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1. Introduction

The Cherlin—Zilber algebraicity conjecture states that infinite simple groups of finite
Morley rank are isomorphic to algebraic groups over algebraically closed fields. On the
basis of the 2-Sylow theory it is possible to divide these gr@upsori into four classes,
said to be of even, odd, degenerate, and mixed type, where even and odd types should
be algebraic groups over fields of characteristic respectively equal to 2 or unequal to 2,
and degenerate and mixed type groups conjecturally do not exist. It has been shown that
a minimal counterexampl® the algebraicity conjecture (more formally, a nonalgebraic
simple K*-group) cannot be of mixed type, and the more elaborate classification of
simple K *-groups of even type appears now to be approaching completion. This raises the
guestion whether we are in a position to verify the algebraicity conjecturalifeimple
groups of finite Morley rank of even type.

The study ofK*-groups follows arinductive approach analogous to thevisionist
approach of finite group theory. Consequently, the successful completion &f*Hotas-
sification project in the even type case can produce at best the following result: a simple
group of finite Morley rank of even typeith no simple definable section of degenerate
typeis algebraic. Given the real possibility that nonalgebraic simple groups of finite Morley
rank of degenerate type may exist, we look for an approach which profits from the lessons
learned to date in the study &f* groups of even type, but which, if successful, could yield
the full algebraicity conjecture in the even type case. The present paper is devoted to the
presentation of an appropriate inductive framework, which we £&lgroups, and some
results which provide grounds for cautious optimism in this regard. The following theorem
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is an analog of a result proved in the early stages of the analysis of skiiptgoups of
finite Morley rank of even type [1,4].

Theorem 1. LetG be a simpleL*-group of even type with a weakly embedded subgidup
ThenM°/03(M°) is of degenerate type.

In the K*-case, the corresponding result is thiét is solvable. We shall explain the
connection between these results more fully toward the end of Section 2.

As a second application of the*-theory we show that the treatment of the mixed type
case can be reduced to the even type case.

Theorem 2. Let G be a simple group of finite Morley rank, all of whose proper definable
infinite simple sections of even type are algebraic. Tids not of mixed type.

Corollary 2.1. If all simple groups of finite Morley rank of even type are algebraic, then
there is no simple group of finite Morley rank and of mixed type.

It was known from theK™ theory that the elimination of mixed type groups would
follow from the algebraicity conjecture for both even and odd types [18]. The characteristic
feature of our approach consists of methods for dealing with degenerate and odd type
sections whose structure is left completely arbitrary. We intend to pursue the matter in [7].

This project was initiated in [2]. There are two simple principles which are essential
to our present enterprise. The first of these is largely responsible for the initiation of the
projectin [2], where it occurs as Proposition 2.8.6:

Proposition 3.2. Let G = XU be a group of finite Morley rank witl/, X connected
definable,U 2-unipotent, X < G, and X of either degenerate or odd type. Thén
centralizesX.

Our second general principle shows that possible degenerate sectiond afranp
are not so intricately involved with the structure as might be feared, and allows the direct
transfer of a considerable body &f-group theory to our setting.

Proposition 3.4. Let G be anL-group. ThenB(G) is a K-group.

Here B(G) is the (definable) subgroup 6f generated by all its 2-unipotent subgroups.
This proposition, as stated, depends on a slight extension of a result of Poizat in [24],
whose proof in general requires the classification of the finite simple groups:

Fact 4.19. If K is a field of finite Morley rank of characteristie # O then every simple
definable sectioid’ of GL, (K) is definably isomorphic to an algebraic group ovér
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This is stated by Poizat for simple subgroups. One must bear in mind here that the field
K comes equipped with arbitrary additional structure, so there is no obvious reason for
definable subgroups of GIK) to be at all well-behaved (technically, this is tied up with
the so-called “bad field” problem).

In practice one can manage with considerably less (the Feit-Thompson theorem
suffices), and we will indicate in the body of the paper how Proposition 3.5 and certain
related arguments can be recast to accomplish this. The essential point will be the
replacement of Fact 4.19 by a similar Fact 4.21 in applications, particularly in the proof of
Lemma 3.11 in Section 3.

We also make essential use of part of the theory of Suzuki 2-groups developed in [13].

Another point which may be useful in the further development of the theory was pointed
out by Borovik (personal communication):

Fact 1.1. Let G = U x X be a group of finite Morley rank witli/, X connected and
definablelU an abelian2-group, andX solvable and containing no involutions, and acting
faithfully onU. ThenX is abelian.

We do not need this result here, but it is of importance for the further development of
these ideas [7].

The paper is organized as follows. In the next section we review the main definitions
relating to the “type” of a group, which are based on results of the 2-Sylow theory, as
well as the definitions relating to inductive approaches to the algebraicity conjecture: the
notions ofK -groups and *-groups, used to date, and the parallel but more general notions
of L-groups and.*-groups, for which at least some of the previous theory can be pushed
through, as we will show. In Section 3 we develop the essential points of the general theory
of L-groups, Propositions 3.2 and 3.5, which have been discussed above. In Section 4,
included for ease of reference, we collect essential points of the general theory of groups
of finite Morley rank (a few of these are applied in Section 3). In Section 5 we present
our main technical result, the proof of Theorem 1 in the strongly embedded case, which
deviates quite strongly from the line of argument in & case. In Section 6, for the sake
of completeness, we outline the proof in the weakly but not strongly embedded case, where
one follows the line of arguments given in [4]. Finally in Section 7 we prove Theorem 2,
following the line of argument in [18], and paying some further attention to the treatment
of degenerate sections (in Lemma 7.21).

2. Definitions

In recent years considerable attention has been paid to the elucidation of the possible 2-
Sylow structure in a minimal counterexample to the algebraicity conjecture, an enterprise
which makes considerable use of ideas exploited in the “revisionist” (i.e., highly inductive)
approach to the classification of the finite simple groups.
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2.1. Types of groups

There is a general 2-Sylow theory valid in groups of finite Morley rank, due to Borovik
and Poizat. A Sylow 2-subgroup is a maximal 2-subgroup, and a Syesubgroup is the
connected component of a Sylow 2-subgroup.

Fact 2.1[12]. Let G be a group of finite Morley rank. Then

(1) Any two Sylow2-subgroups of; are conjugate.
(2) If S is a Sylow 2-subgroup, ther$ has the form

UxT (central product, finite intersection

with U 2-unipotent & definable connecte®-group of bounded expongrand 7' a
2-torus(a divisible abeliar2-group).

In algebraic groups only one of these factéfs T can be nontrivial, depending on
whether the characteristic is, or is not, two; and if the gr6uis simple, therexactlyone
of the two is nontrivial. In groups of finite Morley rank we have, a priori, four cases to deal
with:

(1) U, T # 1: mixed type;

(2) U#1,T =1:eventype;

(3) U=1,T # 1: odd type (in algebraic groups, this includes characteristic 0);
(4) U=T =1 (i.e.,S isfinite): degenerate type.

The algebraicity conjecture predicts that mixed and degenerate types do not occur, and
that even type and odd type correspond respectively to algebraic groups in characteristic 2
and characteristic not 2.

2.2. Inductive frameworks

The standard inductive framework for considering the algebraicity conjecture has been
the following.

Definition 2.2. Let G be a group of finite Morley rank.

(1) A sectionof G is a quotientH /K with K <« H < G; the section iglefinableif H and
K are definable, angroperunlessH = G andK = 1.

(2) G is a K-group if every definable connected simple section is isomorphic to an
algebraic group over an algebraically closed field.

(3) G is aK*-groupif every proper definable connected simple section is isomorphic to
an algebraic group over an algebraically closed field.

Thus a simpleK*-group of finite Morley rank is either algebraic, or is a minimal
counterexample to the algebraicity conjecture.
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We will work in a setting which allows degenerate (and in some cases, nonalgebraic
odd type) sections.

Definition 2.3.

(1) An L-groupis a group of finite Morley rank in which every infinite definable simple
section is either an algebraic group over an algebraically closed field, or of odd or
degenerate type; in other words, we exclude definable simple sections of mixed type,
and we require definable simple sections of even type to be algebraic.

(2) An L*-groupis a group of finite Morley rank in which eveproperinfinite definable
simple section is either an algebraic group over an algebraically closed field, or of odd
or degenerate type.

In the context ofK*-groups, the elimination of the mixed type case was completed
in [18], building on the special case treated in [3], in which it is assumed, among other
things, that the definable connected solvable sections of the group in question which
contain no involutions are nilpotent.

As far as even type is concerned, there has been a very active classification projectaimed
at verifying the algebraicity conjecture in the case of similegroups of finite Morley
rank of even type, a project which appears now to be reaching completion.

However in [2] the possibility of weakening thé*-hypothesis substantially in the even
type case was investigated, and ftietheory was explored. The definition we adopt here
reducesto the one givenin [2] in the even type case, and also serves well in our treatment of
the mixed type case in Section 7. The proposal is to adapt the methods ugEddooups
to L*-groups. The ideal target would be:

L*-conjecture. A simpleL*-group of finite Morley rank and of even type is algebraic.

There are some grounds for cautious optimism that itfeconjecture may be
approachable by means closely related to those which have been usedif+toatext.
The advantage of this version over tkié version would be that this conjecture is actually
equivalentto the full algebraicity conjecture for arbitrary simple groups of finite Morley
rank and even type, and this in turn would also dispose afiied typease (Theorem 2).

2.3. Weak solvability

In the case ofK *-groups, the analysis of the even type case begins with the study of
weakly embedded subgroups (Definition 4.36), namely:

Fact 2.4 [4,19]. Let G be a simpleK*-group of even type with a weakly embedded
subgroup. Theit; = PSLy(K) for some algebraically closed field of characteristic2.

A similar result forL*-groups would be of major importance.
The proof of Fact 2.4 begins with an analysis of the structure of a weakly embedded
subgroupM; it is shown thatM° is solvable. In theK *-context Fact 2.4 was proved in
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[19], building on [1,4]. Again, the initial work assumed among other things the nilpotence
of connected sections without involutions, a hypothesis lifted in [19] by use of the theory
of solvable groups, notably the work of Frécon in [14].

In the L* context one does not expect to obtain solvabilitydf directly at the outset.
There are however two natural analogs of that result i theontext:

(1) M°/03(M) is of degenerate type;
(2) B(M) is solvable.

Using standard results in the theory of groups of finite Morley rank one shows that
these two results are equivalent; yet a third form of this conditioBig4) = 05(M).
(Cf. Section 5.) It is the first form which is most useful for the intended applications. In
the K*-context any proper connected subgroup of degenerate type is solvable, so in that
setting our Theorem 1 is equivalent to the solvability\f.

Inthe proof of Theorem 1 we will have to distinguish two cases: the gidupquestion
either is, or is notstronglyembedded (Definition 4.29). If it isot strongly embedded, then
the analysis runs closely parallel to that given in Kiecase, which we will therefore only
summarize. IfM is strongly embedded, however, then we have to deviate substantially
from the earlier approach, and this constitutes the technical core of the present article.

3. L-groups

We now take up our subject in earnest.
As we have mentioned, the analysis of the 2-Sylow structur& tigroups begins
(logically, at least) with:

Fact 3.1[18]. There exists no simplE*-group of mixed type.

The classification of simpl& *-groups of finite Morley rank and even type is also well
under way, and it appears that the algebraicity conjecture will be confirmed in that case,
using the amalgam method from finite group theory to perform the final identification.

Very difficult problems remain in the analysis of the other two types, which will not
concern us here. Our aim is to weaken the reliance orkthéypothesis in the favorable
cases: even and mixed types; as explained in the introduction (and proved in Section 7), the
mixed-type case reduces to the even-type case. Nowwhe-typecase is quite intricate,
even in thek *-case. The present paper is intended to provide a case study in the adaptation
of arguments occurring very early in the analysis, and which have depended on the
solvability of degenerate sections, to the case of general groups of even type, in which
nonsolvable degenerate sections may occur.

The remaining part of this section is devoted to the preparation of a suitable general
theory of L-groups, much like the theory & -groups as it has been used to date. The first
step is perhaps the most important: we claim that a unipotent 2-group can only act trivially
on a group of odd or degenerate type; when the latter is asssoieable this follows
from standard results (cf. [11, Exercise 2, p. 175] and [1]).
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Proposition 3.2. Let G = XU be a group of finite Morley rank wher& and X are
definable, andX <« G. If U is a unipotent2-group, andX is of odd or degenerate type,
then the action o/ on X is trivial.

Proof. The argument is by induction on the rank and degre& oNote thatX N U is
finite, by Fact 2.1(2).
Considering the quotient b§/y (X) we may assume toward a contradiction that

(1) the action ofU on X is faithful andU is nontrivial.

Passing to a suitable connected normal subgroup,afe may also suppose that
(2) U is elementary abelian.

We show that

(3) X is connected.

If X° < X then by induction on degreé] centralizesX°. As X/X° is finite, U acts
trivially on X/ X°. Hence forx € X the mapy, : U — X° defined byy, (u) = [u, x] is a
homomorphism, whose image is then a unipotent 2-subgrotp afhich must be trivial.
SoU centralizesX, a contradiction.

We show now tha¥ (X) is finite. If X is abelian, therG is solvable and by Fact 4.10
we find thatU < F(G). As U is a maximal unipotent 2-subgroup 6fG), and F (G) is
nilpotent,U is normal inG. Hence [U, X] < U N X. Hence[U, X] is finite, as remarked
above, and is connected by Fact 4.2. ThisX] = 1, a contradiction. S&(X) < X and
hence, by induction on the rank and degre&ofve find thatU centralizesZ(X).

If Z(X) is infinite then induction on rank applies alsoX¢gZ(X), and hence fox € X
the mapy, :U — Z(X) defined byy,(u) = [x, u] is @a homomorphism, whose image is
then a unipotent 2-subgroup &f, which must be trivial. Thus in this cagécentralizesX,

a contradiction. We conclude thZ{(X) is finite.

We show thatZ (G) is finite as well. If Z(G) is infinite then sinceZ(G) N X is finite
using the last paragrapfi{G) X/ X is infinite. This implies thaZ (G) contains a nontrivial
unipotent 2-subgroup. Sindé is a maximal unipotent 2-subgroup 6f, any unipotent
2-subgroup o (G) is contained ir as well. This contradicts the assumption tbiacts
faithfully on X.

We letG = G/Z(G). G is centerless by Fact 4.14.is a maximal unipotent 2-subgroup
andX is connected of odd or degenerate typg¢lf X] = 1, then[U, X] < Z(G). SinceU
is connected, so i€/, X]. Then it follows from the finiteness &f(G) thatU centralizesX,

a contradiction. ThugU, X]# 1.

The discussion of the last paragraph shows thais also a counterexample, with
rk(X) = rk(X). So we still have a minimal counterexample. Moreoteis elementary
abelian. Now, using the finiteness 8{G) and Fact 4.2 agaifi, X] = 1 if and only if
[u, X]= 1. SinceU acts faithfully onX, U acts faithfully onX as well. ThusG has all the
properties (1)—(3) we have proven f6r. In additionZ(G) = 1. We may therefore assume
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that Z(G) = 1. Since, as shown abovg(X) is finite, we haveZ(X) < Z(G), and hence
we haveZ(X) =1 as well.

If U<Gthen[X, U] < UNX.Asabove thisimplies thglU, X] = 1, a contradiction. So
Ng(U) < G. In particular,Nx (U) < X. AsU acts onNx (U), by inductionU centralizes
Nx(U), and henc&Vg(U) = Cg(U).

We claim now thatNg(U) = Cg(U) is strongly embedded iv. Let S be a Sylow
2-subgroup ofG containingU. Then U = S$° and henceN(S) < N(U). In view of
Fact 4.30(2), it suffices now to check th@t (i) < Cg(U) fori e I(Ng(U)). Asi € C(U)
andZ(G) =1, the groupCx (i) < X is U-invariant, so by induction on the rank and degree
of X, we find thatU centralize<x (i) and henc& (i) =Cx())U < Cg(U).

Now it follows that! (U) is a single conjugacy class (Fact 4.32), which contradicts the
fact thatG/ X is abelian. O

Before stating a useful corollary of Proposition 3.2, we need the following definition:

Definition 3.3. Let G be a group of finite Morley rankB(G) is the subgroup ofG
generated by its 2-unipotent subgroups. (If there are none, thisis 1.)

By Fact 4.2(1),B(G) is always definable and connected. Of cou&(G)) = B(G).
A groupG of finite Morley rank is said to be aB-typeif G = B(G).

Corollary 3.4. Let H be a group of finite Morley rank oB-type andX a definable
connected normal subgroup of degenerate type. ThehO (Z(H)). (We refer the reader
to Definition4.16for O and some remarks related to this notipn.

Proof. By assumptionH = B(H). For any unipotent 2-subgroup of H, [U, X] =1 by
Proposition 3.2. Therefor&, < Z(H). By Fact 4.12 X has no involutions. O

According to [1, Fact 2.51], the structure of connect&dgroups is remarkably
straightforward (compared, for example, to the structure of finite groups): modulo its
solvable radical, any connectétigroup is a direct sum of finitely many simple groups.
This is due largely to the fact that the simple groups in question are algebraic, and their
automorphism groups are well under control (Fact 4.22). One cannot expect to control
the structure ofL-groups to the same degree, since there is no limit to the potential
complexity of the degenerate sections. However, these difficulties can frequently be evaded
by consideration of the group(G).

We will now prove that if G is an L-group of finite Morley rank, themB(G) is
a K-group; which is more neatly phrased as:

Proposition 3.5. Let G be anL-group of finite Morley rank and aB-type. TherG /o (G)
is a finite direct product of simple algebraic groups of even type.

Proof. ReplacingG by G/o(G), we may suppose that(G) = 1. By Fact 4.17, sa&)
is a direct sum of definable simple subgroups. @&ds an L-group, these factors are
either algebraic groups, or odd type or degenerate, adgliasonnected they are normal
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in G. Suppose there is a degenerate or odd type factorhen by Proposition 3.2, the
unipotent subgroups @¥ centralizek, and asG = B(G), we find thatK is central inG,

a contradiction. Thus s@€) is a finite sum of simple algebraic groups (of even type),
and in view of Fact 4.22, a€ is connected, it follows that; = sodG)Cg(sodG)). If
C;(s0dG)) # 1 thenZ(G) = Cg(sodG)) NsodG) # 1 by Fact 4.17, hence(G) # 1,

a contradiction. S@ = sodG). O

Corollary 3.6. Let G be anL-group of finite Morley rank and oB-type. ThenG is a
K -group.

This follows using Fact 4.19; thus this corollary makes indirect use of the classification
of the finite simple groups. The corollary has the advantage of facilitatinglitieet
application ofK -group theory to our subject. In most such cases Proposition 3.5 already
suffices for the results in question, and where that is not the case it seems one can manage
with Fact 4.21.

We will now give the consequences of Corollary 3.6 used in the present paper. We give
references to the originad -group facts from which they are derived. These also follow
from Proposition 3.5 by inspection of the original proofs, exceptin the case of Lemma 3.11,
where Fact 4.21 is used.

Lemma 3.7 [1, Fact 2.51]Let H be aB-type L-group. ThenH /oc°(H) = H1/o°(H) *
---x Hy/o°(H), where theH; /o °(H) are quasisimple algebraic groups over algebraically
closed fields.

This is found in [1] in the more restricted form of a description®fo (H); for the
preceding formulation, we incorporate Fact 4.18 as well.

Lemma 3.8 [6, 2.26].Let H be a connected.-group of even type. The@2(B(H)) is
connected.

Lemma 3.9 [5, Fact 2.33]Let H be a connected.-group of even type witld5 (H) = 1.
ThenB(H) = E(B(H)).

Proof. We may assumé/ = B(H). ThenO2(H) = 1 by Lemma 3.8, and in particular,
O2(F(H)) =1;soF(H) contains no involutions. By Fact 4.185(H)/F°(H) is divisible
abelian, hence contains no involutionstass of even type. It follows thadé°(H) contains
no involutions.

Let H = H/o°(H). By Lemma 3.7,H is a finite product of quasisimple algebraic
groupsL; with L; < H. It suffices to show that each™ is quasisimple. So we may
suppose thaH is a quasisimple algebraic group.

Now aso (H)/o°(H) is finite, we havd H, o (H)] < 0°(H) < Z(H). So by the three
subgroups lemmag (H ) < Z(H*). By Fact 4.18,H is a quasisimple algebraic
group. O
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Lemma 3.10 [4, Proof of Lemma 5.5]Let H be a connected.-group of B-type. Then
H (™ is generated by its definable, connecgdsubgroups.

Proof. Let K = H™). SinceH/02(H) is of B-type andOz(H/02(H)) = 1, we have
the following, using Lemma 3.9:

H/Ox(H) = E(H/O2(H)) = (H/02(H))™ = H™ 05(H)/ 02(H) = K / 02(K).

As aresultK = K/02(K) is a central product of quasisimple algebraic groups ILe)
be the subgroup generated by definable connectestdgroups ok . It suffices to show
that7 (K) covers the maximal tori ok, sinceT (K) then will coverk, so thatk /T (K)
is solvable, hence trivial.

Let S be a Sylow 2-subgroup af. ThenS/02(K) has a complemerif/02(K) in
N(S/02(K)), and these complements genersi&). So it suffices to show thgt/ 02(K)
is covered by a definable connectet-8ubgroup ofN (S). T/02(K) is itself a 2--group
and02(K) is a 2-unipotent group. By Fact 4.11 (Schur—Zassenh@usp]its overO2(K)
and is therefore covered by a connecteédsibgroup. O

Lemma 3.11 [4, Proposition 3.4]Let X x Y be a group of finite Morley rank whepé and
Y are definable and connecteXl,is an L-group of even type, anH is a 2--group. Then
Y normalizes a SyloWw2-subgroup ofX.

The reduction to [4] involves replacing by B(X) and applying aK-group fact
to B(X) x Y. As this requires Corollary 3.6, the argument depends indirectly on the
classification of the finite simple groups. Becaisis a 2--group, inspection of the proof
would show that only Feit—Thompson is required here (namely, one argues #ta$ on
B(X)/o (B(X)) as a 2-group of inner automorphisms, and the point is that this forces the
image ofY in the quotient to be solvable).

Lemma 3.12. Let H be a connected.-group of even type with a weakly embedded
subgroupM. Then

H=LxD

where L = B(H) ~ SLp(K), with K algebraically closed of characteristi, and
D =Cpg(L) is a subgroup of degenerate typ®.° N L is a Borel subgroup of. and
D <M.

Proof. Let L = B(H) andD = Cy(L). Let S be a Sylow 2-subgroup off. ThenS < L
and, by a Frattini argumentf < L - N(S). If L < M, we getH < M, a contradiction.
It follows that M N L is weakly embedded ifh.. Hence by Fact 4.4Q, ~ PSLy(K) for
some algebraically closed fiekl of characteristic 2. A3/ N L is weakly embedded i,
M N L is a Borel subgroup of.

Now Fact 4.22 shows thall = LCy(L). Since L is simple, D N L = 1. Hence
H =L x D, andD is of degenerate type. AB < C(L) < C(S),wehaveD < M. O
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4. Background material

We review material from the general theory of groups of finite Morley rank. Our main
reference is [11].

4.1. Definable closure

Groups of finite Morley rank satisfy thdescending chain condition on definable
subgroupsand in particular any definable subgroHpof a groupG of finite Morley rank
has a “connected component®, the smallest definable subgroup Bf of finite index
in H. One can also define thaefinable closure/(X) of an arbitrary subseX of G as
the smallest definable subgroup@fthat containsX. One can then define the connected
component an arbitrary subgroétpof G, not necessarily definable, 8 = H Nd(H)°.
With this notation, one has:

Fact 4.1[11, Lemmas 5.35 and 5.36]et G be a group of finite Morley rank.

(1) Foranyx € G, Cg(x) = Cg(d({x))).
(2) If B is a definable normal subgroup 6fand X € G such thatB C X thend(X/B) =
d(X)/B.

4.2. Zilber indecomposability

A fundamental result on groups of finite Morley rank4#ber’s Indecomposability
TheoremWe state two special cases:

Fact 4.2 [11, Section 5.4]Let G be a group of finite Morley rank.

(1) The subgroup o&; generated by a family of definable connected subgroups f
itself definable and connected.

(2) If H is a definable connected subgroup®fand X any subset o7, then[H, X] is a
definable connected subgroup@®@f

These results will be used freely in the sequel.
4.3. Sylow2-subgroups
We have mentioned the Sylow 2-theory already:

Fact 4.3[12].

(1) The Sylow2-subgroups of a group of finite Morley rank are conjugate.

(2) If S is a Sylow2-subgroup of a group of finite Morley rank the§? is the central
product of a definable connected nilpotent subgroup of bounded exp@neripotent
2-group)and a divisible abelia2-subgroua 2-torus) These two groups are uniquely
determined.
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The connected component of a Sylow 2-subgroup is callegdaw 2-subgroup

Fact 4.4 [25, Corollary 1.5.5]Let G be a group of finite Morley rank an¥ a definable
normal subgroup ofz. Then the Sylove-subgroups ofG/N are exactly the images of
those ofG.

In the analysis of groups with strongly embedded subgroups, it is essential to have
information about so-calle§uzuki2-groups which were analyzed in the case of finite
Morley rank by Davis and Nesin [13].

Definition 4.5. A SuzukR-groupis a pair(S, T) whereS is a nilpotent 2-group of bounded
exponentand is an abelian group that acts Sriby automorphisms and which is transitive
on the involutions ofs.

A Suzuki 2-group is said to bieeeif T acts onS freely: foranyge Sandr e T, g' =g
implies eitherg =1 orr = 1.

A Suzuki 2-group is said to babelianif S is abelian.

A Suzuki 2-group is said to be dihite Morley rankif the structure(S, T) is of finite
Morley rank.

Fact 4.6 [13]. A free Suzuk2-group of finite Morley rank is abelian.
4.4. Nilpotent groups

We will need the following structure theorem for nilpotent groups of finite Morley rank.

Fact 4.7 [23]. Let H be a nilpotent group of finite Morley rank. Théh= D % B where
D and B are definable characteristic subgroups, withdivisible,C of bounded exponent,
and D N C finite.

Similarly:

Fact 4.8 [11, Exercise 10, p. 93[The definable closure of a cyclic subgroup of a group of
finite Morley rank is the direct sum of a finite cyclic group with a divisible abelian group.

Fact 4.9 [11, Exercise 1, p. 97]Let p be a prime number. Then an infinite nilpotent
p-group of finite Morley rank and of bounded exponent has infinitely many central elements
of order p.

For a groupG of finite Morley rankF (G) will denote itsFitting subgroupthe subgroup
of G generated by its normal nilpotent subgroups, which is definable and nilpotent [22].
In a groupG of finite Morley rank,02(G) denotes the largest normal 2-subgroup. This
is not always definable. Howevep(G) = 02(F(G)), so if G is of even type the®»(G)
is definable.

4.5. Solvable groups

Fact 4.10[21]. Let G be a connected solvable group of finite Morley rank. T&g#°(G)
is divisible and abelian. In particulag;’ is nilpotent.
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Hall subgroups can be defined in the context of solvable groups of finite Morley rank
with respect to any set of primes and the Hallr-subgroups are conjugate [9,11].

Fact 4.11 [10, Proposition C]Let G be a solvable group of finite Morley rank arfd
a normal Hall z-subgroup ofG of bounded exponent. Then any subgréupf G with
K N H =1is contained in a complement # in G, and the complements &f in G are
definable and conjugate to one another.

Fact 4.12 ([11, Theorem 9.29], [14])The Hallrr-subgroups of a connected solvable group
of finite Morley rank are connected.

Fact 4.13[4, Proposition 2.43]Let G = H x Q be a group of finite Morley rank whe#,
Q, and the action 0o© on H are definable. Lef/1 < H be a solvable)-invariant definable
n-subgroup of bounded exponentdh Assume thap is a solvabler+-subgroup. Then

Cu(Q)H1/H1=Cy/g,(Q).

Fact 4.14[11, Lemma 6.1]If G is a connected group of finite Morley rank ad@dG) is
finite, thenZ(G/Z(G)) = 1.

Definition 4.15. For G a group of finite Morley rankg (G) denotes itsolvable radical
the subgroup generated by all its normal solvable subgroups. It was proven in [22] that this
group is definable and solvable.

Definition 4.16. For G a group of finite Morley rank,0(G) is the largest definable
connected normalolvablesubgroup without involutions.

In published work on groups of finite Morley rank) has been defined without the
solvability assumption. In th&* context, where) is frequently used, all proper definable
connected subgroups of degenerate type are solvable and hence without involutions by
Fact 4.12. Since in thé* context, nondegeneracy does not necessarily imply solvability
for proper definable connected subgroups, we have added this assumption.

4.6. E(G)

Let G be a group of finite Morley rank. Thef(G) is the subgroup oG generated
by the subnormal quasisimple definable subgroupé& oft is definable and is a central
product of quasisimple subgroups [11];Gf is connected, the® (G) and its factors are
connected.

4.7. K-group structure
For G a group of finite Morley rank, theoclesoqG) is the subgroup of; generated

by its minimal normal nontrivial subgroups. In general,@yxmay be trivial (if there are
no such) or may not be definable. However:
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Fact 4.17 ([22], [11, Theorem 7.8])Let G be a connected group of finite Morley rank
such thato (G) = 1 and G # 1. ThensodG) is the direct sum of a finite number of
infinite definable simple groups, and every nontrivial normal subgroup ofeetssoq G)
nontrivially.

Fact 4.18[8]. Let G be a perfect group of finite Morley rank such ti@tZ (G) is a simple
algebraic group. Thert is an algebraic group. In particulaZ (G) is finite.

This is a good place to repair a possible defect in our definitioR @froup. We will
need the following, a slight variant of a result of Poizat in [24].

Fact 4.19. If K is a field of finite Morley rank of characteristie # 0, then every simple
definable sectioid of GL, (K) is definably isomorphic to an algebraic group ovér

This result is of some importance, as otherwise we would not be entitled to consider
algebraic groups, in enriched languages.kagroups! Poizat states the result only for
simple subgroups of GI(K). We give the general lines of an argument that reduces the
general result to the case treated by Poizat. We will freely use facts about linear algebraic
groups which can be found in [16]. We believe that Erulan Mustafin has also given a proof
of this result in an unpublished note.

Let H/N be the simple section in question, and kebe the Zariski closure of (H).

R is solvable and normalized . Sinceo (H) < R, it follows thatH NR = o (H). Since

R is closed so isN(R). ThereforeN(R)/R is algebraic. We havé{R/R < N(R)/R

and HR/R = H/o(H), thus H/o(H) is definably isomorphic to a subgroup of an
algebraic group in characteristie, namely N(R)/R. By Fact 4.17, sod /o (H)) =
Y1/o(H) ® --- @ Yy /o (H) where theY;/o(H) are simple groups. SincH /o (H) is
definably isomorphic to a subgroup of an algebraic group in charactepistiRoizat's
result implies that theY; /o (H) are definably isomorphic to algebraic groups. Using
this and Fact 4.22 in an argument similar to that of Proposition 3.5, we conclude that
H/o(H)=sodH/o(H)).SinceH/N is simple,oc(H) < N.HenceN /o (H) is a normal
subgroup ofH /o (H). By properties of completely reducible groups, we conclude that
H/N is definably isomorphic to one of thg /o (H).

Corollary 4.20. Let G be a group of finite Morley rank, and suppose tfahas a definable
composition series for which all simple quotients are isomorphic to algebraic groups over
algebraically closed fields of positive characteristic. Tl@is a K -group.

As mentioned in the introduction, Fact 4.19 and its corollary depend on the classification
of the finite simple groups. For our purposes the following, which requires only the Feit—
Thompson Theorem, would be sufficient.

Fact 4.21. If K is a field of finite Morley rank of characteristip # 0 then every
nonsolvable definable secti@hof GL, (K) contains an involution.
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However this does not imply Corollary 4.20, and consequently where we invoke
K -group theory in the present paper, if one wishes to get by using only the Feit~Thompson
Theorem, then one would have to check thatkhgroup arguments go through under the
hypothesis of that corollary, with occasional uses of Fact 4.21.

4.8. Automorphisms

Fact 4.22[11, Theorem 8.4]LetG = G x H be a group of finite Morley rank wher& and
H are definable( is an infinite simple algebraic group over an algebraically closed field,
andCy (G) = 1. Then, viewingd as a subgroup cAut(G), we haveHd < Inn(G)I" where
Inn(G) is the group of inner automorphisms@fand I" are the graph automorphisms.

Fact 4.23 [11, Exercise 14, p. 73]Let G be a group of finite Morley rank without
involutions. If« is a definable involutive automorphism@fthenG = C(a)G—, where
G~ ={geG: g¥=g1}. Moreover, ifc € Cg(a) andg € G, then(c,g) — cg is a
definable bijection. In particulars is connected if and only if ¢ («) is connected, and
G~ is of Morley degred.

Fact 4.24 ([17, Lemme 4.7], [4, Proposition 9.4])et O x X be a group of finite Morley
rank whereQ, X, and the action o on Q are definable. IfQ is an abelian2-group of
bounded exponent anil is a 2*--group which centralizes the involutions ¢f, then X
centralizesQ.

4.9. Torsion

Fact 4.25[11, Exercise 11, p. 93].et G be a group of finite Morley ranki a definable
subgroup ofG, andx € G. If for some prime number we havex? € H, then the coset of
x moduloH contains ap-element.

4.10. Fusion

Fact 4.26 [11, Proposition 10.2].et G be a group of finite Morley rank and j € G two
involutions. Then eitherand j ared({ij))-conjugate, or they commute with an involution

ind((ij)).

Fact 4.27[11, Lemma 10.22]Let S be a Sylow 2-subgroup of a groug of finite Morley
rank. If T is the maximal torus ir§ thenNg (T') controls fusion inS, in the sense that any
two subsets of which are conjugate ifi7, are conjugate inNg (7).

Corollary 4.28 ([18, Fait 2.18], [1, Fact 2.48])Let G be a group of finite Morley rank
of mixed type. Supposeis Sylow 2-subgroup, andsS = U = T whereU is the maximal
unipotent2-subgroup ofS and 7' its maximal2-torus. Ifi € I(T) theni® N U C T. In
particular, U has only finitely many involutions that are conjugate to involutiorn.in
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4.11. Strong embedding

Definition 4.29. Let G be a group of finite Morley rank. A proper definable subgra#p
of G is said to bestrongly embeddeith G if

i) 1(M) #9;
(i) foreveryge G\ M, (M N M8)=0.

Fact 4.30 [15, Theorem 9.2.1]Let G be a group of finite Morley rank with a proper
definable subgroup/. Then the following are equivalent

(1) M is a strongly embedded subgroup.

(2) I(M) # 0, Cg(i) < M for everyi € I(M), and Ng(S) < M for every Sylow
2-subgroup ofM.

(3) I(M) # @ andNg(S) < M for every nontrivial2-subgroups of M.

Definition 4.31. Let G be a group. Fox € G, C§(x) ={g € G: x8 =x orx~1}. An
element ofG is said to bestrongly realif it is the product two involutions.

Fact 4.32 ([15, Theorem 9.2.1], [11, Theorem 10.19]kt G be a group of finite Morley
rank with a strongly embedded subgrotp Then the following hold

(1) Syb(M) € Syh(G).

(2) 1(G) is a single conjugacy class.

(3) The involutions iV are conjugate inV/.

(4) If i € I(M) andx is a nontrivial strongly real element i@ (i), thenCg, (x) < M.

Fact 4.33. Let G be a group of finite Morley rank with a strongly embedded subgrdup
and X a normal subgroup oM with an infinite Sylow2-subgroup. Thed (M) C X°.

Proof. Otherwise, in view of poin{3) above,/(M) N X° = @, so X has finite Sylow
2-subgroups. O

Corollary 4.34. If G is a group of finite Morley rank of even type with a strongly embedded
subgroupM, thenl (M) = I (M°).

Fact 4.35 [1, Proposition 3.4]Let G be a group of finite Morley rank with a strongly
embedded subgrould. If N is a proper definable subgroup 6f which containsV/, then
N is strongly embedded i@.

4.12. Weak embedding

Definition 4.36. Let G be a group of finite Morley rank. A proper definable subgrasp
of G is said to baveakly embeddeid G if
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(i) M has infinite Sylow 2-subgroups;
(i) foreveryg e G\ M, M N M¢& has finite Sylow 2-subgroups.

For groups with infinite Sylow 2-subgroups, this is a substantial generalization of the
notion of strong embedding, and experience shows that in the case of groups of even
type it is the notion one needs to work with ultimately. The following characterization
is straightforward.

Fact 4.37[3]. Let G be a group of finite Morley ranky a proper definable subgroup 6f.
M is weakly embedded if and only if the following hold

(i) M has infinite Sylov2-subgroups.
(i) Forany nontrivial unipoten®-subgroup/ and nontrivial2-torus7 in M, Ng(U) < M
andNg(T) < M.

4.13. The grapid(G)

Definition 4.38. Let G be a group of finite Morley rank. Then the graghG) is defined

as follows. The vertices aff are the nontrivial 2-unipotent subgroups@®f The edges of
G are the pairs of distinct nontrivial 2-unipotent subgroupsofvhich commuteG acts

naturally on/(G) by conjugation.

Our main interest is in the connected components of this graph (which is, however,
usually connected). There is a variant of this graph, which we may&a), with the
same vertices, but with edges consisting of pairs of nontrivial 2-unipotent subgroups which
normalizerather than centralize each other. This graph has more edgdg thatthe same
connected components, sincdif andU, normalize each other then they are at distance
at most 2 i/ (G), with Z°(U1U2) as an intermediate vertex.

Fact 4.39 [3, Proposition 5.18, Corollary 5.19.et G be a group of finite Morley rank
andC a connected component of the graghG). Let (C) be the group generated by the
vertices ofC, and letM be the set-wise stabilizer 6fin G. Then

(1) M =Ng({C)), soM is definable.
(2 UMm)=CC.

Fact 4.40 [3, Proposition 5.21]Let H be a B-type K-group. If&/(H) is not connected,
thenH >~ PSL,(K) for some algebraically closed field of characteristic2.
5. Theorem 1 (strongly embedded case)

The starting point for the classification of simpk*-groups of even type is the
following result of Jaligot.
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Fact 5.1 [19]. A simple K*-group of even type with a weakly embedded subgroup is
isomorphic toPSLy(K), whereK is an algebraically closed field of characterisfic

The analysis is subtle, and departs considerably from the lines that would be taken in
the corresponding case in finite group theory. As such, it provides an excellent test of our
resources in thé*-context. As we have mentioned, the first objective in kifecase was
to show that the weakly embedded subgrafiphasM° solvable. In thel.*-context, we do
not expect to achieve so much by a direct argument. Instead we aim at:

Theorem 1. LetG be a simpleL*-group of even type with a weakly embedded subgidup
ThenM°/03(M°) is of degenerate type.

Note that in aK *-context, if the quotiend/°/ 03 (M) is of degenerate type, then it is
solvable, and henc#® is solvable.

Lemma5.2. Let M be anL-group of even type. Then the following are equivalent.

(1) B(M) is solvable.
(2) B(M) = 03(M).
(3) M/035(M) is of degenerate type.

Proof. If B(M) is solvable then, by Lemma 3.8(M)/03 (M) is trivial. Thus B(M) =
05(M). The converse is clear, so the first two conditions are equivalent.

Since B(M) is the smallest normal definable subgradpof M such thatM /N is of
degenerate type, the equivalence of the last two conditions is clear.

Turning to the proof of Theorem 1, in this section we will treat the more delicate case in
which M is strongly embedded, and in the following section we turn to the case of weakly
embedded subgroups which are not strongly embedded, which follows more closely on
earlier lines [4, Section 5].

There are two sources for the following line of argument: [1,4]. We begin along the lines
of [1], then after Corollary 5.11 we go more in the direction of [4], with some deviations,
notably in the treatment of Proposition 5.14. We will consider the gidup= B(M ),
and aim eventually a1 = 1.

The following lemmas and propositions were proven in [1], based on analogous finite
group theory results from [15, Chapter 9]; in order to make this line of argument work in
the context of groups of finite Morley rank, one must work with the connected components
of the groups involved. As the next lemmas provide all the basic building blocks, as well
as the notation, for our argument, we run through this material in some detail.

Fact 5.3 ([15, Theorem 9.2.1(iii)], [1, Lemma 3.8]).et G be a group of finite Morley
with a strongly embedded subgrod. Then there is an involutiom € G \ M such that
rk(I (wM)) > rk(I (M)).
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Proof. This is a rank computation: one shows that “almost all” involutions have this
property, by considering the rank of the set of involutions

Notation 5.4.

(1) Fix an involutionw with rk(I (wM)) > rk(I (M)) for the remainder of the argument.
(2) Y ={uw: u € I(wM)}. (By choice ofw, rk(Y) >rkI(M).)

(3) K =d(Y), the smallest definable group containirig

(4) Yo={yeK° y*=y71}.

(5) K1 =d(Yo) < K°.

Fact 5.5 [1]. Let G be a group of finite Morley rank with a strongly embedded subgroup.
Then the grouX = d(Y) as defined above contains no involutions.

Proof. This is found in [15, Theorem 9.2.1] in the finite case and in [1, Proposition 3.9]
adapted to the case at handa

Fact 5.6 [1, Proposition 3.10]Let G be a group of finite Morley rank with a strongly
embedded subgroul. Then fori € 1(M), M° = Cg (i) K°.

Fact 5.7 [1]. Let G be a group of finite Morley rank with a strongly embedded subgiup
containing infinitely many involutions. Théf® = Cg-(w)Yo andrk(Yp) = rk(Y).

Proof. As I(M) is infinite, by the choice of the involutiom, Y and hencek are

also infinite, and thus® is nontrivial. Applying Fact 4.23 t&K°, with respect to the
automorphisn induced by the action ofv, we find K° = Cgo(w)Yp and rkKK°) =

rk(Cg-(w)) + rk(Yo). Applying the same fact t&K and the action ofw on K, we

find similarly rk(K) = rk(Cg (w)) + rk(Y). Since rKK°) = rk(K) and rCgo(w)) =

rk(Ck (w)), we find that rkYo) =rk(Y). O

Fact 5.8 [1]. Let G be a group of finite Morley rank with a strongly embedded subgiup
containing infinitely many involutions. Thek(Z (M)) = rk(Y) = rk(Yo) = rk(i 0), where
iel(M).

Proof. We deal first with rkYp). We already have o) = rk(Y) > rk(I (M)), by choice
of w. For the reverse inequality, we claim that the involution§y € Yp) are all distinct.

If i1 =72 with y1, y2 € Yo, let x1 = wy1, x2 = wy»; these are involutions imM. We
have by hypothesigxox1)” € C(i). Assumingxy # x2, we haveCy; ((x2x1)") < M by
Fact 4.32(4). Nowt " inverts(x2x1)", so this forces;’ € M, and hence

wM =x1M = x1x]’' M = xqwxiwM = (yl)_zM =M,

a contradiction. So the involutions’ (y € Yp) are distinct, and ri&g) = rk(i'0) <
rk(I(M)). O
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After these preparations we can begin to analyze the structfé @fhenG is a simple
L*-group of even type. Note thd(M) = I (M°) by Corollary 4.34.

Definition 5.9. A = (I(M)).

Proposition 5.10 [4, Lemma 5.4]Let G be a simplel*-group of even type with a strongly
embedded subgroud and A = (I(M)). ThenA < Z(B(M)) is a definable connected
elementary abelia@-group such thatd = I (M) U {1}.

Proof. By Lemma 3.11 applied wittX = B(M) andY = K°, there is a SyloW 2-sub-
group U of M normalized byK®°. Leti € I(Z(U)), C = C(i), so thatU < C°. As
M° = C°K° by Fact 5.6, we find

BOM) = (UM = (UK = U < €0

which shows that € Z(B(M)). As Z(B(M)) <« M, Fact 4.32(3) implies thai (M) C
Z(B(M)). ItfollowsthatA < Z(B(M)) andA is an infinite elementary abelian 2-subgroup
such thatd = 1 (M) U {1}. Clearly A° £ 1 andA < M. Therefore, another application of
Fact 4.32(3) shows that = A°. O

Corollary 5.11[1, Corollary 4.6].Let G be a simpleL*-group of even type with a strongly
embedded subgroul. If a, i, j € G* andi andj are involutions, with- commuting with
a andj invertinga, thena is also an involution.

Proof. We may assume thdte M. Thena in M is strongly real and € Cf;(a) so, by
Fact 4.32, alsg € M. Thereforej, jac Aandae A. O

Corollary 5.12. Let G be a simpleL*-group of even type with a strongly embedded
subgroupM. Let K1 and Yp be as in Notatiorb.4. Then any subgroup aif° containing
Yo, in particular K1, acts transitively o (M).

Proof. Leti, j € I(M). By Proposition 5.10/ (M) is a set of Morley degree 1. Thus by
Fact 5.8,i70 N j¥0 £ ¢. Let x, y € Yo such that* = j¥, equivalentlyi® ' = j. If H is
a subgroup containini then we havery ™l e H. 0O

Definition 5.13. My = B(M)©°); M1 = M1/ O2(My).

We will use this notation as well as the hypotheses of the last corollary in the rest of the
argument.

Proposition 5.14. If M1 # 1thenK° is abelian.
Proof. Let Ko = Cg-(M1). Using the argument at the beginning of the proof of

Lemma 3.10, we conclude thaf; is the central product of a finite number of quasisimple
algebraic groups over algebraically closed fields of characteristic 2.
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Fact 4.22 shows thak° acts onM; by inner automorphisms. Sind&°/Kg has no
involutions (Fact 4.25), Fact 4.21 and Proposition 3.5 imply ti&f Ko has no simple
sections, and is therefore isomorphic to a connected solvable subgradp afithout
involutions, hence acts as a subgroup of a torusfanin particular,K °’ < K.

We will show next that

CKO (w) =1 (*)

For x € Ko, Fact 4.13 applied withD = d({x)) shows thatCy, (x) coversMi. In
particular,Cy; (x) has an infinite Sylow 2-subgroup

Suppose, in particular, thate Ck,(w) is nontrivial. ThenS, S¥ < C(x) and hence
C°(x) N M is strongly embedded iC°(x). By Lemma 3.12,C°(x) = L x D with
L = B(C°(x)) andD = Cco(y)(L), whereL ~ PSLp(K) with K algebraically closed of
characteristic 2, anfl N M° is a Borel subgroup of. But then no subgroup @f°(x) can
coverM 1, a contradiction. Sex) follows.

In particular,Cg-(w) = 1 and asv acts onk °’, it follows from Fact 4.23 thab inverts
K°'.If x € K°’ is nontrivial then we have the following: centralizes an involution i/
w invertsx. Then by Corollary 5.1% is an involution, a contradiction. Thug®’ =1. O

Proposition 5.15. If M1 # 1thenO5(M) is abelian.

Proof. By the preceding lemmak; is abelian, and sinc&1 = d(Yp), w inverts K.
Hence, by Corollary 5.11, no nontrivial elementif centralizes an involution iV .

As K1 acts transitively on/ (M) and A < O3(M), the structure(0O5(M), K1) is a
Suzuki 2-group of finite Morley rank. By our opening remarks, this is in fact a free Suzuki
2-group and therefore, by Fact 4@; (M) is abelian. O

Lemma5.16 [4, Lemma 5.5]If 05(M) is abelian therfO3(M), M1] = 1.

Proof. Let X be any definable subgroup #f; without involutions. By Proposition 5.10,
X centralizesA. Then, sinced = Q1(05(M)), andO35(M) is of bounded exponent and is
assumed to be abelian, Fact 4.24 implies tKiatentralizesO;(M). Now the conclusion
follows, since such subgroups genersteby Lemma 3.10. O

Our final argument follows the lines of an argument given for the weakly embedded
case in [4, Proof of Theorem 5.1].

Proof of Theorem 1. We claim thatM; = 1. Assuming the contrary, then, by Proposi-
tion 5.15,05(M) is abelian. Then Lemma 5.16 implies th@f(M1) < Z(My). Using
Facts 4.10-4.12 and Corollary 3.4, we conclude #faiM1) = O(M1) x O5(M1). By
Proposition 3.20(M1) < Z(Mj). Fact 4.18 then implies easily that (M) = 1. It fol-
lows thatA N M1 = 1. But M1 has nontrivial Sylow 2-subgroups and hence megts
a contradiction. O
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6. Theorem 1 (weakly embedded case)

We now take up the case of Theorem 1 in which the weakly embedded subgfoup
is not strongly embedded. Since the proof in this case follows the solvability proof in
[4, Section 5] very closely, we will simply outline the argument.

For the remainder of this sectio; will denote a simpleL*-group with a weakly
embedded subgrould which is not strongly embedded. In this situation Fact 4.37 shows
the existence of anffending involutionx € M whose centralizer is not contained M.

The following lemma is the starting point in the analysis.

Lemma 6.1 [4, Lemma 3.1, Proposition 3.2[.et G be a simpleL*-group of even type
with a weakly embedded subgrodpthat is not strongly embedded. Then there exists an
involutiona € M with the following properties

(1) Cq & M.

(2) C; N M is aweakly embedded subgroupG.

(3) C; =L xDwhereL = B(Cy), D= Ccs(L),andL =~ PSLy(K) with K algebraically
closed of characteristi2, and D is a definable connected subgroup of degenerate type.

(4) C3(@)=(LNM)x DandL N M is aBorel subgroup of..

(5) a¢o°(CS).

This is proved as in [4], taking into account Lemma 3.12. (See also Lemma 7.18.)
Let A=Qi(L N M) andT be a complement t&A in L N M. Next, corresponding to
Proposition 3.5 and Corollary 3.6 in [4], one shows using Lemma 3.11Mhditas an
({a) x T)-invariant Sylow 2-subgroups$ that containsA, and thatCg(a) = A. In this
situation, the following classification result of Landrock—Solomon type applies.

Fact 6.2 ([4, Theorem 4.1], [20])Let H = S x T be a group of finite Morley rank, where

S is a unipoten®-group andT is also definable. Assume th&ihas a definable subgroup

A suchthatd x T = K, x K* for some algebraically closed fieldl of characteristic2,

with the multiplicative group acting naturally on the additive group. Assume also that
« is a definable involutory automorphism &f such thatCy, («) = A x T. Under these
assumptions is isomorphic to one of the following groups

(i) If Sis abelian then eithe§ is homocyclic with (S) = A*, or S = E & E*, whereE is
an elementary abelian group isomorphicka . In the latter cased = {xx“: x € E}.

(iiy If S is non-abelian thers is an algebraic group oveK whose underlying set is
K x K x K and the group multiplication is as follows

forai, b1, c1,a2,b2,c2€ K,
(a1, b1, c1)(az, bz, c2) = (a1+az, b1+ bz, c1 + c2 + € /araz + /b1b2 + y/b1az),

wheree is eitherO or 1. In this casex acts by(a, b, ¢)* = (a,a+b,a+ b+ c+ +/ab)
and[o, S]={(0,b,¢): b,c € K}.



T. Altinel, G. Cherlin / Journal of Algebra 264 (2003) 155-185 177

In particular, if S is non-abelian thets has exponent.

One can then prove the following by straightforward adaptation of the corresponding
arguments in [4]. As in the previous sectidi; denotesB(M)(*, and we assuméfy # 1.

Lemma 6.3 [4, Lemma 5.3].05(M) # 1.
Lemma6.4[4, Lemma5.4]A < Z(B(M)).
Lemma6.5[4, Lemma 5.5]{ 05 (M), M1] = 1.

At this point one may conclude with a contradiction as at the end of the previous section.
(This corresponds to the proof of Theorem 5.1 of [4].)

7. Groupsof mixed type

This section is devoted to the analysis of simple groups of mixed type and the proof of
Theorem 2 and its corollary.

Theorem 2. Let G be a simple group of finite Morley rank, all of whose proper definable
infinite simple sections of even type are algebraic. TGezannot be of mixed type.

Corollary 7.1. Assume that all simple groups of finite Morley rank of even type are
algebraic. Then there is no simple group of finite Morley rank and of mixed type.

In other words, if one can handle the simple groups of finite Morley rank of even type,
then the mixed type problem goes away. This line of argument is somewhat roundabout.
The advantage of focussing on groups of even type is the good control one has of groups
of B-type. Subgroups aB-type will also play a crucial role in this section.

The proof of Theorem 2 follows the proof of Fact 3.1 as given in [18]. There are two
major steps. In the first step, a counterexample to Fact 3.1 is shown to have a weakly
embedded subgroup. In the second step one shows that the group in question is strongly
embedded: that is, a failure of strong embedding leads to a contradiction by considering
fusion of involutions. On the other hand, once the group in question is strongly embedded,
an easy fusion argument produces an immediate contradiction. The underlying idea is the
following: in groups of mixed type there are two particular “kinds” of involutions, those
associated with unipotent subgroups and those associated with 2-tori. Morally speaking,
involutions of these two kinds “ought to” commute with each other; but since each kind is
a union of conjugacy classes, this would contradict the simplicity of

In our proof, the first step, aiming at weak embedding, requires the more substantial
alterations. The second step remains almost intact, except at one point (Lemma 7.21).
Wherever deviations are necessary, they are due to the possible presence of nonsolvable
degenerate sections; among other things, the possible existence of involutions in such
sections must be borne in mind. The action of such a section on a minimal elementary
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abelian 2-group can be “linearized” and hence understood when the section is solvable,
but this is not necessarily the case for sections of degenerate type in general.

In the proof of Theorem 2 we consider a counterexandplef minimal Morley rank.
Thus the infinite proper definable simple sections of this counterexample are not of mixed
type; but some of them may be of degenerate type. One should also note that we do not
assume that the sections of odd type are algebraic. Howevisran L*-group, and we
will find sufficient scope for the application df-group theory by considering subgroups
of B-type.

7.1. D-type groups

The analysis of groups of mixed type, first in the “tamé* setting and later in the
generalK* setting, depended on the study of the interaction of subgroupstgpe with
a dual class, called-type. The same analysis goes over in the more general context of
L-groups, given Proposition 3.5.

Definition 7.2. Let H be a group of finite Morley rankD(H) is the subgroup o
generated by the definable closuresHnof its 2-tori; this is definable and connected by
Zilber's Indecomposability Theorem.

H is said to be ofD-typeif H = D(H).

We first recall the essenti& -group facts.
Fact 7.3 [3, Corollary 5.8].Let H be aK-group. ThenB(H) and D(H) commute.
Fact 7.4[3, Lemma5.9]Let H be aK-group of B-type. ThenD(H) = 1.
Lemma7.5. Let H be a group of finite Morley rank which has no definable simple sections
of mixed type, and such that all of its definable sections of even type are algebraic. Then
B(H) and D(H) commute.
Proof. It suffices to show that iff" is the definable closure of a 2-torus i, thenT
centralizesB(H). Now B(H) is aK -group by Corollary 3.6, and is abelian, s®B(H)T is
aK-group. Applying Fact 7.3t®(H )T, we find thatl’ centralizesB(H), as required. O
7.2. The critical configuration

Our analysis will drive us toward a particular configuration involving R@D in
characteristic 2, which must be eliminated by a special close analysis. So we dispose of
this in advance. The result in question is:
Theorem 3. Let G be a simple group of mixed type none of whose proper simple definable

sections are of mixed type. LRtbe a maximaP-torus of G. ThenB(C¢ (R)) is not of the
form PSLy(K), with K algebraically closed of characteristiz:
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This is an analog of [18, Théoreme 4.2]. The proof requires extensive preparation.
Ultimately, a contradiction is reached via the following quite technical fact.

Fact 7.6[18, Lemme 4.1]Let G be a group of finite Morley rank with involutionsj, k, k',
L = B(C¢(k)), satisfying the following properties.

(1) i andj are not conjugate

(2) L ~PSLy(K) with K an algebraically closed field of characterisgi¢
(3) k' is the unique involution id ({ij));

(4)ieL,jeCsk),andk’ ¢ L.

Thenjk' € L.

For the rest of the present subsection we assumeGhsatisfies the hypotheses of
Theorem 3. In addition, we fix the following notation.

Notation 7.7.

(1) Sis a Sylow 2-subgroup of5.
(2) S =U *x R with U 2-unipotent and® a 2-torus.
(3) L =B(Cg(R)). Note thatlU is then a Sylow 2-subgroup of._.

We will assume, toward a contradiction, that
L >~ PSLy(K) with K an algebraically closed field of characteristic 2.

In particular,U is abelian.

An involution which lies in a 2-torus will be said to hawsdd type An involution which
lies in a 2-unipotent subgroup ¢f, will be said to haveeven typeAs G is of mixed type
there are involutions of both types. Furthermore, by Corollary 4.28, there are involutions of
even type which are not of odd type; we will say that such involutionpergerlyof even
type. Note that because of the transitive action/oti) of a torus inL normalizingU,
all even type involutions are properly so. Eventually we will show that involutions of odd
type commute with involutions which are properly of even type. This produces nontrivial
commuting normal subgroups 6f, and a contradiction.

Lemma7.8.If i is aninvolution of even type, thét(C (i)) is conjugate td/ andi belongs
to a unigue maximal unipote@tsubgroup ofG.

Proof. After conjugating we may suppose thate U and henceR < D(C(i)). By
Lemma 7.5, we hav8(C(i)) centralizingD(C(i)) and henceB(C(i)) < B(C(R)) = L.
HenceB(C(i))=U. O

Notation 7.9. If i is an involution of even typelU; will denote the unique maximal
unipotent 2-subgroup af containing;.
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Lemma 7.10. Leti, j be involutions with of even type ang of odd type. Ifj normalizes
U; thenj centralizesU;.

Proof. We may suppose that € R. Since j normalizesU;, it follows from Fact 4.9
that C;’]I_ (j)#1 LetA = C;’]I_ (j). By Lemma 7.5 applied ta”(j), R centralizesA.
By Lemma 7.5 applied t@' (A), R centralizesB(C(A)), which containgJ;. As j € R,
j centralizedJ;. O

Lemma7.11[18, Corollaire 4.4]Leti, i’ be two commuting involutions of even type. Then
U; = Uy

Proof. i’ normalizesU; and hence centralizes a nontrivial connected subgroup; of
(Fact4.9). SdJ;y =U;. O

Let I be the set of involutions which are properly of even type, @dhe set of
involutions of odd type. AsG is simple, there must be involutioniss I, j € I which
do not commute. Fix such for the remainder of this subsection. We move in the direction
of Fact 7.6, withk = k£’ to be chosen as follows.

Lemma 7.12[18, Lemme 4.5]d({ij)) contains a unique involution.

Proof. Sincei and j are not conjugate, by Fact 4.26(ij)) contains at least one
involution. For the uniqueness, in view of Fact 4.8, it suffices to showat{at))° contains
no nontrivial 2-tori.

Suppose on the contrary th&p is a nontrivial 2-torus ind({(ij))°. Sincei invertsi;
andd((ij)) is abelian, invertsd({ij)). In particular, inverts Ro. But if ¢t € 1(Rp) then
[t,i]=1 and, by Lemma 7.1Q, centralizesU;. Soi € B(C(¢)) and, by Corollary 7.5,
i centralizesRg, a contradiction. O

The unique involution off ({ij)) will be denoteck.

Lemma 7.13[18, Lemme 4.6]B(C¢ (k)) ~ PSLy(K) for some algebraically closed field
K of characteristic2.

Proof. Note that ag, j do not commutej cannot normalizé/; by Lemma 7.10.

Sincek commutes with, it normalizeslU; by Lemma 7.8, and centralizes a nontrivial
connected subgroup; < U;. As k commutes withj, k also centralizest/ < U;. Thus
L = B(C(k)) contains two distinct Sylov2-subgroups and, as the maximal unipotent
subgroups ofG have pairwise trivial intersections (Lemma 7.8)Ly) is disconnected.
By Fact4.40L; ~ PSLy(K) for some algebraically closed fiek of characteristic 2. O

Proof of Theorem 3. We will now arrive at a contradiction to the choiceiodnd j. We
may suppose € R. Takei’ an involution in Cp, (k) with i’ not conjugate toj (since
I(CIOJ; (k)) is infinite, this can be done).
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We apply Fact 7.6 ta’, j, k (with ¥’ = k as well). There are four conditions to be
verified. By our choice of’ andj, they are not conjugate. The previous two lemmas verify
conditions (2) and (3) of Fact 7.6. The last condition is

i'e B(Co(k)),  jeCgk), and k¢ B(Cgk)).

Now i’ € B(Cg(k)) and j € Cg (k) by our choice ofi” andk, andk ¢ B(Cg(k)), as
otherwise we would havke of even type, an®(Cg (k)) = Uy.

So Fact 7.6 applies and yieldst € B(C(k)). In particular, jk is of even type.
Since j centralizesjk, j centralizesU;; by Lemma 7.10. By Corollary 7.5D(C(j))
centralizesB(C(j)) and, in particularR centralized/;;, and henceR centralizes.. Then
by Lemma 7.5,R centralizesB(C (k)), and, in particular; centralizesB(C(k)). Then
jk € Z(B(C(k))), a contradiction to the simplicity aB(C (k)).

This contradiction shows that the properly even type involutions and the odd type
involutions commute, producing commuting normal subgroups of the simple gioup
a contradiction. O

7.3. The proof
Now we proceed to the proof of Theorem 2.
Notation 7.14.

(1) G is a simple group of finite Morley rank of mixed type, and of minimal rank. All the
simple proper definable infinite sections of even typé&aire algebraic.

(2) U =U(G) is the associated graph, with vertices nontrivial 2-unipotent subgroups of
G and edges consisting of pairs of vertices which commute.

(3) Sis a Sylow 2-subgroup of.

(4) S =U % R with U 2-unipotent and® a 2-torus.

If G were actually akK-group of mixed type, one would expect batG) and B(G)
to be proper and normal i@, and one would expeéf to be connected unless has
PSLy(K) as a normal subgroup witk of characteristic 2. Now as it turns out thatzif
is connected, one easily finds a nontrivial proper normal subgrotpadf D-type, giving
a contradiction. The “exceptional case” in whilzhis disconnected is in fact the only one
that requires prolonged analysis. In this case one obtains a weakly embedded subgroup of
G by considering the stabilizer i@ of a connected component&f

Lemma 7.15. The graphi/ is not connected.

Proof. ForU a nontrivial 2-unipotent subgroup 6f, let Dy = D(C¢ (U)). Observe that,
asG is of mixed type,Dy # 1 for suchU.

Evidently forg € G we haveDys = Df]. We claim that, foU1, U2) an edge ot{, we
haveDy, = Dy,. If U is connected, this implies thdly is independent of the choice of
U and hence normal iy, contradicting the simplicity of;.
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So fix U1, U2 commuting nontrivial unipotent 2-subgroups@f ThenU, normalizes
Dy, and centralize®Dy, by Lemma 7.5. Sy, < Cg(Uz), implying Dy, < Dy,. By
symmetryDy, = Dy,, as claimed. O

The construction of a weakly embedded subgroup follows the same line as in [18].

Notation 7.16. Let M be the set-wise stabilizer, under the natural actiorGofof the
connected componedgtof the grapti/ which containdJ.

Recall thatM is definable, and/(M) = C (Fact 4.39).
Theorem 4. M is a weakly embedded subgroup®f

Proof. Observe that every connected component/o€ontains a maximal 2-unipotent
subgroup ofG, henceG operates transitively on the set of connected componerits of
and in particularM < G. Furthermore, ifU is a nontrivial 2-unipotent subgroup of,
thenU e C by Fact 4.39, and hend¥; (U) < M. By the criterion for weak embedding
given in Fact 4.37, it suffices to check the following:

For any nontrivial 2-toru§” of M, Ng(T) < M.

Suppose on the contrary thAtis a 2-torus inM such thatNg (T) € M; thatis,Ng(T)
does not stabiliz€ set-wise. LetQ = B(Ng(T)) = B(Cg(T)). Thenld(Q) =U(Ng(T))
is disconnected. Thus Corollary 3.6 and Fact 4.40 imply hat PSLy(K) for some
algebraically closed fiel& of characteristic 2.

If R is a maximal torus containingj, thenR < D(C(T)) and Lemma 7.5 implies that
0 < C(R), SON(R) £ M and thus alsaB(N(R)) ~ PSLy(K) for some algebraically
closed fieldK of characteristic 2. Now we can apply Theorem 3 to reach a contradiction
and conclude thaVg(R) < M. O

This completes the first step of the proof of Theorem 2. In the second step we must
show that the weakly embedded subgradips in fact strongly embedded. This provides
an immediate contradiction, since has at least two conjugacy classes of involutions, in
view of Fact 4.32(2).

For this second part, we may proceed very much as in [18], with some deviation in
Lemma 7.21. We will give the details, suitably adjusted. In what folloMsnay be taken
to be any weakly embedded subgroupxfits construction is no longer important.

Theorem 5. If M is a weakly embedded subgroup®thenM is strongly embedded.
Assuming the contrary, as in Section 6, one hasféending involutionx in M, whose
centralizer is not contained . As in case of groups of even type, one can pin down the

structure of this centralizer, as in the slightly more specialized situation of Lemma 6.1.

Notation 7.17. 1,, will denote the set of offending involutions .
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Lemma 7.18. Suppose € I,,. Then the following hold

(1) C(@)° =L x X with L = B(C()), X = Cco@) (L), L ~ PSLx(K) with K algebrai-
cally closed of characteristi2, and X a group of degenerate type.

(2) M°NL=A xTis aBorel subgroup of. and X < M.

(3) D(C(a)) =1.

(4) Ifi e I(A) thenC (i) < M.

Proof. SetH = C(x)°, L = B(H), andX = Cy(L).

(1) and (2). IfL < M, then a Frattini argument shows th@te) < M, contradicting
our hypothesis. Sé. £ M. SoL N M is a weakly embedded subgrouplofind, asl is a
K-group, Lemma 3.12 gives the structure/oéind proveg2).

As M is weakly embedded; (L) < M and, in particularX < M. If X has an infinite
2-Sylow subgroup the@ (X) < M by weak embedding, hende < M, a contradiction.
This proveq1) and(2).

(3) This follows from(21).

(4) If i € I(A) theni is conjugate to an involution i/, so C (i) contains a nontrivial
2-torus.By()i ¢ 1,,,S0C(IH) <M. O

Notation 7.19. For « € I,,, let A, be O2(B(C(a)) N M), which is the unique Sylow
2-subgroup ofC («) contained inM.

Our goal now is to show that all involutions of odd type belong#oSince this implies
that M contains a nontrivial normal subgroup 6f, this will provide a contradiction
completing the proof of Theorem 5 (and hence the proof of Theorem 2).

Lemma 7.20[18, Lemme 5.3]Supposg is an involution of odd type itF \ M, « € I,
andi € A,. Thend((ij)) contains a unique involutiofi, andg € I,,.

Proof. All the involutions inA, are conjugate (iB(C («)) N M). Thus by Corollary 4.28,
i and;j are not conjugate and, by Fact 4.26(ij)) contains at least one involutigh

To prove the uniqueness ¢f, by Fact 4.8, it suffices to show thd{(ij)) does not
contain a nontrivial 2-torus. Suppo%eis one such. Let € I(T). Thenr € C(i) < M. By
Lemma 7.183),¢r ¢ I,,, S0C(t) < M. Thenj € M, a contradiction. S@ is unique.

Now the involutiong of d({ij)) commutes with botti and j, andC(i) < M, j ¢ M.
SopeM,butC(B) £ M,andthus e l,,. O

Lemma 7.21[18, Lemme 5.4]Every involution of odd type belongs i6.

Proof. We suppose the contrary:e G \ M is an involution of odd type.

Letag € I,, andip € Ag,- By Lemma 7.20d({ioj)) contains a unique involutioa;
anda; is an offending involution. Now taka e A;l. A second application of Lemma 7.20
to j andij yields thatws in d({i1j)). Let L1 = B(C(a1)).
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We intend to apply Fact 7.6 with, j, a1, a2 in the roles ofi, j, k, k’. The first three
hypotheses of that lemma hold by the choice of the involutions. The last hypothesis is

i1€ Ly, j€Cq(a1), and az¢ L.

The only point that needs to be checked is the last.

If ap € L1, thenay is in a unipotent 2-subgroup d@F. Hence D(C(a2)) # 1. This
contradicts Lemma 7.18(3).

So Fact 7.6 applies and givgas € B(C(x1)). As j € C(a1), j hormalizesB(C(x1)).
The action is by inner automorphisms, apdentralizesjaz, so j acts like an element
of A q,. In particular,j centralizesA j4,, SO jaz € B(C(j)). Let R; be a maximal 2-torus
containingj. By Lemma 7.5,D(C(j)) and B(C(j)) commute, soR; centralizesjay.
HenceR; centralizesro; but D(C(a2)) = 1 by Lemma 7.183), a contradiction. O

Proof of Theorem 5. Lemma 7.21 contradicts the simplicity 6f. O

Proof of Theorem 2. Theorems 4 and 5, Fact 4.32, and Corollary 4.28.

Added in proof

Fact 4.19 is also noted and a proof is sketched in [24, Remarque 3].
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