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1. Introduction

The Cherlin–Zilber algebraicity conjecture states that infinite simple groups of
Morley rank are isomorphic to algebraic groups over algebraically closed fields. O
basis of the 2-Sylow theory it is possible to divide these groupsa priori into four classes
said to be of even, odd, degenerate, and mixed type, where even and odd types
be algebraic groups over fields of characteristic respectively equal to 2 or unequa
and degenerate and mixed type groups conjecturally do not exist. It has been sho
a minimal counterexampleto the algebraicity conjecture (more formally, a nonalgeb
simple K∗-group) cannot be of mixed type, and the more elaborate classificatio
simpleK∗-groups of even type appears now to be approaching completion. This rais
question whether we are in a position to verify the algebraicity conjecture forall simple
groups of finite Morley rank of even type.

The study ofK∗-groups follows aninductiveapproach analogous to therevisionist
approach of finite group theory. Consequently, the successful completion of theK∗-clas-
sification project in the even type case can produce at best the following result: a s
group of finite Morley rank of even typewith no simple definable section of degener
typeis algebraic. Given the real possibility that nonalgebraic simple groups of finite M
rank of degenerate type may exist, we look for an approach which profits from the le
learned to date in the study ofK∗ groups of even type, but which, if successful, could yi
the full algebraicity conjecture in the even type case. The present paper is devoted
presentation of an appropriate inductive framework, which we callL∗-groups, and som
results which provide grounds for cautious optimism in this regard. The following the
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is an analog of a result proved in the early stages of the analysis of simpleK∗-groups of
finite Morley rank of even type [1,4].

Theorem 1. LetG be a simpleL∗-group of even type with a weakly embedded subgroupM.
ThenM◦/O◦

2(M
◦) is of degenerate type.

In theK∗-case, the corresponding result is thatM◦ is solvable. We shall explain th
connection between these results more fully toward the end of Section 2.

As a second application of theL∗-theory we show that the treatment of the mixed ty
case can be reduced to the even type case.

Theorem 2. LetG be a simple group of finite Morley rank, all of whose proper defina
infinite simple sections of even type are algebraic. ThenG is not of mixed type.

Corollary 2.1. If all simple groups of finite Morley rank of even type are algebraic, t
there is no simple group of finite Morley rank and of mixed type.

It was known from theK∗ theory that the elimination of mixed type groups wou
follow from the algebraicity conjecture for both even and odd types [18]. The characte
feature of our approach consists of methods for dealing with degenerate and od
sections whose structure is left completely arbitrary. We intend to pursue the matter

This project was initiated in [2]. There are two simple principles which are esse
to our present enterprise. The first of these is largely responsible for the initiation
project in [2], where it occurs as Proposition 2.8.6:

Proposition 3.2. Let G = XU be a group of finite Morley rank withU,X connected
definable,U 2-unipotent,X � G, and X of either degenerate or odd type. ThenU
centralizesX.

Our second general principle shows that possible degenerate sections of anL-group
are not so intricately involved with the structure as might be feared, and allows the
transfer of a considerable body ofK-group theory to our setting.

Proposition 3.4. LetG be anL-group. ThenB(G) is aK-group.

HereB(G) is the (definable) subgroup ofG generated by all its 2-unipotent subgrou
This proposition, as stated, depends on a slight extension of a result of Poizat in
whose proof in general requires the classification of the finite simple groups:

Fact 4.19. If K is a field of finite Morley rank of characteristicp �= 0 then every simple
definable sectionG of GLn(K) is definably isomorphic to an algebraic group overK.
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This is stated by Poizat for simple subgroups. One must bear in mind here that th
K comes equipped with arbitrary additional structure, so there is no obvious reas
definable subgroups of GLn(K) to be at all well-behaved (technically, this is tied up w
the so-called “bad field” problem).

In practice one can manage with considerably less (the Feit–Thompson th
suffices), and we will indicate in the body of the paper how Proposition 3.5 and ce
related arguments can be recast to accomplish this. The essential point will b
replacement of Fact 4.19 by a similar Fact 4.21 in applications, particularly in the pro
Lemma 3.11 in Section 3.

We also make essential use of part of the theory of Suzuki 2-groups developed in
Another point which may be useful in the further development of the theory was po

out by Borovik (personal communication):

Fact 1.1. Let G = U � X be a group of finite Morley rank withU,X connected and
definable,U an abelian2-group, andX solvable and containing no involutions, and acti
faithfully onU . ThenX is abelian.

We do not need this result here, but it is of importance for the further developme
these ideas [7].

The paper is organized as follows. In the next section we review the main defin
relating to the “type” of a group, which are based on results of the 2-Sylow theo
well as the definitions relating to inductive approaches to the algebraicity conjectur
notions ofK-groups andK∗-groups, used to date, and the parallel but more general no
of L-groups andL∗-groups, for which at least some of the previous theory can be pu
through, as we will show. In Section 3 we develop the essential points of the general
of L-groups, Propositions 3.2 and 3.5, which have been discussed above. In Sec
included for ease of reference, we collect essential points of the general theory of
of finite Morley rank (a few of these are applied in Section 3). In Section 5 we pre
our main technical result, the proof of Theorem 1 in the strongly embedded case,
deviates quite strongly from the line of argument in theK∗ case. In Section 6, for the sak
of completeness, we outline the proof in the weakly but not strongly embedded case,
one follows the line of arguments given in [4]. Finally in Section 7 we prove Theore
following the line of argument in [18], and paying some further attention to the treat
of degenerate sections (in Lemma 7.21).

2. Definitions

In recent years considerable attention has been paid to the elucidation of the pos
Sylow structure in a minimal counterexample to the algebraicity conjecture, an ente
which makes considerable use of ideas exploited in the “revisionist” (i.e., highly indu
approach to the classification of the finite simple groups.
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2.1. Types of groups

There is a general 2-Sylow theory valid in groups of finite Morley rank, due to Bor
and Poizat. A Sylow 2-subgroup is a maximal 2-subgroup, and a Sylow◦ 2-subgroup is the
connected component of a Sylow 2-subgroup.

Fact 2.1 [12]. LetG be a group of finite Morley rank. Then

(1) Any two Sylow2-subgroups ofG are conjugate.
(2) If S is a Sylow◦ 2-subgroup, thenS has the form

U ∗ T (central product, finite intersection)

with U 2-unipotent (a definable connected2-group of bounded exponent) and T a
2-torus(a divisible abelian2-group).

In algebraic groups only one of these factorsU , T can be nontrivial, depending o
whether the characteristic is, or is not, two; and if the groupG is simple, thenexactlyone
of the two is nontrivial. In groups of finite Morley rank we have, a priori, four cases to
with:

(1) U,T �= 1: mixed type;
(2) U �= 1, T = 1: even type;
(3) U = 1, T �= 1: odd type (in algebraic groups, this includes characteristic 0);
(4) U = T = 1 (i.e.,S is finite): degenerate type.

The algebraicity conjecture predicts that mixed and degenerate types do not occ
that even type and odd type correspond respectively to algebraic groups in characte
and characteristic not 2.

2.2. Inductive frameworks

The standard inductive framework for considering the algebraicity conjecture has
the following.

Definition 2.2. LetG be a group of finite Morley rank.

(1) A sectionof G is a quotientH/K with K �H �G; the section isdefinableif H and
K are definable, andproperunlessH =G andK = 1.

(2) G is a K-group if every definable connected simple section is isomorphic to
algebraic group over an algebraically closed field.

(3) G is aK∗-group if every proper definable connected simple section is isomorph
an algebraic group over an algebraically closed field.

Thus a simpleK∗-group of finite Morley rank is either algebraic, or is a minim
counterexample to the algebraicity conjecture.
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We will work in a setting which allows degenerate (and in some cases, nonalg
odd type) sections.

Definition 2.3.

(1) An L-group is a group of finite Morley rank in which every infinite definable sim
section is either an algebraic group over an algebraically closed field, or of o
degenerate type; in other words, we exclude definable simple sections of mixed
and we require definable simple sections of even type to be algebraic.

(2) An L∗-groupis a group of finite Morley rank in which everyproper infinite definable
simple section is either an algebraic group over an algebraically closed field, or o
or degenerate type.

In the context ofK∗-groups, the elimination of the mixed type case was compl
in [18], building on the special case treated in [3], in which it is assumed, among
things, that the definable connected solvable sections of the group in question
contain no involutions are nilpotent.

As far as even type is concerned, there has been a very active classification projec
at verifying the algebraicity conjecture in the case of simpleK∗-groups of finite Morley
rank of even type, a project which appears now to be reaching completion.

However in [2] the possibility of weakening theK∗-hypothesis substantially in the eve
type case was investigated, and theL∗-theory was explored. The definition we adopt h
reduces to the one given in [2] in the even type case, and also serves well in our treat
the mixed type case in Section 7. The proposal is to adapt the methods used forK∗-groups
toL∗-groups. The ideal target would be:

L∗-conjecture. A simpleL∗-group of finite Morley rank and of even type is algebraic.

There are some grounds for cautious optimism that theL∗-conjecture may be
approachable by means closely related to those which have been used in theK∗-context.
The advantage of this version over theK∗ version would be that this conjecture is actua
equivalentto the full algebraicity conjecture for arbitrary simple groups of finite Mor
rank and even type, and this in turn would also dispose of themixed typecase (Theorem 2)

2.3. Weak solvability

In the case ofK∗-groups, the analysis of the even type case begins with the stu
weakly embedded subgroups (Definition 4.36), namely:

Fact 2.4 [4,19]. Let G be a simpleK∗-group of even type with a weakly embedd
subgroup. ThenG∼= PSL2(K) for some algebraically closed fieldK of characteristic2.

A similar result forL∗-groups would be of major importance.
The proof of Fact 2.4 begins with an analysis of the structure of a weakly embe

subgroupM; it is shown thatM◦ is solvable. In theK∗-context Fact 2.4 was proved
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[19], building on [1,4]. Again, the initial work assumed among other things the nilpot
of connected sections without involutions, a hypothesis lifted in [19] by use of the th
of solvable groups, notably the work of Frécon in [14].

In theL∗ context one does not expect to obtain solvability ofM◦ directly at the outset
There are however two natural analogs of that result in theL∗ context:

(1) M◦/O◦
2(M) is of degenerate type;

(2) B(M) is solvable.

Using standard results in the theory of groups of finite Morley rank one shows
these two results are equivalent; yet a third form of this condition is:B(M) = O◦

2(M).
(Cf. Section 5.) It is the first form which is most useful for the intended application
theK∗-context any proper connected subgroup of degenerate type is solvable, so
setting our Theorem 1 is equivalent to the solvability ofM◦.

In the proof of Theorem 1 we will have to distinguish two cases: the groupM in question
either is, or is not,stronglyembedded (Definition 4.29). If it isnotstrongly embedded, the
the analysis runs closely parallel to that given in theK∗-case, which we will therefore onl
summarize. IfM is strongly embedded, however, then we have to deviate substan
from the earlier approach, and this constitutes the technical core of the present artic

3. L-groups

We now take up our subject in earnest.
As we have mentioned, the analysis of the 2-Sylow structure ofK∗-groups begins

(logically, at least) with:

Fact 3.1 [18]. There exists no simpleK∗-group of mixed type.

The classification of simpleK∗-groups of finite Morley rank and even type is also w
under way, and it appears that the algebraicity conjecture will be confirmed in that
using the amalgam method from finite group theory to perform the final identification

Very difficult problems remain in the analysis of the other two types, which will
concern us here. Our aim is to weaken the reliance on theK∗ hypothesis in the favorabl
cases: even and mixed types; as explained in the introduction (and proved in Section
mixed-type case reduces to the even-type case. Now theeven-typecase is quite intricate
even in theK∗-case. The present paper is intended to provide a case study in the ada
of arguments occurring very early in the analysis, and which have depended o
solvability of degenerate sections, to the case of general groups of even type, in
nonsolvable degenerate sections may occur.

The remaining part of this section is devoted to the preparation of a suitable g
theory ofL-groups, much like the theory ofK-groups as it has been used to date. The
step is perhaps the most important: we claim that a unipotent 2-group can only act tr
on a group of odd or degenerate type; when the latter is assumedsolvable, this follows
from standard results (cf. [11, Exercise 2, p. 175] and [1]).
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Proposition 3.2. Let G = XU be a group of finite Morley rank whereU and X are
definable, andX � G. If U is a unipotent2-group, andX is of odd or degenerate typ
then the action ofU onX is trivial.

Proof. The argument is by induction on the rank and degree ofX. Note thatX ∩ U is
finite, by Fact 2.1(2).

Considering the quotient byCU(X) we may assume toward a contradiction that

(1) the action ofU onX is faithful andU is nontrivial.

Passing to a suitable connected normal subgroup ofU , we may also suppose that

(2) U is elementary abelian.

We show that

(3) X is connected.

If X◦ < X then by induction on degree,U centralizesX◦. As X/X◦ is finite, U acts
trivially on X/X◦. Hence forx ∈ X the mapγx :U → X◦ defined byγx(u) = [u,x] is a
homomorphism, whose image is then a unipotent 2-subgroup ofX, which must be trivial.
SoU centralizesX, a contradiction.

We show now thatZ(X) is finite. If X is abelian, thenG is solvable and by Fact 4.1
we find thatU � F(G). As U is a maximal unipotent 2-subgroup ofF(G), andF(G) is
nilpotent,U is normal inG. Hence,[U,X] �U ∩X. Hence[U,X] is finite, as remarked
above, and is connected by Fact 4.2. Thus[U,X] = 1, a contradiction. SoZ(X) < X and
hence, by induction on the rank and degree ofX, we find thatU centralizesZ(X).

If Z(X) is infinite then induction on rank applies also toX/Z(X), and hence forx ∈X

the mapγx :U → Z(X) defined byγx(u) = [x,u] is a homomorphism, whose image
then a unipotent 2-subgroup ofX, which must be trivial. Thus in this caseU centralizesX,
a contradiction. We conclude thatZ(X) is finite.

We show thatZ(G) is finite as well. IfZ(G) is infinite then sinceZ(G) ∩ X is finite
using the last paragraph,Z(G)X/X is infinite. This implies thatZ(G) contains a nontrivia
unipotent 2-subgroup. SinceU is a maximal unipotent 2-subgroup ofG, any unipotent
2-subgroup ofZ(G) is contained inU as well. This contradicts the assumption thatU acts
faithfully onX.

We letG=G/Z(G).G is centerless by Fact 4.14.U is a maximal unipotent 2-subgrou
andX is connected of odd or degenerate type. If[U,X] = 1, then[U,X] � Z(G). SinceU
is connected, so is[U,X]. Then it follows from the finiteness ofZ(G) thatU centralizesX,
a contradiction. Thus[U,X] �= 1.

The discussion of the last paragraph shows thatG is also a counterexample, wi
rk(X) = rk(X). So we still have a minimal counterexample. MoreoverU is elementary
abelian. Now, using the finiteness ofZ(G) and Fact 4.2 again,[u,X] = 1 if and only if
[u,X] = 1. SinceU acts faithfully onX, U acts faithfully onX as well. ThusG has all the
properties (1)–(3) we have proven forG. In additionZ(G)= 1. We may therefore assum
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thatZ(G) = 1. Since, as shown above,Z(X) is finite, we haveZ(X) � Z(G), and hence
we haveZ(X)= 1 as well.

If U �G then[X,U ] �U ∩X. As above this implies that[U,X] = 1, a contradiction. So
NG(U) <G. In particular,NX(U) <X. AsU acts onNX(U), by inductionU centralizes
NX(U), and henceNG(U)= CG(U).

We claim now thatNG(U) = CG(U) is strongly embedded inG. Let S be a Sylow
2-subgroup ofG containingU . Then U = S◦ and henceN(S) � N(U). In view of
Fact 4.30(2), it suffices now to check thatCG(i)� CG(U) for i ∈ I (NG(U)). As i ∈C(U)

andZ(G)= 1, the groupCX(i) < X isU -invariant, so by induction on the rank and deg
of X, we find thatU centralizesCX(i) and henceCG(i)= CX(i)U � CG(U).

Now it follows thatI (U) is a single conjugacy class (Fact 4.32), which contradicts
fact thatG/X is abelian. ✷

Before stating a useful corollary of Proposition 3.2, we need the following definitio

Definition 3.3. Let G be a group of finite Morley rank.B(G) is the subgroup ofG
generated by its 2-unipotent subgroups. (If there are none, this is 1.)

By Fact 4.2(1),B(G) is always definable and connected. Of course,B(B(G)) = B(G).
A groupG of finite Morley rank is said to be ofB-typeif G= B(G).

Corollary 3.4. Let H be a group of finite Morley rank ofB-type andX a definable
connected normal subgroup of degenerate type. ThenX �O(Z(H)). (We refer the reade
to Definition4.16for O and some remarks related to this notion.)

Proof. By assumption,H = B(H). For any unipotent 2-subgroupU of H , [U,X] = 1 by
Proposition 3.2. Therefore,X � Z(H). By Fact 4.12,X has no involutions. ✷

According to [1, Fact 2.51], the structure of connectedK-groups is remarkabl
straightforward (compared, for example, to the structure of finite groups): modu
solvable radical, any connectedK-group is a direct sum of finitely many simple group
This is due largely to the fact that the simple groups in question are algebraic, an
automorphism groups are well under control (Fact 4.22). One cannot expect to c
the structure ofL-groups to the same degree, since there is no limit to the pote
complexity of the degenerate sections. However, these difficulties can frequently be
by consideration of the groupB(G).

We will now prove that ifG is an L-group of finite Morley rank, thenB(G) is
aK-group; which is more neatly phrased as:

Proposition 3.5. LetG be anL-group of finite Morley rank and ofB-type. ThenG/σ(G)
is a finite direct product of simple algebraic groups of even type.

Proof. ReplacingG by G/σ(G), we may suppose thatσ(G) = 1. By Fact 4.17, soc(G)
is a direct sum of definable simple subgroups. AsG is anL-group, these factors ar
either algebraic groups, or odd type or degenerate, and asG is connected they are norm
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in G. Suppose there is a degenerate or odd type factorK. Then by Proposition 3.2, th
unipotent subgroups ofG centralizeK, and asG= B(G), we find thatK is central inG,
a contradiction. Thus soc(G) is a finite sum of simple algebraic groups (of even typ
and in view of Fact 4.22, asG is connected, it follows thatG = soc(G)CG(soc(G)). If
CG(soc(G)) �= 1 thenZ(G) = CG(soc(G)) ∩ soc(G) �= 1 by Fact 4.17, henceσ(G) �= 1,
a contradiction. SoG= soc(G). ✷
Corollary 3.6. Let G be anL-group of finite Morley rank and ofB-type. ThenG is a
K-group.

This follows using Fact 4.19; thus this corollary makes indirect use of the classific
of the finite simple groups. The corollary has the advantage of facilitating thedirect
application ofK-group theory to our subject. In most such cases Proposition 3.5 al
suffices for the results in question, and where that is not the case it seems one can
with Fact 4.21.

We will now give the consequences of Corollary 3.6 used in the present paper. W
references to the originalK-group facts from which they are derived. These also fol
from Proposition 3.5 by inspection of the original proofs, except in the case of Lemma
where Fact 4.21 is used.

Lemma 3.7 [1, Fact 2.51].Let H be aB-typeL-group. ThenH/σ ◦(H) = H1/σ
◦(H) ∗

· · ·∗Hk/σ
◦(H), where theHi/σ

◦(H) are quasisimple algebraic groups over algebraica
closed fields.

This is found in [1] in the more restricted form of a description ofH/σ(H); for the
preceding formulation, we incorporate Fact 4.18 as well.

Lemma 3.8 [6, 2.26]. Let H be a connectedL-group of even type. ThenO2(B(H)) is
connected.

Lemma 3.9 [5, Fact 2.33].LetH be a connectedL-group of even type withO◦
2(H)= 1.

ThenB(H)=E(B(H)).

Proof. We may assumeH = B(H). ThenO2(H) = 1 by Lemma 3.8, and in particula
O2(F (H))= 1; soF(H) contains no involutions. By Fact 4.10,σ ◦(H)/F ◦(H) is divisible
abelian, hence contains no involutions asH is of even type. It follows thatσ ◦(H) contains
no involutions.

Let H = H/σ ◦(H). By Lemma 3.7,H is a finite product of quasisimple algebra
groupsLi with Li � H . It suffices to show that eachL(∞)

i is quasisimple. So we ma
suppose thatH is a quasisimple algebraic group.

Now asσ(H)/σ ◦(H) is finite, we have[H,σ(H)] � σ ◦(H)� Z(H). So by the three
subgroups lemma,σ(H (∞)) � Z(H(∞)). By Fact 4.18,H(∞) is a quasisimple algebra
group. ✷
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Lemma 3.10 [4, Proof of Lemma 5.5].Let H be a connectedL-group ofB-type. Then
H(∞) is generated by its definable, connected2⊥-subgroups.

Proof. Let K = H(∞). SinceH/O2(H) is of B-type andO2(H/O2(H)) = 1, we have
the following, using Lemma 3.9:

H/O2(H)=E
(
H/O2(H)

) = (
H/O2(H)

)(∞) =H(∞)O2(H)/O2(H)∼=K/O2(K).

As a result,K =K/O2(K) is a central product of quasisimple algebraic groups. LetT (K)

be the subgroup generated by definable connected 2⊥-subgroups ofK. It suffices to show
thatT (K) covers the maximal tori ofK , sinceT (K) then will coverK, so thatK/T (K)

is solvable, hence trivial.
Let S be a Sylow 2-subgroup ofK. ThenS/O2(K) has a complementT/O2(K) in

N(S/O2(K)), and these complements generateN(S). So it suffices to show thatT/O2(K)

is covered by a definable connected 2⊥-subgroup ofN(S). T/O2(K) is itself a 2⊥-group
andO2(K) is a 2-unipotent group. By Fact 4.11 (Schur–Zassenhaus),T splits overO2(K)

and is therefore covered by a connected 2⊥-subgroup. ✷
Lemma 3.11 [4, Proposition 3.4].LetX�Y be a group of finite Morley rank whereX and
Y are definable and connected,X is anL-group of even type, andY is a 2⊥-group. Then
Y normalizes a Sylow◦ 2-subgroup ofX.

The reduction to [4] involves replacingX by B(X) and applying aK-group fact
to B(X) � Y . As this requires Corollary 3.6, the argument depends indirectly on
classification of the finite simple groups. BecauseY is a 2⊥-group, inspection of the proo
would show that only Feit–Thompson is required here (namely, one argues thatY acts on
B(X)/σ(B(X)) as a 2⊥-group of inner automorphisms, and the point is that this forces
image ofY in the quotient to be solvable).

Lemma 3.12. Let H be a connectedL-group of even type with a weakly embedd
subgroupM. Then

H = L×D

where L = B(H) � SL2(K), with K algebraically closed of characteristic2, and
D = CH (L) is a subgroup of degenerate type.M◦ ∩ L is a Borel subgroup ofL and
D �M.

Proof. LetL= B(H) andD = CH(L). Let S be a Sylow◦ 2-subgroup ofM. ThenS �L

and, by a Frattini argument,H � L · N(S). If L � M, we getH � M, a contradiction
It follows thatM ∩ L is weakly embedded inL. Hence by Fact 4.40,L � PSL2(K) for
some algebraically closed fieldK of characteristic 2. AsM ∩L is weakly embedded inL,
M ∩L is a Borel subgroup ofL.

Now Fact 4.22 shows thatH = LCH(L). SinceL is simple,D ∩ L = 1. Hence
H = L×D, andD is of degenerate type. AsD �C(L)� C(S), we haveD �M. ✷
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4. Background material

We review material from the general theory of groups of finite Morley rank. Our m
reference is [11].

4.1. Definable closure

Groups of finite Morley rank satisfy thedescending chain condition on definab
subgroups, and in particular any definable subgroupH of a groupG of finite Morley rank
has a “connected component”H ◦, the smallest definable subgroup ofH of finite index
in H . One can also define thedefinable closured(X) of an arbitrary subsetX of G as
the smallest definable subgroup ofG that containsX. One can then define the connec
component an arbitrary subgroupH of G, not necessarily definable, asH ◦ =H ∩ d(H)◦.
With this notation, one has:

Fact 4.1 [11, Lemmas 5.35 and 5.36].LetG be a group of finite Morley rank.

(1) For anyx ∈G, CG(x)= CG(d(〈x〉)).
(2) If B is a definable normal subgroup ofG andX ⊆G such thatB ⊆X thend(X/B)=

d(X)/B.

4.2. Zilber indecomposability

A fundamental result on groups of finite Morley rank isZilber’s Indecomposability
Theorem. We state two special cases:

Fact 4.2 [11, Section 5.4].LetG be a group of finite Morley rank.

(1) The subgroup ofG generated by a family of definable connected subgroups ofG is
itself definable and connected.

(2) If H is a definable connected subgroup ofG andX any subset ofG, then[H,X] is a
definable connected subgroup ofG.

These results will be used freely in the sequel.

4.3. Sylow2-subgroups

We have mentioned the Sylow 2-theory already:

Fact 4.3 [12].

(1) The Sylow2-subgroups of a group of finite Morley rank are conjugate.
(2) If S is a Sylow2-subgroup of a group of finite Morley rank thenS◦ is the central

product of a definable connected nilpotent subgroup of bounded exponent(a unipotent
2-group)and a divisible abelian2-subgroup(a 2-torus). These two groups are unique
determined.
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The connected component of a Sylow 2-subgroup is called aSylow◦ 2-subgroup.

Fact 4.4 [25, Corollary 1.5.5].LetG be a group of finite Morley rank andN a definable
normal subgroup ofG. Then the Sylow2-subgroups ofG/N are exactly the images o
those ofG.

In the analysis of groups with strongly embedded subgroups, it is essential to
information about so-calledSuzuki2-groups, which were analyzed in the case of fin
Morley rank by Davis and Nesin [13].

Definition 4.5. A Suzuki2-groupis a pair(S,T ) whereS is a nilpotent 2-group of bounde
exponent andT is an abelian group that acts onS by automorphisms and which is transiti
on the involutions ofS.

A Suzuki 2-group is said to befreeif T acts onS freely: for anyg ∈ S andt ∈ T , gt = g

implies eitherg = 1 or t = 1.
A Suzuki 2-group is said to beabelianif S is abelian.
A Suzuki 2-group is said to be offinite Morley rankif the structure(S,T ) is of finite

Morley rank.

Fact 4.6 [13]. A free Suzuki2-group of finite Morley rank is abelian.

4.4. Nilpotent groups

We will need the following structure theorem for nilpotent groups of finite Morley ra

Fact 4.7 [23]. LetH be a nilpotent group of finite Morley rank. ThenH = D ∗ B where
D andB are definable characteristic subgroups, withD divisible,C of bounded exponen
andD ∩C finite.

Similarly:

Fact 4.8 [11, Exercise 10, p. 93].The definable closure of a cyclic subgroup of a group
finite Morley rank is the direct sum of a finite cyclic group with a divisible abelian gro

Fact 4.9 [11, Exercise 1, p. 97].Let p be a prime number. Then an infinite nilpote
p-group of finite Morley rank and of bounded exponent has infinitely many central ele
of orderp.

For a groupG of finite Morley rankF(G) will denote itsFitting subgroup, the subgroup
of G generated by its normal nilpotent subgroups, which is definable and nilpotent [

In a groupG of finite Morley rank,O2(G) denotes the largest normal 2-subgroup. T
is not always definable. However,O2(G)=O2(F (G)), so ifG is of even type thenO2(G)

is definable.

4.5. Solvable groups

Fact 4.10 [21]. LetG be a connected solvable group of finite Morley rank. ThenG/F ◦(G)
is divisible and abelian. In particular,G′ is nilpotent.
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Hall subgroups can be defined in the context of solvable groups of finite Morley
with respect to any set of primesπ , and the Hallπ -subgroups are conjugate [9,11].

Fact 4.11 [10, Proposition C].Let G be a solvable group of finite Morley rank andH
a normal Hallπ -subgroup ofG of bounded exponent. Then any subgroupK of G with
K ∩H = 1 is contained in a complement toH in G, and the complements ofH in G are
definable and conjugate to one another.

Fact 4.12 ([11, Theorem 9.29], [14]).The Hallπ -subgroups of a connected solvable gro
of finite Morley rank are connected.

Fact 4.13 [4, Proposition 2.43].LetG=H �Q be a group of finite Morley rank whereH ,
Q, and the action ofQ onH are definable. LetH1�H be a solvableQ-invariant definable
π -subgroup of bounded exponent inG. Assume thatQ is a solvableπ⊥-subgroup. Then
CH (Q)H1/H1 = CH/H1(Q).

Fact 4.14 [11, Lemma 6.1].If G is a connected group of finite Morley rank andZ(G) is
finite, thenZ(G/Z(G))= 1.

Definition 4.15. ForG a group of finite Morley rank,σ(G) denotes itssolvable radical,
the subgroup generated by all its normal solvable subgroups. It was proven in [22] th
group is definable and solvable.

Definition 4.16. For G a group of finite Morley rank,O(G) is the largest definabl
connected normalsolvablesubgroup without involutions.

In published work on groups of finite Morley rank,O has been defined without th
solvability assumption. In theK∗ context, whereO is frequently used, all proper definab
connected subgroups of degenerate type are solvable and hence without involut
Fact 4.12. Since in theL∗ context, nondegeneracy does not necessarily imply solvab
for proper definable connected subgroups, we have added this assumption.

4.6. E(G)

Let G be a group of finite Morley rank. ThenE(G) is the subgroup ofG generated
by the subnormal quasisimple definable subgroups ofG. It is definable and is a centr
product of quasisimple subgroups [11]; ifG is connected, thenE(G) and its factors are
connected.

4.7. K-group structure

ForG a group of finite Morley rank, thesoclesoc(G) is the subgroup ofG generated
by its minimal normal nontrivial subgroups. In general, soc(G) may be trivial (if there are
no such) or may not be definable. However:
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Fact 4.17 ([22], [11, Theorem 7.8]).Let G be a connected group of finite Morley ran
such thatσ(G) = 1 and G �= 1. Thensoc(G) is the direct sum of a finite number
infinite definable simple groups, and every nontrivial normal subgroup ofG meetssoc(G)
nontrivially.

Fact 4.18 [8]. LetG be a perfect group of finite Morley rank such thatG/Z(G) is a simple
algebraic group. ThenG is an algebraic group. In particular,Z(G) is finite.

This is a good place to repair a possible defect in our definition ofK-group. We will
need the following, a slight variant of a result of Poizat in [24].

Fact 4.19. If K is a field of finite Morley rank of characteristicp �= 0, then every simple
definable sectionG of GLn(K) is definably isomorphic to an algebraic group overK.

This result is of some importance, as otherwise we would not be entitled to con
algebraic groups, in enriched languages, asK-groups! Poizat states the result only f
simple subgroups of GLn(K). We give the general lines of an argument that reduces
general result to the case treated by Poizat. We will freely use facts about linear alg
groups which can be found in [16]. We believe that Erulan Mustafin has also given a
of this result in an unpublished note.

Let H/N be the simple section in question, and letR be the Zariski closure ofσ(H).
R is solvable and normalized byH . Sinceσ(H)�R, it follows thatH ∩R = σ(H). Since
R is closed so isN(R). ThereforeN(R)/R is algebraic. We haveHR/R � N(R)/R

and HR/R ∼= H/σ(H), thus H/σ(H) is definably isomorphic to a subgroup of
algebraic group in characteristicp, namelyN(R)/R. By Fact 4.17, soc(H/σ(H)) =
Y1/σ(H) ⊕ · · · ⊕ Yk/σ(H) where theYi/σ (H) are simple groups. SinceH/σ(H) is
definably isomorphic to a subgroup of an algebraic group in characteristicp, Poizat’s
result implies that theYi/σ (H) are definably isomorphic to algebraic groups. Us
this and Fact 4.22 in an argument similar to that of Proposition 3.5, we conclud
H/σ(H)= soc(H/σ(H)). SinceH/N is simple,σ(H)�N . HenceN/σ(H) is a normal
subgroup ofH/σ(H). By properties of completely reducible groups, we conclude
H/N is definably isomorphic to one of theYi/σ (H).

Corollary 4.20. LetG be a group of finite Morley rank, and suppose thatG has a definable
composition series for which all simple quotients are isomorphic to algebraic groups
algebraically closed fields of positive characteristic. ThenG is aK-group.

As mentioned in the introduction, Fact 4.19 and its corollary depend on the classifi
of the finite simple groups. For our purposes the following, which requires only the
Thompson Theorem, would be sufficient.

Fact 4.21. If K is a field of finite Morley rank of characteristicp �= 0 then every
nonsolvable definable sectionG of GLn(K) contains an involution.
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However this does not imply Corollary 4.20, and consequently where we in
K-group theory in the present paper, if one wishes to get by using only the Feit–Thom
Theorem, then one would have to check that theK-group arguments go through under t
hypothesis of that corollary, with occasional uses of Fact 4.21.

4.8. Automorphisms

Fact 4.22 [11, Theorem 8.4].LetG =G�H be a group of finite Morley rank whereG and
H are definable,G is an infinite simple algebraic group over an algebraically closed fi
andCH (G)= 1. Then, viewingH as a subgroup ofAut(G), we haveH � Inn(G)Γ where
Inn(G) is the group of inner automorphisms ofG andΓ are the graph automorphisms.

Fact 4.23 [11, Exercise 14, p. 73].Let G be a group of finite Morley rank withou
involutions. Ifα is a definable involutive automorphism ofG thenG = CG(α)G

−, where
G− = {g ∈ G: gα = g−1}. Moreover, ifc ∈ CG(α) and g ∈ G−, then(c, g) �→ cg is a
definable bijection. In particular,G is connected if and only ifCG(α) is connected, and
G− is of Morley degree1.

Fact 4.24 ([17, Lemme 4.7], [4, Proposition 9.4]).LetQ�X be a group of finite Morley
rank whereQ, X, and the action ofX onQ are definable. IfQ is an abelian2-group of
bounded exponent andX is a 2⊥-group which centralizes the involutions ofQ, thenX
centralizesQ.

4.9. Torsion

Fact 4.25 [11, Exercise 11, p. 93].LetG be a group of finite Morley rank,H a definable
subgroup ofG, andx ∈G. If for some prime numberp we havexp ∈H , then the coset o
x moduloH contains ap-element.

4.10. Fusion

Fact 4.26 [11, Proposition 10.2].LetG be a group of finite Morley rank andi, j ∈G two
involutions. Then eitheri andj ared(〈ij 〉)-conjugate, or they commute with an involuti
in d(〈ij 〉).

Fact 4.27 [11, Lemma 10.22].LetS be a Sylow◦ 2-subgroup of a groupG of finite Morley
rank. If T is the maximal torus inS thenNG(T ) controls fusion inS, in the sense that an
two subsets ofS which are conjugate inG, are conjugate inNG(T ).

Corollary 4.28 ([18, Fait 2.18], [1, Fact 2.48]).Let G be a group of finite Morley rank
of mixed type. SupposeS is Sylow◦ 2-subgroup, andS = U ∗ T whereU is the maximal
unipotent2-subgroup ofS and T its maximal2-torus. If i ∈ I (T ) then iG ∩ U ⊆ T . In
particular,U has only finitely many involutions that are conjugate to involutions inT .
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4.11. Strong embedding

Definition 4.29. Let G be a group of finite Morley rank. A proper definable subgroupM

of G is said to bestrongly embeddedin G if

(i) I (M) �= ∅;
(ii) for everyg ∈G \M, I (M ∩Mg)= ∅.

Fact 4.30 [15, Theorem 9.2.1].Let G be a group of finite Morley rank with a prope
definable subgroupM. Then the following are equivalent:

(1) M is a strongly embedded subgroup.
(2) I (M) �= ∅, CG(i) � M for every i ∈ I (M), and NG(S) � M for every Sylow

2-subgroup ofM.
(3) I (M) �= ∅ andNG(S)�M for every nontrivial2-subgroupS ofM.

Definition 4.31. Let G be a group. Forx ∈ G, C∗
G(x) = {g ∈ G: xg = x or x−1}. An

element ofG is said to bestrongly realif it is the product two involutions.

Fact 4.32 ([15, Theorem 9.2.1], [11, Theorem 10.19]).LetG be a group of finite Morley
rank with a strongly embedded subgroupM. Then the following hold:

(1) Syl2(M)⊆ Syl2(G).
(2) I (G) is a single conjugacy class.
(3) The involutions inM are conjugate inM.
(4) If i ∈ I (M) andx is a nontrivial strongly real element inCG(i), thenC∗

G(x)�M.

Fact 4.33. LetG be a group of finite Morley rank with a strongly embedded subgroupM,
andX a normal subgroup ofM with an infinite Sylow2-subgroup. ThenI (M)⊆X◦.

Proof. Otherwise, in view of point(3) above,I (M) ∩ X◦ = ∅, soX has finite Sylow
2-subgroups. ✷
Corollary 4.34. If G is a group of finite Morley rank of even type with a strongly embed
subgroupM, thenI (M)= I (M◦).

Fact 4.35 [1, Proposition 3.4].Let G be a group of finite Morley rank with a strong
embedded subgroupM. If N is a proper definable subgroup ofG which containsM, then
N is strongly embedded inG.

4.12. Weak embedding

Definition 4.36. Let G be a group of finite Morley rank. A proper definable subgroupM

of G is said to beweakly embeddedin G if
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(i) M has infinite Sylow 2-subgroups;
(ii) for everyg ∈G \M, M ∩Mg has finite Sylow 2-subgroups.

For groups with infinite Sylow 2-subgroups, this is a substantial generalization o
notion of strong embedding, and experience shows that in the case of groups o
type it is the notion one needs to work with ultimately. The following characteriza
is straightforward.

Fact 4.37 [3]. LetG be a group of finite Morley rank,M a proper definable subgroup ofG.
M is weakly embedded if and only if the following hold:

(i) M has infinite Sylow2-subgroups.
(ii) For any nontrivial unipotent2-subgroupU and nontrivial2-torusT inM,NG(U)�M

andNG(T )�M.

4.13. The graphU(G)

Definition 4.38. Let G be a group of finite Morley rank. Then the graphU(G) is defined
as follows. The vertices ofG are the nontrivial 2-unipotent subgroups ofG. The edges o
G are the pairs of distinct nontrivial 2-unipotent subgroups ofG which commute.G acts
naturally onU(G) by conjugation.

Our main interest is in the connected components of this graph (which is, how
usually connected). There is a variant of this graph, which we may callÛ(G), with the
same vertices, but with edges consisting of pairs of nontrivial 2-unipotent subgroups
normalizerather than centralize each other. This graph has more edges thanU , but the same
connected components, since ifU1 andU2 normalize each other then they are at dista
at most 2 inU(G), with Z◦(U1U2) as an intermediate vertex.

Fact 4.39 [3, Proposition 5.18, Corollary 5.19].Let G be a group of finite Morley rank
andC a connected component of the graphU(G). Let 〈C〉 be the group generated by th
vertices ofC, and letM be the set-wise stabilizer ofC in G. Then

(1) M =NG(〈C〉), soM is definable.
(2) U(M)= C.

Fact 4.40 [3, Proposition 5.21].Let H be aB-typeK-group. If U(H) is not connected
thenH � PSL2(K) for some algebraically closed fieldK of characteristic2.

5. Theorem 1 (strongly embedded case)

The starting point for the classification of simpleK∗-groups of even type is th
following result of Jaligot.
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Fact 5.1 [19]. A simpleK∗-group of even type with a weakly embedded subgrou
isomorphic toPSL2(K), whereK is an algebraically closed field of characteristic2.

The analysis is subtle, and departs considerably from the lines that would be ta
the corresponding case in finite group theory. As such, it provides an excellent test
resources in theL∗-context. As we have mentioned, the first objective in theK∗-case was
to show that the weakly embedded subgroupM hasM◦ solvable. In theL∗-context, we do
not expect to achieve so much by a direct argument. Instead we aim at:

Theorem 1. LetG be a simpleL∗-group of even type with a weakly embedded subgroupM.
ThenM◦/O◦

2(M
◦) is of degenerate type.

Note that in aK∗-context, if the quotientM◦/O◦
2(M) is of degenerate type, then it

solvable, and henceM◦ is solvable.

Lemma 5.2. LetM be anL-group of even type. Then the following are equivalent.

(1) B(M) is solvable.
(2) B(M)=O◦

2(M).
(3) M/O◦

2(M) is of degenerate type.

Proof. If B(M) is solvable then, by Lemma 3.9,B(M)/O◦
2(M) is trivial. ThusB(M) =

O◦
2(M). The converse is clear, so the first two conditions are equivalent.
SinceB(M) is the smallest normal definable subgroupN of M such thatM/N is of

degenerate type, the equivalence of the last two conditions is clear.✷
Turning to the proof of Theorem 1, in this section we will treat the more delicate ca

whichM is strongly embedded, and in the following section we turn to the case of w
embedded subgroups which are not strongly embedded, which follows more clos
earlier lines [4, Section 5].

There are two sources for the following line of argument: [1,4]. We begin along the
of [1], then after Corollary 5.11 we go more in the direction of [4], with some deviati
notably in the treatment of Proposition 5.14. We will consider the groupM1 = B(M)(∞),
and aim eventually atM1 = 1.

The following lemmas and propositions were proven in [1], based on analogous
group theory results from [15, Chapter 9]; in order to make this line of argument wo
the context of groups of finite Morley rank, one must work with the connected compo
of the groups involved. As the next lemmas provide all the basic building blocks, as
as the notation, for our argument, we run through this material in some detail.

Fact 5.3 ([15, Theorem 9.2.1(iii)], [1, Lemma 3.8]).Let G be a group of finite Morley
with a strongly embedded subgroupM. Then there is an involutionw ∈ G \M such that
rk(I (wM))� rk(I (M)).
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Proof. This is a rank computation: one shows that “almost all” involutions have
property, by considering the rank of the set of involutions.✷
Notation 5.4.

(1) Fix an involutionw with rk(I (wM))� rk(I (M)) for the remainder of the argumen
(2) Y = {uw: u ∈ I (wM)}. (By choice ofw, rk(Y )� rk I (M).)
(3) K = d(Y ), the smallest definable group containingY .
(4) Y0 = {y ∈K◦: yw = y−1}.
(5) K1 = d(Y0)�K◦.

Fact 5.5 [1]. LetG be a group of finite Morley rank with a strongly embedded subgro
Then the groupK = d(Y ) as defined above contains no involutions.

Proof. This is found in [15, Theorem 9.2.1] in the finite case and in [1, Proposition
adapted to the case at hand.✷
Fact 5.6 [1, Proposition 3.10].Let G be a group of finite Morley rank with a strong
embedded subgroupM. Then fori ∈ I (M), M◦ = C◦

G(i)K
◦.

Fact 5.7 [1]. LetG be a group of finite Morley rank with a strongly embedded subgrouM

containing infinitely many involutions. ThenK◦ = CK◦(w)Y0 andrk(Y0)= rk(Y ).

Proof. As I (M) is infinite, by the choice of the involutionw, Y and henceK are
also infinite, and thusK◦ is nontrivial. Applying Fact 4.23 toK◦, with respect to the
automorphismα induced by the action ofw, we find K◦ = CK◦(w)Y0 and rk(K◦) =
rk(CK◦(w)) + rk(Y0). Applying the same fact toK and the action ofw on K, we
find similarly rk(K) = rk(CK(w)) + rk(Y ). Since rk(K◦) = rk(K) and rk(CK◦(w)) =
rk(CK(w)), we find that rk(Y0)= rk(Y ). ✷
Fact 5.8 [1]. LetG be a group of finite Morley rank with a strongly embedded subgrouM

containing infinitely many involutions. Thenrk(I (M)) = rk(Y )= rk(Y0)= rk(iY0), where
i ∈ I (M).

Proof. We deal first with rk(Y0). We already have rk(Y0)= rk(Y )� rk(I (M)), by choice
of w. For the reverse inequality, we claim that the involutionsiy (y ∈ Y0) are all distinct.

If iy1 = iy2, with y1, y2 ∈ Y0, let x1 =wy1, x2 =wy2; these are involutions inwM. We
have by hypothesis(x2x1)

w ∈ C(i). Assumingx1 �= x2, we haveC∗
G((x2x1)

w) � M by
Fact 4.32(4). Nowxw1 inverts(x2x1)

w, so this forcesxw1 ∈M, and hence

wM = x1M = x1x
w
1 M = x1wx1wM = (y1)

−2M =M,

a contradiction. So the involutionsiy (y ∈ Y0) are distinct, and rk(Y0) = rk(iY0) �
rk(I (M)). ✷
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After these preparations we can begin to analyze the structure ofM◦ whenG is a simple
L∗-group of even type. Note thatI (M)= I (M◦) by Corollary 4.34.

Definition 5.9. A= 〈I (M)〉.

Proposition 5.10 [4, Lemma 5.4].LetG be a simpleL∗-group of even type with a strong
embedded subgroupM andA = 〈I (M)〉. ThenA � Z(B(M)) is a definable connecte
elementary abelian2-group such thatA= I (M) ∪ {1}.

Proof. By Lemma 3.11 applied withX = B(M) andY = K◦, there is a Sylow◦ 2-sub-
groupU of M normalized byK◦. Let i ∈ I (Z(U)), C = C(i), so thatU � C◦. As
M◦ = C◦K◦ by Fact 5.6, we find

B(M)= 〈
UM◦ 〉 = 〈

UK◦C◦ 〉 = 〈
UC◦ 〉 � C◦

which shows thati ∈ Z(B(M)). As Z(B(M)) � M, Fact 4.32(3) implies thatI (M) ⊆
Z(B(M)). It follows thatA�Z(B(M)) andA is an infinite elementary abelian 2-subgro
such thatA = I (M) ∪ {1}. ClearlyA◦ �= 1 andA � M. Therefore, another application
Fact 4.32(3) shows thatA= A◦. ✷
Corollary 5.11 [1, Corollary 4.6].LetG be a simpleL∗-group of even type with a strong
embedded subgroupM. If a, i, j ∈G× andi andj are involutions, withi commuting with
a andj invertinga, thena is also an involution.

Proof. We may assume thati ∈ M. Thena in M is strongly real andj ∈ C∗
G(a) so, by

Fact 4.32, alsoj ∈M. Thereforej, ja ∈A anda ∈A. ✷
Corollary 5.12. Let G be a simpleL∗-group of even type with a strongly embedd
subgroupM. LetK1 andY0 be as in Notation5.4. Then any subgroup ofM◦ containing
Y0, in particularK1, acts transitively onI (M).

Proof. Let i, j ∈ I (M). By Proposition 5.10,I (M) is a set of Morley degree 1. Thus b
Fact 5.8,iY0 ∩ jY0 �= ∅. Let x, y ∈ Y0 such thatix = jy , equivalentlyixy

−1 = j . If H is
a subgroup containingY0 then we havexy−1 ∈H . ✷
Definition 5.13. M1 = B(M)(∞); M1 =M1/O2(M1).

We will use this notation as well as the hypotheses of the last corollary in the rest
argument.

Proposition 5.14. If M1 �= 1 thenK◦ is abelian.

Proof. Let K0 = CK◦(M1). Using the argument at the beginning of the proof
Lemma 3.10, we conclude thatM1 is the central product of a finite number of quasisim
algebraic groups over algebraically closed fields of characteristic 2.
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Fact 4.22 shows thatK◦ acts onM1 by inner automorphisms. SinceK◦/K0 has no
involutions (Fact 4.25), Fact 4.21 and Proposition 3.5 imply thatK◦/K0 has no simple
sections, and is therefore isomorphic to a connected solvable subgroup ofM1 without
involutions, hence acts as a subgroup of a torus onM1. In particular,K◦ ′ �K0.

We will show next that

CK0(w)= 1. (∗)

For x ∈ K0, Fact 4.13 applied withQ = d(〈x〉) shows thatCM1(x) coversM1. In
particular,CM(x) has an infinite Sylow 2-subgroupS.

Suppose, in particular, thatx ∈ CK0(w) is nontrivial. ThenS,Sw � C(x) and hence
C◦(x) ∩ M is strongly embedded inC◦(x). By Lemma 3.12,C◦(x) = L × D with
L = B(C◦(x)) andD = CC◦(x)(L), whereL � PSL2(K) with K algebraically closed o
characteristic 2, andL∩M◦ is a Borel subgroup ofL. But then no subgroup ofC◦(x) can
coverM1, a contradiction. So(∗) follows.

In particular,CK◦ ′(w)= 1 and asw acts onK◦ ′, it follows from Fact 4.23 thatw inverts
K◦ ′. If x ∈K◦ ′ is nontrivial then we have the following:x centralizes an involution inM;
w invertsx. Then by Corollary 5.11x is an involution, a contradiction. ThusK◦ ′ = 1. ✷
Proposition 5.15. If M1 �= 1 thenO◦

2(M) is abelian.

Proof. By the preceding lemma,K1 is abelian, and sinceK1 = d(Y0), w invertsK1.
Hence, by Corollary 5.11, no nontrivial element ofK1 centralizes an involution inM.

As K1 acts transitively onI (M) andA � O◦
2(M), the structure(O◦

2(M),K1) is a
Suzuki 2-group of finite Morley rank. By our opening remarks, this is in fact a free Su
2-group and therefore, by Fact 4.6,O◦

2(M) is abelian. ✷
Lemma 5.16 [4, Lemma 5.5].If O◦

2(M) is abelian then[O◦
2(M),M1] = 1.

Proof. Let X be any definable subgroup ofM1 without involutions. By Proposition 5.10
X centralizesA. Then, sinceA=01(O

◦
2(M)), andO◦

2(M) is of bounded exponent and
assumed to be abelian, Fact 4.24 implies thatX centralizesO◦

2(M). Now the conclusion
follows, since such subgroups generateM1 by Lemma 3.10. ✷

Our final argument follows the lines of an argument given for the weakly embe
case in [4, Proof of Theorem 5.1].

Proof of Theorem 1. We claim thatM1 = 1. Assuming the contrary, then, by Propo
tion 5.15,O◦

2(M) is abelian. Then Lemma 5.16 implies thatO◦
2(M1) � Z(M1). Using

Facts 4.10–4.12 and Corollary 3.4, we conclude thatσ ◦(M1) = O(M1) × O◦
2(M1). By

Proposition 3.2,O(M1) � Z(M1). Fact 4.18 then implies easily thatσ ◦(M1) = 1. It fol-
lows thatA ∩ M1 = 1. But M1 has nontrivial Sylow 2-subgroups and hence meetsA,
a contradiction. ✷
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6. Theorem 1 (weakly embedded case)

We now take up the case of Theorem 1 in which the weakly embedded subgroM

is not strongly embedded. Since the proof in this case follows the solvability pro
[4, Section 5] very closely, we will simply outline the argument.

For the remainder of this section,G will denote a simpleL∗-group with a weakly
embedded subgroupM which is not strongly embedded. In this situation Fact 4.37 sh
the existence of anoffending involutionα ∈ M whose centralizer is not contained inM.
The following lemma is the starting point in the analysis.

Lemma 6.1 [4, Lemma 3.1, Proposition 3.2].Let G be a simpleL∗-group of even type
with a weakly embedded subgroupM that is not strongly embedded. Then there exists
involutionα ∈M with the following properties:

(1) C◦
α ��M.

(2) C◦
α ∩M is a weakly embedded subgroup ofC◦

α .
(3) C◦

α = L×D whereL= B(Cα),D = CC◦
α
(L), andL� PSL2(K)withK algebraically

closed of characteristic2, andD is a definable connected subgroup of degenerate t
(4) C◦

M(α)= (L ∩M)×D andL∩M is a Borel subgroup ofL.
(5) α /∈ σ ◦(C◦

α).

This is proved as in [4], taking into account Lemma 3.12. (See also Lemma 7
Let A = 01(L ∩ M) and T be a complement toA in L ∩ M. Next, corresponding to
Proposition 3.5 and Corollary 3.6 in [4], one shows using Lemma 3.11 thatM has an
(〈α〉 × T )-invariant Sylow◦ 2-subgroupS that containsA, and thatC◦

S(α) = A. In this
situation, the following classification result of Landrock–Solomon type applies.

Fact 6.2 ([4, Theorem 4.1], [20]).LetH = S � T be a group of finite Morley rank, wher
S is a unipotent2-group andT is also definable. Assume thatS has a definable subgrou
A such thatA� T ∼=K+ �K× for some algebraically closed fieldK of characteristic2,
with the multiplicative group acting naturally on the additive group. Assume also
α is a definable involutory automorphism ofH such thatC◦

H (α) = A � T . Under these
assumptionsS is isomorphic to one of the following groups:

(i) If S is abelian then eitherS is homocyclic withI (S)=A×, or S =E⊕Eα , whereE is
an elementary abelian group isomorphic toK+. In the latter case,A= {xxα: x ∈E}.

(ii) If S is non-abelian thenS is an algebraic group overK whose underlying set i
K ×K ×K and the group multiplication is as follows:

for a1, b1, c1, a2, b2, c2 ∈K,

(a1, b1, c1)(a2, b2, c2)= (
a1 + a2, b1 + b2, c1 + c2 + ε

√
a1a2 + √

b1b2 + √
b1a2

)
,

whereε is either0 or 1. In this caseα acts by(a, b, c)α = (a, a+ b, a+ b+ c+√
ab)

and[α,S] = {(0, b, c): b, c ∈K}.
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In particular, if S is non-abelian thenS has exponent4.

One can then prove the following by straightforward adaptation of the correspo
arguments in [4]. As in the previous section,M1 denotesB(M)(∞), and we assumeM1 �= 1.

Lemma 6.3 [4, Lemma 5.3].O◦
2(M) �= 1.

Lemma 6.4 [4, Lemma 5.4].A� Z(B(M)).

Lemma 6.5 [4, Lemma 5.5].[O◦
2(M),M1] = 1.

At this point one may conclude with a contradiction as at the end of the previous se
(This corresponds to the proof of Theorem 5.1 of [4].)

7. Groups of mixed type

This section is devoted to the analysis of simple groups of mixed type and the pr
Theorem 2 and its corollary.

Theorem 2. LetG be a simple group of finite Morley rank, all of whose proper defina
infinite simple sections of even type are algebraic. ThenG cannot be of mixed type.

Corollary 7.1. Assume that all simple groups of finite Morley rank of even type
algebraic. Then there is no simple group of finite Morley rank and of mixed type.

In other words, if one can handle the simple groups of finite Morley rank of even
then the mixed type problem goes away. This line of argument is somewhat round
The advantage of focussing on groups of even type is the good control one has of
of B-type. Subgroups ofB-type will also play a crucial role in this section.

The proof of Theorem 2 follows the proof of Fact 3.1 as given in [18]. There are
major steps. In the first step, a counterexample to Fact 3.1 is shown to have a w
embedded subgroup. In the second step one shows that the group in question is s
embedded: that is, a failure of strong embedding leads to a contradiction by consi
fusion of involutions. On the other hand, once the group in question is strongly embe
an easy fusion argument produces an immediate contradiction. The underlying idea
following: in groups of mixed type there are two particular “kinds” of involutions, th
associated with unipotent subgroups and those associated with 2-tori. Morally spe
involutions of these two kinds “ought to” commute with each other; but since each k
a union of conjugacy classes, this would contradict the simplicity ofG.

In our proof, the first step, aiming at weak embedding, requires the more subs
alterations. The second step remains almost intact, except at one point (Lemma
Wherever deviations are necessary, they are due to the possible presence of non
degenerate sections; among other things, the possible existence of involutions i
sections must be borne in mind. The action of such a section on a minimal elem
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abelian 2-group can be “linearized” and hence understood when the section is so
but this is not necessarily the case for sections of degenerate type in general.

In the proof of Theorem 2 we consider a counterexampleG of minimal Morley rank.
Thus the infinite proper definable simple sections of this counterexample are not of
type; but some of them may be of degenerate type. One should also note that we
assume that the sections of odd type are algebraic. However,G is anL∗-group, and we
will find sufficient scope for the application ofL-group theory by considering subgrou
of B-type.

7.1. D-type groups

The analysis of groups of mixed type, first in the “tame”K∗ setting and later in the
generalK∗ setting, depended on the study of the interaction of subgroups ofB-type with
a dual class, calledD-type. The same analysis goes over in the more general conte
L-groups, given Proposition 3.5.

Definition 7.2. Let H be a group of finite Morley rank.D(H) is the subgroup ofH
generated by the definable closures inH of its 2-tori; this is definable and connected
Zilber’s Indecomposability Theorem.

H is said to be ofD-typeif H =D(H).

We first recall the essentialK-group facts.

Fact 7.3 [3, Corollary 5.8].LetH be aK-group. ThenB(H) andD(H) commute.

Fact 7.4 [3, Lemma 5.9].LetH be aK-group ofB-type. ThenD(H)= 1.

Lemma 7.5. LetH be a group of finite Morley rank which has no definable simple sect
of mixed type, and such that all of its definable sections of even type are algebraic
B(H) andD(H) commute.

Proof. It suffices to show that ifT is the definable closure of a 2-torus inH , thenT
centralizesB(H). NowB(H) is aK-group by Corollary 3.6, andT is abelian, soB(H)T is
aK-group. Applying Fact 7.3 toB(H)T , we find thatT centralizesB(H), as required. ✷
7.2. The critical configuration

Our analysis will drive us toward a particular configuration involving PSL2(K) in
characteristic 2, which must be eliminated by a special close analysis. So we disp
this in advance. The result in question is:

Theorem 3. LetG be a simple group of mixed type none of whose proper simple defi
sections are of mixed type. LetR be a maximal2-torus ofG. ThenB(CG(R)) is not of the
form PSL2(K), withK algebraically closed of characteristic2.
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This is an analog of [18, Théorème 4.2]. The proof requires extensive prepar
Ultimately, a contradiction is reached via the following quite technical fact.

Fact 7.6 [18, Lemme 4.1].LetG be a group of finite Morley rank with involutionsi, j, k, k′,
L= B(CG(k)), satisfying the following properties.

(1) i andj are not conjugate;
(2) L� PSL2(K) withK an algebraically closed field of characteristic2;
(3) k′ is the unique involution ind(〈ij 〉);
(4) i ∈L, j ∈CG(k), andk′ /∈ L.

Thenjk′ ∈L.

For the rest of the present subsection we assume thatG satisfies the hypotheses
Theorem 3. In addition, we fix the following notation.

Notation 7.7.

(1) S is a Sylow◦ 2-subgroup ofG.
(2) S =U ∗R with U 2-unipotent andR a 2-torus.
(3) L= B(CG(R)). Note thatU is then a Sylow◦ 2-subgroup ofL.

We will assume, toward a contradiction, that

L� PSL2(K) with K an algebraically closed field of characteristic 2.

In particular,U is abelian.
An involution which lies in a 2-torus will be said to haveodd type. An involution which

lies in a 2-unipotent subgroup ofG, will be said to haveeven type. AsG is of mixed type
there are involutions of both types. Furthermore, by Corollary 4.28, there are involutio
even type which are not of odd type; we will say that such involutions areproperlyof even
type. Note that because of the transitive action onI (U) of a torus inL normalizingU ,
all even type involutions are properly so. Eventually we will show that involutions of
type commute with involutions which are properly of even type. This produces nont
commuting normal subgroups ofG, and a contradiction.

Lemma 7.8. If i is an involution of even type, thenB(C(i)) is conjugate toU andi belongs
to a unique maximal unipotent2-subgroup ofG.

Proof. After conjugating we may suppose thati ∈ U and henceR � D(C(i)). By
Lemma 7.5, we haveB(C(i)) centralizingD(C(i)) and henceB(C(i)) � B(C(R)) = L.
HenceB(C(i))= U . ✷
Notation 7.9. If i is an involution of even type,Ui will denote the unique maxima
unipotent 2-subgroup ofG containingi.
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Lemma 7.10. Let i, j be involutions withi of even type andj of odd type. Ifj normalizes
Ui thenj centralizesUi .

Proof. We may suppose thatj ∈ R. Sincej normalizesUi , it follows from Fact 4.9
that C◦

Ui
(j) �= 1. Let A = C◦

Ui
(j). By Lemma 7.5 applied toC(j), R centralizesA.

By Lemma 7.5 applied toC(A), R centralizesB(C(A)), which containsUi . As j ∈ R,
j centralizesUi . ✷
Lemma 7.11 [18, Corollaire 4.4].Let i, i ′ be two commuting involutions of even type. Th
Ui =Ui′ .

Proof. i ′ normalizesUi and hence centralizes a nontrivial connected subgroup oUi

(Fact 4.9). SoUi′ =Ui . ✷
Let Ie be the set of involutions which are properly of even type, andIo the set of

involutions of odd type. AsG is simple, there must be involutionsi ∈ Ie, j ∈ Io which
do not commute. Fix such for the remainder of this subsection. We move in the dir
of Fact 7.6, withk = k′ to be chosen as follows.

Lemma 7.12 [18, Lemme 4.5].d(〈ij 〉) contains a unique involution.

Proof. Since i and j are not conjugate, by Fact 4.26d(〈ij 〉) contains at least on
involution. For the uniqueness, in view of Fact 4.8, it suffices to show thatd(〈ij 〉)◦ contains
no nontrivial 2-tori.

Suppose on the contrary thatR0 is a nontrivial 2-torus ind(〈ij 〉)◦. Sincei inverts ij
andd(〈ij 〉) is abelian,i invertsd(〈ij 〉). In particular,i invertsR0. But if t ∈ I (R0) then
[t, i] = 1 and, by Lemma 7.10,t centralizesUi . So i ∈ B(C(t)) and, by Corollary 7.5
i centralizesR0, a contradiction. ✷

The unique involution ofd(〈ij 〉) will be denotedk.

Lemma 7.13 [18, Lemme 4.6].B(CG(k))� PSL2(K) for some algebraically closed fiel
K of characteristic2.

Proof. Note that asi, j do not commute,j cannot normalizeUi by Lemma 7.10.
Sincek commutes withi, it normalizesUi by Lemma 7.8, and centralizes a nontriv

connected subgroupAi � Ui . As k commutes withj , k also centralizesAj
i � U

j
i . Thus

Lk = B(C(k)) contains two distinct Sylow◦ 2-subgroups and, as the maximal unipot
subgroups ofG have pairwise trivial intersections (Lemma 7.8),U(Lk) is disconnected
By Fact 4.40,Lk � PSL2(K) for some algebraically closed fieldK of characteristic 2. ✷
Proof of Theorem 3. We will now arrive at a contradiction to the choice ofi andj . We
may supposej ∈ R. Take i ′ an involution inC◦

Ui
(k) with i ′ not conjugate toj (since

I (C◦ (k)) is infinite, this can be done).
Ui
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We apply Fact 7.6 toi ′, j, k (with k′ = k as well). There are four conditions to b
verified. By our choice ofi ′ andj , they are not conjugate. The previous two lemmas ve
conditions (2) and (3) of Fact 7.6. The last condition is

i ′ ∈ B
(
CG(k)

)
, j ∈ CG(k), and k /∈B

(
CG(k)

)
.

Now i ′ ∈ B(CG(k)) andj ∈ CG(k) by our choice ofi ′ andk, andk /∈ B(CG(k)), as
otherwise we would havek of even type, andB(CG(k))=Uk.

So Fact 7.6 applies and yieldsjk ∈ B(C(k)). In particular, jk is of even type.
Sincej centralizesjk, j centralizesUjk by Lemma 7.10. By Corollary 7.5,D(C(j))
centralizesB(C(j)) and, in particular,R centralizesUjk, and henceR centralizesk. Then
by Lemma 7.5,R centralizesB(C(k)), and, in particular,j centralizesB(C(k)). Then
jk ∈Z(B(C(k))), a contradiction to the simplicity ofB(C(k)).

This contradiction shows that the properly even type involutions and the odd
involutions commute, producing commuting normal subgroups of the simple grouG,
a contradiction. ✷
7.3. The proof

Now we proceed to the proof of Theorem 2.

Notation 7.14.

(1) G is a simple group of finite Morley rank of mixed type, and of minimal rank. All
simple proper definable infinite sections of even type ofG are algebraic.

(2) U = U(G) is the associated graph, with vertices nontrivial 2-unipotent subgrou
G and edges consisting of pairs of vertices which commute.

(3) S is a Sylow◦ 2-subgroup ofG.
(4) S =U ∗R with U 2-unipotent andR a 2-torus.

If G were actually aK-group of mixed type, one would expect bothD(G) andB(G)
to be proper and normal inG, and one would expectU to be connected unlessG has
PSL2(K) as a normal subgroup withK of characteristic 2. Now as it turns out that, ifU
is connected, one easily finds a nontrivial proper normal subgroup ofG of D-type, giving
a contradiction. The “exceptional case” in whichU is disconnected is in fact the only on
that requires prolonged analysis. In this case one obtains a weakly embedded subg
G by considering the stabilizer inG of a connected component ofU .

Lemma 7.15. The graphU is not connected.

Proof. ForU a nontrivial 2-unipotent subgroup ofG, letDU =D(CG(U)). Observe that
asG is of mixed type,DU �= 1 for suchU .

Evidently forg ∈G we haveDUg =D
g
U . We claim that, for(U1,U2) an edge ofU , we

haveDU1 = DU2. If U is connected, this implies thatDU is independent of the choice o
U and hence normal inG, contradicting the simplicity ofG.
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So fixU1,U2 commuting nontrivial unipotent 2-subgroups ofG. ThenU2 normalizes
DU1 and centralizesDU1 by Lemma 7.5. SoDU1 � CG(U2), implying DU1 � DU2. By
symmetryDU1 =DU2, as claimed. ✷

The construction of a weakly embedded subgroup follows the same line as in [18

Notation 7.16. Let M be the set-wise stabilizer, under the natural action ofG, of the
connected componentC of the graphU which containsU .

Recall thatM is definable, andU(M)= C (Fact 4.39).

Theorem 4. M is a weakly embedded subgroup ofG.

Proof. Observe that every connected component ofU contains a maximal 2-unipote
subgroup ofG, henceG operates transitively on the set of connected componentsU ,
and in particularM < G. Furthermore, ifU is a nontrivial 2-unipotent subgroup ofM,
thenU ∈ C by Fact 4.39, and henceNG(U) � M. By the criterion for weak embeddin
given in Fact 4.37, it suffices to check the following:

For any nontrivial 2-torusT of M, NG(T )�M.

Suppose on the contrary thatT is a 2-torus inM such thatNG(T ) ��M; that is,NG(T )

does not stabilizeC set-wise. LetQ= B(NG(T ))= B(CG(T )). ThenU(Q)= U(NG(T ))

is disconnected. Thus Corollary 3.6 and Fact 4.40 imply thatQ � PSL2(K) for some
algebraically closed fieldK of characteristic 2.

If R is a maximal torus containingT , thenR �D(C(T )) and Lemma 7.5 implies tha
Q � C(R), soN(R) �� M and thus alsoB(N(R)) � PSL2(K) for some algebraically
closed fieldK of characteristic 2. Now we can apply Theorem 3 to reach a contradi
and conclude thatNG(R)�M. ✷

This completes the first step of the proof of Theorem 2. In the second step we
show that the weakly embedded subgroupM is in fact strongly embedded. This provid
an immediate contradiction, sinceG has at least two conjugacy classes of involutions
view of Fact 4.32(2).

For this second part, we may proceed very much as in [18], with some deviat
Lemma 7.21. We will give the details, suitably adjusted. In what follows,M may be taken
to be any weakly embedded subgroup ofG; its construction is no longer important.

Theorem 5. If M is a weakly embedded subgroup ofG thenM is strongly embedded.

Assuming the contrary, as in Section 6, one has anoffending involutionα in M, whose
centralizer is not contained inM. As in case of groups of even type, one can pin down
structure of this centralizer, as in the slightly more specialized situation of Lemma 6

Notation 7.17. I−
M will denote the set of offending involutions inM.
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Lemma 7.18. Supposeα ∈ I−
M . Then the following hold:

(1) C(α)◦ = L×X with L= B(C(α)), X = CC◦(α)(L), L � PSL2(K) with K algebrai-
cally closed of characteristic2, andX a group of degenerate type.

(2) M◦ ∩L=A� T is a Borel subgroup ofL andX �M.
(3) D(C(α)) = 1.
(4) If i ∈ I (A) thenC(i)�M.

Proof. SetH = C(α)◦, L= B(H), andX = CH (L).
(1) and (2). IfL � M, then a Frattini argument shows thatC(α) � M, contradicting

our hypothesis. SoL ��M. SoL ∩M is a weakly embedded subgroup ofL and, asL is a
K-group, Lemma 3.12 gives the structure ofL and proves(2).

AsM is weakly embedded,CH (L)�M and, in particular,X �M. If X has an infinite
2-Sylow subgroup thenC(X) � M by weak embedding, henceL � M, a contradiction
This proves(1) and(2).

(3) This follows from(1).
(4) If i ∈ I (A) theni is conjugate to an involution inU , soC(i) contains a nontrivia

2-torus. By(3) i /∈ I−
M , soC(i)�M. ✷

Notation 7.19. For α ∈ I−
M , let Aα beO2(B(C(α)) ∩ M), which is the unique Sylow◦

2-subgroup ofC(α) contained inM.

Our goal now is to show that all involutions of odd type belong toM. Since this implies
that M contains a nontrivial normal subgroup ofG, this will provide a contradiction
completing the proof of Theorem 5 (and hence the proof of Theorem 2).

Lemma 7.20 [18, Lemme 5.3].Supposej is an involution of odd type inG \M, α ∈ I−
M ,

andi ∈Aα . Thend(〈ij 〉) contains a unique involutionβ , andβ ∈ I−
M .

Proof. All the involutions inAα are conjugate (inB(C(α))∩M). Thus by Corollary 4.28
i andj are not conjugate and, by Fact 4.26,d(〈ij 〉) contains at least one involutionβ .

To prove the uniqueness ofβ , by Fact 4.8, it suffices to show thatd(〈ij 〉) does not
contain a nontrivial 2-torus. SupposeT is one such. Lett ∈ I (T ). Thent ∈ C(i)�M. By
Lemma 7.18(3), t /∈ I−

M , soC(t)�M. Thenj ∈M, a contradiction. Soβ is unique.
Now the involutionβ of d(〈ij 〉) commutes with bothi andj , andC(i) � M, j /∈ M.

Soβ ∈M, butC(β) ��M, and thusβ ∈ I−
M . ✷

Lemma 7.21 [18, Lemme 5.4].Every involution of odd type belongs toM.

Proof. We suppose the contrary:j ∈G \M is an involution of odd type.
Let α0 ∈ I−

M and i0 ∈ A×
α0

. By Lemma 7.20,d(〈i0j 〉) contains a unique involutionα1

andα1 is an offending involution. Now takei1 ∈A×
α1

. A second application of Lemma 7.2
to j andi1 yields thatα2 in d(〈i1j 〉). LetL1 = B(C(α1)).
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We intend to apply Fact 7.6 withi1, j,α1, α2 in the roles ofi, j, k, k′. The first three
hypotheses of that lemma hold by the choice of the involutions. The last hypothesis

i1 ∈ L1, j ∈CG(α1), and α2 /∈L1.

The only point that needs to be checked is the last.
If α2 ∈ L1, thenα2 is in a unipotent 2-subgroup ofG. HenceD(C(α2)) �= 1. This

contradicts Lemma 7.18(3).
So Fact 7.6 applies and givesjα2 ∈ B(C(α1)). As j ∈ C(α1), j normalizesB(C(α1)).

The action is by inner automorphisms, andj centralizesjα2, so j acts like an elemen
of Ajα2. In particular,j centralizesAjα2, sojα2 ∈ B(C(j)). LetRj be a maximal 2-toru
containingj . By Lemma 7.5,D(C(j)) andB(C(j)) commute, soRj centralizesjα2.
HenceRj centralizesα2; butD(C(α2))= 1 by Lemma 7.18(3), a contradiction. ✷
Proof of Theorem 5. Lemma 7.21 contradicts the simplicity ofG. ✷
Proof of Theorem 2. Theorems 4 and 5, Fact 4.32, and Corollary 4.28.✷

Added in proof

Fact 4.19 is also noted and a proof is sketched in [24, Remarque 3].
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