subset.8f~. ThenD
is a Lie geometry forming part of a Lie geometry stably embeddd M —;
this geometry may be unoriented, and may be affine.

Proof. As D has rank 1acl gives a combinatorial geometry dn; the same
holds over any finite set.

Suppose first thadclg gives a degenerate geometry over any fiditteor in
other words, thaacl(A, B) = (J,c 4 acl(a, B) in D. In this case, by Lemma
7.3.5,D is a trivial structure, and is stably embedded.

Now we deal with the nondegenerate case. {et} be a set of represen-
tatives for the primitive rank &cl(0)-definable sets i, up to 0-definable
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bijections, withD, = D, and letD> = J, D;. We claim thatD*°, with acl,
is a projective space (of infinite dimension) over a field;fibkl will be finite
by the previous lemma, applied as indicated in the subsegeerark.

We show first that some line has more than two points. Take,, c3 in
D and B a finite set such that; € acl(cicoB) — [acl(c1B) U acl(c2B)).
By modularity there is: € acl(cic2) N acl(csB) such thate;c; andes B are
independent ovee. Thenrk(e) = 1 and we may take € D>®. Ase €
acl(eq, c2) — [acl(cq) U acl(cz)], this suffices.

Now we show that coplanar lines meet. Takeas, as, a4 in D> pairwise
algebraically independent wittk(a;aza3a4) = 3. Takee in acl(ajasz) N
acl(asa4) such thati; ae andasa4 are independent over Then agaimk e = 1
ande may be taken irD>°.

Thus D*° is an infinite-dimensional projective geometry with finiteds,
and there is a vector space model, that is a mapy” — (0) — D in which
linear dependence Wi corresponds to algebraic independenc®ifi. We do
not claim that this vector space is interpreted globallynie todel.

Let V; = m—1[D;], thought of as a new sort for eachWe enrichM~ by
the V; with the relevant structure, taking to be the restriction ofr to V;,
and restrictingt- and scalar multiplication to a family of relations on the new
sorts. The expanded structure will be called"; it can be thought of also
as areduct1*~ of an expansion of the original structute by the new sorts
and relations. Here\1* is a finite cover ofM by sets of ordery — 1; any
automorphism ofM overacl(f)) extends to an automorphism @ff*. Thus
M* is weakly Lie coordinatizable.

By Lemma 7.4.1V; lies in a0-definable rank 1 groug in M~". We may
suppose thatl has no 0-definable finite subgroups. Our claim is that

(%) A is part of a stably embedded Lie geometry\iti—".

Assuming(x), D forms part of an embedded Lie geomethyn M~; the
induced structure may be computedd—". Furthermore, the geometry in
M~" is algebraic ovelJ; A is algebraic overD and if for exampled* is
nontrivial then it is algebraic over its projectivizatiomhich is inJ. Thus.J
is stably embedded i ~* anda fortiori in M~: fore € M~", tp(e/A)
is definable by parameteusc A, whose type ovey is algebraic and hence
definable. Thus it suffices to prove).

Suppose first thatl has no 0-definable proper subgroup of finite index. If
A* = (0) in M~" then Proposition 7.4.8 applies. Otherwist, is the full
definable linear dual ta!, also inM*, by Lemma 7.4.4A andA* are settled
over some parameterin M*, hence inM~" settled over some parameter
algebraic inc by the corollary to Proposition 7.4.11. After enlarginfurther
we may suppose thatcl(c) N (A, A*) also carries a nondegenerate pairing
and lies indcl(c). By Lemma 7.4.5 and Proposition 7.4.9, Proposition 7.1.7
applies.
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Now suppose thatl does have a proper 0-definable subgroup of finite in-
dex; let B be the least such. Then by the preceding paragfaphpart of a
stably embedded Lie geometfy, B*, @), some components of which may
be empty. A is generated by a complete type whose imagd jilB must be
a single point. Thus the dimension 4§/ B is 1. Then(A4, B, B*, Q) may be
viewed as an affine geometry, by Lemma 2.3.17(1), With: (. [ |

Below we give another treatment of the degenerate case oaveoan dif-
ferent lines.

Proposition 7.5.4. Let M~ be a reduct of a Lie coordinatized structure. Then
M~ is weakly Lie coordinatized.

Proof. M~ is Ny-categorical, has finite rank, is modular, and enjoys the fol
lowing additional property:

If a,b € M, a ¢ acl(b), then there is’ € acl(a) of rank 1 ovem.

This is contained in Lemma 5.6.6. Thus for ang M we can find a chain of
“coordinates’ay, . . ., a, Of finite length witha,; belonging to a rank 1 primi-
tive acl(a;_1 )-definable seD; anda,, = a. By Proposition 7.5.3; is part of
a stably embedded Lie geometry and after interposing thebeddc parameters
needed to define thB; we obtain a weak Lie coordinatization. |

We now return to the degenerate case, indicating a treatmasetl on weaker
hypotheses. We refer here to the preprint [HrS1], whiclohticed thes; rank
on formulas as the least rank subject to:

(¥) S1(p) > n iff there are(b;);cn indiscernible over a set of definition for
v, and a formulay’(x, y), such that
1. Si(p&y'(z,b;)) > n for eachi;
2. Forsomék: S1(¢'(x,b1)& ... &¢'(x,by)) < n.

The independence theorem can be proved for theories of Saitank by an
argument isomorphic to the one which will be given at the eingBoa.

Lemma 7.5.5. Let M be anX,-categorical structure of finite rank with amal-
gamation of types, not interpreting the generic bipartitegh, and letM ~
be a reduct ofM. Let D be a primitive rank one definable subset/in—
whose geometry is orthogonal to every primitive rank 1 setsglgeometry
is nondegenerate; in particulab is degenerate over any finite set. Then
is stably embedded and trivial.

Proof. Any rank 1 subset oM~ will inherit from M the property of finite
Sp-rank, and hence satisfy the type amalgamation propertiHb§1].

To see thaD is stably embedded and trivial we will show that for any finite
B, D remains primitive oveD — acl(B). For this we may use induction on
rk B, and thus by analyzin@ we may suppose th& = {b} has rankl. Let
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D’ be the locus ob over(), a rankl set. LetE be ab-definable equivalence
relation onD — acl(b). As D is degenerate this will not have finite classes,
so it will have finitely many infinite classes. Suppaseas € D — acl(b)
are distinct and equivalent, whil€ , a, are inequivalent. Theh, ay, a2 are
pairwise independent, as dre}, a, and hence independentdlf, as, anda
all have the same type ovacl(b) then amalgamating types owecl(b) we can
find a}, a3, a}" realizing this type withp(bata3) = tp(bayas) = tp(baia)™),
andtp(basa;’) = tp(ba)al). Thena; is E-equivalent toa; anda}™ but they
are notE-equivalent to each other, a contradiction.

Thus D — acl(b) splits into at least two types ovecl(b). In particularD
carries a nontrivial equivalence relation definable fromghtacl(b) (or a part
of it meeting finitely many sorts), viewed as a single elentdnt1— Y. This
being the case, we may replaf¥ by a primitive quotient, and the argument
of the previous paragraph yields a 0-definable relak¢n, y) on D’ x D such
thatR(b, y) splits D —acl(b) forb € D’. We view(D’, D) as a bipartite graph
with edge relatior. By our hypothesi®)’ also carries a degenerate geometry.

As R(b,a) and—R(b, a) both occur witha ¢ acl(b), by amalgamation of
types any two finite subsets @ can be separated by an element¥f and
similarly for D’ over D. Thus this is the generic bipartite graph, a contradic-
tion. |

We now return to Theorem 7 GfL..2.

Theorem 7.5.6 (Theorem 7: Model Theoretic Analysis)

The weakly Lie coordinatizable structurdd are characterized by the
following nine model theoretic properties.

LC1. Ry-categoricity.

LC2. Pseudofiniteness.

LC3. Finite rank.

LC4. Independent type amalgamation.

LC5. Modularity of M*4,

LC6. The finite basis property for definability in groups.

LC7. Lemma 6.4.1: we call this “general position of largedefinable
sets”
LC8. M does not interpret the generic bipartite graph.

LC9. For every vector spac¥ interpreted inM, the definable dual™
(the set of all definable linear maps &) is interpreted inM.

Proof. One has to check in the first place that these propertiesiholgakly
Lie coordinatizable structures. These statements have pewed in vari-
ous earlier sections. Note however that the properties Jla@€fl (LC7) were
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treated in the Lie coordinatizable context. As noted at thtset in§6.3, any

group interpreted in a weakly Lie coordinatizable struetisralso interpreted
in a Lie coordinatizable structure, so these propertiesabply in the weakly
Lie coordinatizable context.

For the converse, observe that we have listed here most pftiperties used
in the analysis of reducts of Lie coordinatized structuvgt) the noteworthy
exception of aspects of the theory of envelopes. We neecetthae the proof
of Proposition 7.5.4 can be carried out in this context.

This proposition depends on Proposition 7.5.3 and Lemma&5tbe lat-
ter holds in our context, so we need only concern ourselvés Rrioposition
7.5.3. The use of Lemma 7.3.5 in the proof of that propostiioes not fit into
the present context, and it must be replaced by Lemma 7.&irfg tiypothesis
(LC9) to see that the orthogonality condition in Lemma 7\gilbhold for any
geometryD which is degenerate over every finite set. In a wider conieist,
possible for a set to act as a generic set of linear maps onersgpace, giving
a bipartite structure reminiscent of both the generic hifgagraph and the po-
lar geometry; in this case, one would have a degenerate ggonanorthog-
onal to a linear geometry, and, in fact, embedded in the daérdual (which,
however, would not itself be interpretable.) Condition @@nd nonorthogo-
nality imply that over some parameter sat|( D) contains an infinite definable
group; we leave the details of this (involving the definitmfrorthogonality as
well as the nature of the definable sets in a nondegenerateagsg to the
reader.

So it remains to verify that the rest of the proof of Propositr.5.3, which
makes use of a large body of machinery, is available in théesbof proper-
ties (LC1-LC9). The ingredients of Proposition 7.5.3, &ffam (LC1, LCS3,
LC5), are the following: a particular finite covering 8fl —; Lemmas 2.3.17
and 6.6.2; Propositions 6.6.1 and 7.1.7; the contend3 &f.

Properties (LC1-LC5) are inherited directly by the covenogerties (LC6,
LC7) can be deduced by showing that the groups interpretdteicover are
also interpretable inMi~. This is because each soit;) in the cover is in-
terpretable in (part of) the underlying projective geomyetiix two linearly
independent vectors, , v2 and associate with any linearly independerthe
pair (v — v1), (v — va).

Lemma 2.3.17 simply holds, and Lemma 6.6.2 holds for the caseled
by (LC7). Proposition 6.6.1 is assumption (LC6) and Projpasi7.1.7 was
proved under our assumptions. So it suffices to reexafifine Lemma 7.4.1
may be replaced by Lemma 6.1.8 in the present context. Thainémy lem-
mas, down to Lemma 7.4.7, are available in our context; iateltemma 7.4.3
depends on lemmas §36.1-6.2 which were proved under sufficiently general
hypotheses. Then the proofs of Propositions 7.4.9 andT¢ad be repeated.
We do not need Proposition 7.4.11 since we assume (LC6). ]
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Note. The following alternative route to the finiteness statemereded for
the proof of Proposition 7.5.3 (Lemma 7.5.1 and the subs#qeenark) has
its own interest:

Lemma 7.5.7. If M is saturated and. € M, then every algebraically closed
subset of ach) is of the form adla) N acl(a’) for some conjugate’ of a in
M.

Proof. Let A C acl(a) be algebraically closed. We need to check the consis-
tency of the following theory, involving a new constardnd constants for the
elements of4:

tp(c/A) =tp(a/A); b ¢ acl(c) (for b € acl(a)\ A).

For this it suffices to check for each finitedefinable subseB of acl(a) that
there is an automorphismof M fixing A such that

(%) (B\A)N (B\A)* =0

Let G = Aut(M) 4, the pointwise stabilizer ofl in Aut(M). Forb;, by €
B\A, let G(by,b2) = {a € G : bY = bo}. Thisis a coset o7y, , and if G
is covered byG (b1, b2) asby, by vary overB\ A, then by Neumann’s Lemma
one of the subgroup&;, (b € B\A) has finite index inG; but this means
b € acl(A) = A, a contradiction. Thus conditigix) can be met. |
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Effectivity

8.1 THE HOMOGENEOUS CASE

If M is afinite relational language l&¥1°°, or more properlyM ¢4, be the
language augmented by the quantifigf “there exist infinitely many,” and
expanded so as to apply to imaginary elements.

We consider the following effectivity problems.

Problems

(A) Given a finite relational languag#! and a sentence in the language
M=, is there a stable homogeneous model (of typeof ?

(B) Given a finite relational language and a finite set of faden isomor-
phism type€, consisting of isomorphism types of finitd-structures, is the
corresponding classl(—C) an amalgamation class with stable generic struc-
ture? Here A(—C) denotes the class of finite structures omitting the strestur
of typeC.

A restricted version of Problem A was considered by Knigltt bachlan in
[KL], and treated in the binary case. As there is an a priotirizbon the rank
in this case, the question is one of the consistency of ayhadhe extended
language, hence a negative answer will have a finite veiificat

The idea of [KL] is to reduce the positive case to Problem BAl1s a stable
homogeneous model satisfyinpgandC is the class of minimal isomorphism
types of structures omitted by, thenC is finite, as a consequence of the
quasifinite axiomatizability. ThusS is a finite object witnessing the existence
of M, and the problem is to recognize

If N bounds the sizes of the constraint€irthen the quantified* is equiv-
alentto3", whereN* is so large that evenj-structure of sizeV* contains
an indiscernible sequence of size This reduces the problem to the first or-
der case. A¥ determines a “quantifier elimination” procedure—where the
quotation marks reflect a bad conscience in cases whereithenefact, no
associated homogeneous structite—the question of the truth a@f is decid-
able, modulo the fundamental question stated as Problem B.

The variant of Problem B in which we drop the stability regairent is more
general than Problem B and remains open. The problem of amalion
for relational structures reduces to the case of structdres!s extending a
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common substructurd, by a pair of new points;; € A; andas € A,
but this problem remains open except in the binary case,evdéirect check
produces a finite procedure.

We will give a solution to Problem B. Le#t be the hypothetical structure
whose set of constraints is specified. The rank oM is bounded by the
number of 2-types and can therefore be computed using dieastimination.
An inconsistent outcome at this point simply means thatloes not exist. So
assume the rank of the still hypothetical structiwreis determined a%. For
any definable equivalence relatiéhon M2 whose definition involves at most
2k parameters, we decide similarly whether the quotient isefirdind if it is
finite we determine its size. Letbound the size of the finite quotients of this
type. Then for any formula(x, y; Z) one can bound the rank and multiplicity
of p(z,y; B) as a function ofp(B). Do so for|B| < 2k. Letp be the arity of
M.

Lemma 8.1.1. Let M beX,-categorical and¥y-stable, and coordinatized by
degenerate geometries. Then

1. Foralla e MandA C B C M, ifrk(a/B) < rk(a/A), then for some
b € B we have rka/Ab) < rk(a/A).

2. Foralla € MandA C M, there is4; C A with rk(a/A;1) = rk(a/A),
and|A;| < rk M.

Proof. Evidently it suffices to deal with the first point, and we maypgose
that B — A is finite. We will proceed by induction ork(B/A). Clearly,
rk(B/A) > 0.

Forb € B, if b ¢ acl(A) then choosé’ € acl(b) with rk(y’/A) = 1, and
otherwiset = b. SetB’ = {b’' : b € B —acl(A)}. As the geometries are
degenerate, ifk(a/B’) < rk(a/A), then there i9 € B with rk(a/Ab) <
rk(a/A) and this yields the claim. Ifk(a/B’) = rk(a/A) thenrk(a/B) <
rk(a/B’) andrk(B’/A) < rk(B/A), so induction applies, yielding

rk(a/B'b) < rk(a/B'")
for someb € B. Letb], ..., b, be a maximal subset @&’ which is indepen-
dent fromb over A. We are assumingis independent frorty,, ..., b/, overA,

but not fromd!, ..., b/, b. By the degeneracy of the geometri&éa/Ab) <
rk A, as desired. |

Lemma 8.1.2. Let M be stable, finitely homogeneous, for a language of arity
p. Leta,b € M, Ay C A C M, withrk(ab/A;) = rk(ab/A). Then there is
a subsetd, C A containingA; such that
|A2 — Aq| < p - Mult(ab/A;) and Mul{ab/As) = Mult(ab/A).

Proof. We proceed by induction oMult(ab/A;). We may suppose that
Mult(ab/A) < Mult(ab/A;). Take two distinct types ovet extendingp(ab/A;)
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and a set of size at mosp over which they are distinct. Working ovel; C
we conclude by induction. ]

Definition 8.1.3
1. We consider amalgamation problems of the fdrnb,, b2), signifying
that a finite relational languagé\ is specified A’ = Ab; and A” = Abs
are specified finiteM-structures agreeing od, and we seek an amalgam
Ab1bs which should omit some specified class of forbidden strastiir\We
are looking for an amalgam in a stable homogeneous strucaime it is
assumed that the preliminary analysiskgfu, and so on, has been carried
out in advance as described above.
2. Thestandard amalgamation procedfwe such amalgamation problems
(4; b1, b2) under the specified conditions is the following:

() Find Eq, E5 C A with |E;| < k and rk(b;/E;) minimized. (For|E;]|
of this size, rkb;/FE;) has been given a definite meaning.) det =
Ei U Es.
(i) For X C A containingA,, let A(X) be the set of amalgams 6fA4;,
ba A1, and X over A; which omit the specified forbidden structures and
satisfy

(*x) ForY C X,if |Y]| < kthenrkbiba/Y) > rk(biba/A).

These amalgams are not required to be compatible tyith.

(iii) Check whetherA(X)| < pforall X C A with A; C X such that
|X — 4] < p(4). If not, then the procedure fails (and halts) at this
stage.

(iv) Check whether for all subsefs C Y C A with A; C X, such that
|X — Ai] <2k+p-(4) and|Y — X| < 2p, each element oft(X)
extends to an element gf(Y"). If not, fail and halt.

(v) At this point, if the procedure has not failed, thet{4) < p. Run
through the possibilities itd(A); if one extendsdb, and Abs, the pro-
cedure succeeds.

Lemma 8.1.4. LetC be a finite set of constraints (forbidden structures) for the
finite relational languageM of arity p, all of size at mosiV. Letk, i be the
invariants associated to a hypothetical stable homogeseé@atistructure
M with constraintsC, that is the rank and a bound on the sizes of finite
quotients ofM? by equivalence relations definable frak parameters,
computed according to the canonical quantifier eliminatwocedure from
C.

1. If there is, in fact, a stable homogeneats-structure with finite sub-
structures exactly those omittiidg then the standard amalgamation pro-
cedure will succeed for any appropriate ddtd; b;, b2).
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2. If the standard amalgamation procedure fails fod, Ab;, Abs), then
there isA’ C A of order at mostk + p - (%) + p - max(p, N) for
which it fails.

Proof. The first point has essentially been dealt with in the previemmas,
modulo the basic properties of independence. For the seadadure at stage
(iii) or (iv) produces a corresponding subset of size at rabstp- (1) +2p over
which the procedure fails. If the procedure continues sssfadly to the final
step, thenA(X)| < p forany X containingA;. Fix a subsetd’ of A contain-
ing A4; such that any two possible amalgams differ4fin; b2, and|A(A")] is
as large as possible. We may také| < 2k + p(%). ForY containing4’ with
|y — A’| < peachelementafi(A’) extends uniquely tol(Y). With step (iv)
this gives a unique extension satisfying the definitiond¢fd) apart from the
omission ofC. Those which omit the forbidden substructures are incoibleat
with Ab; or Aby. Thusy sets of sizeV or p suffice to eliminate all potential
solutions to the standard amalgamation procedure, dter ]

Proposition 8.1.5. Problem B is decidable. Hence Problem A is decidable.

Proof. Compute the putative rarikand the invariant.. Attempt the standard
amalgamation procedure for &li; by, b>) with | A satisfying the bound of the
previous lemma. If this fails then the desired structuresdas exist. If it suc-
ceeds, then there is at least a homogeneous struttcerresponding to the
specified constraints. Furthermore, the quantifier elitngprocedure used

is correct forM, and so, in particular, its rank has been correctly computed
and it is stable. ]

8.2 EFFECTIVITY

We continue in the spirit of quasifinite axiomatizabilitydaAiegler's Conjec-
ture, with attention to issues of effectivity. Recall thetion of a skeletal type
and skeletal languagk,, from §4.2. From the results ig4.5 we may derive

Lemma 8.2.1. With the languagéd. and skeletal languagés fixed, there is
a finite setX (L, L) of pseudo-characteristic sentences such that

1. If M s aLie coordinatized -structure with full skeletoiM ., then some
pseudo-characteristic sentengas true in M.

2. With M, x as in (1), every proper model gf is isomorphic to an enve-
lope of M.

3. Xy is recursive as a function df and L.

The prefixpseudds called for as no claim is made thalt of these formu-
las actually have models. This is the price to be paid, ihiifor requiring
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effectivity.

Proof. This is proved in Proposition 4.4.3 with a potentially in#nsetX.

The finiteness (without regard to effectivity) is in Propmsi 4.5.1, by com-
pactness. Paying attention to the effective (and exphgit)matizability of the
class of structures with the given full skeleton, the effeist follows from the

same argument (via an unlimited search until a proof of abiétdisjunction
is found). ]

Evidently, this is not satisfactory, and we wish to prunetbé bogus char-
acteristic sentences, preferably carrying along some igidemation about
dimensions as well, as in the following definition.

Definition 8.2.2. Assumd. and L are given.

1. Askeletal specificatioi for Ly, consists of a skeletal type augmented by
dimension specifications for each of the geometries of timesfo* = n”;

“>n"; or* = 0o, where n stands for a specified finite number ( is
acceptable, of course). The specificatiomdsnpletelf “ > n” does not
occur.

2. If A'is a skeletal specification, thég, (L, Lsx, A) is the set of sentences
from X, (L, Ls) that have a modeM with full skeleton satisfying the
specificationA.

3. If A is a skeletal specification, theh> denotes itsnost general com-
pletion each specification> n is replaced by the specificatiea co.

By definition, Lemma 8.2.1 holds in a sharper form 37 (L, Lg, A). We
claim further:

Proposition 8.2.3. X is effectively computable, as a functionlof Ly, and
A.

This requires substantial argument. We will use inductiantiee height
of the Lie coordinatization. The remainder of this sectisrdévoted to that
argument. In particularl., Ly, andA are given. However, we first make
some reductions.

First reduction

We replaceA by A* (so that the characteristic sentences become complete,
modulo the underlying theory).

To justify this reduction, note that for anf, X,\X; is in any case recur-
sively enumerable since it consists of sentences whicaomsistent with the
base theory. The problem is to enumerXteeffectively. However, each for-
mulay in Xy (L, Lg, A) is derivable from another i (L, L, A’) with A’
complete (working always modulo a background theory). fices to handle
all the A’ (uniformly), and as\’ = A’* the first reduction is accomplished.
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Second reduction

We assume thaM is nonmultidimensional and has no “naked” vector
spaces.

The point is that these amdnservative extensiong a characteristic sen-
tence holds in som@, then that structure can be expanded to a nonmulti-
dimensional one in which, furthermore, every vector spamaes equipped
with an isomorphism to its definable dual. CompgBe3. If we can recognize
the characteristic sentences in this context, then we cdrofie that implies
the original one (and find the derivation as well). This rgtircchanges the
skeletal type, in an effective way.

Note that if we happen to be interested only in the stablegoaye at this
point the proof leaves that category in any case.

To take advantage of the nonmultidimensionality it is caneat to relax
the notion of skeleton, allowing the bottom level to consikfinitely many
orthogonal Lie geometries sitting side by side. At highgele we may restrict
ourselves to finite covers and affine covers, with the dualaffart present and
covering a self-dual linear geometry lying at the bottom.

As the first level presents no problems, we have only to detl thie ad-
dition of subsequent levels, in other words with finite orredficovers. The
problem is the following. IfM is the given (hypothetical) structure, and -
is the structure obtained froov by stripping off the top level, then assum-
ing that we can effectively determine what the possibditier M~ are, we
must determine what the possibilities fof are. Actually, the emphasis at the
outset is on pseudo-characteristic sentences, which yhb#sibly contradic-
tory have at least the virtue of actually existing, rathantthe more nebulous
M and M~, which may not in fact exist. Still the criterion that a pseud
characteristic sentenggbe acceptable (relative to a given specificationis
that there should be an associated already known to be acceptable, and
hence associated with a structuv¢—, such thaty~ “says” (or rather implies)
that M~ has a covering of the appropriate type, with the propgrtyso we
may concern ourselves here with a reduction of the propasfia hypothetical
M tothose ofareaM .

The Case of a Finite Cover

We haveM ~, or equivalently a characteristic sentengce for it (which is
complete when supplemented by the appropriate backgrtwot including
the relevantA — extracted fromA). We have also a characteristic sentegce
putatively describing a finite cove¥t of M~. Here the details of the con-
struction of these sentences, in the proof of quasifiniteragtizability, be-
come important. The point is thgtgives a highly overdetermined recipe for
the explicit determination of all structure ovt, proceeding inductively along
an Ahlbrandt-Ziegler enumeration; if one begins with thhactire M, one of
course writes down the facts ifvf, but to capture all possiblg is a matter
of writing down all conceivable recipes, most of which prasibly have inter-
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nal contradictions. The problem is to detect these corttiadis effectively by
confrontingy with M~

Let K be a bound for the various numbers occurring in the proof opBsi-
tion 4.4.3, say{ = 2k + max(k*, k™) + 1. Letd be the Lowenheim-Skolem
number associated with" in M~; i.e., anyK elements ofM~ lie in a d-
dimensional envelope in ~ (effectively computable, by Lemma 5.2.7). Test
x by testing the satisfiability of in a finite cover of such d-dimensional en-
velope (by a search through all possibilities). Here we ghemphasize that
x is of the specific form given in the proof of Proposition 4,48 that if true
in someM it would pass to this particular envelope.

Conversely, ify passes this test, we claim that the constructionbfac-
cording toy succeeds. Running over an Ahlbrandt—Ziegler enumeration o
M, at each stage we have covered certain elementgl ofby appropriate
finite sets with additional structure, and have the task eédag one more el-
ementa of M~ by a finite set, and specifying its atomic type over evenghin
so far.

Look for a formulad(x, y), wherez refers to the elements of the fiber being
added, ang (of length at mosk) refers tok previously constructed elements,
with the following properties:

1. x implies that such am exists (more on this momentarily),
2. the multiplicity ofz over everything so far is minimized, accordingito

Let us consider (1) more carefully. We require previouslgstoucted ele-
mentsz and a valid atomic formula(y, z), such that

X = Vy,zlp(y,z) = 3x0(z,y)]

We then hope to see the following:

3. For ally’, there arez’ such thaty together with the atomic type of
v,y ,z will imply the atomic type ofr,y’.
4. After addingr as specified, the universal partpholds.

If any of these hopes are disappointed, then the failure tisessed by at
mostK elements and hence is also visible in the envelope with déinesd.

One of the simplifying features in this case is that “eveiryghis algebraic.”
Inthe case of affine covers, the behavior of algebraic coisLthe hypothetical
cover is one of the sticking points. For this the affine du&lakpful.
The Case of Affine Covers

We first shift the notation slightly. We may suppose that thaléhffine part
of the cover is absorbed intb1~, since it is a finite cover of a linear geometry
in M~—just apply the previous case.

The following remark may be useful as motivation. Since thaldffine
partis presentioM —, M is rigid overM ~; that s, the extension is canonical,
but not definable. Questions of multiplicity do not arised dne question of
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existence ofM is transformed into a different question: does¢haonicalM
have the posited propergy? It will suffice to show that this can be expressed
in M~

We fix the following notation:VV. = V* is the linear geometry i —; A*
is an affine cover (with componenty’, each a finite cover of *); A is the
affine cover, inM but not inM~, with components!, dual to A;.

The elementa € A, will be identified with hyperplanesid; which project
bijectively ontoV*. From this point of view, the problem is one of elimination
of a second-order quantifier (for such hyperplanes) frontethguage oM —.

Lemma 8.2.4. Let M, be the reduct ofM including all structure onM~
(which we take to include the affine dual$) as well as the geometrical
structure onA: affine space structure of; overV, and duality withA;.
Then this is the full structure oM (all O-definable relations remain 0-
definable).

Proof. It suffices to show that if two tuples, b have the same types in the
reduct, then they have the same types. Take an envélopantaining them
and view the affine elements in b as predicates (for hyperplanes). These
predicates are conjugate under the automorphism group ofthe top layer

is stripped off) by assumption, and any such automorphigenels to one of
E. Thusa, b have the same type in the full language. ]

Lemma 8.2.5. Let M~ be a countable (or hyperfinite) Lie coordinatizable
structure with distinguished sorts, V, VV*, A* with the usual properties;
e.g., A* is a T-parametrized family of affine dual covers 6f (or more
generallyV;*), possibly with additional parameters fixed. Then there is a
cover by an affine sot = | J. A; compatible with the affine dual4;, in
the geometric language of the previous lemma, and its thsoapiquely
determined.

Proof. For the existence, we may assuit is nonmultidimensional (as we
have been, in any case) and does not have quadratic gemr(@tseffices to
adjoin some parameters). The issue of orientability fallaypand M can be
thought of as nonstandard-finite. In this case, existeritmafs from the finite
case: adjoin all internal linear sections for the mdgs— V,* in a nonstandard
universe, and this is locally Lie, hence Lie.

For uniqueness of the theory, fix a formula, and shrink a gaféne expan-
sion to a finite envelope large enough to test the truth of tnmdla; at the
finite level the expansion is completely canonical, so thenam is determined.

|

Lemma 8.2.6. In the context of the previous lemma, the theory of the affine
expansionM can be computed from the theory.bf~.
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Proof. Follow the line of the previous argument. One needs to deter the
theory of a finite envelop@1,. This is the canonical expansion of a finite
envelopeM ;. Its theory can be determined by inspection. ]

8.3 DIMENSION QUANTIFIERS

In this section we consider enhancements of first order legicessing numer-
ical properties of geometries in large finite (or nonstadefarite) structures.
That some such expansion is necessary to carry through #hesanof Lie co-
ordinatization in a definable and effective way is made dbgathe following
example given in [HrBa].

Let V' be a finite dimensional vector space over a finite field, aneanlet
be distinct nonnegative integers. L&} ,, be a free cover of the cartesian cube
V3 by finite sets of sizes: or n; the triple(vy, v, v3) ill be covered by a set
of sizem if v = v1 + v9, and by a set of size otherwise. LetM (m,n) be
the reduct ofV,3 ., in which the vector space structure Wfis forgotten. We
can view this as having sort andV/? in addition to the covering/, with the
covering mapr : M — V3 and the projections frorfr® to V. The collection
M (m,n) should be thought of as a uniform family of examples, but guev-
ery of the vector space structure from the covering is ndioumi with respect
to first order logic. In the usual approach to effectivityeasorts out all the
structures under consideration into finitely many claseash axiomatizable
in first order logic. We propose to follow much the same roweehafter aug-
menting the logic to allow us to decode numerical informatbthe type used
here: note that it is not necessary to know the value aihdn, but only which
is larger (or actually, with a little more care, that they diféerent). This will
be done using dimension comparison quantifier be introduced shortly.

The specific quantifier introduced in [HrBa] in its “most gesleform” is
actually too general, as we will now indicate. The simpleaywo add the
desired numerical quantifier would be withiess thanquantifier “<”. Ap-
plied to two formulasp, ¢’ involving the variabler, and possibly other free
variables, the formulacz(; ') would represent the formulahe cardinal-
ity of the set defined by is less than the cardinality of the set definedty
as usual, variables other tharwhich are free inp or ¢’ remain free in the
quantified expression. The problem with this is that it emsodndecidable
problems—namely, any diophantine problem o¥erinto the basic proper-
ties of structures with a bounded numberdefypes (in fact, directly into a
multisorted theory of pure equality). A polynomial equatigx) = 0 may be
encoded as an equation with nonnegative coefficielts) = p2(x), and af-
ter interpreting multiplication as cartesian product anchss disjoint union,
the solvability of such an equation is equivalent to the texise of a model
M of the theory of equality with a number of sorts equal to thenbar of
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variablesx, satisfying one additional sentence involving the canitynguan-
tifier (which expresses the stated equality). We requirsséxpressive logic,
for which we can determine effectively whether a Lie cooatiimable struc-
ture with a specified number of 4-types exists, having angi§ipd property
expressible in the logic.

Strictly speaking, we will make use of three enhancementirstf order
logic: a finite set ofully embedded geometgpantifierss;, adimension com-
parison quantifer D<, and the standard quantifig?°—there are infinitely
many. The second has a natural model only in finite structuresre the third
encounters a frosty reception, so we will have to pay sonemédin toweak
(i.e., not canonical) interpretations of the logic as wdlk will need complete-
ness and compactness theorems for various combinatiohess totions, in a
limited context (essentially the context of Lie coordimatile structures). Our
specification of intended interpretations below will besleseful from a tech-
nical point of view than the axioms specified subsequen#yemnining the
notion of a “weak” interpretation.

Definition 8.3.1

1. Atypet (of geometry) is one of the followindi) set; (ii) linear;
(iii) orthogonar; (iv) orthogonai™; (v) symplectic;(vi) unitary. For each
typet, the quantifierG; has the syntax of an ordinary quantifier: 4fis a
formula, thenGxp is also a formula, withe bound byG;. The intended
interpretation in a modeMM is that the subset oM defined byy(x) is a
fully embedded geometry of type The distinction between the two types
of orthogonal geometry has a clear meaning only in the firatsec but will
be carried along formally in all cases (in other words, thettWiefect is
included in the type). As usual, variables other thawhich are free inp
remain free inG;x, and have the effect of auxiliary parameters.

2. Thelesser dimensioguantifier D< acts on pairs of formulag, ¢’ to
produce a new formul@®z (¢ < ¢'). The intended meaning in a structure
M is that:

() ¢ andy’ define fully embedded canonical projective geometrieg of
the same type; and
(i) dimJ < dim J'.

Evidently,(i) is already expressible using tli¢.

3. The quantifieB> is the usual quantifier “there exist infinitely many.”

It may also have nonstandard interpretations in finite medessentially of
the form “there exist a lot”

4. The logicsM %, MP, MP> are obtained syntactically by augmenting
first order logic by, respectively: all th@; all the G, and D<; all the G,
D<, and3®. In each case the logic is taken to be closed under iterated
applications of all the operations.
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Context. Our basic context will consist of a fixed finite language tbge
with a specified bound on the number od-types; the latter is formalized by
a theory which we denotB4(k); more exactlyB4(L, k) whereL is the logic
in use. (The richer the language, the more powerful thisrthbecomes.)
In finite models with at mosk 4-types, the languag#1” has a canonical
interpretation. We write”'s(L, k) for the class of finiteL-structures with at
mostk 4-types.

Proposition 8.3.2 (Effective Coordinatizability). There is a computable func-
tion b(L, k) such that with the languagé and the bound: fixed, every
M € C4(L,k) has a Lie coordinatization via formulas iM?” of total
length at mosb = b(L, k).

Proof. Both the boundedness and the effectivity are at issue.

For the boundedness, we use a modified compactness argugpose
toward a contradiction thatt,, € C,(L, k) has minimal coordinatization of
total length at least, for eachn. Without loss of generality these all involve
the same skeleton (but the actual definitions of the geoesetdry erratically).
Consider the first order structuret’, obtained by adjoining predicatesid,,
for all formulas inMP, as well as predicates giving the appropriate coordi-
natization. (Note that a8/, is finite, this does not affect definability in the
individual structures, but does change the collection afoumly definable
relations as: varies.) Pass to an ultraprodutt’_ . This is weakly Lie co-
ordinatized. LetM, be the reduct of\*_ to MP (or rather the first-order
language used to encode ” in the M,,). By thetheorem on reductthis is
also Lie coordinatizable, definably. One would like to sagttthis “property”
is inherited by theM,,. By the proof of quasifinite axiomatizability, there is
a sentence which characterizes threvelopesn M, for models whose di-
mensions are true (constant over geometries parametrizeeatizations of
the same type). Use o$1P-definable predicates ensures that thg, have
true dimensions in this sense, and hence are envelopesrticutsr they are
Lie coordinatizable uniformly, contradicting their cheic

Now we turn to the effectivity ob(k). There is a set of formulas in the
languageMP” which is adequate for the Lie coordinatization of any struc-
ture in our class. We wish to argue that this is a first ordeperty and is a
consequence of an explicitly known theory, and then to eateVia the com-
pleteness theorem.

As a base theory one may take a first order theory in whichvéll formulas
occur as atomic predicates, and their definitions—to theraxhat they have
definitions—are included as axioms. To a very large extaaft’ formulas
do have first order definitions, since it is possible to say firsh order way
what the dimension is when it is finite. Thus we may includehi@ &xioms:
if a given dimension is finite (i.e., specified explicitlyhen it isformally less
than another if and only if it is, in fact, less than that otHérese axioms leave



DIMENSION QUANTIFIERS 181

open what happens when the dimensions are infinite. (In gkriteis a good
idea to require that “less than” be transitive, but this isyei relevant.)

Now for b > b(k), there is a finite disjunction of potential Lie coordinatiza
tions, and a corresponding collection of characteristitesgces (in the sense
of the previous section) for which, in fact, one of the conadizations works
within every structure of our class, and one of the corredp@characteristic
sentences is valid. This is a first order sentence. Furthermhenever the
appropriate characteristic sentence is valid, the cooredipg Lie coordinati-
zation is, in fact, a valid Lie coordinatization. This is thelicate point: to
verify that a potential Lie coordinatization is in fact \@liit is necessary to
have complete control over definability; for example, onestinow that if
no vector space structure is specified on a set, then it hasfiratlle vector
space structure. The characteristic sentences give tidsdficontrol.

Accordingly, one can search for a provable first order ser@efithe desired
form, and when it is found then one has found an effective Hamb(k) (we
are not concerned here with the minimum valué(@)). |

Now we will develop a completeness theoremAdr” and use it to produce
more explicit results on effectivity.

Definition 8.3.3. T'F'4;, is the following axiom system, whose models are called
weak modelgor MP.

1. Background axioms as in the preceding proof: predicatesesmpond to
all formulas of MP and the axioms force “formal less than” to mean
“less than” when at least one of the numbers is finite.

2. There are at most pairwise contradictory formulas id variables.

3. For the quantifiers+;, assert that when they hold then the corresponding
geometry is embedded and stably embedded.

4. Some group of formulas of total length less thék) (from the preceding
lemma) forms a Lie coordinatization. Use the quantifiggshere.

5. Transitivity of the relation dim(J) < dim(J’)” (Supplementing (1)
above.)

6. If the definable seb is not a canonical Lie geometry, then some formula
of length at mosb’(k) shows that it is not. Her& (k) is also effective;
failure involves failure of primitivity, rank bigger than br a richer Lie
structure than the one specified is definable. In all case®tisea defin-
able predicate that shows this. The boungd:) can be found in the same
way asb(k).

Proposition 8.3.4. Let ¢ be a sentence itM” which is consistent with the
axioms given above. Thenhas a finite model with at most4-types.

Proof. Begin with a weak model, which will be Lie coordinatized. tahat
if it is finite, then it already has all required propertieslasy are expressed by
the theory in this case. Otherwise, shrink it (i.e., takemretope), preserving
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the truth ofy by keeping infinite dimensions large. Note that the formssle
than relation on the infinite dimensions determines a liredering of finite
length and hence can be respected by the shrinking proclsdge that the
position in this sequence of a given infinite dimension ig p&the type of the
associated parameter to begin with.) ]

Corollary 8.3.5. T'F4;, is decidable, uniformly irk.

Proposition 8.3.6. Extend the logic by the quantifiéf® to get M P>, The
theory remains decidable.

Proof. One must extend the axiom system to get a suitable notioneakw
model, then convert each weak model into one in which all\sétsse size is
formally not infinite become sets which are in fact finite. Toid pathology
(or paying more attention over the formalization) one maypsse all struc-
tures contain at least two elements.

The axioms are as follows. We use the term “finite” here foffifagble and
formally finite” rather than “of specified size.”

1. 3% implies the existence of arbitrarily many (the conclusisraifirst
order scheme).

2. If 3*°23yp(z, y), then eitheBy3I*xp(z, y) or I°yIxp(x, y). In other
words, the image of an infinite set under a finite-to-one fiomcis infi-
nite.

3. A definable subset of a definable finite set is finite.

4. Given two embedded, stably embedded geometries, oneiofivehfor-
mally infinite, and the other having dimension at least agdathen the
second geometry is also formally infinite. (This relaf€$ and the di-
mension quantifier.)

Note that (2) implies that a finite union of finite sets is finite

The problem now is to take a formufawhich has a weak model and give it
amodel in which all sets asserted to be of finite size are trofdnite size. We
may assume that specifies a coordinatization, and usifZg3) we may also
assume that the only sets whose finitude or infinitude aretaglsare subsets
of canonical projective geometries (possibly degenerarg] in view of the
nature of definability in such geometries, we reduce furtbehe finitude or
infinitude of the geometry itself. So the problem is to shigi@ometries which
are asserted to be of finite size to ones which are finite, wléeing alone
those asserted to be infinite, and preserving both the oedigiianships (for
which (4) is clearly essential, and largely sufficient) aimel bther (essentially
first order) properties asserted pyNote that axiom (1) is not required to “do”
a great deal; but it guarantees that unmitigated sloth iddequate treatment
of the infinite case.

For all of this to make sense, one thing is necessary: thediyrfinite
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and the formally infinite canonical projective geometriesidd be orthogonal
(otherwise, there is no appropriate dimension functionegif with). This is
guaranteed by (2, 3). ]

8.4 RECAPITULATION AND FURTHER REMARKS

We return very briefly to the survey given in the Introductidrhe theory of
envelopes was summarized in Theorem 1 and in terms of finitetatres in
Theorem 6, the latter incorporating the numerical estisafé¢5.2 and some
effectivity. The families referred to in Theorem 6 are detred by a specific
type of Lie coordinatization in the languagel” as well as a definite char-
acteristic sentence. Evidently, the truth of a sentencebeadetermined in
polynomial time. Part5) of Theorem 6 is dealt with i§5.2, as far as sizes go,
and the construction is given by the characteristic seetenc

Theorem 2 gave six conditions equivalent to Lie coordirsdtility. The
first five conditions were dealt with by the end§#.5; this is discussed at the
beginning of that section. In particular, to get from Lie oiaatizability to
smooth approximability one uses the theory of envelopegbip§3.2. The
converse direction was the subjecg8f5. For the validity of the last condition,
use Lemma 5.2.7 and the estimate on the sizes of envelopes.

Theorem 3 is the theory of reducts, givensin5. Theorem 5 summarizes
the effectivity results 0£§8.1-8.3. Theorem 7 has been dealt witl§ 5.

We recall one problem mentioned in [HrBa]: are envelopesstauctible”
in time polynomial in the dimension function? As noted thehe underlying
sets are, in fact, too large to be constructed in polynornmd tbut the problem
has a sensible interpretation: the underlying set can b#etleas known, and
one can ask whether the basic relations on it can be recabimz®lynomial
time (for example, think of the basic case in which the enpels simply a
geometry of specified dimension). This problem has mod@rtte content.
The proof of quasifinite axiomatizability is based on a 1-wassion of “back-
and-forth” which may be called “carefully forth.” We do natéw how to give
this proof in a “back-and-forth” format, and it seems tha golynomial time
problem involves difficulties of the type which have beencassfully eluded
here.

8.4.1 The role of finite simple groups

In view of the special status of the classification of the éirsitimple groups it
seems useful both to clarify the dependence of the prespet pa that result,
and to consider the possibilities for eliminating that degence, and arguing
in the opposite direction.
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The work carried out here can be viewed as a chapter withinefrthedory
which is dependent in part on the classification of the firiitgpse groups for
its motivation, but which in terms of its content is largetylependent of that
classification both logically and methodologically.

For example, Theorem 7 as we have stated it is independentffrat classi-
fication. Similarly, the proof of Theorem 6 really involveglcoordinatizable
structures, and as such does not involve the classificafidgheofinite sim-
ple groups, which is invoked at the end, via Theorem 2, to gieepresent
statement of that result. As far as Theorem 2 is concerned:oneine the
primitive case from [KLM], which may be taken here as a “bldok,” with
independent model theoretic methods.

However, the proof of [KLM] is strongly dependent on the sléisation of
the finite simple groups. Theorem 7 offers an array of modsbitétic proper-
ties which can be taken as defining a certain portion of therthprovided
by the classification of the finite simple groups. No such nhakeoretic
version is known for the whole classification, and for thatterawe are not
aware of any other comparable portion of the classificati@t tan be ex-
pressed in model theoretic terms. Initially one might tryagsume Theorem
2-Characterizations (3) (i.e., 2 (6) with an arbitrary ftiog), so that one has
(LC1) and (LC2), and ask whether one can prove (LC3-LC9xtlir@and not
inductively. The combinatorial flavor of the properties @-€.C9) suggests
that this may not be an unreasonable endeavor.

This issue was raised in [HrBa] and remains both open andrfiderable
interest. It was noted there that the results on sizes of aldfnsets can be
reversed to give a definition of rank and indpendence in gureibinatorial
terms, that is in terms of asymptotic sizes of sets. In padicthe properties
(LC4) and (LC5) then become cleanly combinatorial. Propgr€4) becomes
the statement that model-theoretically independent ¢sib$a single type over
an algebraically closed base are statistically indepen@gring unexpected
support for the old term: “independence theorem”). We gidérect proof of
this below. This proof is closely analogous to the proof oE4l) from finite
Sl-rank given in [HrS1]], but it emerged only on following aguggestion of
L. Babai regarding the similarity of the desired result witbemeredi's regu-
larity lemma, a similarity which will not be pursued here.€Timext challenge,
accordingly, would be a direct proof of (LC5).

In the following, we work with the extension of first order logy car-
dinality quantifiers, allowing us to assert that one defiaalgt is smaller than
another, and also allowing cardinality comparisons of twenfm|D| < n|D’|,
via some definable encoding of disjoint unions. This coulddeast more gen-
erally in a context where one has a definable probability omessn the defin-
able sets. Indeed, the general relation between simpécitythe existence of
such probability measures remains to be clarified.

Let M be a nonstandard member (e.g., an ultraproduct) of a farfilgite
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structures, where cardinality quantifiers receive theioracal interpretations
in finite structures, and the corresponding nonstandastpretations in the
ultraproduct. Call a definable sét smallif |D|/|M]| is infinitesimal, where
M is the underlying set oM.

Lemma 8.4.1.If D forks overf) thenD is small.

Proof. We may suppose thd? divides over); that is, D has an an arbitrarily
large indiscernible sefD;} of conjugates which ig-inconsistent for some
fixed k. It follows by induction onk that D is small; more exactly (for the
sake of the induction) thgD;|/||J D;| goes to0 as the size- of the set of
conjugates increases. Af= 1, then these sets are empty, and for 1 we
may consider for eachthe (k — 1)-inconsistent family{ D; N D,} for j # i.
Then by inductioriD; N D,|/|D;| goes to 0 as increases, so the cardinality
of a union of lengthn of conjugatesD; is of the order ofn|D;|, as long as
(5)|D; N D;|/|D;| is negligible. |

Lemma 8.4.2. Suppose thai is a nonstandard member of a family of finite
structures that realize boundedly many 4-types. ihebs, ps be 1-types,
and letpio, p13, P23 be 2-types projecting onto the corresponding 1-types
appropriately. Then there is a formula(z, y) such thatp(a1, a2) holds if
and only if{y : p13(a1,y)&pa3(az, y)} is small, and this formula is stable,
and is even an equation in the sense of Srour [PS].

Proof. The setD = {y : pis(a1,y)&pas(az,y)} is definable from two pa-
rameters and can take on only a finite number of cardinaiities! (as this
holds, with a bound, in the family of finite structures asatex with M).
Henceyp can be defined. Now we must show thafdf, b;) is an indiscernible
sequence, ang(a;, b;) holds fori < j, theny(a;,b;) holds for alli. Let
Di = {y : p13(as, y)&p23(bi, y)}. Then by assumptiofD; N D;|/[M|is in-
finitesimal fori # j. As in the previous argument, [iD;| is not small relative
to | M|, then|D;| is small relative td_J D;, and hence also relative {d/|, a
contradiction. [

Proposition 8.4.3. With the hypotheses of the preceding lemma, suppose that
there is no finite 0-definable equivalence relation splittin (i = 1, 2, or
3), and thatp;; is not small relative taM? for i,5 = 1,2;1,3;2,3. Let
Pya3 be the set of triplegay, a2, a3) € M3 such thatM = p;;(a;, a;) for
each pairi,j = 1,2;1, 3;2, 3. ThenP;»3 is not small relative ta\/3, and,
in particular, is nonempty.

Proof. We use similar notations;, P;; for the loci of the given types.
Compute the number of tripléa; , as, a3) satisfyingp13 (a1, as) andpas(az, as)

by first choosing:s in | Ps| ways, then choosing; for i = 2,3 in |P,3|/|Ps|

ways; this yields P3| Pa3|/| P3|, which is not small relative toA73]. It fol-
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lows that for somex; satisfyingp;, the number ok, for which —p(aq, a2)
holds is not small relative toM|, and hence the formulay(a;,x) does
not fork over(). Hence—p(ay,as) holds for some paita, az) which is ¢-
independent in the sense of local stability theory. Thentabilty and our
hypothesis o, p2, ~¢(a1,a2) holds for all such independent pairs. Simi-
larly, we can choose-independenta,, az) satisfyingp;2. So all solutions to
p12 satisfy—p, and the claim follows. |

We have not touched on the other directions for further mebeahich were
already mentioned in [HrBa]. As far as the diagonal theonjisaged there is
concerned, the completion, or near-completion, of the dations of geomet-
ric simplicity theory ought to be helpful in this connection
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