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Introduction

According to a long-standing conjecture in model theory, simple groups of finite
Morley rank should be algebraic. The present paper outlines some of the last
in a series of results aimed at proving the following:

Even Type Conjecture. Let G be a simple group of finite Morley rank of
even type, with no infinite definable simple section of degenerate type. Then G
is a Chevalley group over an algebraically closed field of characteristic 2.

See [13] for a brief informal introduction to the subject, [1] for the most
recent survey of the classification = programme, and [14] for further technical
details on groups of finite Morley rank.

An infinite simple group G of finite Morley rank is said to be of even type if
its Sylow 2-subgroups are infinite and of bounded exponent. It is of degenerate
type if its Sylow 2-subgroups are finite. If the main conjecture is correct, then
there should be no groups of degenerate type. So the flavour of the Even Type
Conjecture is that the classification in the even type case reduces to an extended
Feit-Thompson Theorem. Those who are skeptical about the main conjecture
would expect degenerate type groups to exist. The Even Type Conjecture con-
firms that this is the heart of the matter.

In the present paper we outline some geometric arguments which play the
crucial role at the final stages of analysis which has been undertaken in [3, 17,
4, 5, 7].

We work in the following context. Let G be a counterexample to the Even
Type Conjecture of minimal Morley rank. This allows us to assume that every
proper simple definable connected section of G is a Chevalley group over an
algebraically closed field. We adopt the terminology of the classification of finite
simple groups and say that G is a K*-group. We take a 2-Sylow◦ subgroup S of
G (that is, the connected component of a Sylow 2-subgroup), a Borel subgroup
B containing S, and the set M of minimal 2-local◦ subgroups containing B
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as a proper subgroup. It is shown at some point of our analysis [5, 7] that if
P ∈ M then O2′(P/O2(P )) ≃ SL2(K) for some algebraically closed field of
characteristic 2 and CP (O2(P )) ⩽ O2(P ).

We have the following natural case division:

Thin Groups: |M| ⩽ 1. This case occurs in the nature only if M = 3D∅ and
= G ≃ SL2(K).

Quasithin Groups: |M| = 3D2. In that case, we need to identify G with one
of the Lie rank 2 Chevalley groups: PSL3(K), PSp4(K) or G2(K) over an
algebraically closed field of characteristic 2.

Generic Groups: |M| ⩾ 3. In that case, G is a Chevalley group of Lie rank
|M| ⩾ 3.

Interestingly, each of these cases is resolved by an application of the amalgam
method. In the case of thin groups, the crucial role is played by the Pushing-Up
Theorem [5], proven, in our context, by essentially the same amalgam argument
as its finite group prototype, due to Stellmacher [23].

Generic groups can be handled either by constructing a BN -pair = in G of
(Tits) rank at least 3 [11] and the subsequent application of the classification
of BN -pairs of finite Morley rank (Kramer, van Maldeghem and Tent [18]), or
by the analysis of the centralisers of p-elements for odd primes p [12] which
eventually leads to the construction in G of a system of “root SL2-subgroups”
and application of the Curtis-Phan-Tits Theorem; see the paper by Bennett and
Shpectorov [10] in this = volume for the discussion of the underlying amalgams.

In this paper, we are dealing with quasithin groups and prove for = them
the following

Identification Theorem Let G be a simple K∗-group of finite Morley rank
and even type. Suppose that G is generated by two 2-local◦ subgroups P1, P2

each containing the connected component of the normaliser of a fixed Sylow◦ 2-
subgroup of G. Assume that O2′(Pi)/O2(Pi) ≃ SL2(Fi) with Fi an algebraically
closed field of characteristic 2, for i = 3D1, 2, and = that C◦

Pi
(O2(Pi)) ⩽

O2(Pi). Then G is a Lie rank 2 = Chevalley group over an algebraically closed
field of characteristic 2.

The proof of the Even Type Conjecture itself from these ingredients will be
the subject of one further paper.

The proof of the Identification Theorem relies very heavily on the amalgam
method in the form used by Stellmacher in [22] and by Delgado and Stellmacher
[15], particularly the former version. We have found that the type of arguments
that are used in conjunction with the amalgam method can generally be adapted
to the context of groups of finite Morley rank with comparatively little alter-
ation, though some attention to detail is required, notably in conjunction with
some basic facts of representation theory for which the analogs are obtained
through some ad hoc arguments, and definability issues. Accordingly we will
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not devote much space here to the adaptation of those arguments, merely sum-
marising the general flow, recording precisely the point to which they bring us,
and pointing out a few issues that do require specific attention. A detailed
account of the adapted argument will be found in the technical report [6]. A
model for this sort of argument is also found in the appendix to [5], where an
analog of the much shorter amalgam argument of [23] is presented.

The amalgam method delivers a great deal of information. We will show
that once this information is in hand, the identification theorem can then be
proved very efficiently on the basis of general principles, using two ingredients:
a classification theorem for BN pairs of finite Morley rank and Tits rank 2 due
to Kramer, Tent, and van Maldeghem [18] and a uniqueness result of Tits for
parabolic amalgams for which Bennett and Shpectorov [9] have recently given
a simple proof based on general principles.

1 Preliminaries

For general background on groups of finite Morley rank we refer to [13, 14]. A
broader discussion of the problem to which the present paper is addressed is
found in [1].

We will now present the main technical notions involved in the statement of
the Identification Theorem.

Definition 1 Let G be a group of finite Morley rank.

1. A definable section of G is a quotient H/K with = K ◁ H and K,H
definable in G. The section is proper if K > 1 or H < G.

2. G is a K-group if every infinite simple definable section of G is a Chevalley
group over an algebraically closed field.

3. G is a K∗-group if every infinite simple definable proper section of G is a
Chevalley group over an algebraically closed field.

Definition 2 Let G be a group of finite Morley rank and S a Sylow◦ 2-
subgroup (the connected component of a Sylow 2-subgroup).

1. G is degenerate if S = 3D1.

2. G is of even type if G is nondegenerate and S is of bounded exponent and
definable.

3. G is of odd type if G is nondegenerate and S is divisible abelian.

A simple K∗-group of finite Morley rank is of one of these three types:
degenerate, odd type, or even type [16, 2].
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Definition 3 Let G be a group of finite Morley rank and of even type.

1. A 2-local◦ subgroup of G is a group of the form N◦
G(Q) where Q is a

connected definable 2-subgroup of G.

2. A Borel subgroup of G is a maximal connected solvable subgroup of G.

3. A standard Borel subgroup of G is a Borel subgroup which contains a
Sylow◦ 2-subgroup.

4. O2′(G) is the minimal definable normal subgroup of G such that G/O2′(G)
contains no involutions.

4. O2(G) is the largest definable normal 2-subgroup of G.

A few remarks are in order. First, with regard to standard Borel subgroups, if
G is a K∗-group of even type then the standard Borel subgroups are those of the
form NG(S) with S a Sylow◦ 2-subgroup of G. Secondly, it is not immediately
clear that O2 exists, but when G is of even type this is the case. In practice we
will take G to be a connected K∗-group of even type and in this case O2(G) is
itself connected [5].

With these definitions, the Identification Theorem has a precise meaning.
The underlying idea is to work with an appropriate notion of parabolic subgroup,
and for our purposes “parabolic” is best taken to mean: 2-local◦, and containing
a standard Borel. Earlier = papers have dealt with the existence of parabolics
in this sense [5] = and with their structure [7].

2 The amalgam method

2.1 The issues

The basis for the proof of the Identification Theorem is the amalgam method
as applied in [22] and in greater generality in [15]. We will indicate how this
method is used in = our context, and what it produces. On the whole, this
chapter of finite group theory goes over very smoothly to our context once the
principles on which it relies are suitably translated. Accordingly we will not give
the details of these arguments here; they may be found in [6]. On the whole
we followed the line of [22] rather than the more general [15] as it is more =
efficient in our particular case.

The amalgam method has already been used in the context of groups of
finite Morley rank in [5]; indeed, the original proofs of “pushing up” results in
finite group theory [8, 19] do not seem to go over to our context, but the version
given by Stellmacher in = [23], based squarely on the amalgam method, goes
over quite smoothly, as seen in the appendix to [5], where the argument is given
in detail in the context of groups of finite Morley rank. We also refer to [5] for
a verification that some of the key properties of SL2 which are used in amalgam
arguments hold in our context. We will indicate below what sorts of adaptations
generally need to be made in our context.
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In the context of the Identification Theorem, the amalgam method begins
by introducing the graph Γ associated with the right cosets of P1 and P2, where
two distinct cosets are linked by an edge if they meet. Thus this is a bipartite
graph on which G acts naturally, and it should be thought of as a labeled graph
in which every vertex and edge is labeled by its stabiliser under the action of
G. The universal cover Γ̂ of this graph in the topological sense is a tree which
is associated to the free product Ĝ of P1 and P2 over their intersection, which
is easily seen to be the standard Borel subgroup B. The objective is to show,
after a lengthy analysis which can take place either in Γ or in Γ̂, that Γ̂ has a
quotient Γ∗ on which Ĝ acts (not faithfully) with the following properties:

(a) Γ∗ is a generalized n-gon, and the image G∗ of Ĝ in Aut(Γ∗) has a (B,N)-
pair of rank 2.

(b) The triple (B,P1, P2) in G is isomorphic with the corresponding triple in
G∗ (one says that G is parabolic isomorphic with G∗).

The intent of course is to apply a classification theorem to G∗ in order to
determine the possible isomorphism types, at which point the isomorphism type
of the triple (B,P1, P2) in G is known, and one can return to G and complete
the identification of G without further use of the amalgam method.

An obvious and potentially serious drawback of this approach from the point
of view of groups of finite Morley rank is that the group Ĝ will not be definable
and will not be a group of finite Morley rank, and hence a priori the same
problem arises in G∗. This is handled by showing that Ĝ is “locally” of finite
Morley rank and that G∗ is actually of finite Morley rank. We will deal with
this more explicitly below.

The other issues that arise are merely technical, and are of two sorts. On the
one hand certain chapters of finite group theory that are applied in this context
have to be developed appropriately in our category, the most problematic one
being the representation theory of the group SL2, which is handled in a largely ad
hoc way as the representations involved are taken over the field of 2 elements and
are infinite dimensional; Morley rank has to replace dimension as the measure
of size here, and the representation theory is inevitably in a rudimentary state,
but sufficient for the limited needs of the amalgam method. The other point
that bears watching is the role of connectedness in the analysis. This is absent
in the finite case, but comes up naturally in the transposition to the context of
groups of finite Morley rank, as can be seen quite clearly already in [5], where
some care had to be taken around this point.

We will say no more about these technical points, but we will discuss the
definability issue, and also state explicitly the result delivered by the amalgam
method, which serves as the point of departure for the identification of the group
G.

2.2 Definability

Definition 4 Let G be a group acting on a graph Γ.
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1. For any vertex δ and any k ⩾ 0, = ∆k(δ) is the set of vertices lying at
distance at most k from δ in Γ, and Gk(δ) is the set of elements of G
which can be expressed as a product of at most k elements of G, where
each element stabilises some vertex in ∆k(δ).

2. The pair (G,Γ) is locally of finite Morley rank if for each k and δ the
pair (Gk(δ),∆k(δ)) has finite Morley rank, where the latter is a 2-sorted
structure consisting of a partial group, a graph, and a partial action of
the partial group on the graph. (A partial group is simply the restriction
of a group, viewed as a relational system, to a subset.)

Because the amalgam method always works locally in the graph Γ, whatever
can be done with groups of finite Morley rank can also be done with groups
which are locally of finite Morley rank, in this context. As far as the universal
cover is concerned, we have the following.

Lemma 1 Let P = 3D(P,Q,B) be a structure consisting of two groups P,Q.
Let G = 3DP ∗B Q be the free product with amalgamation and let = Γ be
the associated tree of cosets, on which G acts naturally. Then the structure
G = 3D(G,Γ) consisting of G acting on Γ is locally interpretable in P in the
following sense: for any vertex δ ∈ V (Γ) and any k ⩾ 0 the graph ∆k(δ), the
partial group Gk(δ), and the partial action of Gk(δ) on ∆k(δ) are all inter-
pretable in P.

Proof. Let X = 3DP ∪Q and let Rk(x1, . . . , xk) be the relation on X defined
by: “x1 · · ·xk = 3D1 in G”. Everything comes down to the definability of this
relation in P, which is proved by induction based on the following property of
free products with amalgamation: if x1, . . . , xk are alternately from P \ B and
Q \B then the product is nontrivial. In the remaining cases, either the product
can be shortened, and induction applies, or else k = 3D1. Bearing in mind that
the natural maps of P and Q into G are embeddings, the claim follows. □

Corollary 2 Under the stated hypotheses, if P has finite Morley rank then
(G,Γ) is locally of finite Morley rank.

We must also look at the passage from the universal cover to a generalized
n-gon. This is handled at the outset in [15] by two results, (3.6) (p. 77) and
(3.7) (p. 79), most of which involve no finiteness hypothesis:

Fact 1 [15] Let Γ be a tree and K a Cartan subgroup of G with apartment
T = 3DT (K). Suppose that T fulfills the uniqueness and exchange conditions
and that s ⩾ 3. Then there exists an equivalence relation ≈ on Γ which is
compatible with the action of G so that:

1. Γ̃ = 3D(Γ/ ≈) is a generalised (s− 1)-gon;

2. GΓ̃ ∩Gδ = 3D1 for each δ ∈ V (Γ); here GΓ̃ is the kernel of the action of

G on Γ̃.
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3. G/GΓ̃ has a (B,N)-pair of rank 2.

The precise meaning of the hypotheses is not really relevant here; for the
most part they represent the conditions which must be verified in the course of
a detailed analysis. Also, in quoting this statement verbatim, we have omitted
the context, which is more general than that of the Identification Theorem,
apart from a finiteness hypothesis that plays no role here. However it may be
remarked that in the case which actually concerns us, the Borel subgroup B
splits as S ⋊K with S a Sylow◦ 2-subgroup and K a complement which may
be called a “maximal torus”, and the apartment T may be defined as the fixed-
point set of K, which will be a 2-way infinite path on which the normaliser of K
acts, with two orbits. We will also enter somewhat more into the details below,
in discussing the Moufang property.

What needs to be added to this fact is the following:

Lemma 3 In the context of Fact 1, if (G,Γ) is locally = of finite Morley rank
then the “quotient” (G/GΓ̃, Γ̃) has finite Morley rank.

Proof. This requires an examination of the construction of Γ̃ as given in [15].
There are two points to be observed.

In the first place, the quotient Γ̃ is covered by ∆s−1(δ) for any vertex δ ∈
V (Γ). Secondly, with δ fixed, it needs to be seen that the equivalence relation
≈, which we factor out, is definable on ∆s−1(δ). In the proof of Fact 1 it is
shown that equivalent pairs in = Γ̃ lie at distance at least 2(s − 1), and the
argument shows that on ∆s−1(δ) the equivalence relation is given by:

α ≈ β iff d(α, β) = 3D2(s− 1) and γ(α, β) is conjugate under G to a subpath of T

where γ(α, β) is the path from α to β. Here we may replace T by two fixed
subpaths of T of length 2(s− 1), and the problem of definability reduces to the
relation: “(α, β) is conjugate to (α0, β0)” where the four vertices α, β, α0, β0 lie
in a set of the form ∆k(δ).

The action of a vertex stabiliser Gδ is transitive on the set of neighbors ∆(δ),
so if α and α0 are in fact conjugate and at distance 2d, and δ is the midpoint
of the path joining α and α0, then there is an element of Gd(δ) carrying α to
α0. Thus the following serves as a definition of conjugacy, for such pairs: “α, α0

lie at distance 2d for some (bounded) d, and with δ the midpoint of the path
joining them, there is g ∈ Gd(δ) such that αg = 3Dα0 and βg is conjugate to β0

under Gα0
”; in the final clause we have a bound on d(βg, β0), so this condition

is also definable. □

This disposes of all definability issues: when the amalgam method succeeds,
the group G∗ (or G/GΓ̃, in the current notation) has finite Morley rank, and
for that matter is interpretable in the original group G, in the notation of the
Identification Theorem.
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2.3 Application of the amalgam method (the Moufang
property)

We have already indicated the main thrust of the amalgam method in our
context, namely:

Fact 2 [6] Under the hypotheses of the Identification Theorem, there is a group
G∗ of finite Morley rank which is parabolic isomorphic to = G, and which has
a rank 2 (B,N)-pair.

This leaves something to be desired however. We would like to apply the
classification of Moufang (B,N) pairs of Tits rank at least 2 and of finite Morley
rank, given in [18].

Definition 5 Let Γ be a generalised n-gon, G = 3DAutΓ.

1. For γ = 3D(δ0, . . . , δn−1) a path of length n − 1 in Γ, let U(γ) be the
intersection of G∆1(δ) for δ = 3Dδ1, . . . , δn−1.

2. Γ is Moufang if for every path γ = 3D(δ0, . . . , δn−1) in Γ, the group =
U(γ) operates transitively on ∆(δ0) \ {δ1}.

As it happens the Moufang property follows from general principles for the
generalised (s− 1)-gons delivered by Fact 1 in the context of the Identification
theorem.

At this point one should actually invoke the definition of s:

Definition 6 In the context of the amalgam method (e.g., the Identification
Theorem):

1. A path γ = 3D(δ0, . . . , δn) in Γ is regular if Gγ (the pointwise stabiliser)
operates transitively on ∆(δ0) \ {δ1} and on ∆(δn) \ {δn−1}.

2. s is the minimum length of a non-regular path.

It follows easily from the definition of s, and induction, that any two paths
of equal length l, with l ⩽ s, are conjugate under the action of G.

Now the following is contained in the analog of [15, (14.1)]:

Fact 3 Let γ = 3D(δ0, . . . , δs−1) be a path of length = s− 1 ⩾ 2. Then O2(Gγ)
acts transitively on ∆(δ0) \ {δ0} and ∆(δs−1) \ {δs−1}.

Here the notation O2(Gγ) simply represents a Sylow 2-subgroup of Gγ since
Gγ is contained in a Borel subgroup, of the form S ⋊ K with S a Sylow 2-
subgroup and K a torus; furthermore some conjugate of K is a complement to
O2(Gγ) (any path of length at most s − 1 is conjugate to a path contained in
T = 3DTK).

Now to verify the Moufang property for the generalised (s−1)-gon furnished
by Fact 1 in the context of the Identification Theorem, let γ = 3D(δ0, . . . , δs−2)
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be a path of length s− 2 in Γ̂, and extend it to a path γ̃ = 3D(δ0, . . . , δs−1) of
length s− 1. Let Q = 3DO2(Gγ). It suffices to show that Q fixes the neighbors
of each δi for 1 ⩽ i ⩽ s− 2. Or, more simply:

Lemma 4 If δ ∈ V (Γ) and α, β are distinct neighbors of δ, then O2(Gαβ) fixes
∆(δ).

Now Gαβ = 3DGαδ ∩Gβδ is the intersection of two Borel subgroups of Gδ,
and O2(Gαβ)/O2(Gδ) is the intersection of two distinct Sylow subgroups of SL2,
hence trivial, that is: O2(Gαβ) ⩽ O2(Gδ), and as Gδ acts transitively on ∆(δ),
it follows that O2(Gδ) fixes all neighbors of δ. Thus the lemma is immediate.

3 Identification

We apply a very general result from [18, Theorem 3.14]:

Fact 4 Let G∗ be an infinite simple group of finite Morley rank with a = spher-
ical Moufang BN-pair of Tits rank 2. Then G∗ ≃ PSL3(F ), PSp4(F ), or G2(F )
for some field F .

This field must of course be algebraically closed as it will also have finite
Morley rank.

Thus we now have as a corollary of the amalgam analysis sketched in the
previous section:

Lemma 5 Under the hypotheses of the identification theorem, the triple (B,P1, P2)
is isomorphic to a triple consisting of a Borel subgroup and the two minimal
parabolic subgroups containing it, in one of the groups G∗ ≃ PSL3(F ), PSp4(F ),
or = G2(F ) for some algebraically closed field F (of characteristic 2, as we work
with even = type).

Evidently we now want to identify G itself with the appropriate one of these
three groups. We use a theorem of Tits found in [20, Chapter II, Theorem 8];
for an alternative proof, based on Tits’ Lemma [24], see Bennett and Shpectorov
[9].

Fact 5 Let G∗ be a Chevalley group of Lie rank 2 and let P1, P2 = be minimal
parabolics containing a common Borel subgroup B. Let N be the normaliser of
a Cartan subgroup of B. Then G∗ is the universal closure of the amalgam of
P1, P2, = and N .

(The idea of the proof given by Bennett and Shpectorov is to adjoin to the
natural point/line geometry associated with G∗ a third kind of object, the set
of apartments, where an apartment is incident with its elements. This has the
effect of making the geometry simply connected, and a very general result of
Tits [24] on groups acting flag-transitively on simply connected geometries then
applies.)
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To complete the proof of the Identification Theorem we may therefore pro-
ceed as follows. LetG∗ be the target group PSL3(F ), PSp4(F ), or G2(F ). Work-
ing in the original group G, fix a maximal torus K in B and let N = 3DNG(K).

Lemma 6 If CG(K) = 3DK then G ≃ G∗.

Proof. Let K be a maximal torus in B. Pi = 3DO2(Pi) ⋊ (Li × Ki) with
Li ≃ SL2(F ) and K = 3D(K ∩ Li)Ki. Let wi ∈ Li be an involution inverting
K ∩ Li and let W = 3D⟨w1, w2⟩, = a = 3Dw1w2. Evidently the structure of
P1 and P2 determine the map W → Aut(K), so as G and G∗ are parabolic
isomorphic, W acts on K like Ds−1. In particular as−1 ∈ CG(K) = 3DK, and
a is inverted by both w1 and w2. It follows that a

s−1 = 3D1.
ThusKW ≃ NG∗(K). By Fact 5 the subgroup ofG generated by P1, P2,KW

is = isomorphic with G∗ and as P1, P2 already generate G, we have G ≃ G∗. □

In the proof of the next lemma we make use of information on centralisers
of semisimple elements in semisimple algebraic groups found in [21].

Fact 6 [21, Corollary 4.6] Let G∗ be a semisimple algebraic group and x a
semisimple element of G∗ of prime order p. Let π : G̃ → G∗ be the canonical
map from the simply connected cover. If p does not divide | kerπ| then CG∗(x)
is connected.

Fact 7 [21, 3.19] Let G∗ be a semisimple algebraic group and and y any semisim-
ple element. Then CG∗(y) is reductive.

Combining these two:

Corollary 7 With the hypotheses and notation of Fact 6, CG∗(x) is connected
and reductive. In particular if G∗ is one of the groups SL3, Sp4, or G2 over
an algebraically closed field of characteristic 2 and x is a semisimple element of
prime order p > 3, then CG∗(x) is a torus or the = product of a torus with SL2.

Proof. CG∗(x) is reductive of Lie rank 2, and contains a central element = of
order greater than 3. The claim follows. □

Lemma 8 CG(K) = 3DK.

Proof. We will make free use of the parabolic isomorphism of G and G∗.
With Ki, Li as in the preceding proof, CPi

(Ki) = 3DLi × Ki with Li ≃
SL2(F ), with F the base field of G∗. More exactly, Li ≃ SL2(Fi) with F1 and
F2 definably isomorphic, but this amounts to the same thing.

Take a ∈ K of order greater than 3. As observed above CG∗(a) is reductive
and is either a torus, or the product of a torus with SL2(F ).

In particular the rank of CS(a) is at most f = 3Drk(F ) for any such element
a. Accordingly the same applies to CQ(a) for any Sylow◦ 2-subgroup Q of G,
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and any a normalising Q of order greater than 3. Let U be a Sylow◦ 2-subgroup
of CG(Ki) (i = 3D1 or 2). It follows that rk(U) ⩽ f . As rk(S∩ = Li) = 3Df ,
we conclude that S ∩ Li is a Sylow◦ 2-subgroup of C◦

G(Ki).
Let Ui = 3DS ∩ Li. Then we have

(∗) Ui ⩽ Li ⩽ C◦
G(Ki)

and C◦
G(Ki) is a connected K-group, with Ui as a Sylow 2-subgroup.

By (∗) we have O2(C
◦
G(Ki)) = 3D1, and by an elementary result on K-

groups [4, 2.33] it follows that C◦
G(Ki) = 3DE(C◦

G(Ki)) ∗ O(C◦
G(Ki)). Here

E = 3DE(C◦
G(Ki)) is a central product of quasisimple algebraic = groups, Ui

is a Sylow 2-subgroup of E, and Ui ⩽ Li ⩽ E. It is then easy to see that
Li = 3DE. As a result, Li is normalised by CG(Ki) for i = 3D1, 2 and hence:

Both L1 and L2 are normalised by CG(K).

The groups Li ≃ SL2(F ), i = 3D1, 2, do not allow definable groups of outer
automorphisms [14, Theorem 8.4]. Hence CG(K) must act on Li via inner
automorphisms commuting with K ∩ Li and hence CG(K) = 3D(K ∩ Li) ×
CG(KLi). Let Hi = 3DCG(KLi). Since (K ∩L1)(K ∩L2) ⩽ K, it follows that
CG(K) = 3DK(H1 ∩H2).

Now H = 3DH1 ∩H2 centralises ⟨U1, U2⟩ = 3DS and H centralises each Li,
hence also each Pi, hence G. As G is simple, H = 3D1 and CG(K) = 3DK. □

This completes the identification of G.
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